WorldWideScience

Sample records for fusion product alpha

  1. Loss of alpha-like MeV fusion products from TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Boivin, R.L.; Diesso, M.; Hayes, S.E.; Hendel, H.W.; Park, H.; Strachan, J.D.

    1990-03-01

    A detailed comparison between the observed and expected loss of alpha-like MeV fusion products in TFTR is presented. The D-D fusion products (mainly the 1 MeV triton) were measured with an 2-D imaging scintillation detector. The expected first-orbit loss was calculated with a simple Lorentz orbit code. In almost all cases the measured loss was consistent with the expected first-orbit loss model. Exceptions are noted for small major radius plasmas and during strong MHD activity. 37 refs., 28 figs

  2. Fusion alpha loss diagnostic for ITER using activation technique

    Czech Academy of Sciences Publication Activity Database

    Bonheure, G.; Hult, M.; González de Orduña, R.; Vermaercke, P.; Murari, A.; Popovichev, S.; Mlynář, Jan

    2011-01-01

    Roč. 86, 6-8 (2011), s. 1298-1301 ISSN 0920-3796. [Symposium on Fusion Technology (SOFT) /26th./. Port o, 27.09.2010-01.10.2010] Institutional research plan: CEZ:AV0Z20430508 Keywords : ITER * fusion product * burning plasma diagnostics * alpha losses * activation technique Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.490, year: 2011 http://www.sciencedirect.com/science/article/pii/S0920379611002778

  3. The role of alpha particles in magnetically confined fusion plasmas

    International Nuclear Information System (INIS)

    Lisak, M.; Wilhelmsson, H.

    1986-01-01

    Recent progress in the confinement of hot plasmas in magnetic fusion experiments throughout the world has intensified interest and research in the physics of D-T burning plasmas especially in the wide range of unresolved theoretical as well as experimental questions associated with the role of alpha particles in such devices. In order to review the state-of-the- art in this field, and to identify new issues and problems for further research, the Symposium on the Role of Alpha Particles in Magnetically Confined Fusion Plasmas was held from 24 to 26 June 1986 at Aspenaesgaarden near Goeteborg, Sweden. About 25 leading experts from nine countries attended the Symposium and gave invited talks. The major part of the programme was devoted to alpha-particle effects in tokamaks but some aspects of open systems were also discussed. The possibilities of obtaining ignition in JET and TFTR as well as physics issues for the compact ignition experiments were considered in particular. A special session was devoted to the diagnostics of alpha particles and other fusion products. In this report are summarised some of the highlights of the symposium. (authors)

  4. Investigation of advanced materials for fusion alpha particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bonheure, G., E-mail: g.bonheure@fz-juelich.de [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Van Wassenhove, G. [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Hult, M.; González de Orduña, R. [Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Strivay, D. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Vermaercke, P. [SCK-CEN, Boeretang, B-2400 Mol (Belgium); Delvigne, T. [DSI SPRL, 3 rue Mont d’Orcq, Froyennes B-7503 (Belgium); Chene, G.; Delhalle, R. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Huber, A.; Schweer, B.; Esser, G.; Biel, W.; Neubauer, O. [Forschungszentrum Jülich GmbH, Institut für Plasmaphysik, EURATOM-Assoziation, Trilateral Euregio Cluster, D-52425 Jülich (Germany)

    2013-10-15

    Highlights: ► We examine the feasibility of alpha particle measurements in ITER. ► We test advanced material detectors borrowed from the GERDA neutrino experiment. ► We compare experimental results on TEXTOR tokamak with our detector response model. ► We investigate the detector response in ITER full power D–T plasmas. ► Advanced materials show good signal to noise ratio and alpha particle selectivity. -- Abstract: Fusion alpha particle diagnostics for ITER remain a challenging task. Standard escaping alpha particle detectors in present tokamaks are not applicable to ITER and techniques suitable for fusion reactor conditions need further research and development [1,2]. The activation technique is widely used for the characterization of high fluence rates inside neutron reactors. Tokamak applications of the neutron activation technique are already well developed [3] whereas measuring escaping ions using this technique is a novel fusion plasma diagnostic development. Despite low alpha particle fluence levels in present tokamaks, promising results using activation technique combined with ultra-low level gamma-ray spectrometry [4] were achieved before in JET [5,6]. In this research work, we use new advanced detector materials. The material properties beneficial for alpha induced activation are (i) moderate neutron cross-sections (ii) ultra-high purity which reduces neutron-induced background activation and (iii) isotopic tailoring which increases the activation yield of the measured activation product. Two samples were obtained from GERDA[7], an experiment aimed at measuring the neutrinoless double beta decay in {sup 76}Ge. These samples, made of highly pure (9 N) germanium highly enriched to 87% in isotope Ge-76, were irradiated in real D–D fusion plasma conditions inside the TEXTOR tokamak. Comparison of the calculated and the experimentally measured activity shows good agreement. Compared to previously investigated high temperature ceramic material [8

  5. Thermonuclear Tokamak plasmas in the presence of fusion alpha particles

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1988-01-01

    In this overview, we have focused on several results of the thermonuclear plasma research pertaining to the alpha particle physics and diagnostics in a fusion tokamak plasma. As regards the discussion of alpha particle effects, two distinct classes of phenomena have been distinguished: the simpler class containing phenomena exhibited by individual alpha particles under the influence of bulk plasma properties and, the more complex class including collective effects which become important for increasing alpha particle density. We have also discussed several possibilities to investigate alpha particle effects by simulation experiments using an equivalent population of highly energetic ions in the plasma. Generally, we find that the present theoretical knowledge on the role of fusion alpha particles in a fusion tokamak plasma is incomplete. There are still uncertainties and partial lack of quantitative results in this area. Consequently, further theoretical work and, as far a possible, simulation experiments are needed to improve the situation. Concerning the alpha particle diagnostics, the various diagnostic techniques and the status of their development have been discussed in two different contexts: the escaping alpha particles and the confined alpha particles in the fusion plasma. A general conclusion is that many of the different diagnostic methods for alpha particle measurements require further major development. (authors)

  6. Fusion power production from TFTR plasmas fueled with deuterium and tritium

    International Nuclear Information System (INIS)

    Strachan, J.D.; Adler, H.; Alling, P.

    1994-03-01

    Peak fusion power production of 6.2 ± 0.4 MW has been achieved in TFTR plasmas heated by deuterium and tritium neutral beams at a total power of 29.5 MW. These plasmas have an inferred central fusion alpha particle density of 1.2 x 10 17 m -3 without the appearance of either disruptive MHD events or detectable changes in Alfven wave activity. The measured loss rate of energetic alpha particles agreed with the approximately 5% losses expected from alpha particles which are born on unconfined orbits

  7. A comprehensive alpha-heating model for inertial confinement fusion

    Science.gov (United States)

    Christopherson, A. R.; Betti, R.; Bose, A.; Howard, J.; Woo, K. M.; Campbell, E. M.; Sanz, J.; Spears, B. K.

    2018-01-01

    A comprehensive model is developed to study alpha-heating in inertially confined plasmas. It describes the time evolution of a central low-density hot spot confined by a compressible shell, heated by fusion alphas, and cooled by radiation and thermal losses. The model includes the deceleration, stagnation, and burn phases of inertial confinement fusion implosions, and is valid for sub-ignited targets with ≤10 × amplification of the fusion yield from alpha-heating. The results of radiation-hydrodynamic simulations are used to derive realistic initial conditions and dimensionless parameters for the model. It is found that most of the alpha energy (˜90%) produced before bang time is deposited within the hot spot mass, while a small fraction (˜10%) drives mass ablation off the inner shell surface and its energy is recycled back into the hot spot. Of the bremsstrahlung radiation emission, ˜40% is deposited in the hot spot, ˜40% is recycled back in the hot spot by ablation off the shell, and ˜20% leaves the hot spot. We show here that the hot spot, shocked shell, and outer shell trajectories from this analytical model are in good agreement with simulations. A detailed discussion of the effect of alpha-heating on the hydrodynamics is also presented.

  8. Heavy-quark pair production in gluon fusion at next-to-next-to-leading O({alpha}{sup 4}{sub s}) order. One-loop squared contributions

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, B.A.; Merebashvili, Z. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Koerner, J.G. [Mainz Univ. (Germany). Inst. fuer Physik; Rogal, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-09-15

    We calculate the next-to-next-to-leading order O({alpha}{sup 4}{sub s}) one-loop squared corrections to the production of heavy quark pairs in the gluon-gluon fusion process. Together with the previously derived results on the q anti q production channel the results of this paper complete the calculation of the oneloop squared contributions of the next-to-next-to-leading order O({alpha}{sup 4}{sub s}) radiative QCD corrections to the hadroproduction of heavy flavours. Our results, with the full mass dependence retained, are presented in a closed and very compact form, in dimensional regularization. (orig.)

  9. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.

    Science.gov (United States)

    Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J

    2015-06-26

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  10. Plasma flow driven by fusion-generated alpha particles

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1978-05-01

    The confinement of fusion-generated alpha particles will affect the transports of the background plasma particles by the momentum transfer from the energetic alphas. The ions tend to migrate towards the center of plasma (i.e. fuel injection) and electrons towards the plasma periphery. This means the existence of a mechanism which enable to pump out the ashes in the fuel plasma because of the momentum conservation of whole plasma particles. (author)

  11. Charged fusion product and fast ion loss in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Darrow, D.S.; Fredrickson, E.D.; Mynick, H.E.; White, R.B.; Biglari, H.; Bretz, N.; Budny, R.; Bush, C.E.; Chang, C.S.; Chen, L.; Cheng, C.Z.; Fu, G.Y.; Hammett, G.W.; Hawryluk, R.J.; Hosea, J.; Johnson, L.; Mansfield, D.; McGuire, K.; Medley, S.S.; Nazikian, R.; Owens, D.K.; Park, H.; Park, J.; Phillips, C.K.; Schivell, J.; Stratton, B.C.; Ulrickson, M.; Wilson, R.; Young, K.M.; Fisher, R.; McChesney, J.; Fonck, R.; McKee, G.; Tuszewski, M.

    1993-03-01

    Several different fusion product and fast ion loss processes have been observed in TFTR using an array of pitch angle, energy and time resolved scintillator detectors located near the vessel wall. For D-D fusion products (3 MeV protons and 1 MeV tritons) the observed loss is generally consistent with expected first-orbit loss for Ip I MA. However, at higher currents, Ip = 1.4--2.5 MA, an NM induced D-D fusion product loss can be up to 3-4 times larger than the first-orbit loss, particularly at high beam powers, P ≥ 25 MW. The MHD induced loss of 100 KeV neutron beam ions and ∼0.5 MeV ICRF minority tail tons has also been measured ≤ 459 below the outer midplane. be potential implications of these results for D-T alpha particle experiments in TFTR and ITER are described

  12. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET

    International Nuclear Information System (INIS)

    Dendy, R.O.; Clements, K.G.; Lashmore-Davies, C.N.; Cottrell, G.A.; Majeski, R.; Cauffman, S.

    1995-06-01

    Ion cyclotron emission (ICE) has been observed from neutral beam-heated TFTR and JET tritium experiments at sequential cyclotron harmonics of both fusion products and beam ions. The emission originates from the outer mid-plane plasma, where fusion products and beam ions are likely to have a drifting ring-type velocity-space distribution which is anisotropic and sharply peaked. Fusion product-driven ICE in both TFTR and JET can be attributed to the magnetoacoustic cyclotron instability, which involves the excitation of obliquely propagating waves on the fast Alfven/ion Bernstein branch at cyclotron harmonics of the fusion products. Differences between ICE observations in JET and TFTR appear to reflect the sensitivity of the instability growth rate to the ratio υ birth /c A , where υ birth is the fusion product birth speed and c A is the local Alfven speed:for fusion products in the outer midplane edge of TFTR, υ birth A ; for alpha-particles in the outer midplane edge of JET, the opposite inequality applies. If sub-Alfvenic fusion products are isotropic or have undergone even a moderate degree of thermalization, the magnetoacoustic instability cannot occur. In contrast, the super-Alfvenic alpha-particles which are present in the outer mid-plane of JET can drive the magnetoacoustic cyclotron instability even if they are isotropic or have a relatively broad distribution of speeds. These conclusions may account for the observation that fusion product-driven ICE in JET persists for longer than fusion product-driven ICE in TFTR. (Author)

  13. Estimation of the {alpha} particles and neutron distribution generated during a fusion reaction; Evaluation de la distribution des particules {alpha} et des neutrons issus de la reaction de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dellacherie, S.

    1997-12-01

    The respective distributions (or density probabilities) of {alpha} particles and neutrons have been modeled using a Monte-Carlo method for the thermonuclear fusion reaction D + T {yields} {alpha} + n + 17.6 MeV. (N.T.).

  14. Alpha-driven magnetohydrodynamics (MHD) and MHD-induced alpha loss in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Chang, Z.; Nazikian, R.; Fu, G.Y.

    1997-02-01

    Alpha-driven toroidal Alfven eigenmodes (TAEs) are observed as predicted by theory in the post neutral beam phase in high central q (safety factor) deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR). The mode location, poloidal structure and the importance of q profile for TAE instability are discussed. So far no alpha particle loss due to these modes was detected due to the small mode amplitude. However, alpha loss induced by kinetic ballooning modes (KBMs) was observed in high confinement D-T discharges. Particle orbit simulation demonstrates that the wave-particle resonant interaction can explain the observed correlation between the increase in alpha loss and appearance of multiple high-n (n ≥ 6, n is the toroidal mode number) modes

  15. Impact of ICRH on the measurement of fusion alphas by collective Thomson scattering in ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Eriksson, L.-G.; Bindslev, Henrik

    2009-01-01

    Collective Thomson scattering (CTS) has been proposed for measuring the phase space distributions of confined fast ion populations in ITER plasmas. This study determines the impact of fast ions accelerated by ion cyclotron resonance heating (ICRH) on the ability of CTS to diagnose fusion alphas......, corresponding to an off-axis resonance. The sensitivities of the results to the He-3 concentration (0.1-4%) and the heating power (20-40 MW) are considered. Fusion born alphas dominate the total CTS signal for large Doppler shifts of the scattered radiation. The tritons generate a negligible fraction...... perpendicular velocities, it may be difficult to draw conclusions about the physics of alpha particles alone by CTS. With this exception, the CTS diagnostic can reveal the physics of the fusion alphas in ITER even under the presence of fast ions due to ICRH....

  16. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET

    International Nuclear Information System (INIS)

    Dendy, R.O.; McClements, K.G.; Lashmore Davies, C.N.; Cottrell, G.A.; Majeski, R.; Cauffman, S.

    1995-01-01

    Ion cyclotron emission (ICE) has been observed from neutral beam heated TFTR and JET tritium experiments at sequential cyclotron harmonics of both fusion products and beam ions. The emission originates from the outer midplane plasma, where fusion products and beam ions are likely to have a drifting ring-type velocity-space distribution that is anisotropic and sharply peaked. Fusion product driven ICE can be attributed to the magnetoacoustic cyclotron instability, which involves the excitation of obliquely propagating waves on the fast Alfven/ion Bernstein branch at cyclotron harmonics of the fusion products. Differences between ICE observations in JET and TFTR appear to reflect the sensitivity of the instability growth rate to the ratio υ birth /c A , where υ birth is the fusion product birth speed and c A is the local Alfven speed: for fusion products in the outer midplane edge of TFTR supershots, υ birth A ; for alpha particles in the outer midplane edge of JET, the opposite inequality applies. If sub-Alfvenic fusion products are isotropic or have undergone even a moderate degree of thermalization, the magnetoacoustic instability cannot occur. In contrast, the super-Alfvenic alpha particles that are present in the outer midplane of JET can drive the magnetoacoustic cyclotron instability even if they are isotropic or have a relatively broad distribution of speeds. These conclusions may account for the observation that fusion product driven ICE in JET persists for longer than fusion product driven ICE in TFTR. A separate mechanism is proposed for the excitation of beam driven ICE in TFTR: electrostatic ion cyclotron harmonic waves, supported by strongly sub-Alfvenic beam ions, can be destabilized by a low concentration of such ions with a very anrrow spread of velocities in the parallel direction. 25 refs, 14 figs

  17. Fusion-product ash buildup in tokamak with radial electric field

    International Nuclear Information System (INIS)

    Downum, W.B.; Choi, C.K.; Miley, G.H.

    1979-01-01

    The buildup of thermalized fusion products (ash) in a tokamak can seriously limit burn times. Prior studies have concentrated on deposition profile effects on alpha particle transport in tokamaks but have not considered the effect on ash of radial electric fields (either created internally, e.g. due to high-energy alpha leakage, or generated externally). The present study focuses on this issue since it appears that electric fields might offer one approach to control of the ash. Approximate field and source profiles are used, based on prior calculations

  18. Recent progress on MHD-induced loss of D-D fusion products in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Darrow, D.S.; Budny, R.V.; Cheng, C.Z.; Fredrickson, E.D.; Herrmann, H.; Mynick, H.E.; Schivell, J.

    1993-08-01

    This paper reviews the recent progress made toward understanding the MHD-induced loss of D-D fusion products which has been seen on TFTR since 1988. These measurements have been made using the ''lost alpha'' diagnostic, which is described briefly. The largest MHD- induced loss occurs with coherent 3/2 or 2/1 MHD activity (kink/tearing modes), which can cause up to ∼3--5 times the first-orbit loss at I∼1.6--1.8 MA, roughly a ∼20--30% global los of D-D fusion products. Modeling of these MHD-induced losses has progressed to the point where the basic loss mechanism can be accounted for qualitatively, but the experimental results can not yet be understood quantitatively. Several alpha loss codes are being developed to improve the quantitative comparison between experiment and theory

  19. Comparison of fusion alpha performance in JET advanced scenario and H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Asunta, O; Kurki-Suonio, T; Tala, T; Sipilae, S; Salomaa, R [JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom)], E-mail: Otto.Asunta@tkk.fi

    2008-12-15

    Currently, plasmas with internal transport barriers (ITBs) appear the most likely candidates for steady-state scenarios for future fusion reactors. In such plasmas, the broad hot and dense region in the plasma core leads to high fusion gain, while the cool edge protects the integrity of the first wall. Economically desirable large bootstrap current fraction and low inductive current drive may, however, lead to degraded fast ion confinement. In this work the confinement and heating profile of fusion alphas were compared between H-mode and ITB plasmas in realistic JET geometry. The work was carried out using the Monte Carlo-based guiding-center-following code ASCOT. For the same plasma current, the ITB discharges were found to produce four to eight times more fusion power than a comparable ELMy H-mode discharge. Unfortunately, also the alpha particle losses were larger ({approx}16%) compared with the H-mode discharge (7%). In the H-mode discharges, alpha power was deposited to the plasma symmetrically around the magnetic axis, whereas in the current-hole discharge, the power was spread out to a larger volume in the plasma center. This was due to wider particle orbits, and the magnetic structure allowing for a broader hot region in the centre.

  20. Tumor necrosis factor-{alpha} enhanced fusions between oral squamous cell carcinoma cells and endothelial cells via VCAM-1/VLA-4 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kai; Zhu, Fei; Zhang, Han-zhong [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Shang, Zheng-jun, E-mail: shangzhengjun@hotmail.com [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); First Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan (China)

    2012-08-15

    Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-{alpha} (TNF-{alpha}) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oral squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-{alpha}-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer-endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-{alpha} could enhance cancer-endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer-endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. -- Highlights: Black-Right-Pointing-Pointer Spontaneous oral cancer-endothelial cell fusion. Black-Right-Pointing-Pointer TNF-{alpha} enhanced cell fusions. Black-Right-Pointing-Pointer VCAM-1/VLA-4 expressed in oral cancer. Black-Right-Pointing-Pointer TNF-{alpha} increased expression of VCAM-1 on endothelial cells. Black

  1. Angular distributions of the alpha particle production in the 7Li+144Sm system at near-barrier energies

    International Nuclear Information System (INIS)

    Carnelli, P F F; Arazi, A; Capurro, O A; Niello, J O Fernández; Heimann, D Martinez; Pacheco, A J; Cardona, M A; De Barbará, E; Figueira, J M; Hojman, D L; Martí, G V; Negri, A E

    2015-01-01

    We have studied the production of alpha particles in reactions induced by 7 Li projectiles on a 144 Sm target at bombarding energies of 18, 24 and 30 MeV over the 15°-140° angular range. The purpose of the investigation has been to determine the contribution of different mechanisms in reactions that involve weakly bound projectiles. We have included in our analysis several processes that can either directly or sequentially lead to the emission of alpha particles: complete fusion, direct transfer of 3 H, capture breakup (incomplete fusion, sequential complete fusion) and non-capture breakup. In order to distinguish alpha particles stemming from these processes it is necessary to determine the mass and charge of the reaction products and to obtain precise measurements of their energies and scattering angles over relatively wide ranges of these variables. We have done this using a detection system consisting of an ionization chamber plus three position sensitive detectors. We present results of these measurements and a preliminary interpretation based on kinematical considerations and comparisons with predictions from a statistical model. (paper)

  2. Recoil-alpha-fission and recoil-alpha-alpha-fission events observed in the reaction Ca-48 + Am-243

    NARCIS (Netherlands)

    Forsberg, U.; Rudolph, D.; Andersson, L. -L.; Nitto, A. Di; Düllmann, Ch E.; Gates, J. M.; Golubev, P.; Gregorich, K. E.; Gross, C. J.; Herzberg, R. -D.; Hessberger, F. P.; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, K.; Sarmiento, L. G.; Schädel, M.; Yakushev, A.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Dobaczewski, J.; Eberhardt, K.; Even, J.; Fahlander, C.; Gerl, J.; Jäger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nazarewicz, W.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Shi, Y.; Thörle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Türler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2016-01-01

    Products of the fusion-evaporation reaction Ca-48 + Am-243 were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum f\\"ur Schwerionenforschung. Amongst the detected thirty correlated alpha-decay chains associated with the production of element Z=115, two

  3. Simulations of alpha parameters in a TFTR DT supershot with high fusion power

    International Nuclear Information System (INIS)

    Budny, R.V.; Bell, M.G.; Janos, A.C.

    1995-07-01

    A TFTR supershot with a plasma current of 2.5 MA, neutral beam heating power of 33.7 MW, and a peak DT fusion power of 7.5 MW is studied using the TRANSP plasma analysis code. Simulations of alpha parameters such as the alpha heating, pressure, and distributions in energy and v parallel /v are given. The effects of toroidal ripple and mixing of the fast alpha particles during the sawteeth observed after the neutral beam injection phase are modeled. The distributions of alpha particles on the outer midplane are peaked near forward and backward v parallel /v. Ripple losses deplete the distributions in the vicinity of v parallel /v ∼-0.4. Sawtooth mixing of fast alpha particles is computed to reduce their central density and broaden their width in energy

  4. Fusion performances and alpha heating in future JET D-T plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Balet, B; Cordey, J G; Gibson, A; Lomas, P; Stubberfield, P M; Thomas, P [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    The new pump divertor installed at JET should allow high performance pulses of a few seconds duration by both preventing the impurity influx and controlling the density evolution. The TRANSP code has been used in a predictive mode to assess the possible fusion performance of such plasmas fuelled with a 50:50 mixture of D and T, and the effect of alpha particles heating on Te and Ti. Several cases are considered: 50:50 D-T mix; 50:50 D-T mix, no C bloom; 50:50 D-T mix, VH phase, density control; 50:50 D-T mix, VH phase, density control, 6 Ma. The predictions show that if the the bloom and MHD instabilities can be controlled at higher plasma currents using a higher toroidal field to keep a reasonable beta value, then a higher fusion performance steady state plasma with Q{sub DT} superior to 2.5 should be possible. The alpha heating power of 4.9 MW would lead to a 74% increase in Te. 4 refs., 4 figs., 1 tab.

  5. Stability of the Global Alfven Eigenmode in the presence of fusion alpha particles in an ignited tokamak plasma

    International Nuclear Information System (INIS)

    Fu, G.Y.; Van Dam, J.W.

    1989-05-01

    The stability of the Global Alfven Eigenmodes is investigated in the presence of super-Alfvenic energetic particles, such as the fusion-product alpha particles in an ignited deuterium-tritium tokamak plasma. Alpha particles tend to destabilize these modes when ω *α > ω A , where ω A is the shear-Alfven modal frequency and ω *α is the alpha particle diamagnetic drift frequency. This destabilization due to alpha particles is found to be significantly enhanced when the alpha particles are modeled with a slowing-down distribution function rather than with a Maxwellian. However, previously neglected electron damping due to the magnetic curvature drift is found to be comparable in magnitude to the destabilizing alpha particle term. Furthermore, the effects of toroidicity are also found to be stabilizing, since the intrinsic toroidicity induces poloidal mode coupling, which enhances the parallel electron damping from the sideband shear-Alfven Landau resonance. In particular, for the parameters of the proposed Compact Ignition Tokamak, the Global Alfven Eigenmodes are found to be completely stabilized by either the electron damping that enters through the magnetic curvature drift or the damping introduced by finite toroidicity. 29 refs., 8 figs., 1 tab

  6. Stockpile tritium production from fusion

    International Nuclear Information System (INIS)

    Lokke, W.A.; Fowler, T.K.

    1986-01-01

    A fusion breeder holds the promise of a new capability - ''dialable'' reserve capacity at little additional cost - that offers stockpile planners a new way to deal with today's uncertainties in forecasting long range needs. Though still in the research stage, fusion can be developed in time to meet future military requirements. Much of the necessary technology will be developed by the ongoing magnetic fusion energy program. However, a specific program to develop the nuclear technology required for materials production is needed if fusion is to become a viable option for a new production complex around the turn of the century

  7. Radioisotope production in fusion reactors

    International Nuclear Information System (INIS)

    Engholm, B.A.; Cheng, E.T.; Schultz, K.R.

    1986-01-01

    Radioisotope production in fusion reactors is being investigated as part of the Fusion Applications and Market Evaluation (FAME) study. /sup 60/Co is the most promising such product identified to date, since the /sup 60/Co demand for medical and food sterilization is strong and the potential output from a fusion reactor is high. Some of the other radioisotopes considered are /sup 99/Tc, /sup 131/l, several Eu isotopes, and /sup 210/Po. Among the stable isotopes of interest are /sup 197/Au, /sup 103/Rh and Os. In all cases, heat or electricity can be co-produced from the fusion reactor, with overall attractive economics

  8. Effects of isotropic alpha populations on tokamak ballooning stability

    International Nuclear Information System (INIS)

    Spong, D.A.; Sigmar, D.J.; Tsang, K.T.; Ramos, J.J.; Hastings, D.E.; Cooper, W.A.

    1986-12-01

    Fusion product alpha populations can significantly influence tokamak stability due to coupling between the trapped alpha precessional drift and the kinetic ballooning mode frequency. Careful, quantitative evaluations of these effects are necessary in burning plasma devices such as the Tokamak Fusion Test Reactor and the Joint European Torus, and we have continued systematic development of such a kinetic stability model. In this model we have considered a range of different forms for the alpha distribution function and the tokamak equilibrium. Both Maxwellian and slowing-down models have been used for the alpha energy dependence while deeply trapped and, more recently, isotropic pitch angle dependences have been examined

  9. Higgs production in gluon fusion beyond NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Richard D. [Edinburgh Univ. (United Kingdom). Tait Inst.; Bonvini, Marco [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Forte, Stefano [Milano Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Milano (Italy); Marzani, Simone [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ridolfi, Giovanni [Genova Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Genova (Italy)

    2013-03-15

    We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N{sup 3}LO) in {alpha}{sub s} with finite top mass. We argue that an accurate approximation can be constructed by exploiting the analiticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N{sup 3}LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result.

  10. Advanced synfuel production with fusion

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.

    1979-01-01

    An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers a nearly inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  11. Effects of alpha populations on tokamak ballooning stability

    International Nuclear Information System (INIS)

    Spong, D.A.; Sigmar, D.J.; Tsang, K.T.; Ramos, J.J.; Hastings, D.E.; Cooper, W.A.

    1986-01-01

    Fusion product alpha populations can significantly influence tokamak stability due to coupling between the trapped alpha precessional drift and the kinetic ballooning mode frequency. This effect is of particular importance in parameter regimes where the alpha pressure gradient begins to constitute a sizable fraction of the thermal plasma pressure gradient. Careful, quantitative evaluations of these effects are necessary in burning plasma devices such as the Tokamak Fusion Test Reactor and the Joint European Torus, and we have continued systematic development of such a kinetic stability model. In this model we have considered a range of different forms for the alpha distribution function and the tokamak equilibrium. Both Maxwellian and slowing-down models have been used for the alpha energy dependence while deeply trapped and, more recently, isotropic pitch angle dependence have been examined

  12. Effect of alpha drift and instabilities on tokamak plasma edge conditions

    International Nuclear Information System (INIS)

    Miley, G.H.; Choi, C.K.

    1983-01-01

    As suprathermal fusion products slow down in a Tokamak, their average drift is inward. The effect of this drift on the alpha heating and thermalization profiles is examined. In smaller TFTR-type devices, heating in the outer region can be cut in half. Also, the fusion-product energy-distribution near the plasma edge has a positive slope with increasing energy, representing a possible driving mechanism for micro-instabilities. Another instability that can seriously affect outer plasma conditions and shear Alfven transport of alphas is also considered

  13. Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, alpha -actinin-2, is required for myoblast fusion

    DEFF Research Database (Denmark)

    Galliano, M F; Huet, C; Frygelius, J

    2000-01-01

    ADAM12 belongs to the transmembrane metalloprotease ADAM ("a disintegrin and metalloprotease") family. ADAM12 has been implicated in muscle cell differentiation and fusion, but its precise function remains unknown. Here, we show that ADAM12 is dramatically up-regulated in regenerated, newly formed...... of differentiation. Using the yeast two-hybrid screen, we found that the muscle-specific alpha-actinin-2 strongly binds to the cytoplasmic tail of ADAM12. In vitro binding assays with GST fusion proteins confirmed the specific interaction. The major binding site for alpha-actinin-2 was mapped to a short sequence...... in a dominant negative fashion by inhibiting fusion of C2C12 cells, whereas expression of a cytosolic ADAM12 lacking the major alpha-actinin-2 binding site had no effect on cell fusion. Our results suggest that interaction of ADAM12 with alpha-actinin-2 is important for ADAM12 function....

  14. Experimental investigation of the confinement of d(3He,p)α and d(d,p)t fusion reaction products in JET

    DEFF Research Database (Denmark)

    Bonheure, Georges; Hult, M.; Gonzalez de Orduna, R.

    2012-01-01

    In ITER, magnetic fusion will explore the burning plasma regime. Because such burning plasma is sustained by its own fusion reactions, alpha particles need to be confined (Hazeltine 2010 Fusion Eng. Des. 7–9 85). New experiments using d(3He,p)α and d(d,p)t fusion reaction products were performed...... in JET. Fusion product loss was measured from MHD-quiescent plasmas with a charged particle activation probe installed at a position opposite to the magnetic field ion gradient drift (see figure 1)—1.77 m above mid-plane—in the ceiling of JET tokamak. This new kind of escaping ion detector (Bonheure et...... al 2008 Fusion Sci. Technol. 53 806) provides for absolutely calibrated measurements. Both the mechanism and the magnitude of the loss are dealt with by this research. Careful analysis shows measured loss is in quantitative agreement with predictions from the classical orbit loss model. However...

  15. Cell fusion in tumor progression: the isolation of cell fusion products by physical methods

    Directory of Open Access Journals (Sweden)

    Vincitorio Massimo

    2011-09-01

    Full Text Available Abstract Background Cell fusion induced by polyethylene glycol (PEG is an efficient but poorly controlled procedure for obtaining somatic cell hybrids used in gene mapping, monoclonal antibody production, and tumour immunotherapy. Genetic selection techniques and fluorescent cell sorting are usually employed to isolate cell fusion products, but both procedures have several drawbacks. Results Here we describe a simple improvement in PEG-mediated cell fusion that was obtained by modifying the standard single-step procedure. We found that the use of two PEG undertreatments obtains a better yield of cell fusion products than the standard method, and most of these products are bi- or trinucleated polykaryocytes. Fusion rate was quantified using fluorescent cell staining microscopy. We used this improved cell fusion and cell isolation method to compare giant cells obtained in vitro and giant cells obtained in vivo from patients with Hodgkin's disease and erythroleukemia. Conclusions In the present study we show how to improve PEG-mediated cell fusion and that cell separation by velocity sedimentation offers a simple alternative for the efficient purification of cell fusion products and to investigate giant cell formation in tumor development.

  16. The impact of PDF and alphas uncertainties on Higgs Production in gluon fusion at hadron colliders

    NARCIS (Netherlands)

    Demartin, Federico; Forte, Stefano; Mariani, Elisa; Rojo, Juan; Vicini, Alessandro

    2010-01-01

    We present a systematic study of uncertainties due to parton distributions and the strong coupling on the gluon-fusion production cross section of the Standard Model Higgs at the Tevatron and LHC colliders. We compare procedures and results when three recent sets of PDFs are used, CTEQ6.6, MSTW08

  17. Final Report (1994 to 1996) Diagnostic of the Spatial and Velocity Distribution of Alpha Particles in Tokamak Fusion Reactor using Beat-wave Generated Lower Hybrid Wave

    International Nuclear Information System (INIS)

    Hwang, D.Q.; Horton, R.D.; Evans, R.W.

    1999-01-01

    The alpha particles in a fusion reactor play a key role in the sustaining the fusion reaction. It is the heating provided by the alpha particles that help a fusion reactor operating in the ignition regime. It is, therefore, essential to understand the behavior of the alpha population both in real space and velocity space in order to design the optimal confinement device for fusion application. Moreover, the alphas represent a strong source of free energy that may generate plasma instabilities. Theoretical studies has identified the Toroidal Alfven Eigenmode (TAE) as an instability that can be excited by the alpha population in a toroidal device. Since the alpha has an energy of 3.5 MeV, a good confinement device will retain it in the interior of the plasma. Therefore, alpha measurement system need to probe the interior of a high density plasma. Due to the conducting nature of a plasma, wave with frequencies below the plasma frequency can not penetrate into the interior of the plasma where the alphas reside. This project uses a wave that can interact with the perpendicular motion of the alphas to probe its characteristics. However, this wave (the lower hybrid wave) is below the plasma frequency and can not be directly launched from the plasma edge. This project was designed to non-linearly excite the lower hybrid in the interior of a magnetized plasma and measure its interaction with a fast ion population

  18. Synfuels production from fusion reactors

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  19. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  20. Activation product transport in fusion reactors

    International Nuclear Information System (INIS)

    Klein, A.C.; Vogelsang, W.F.

    1984-01-01

    Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. A computer code, RAPTOR, has been developed to determine the transport of these products in fusion reactor coolant/tritium breeding materials. Without special treatment, it is likely that fusion reactor power plant operators could experience dose rates as high as 8 rem per hour around a number of plant components after only a few years of operation. (orig.)

  1. Concepts for fusion fuel production blankets

    International Nuclear Information System (INIS)

    Gierszewski, P.

    1986-06-01

    The fusion blanket surrounds the burning hydrogen core of the fusion reactor. It is in this blanket that most of the energy released by the DT fusion reaction is converted into useable product, and where tritium fuel is produced to enable further operation of the reactor. Blankets will involve new materials, conditions and processes. Several recent fusion blanket concepts are presented to illustrate the range of ideas

  2. Optimization of nonthermal fusion power consistent with channeling of charged fusion product energy

    International Nuclear Information System (INIS)

    Snyder, P.B.; Herrmann, M.C.; Fisch, N.J.

    1994-01-01

    If the energy of charged fusion products can be diverted directly to fuel ions, non-Maxwellian fuel ion distributions and temperature differences between species will result. To determine the importance of these nonthermal effects, the fusion power density is optimized at constant-β for non-thermal distributions that are self-consistently maintained by channeling of energy from charged fusion products. For D-T and D- 3 He reactors, with 75% of charged fusion product power diverted to fuel ions, temperature differences between electrons and ions increase the reactivity by 40-70%, while non-Maxwellian fuel ion distributions and temperature differences between ionic species increase the reactivity by an additional 3-15%

  3. Measurement of loss of DT fusion products using scintillator detectors in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Herrmann, H.W.; Johnson, D.W.; Marsala, R.J.; Palladino, R.W.; Zweben, S.J.

    1995-03-01

    A poloidal array of MeV ion loss probes previously used to measure DD fusion product loss has been upgraded to measure the loss of alpha particles from DT plasmas in TFTR. The following improvements to the system have been made in preparation for the use of tritium in TFTR: (1) relocation of detectors to a neutronshielded enclosure in the basement to reduce neutron-induced background signals; (2) replacement of ZnS:Cu (P31) scintillators in the probes with the Y 3 Al 5 0 12 :Ce(P46) variety to minimize damage and assure linearity at the fluxes anticipated from DT plasmas; and (3) shielding of the fiber optic bundles which carry the fight from the probes to the detectors to reduce neutron- and gamma-induced light within them. In addition to the above preparations, the probes have been absolutely calibrated for alpha particles by using the Van de Graaf accelerator at Los Alamos National Laboratory. Alpha particle losses from DT plasmas have been observed, and losses at the detector 901 below the midplane are consistent with first orbit loss

  4. Proliferation Risks of Fusion Energy: Clandestine Production, Covert Production, and Breakout

    International Nuclear Information System (INIS)

    Goldston, R.J.; Glaser, A.; Ross, A.F.

    2009-01-01

    Nuclear proliferation risks from fusion associated with access to weapon-usable material can be divided into three main categories: (1) clandestine production of fissile material in an undeclared facility, (2) covert production of such material in a declared and safeguarded facility, and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper we address each of these categories of risk from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if commercial fusion systems are designed to accommodate appropriate safeguards

  5. Feasibility of alpha particle measurement in a magnetically confined plasma by CO2 laser Thomson scattering

    International Nuclear Information System (INIS)

    Richards, R.K.; Vander Sluis, K.L.; Hutchinson, D.P.

    1987-08-01

    Fusion-product alpha particles will dominate the behavior of the next generation of ignited D-T fusion reactors. Advanced diagnostics will be required to characterize the energy deposition of these fast alpha particles in the magnetically confined plasma. For small-angle coherent Thomson scattering of a CO 2 laser beam from such a plasma, a resonance in the scattered power occurs near 90 0 with respect to the magnetic field direction. This spatial concentration permits a simplified detection of the scattered laser power from the plasma using a heterodyne system. The signal produced by the presence of fusion-product alpha particles in an ignited plasma is calculated to be well above the noise level, which results from statistical variations of the background signal produced by scattering from free electrons. 7 refs

  6. Feasibility study of a magnetic fusion production reactor

    Science.gov (United States)

    Moir, R. W.

    1986-12-01

    A magnetic fusion reactor can produce 10.8 kg of tritium at a fusion power of only 400 MW —an order of magnitude lower power than that of a fission production reactor. Alternatively, the same fusion reactor can produce 995 kg of plutonium. Either a tokamak or a tandem mirror production plant can be used for this purpose; the cost is estimated at about 1.4 billion (1982 dollars) in either case. (The direct costs are estimated at 1.1 billion.) The production cost is calculated to be 22,000/g for tritium and 260/g for plutonium of quite high purity (1%240Pu). Because of the lack of demonstrated technology, such a plant could not be constructed today without significant risk. However, good progress is being made in fusion technology and, although success in magnetic fusion science and engineering is hard to predict with assurance, it seems possible that the physics basis and much of the needed technology could be demonstrated in facilities now under construction. Most of the remaining technology could be demonstrated in the early 1990s in a fusion test reactor of a few tens of megawatts. If the Magnetic Fusion Energy Program constructs a fusion test reactor of approximately 400 MW of fusion power as a next step in fusion power development, such a facility could be used later as a production reactor in a spinoff application. A construction decision in the late 1980s could result in an operating production reactor in the late 1990s. A magnetic fusion production reactor (MFPR) has four potential advantages over a fission production reactor: (1) no fissile material input is needed; (2) no fissioning exists in the tritium mode and very low fissioning exists in the plutonium mode thus avoiding the meltdown hazard; (3) the cost will probably be lower because of the smaller thermal power required; (4) and no reprocessing plant is needed in the tritium mode. The MFPR also has two disadvantages: (1) it will be more costly to operate because it consumes rather than sells

  7. Two-stream cyclotron radiative instabilities due to the marginally mirror-trapped fraction for fustion alphas in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Arunasalam, V.

    1995-07-01

    It is shown here that the marginally mirror-trapped fraction of the newly-born fusion alpha particles in the deuterium-tritium (DT) reaction dominated tokamak plasmas can induce a two-stream cyclotron radiative instability for the fast Alfven waves propagating near the harmonics of the alpha particle cyclotron frequency {omega}{sub c{alpha}}. This can explain both the experimentally observed time behavior and the spatially localized origin of the fusion product ion cyclotron emission (ICE) in TFTR at frequencies {omega} {approx} m{omega}{sub c{alpha}}.

  8. Synfuel (hydrogen) production from fusion power

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Cox, K.E.; Pendergrass, J.H.; Booth, L.A.

    1979-01-01

    A potential use of fusion energy for the production of synthetic fuel (hydrogen) is described. The hybrid-thermochemical bismuth-sulfate cycle is used as a vehicle to assess the technological and economic merits of this potential nonelectric application of fusion power

  9. Fusion-product energy loss in inertial confinement fusion plasmas with applications to target burns

    International Nuclear Information System (INIS)

    Harris, D.B.; Miley, G.H.

    1984-01-01

    Inertial confinement fusion (ICF) has been proposed as a competitor to magnetic fusion in the drive towards energy production, but ICF target performance still contains many uncertainties. One such area is the energy-loss rate of fusion products. This situation is due in part to the unique plasma parameters encountered in ICF plasmas which are compressed to more than one-thousand times solid density. The work presented here investigates three aspects of this uncertainty

  10. Fusion reaction product diagnostics in ASDEX

    International Nuclear Information System (INIS)

    Bosch, H.S.

    1987-01-01

    A diagnostic method was developed to look for the charged fusion products from the D(D,p)T-reactions in the divertor tokamak ASDEX. With a semi-conductor detector it was possible to evaluate the ion temperature in thermal plasmas from the proton energy spectra as well as from the triton spectra. In lower-hybrid wave heated plasmas non-thermal (fast) ions were observed. These ions create fusion products with a characteristically different energy spectrum. (orig.)

  11. Hydrogen production in fusion reactors

    Science.gov (United States)

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    As one of the methods of innovative energy production in fusion reactors (that do not include a conventional turbine-type generator), the efficient use of fusion-reactor radiation and semiconductors to supply clean fuel in the form of hydrogen gas is studied. Taking the reactor candidates such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a plant system concept are investigated.

  12. Potential Fusion Market for Hydrogen Production Under Environmental Constraints

    International Nuclear Information System (INIS)

    Konishi, Satoshi

    2005-01-01

    Potential future hydrogen market and possible applications of fusion were analyzed. Hydrogen is expected as a major energy and fuel mediun for the future, and various processes for hydrogen production can be considered as candidates for the use of fusion energy. In order to significantly contribute to reduction of CO 2 emission, fusion must be deployed in developing countries, and must substitute fossil based energy with synthetic fuel such as hydrogen. Hydrogen production processes will have to evaluated and compared from the aspects of energy efficiency and CO 2 emission. Fusion can provide high temperature heat that is suitable for vapor electrolysis, thermo-chemical water decomposition and steam reforming with biomass waste. That is a possible advantage of fusion over renewables and Light water power reactor. Despite of its technical difficulty, fusion is also expected to have less limitation for siting location in the developing countries. Under environmental constraints, fusion has a chance to be a major primary energy source, and production of hydrogen enhances its contribution, while in 'business as usual', fusion will not be selected in the market. Thus if fusion is to be largely used in the future, meeting socio-economic requirements would be important

  13. Effect of projectile structure on evaporation residue yields in incomplete fusion reactions

    CERN Document Server

    Babu, K S; Sudarshan, K; Shrivastava, B D; Goswami, A; Tomar, B S

    2003-01-01

    The excitation functions of heavy residues, representing complete and incomplete fusion products, produced in the reaction of sup 1 sup 2 C and sup 1 sup 3 C on sup 1 sup 8 sup 1 Ta have been measured over the projectile energy range of 5 to 6.5 MeV/nucleon by the recoil catcher method and off-line gamma-ray spectrometry. Comparison of the measured excitation functions with those calculated using the PACE2 code based on the statistical model revealed the occurrence of incomplete fusion reactions in the formation of alpha emission products. The fraction of incomplete fusion cross sections in the sup 1 sup 2 C + sup 1 sup 8 sup 1 Ta reaction was found to be higher, by a factor of approx 2, than that in the sup 1 sup 3 C + sup 1 sup 8 sup 1 Ta reaction. The results have been discussed in terms of the effect of alpha cluster structure of the projectile on incomplete fusion reactions.

  14. Hydrogen production in fusion reactors

    International Nuclear Information System (INIS)

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated. (author)

  15. Hydrogen production in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated. (author).

  16. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  17. Radiolytic production of chemical fuels in fusion reactor systems

    International Nuclear Information System (INIS)

    Fish, J.D.

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered

  18. Ion cyclotron emission due to the newly-born fusion products induced fast Alfven wave radiative instabilities in tokamaks

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1995-08-01

    The velocity distribution functions of the newly born (t = 0) charged fusion products of tokamak discharges can be approximated by a monoenergetic ring distribution with a finite v parallel such that v perpendicular ∼ v parallel ∼ v j where (M j V j 2 /2) = E j , the directed birth energy of the charged fusion product species j of mass M j . As the time t progresses these distribution functions will evolve into a Gaussian in velocity with thermal spreadings given by the perpendicular and parallel temperatures T perpendicularj (t) = T parallelj (t) with T j (t) increasing as t increases and finally reaches an isotropic saturation value of T perpendicularj (t ∼ τ j ) = T parallelj (t ∼ τ j ) = T j (t ∼ τ j ) ∼ [M j T d E j /(M j + M)] 1/2 , where T d is the temperature of the background deuterium plasma ions, M is the mass of a triton or a neutron for j = protons and alpha particles, respectively, and τ j ∼ τ sj /4 is the thermalization time of the fusion product species j in the background deuterium plasma and τ sj is the slowing-down time. For times t of the order of τ j their distributions can be approximated by a Gaussian in their total energy. Then for times t ≥ τ sj the velocity distributions of these fusion products will relax towards their appropriate slowing-down distributions. Here the authors will examine the radiative stability of all these distributions. The ion cyclotron emission from energetic ion produced by fusion reactions or neutral beam injection promises to be a useful diagnostic tool

  19. High-energy fusion-product energy-loss measurements. Final technical report, January 1, 1981-December 31, 1983

    International Nuclear Information System (INIS)

    Miley, G.H.

    1983-12-01

    An experiment designed to examine the slowing down of charged fusion products in ICF plasmas was done. A time-of-flight spectrometer was used to simultaneously measure the energy spectra of D-T alphas and D 2 protons escaping from imploded glass microballoons. In order to model fusion-product slowing down in plasmas with nonclassical plasma parameters, the Ion-Sphere (or hard-sphere) potential has been used. The deceleration of fast test ions slowing down off of this potential has been calculated in a straightforward way. An interpolation between the classical slowing-down formula and the Ion-Sphere slowing-down expression in the region between classical and nonclassical plasmas has been derived. This expression, called the Ion-Sphere Interpolation Model, is valid for all fully ionized non-degenerate plasmas. Fusion-product energy deposition in the fuel is necessary for self-heating and burnwave propagation - two effects required for high-gain ICF. The University of Illinois advanced fuel hydrodynamic-burn code, AFBURN, has been used to test the sensitivity of reactor-sized targets to dE/dx. It was found that strongly burning targets are insensitive to both factor of two changes in dE/dx and inclusion of large plasma parameter effects in dE/dx. It was also found that weakly burning targets exhibit a markedly increased sensitivity to these effects

  20. Automated laser fusion target production concept

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1977-01-01

    A target production concept is described for the production of multilayered cryogenic spherical inertial confinement fusion targets. The facility is to deliver targets to the reactor chamber at rates up to 10 per second and at costs consistent with economic production of power

  1. Fusion reactors for hydrogen production via electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    1979-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  2. Measurements of fusion product emission profiles in tokamaks

    International Nuclear Information System (INIS)

    Strachan, J.D.; Heidbrink, W.W.; Hendel, H.W.; Lovberg, J.; Murphy, T.J.; Nieschmidt, E.B.; Tait, G.D.; Zweben, S.J.

    1986-11-01

    The techniques and results of fusion product emission profile measurements are reviewed. While neutron source strength profile measurements have been attempted by several methods, neutron scattering is a limitation to the results. Profile measurements using charged fusion products have recently provided an alternative since collimation is much easier for the charged particles

  3. An unexpected response of torulopsis glabrata fusion products to x-irradiation

    International Nuclear Information System (INIS)

    Galeotti, C.L.; Sriprakash, K.S.; Batum, C.M.; Clark-Walker, G.D.

    1981-01-01

    Intra-species fusion products of Saccharomyces cerevisiae, Saccharomyces unisporus and Torulopsis glabrata have been isolated following polyethylene glycol-induced fusion of protoplasts and selection for prototrophic colonies. Staining with lomofungin showed that all fusion products were uninucleate. Measurement of DNA content mostly gave values between haploid and diploid levels indicating that the majority of fusion products were aneuploid. Nevertheless fusion products of S. cerevisiae and S. unisporus were, as expected, more resistant to X-irradiation than their haploid parents. By contrast, the X-ray doze-response curve of all T. glabrata fusion products was indistinguishable from their progenitors despite the fact that mitotic segregants could be recovered amongst the survivors to X-rays. A possible explanation for the behaviour towards X-rays of T. glabrata fusion products is that this species lacks a DNA repair pathway involving recombination between homologous chromosomes. We conclude from this study that the shape of the X-ray dose-response curve should not be taken to indicate the ploidy of new yeast isolates without supporting data. (orig.)

  4. Inertial fusion and energy production

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1982-01-01

    Inertial-confinement fusion (ICF) is a technology for releasing nuclear energy from the fusion of light nuclei. For energy production, the most reactive hydrogen isotopes (deuterium (D) and tritium (T)) are commonly considered. The energy aplication requires the compression of a few milligrams of a DT mixture to great density, approximately 1000 times its liquid-state density, and to a high temperature, nearly 100 million 0 K. Under these conditions, efficient nuclear-fusion reactions occur, which can result in over 30% burn-up of the fusion fuel. The high density and temperature can be achieved by focusing very powerful laser or ion beams onto the target. The resultant ablation of the outer layers of the target compresses the fuel in the target, DT ignition occurs, and burn-up of the fuel results as the thermonuclear burn wave propagates outward. The DT-fuel burn-up occurs in about 199 picoseconds. On this short time scale, inertial forces are sufficiently strong to prevent target disassembly before fuel burn-up occurs. The energy released by the DT fusion is projected to be several hundred times greater than the energy delivered by the driver. The present statuds of ICF technology is described

  5. Development of thin foil Faraday collector as a lost alpha particle diagnostic for high yield D-T tokamak fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Van Belle, P; Jarvis, O N; Sadler, G J [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Cecil, F E [Colorado School of Mines, Golden, CO (United States)

    1994-07-01

    Alpha particle confinement is necessary for ignition of a D-T tokamak fusion plasma and for first wall protection. Due to high radiation backgrounds and temperatures, scintillators and semiconductor detectors may not be used to study alpha particles which are lost to the first wall during the D-T programs on JET and ITER. An alternative method of charged particle spectrometry capable of operation in these harsh environments, is proposed: it consists of thin foils of electrically isolated conductors with the flux of alpha particles determined by the positive current flowing from the foils. 2 refs., 3 figs.

  6. Influence of alpha-particles on parameters of plasma confined in open traps

    International Nuclear Information System (INIS)

    Chebotaev, P.Z.

    1987-01-01

    The numerical calculations of the longitudinal motion in multi-mirror reactor have shown that the energy contribution of α-particles has substantial influence on the gain factor (the given off thermonuclear energy/ the initial imparted energy) in the temperature region 5-7 keV. The numerical technique has been developed that takes into account the radial distribution of alpha particles caused by their drag on electrons. This effect is substantial for ρ α /R ≥ 1/2 (where ρ α is alpha particles gyro radius, R is plasma radius), e.g. for Gas-Dinamic trap. In a Tandem-Mirror reactor some part of fusion alpha particles have the probability to slow down to the plasma energy, that can lead to the 'poisoning' of the reactor by the thermonuclear reaction products. The fusion alpha particles can have a strong effect on accumulation of impurities with z ≤ 15 and thermal alpha particles in TMR. (orig.)

  7. Application of SSNTDs for measurements of fusion reaction products in high-temperature plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Malinowska, A., E-mail: a.malinowska@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Szydlowski, A.; Malinowski, K. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Sadowski, M.J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Institute of Plasma Physics and Laser Microfusion (IPPLM), 00-908 Warsaw (Poland); Zebrowski, J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Scholz, M.; Paduch, M.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion (IPPLM), 00-908 Warsaw (Poland); Jaskola, M.; Korman, A. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland)

    2009-10-15

    The paper describes the application of SSNTDs of the PM-355 type to diagnostics of reaction products emitted from high-temperature deuterium plasmas produced in Plasma Focus (PF) facilities. Acceleration processes occurring in plasma lead often to the generation of high-energy ion beams. Such beams induce nuclear reactions and contribute to the emission of fast neutrons, fusion protons and alpha particles from PF discharges with a deuterium gas. Ion measurements are of primary importance for understanding the mechanisms of the physical processes which drive the charged-particle acceleration. The main aim of the present studies was to perform measurements of spatial- and energy-distributions of fusion-reaction protons (about 3 MeV) within a PF facility. Results obtained from energy measurements were compared with the proton-energy spectra computed theoretically. The protons were measured by means of a set of ion pinhole cameras equipped with PM-355 detectors, which were placed at different angles relative to the electrode axis of the PF facility.

  8. Measurements of DT alpha particle loss near the outer midplane of TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Darrow, D.S.; Herrmann, H.W.; Redi, M.H.; Schivell, J.; White, R.B.

    1995-07-01

    Measurements of DT alpha particle loss to the outer midplane region of TFTR have been made using a radially movable scintillator detector. The conclusion from this data is that mechanisms determining the DT alpha loss to the outer midplane are not substantially different from those for DD fusion products. Some of these results are compared with a simplified theoretical model for TF ripple-induced alpha loss, which is expected to be the dominant classical alpha loss mechanism near the outer midplane. An example of plasma-driven MHD-induced alpha particle loss is shown, but no signs of any ''collective'' alpha instability-induced alpha loss have yet been observed

  9. Charge-exchange diagnostic of fusion alpha particles and ICRF driven minority ions in MeV energy range in JET plasma

    International Nuclear Information System (INIS)

    Izvozchikov, A.B.; Khudoleev, A.V.; Petrov, M.P.; Petrov, S.Ya.; Kozlovskij, S.S.; Corti, S.; Gondahalekar, A.

    1991-12-01

    An important concern in alpha particle heating physics is that fusion alpha particles will be lost before giving all their energy to heat the plasma. In other words, that the radial diffusion time of the alphas may be shorter than their slowing down time in the plasma core. Therefore radially resolved measurements of density and energy spectrum of slowing-down alphas confined in the plasma are high priority diagnostic objectives. In this report application of Charge Exchange Neutral Particle Analysis on Joint European Torus will be discussed. After a description of physical principles of the method a suitable Neutral Particle Analyzer (NPA) will be described in detail and estimates of measurement performance made for different plasma heating and confinement modes in JET. (author)

  10. Target production for inertial fusion energy

    International Nuclear Information System (INIS)

    Woodworth, J.G.; Meier, W.

    1995-03-01

    Inertial fusion energy (IFE) power plants will require the ignition and burn of 5-10 fusion fuel targets every second. The technology to economically mass produce high-quality, precision targets at this rate is beyond the current state of the art. Techniques that are scalable to high production rates, however, have been identified for all the necessary process steps, and many have been tested in laboratory experiments or are similar to current commercial manufacturing processes. In this paper, we describe a baseline target factory conceptual design and estimate its capital and operating costs. The result is a total production cost of ∼16 cents per target. At this level, target production represents about 6% of the estimated cost of electricity from a 1-GW e IFE power plant. Cost scaling relationships are presented and used to show the variation in target cost with production rate and plant power level

  11. Design of a Fast Neutral He Beam System for Feasibility Study of Charge-Exchange Alpha-Particle Diagnostics in a Thermonuclear Fusion Reactor

    CERN Document Server

    Shinto, Katsuhiro; Kitajima, Sumio; Kiyama, Satoru; Nishiura, Masaki; Sasao, Mamiko; Sugawara, Hiroshi; Takenaga, Mahoko; Takeuchi, Shu; Wada, Motoi

    2005-01-01

    For alpha-particle diagnostics in a thermonuclear fusion reactor, neutralization using a fast (~2 MeV) neutral He beam produced by the spontaneous electron detachment of a He- is considered most promising. However, the beam transport of produced fast neutral He has not been studied, because of difficulty for producing high-brightness He- beam. Double-charge-exchange He- sources and simple beam transport systems were developed and their results were reported in the PAC99* and other papers.** To accelerate an intense He- beam and verify the production of the fast neutral He beam, a new test stand has been designed. It consists of a multi-cusp He+

  12. The role of fusion reaction products in the stability of EBT reactors

    International Nuclear Information System (INIS)

    Wojtowicz, D.; Kammash, T.

    1985-01-01

    The potential of the EBT plasma confinement device as a fusion reactor depends critically on its ability to support a sufficiently large power density which in turn means a large enough beta defined as the ratio of the plasma pressure to magnetic field pressure. The maximum allowable beta is generally dictated by the stability of the system to hydromagnetic (MHD) modes. In this paper we examine the stability of such modes for a D-T plasma and assess the effect of the alpha particles on these instabilities. We find that the alphas have the most destabilizing effect, as reflected in the drop of the ion beta, at the instant of birth and that recovery of stability is achieved as the alphas approach equilibration with the ions of the plasma. In short, there appears to be no serious adverse effects on the reactor beta resulting from alpha-induced instabilities

  13. Two-stream cyclotron radiative instabilities due to the marginally mirror-trapped fraction for fustion alphas in tokamaks

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1995-07-01

    It is shown here that the marginally mirror-trapped fraction of the newly-born fusion alpha particles in the deuterium-tritium (DT) reaction dominated tokamak plasmas can induce a two-stream cyclotron radiative instability for the fast Alfven waves propagating near the harmonics of the alpha particle cyclotron frequency ω cα . This can explain both the experimentally observed time behavior and the spatially localized origin of the fusion product ion cyclotron emission (ICE) in TFTR at frequencies ω ∼ mω cα

  14. Overview of neutron and confined escaping alpha diagnostics planned for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Sasao, M [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Krasilnikov, A V [TRINITI, Troitsk (Russian Federation); Nishitani, T [JAERI, Tokai (Japan); Batistoni, P [ENEA, Frascati, Rome (Italy); Zaveryaev, V [Kurchatov Institute, Moscow (Russian Federation); Kaschuck, Yu A [TRINITI, Troitsk (Russian Federation); Popovichev, S [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Iguchi, T [Nagoya University, Nagoya, (Japan); Jarvis, O N [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Kallne, J [Department of Neutron Research, Uppsala University, Uppsala (Sweden); Fiore, C L [PPL, MIT, Cambridge (United States); Roquemore, L [PPPL, Princeton (United States); Heidbrink, W W [Department of Physics and Astronomy, UC Irvine (United States); Donne, A J H [FOM-Instituut voor Plasmafysica (Netherlands); Costley, A E [ITER IT, Naka Joint Work Site (Japan); Walker, C [ITER IT, Garching Joint Work Site (Germany)

    2004-07-01

    Fusion product measurements planned for ITER are reviewed from the viewpoint of alpha particle-related physics studies. Recent advances in fusion plasma physics have extended the desirable measurement requirements to the megahertz region for neutron emission rate, better resolution of neutron profiles for the study of internal transport barriers (ITBs), etc. Employing threshold counters and/or scintillation detectors confers megahertz capability on neutron emission rate measurement. The changes in the neutron/alpha particle birth profile due to the formation of ITB and its deviation from uniformity on the magnetic flux surface can be measured by addition of eight viewing chords in an equatorial port plug and seven viewing chords from the divertor to the original radial neutron camera. On the other hand, it is still difficult to measure the distributions of confined and escaping alpha particles. Several proposals to resolve these difficulties are currently under investigation.

  15. Production of alpha emitters for therapy

    International Nuclear Information System (INIS)

    Vucina, J.; Orlic, M.; Lukic, D.

    2006-01-01

    The basis for the introduction of alpha emitters into nuclear medical practice are their radiobiological properties. High LET values and short ranges in biological tissues are advantageous in comparison with nowadays most often used beta emitters, primarily 90 Y and 131 I. Given are the most important criteria for the introduction of a given radionuclide in the routine use. Shown are the procedures for the production of the most important alpha emitters 211 At, 212 Bi and 213 Bi. (author)

  16. Nuclear elastic scattering effects on fusion product transport in compact tori

    International Nuclear Information System (INIS)

    DeVeaux, J.; Greenspan, E.; Miley, G.H.

    1980-01-01

    This paper seeks to advance previous work including the effects of nuclear elastic scattering (NES) on fusion-product transport. We have found that NES may dominate the slowing-down process for high-temperature, advance-fuel plasmas which burn Cat.D or D- 3 He. A modified version of the Monte Carlo fusion product transport code, MCFRM, was used to evaluate the effects of NES on discrete fusion-product orbits in the FRM

  17. Study of Heating and Fusion Power Production in ITER Discharges

    International Nuclear Information System (INIS)

    Rafiq, T.; Kritz, A. H.; Bateman, G.; Kessel, C.; McCune, D. C.; Budny, R. V.; Pankin, A. Y.

    2011-01-01

    ITER simulations, in which the temperatures, toroidal angular frequency and currents are evolved, are carried out using the PTRANSP code starting with initial profiles and boundary conditions obtained from TSC code studies. The dependence of heat deposition and current drive on ICRF frequency, number of poloidal modes, beam orientation, number of Monte Carlo particles and ECRH launch angles is studied in order to examine various possibilities and contingencies for ITER steady state and hybrid discharges. For the hybrid discharges, the fusion power production and fusion Q, computed using the Multi-Mode MMM v7.1 anomalous transport model, are compared with those predicted using the GLF23 model. The simulations of the hybrid scenario indicate that the fusion power production at 1000 sec will be approximately 500 MW corresponding to a fusion Q = 10.0. The discharge scenarios simulated aid in understanding the conditions for optimizing fusion power production and in examining measures of plasma performance.

  18. Influence of carbon source on alpha-amylase production by Aspergillus oryzae

    DEFF Research Database (Denmark)

    Carlsen, Morten; Nielsen, Jens

    2001-01-01

    on sucrose, fructose, glycerol, mannitol and acetate. During growth on acetate there was no production of alpha -amylase, whereas addition of small amounts of glucose resulted in alpha -amylase production. A possible induction by alpha -methyl-D-glucoside during growth on glucose was also investigated......, but this compound was not found to be a better inducer of alpha -amylase production than glucose. The results strongly indicate that besides acting as a repressor via the CreA protein, glucose acts as an inducer.......The influence of the carbon source on a-amylase production by Aspergillus oryzae was quantified in carbon-limited chemostat cultures. The following carbon sources were investigated: maltose, maltodextrin (different chain lengths), glucose, fructose, galactose, sucrose, glycerol, mannitol...

  19. Biotin deficiency up-regulates TNF-alpha production in murine macrophages.

    Science.gov (United States)

    Kuroishi, Toshinobu; Endo, Yasuo; Muramoto, Koji; Sugawara, Shunji

    2008-04-01

    Biotin, a water-soluble vitamin of the B complex, functions as a cofactor of carboxylases that catalyze an indispensable cellular metabolism. Although significant decreases in serum biotin levels have been reported in patients with chronic inflammatory diseases, the biological roles of biotin in inflammatory responses are unclear. In this study, we investigated the effects of biotin deficiency on TNF-alpha production. Mice were fed a basal diet or a biotin-deficient diet for 8 weeks. Serum biotin levels were significantly lower in biotin-deficient mice than biotin-sufficient mice. After i.v. administration of LPS, serum TNF-alpha levels were significantly higher in biotin-deficient mice than biotin-sufficient mice. A murine macrophage-like cell line, J774.1, was cultured in a biotin-sufficient or -deficient medium for 4 weeks. Cell proliferation and biotinylation of intracellular proteins were decreased significantly in biotin-deficient cells compared with biotin-sufficient cells. Significantly higher production and mRNA expression of TNF-alpha were detected in biotin-deficient J774.1 cells than biotin-sufficient cells in response to LPS and even without LPS stimulation. Intracellular TNF-alpha expression was inhibited by actinomycin D, indicating that biotin deficiency up-regulates TNF-alpha production at the transcriptional level. However, the expression levels of TNF receptors, CD14, and TLR4/myeloid differentiation protein 2 complex were similar between biotin-sufficient and -deficient cells. No differences were detected in the activities of the NF-kappaB family or AP-1. The TNF-alpha induction by biotin deficiency was down-regulated by biotin supplementation in vitro and in vivo. These results indicate that biotin deficiency may up-regulate TNF-alpha production or that biotin excess down-regulates TNF-alpha production, suggesting that biotin status may influence inflammatory diseases.

  20. Effects of magnetization on fusion product trapping and secondary neutron spectra

    International Nuclear Information System (INIS)

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.

    2015-01-01

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/−0.06) MG · cm, a ∼ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux

  1. Applying alpha-channeling to mirror machines

    Energy Technology Data Exchange (ETDEWEB)

    Zhmoginov, A. I.; Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)

    2012-05-15

    The {alpha}-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic {alpha} particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Originally proposed for tokamaks, this technique has also been shown to benefit open-ended fusion devices. Here, the fundamental theory and practical aspects of {alpha} channeling in mirror machines are reviewed, including the influence of magnetic field inhomogeneity and the effect of a finite wave region on the {alpha}-channeling mechanism. For practical implementation of the {alpha}-channeling effect in mirror geometry, suitable contained weakly damped modes are identified. In addition, the parameter space of candidate waves for implementing the {alpha}-channeling effect can be significantly extended through the introduction of a suitable minority ion species that has the catalytic effect of moderating the transfer of power from the {alpha}-channeling wave to the fuel ions.

  2. Methods of detection using a cellulose binding domain fusion product

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  3. Hydrogen production from fusion reactors coupled with high temperature electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  4. The alpha channeling effect

    Science.gov (United States)

    Fisch, N. J.

    2015-12-01

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.

  5. Membrane fusion and inverted phases

    International Nuclear Information System (INIS)

    Ellens, H.; Siegel, D.P.; Alford, D.; Yeagle, P.L.; Boni, L.; Lis, L.J.; Quinn, P.J.; Bentz, J.

    1989-01-01

    We have found a correlation between liposome fusion kinetics and lipid phase behavior for several inverted phase forming lipids. N-Methylated dioleoylphosphatidylethanolamine (DOPE-Me), or mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), will form an inverted hexagonal phase (HII) at high temperatures (above TH), a lamellar phase (L alpha) at low temperatures, and an isotropic/inverted cubic phase at intermediate temperatures, which is defined by the appearance of narrow isotropic 31 P NMR resonances. The phase behavior has been verified by using high-sensitivity DSC, 31 P NMR, freeze-fracture electron microscopy, and X-ray diffraction. The temperature range over which the narrow isotropic resonances occur is defined as delta TI, and the range ends at TH. Extruded liposomes (approximately 0.2 microns in diameter) composed of these lipids show fusion and leakage kinetics which are strongly correlated with the temperatures of these phase transitions. At temperatures below delta TI, where the lipid phase is L alpha, there is little or no fusion, i.e., mixing of aqueous contents, or leakage. However, as the temperature reaches delta TI, there is a rapid increase in both fusion and leakage rates. At temperatures above TH, the liposomes show aggregation-dependent lysis, as the rapid formation of HII phase precursors disrupts the membranes. We show that the correspondence between the fusion and leakage kinetics and the observed phase behavior is easily rationalized in terms of a recent kinetic theory of L alpha/inverted phase transitions. In particular, it is likely that membrane fusion and the L alpha/inverted cubic phase transition proceed via a common set of intermembrane intermediates

  6. Advanced nuclear fuel production by using fission-fusion hybrid reactor

    International Nuclear Information System (INIS)

    Al-Kusayer, T.A.; Sahin, S.; Abdulraoof, M.

    1993-01-01

    Efforts are made at the College of Engineering, King Saud University, Riyadh to lay out the main structure of a prototype experimental fusion and fusion-fission (hybrid) reactor blanket in cylindrical geometry. The geometry is consistent with most of the current fusion and hybrid reactor design concepts in respect of the neutronic considerations. Characteristics of the fusion chamber, fusion neutrons and the blanket are provided. The studies have further shown that 1 GWe fission-fusion reactor can produce up to 957 kg/year which is enough to fuel five light water reactors of comparable power. Fuel production can be increased further. 29 refs

  7. Demazure Modules, Fusion Products and Q-Systems

    Science.gov (United States)

    Chari, Vyjayanthi; Venkatesh, R.

    2015-01-01

    In this paper, we introduce a family of indecomposable finite-dimensional graded modules for the current algebra associated to a simple Lie algebra. These modules are indexed by an -tuple of partitions , where α varies over a set of positive roots of and we assume that they satisfy a natural compatibility condition. In the case when the are all rectangular, for instance, we prove that these modules are Demazure modules in various levels. As a consequence, we see that the defining relations of Demazure modules can be greatly simplified. We use this simplified presentation to relate our results to the fusion products, defined in (Feigin and Loktev in Am Math Soc Transl Ser (2) 194:61-79, 1999), of representations of the current algebra. We prove that the Q-system of (Hatayama et al. in Contemporary Mathematics, vol. 248, pp. 243-291. American Mathematical Society, Providence, 1998) extends to a canonical short exact sequence of fusion products of representations associated to certain special partitions .Finally, in the last section we deal with the case of and prove that the modules we define are just fusion products of irreducible representations of the associated current algebra and give monomial bases for these modules.

  8. The materials production and processing facility at the Spanish National Centre for fusion technologies (TechnoFusion)

    International Nuclear Information System (INIS)

    Munoz, A.; Monge, M.A.; Pareja, R.; Hernandez, M.T.; Jimenez-Rey, D.; Roman, R.; Gonzalez, M.; Garcia-Cortes, I.; Perlado, M.; Ibarra, A.

    2011-01-01

    In response to the urgent request from the EU Fusion Program, a new facility (TechnoFusion) for research and development of fusion materials has been planned with support from the Regional Government of Madrid and the Ministry of Science and Innovation of Spain. TechnoFusion, the National Centre for Fusion Technologies, aims screening different technologies relevant for ITER and DEMO environments while promoting the contribution of international companies and research groups into the Fusion Programme. For this purpose, the centre will be provided with a large number of unique facilities for the manufacture, testing (a triple-beam multi-ion irradiation, a plasma-wall interaction device, a remote handling for under ionizing radiation testing) and analysis of critical fusion materials. Particularly, the objectives, semi-industrial scale capabilities and present status of the TechnoFusion Materials Production and Processing (MPP) facility are presented. Previous studies revealed that the MPP facility will be a very promising infrastructure for the development of new materials and prototypes demanded by the fusion technology and therefore some of them will be here briefly summarized.

  9. The materials production and processing facility at the Spanish National Centre for fusion technologies (TechnoFusion)

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A., E-mail: rpp@fis.uc3m.es [Departamento de Fisica, UC3M, Avda de la Universidad 30, 28911 Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Departamento de Fisica, UC3M, Avda de la Universidad 30, 28911 Leganes, Madrid (Spain); Hernandez, M.T. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain); Jimenez-Rey, D. [CMAM, UAM, C/Faraday 3, 28049, Madrid (Spain); Roman, R.; Gonzalez, M.; Garcia-Cortes, I. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain); Perlado, M. [IFN, ETSII, UPM, C/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Ibarra, A. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain)

    2011-10-15

    In response to the urgent request from the EU Fusion Program, a new facility (TechnoFusion) for research and development of fusion materials has been planned with support from the Regional Government of Madrid and the Ministry of Science and Innovation of Spain. TechnoFusion, the National Centre for Fusion Technologies, aims screening different technologies relevant for ITER and DEMO environments while promoting the contribution of international companies and research groups into the Fusion Programme. For this purpose, the centre will be provided with a large number of unique facilities for the manufacture, testing (a triple-beam multi-ion irradiation, a plasma-wall interaction device, a remote handling for under ionizing radiation testing) and analysis of critical fusion materials. Particularly, the objectives, semi-industrial scale capabilities and present status of the TechnoFusion Materials Production and Processing (MPP) facility are presented. Previous studies revealed that the MPP facility will be a very promising infrastructure for the development of new materials and prototypes demanded by the fusion technology and therefore some of them will be here briefly summarized.

  10. Thermochemical hydrogen production based on magnetic fusion

    International Nuclear Information System (INIS)

    Krikorian, O.H.; Brown, L.C.

    1982-01-01

    Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO 3 decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars

  11. Measuring sticking and stripping in muon catalyzed dt fusion with multilayer thin films

    International Nuclear Information System (INIS)

    Fujiwara, M.C.; Bailey, J.M.; Beer, G.A.

    1995-12-01

    The authors propose a direct measurement of muon sticking to alpha particles in muon catalyzed dt fusion at a high density. Exploiting the features of a multilayer thin film target developed at TRIUMF, the sticking is determined directly by detection of charged fusion products. Experimental separation of initial ticking and stripping may become possible for the first time. Monte Carlo simulations, as well as preliminary results of test measurements are described

  12. Fokker-Planck Modelling of Delayed Loss of Charged Fusion Products in TFTR

    International Nuclear Information System (INIS)

    Edenstrasser, J.W.; Goloborod'ko, V.Ya.; Reznik, S.N.; Yavorskij, V.A.; Zweben, S.

    1998-01-01

    The results of a Fokker-Planck simulation of the ripple-induced loss of charged fusion products in the Tokamak Fusion Test Reactor (TFTR) are presented. It is shown that the main features of the measured ''delayed loss'' of partially thermalized fusion products, such as the differences between deuterium-deuterium and deuterium-tritium discharges, the plasma current and major radius dependencies, etc., are in satisfactory agreement with the classical collisional ripple transport mechanism. The inclusion of the inward shift of the vacuum flux surfaces turns out to be necessary for an adequate and consistent explanation of the origin of the partially thermalized fusion product loss to the bottom of TFTR

  13. Study of charged fusion products in laser produced plasmas

    International Nuclear Information System (INIS)

    Rosenblum, M.

    1981-07-01

    Charged reaction products play a central role in inertial confinement fusion. The investigation of the various processes these particles undergo in laser produced plasmas, their influence on the dynamics of the fusion and their utilization as a diagnostic tool are the main subjects of this thesis. (author)

  14. Neutron induced alpha production from carbon between 18 and 22 MeV

    International Nuclear Information System (INIS)

    Stevens, A.P.

    1976-10-01

    Cross sections for neutron induced alpha production in carbon were measured at seventeen energies between 18 and 22 MeV, using a deuterated anthracene crystal as both target and detector. Pulse shape discrimination was employed to separate the alphas and elastically scattered deuterons from the other reaction products. Published (n,d) elastic scattering data were used as a standard to obtain the alpha production cross sections. Comparison with available measurements shows good agreement

  15. Health physics aspects of activation products from fusion reactors

    International Nuclear Information System (INIS)

    Shoup, R.L.; Poston, J.W.; Easterly, C.E.; Jacobs, D.G.

    1975-01-01

    A review of the activation products from fusion reactors and their attendant impacts is discussed. This includes a discussion on their production, expected inventories, and the status of metabolic data on these products

  16. Alpha particle losses during sawtooth activity in Tokamaks

    International Nuclear Information System (INIS)

    Anderson, D.; Lisak, M.

    1988-01-01

    The time evolution of the direct losses of fusion produced alpha particles in Tokamak plasmas characterized by sawtooth activity is investigated. The alpha particle loss rate during a sawtooth period is predicted to change invertedly with the change in bulk plasma parameters but also to contain a characteristic burst at the sawtooth crash. The spectrum of the lost alpha particles is also discussed. The predictions for the time evolution and the spectrum of the losses are in qualitative agreement with recently obtained losses of 15 MeV fusion produced protons in JET. (authors)

  17. Performance requirements of an inertial-fusion-energy source for hydrogen production

    International Nuclear Information System (INIS)

    Hovingh, J.

    1983-01-01

    Performance of an inertial fusion system for the production of hydrogen is compared to a tandem-mirror-system hydrogen producer. Both systems use the General Atomic sulfur-iodine hydrogen-production cycle and produce no net electric power to the grid. An ICF-driven hydrogen producer will have higher system gains and lower electrical-consumption ratios than the design point for the tandem-mirror system if the inertial-fusion-energy gain eta Q > 8.8. For the ICF system to have a higher hydrogen production rate per unit fusion power than the tandem-mirror system requires that eta Q > 17. These can be achieved utilizing realistic laser and pellet performances

  18. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification.

    Science.gov (United States)

    Baccou, C; Yahia, V; Depierreux, S; Neuville, C; Goyon, C; Consoli, F; De Angelis, R; Ducret, J E; Boutoux, G; Rafelski, J; Labaune, C

    2015-08-01

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detector for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state.

  19. Spectra of neutrons and fusion charged products produced in a dense laser plasma

    International Nuclear Information System (INIS)

    Burtsev, V.A.; Dyatlov, V.D.; Krzhizhanovskij, R.E.; Levkovskij, A.A.

    1977-01-01

    The possibility of laser-produced plasma diagnostics has been investigated by measuring spectra of neutrons and alpha particles produced in the T(d,n) 4 He reaction. Using the Monte Carlo method the spectra have been calculated for nine states of the deuterium-tritium plasma with the temperature of 1;5 and 10 keV and the density of 0.2; 1 and 10 g/cm 3 respectively. The initial radius of the target was assumed to be 0.01 cm at the density of 0.2 g/cm 3 . It is shown that the neutron and alpha spectra can serve as plasma diagnostics parameters in laser fusion

  20. Investigation of the influence of incomplete fusion on complete fusion of {sup 12}C-induced reactions at {approx} 4-7.2 MeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Amanuel, F.K. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy); Zelalem, B.; Chaubey, A.K. [Addis Ababa University, Department of Physics, P.O.Box 1176, Addis Ababa (Ethiopia); Agarwal, Avinash [Bareilly College, Department of Physics, Bareilly (India); Rizvi, I.A.; Maheshwari, Anjana; Ahmed, Tauseef [Aligarh Muslim University, Department of Physics, Aligarh (India)

    2011-12-15

    In this paper, we present the results of our investigation of reaction dynamics leading to incomplete fusion of heavy ions at moderate excitation energies, especially the influence of incomplete fusion on complete fusion of {sup 12}C -induced reactions at specific energies {approx} 4-7.2M eV/nucleon. Excitation functions of various reaction products populated via complete and/or incomplete fusions of a {sup 12}C projectile with {sup 93}Nb, {sup 59}Co and {sup 52}Cr targets were measured at several specific energies {approx} 4-7.2 MeV/nucleon, using a recoil catcher technique, followed by off-line {gamma}-ray spectrometry. The measured excitation functions were compared with theoretical values obtained using the PACE4 statistical model code. For representative non-{alpha}-emitting channels in the {sup 12}C + {sup 93}Nb system, the experimentally measured excitation functions were, in general, found to be in good agreement with the theoretical predictions. However, for {alpha}-emitting channels in the {sup 12}C + {sup 93}Nb, {sup 12}C + {sup 59}Co, and {sup 12}C + {sup 52}Cr systems, the measured excitation functions were higher than the predictions of the theoretical model code, which may be credited to incomplete fusion reactions at these energies. An attempt was made to estimate the incomplete fusion fraction for the present systems, which revealed that the fraction was sensitive to the projectile energy and mass asymmetry of the entrance channel. (orig.)

  1. Fusion-product transport in axisymmetric tokamaks: losses and thermalization

    International Nuclear Information System (INIS)

    Hively, L.M.

    1980-01-01

    High-energy fusion-product losses from an axisymmetric tokamak plasma are studied. Prompt-escape loss fluxes (i.e. prior to slowing down) are calculated including the non-separable dependence of flux as a function of poloidal angle and local angle-of-incidence at the first wall. Fusion-product (fp) thermalization and heating are calculated assuming classical slowing down. The present analytical model describes fast ion orbits and their distribution function in realistic, high-β, non-circular tokamak equilibria. First-orbit losses, trapping effects, and slowing-down drifts are also treated

  2. ADAM12 and alpha9beta1 integrin are instrumental in human myogenic cell differentiation

    DEFF Research Database (Denmark)

    Lafuste, Peggy; Sonnet, Corinne; Chazaud, Bénédicte

    2005-01-01

    of alpha9 parallels that of ADAM12 and culminates at time of fusion. alpha9 and ADAM12 coimmunoprecipitate and participate to mpc adhesion. Inhibition of ADAM12/alpha9beta1 integrin interplay, by either ADAM12 antisense oligonucleotides or blocking antibody to alpha9beta1, inhibited overall mpc fusion...

  3. The DD Cold Fusion-Transmutation Connection

    Science.gov (United States)

    Chubb, Talbot A.

    2005-12-01

    LENR theory must explain dd fusion, alpha-addition transmutations, radiationless nuclear reactions, and three-body nuclear particle reactions. Reaction without radiation requires many-body D Bloch+ periodicity in both location and internal structure dependencies. Electron scattering leads to mixed quantum states. The radiationless dd fusion reaction is 2-D Bloch+ -> {}4 He Bloch2+. Overlap between {}4 He Bloch2+ and surface Cs leads to alpha absorption. In the Iwamura et al. studies active deuterium is created by scattering at diffusion barriers.

  4. Bibliography of fusion product physics in tokamaks

    International Nuclear Information System (INIS)

    Hively, L.M.; Sigmar, D.J.

    1989-09-01

    Almost 700 citations have been compiled as the first step in reviewing the recent research on tokamak fusion product effects in tokamaks. The publications are listed alphabetically by the last name of the first author and by subject category

  5. Hydrogen production from high temperature electrolysis and fusion reactor

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, J.F.; Issacs, H.S.; Lazareth, O.; Powell, J.R.; Salzano, F.J.

    1978-01-01

    Production of hydrogen from high temperature electrolysis of steam coupled with a fusion reactor is studied. The process includes three major components: the fusion reactor, the high temperature electrolyzer and the power conversion cycle each of which is discussed in the paper. Detailed process design and analysis of the system is examined. A parametric study on the effect of process efficiency is presented

  6. Improvement of heterologous protein production in Aspergillus oryzae by RNA interference with alpha-amylase genes.

    Science.gov (United States)

    Nemoto, Takashi; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2009-11-01

    Aspergillus oryzae RIB40 has three alpha-amylase genes (amyA, amyB, and amyC), and secretes alpha-amylase abundantly. However, large amounts of endogenous secretory proteins such as alpha-amylase can compete with heterologous protein in the secretory pathway and decrease its production yields. In this study, we examined the effects of suppression of alpha-amylase on heterologous protein production in A. oryzae, using the bovine chymosin (CHY) as a reporter heterologous protein. The three alpha-amylase genes in A. oryzae have nearly identical DNA sequences from those promoters to the coding regions. Hence we performed silencing of alpha-amylase genes by RNA interference (RNAi) in the A. oryzae CHY producing strain. The silenced strains exhibited a reduction in alpha-amylase activity and an increase in CHY production in the culture medium. This result suggests that suppression of alpha-amylase is effective in heterologous protein production in A. oryzae.

  7. Energetic-economic analysis of inertial fusion plants with tritium commercial production

    International Nuclear Information System (INIS)

    Vezzani, M.; Cerullo, N.; Lanza, S.

    2000-01-01

    The realization of nuclear power plants based on fusion principles is expected to be, at the moment, very expensive. As a result the expected cost of electricity (COE) of fusion power plants is much higher than the COE of fission and fossil power plants. Thus it is necessary to study new solutions for fusion power plant designs to reduce the COE. An interesting solution for the first generation of fusion plants is to produce a surplus of tritium for commercial purposes. The present paper is concerned with the study of whether such a tritium surplus production can improve the plant economic balance, so that the COE is reduced, and to what extent. The result was that such a production allows a considerable reduction of COE and seems to be a good direction for development for the first generation of fusion power plants. To give an example, for a reference inertial confinement fusion (ICF) power plant the rise of the plant net tritium breeding ratio (TBR n ) from 1 to 1.2 would allow, in the conservative estimate of a tritium market price (C T ) of 5 M$/kg, a COE reduction of about 20%. In the estimate of a TBR n rise from 1 to 1.3 and of a C T value of 10 M$/kg, COE reduction could be more than 50%! In conclusion, the present paper points out the influence of TBR increase on COE reduction. Such a conclusion, which holds true for every fusion plant, is much more valid for ICF plants in which it is possible to reach higher TBR values and to use tritium extraction systems easily. Thus, considering the relevant economic advantages, a commercial tritium surplus production should not be disregarded for first generation fusion power plant designs, in particular for ICF plant designs

  8. Anomalous delayed loss of trapped D-D fusion products in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Darrow, D.S.; Fredrickson, E.D.; Mynick, H.E.

    1993-02-01

    A new anomalous delayed loss of D-D fusion products has been measured at the bottom of the TFRR vessel. This loss is delayed by ∼ 0.2 sec with respect to the usual prompt first-orbit loss, and has a correspondingly lower energy, i.e. about half the fusion product birth energy. This loss process dominates the total fusion product loss measured 90 degrees below the midplane for plasma currents. I≥ 1.8 MA and major radii near R=2.45 m, e.g. for recent TFTR supershots. This delayed feature can occur without large coherent MED activity, although it can be strongly modulated by such activity. Several possible causes for this phenomenon are discussed, but no clear explanation for this delayed loss has yet been found

  9. Activation product transport in fusion reactors

    International Nuclear Information System (INIS)

    Klein, A.C.

    1983-01-01

    Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. Similar problems are experienced around fission reactor systems. The determination of the transport of radioactive corrosion and neutron sputtering products through the system is achieved using the computer code RAPTOR. This code calculates the mass transfer of a number of activation products based on the corrosion and sputtering rates through the system, the deposition and release characteristics of various plant components, the neturon flux spectrum, as well as other plant parameters. RAPTOR assembles a system of first order linear differential equations into a matrix equation based upon the reactor system parameters. Included in the transfer matrix are the deposition and erosion coefficients, and the decay and activation data for the various plant nodes and radioactive isotopes. A source vector supplies the corrosion and neutron sputtering source rates. This matrix equation is then solved using a matrix operator technique to give the specific activity distribution of each radioactive species throughout the plant. Once the amount of mass transfer is determined, the photon transport due to the radioactive corrosion and sputtering product sources can be evaluated, and dose rates around the plant components of interest as a function of time can be determined. This method has been used to estimate the radiation hazards around a number of fusion reactor system designs

  10. alpha-MSH and its receptors in regulation of tumor necrosis factor-alpha production by human monocyte/macrophages.

    Science.gov (United States)

    Taherzadeh, S; Sharma, S; Chhajlani, V; Gantz, I; Rajora, N; Demitri, M T; Kelly, L; Zhao, H; Ichiyama, T; Catania, A; Lipton, J M

    1999-05-01

    The hypothesis that macrophages contain an autocrine circuit based on melanocortin [ACTH and alpha-melanocyte-stimulating hormone (alpha-MSH)] peptides has major implications for neuroimmunomodulation research and inflammation therapy. To test this hypothesis, cells of the THP-1 human monocyte/macrophage line were stimulated with lipopolysaccharide (LPS) in the presence and absence of alpha-MSH. The inflammatory cytokine tumor necrosis factor (TNF)-alpha was inhibited in relation to alpha-MSH concentration. Similar inhibitory effects on TNF-alpha were observed with ACTH peptides that contain the alpha-MSH amino acid sequence and act on melanocortin receptors. Nuclease protection assays indicated that expression of the human melanocortin-1 receptor subtype (hMC-1R) occurs in THP-1 cells; Southern blots of RT-PCR product revealed that additional subtypes, hMC-3R and hMC-5R, also occur. Incubation of resting macrophages with antibody to hMC-1R increased TNF-alpha concentration; the antibody also markedly reduced the inhibitory influence of alpha-MSH on TNF-alpha in macrophages treated with LPS. These results in cells known to produce alpha-MSH at rest and to increase secretion of the peptide when challenged are consistent with an endogenous regulatory circuit based on melanocortin peptides and their receptors. Targeting of this neuroimmunomodulatory circuit in inflammatory diseases in which myelomonocytic cells are prominent should be beneficial.

  11. Mission and design of the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    Meade, D.M.; Jardin, S.C.; Schmidt, J.

    2001-01-01

    Experiments are needed to test and extend present understanding of confinement, macroscopic stability, alpha-driven instabilities, and particle/power exhaust in plasmas dominated by alpha heating. A key issue is to what extent pressure profile evolution driven by strong alpha heating will act to self-organize advanced configurations with large bootstrap current fractions and internal transport barriers. A design study of a Fusion Ignition Research Experiment (FIRE) is underway to assess near term opportunities for advancing the scientific understanding of self-heated fusion plasmas. The emphasis is on understanding the behavior of fusion plasmas dominated by alpha heating (Q≥5) that are sustained for durations comparable to the characteristic plasma time scales (≥20 τ E and ∼τ skin , where τ skin is the time for the plasma current profile to redistribute at fixed current). The programmatic mission of FIRE is to attain, explore, understand and optimize alpha-dominated plasmas to provide knowledge for the design of attractive magnetic fusion energy systems. The programmatic strategy is to access the alpha-heating-dominated regime with confidence using the present advanced tokamak data base (e.g., Elmy-H-mode, ≤0.75 Greenwald density) while maintaining the flexibility for accessing and exploring other advanced tokamak modes (e. g., reversed shear, pellet enhanced performance) at lower magnetic fields and fusion power for longer durations in later stages of the experimental program. A major goal is to develop a design concept that could meet these physics objectives with a construction cost in the range of $1B. (author)

  12. On the production of heavy elements by cold fusion

    International Nuclear Information System (INIS)

    Armbruster, P.

    1985-01-01

    After a short historical introduction (Section 1), this article presents new insights into the mechanism limiting the fusion of heavy nuclides (Section 2). Fusion is finally limited by the increasing Coulomb forces in the formation process of a compound system, as well as in its deexcitation. Moreover, nuclear structure effects in all stages of evaporation residue (EVR) formation are shown to be of importance. The wide field of fusion reaction studies and possible experimental techniques is projected onto the task of element synthesis, and only those aspects that are of relevance here are covered. The better understanding of EVR formation (Section 2) and the new experimental techniques (Section 3) that enabled the production of elements 107-109 (Section 4) are also discussed. In Section 5 ground-state properties and the nuclear structure of the heaviest isotopes, together with their production cross sections, are discussed. Finally, an outlook on how eventually to go beyond Z = 109 is given

  13. The influence of nitrogen sources on the alpha-amylase productivity of Aspergillus oryzae in continuous cultures

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Nielsen, Jens

    2000-01-01

    The influence of the nitrogen source on the cc-amylase productivity of Aspergillus oryzae was quantified in continuous cultivations. Both inorganic and complex nitrogen sources were investigated and glucose was used as the carbon and energy sources. For production of alpha-amylase, nitrate...... in the cc-amylase productivity. The higher alpha-amylase productivity during growth on casein hydrolysate was not caused by increased transcription of the alpha-amylase genes but was caused by a faster secretion of alpha-amylase or by a lower binding of alpha-amylase to the biomass....

  14. Definition of Ignition in Inertial Confinement Fusion

    Science.gov (United States)

    Christopherson, A. R.; Betti, R.

    2017-10-01

    Defining ignition in inertial confinement fusion (ICF) is an unresolved problem. In ICF, a distinction must be made between the ignition of the hot spot and the propagation of the burn wave in the surrounding dense fuel. Burn propagation requires that the hot spot is robustly ignited and the dense shell exhibits enough areal density. Since most of the energy gain comes from burning the dense shell, in a scale of increasing yields, hot-spot ignition comes before high gains. Identifying this transition from hot-spot ignition to burn-wave propagation is key to defining ignition in general terms applicable to all fusion approaches that use solid DT fuel. Ad hoc definitions such as gain = 1 or doubling the temperature are not generally valid. In this work, we show that it is possible to identify the onset of ignition through a unique value of the yield amplification defined as the ratio of the fusion yield including alpha-particle deposition to the fusion yield without alphas. Since the yield amplification is a function of the fractional alpha energy fα =EαEα 2Ehs 2Ehs (a measurable quantity), it appears possible not only to define ignition but also to measure the onset of ignition by the experimental inference of the fractional alpha energy and yield amplification. This material is based upon work supported by the Department of Energy Office of Fusion Energy Services under Award Number DE-FC02-04ER54789 and National Nuclear Security Administration under Award Number DE-NA0001944.

  15. Managing fusion high-level waste-A strategy for burning the long-lived products in fusion devices

    International Nuclear Information System (INIS)

    El-Guebaly, L.A.

    2006-01-01

    Fusion devices appear to be a viable option for burning their own high-level waste (HLW). We propose a novel strategy to eliminate (or minimize) the HLW generated by fusion systems. The main source of the fusion HLW includes the structural and recycled materials, refractory metals, and liquid breeders. The basic idea involves recycling and reprocessing the waste, separating the long-lived radionuclides from the bulk low-level waste, and irradiating the limited amount of HLW in a specially designed module to transmute the long-lived products into short-lived radioisotopes or preferably, stable elements. The potential performance of the new concept seems promising. Our analysis indicated moderate to excellent transmutation rates could be achieved in advanced fusion designs. Successive irradiation should burn the majority of the HLW. The figures of merit for the concept relate to the HLW burn-up fraction, neutron economy, and impact on tritium breeding. Hopefully, the added design requirements could be accommodated easily in fusion power plants and the cost of the proposed system would be much less than disposal in a deep geological HLW repository. Overall, this innovative approach offers benefits to fusion systems and helps earn public acceptance for fusion as a HLW-free source of clean nuclear energy

  16. New production processes for alpha hemihydrate open up new marketing opportunities

    International Nuclear Information System (INIS)

    Engert, W.; Lehmkaemper, O.; Bunte, H.P.

    1991-01-01

    New production processes and markets for alpha hemihydrate are discussed. Utility studies concluded that lignite gypsum is harmless in terms of public and occupational health, and is technically comparable to or superior to natural gypsum by virtue of greater purity. Semi-commercial and pilot-scale studies were carried out on the use of flue gas desulfurization (FGD) gypsum for producing alpha hemihydrate, with successful results. The process enabled pure alpha hemihydrate to be produced without dihydrate or dihydrate impurities, and of a constant, uniform quality. The treatment consists of forming pressed mouldings of FGD gypsum followed by steam autoclaving, drying and milling. Agents are used to stabilize the stackable moldings, and to act as growth inhibitors during transformation of dihydrite to alpha-hemihydrate. Markets for the product are found in mining, tunneling and road building, foundation work, floor systems, as hard plaster for dental and moulding applications, for construction industry use, and as structural and non-structural material. Details are presented of the production process and marketing concepts. 12 figs

  17. A brief review of ultra-rare alpha decay detection technique

    International Nuclear Information System (INIS)

    Tsyganov, Yu.S.

    2006-01-01

    Three approaches to the measurement of rare alpha decaying products produced in heavy-ion induced nuclear reactions are described. One is based on a chemical extraction and following deposition of the nuclides under investigation onto the surface of the detector, whereas the second one is associated with long-lived products implanted into silicon detectors by using the electromagnetic separation technique. The third approach relates with an application of real-time mode detection of correlated energy-time-position recoil-alpha sequences from 48 Ca-induced nuclear reactions with actinide targets, like 242,244 Pu, 245,248 Cm, 243 Am, and 249 Cf. Namely with this technique it has became possible to provide a radical suppression of backgrounds in the full fusion (3-5n) reactions aimed at the synthesis of superheavy elements with Z = 113-118

  18. Plasma fluctuations and confinement of fusion reaction products

    International Nuclear Information System (INIS)

    Coppi, B.; Pegoraro, F.

    1981-01-01

    The interaction between the fluctuations that can be excited in a magnetically confined plasma and the high-energy-particle population produced by fusion reactions is analyzed in view of its relevance to the process of thermonuclear ignition. The spectrum of the perturbations that, in the absence of fusion reaction products, would be described by the incompressible ideal magnetohydrodynamic approximation is studied considering finite value of the plasma pressure relative ot the magnetic pressure. The combined effects of the magnetic field curvature and shear are taken into account and the relevant spectrum is shown to consist of a continuous portion, that could be identified as a mixture of shear-Alfven and interchange oscillations, and a discrete unstable part corresponding to the so-called ballooning modes. The rate of diffusion of the fusion reaction products induced by oscillations in the continuous part of the spectrum, as estimated from the appropriate quasi-linear theory, is found to be significantly smaller than could be expected if normal modes (i.e., nonconvective solutions) were excited. However, a relatively wide intermediate region is identified where opalescent fluctuations, capable of achieving significant amplitudes and corresponding to a quasi-discrete spectrum, can be excited

  19. Nuclear X-ray emission after fusion of heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Christian; Muecher, Dennis; Gernhaeuser, Roman; Faestermann, Thomas [Technische Universitaet Muenchen, Lehrstuhl E12 (Germany); Henning, Walter [Technische Universitaet Muenchen, Lehrstuhl E12 (Germany); Argonne National Laboratory (United States); Morita, Kosuke; Morimoto, Kouji; Kaji, Daija [RIKEN, Research Group for Superheavy Elements (Japan)

    2015-07-01

    The goal is to establish in-beam K-X-ray spectroscopy as a sensitive tool to identify super heavy elements (SHEs) produced in fusion reactions via their proton number. SHEs, formed after cold or hot fusion, are usually identified via the alpha-decay products, which have to be connected to well-known elements. In case of hot fusion, the daughter nuclei quickly undergo spontaneous fission, so that the identification of the produced SHEs is difficult. Using the hot fusion approach in our first test experiments, the resultant products will be analysed by the gas-filled GARIS separator at the RILAC facility at RIKEN. As the X-ray detector is required to have superior energy and timing resolution to best identify the rare events at highest masses and to supress random coincidences as sufficient as possible, we chose a thin and planar geometry, which also reduces the damage caused by fast neutrons. We show first measurements using the MINIBALL Ge array at Munich. Additionally we report on our feasibility studies and on first tests using the new detector at high count rates together with a powerful DAQ system and transistor reset preamplifiers.

  20. Process for manufacture of inertial confinement fusion targets and resulting product

    International Nuclear Information System (INIS)

    Solomon, D.E.; Wise, K.D.; Wuttke, G.H.; Masnari, N.A.; Rensel, W.B.; Robinson, M.G.

    1980-01-01

    A method of manufacturing inertial confinement fusion targets is described which is adaptable for high volume production of low cost targets in a wide variety of sizes. The targets include a spherical pellet of fusion fuel surrounded by a protective concentric shell. (UK)

  1. Fusion programs in Applied Plasma Physics

    International Nuclear Information System (INIS)

    1992-07-01

    The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (a) Applied Plasma Physics Theory Program, (b) Alpha Particle Diagnostic, (c) Edge and Current Density Diagnostic, and (d) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (rf). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described in the following sections

  2. Alpha particle physics experiments in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Zweben, S.J.; Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Stratton, B.C.; Synakowski, E.J.; Taylor, G.

    2000-01-01

    Alpha particle physics experiments were done on TFTR during its DT run from 1993 to 1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single particle confinement model in MHD quiescent discharges. The alpha loss due to toroidal field ripple was identified in some cases, and the low radial diffusivity inferred for high energy alphas was consistent with orbit averaging over small scale turbulence. Finally, the observed alpha particle interactions with sawteeth, toroidal Alfven eigenmodes and ICRF waves were approximately consistent with theoretical modelling. What was learned is reviewed and what remains to be understood is identified. (author)

  3. Overproduction, purification and characterization of human interferon alpha2a-human serum albumin fusion protein produced in methilotropic yeast Pichia pastoris

    Science.gov (United States)

    Ningrum, R. A.; Santoso, A.; Herawati, N.

    2017-05-01

    Human interferon alpha2a (hIFNα2a) is a therapeutic protein that used in cancer and hepatitis B/C therapy. The main problem of using hIFNα-2a is its short elimination half life due to its low molecular weight. Development of higher molecular weight protein by albumin fusion technology is a rational strategy to solve the problem. In our previous research we constructed an open reading frame (ORF) encoding hIFNα2a-human serum albumin (HSA) fusion protein that expressed in Pichia pastoris (P. pastoris) protease deficient strain SMD1168. This research was performed to overproduce, purify and characterize the fusion protein. To overproduce the protein, cultivation was performed in buffered complex medium containing glyserol (BMGY) for 24 h and protein overproduction was applied in buffered complex medium containing methanol (BMMY) for 48 hours at 30°C. The fusion protein was purified by blue sepharose affinity chromatography. Molecular weight characterization by SDS PAGE corresponds with its theoretical size, 85 kDa. Western blot analysis demonstrated that the fusion protein was recognized by anti hIFNα2 and anti HSA monoclonal antibody as well. Amino acid sequence of the fusion protein was determined by LC MS/MS2 mass spectrometry with trypsin as proteolitic enzyme. There were three fragments that identified as hIFNα2a and seven fragments that identified as HSA. Total identified amino acids were 150 residues with 20% coverage from total residues. To conclude, hIFNα2a-HSA fusion protein was overproduced, purified and characterized. Characterization based on molecular weight, antibody recognition and amino acid sequence confirmed that the fusion protein has correct identity as theoretically thought.

  4. Overproduction, purification and characterization of human interferon alpha2a-human serum albumin fusion protein produced in methilotropic yeast Pichia pastoris

    International Nuclear Information System (INIS)

    Ningrum, R A; Santoso, A; Herawati, N

    2017-01-01

    Human interferon alpha2a (hIFNα2a) is a therapeutic protein that used in cancer and hepatitis B/C therapy. The main problem of using hIFNα-2a is its short elimination half life due to its low molecular weight. Development of higher molecular weight protein by albumin fusion technology is a rational strategy to solve the problem. In our previous research we constructed an open reading frame (ORF) encoding hIFNα2a-human serum albumin (HSA) fusion protein that expressed in Pichia pastoris (P. pastoris) protease deficient strain SMD1168. This research was performed to overproduce, purify and characterize the fusion protein. To overproduce the protein, cultivation was performed in buffered complex medium containing glyserol (BMGY) for 24 h and protein overproduction was applied in buffered complex medium containing methanol (BMMY) for 48 hours at 30°C. The fusion protein was purified by blue sepharose affinity chromatography. Molecular weight characterization by SDS PAGE corresponds with its theoretical size, 85 kDa. Western blot analysis demonstrated that the fusion protein was recognized by anti hIFNα2 and anti HSA monoclonal antibody as well. Amino acid sequence of the fusion protein was determined by LC MS/MS2 mass spectrometry with trypsin as proteolitic enzyme. There were three fragments that identified as hIFNα2a and seven fragments that identified as HSA. Total identified amino acids were 150 residues with 20% coverage from total residues. To conclude, hIFNα2a-HSA fusion protein was overproduced, purified and characterized. Characterization based on molecular weight, antibody recognition and amino acid sequence confirmed that the fusion protein has correct identity as theoretically thought. (paper)

  5. Fusion probability and survivability in estimates of heaviest nuclei production

    International Nuclear Information System (INIS)

    Sagaidak, Roman

    2012-01-01

    A number of theoretical models have been recently developed to predict production cross sections for the heaviest nuclei in fusion-evaporation reactions. All the models reproduce cross sections obtained in experiments quite well. At the same time they give fusion probability values P fus ≡ P CN differed within several orders of the value. This difference implies a corresponding distinction in the calculated values of survivability. The production of the heaviest nuclei (from Cm to the region of superheavy elements (SHE) close to Z = 114 and N = 184) in fusion-evaporation reactions induced by heavy ions has been considered in a systematic way within the framework of the barrier-passing (fusion) model coupled with the standard statistical model (SSM) of the compound nucleus (CN) decay. Both models are incorporated into the HIVAP code. Available data on the excitation functions for fission and evaporation residues (ER) produced in very asymmetric combinations can be described rather well within the framework of HIVAP. Cross-section data obtained in these reactions allow one to choose model parameters quite definitely. Thus one can scale and fix macroscopic (liquid-drop) fission barriers for nuclei involved in the evaporation-fission cascade. In less asymmetric combinations (with 22 Ne and heavier projectiles) effects of fusion suppression caused by quasi-fission are starting to appear in the entrance channel of reactions. The P fus values derived from the capture-fission and fusion-fission cross-sections obtained at energies above the Bass barrier were plotted as a function of the Coulomb parameter. For more symmetric combinations one can deduce the P fus values semi-empirically, using the ER and fission excitation functions measured in experiments, and applying SSM model with parameters obtained in the analysis of a very asymmetric combination leading to the production of (nearly) the same CN, as was done for reactions leading to the pre-actinide nuclei formation

  6. Effects of sawtooth crashes on beam ions and fusion product tritons in JET

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F B; Hone, M A; Jarvis, O N; Loughlin, M J; Sadler, G [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Adams, J M; Bond, D S; Watkins, N [UKAEA Harwell Lab. (United Kingdom). Energy Technology Div.; Howarth, P J.A. [Birmingham Univ. (United Kingdom)

    1994-07-01

    The effect of a sawtooth crash on the radial distribution of the slowing down fusion product tritons and on beams ions, is examined with measurements of the 2.5 MeV and 14 MeV neutron emission line-integrals before and after sawtooth crashes. In deuterium discharges, the 14 MeV neutron production was wholly attributable to burnup of the 1 MeV fusion product tritons from d-d fusion. The local emissivity of 14 MeV neutrons, and hence of the profile of thermalizing tritons, is shown to be only weakly affected by crashes in the discharges studied. This is in contradiction with the apparent behaviour of injected beam ions as deduced from a study of the considerable changes in local emissivity of the 2.5 MeV neutrons. Nevertheless, the behaviour of the fusion product tritons is consistent with the scaling of the beam injected deuterium. 1 ref., 6 figs.

  7. Effects of sawtooth crashes on beam ions and fusion product tritons in JET

    International Nuclear Information System (INIS)

    Marcus, F.B.; Hone, M.A.; Jarvis, O.N.; Loughlin, M.J.; Sadler, G.

    1994-01-01

    The effect of a sawtooth crash on the radial distribution of the slowing down fusion product tritons and on beams ions, is examined with measurements of the 2.5 MeV and 14 MeV neutron emission line-integrals before and after sawtooth crashes. In deuterium discharges, the 14 MeV neutron production was wholly attributable to burnup of the 1 MeV fusion product tritons from d-d fusion. The local emissivity of 14 MeV neutrons, and hence of the profile of thermalizing tritons, is shown to be only weakly affected by crashes in the discharges studied. This is in contradiction with the apparent behaviour of injected beam ions as deduced from a study of the considerable changes in local emissivity of the 2.5 MeV neutrons. Nevertheless, the behaviour of the fusion product tritons is consistent with the scaling of the beam injected deuterium. 1 ref., 6 figs

  8. Stripping of two protons and one alpha particle transfer reactions for 16 O + A Sm and their influence on the fusion cross section

    International Nuclear Information System (INIS)

    Maciel, A.M.M.; Gomes, P.R.S.

    1995-01-01

    Transfer cross section angular distribution data for the stripping of two protons and one alpha particle are studied for the 16 O + A Sm systems (A=144, 148, 150, 152 and 154), at near barrier energies. A semiclassical formalism is used to derive the corresponding transfer form factors. For only one channel the analysis shows evidences that the transfer reaction mechanism at backward angles - corresponding to small distances, may behave as a multi-step process leading to fusion. Simplified coupled channel calculations including transfer channels are performed for the study of the sub-barrier of these systems. The influence of short distance transfer reactions on the fusion is discussed. (author)

  9. Leptin potentiates Prevotella intermedia lipopolysaccharide-induced production of TNF-alpha in monocyte-derived macrophages.

    Science.gov (United States)

    Kim, Sung-Jo

    2010-06-01

    In addition to regulating body weight, leptin is also recognized for its role in the regulation of immune function and inflammation. The purpose of this study was to investigate the effect of leptin on Prevotella (P.) intermedia lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha production in differentiated THP-1 cells, a human monocytic cell line. LPS from P. intermedia ATCC 25611 was prepared by the standard hot phenol-water method. THP-1 cells were incubated in the medium supplemented with phorbol myristate acetate to induce differentiation into macrophage-like cells. The amount of TNF-alpha and interleukin-8 secreted into the culture medium was determined by enzyme-linked immunosorbent assay (ELISA). TNF-alpha and Ob-R mRNA expression levels were determined by semi-quantitative reverse transcription-polymerase chain reaction analysis. Leptin enhanced P. intermedia LPS-induced TNF-alpha production in a dose-dependent manner. Leptin modulated P. intermedia LPS-induced TNF-alpha expression predominantly at the transcriptional level. Effect of leptin on P. intermedia LPS-induced TNF-alpha production was not mediated by the leptin receptor. The ability of leptin to enhance P. intermedia LPS-induced TNF-alpha production may be important in the establishment of chronic lesion accompanied by osseous tissue destruction observed in inflammatory periodontal disease.

  10. Inhibition of TNF-alpha production contributes to the attenuation of LPS-induced hypophagia by pentoxifylline.

    Science.gov (United States)

    Porter, M H; Hrupka, B J; Altreuther, G; Arnold, M; Langhans, W

    2000-12-01

    Cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) are assumed to mediate anorexia during bacterial infections. To improve our understanding of the role that these two cytokines serve in mediating infection during anorexia, we investigated the ability of pentoxifylline (PTX), a potent inhibitor of TNF-alpha production, to block the anorectic effects of the bacterial products lipopolysaccharide (LPS) and muramyl dipeptide (MDP) in rats. Intraperitoneally injected PTX (100 mg/kg body wt) completely eliminated the anorectic effect of intraperitoneally injected LPS (100 microg/kg body wt) and attenuated the anorectic effect of a higher dose of intraperitoneally injected LPS (250 microg/kg body wt). Concurrently, PTX pretreatment suppressed low-dose LPS-induced TNF-alpha production by more than 95% and IL-1beta production 39%, as measured by ELISA. Similarly, high-dose LPS-induced TNF-alpha production was reduced by approximately 90%. PTX administration also attenuated the tolerance that is normally observed with a second injection of LPS. In addition, PTX pretreatment attenuated the hypophagic effect of intraperitoneally injected MDP (2 mg/kg body wt) but had no effect on the anorectic response to intraperitoneally injected recombinant human TNF-alpha (150 ug/kg body wt). The results suggest that suppression of TNF-alpha production is sufficient to attenuate LPS- and MDP-induced anorexia. This is consistent with the hypothesis that TNF-alpha plays a major role in the anorexia associated with bacterial infection.

  11. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm 3 are required for a practical fusion-based fission product transmutation system

  12. Plutonium-239 production rate study using a typical fusion reactor

    International Nuclear Information System (INIS)

    Faghihi, F.; Havasi, H.; Amin-Mozafari, M.

    2008-01-01

    The purpose of the present paper is to compute fissile 239 Pu material by supposed typical fusion reactor operation to make the fuel requirement for other purposes (e.g. MOX fissile fuel, etc.). It is assumed that there is a fusion reactor has a cylindrical geometry and uses uniformly distributed deuterium-tritium as fuel so that neutron wall load is taken at 10(MW)/(m 2 ) . Moreover, the reactor core is surrounded by six suggested blankets to make best performance of the physical conditions described herein. We determined neutron flux in each considered blanket as well as tritium self-sufficiency using two groups neutron energy and then computation is followed by the MCNP-4C code. Finally, material depletion according to a set of dynamical coupled differential equations is solved to estimate 239 Pu production rate. Produced 239 Pu is compared with two typical fission reactors to find performance of plutonium breeding ratio in the case of the fusion reactor. We found that 0.92% of initial U is converted into fissile Pu by our suggested fusion reactor with thermal power of 3000 MW. For comparison, 239 Pu yield of suggested large scale PWR is about 0.65% and for LMFBR is close to 1.7%. The results show that the fusion reactor has an acceptable efficiency for Pu production compared with a large scale PWR fission reactor type

  13. Nuclear data for the production of radioisotopes in fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Cheng, E.T.; Schenter, R.E.; Mann, F.M.; Ikeda, Y.

    1991-01-01

    The fusion materials irradiation facility (FMIF) is a neutron source generator that will produce a high-intensity 14-MeV neutron field for testing candidate fusion materials under reactor irradiation conditions. The construction of such a facility is one of the very important development stages toward realization of fusion energy as a practical energy source for electricity production. As a result of the high-intensity neutron field, 10 MW/m 2 or more equivalent neutron wall loading, and the relatively high-energy (10- to 20-MeV) neutrons, the FMIF, as future fusion reactors, also bears the potential capability of producing a significant quantity of radioisotopes. A study is being conducted to identify the potential capability of the FMIF to produce radioisotopes for medical and industrial applications. Two types of radioisotopes are involved: one is already available; the second might not be readily available using conventional production methods. For those radioisotopes that are not readily available, the FMIF could develop significant benefits for future generations as a result of the availability of such radioisotopes for medical or industrial applications. The current production of radioisotopes could help finance the operation of the FMIF for irradiating the candidate fusion materials; thus this concept is attractive. In any case, nuclear data are needed for calculating the neutron flux and spectrum in the FMIF and the potential production rates of these isotopes. In this paper, the authors report the result of a preliminary investigation on the production of 99 Mo, the parent radioisotope for 99m Tc

  14. Generalized liquid drop model and fission, fusion, alpha and cluster radioactivity and superheavy nuclei

    International Nuclear Information System (INIS)

    Royer, G.

    2012-01-01

    A particular version of the liquid drop model taking into account both the mass and charge asymmetries, the proximity energy, the rotational energy, the shell and pairing energies and the temperature has been developed to describe smoothly the transition between one and two-body shapes in entrance and exit channels of nuclear reactions. In the quasi-molecular shape valley where the proximity energy is optimized, the calculated l-dependent fusion and fission barriers, alpha and cluster radioactivity half-lives as well as actinide half-lives are in good agreement with the available experimental data. In this particular deformation path, double-humped potential barriers begin to appear even macroscopically for heavy nuclear systems due to the influence of the proximity forces and, consequently, quasi-molecular isomeric states can survive in the second minimum of the potential barriers in a large angular momentum range

  15. Fusion probability and survivability in estimates of heaviest nuclei production

    Directory of Open Access Journals (Sweden)

    Sagaidak Roman N.

    2012-02-01

    Full Text Available Production of the heavy and heaviest nuclei (from Po to the region of superheavy elements close to Z=114 and N=184 in fusion-evaporation reactions induced by heavy ions has been considered in a systematic way within the framework of the barrier-passing model coupled with the statistical model (SM of de-excitation of a compound nucleus (CN. Excitation functions for fission and evaporation residues (ER measured in very asymmetric combinations can be described rather well. One can scale and fix macroscopic (liquid-drop fission barriers for nuclei involved in the calculation of survivability with SM. In less asymmetric combinations, effects of fusion suppression caused by quasi-fission (QF are starting to appear in the entrance channel of reactions. QF effects could be semi-empirically taken into account using fusion probabilities deduced as the ratio of measured ER cross sections to the ones obtained in the assumption of absence of the fusion suppression in corresponding reactions. SM parameters (fission barriers obtained at the analysis of a very asymmetric combination leading to the production of (nearly the same CN should be used for this evaluation.

  16. QCD and electroweak interference in Higgs production by gauge boson fusion

    International Nuclear Information System (INIS)

    Andersen, Jeppe R.; Smillie, Jennifer M.

    2007-01-01

    We explicitly calculate the contribution to Higgs production at the LHC from the interference between gluon fusion and weak vector boson fusion, and compare it to the pure QCD and pure electroweak result. While the effect is small at tree level, we speculate it will be significantly enhanced by loop effects

  17. Alpha heating in toroidal devices

    International Nuclear Information System (INIS)

    Miley, G.H.

    1978-01-01

    Ignition (or near-ignition) by alpha heating is a key objective for the achievement of economic fusion reactors. While good confinement of high-energy alphas appears possible in larger reactors, near-term tokamak-type ignition experiments as well as some concepts for small reactors (e.g., the Field-Reversed Mirror or FRM) potentially face marginal situations. Consequently, there is a strong motivation to develop methods to evaluate alpha losses and heating profiles in some detail. Such studies for a TFTR-size tokamak and for a small FRM are described here

  18. Waves for Alpha-Channeling in Mirror Machines

    International Nuclear Information System (INIS)

    Zhmoginov, A.I.; Fisch, N.J.

    2009-01-01

    Alpha-channeling can, in principle, be implemented in mirror machines via exciting weaklydamped modes in the ion cyclotron frequency range with perpendicular wavelengths smaller than the alpha particle gyroradius. Assuming quasi-longitudinal or quasi-transverse wave propagation, we search systematically for suitable modes in mirror plasmas. Considering two device designs, a proof-of-principle facility and a fusion rector prototype, we in fact identify candidate modes suitable for alpha-channeling.

  19. Tracking fusion of human mesenchymal stem cells after transplantation to the heart.

    Science.gov (United States)

    Freeman, Brian T; Kouris, Nicholas A; Ogle, Brenda M

    2015-06-01

    .e., the heart) and in distal organs. This study shows, for the first time, evidence of fusion products at sites distal from the target organ and data to suggest that migration occurs via the vasculature. These results will inform and improve future, MSC-based therapeutics. ©AlphaMed Press.

  20. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements

  1. Plutonium-239 production rate study using a typical fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, F. [Research Center for Radiation Protection, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: faghihif@shirazu.ac.ir; Havasi, H.; Amin-Mozafari, M. [Department of Nuclear Engineering, School of Engineering, Shiraz University, 71348-51154 Shiraz (Iran, Islamic Republic of)

    2008-05-15

    The purpose of the present paper is to compute fissile {sup 239}Pu material by supposed typical fusion reactor operation to make the fuel requirement for other purposes (e.g. MOX fissile fuel, etc.). It is assumed that there is a fusion reactor has a cylindrical geometry and uses uniformly distributed deuterium-tritium as fuel so that neutron wall load is taken at 10(MW)/(m{sup 2}) . Moreover, the reactor core is surrounded by six suggested blankets to make best performance of the physical conditions described herein. We determined neutron flux in each considered blanket as well as tritium self-sufficiency using two groups neutron energy and then computation is followed by the MCNP-4C code. Finally, material depletion according to a set of dynamical coupled differential equations is solved to estimate {sup 239}Pu production rate. Produced {sup 239}Pu is compared with two typical fission reactors to find performance of plutonium breeding ratio in the case of the fusion reactor. We found that 0.92% of initial U is converted into fissile Pu by our suggested fusion reactor with thermal power of 3000 MW. For comparison, {sup 239}Pu yield of suggested large scale PWR is about 0.65% and for LMFBR is close to 1.7%. The results show that the fusion reactor has an acceptable efficiency for Pu production compared with a large scale PWR fission reactor type.

  2. Potential low-level waste disposal limits for activation products from fusion

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Peloquin, R.A.

    1983-09-01

    Hanford Engineering Development Laboratory (HEDL) scientists are involved in studies considering alternative construction materials for the first wall of commercial fusion reactors. To permit a comparison of radioactivity levels, both the level of activation and an acceptable limit for the radionuclides present must be known. Generic material composition guidelines can be developed using the US Nuclear Regulatory Commission (NRC) regulations governing the near-surface disposal of low-level radioactive wastes. These regulations consider wastes defined as containing source, special nuclear, or by-product materials arising from research, industrial, medical, and nuclear fuel-cycle activities. However, not all of the activation products produced in low-level wastes from fusion reactors are considered by the NRC in their regulations. The purpose of this report is to present potential low-level waste-disposal limits for ten radionuclides resulting from fusion reactor operations that are not considered in the NRC low-level waste regulations. These potential limits will be used by HEDL scientists to complete their generic material composition guidelines for the first wall of commercial fusion reactors

  3. Realizing Technologies for Magnetized Target Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wurden, Glen A. [Los Alamos National Laboratory

    2012-08-24

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  4. Diagnostic of the spatial and velocity distribution of alpha particles in tokamak fusion reactor using beat-wave generated lower hybrid wave. Progress report, 1994-1995

    International Nuclear Information System (INIS)

    Hwang, D.Q.; Horton, R.D.; Evans, R.

    1995-01-01

    The alpha particle population from fusion reactions in a DT tokamak reactor can have dramatic effects on the pressure profiles, energetic particle confinement, and the overall stability of the plasma; thus leading to important design consideration of a fusion reactor based on the tokamak concept. In order to fully understand the effects of the alpha population, a non-invasive diagnostic technique suitable for use in a reacting plasma environment needs to be developed to map out both the spatial and velocity distribution of the alphas. The proposed experimental goals for the eventual demonstration of LH wave interaction with a fast ion population is given in the reduced 3 year plan in table 1. At present time the authors are approaching the 8th month in their first year of this project. Up to now, their main effort has been concentrated in the operation of the two beat wave sources in burst mode. The second priority in the experimental project is the probe diagnostics and computer aided data acquisition system. The progress made so far is given, and they are ready to perform the beat-wave generated lower hybrid wave experiment. Some theoretical calculation had been reported at APS meetings. More refined theoretical models are being constructed in collaboration with Drs. J. Rogers and E. Valeo at PPPL

  5. Solenoidal fusion system

    International Nuclear Information System (INIS)

    Linlor, W.I.

    1980-01-01

    This invention discloses apparatus and methods to produce nuclear fusion utilizing fusible material in the form of high energy ion beams confined in magnetic fields. For example, beams of deuterons and tritons are injected in the same direction relative to the axis of a vacuum chamber. The ion beams are confined by the magnetic fields of long solenoids. The products of the fusion reactions, such as neutrons and alpha particles, escape to the wall surrounding the vacuum chamber, producing heat. The momentum of the deuterons is approximately equal to the momentum of the tritons, so that both types of ions follow the same path in the confining magnetic field. The velocity of the deuteron is sufficiently greater than the velocity of the triton so that overtaking collisions occur at a relative velocity which produces a high fusion reaction cross section. Electrons for space charge neutralization are obtained by ionization of residual gas in the vacuum chamber, and additionally from solid material (Irradiated with ultra-violet light or other energetic radiation) adjacent to the confinement region. For start-up operation, injected high-energy molecular ions can be dissociated by intense laser beam, producing trapping via change of charge state. When sufficiently intense deuteron and triton beams have been produced, the laser beam can be removed, and subsequent change of charge state can be achieved by collisions

  6. Conceptual design of tritium production fusion reactor based on spherical torus

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinhua

    2003-01-01

    Conceptual design of an advanced tritium production fusion reactor based on spherical torus, which is intermediate application of fusion energy, was presented in this paper. Differing from the traditional tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST were used to minimize tritium leakage and maximize tritium breeding ratio with arrangement of tritium production blankets within vacuum vessel as possible in order to produce 1 kg excess tritium except need of self-sufficient plasma core with 40% or more corresponding plant availability. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR was presented, providing the backgrounds and reference for next detailed conceptual design

  7. TFTR alpha extraction and measurement: Development and testing of advanced alpha detectors: Final report

    International Nuclear Information System (INIS)

    Wehring, B.W.

    1988-01-01

    Advanced alpha-particle detectors made of heavy elements were investigated as alternatives to silicon surface-barrier detectors for the ''foil-neutralization technique'' of alpha-particle diagnostics in fusion reactors with high neutron backgrounds. From an extensive literature review, it was decided that HgI 2 would make a more suitable detector for alpha-particle diagnostics than other heavy element detectors such as CdTe. Thus, HgI 2 detectors were designed and fabricated. Experimental tests were performed to determine detector characteristics and detector responses to alpha particles. Radiation noise measurements were also performed using the North Carolina State University PULSTAR nuclear reactor for both the HgI 2 detectors and commercial Si(Au) surface barrier detectors. 15 refs., 1 fig

  8. Pomeron fusion and central η and η' meson production

    International Nuclear Information System (INIS)

    Kochelev, N.I.; Morii, T.; Vinnikov, A.V.

    1999-01-01

    The contribution of pomeron fusion to the cross section of η and η ' productions in double-diffractive scattering has been calculated within the Donnachie-Landshoff model of pomeron. It is shown that the double pomeron exchange mechanism does not explain the full set of the recent data of WA102 Collaboration, though it might not be inconsistent with η ' productions

  9. A New Interpretation of Alpha-particle-driven Instabilities in Deuterium-Tritium Experiments on the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    R. Nazikian; G.J. Kramer; C.Z. Cheng; N.N. Gorelenkov; H.L. Berk; S.E. Sharapov

    2003-01-01

    The original description of alpha-particle-driven instabilities in the Tokamak Fusion Test Reactor (TFTR) in terms of Toroidal Alfvin Eigenmodes (TAEs) remained inconsistent with three fundamental characteristics of the observations: (i) the variation of the mode frequency with toroidal mode number, (ii) the chirping of the mode frequency for a given toroidal mode number, and (iii) the anti-ballooning density perturbation of the modes. It is now shown that these characteristics can be explained by observing that cylindrical-like modes can exist in the weak magnetic shear region of the plasma that then make a transition to TAEs as the central safety factor decreases in time

  10. Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells

    International Nuclear Information System (INIS)

    Nordlund, Henri R.; Laitinen, Olli H.; Uotila, Sanna T.H.; Kulmala, Minna; Kalkkinen, Nisse; Kulomaa, Markku S.

    2005-01-01

    The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches

  11. Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells.

    Science.gov (United States)

    Nordlund, Henri R; Laitinen, Olli H; Uotila, Sanna T H; Kulmala, Minna; Kalkkinen, Nisse; Kulomaa, Markku S

    2005-10-14

    The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches.

  12. Heterologous expression of Homo sapiens alpha-folate receptors in E. coli by fusion with a trigger factor for enhanced solubilization.

    Science.gov (United States)

    Miranda, Beatriz Nogueira Messias; Fotoran, Wesley Luzetti; Canduri, Fernanda; Souza, Dulce Helena Ferreira; Wunderlich, Gerhard; Carrilho, Emanuel

    2018-02-01

    The role of Alpha folate receptors (FRα) in folate metabolism and cancer development has been extensively studied. The reason for this is not only associated to its direct relation to disease development but also to its potential use as a highly sensitive and specific biomarker for cancers therapies. Over the recent years, the crystal structures of human FRα complexed with different ligands were described relying on an expensive and time-consuming production process. Here, we constructed an efficient system for the expression and purification of a human FRα in E. coli. Unlike a conventional expression method we used a specific protein fusion expressing the target protein together with a trigger factor (TF). This factor is a chaperone from E. coli that assists the correct folding of newly synthesized polypeptide chains. The activity of rTFFRα was comparable to glycosylphosphatidylinositol (GPI) anchored proteins extracted from HeLa tumor cells. Our work demonstrates a straightforward and versatile approach for the production of active human FRα by heterologous expression; this approach further enhances the development of inhibition studies and biotechnological applications. The purified product was then conjugated to liposomes, obtaining a 35% higher signal from densitometry measurement on the immunoblotting assay in the contruct containing the Ni-NTA tag, as a mimesis of an exosome, which is of vital importance to nanotherapeutic techniques associated to treatment and diagnosis of tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Concept of a charged fusion product diagnostic for NSTX.

    Science.gov (United States)

    Boeglin, W U; Valenzuela Perez, R; Darrow, D S

    2010-10-01

    The concept of a new diagnostic for NSTX to determine the time dependent charged fusion product emission profile using an array of semiconductor detectors is presented. The expected time resolution of 1-2 ms should make it possible to study the effect of magnetohydrodynamics and other plasma activities (toroidal Alfvén eigenmodes (TAE), neoclassical tearing modes (NTM), edge localized modes (ELM), etc.) on the radial transport of neutral beam ions. First simulation results of deuterium-deuterium (DD) fusion proton yields for different detector arrangements and methods for inverting the simulated data to obtain the emission profile are discussed.

  14. Nuclear hydrogen production: re-examining the fusion option

    International Nuclear Information System (INIS)

    Baindur, S.

    2007-01-01

    This paper describes a scheme for nuclear hydrogen production by fusion. The basic idea is to use nuclear energy of the fuel (hydrogen plasma) to produce molecular hydrogen fro carbon-free hydrogen compounds. The hydrogen is then stored and utilized electrochemically in fuel cells or chemically as molecular hydrogen in internal combustion engines

  15. Free hemoglobin enhances tumor necrosis factor-alpha production in isolated human monocytes.

    Science.gov (United States)

    Carrillo, Eddy H; Gordon, Laura E; Richardson, J David; Polk, Hiram C

    2002-03-01

    A systemic inflammatory response (SIR) is seen in approximately 75% of patients with complex blunt liver injuries treated nonoperatively. Many feel this response is caused by blood, bile, and necrotic tissue accumulation in the peritoneal cavity. Our current treatment for these patients is a delayed laparoscopic washout of the peritoneal cavity, resulting in a dramatic resolution of the SIR. Spectrophotometric analysis of the intraperitoneal fluid has confirmed the presence of high concentrations of free hemoglobin (Hb). We hypothesize that free Hb enhances the local peritoneal response by increasing tumor necrosis factor-alpha (TNF-alpha) production by monocytes, contributing to the local inflammatory response and SIR. Monocytes from five healthy volunteers were isolated and cultured in RPMI-1640 for 24 hours. Treatment groups included saline controls, lipopolysaccharide ([LPS], 10 ng/mL, from Escherichia coli), human Hb (25 microg/mL), and Hb + LPS. Supernatants were analyzed by enzyme-linked immunosorbent assay. Student's t test with Mann-Whitney posttest was used for statistical analysis with p < or = 0.05 considered significant. Free Hb significantly increased TNF-alpha production 915 +/- 223 pg/mL versus saline (p = 0.02). LPS and Hb + LPS further increased TNF-alpha production (2294 pg/mL and 2501 pg/mL, respectively, p < 0.001) compared with saline controls. These data confirm that free Hb is a proinflammatory mediator resulting in the production of significant amounts of TNF-alpha. These in vitro findings support our clinical data in which timely removal of intraperitoneal free hemoglobin helps prevent its deleterious local and systemic inflammatory effects in patients with complex liver injuries managed nonoperatively.

  16. Two Strategies for Microbial Production of an Industrial Enzyme-Alpha-Amylase

    Science.gov (United States)

    Bernhardsdotter, Eva C. M. J.; Garriott, Owen; Pusey, Marc L.; Ng, Joseph D.

    2003-01-01

    Extremophiles are microorganisms that thrive in, from an anthropocentric view, extreme environments including hot springs, soda lakes and arctic water. This ability of survival at extreme conditions has rendered extremophiles to be of interest in astrobiology, evolutionary biology as well as in industrial applications. Of particular interest to the biotechnology industry are the biological catalysts of the extremophiles, the extremozymes, whose unique stabilities at extreme conditions make them potential sources of novel enzymes in industrial applications. There are two major approaches to microbial enzyme production. This entails enzyme isolation directly from the natural host or creating a recombinant expression system whereby the targeted enzyme can be overexpressed in a mesophilic host. We are employing both methods in the effort to produce alpha-amylases from a hyperthermophilic archaeon (Thermococcus) isolated from a hydrothermal vent in the Atlantic Ocean, as well as from alkaliphilic bacteria (Bacillus) isolated from a soda lake in Tanzania. Alpha-amylases catalyze the hydrolysis of internal alpha-1,4-glycosidic linkages in starch to produce smaller sugars. Thermostable alpha-amylases are used in the liquefaction of starch for production of fructose and glucose syrups, whereas alpha-amylases stable at high pH have potential as detergent additives. The alpha-amylase encoding gene from Thermococcus was PCR amplified using carefully designed primers and analyzed using bioinformatics tools such as BLAST and Multiple Sequence Alignment for cloning and expression in E.coli. Four strains of Bacillus were grown in alkaline starch-enriched medium of which the culture supernatant was used as enzyme source. Amylolytic activity was detected using the starch-iodine method.

  17. Cell fusions in mammals

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge; Bjerregaard, Bolette; Talts, Jan Fredrik

    2008-01-01

    Cell fusions are important to fertilization, placentation, development of skeletal muscle and bone, calcium homeostasis and the immune defense system. Additionally, cell fusions participate in tissue repair and may be important to cancer development and progression. A large number of factors appear...... to regulate cell fusions, including receptors and ligands, membrane domain organizing proteins, proteases, signaling molecules and fusogenic proteins forming alpha-helical bundles that bring membranes close together. The syncytin family of proteins represent true fusogens and the founding member, syncytin-1......, has been documented to be involved in fusions between placental trophoblasts, between cancer cells and between cancer cells and host ells. We review the literature with emphasis on the syncytin family and propose that syncytins may represent universal fusogens in primates and rodents, which work...

  18. Effects of sawtooth crashes on beam ions and fusion product tritons in JET

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F.B.; Hone, M.A.; Jarvis, O.N.; Loughlin, M.J.; Sadler, G. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Adams, J.M.; Bond, D.S.; Watkins, N. [AEA Technology, Harwell (United Kingdom); Howarth, P.J.A. [Birmingham Univ. (United Kingdom)

    1994-12-31

    The objective of this study is to examine the effect of a sawtooth crash on the radial distribution of the slowing down fusion product tritons and on beam ions. The JET neutron emission profile monitor was used to measure the 2.5 MeV and 14 MeV neutron emission line-integrals before and after sawtooth crashes in the Joint European Torus (JET). In deuterium discharges, the 14 MeV neutron production was wholly attributable to burnup of the 1 MeV fusion product tritons from d-d fusion. It has been known for many years that the global emission of 14 MeV neutrons is not affected by sawtooth crashes. Examination of the data obtained with the profile monitor shows that the local emissivity of 14 MeV neutrons, and hence of the profile of thermalizing tritons, is only weakly affected by crashes in the discharges studied. This is in contradiction with the apparent behaviour of injected beam ions as deduced from a study of the considerable changes in local emissivity of the 2.5 MeV neutrons. Nevertheless, the behaviour of the fusion product tritons is consistent with the scaling of the beam injected deuterium. (author) 1 ref., 6 figs.

  19. Nitric oxide production and monoamine oxidase activity in cancer patients during interferon-alpha therapy.

    Science.gov (United States)

    Fekkes, Durk; Van Gool, Arthur R; Bannink, Marjolein; Sleijfer, Stefan; Kruit, Wim H J; van der Holt, Bronno; Eggermont, Alexander M M; Hengeveld, Michiel W; Stoter, Gerrit

    2009-10-01

    Both increased and decreased nitric oxide (NO) synthesis have been reported in patients treated with interferon-alpha (IFN-alpha). Animal studies showed that IFN-alpha administration results in increased levels of biogenic amines, subsequent activation of monoamine oxidases (MAOs), and finally in a change in NO production due to the H(2)O(2) generated by MAOs. We examined the potential relationship between NO production in plasma and MAO-B activity in platelets of 43 cancer patients during 8 weeks of treatment with IFN-alpha. NO synthesis was quantitated by measuring both the ratio of citrulline and arginine (CIT/ARG-ratio) and total nitrite/nitrate (NOx) levels. Compared to baseline, MAO activity and NOx increased, while the CIT/ARG-ratio decreased. No associations were found between NOx, MAO and CIT/ARG-ratio. Only few associations were observed between changes in the biochemical parameters and changes in psychopathology induced by IFN-alpha, of which the association between changes in CIT and lassitude was the most consistent. The results suggest that peripheral NO production and MAO activity are unrelated to each other, and that peripheral changes in these biochemical parameters induced by IFN-alpha are unlikely to contribute to definite psychiatric disturbance.

  20. ITER alpha particle diagnostics using knock-on ion tails

    International Nuclear Information System (INIS)

    Fisher, R.K.; Parks, P.B.; McChesney, J.M.

    1995-09-01

    Alpha particles will play a critical role in the physics and successful operation of ITER. Achieving fusion ignition requires that the α particles created by deuterium-tritium (D-T) reactions deposit a large fraction of their energy in the reacting plasma before they are lost. Toroidal field ripple can localize any alpha particle losses and cause first wall damage. We have proposed a new method of measuring the fast confined α-particle distribution in a reacting plasma. The same elastic collisions that transfer the alpha energy to the D-T plasma ions and allow fusion ignition will also create a high energy tail on the deuterium and tritium ion energy distributions. Some of these energetic tail ions will undergo fusion reactions with the background plasma producing neutrons whose energy is increased significantly above 14 MeV due to the kinetic energy of the reacting ions. Measurement of this high energy tail on the D-T neutron distribution as a function of plasma minor radius would provide information on the alpha density profile with a time response equal to the ion slowing-down time. Although this technique may provide only limited information on the α-particle energy distribution, experimental studies of fast ions on existing tokamaks have shown that the observed slowing-down is essentially classical. Hence the α-energy distribution is expected to be classical except in situations where the α-confinement is poor. The confinement of α's can be affected by ripple losses and a number of instabilities. Toroidal field ripple can cause both prompt orbit losses and stochastic ripple diffusion losses. Magnetohydrodynamic activity, including fishbone instabilities, toroidal Alfven eigenmodes, and sawtooth oscillations, may also affect alpha confinement. The diagnostic proposed here, by monitoring the confined alpha population, can provide valuable information on the confinement of fast alphas in a reacting plasma

  1. Fusion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Lackner, Karl; Tran, Minh Quang [eds.

    2012-09-15

    Recreating the energy production process of the Sun - nuclear fusion - on Earth in a controlled fashion is one of the greatest challenges of this century. If achieved at affordable costs, energy supply security would be greatly enhanced and environmental degradation from fossil fuels greatly diminished. Fusion Physics describes the last fifty years or so of physics and research in innovative technologies to achieve controlled thermonuclear fusion for energy production. The International Atomic Energy Agency (IAEA) has been involved since its establishment in 1957 in fusion research. It has been the driving force behind the biennial conferences on Plasma Physics and Controlled Thermonuclear Fusion, today known as the Fusion Energy Conference. Hosted by several Member States, this biennial conference provides a global forum for exchange of the latest achievements in fusion research against the backdrop of the requirements for a net energy producing fusion device and, eventually, a fusion power plant. The scientific and technological knowledge compiled during this series of conferences, as well as by the IAEA Nuclear Fusion journal, is immense and will surely continue to grow in the future. It has led to the establishment of the International Thermonuclear Experimental Reactor (ITER), which represents the biggest experiment in energy production ever envisaged by humankind.

  2. Alpha particle loss in the TFTR DT experiments

    International Nuclear Information System (INIS)

    Zweben, S.J.; Darrow, D.S.; Herrmann, H.W.

    1995-01-01

    Alpha particle loss was measured during the TFTR DT experiments using a scintillator detector located at the vessel bottom in the ion grad-B drift direction. The DT alpha particle loss to this detector was consistent with the calculated first-orbit loss over the whole range of plasma current I=0.6-2.7 MA. In particular, the alpha particle loss rate per DT neutron did not increase significantly with fusion power up to 10.7 MW, indicating the absence of any new ''collective'' alpha particle loss processes in these experiments

  3. Enhanced fuel production in thorium fusion hybrid blankets utilizing uranium multipliers

    International Nuclear Information System (INIS)

    Pitulski, R.H.; Chapin, D.L.; Klevans, E.

    1979-01-01

    The multiplication of 14 MeV D-T fusion neutrons via (n,2n), (n,3n), and fission reactions by 238 U is well known and established. This study consistently evaluates the effectiveness of a depleted (tails) UO 2 multiplier on increasing the production of 233 U and tritium in a thorium/lithium fusion--fission hybrid blanket. Nuclear performance is evaluated as a function of exposure and zone thickness

  4. Hydrogen production in early generation fusion power plant and its socio-economic implication

    International Nuclear Information System (INIS)

    Konishi, S.; Yamamoto, Y.

    2007-01-01

    Full text: This paper describes technical possibility of high temperature blanket for the early generation of fusion power plant and its application to hydrogen production. Its anticipated implication and strategy from the socio-economic aspects will be also discussed. Material and energy balances, such as fuel supply and delivery of product energy from fusion plants, as well as waste discharge and accident scenario that lead to environmental impact, are characterized by blanket concepts. Thus blankets are considered to dominate the feature of fusion energy that should respond to the requirements of the sponsors, i.e., public and future market. Fusion blanket concept based on the combinations of LiPb and SiC materials are regarded as a candidate for ITER/TBM, and at the same time, applied in various DEMO designs encompassing high temperature output. Recent developments of SiC-LiPb blanket in Japan, EU, US or China suggests staged development paths starting from TBMs and targeting high temperature blanket and efficient energy output from early generation plants. These strategies are strongly affected by the views of these parties on fusion energy, from the aspects of socio-economics. Hydrogen production process with the high temperature blanket is one of the most important issues, because temperature range much higher than is possible with current or near future fission plants are needed, suggesting market possibility different from that of fission. Fuel cycles, particularly lithium supply and TBR control will be also important. Self-sustained fusion fuel cycle requires technical capability to maintain the lithium contents. Liquid blanket has an advantage in continuous and real-time control TBR in a plant, but large amount of lithium-6 and initial tritium supply remains as issues. As for the environmental effect, normal operation release, assumed accidental scenario, and rad-waste will be the key issue to dominate social acceptance of fusion. (author)

  5. Hydrogen production in early generation fusion power plant and its socio-economic implication

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Yamamoto, Yasushi

    2008-01-01

    This paper describes technical possibility of high temperature blanket for the early generation of fusion power plant and its application to hydrogen production. Its anticipated implication and strategy from the socio-economic aspects will be also discussed. Material and energy balances, such as fuel supply and delivery of product energy from fusion plants, as well as waste discharge and accident scenario that lead to environmental impact, are characterized by blanket concepts. Thus blankets are considered to dominate the feature of fusion energy that should respond to the requirements of the sponsors, i.e., public and future market. Fusion blanket concept based on the combinations of LiPb and SiC materials are regarded as a candidate for ITER/TBM, and at the same time, applied in various DEMO designs encompassing high temperature output. Recent developments of SiC-LiPb blanket in Japan, EU, US or China suggests staged development paths starting from TBMs and targeting high temperature blanket and efficient energy output from early generation plants. These strategies are strongly affected by the views of these parties on fusion energy, from the aspects of socio-economics. Hydrogen production process with the high temperature blanket is one of the most important issues, because temperature range much higher than is possible with current or near future fission plants are needed, suggesting market possibility different from that of fission. Fuel cycles, particularly lithium supply and TBR control will be also important. Self-sustained fusion fuel cycle requires technical capability to maintain the lithium contents. Liquid blanket has an advantage in continuous and real-time control TBR in a plant, but large amount of lithium-6 and initial tritium supply remains as issues. As for the environmental effect, normal operation release, assumed accidental scenario, and rad-waste will be the key issue to dominate social acceptance of fusion. (author)

  6. Non-fusion and fusion expression of beta-galactosidase from Lactobacillus bulgaricus in Lactococcus lactis.

    Science.gov (United States)

    Wang, Chuan; Zhang, Chao-Wu; Liu, Heng-Chuan; Yu, Qian; Pei, Xiao-Fang

    2008-10-01

    To construct four recombinant Lactococcus lactis strains exhibiting high beta-galactosidase activity in fusion or non-fusion ways, and to study the influence factors for their protein expression and secretion. The gene fragments encoding beta-galactosidase from two strains of Lactobacillus bulgaricus, wch9901 isolated from yogurt and 1.1480 purchased from the Chinese Academy of Sciences, were amplified and inserted into lactococcal expression vector pMG36e. For fusion expression, the open reading frame of the beta-galactosidase gene was amplified, while for non-fusion expression, the open reading frame of the beta-galactosidase gene was amplified with its native Shine-Dalgarno sequence upstream. The start codon of the beta-galactosidase gene partially overlapped with the stop codon of vector origin open reading frame. Then, the recombinant plasmids were transformed into Escherichia coli DH5 alpha and Lactococcus lactis subsp. lactis MG1363 and confirmed by determining beta-galactosidase activities. The non-fusion expression plasmids showed a significantly higher beta-galactosidase activity in transformed strains than the fusion expression plasmids. The highest enzyme activity was observed in Lactococcus lactis transformed with the non-fusion expression plasmids which were inserted into the beta-galactosidase gene from Lactobacillus bulgaricus wch9901. The beta-galactosidase activity was 2.75 times as high as that of the native counterpart. In addition, beta-galactosidase expressed by recombinant plasmids in Lactococcus lactis could be secreted into the culture medium. The highest secretion rate (27.1%) was observed when the culture medium contained 20 g/L of lactose. Different properties of the native bacteria may have some effects on the protein expression of recombinant plasmids. Non-fusion expression shows a higher enzyme activity in host bacteria. There may be a host-related weak secretion signal peptide gene within the structure gene of Lb. bulgaricus beta

  7. Alpha-induced instabilities in tandem thermal barriers

    Energy Technology Data Exchange (ETDEWEB)

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    A major premise in the operation of Tandem Mirror reactors is that the fusion reactions take place in the central cell only. The alpha particles generated by the Deuterium-Tritium (DT) fusions, along with other ions, will however pass from the central cell to the thermal barriers and return to the central cell as a result of reflection by the potential hills that exist by the plugs' side of these barriers. This streaming motion gives rise to electrostatic and electomagnetic instabilities which could detract from the barrier's function as a thermal insulator. The number density and streaming velocity of these passing particles are dictated by the electrostatic potential variation and the magnetic field structure in these regions. It is shown that, in the absence of alphas, barriers with deep potential depression are less susceptible to electrostatic instabilities while particularly vulnerable to unstable electromagnetic modes. In the presence of alphas, especially the fast alphas whose mean energy is significantly larger than the barrier potentials they see, (which is twice as high as that seen by the ions) both types of modes become unstable.

  8. Modeling of MeV alpha particle energy transfer to lower hybrid waves

    International Nuclear Information System (INIS)

    Schivell, J.; Monticello, D.A.; Fisch, N.; Rax, J.M.

    1993-10-01

    The interaction between a lower hybrid wave and a fusion alpha particle displaces the alpha particle simultaneously in space and energy. This results in coupled diffusion. Diffusion of alphas down the density gradient could lead to their transferring energy to the wave. This could, in turn, put energy into current drive. An initial analytic study was done by Fisch and Rax. Here the authors calculate numerical solutions for the alpha energy transfer and study a range of conditions that are favorable for wave amplification from alpha energy. They find that it is possible for fusion alpha particles to transfer a large fraction of their energy to the lower hybrid wave. The numerical calculation shows that the net energy transfer is not sensitive to the value of the diffusion coefficient over a wide range of practical values. An extension of this idea, the use of a lossy boundary to enhance the energy transfer, is investigated. This technique is shown to offer a large potential benefit

  9. Stripping of two protons and one alpha particle transfer reactions for {sup 16} O + {sup A} Sm and their influence on the fusion cross section

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, A.M.M.; Gomes, P.R.S

    1995-12-31

    Transfer cross section angular distribution data for the stripping of two protons and one alpha particle are studied for the {sup 16} O + {sup A} Sm systems (A=144, 148, 150, 152 and 154), at near barrier energies. A semiclassical formalism is used to derive the corresponding transfer form factors. For only one channel the analysis shows evidences that the transfer reaction mechanism at backward angles - corresponding to small distances, may behave as a multi-step process leading to fusion. Simplified coupled channel calculations including transfer channels are performed for the study of the sub-barrier of these systems. The influence of short distance transfer reactions on the fusion is discussed. (author) 16 refs., 5 figs., 5 tabs.

  10. Deuterium-tritium experiments on the Tokamak Fusion Test reactor

    International Nuclear Information System (INIS)

    Hosea, J.; Adler, J.H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Ashcroft, D.

    1994-09-01

    The deuterium-tritium (D-T) experimental program on the Tokamak Fusion Test Reactor (TFTR) is underway and routine tritium operations have been established. The technology upgrades made to the TFTR facility have been demonstrated to be sufficient for supporting both operations and maintenance for an extended D-T campaign. To date fusion power has been increased to ∼9 MW and several physics results of importance to the D-T reactor regime have been obtained: electron temperature, ion temperature, and plasma stored energy all increase substantially in the D-T regime relative to the D-D regime at the same neutral beam power and comparable limiter conditioning; possible alpha electron heating is indicated and energy confinement improvement with average ion mass is observed; and alpha particle losses appear to be classical with no evidence of TAE mode activity up to the PFUS ∼6 MW level. Instability in the TAE mode frequency range has been observed at PFUS > 7 MW and its effect on performance in under investigation. Preparations are underway to enhance the alpha particle density further by increasing fusion power and by extending the neutral beam pulse length to permit alpha particle effects of relevance to the ITER regime to be more fully explored

  11. Alpha-Driven MHD and MHD-Induced Alpha Loss in TFTR DT Experiments

    Science.gov (United States)

    Chang, Zuoyang

    1996-11-01

    Theoretical calculation and numerical simulation indicate that there can be interesting interactions between alpha particles and MHD activity which can adversely affect the performance of a tokamak reactor (e.g., ITER). These interactions include alpha-driven MHD, like the toroidicity-induced-Alfven-eigenmode (TAE) and MHD induced alpha particle losses or redistribution. Both phenomena have been observed in recent TFTR DT experiments. Weak alpha-driven TAE activity was observed in a NBI-heated DT experiment characterized by high q0 ( >= 2) and low core magnetic shear. The TAE mode appears at ~30-100 ms after the neutral beam turning off approximately as predicted by theory. The mode has an amplitude measured by magnetic coils at the edge tildeB_p ~1 mG, frequency ~150-190 kHz and toroidal mode number ~2-3. It lasts only ~ 30-70 ms and has been seen only in DT discharges with fusion power level about 1.5-2.0 MW. Numerical calculation using NOVA-K code shows that this type of plasma has a big TAE gap. The calculated TAE frequency and mode number are close to the observation. (2) KBM-induced alpha particle loss^1. In some high-β, high fusion power DT experiments, enhanced alpha particle losses were observed to be correlated to the high frequency MHD modes with f ~100-200 kHz (the TAE frequency would be two-times higher) and n ~5-10. These modes are localized around the peak plasma pressure gradient and have ballooning characteristics. Alpha loss increases by 30-100% during the modes. Particle orbit simulations show the added loss results from wave-particle resonance. Linear instability analysis indicates that the plasma is unstable to the kinetic MHD ballooning modes (KBM) driven primarily by strong local pressure gradients. ----------------- ^1Z. Chang, et al, Phys. Rev. Lett. 76 (1996) 1071. In collaberation with R. Nazikian, G.-Y. Fu, S. Batha, R. Budny, L. Chen, D. Darrow, E. Fredrickson, R. Majeski, D. Mansfield, K. McGuire, G. Rewoldt, G. Taylor, R. White, K

  12. Efficient hydrogen production using heat in neutron shield of fusion reactor

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Asaoka, Yoshiyuki; Hiwatari, Ryouji; Yoshida, Tomoaki

    2001-01-01

    In future perspective of energy supply, a hydrogen energy cycle is expected to play an important role as a CO 2 free fuel for mobile or co-generation systems. Fusion power plants should offer advantages, compatibilities and/or synergistic effects with or in such future energy systems. In this paper, a comprehensive power station, in which a fusion plant is integrated with a hydrogen production plant, is proposed. A tenuous heat source in the outboard shield, which is unsuitable to produce high-pressure and high-temperature steam for efficient electric power generation, is used for the hydrogen production. This integrated system provides some synergistic effects and it would be advantageous over any independent use of each plant. (author)

  13. Jet Production in ep Collisions at Low Q^2 and Determination of $\\alpha_{s}$

    CERN Document Server

    Aaron, F.D.; Alexa, C.; Andreev, V.; Antunovic, B.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; Delcourt, B.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Falkiewicz, A.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, A.W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Kosior, E.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Mudrinic, M.; Muller, K.; Murin, P.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Tabasco, J.E.Ruiz; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Trevino, A.Vargas; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; von den Driesch, M.; Wegener, D.; Wissing, Ch.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2010-01-01

    The production of jets is studied in deep-inelastic e+p scattering at low negative four momentum transfer squared 5alpha_s.

  14. Thermal energy and bootstrap current in fusion reactor plasmas

    International Nuclear Information System (INIS)

    Becker, G.

    1993-01-01

    For DT fusion reactors with prescribed alpha particle heating power P α , plasma volume V and burn temperature i > ∼ 10 keV specific relations for the thermal energy content, bootstrap current, central plasma pressure and other quantities are derived. It is shown that imposing P α and V makes these relations independent of the magnitudes of the density and temperature, i.e. they only depend on P α , V and shape factors or profile parameters. For model density and temperature profiles analytic expressions for these shape factors and for the factor C bs in the bootstrap current formula I bs ∼ C bs (a/R) 1/2 β p I p are given. In the design of next-step devices and fusion reactors, the fusion power is a fixed quantity. Prescription of the alpha particle heating power and plasma volume results in specific relations which can be helpful for interpreting computer simulations and for the design of fusion reactors. (author) 5 refs

  15. Reprocessing free nuclear fuel production via fusion fission hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Kotschenreuther, Mike, E-mail: mtk@mail.utexas.edu [Intitute for Fusion Studies, University of Texas at Austin (United States); Valanju, Prashant; Mahajan, Swadesh [Intitute for Fusion Studies, University of Texas at Austin (United States)

    2012-05-15

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively 'new' cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th{sup 232}-U{sup 233} conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO{sub 2} matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U{sup 235} fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  16. Reprocessing free nuclear fuel production via fusion fission hybrids

    International Nuclear Information System (INIS)

    Kotschenreuther, Mike; Valanju, Prashant; Mahajan, Swadesh

    2012-01-01

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively “new” cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th 232 –U 233 conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO 2 matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U 235 fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  17. HYPERFUSE: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n, 2n), (n, α), etc.) that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  18. Fusion Implementation

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    2002-01-01

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans

  19. Production of titanium alloy powders by vacuum fusion-centrifugation

    International Nuclear Information System (INIS)

    Decours, Jacques; Devillard, Jacques; Sainfort, G.

    1975-01-01

    This work presents a method of preparing powdered TA6V and TA6Z5D alloys by fusion-centrifugation under electron bombardment. An industrial capacity apparatus for the production of metallic powders is described and the characteristics of the powders obtained are presented. Solid parts were shaped by sintering and drawing at temperatures between 850 and 1100 deg C. The structure and mechanical properties of the cold densified products before and after heat treatment are compared [fr

  20. The Tokamak Fusion Test Reactor D-T modifications and operations

    International Nuclear Information System (INIS)

    1992-01-01

    This Environmental Assessment (EA) was prepared in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended, in support of the Department of Energy's proposal for the Tokamak Fusion Test Reactor (TFTR) D-T program. The objective of the proposed D-T program is to take the initial step in studying the effects of alpha particle heating and transport in a magnetic fusion device. These studies would enable the successful completion of the original TFTR program objectives, and would support the research and development needs of the Burning Plasma Experiment, BPX (formerly the Compact Ignition Tokamak (CIT)) and International Thermonuclear Experimental Reactor (ITER) in the areas of alpha particle physics, tritium retention, alpha particle diagnostic development, and tritium handling

  1. A thin foil Faraday collector as a lost alpha detector for high yield d-t tokamak fusion plasmas

    International Nuclear Information System (INIS)

    Cecil, F. Ed

    2011-01-01

    This report summarizes the accomplishment of sixteen years of work toward the development of thin foil Faraday collectors as a lost energetic ion diagnostic for high temperature magnetic confinement fusion plasmas. Following initial, proof of principle accelerator based studies, devices have been tested on TFTR, NSTX, ALCATOR, DIII-D, and JET (KA-1 and KA-2). The reference numbers refer to the attached list of publications. The JET diagnostic KA-2 continues in operation and hopefully will provide valuable diagnostic information during a possible d-t campaign on JET in the coming years. A thin Faraday foil spectrometer, by virtue of its radiation hardness, may likewise provide a solution to the very challenging problem of lost alpha particle measurements on ITER and other future burning plasma machines.

  2. First evidence of collective alpha particle effect on TAE modes in the TFTR D-T experiment

    International Nuclear Information System (INIS)

    Wong, K.L.; Schmidt, G.; Batha, S.H.

    1995-08-01

    The alpha particle effect on the excitation of toroidal Alfven eigenmodes (TAE) was investigated in deuterium-tritium (d-t) plasmas in the Tokamak Fusion Test Reactor (TFTR). RF power was used to position the plasma near the instability threshold, and the alpha particle effect was inferred from the reduction of RF power threshold for TAE instability in d-t plasmas. Initial calculations indicate that the alpha particles contribute 10--30% of the total drive in a d-t plasma with 3 MW of peak fusion power

  3. Review of fusion synfuels

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  4. Productive infection of human immunodeficiency virus type 1 in dendritic cells requires fusion-mediated viral entry

    International Nuclear Information System (INIS)

    Janas, Alicia M.; Dong, Chunsheng; Wang Jianhua; Wu Li

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) enters dendritic cells (DCs) through endocytosis and viral receptor-mediated fusion. Although endocytosis-mediated HIV-1 entry can generate productive infection in certain cell types, including human monocyte-derived macrophages, productive HIV-1 infection in DCs appears to be dependent on fusion-mediated viral entry. It remains to be defined whether endocytosed HIV-1 in DCs can initiate productive infection. Using HIV-1 infection and cellular fractionation assays to measure productive viral infection and entry, here we show that HIV-1 enters monocyte-derived DCs predominately through endocytosis; however, endocytosed HIV-1 cannot initiate productive HIV-1 infection in DCs. In contrast, productive HIV-1 infection in DCs requires fusion-mediated viral entry. Together, these results provide functional evidence in understanding HIV-1 cis-infection of DCs, suggesting that different pathways of HIV-1 entry into DCs determine the outcome of viral infection

  5. Suppression of TNF-alpha production by S-adenosylmethionine in human mononuclear leukocytes is not mediated by polyamines

    DEFF Research Database (Denmark)

    Yu, J.; Parlesak, Alexandr; Sauter, S.

    2006-01-01

    precursors or metabolites [phosphatidylcholine, choline, betaine, S-adenosylmethionine (SAM)] have a modulating effect on tumor necrosis factor alpha (TNF-alpha) production by endotoxin-stimulated human mononuclear leukocytes and whether SAM-dependent polyamines (spermidine, spermine) are mediators of SAM......-induced inhibition of TNF-alpha synthesis. Methionine and betaine had a moderate stimulatory effect on TNF-alpha production, whereas phosphatidylcholine (ID(50) 5.4 mM), SAM (ID(50) 131 microM), spermidine (ID(50) 4.5 microM) and spermine (ID(50) 3.9 microM) had a predominantly inhibitory effect. Putrescine did...

  6. Quasi-linear absorption of lower hybrid waves by fusion generated alpha particles

    International Nuclear Information System (INIS)

    Barbato, E.; Santini, F.

    1991-01-01

    Lower hybrid waves are expected to be used in a steady state reactor to produce current and to control the current profile and the stability of internal modes. In the ignition phase, however, the presence of energetic alpha particles may prevent wave-electron interaction, thus reducing the current drive efficiency. This is due to the very high birth energy of the alpha particles that may absorb much of the lower hybrid wave power. This unfavourable effect is absent at high frequencies (∼ 8 GHz for typical reactor parameters). Nevertheless, because of the technical difficulties involved in using such high frequencies, it is very important to investigate whether power absorption by alpha particles would be negligible also at relatively low frequencies. Such a study has been carried out on the basis of the quasi-linear theory of wave-alpha particle interaction, since the distortion of the alpha distribution function may enhance the radiofrequency absorption above the linear level. New effects have been found, such as local alpha concentration and acceleration. The model for alpha particles is coupled with a 1-D deposition code for lower hybrid waves to calculate the competition in the power absorption between alphas and electrons as the waves propagate into the plasma core for typical reactor (ITER) parameters. It is shown that at a frequency as low as 5 GHz, power absorption by alpha particles is negligible for conventional plasma conditions and realistic alpha particle concentrations. In more ''pessimistic'' and severe conditions, negligible absorption occurs at 6 GHz. (author). 19 refs, 11 figs, 2 tabs

  7. Prostaglandin production by melanocytic cells and the effect of alpha-melanocyte stimulating hormone.

    Science.gov (United States)

    Nicolaou, Anna; Estdale, Sian E; Tsatmali, Marina; Herrero, Daniel Pascual; Thody, Anthony J

    2004-07-16

    Prostaglandins are potent mediators of the inflammatory response and are also involved in cancer development. In this study, we show that human melanocytes and FM55 melanoma cells express cyclooxygenase-1 and -2 (COX-1 and -2) and thus have the capability to produce prostaglandins. The FM55 cells produced predominantly PGE2 and PGF2alpha, whereas the HaCaT keratinocyte cell line produced mainly PGE2. The anti-inflammatory peptide, alpha-melanocyte stimulating hormone (alpha-MSH), reduced prostaglandin production in FM55 and HaCaT cells and reversed the effect of the pro-inflammatory cytokine TNF-alpha in the former. These results indicate that melanocytes produce prostaglandins and that alpha-MSH, by inhibiting this response, may play an important role in regulating inflammatory responses in the skin.

  8. Can 250+ fusions per muon be achieved?

    International Nuclear Information System (INIS)

    Jones, S.E.

    1987-01-01

    Nuclear fusion of hydrogen isotopes can be induced by negative muons (μ) in reactions such as: μ - + d + t → α + n + μ - . This reaction is analagous to the nuclear fusion reaction achieved in stars in which hydrogen isotopes (such as deuterium, d, and tritium, t) at very high temperatures first penetrate the Coulomb repulsive barrier and then fuse together to produce an alpha particle (α) and a neutron (n), releasing energy. The muon in general reappears after inducing fusion so that the reaction can be repeated many (N) times. Thus, the muon may serve as an effective catalyst for nuclear fusion. Muon-catalozed fusion is unique in that it proceeds rapidly in deuterium-tritium mixtures at relatively cold temperatures, e.g., room temperature. The need for plasma temperatures to initiate fusion is overcome by the presence of the muon

  9. Hyper fuse: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1979-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with a target in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14 MeV fusion neutrons released during the pellet burn cause transmutation reactions [e.g., (n, 2n), (n, α), etc.] that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  10. Muon-catalyzed fusion: A new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  11. Muon-catalyzed fusion: a new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  12. Technology assessment of laser-fusion power production

    International Nuclear Information System (INIS)

    Booth, L.A.; Frank, T.G.

    1976-01-01

    The inherent features of laser-induced fusion, some laser-fusion reactor concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation are discussed. Theoretical fusion-pellet microexplosion energy release characteristics are described and the effects of pellet design options on pellet-microexplosion characteristics are discussed. The results of analyses to assess the engineering feasibility of reactor cavities for which protection of cavity components is provided either by suitable ablative materials or by diversion of plasmas by magnetic fields are presented. Two conceptual laser-fusion electric generating stations, based on different laser-fusion reactor concepts, are described. Technology developments for ultimate commercial application are outlined

  13. Destabilization of contained interacting modes by fusion products

    International Nuclear Information System (INIS)

    Penn, G.; Riconda, C.; Coppi, B.

    1996-01-01

    The instability related to the interaction between high-frequency open-quotes contained modesclose quotes and the fusion products population in a toroidal configuration is studied. Emphasis is placed on the dependence of the growth rate on finite Larmor radius effects of the fusion products, the characteristics of the particle distribution function, and factors, such as the magnetic drift velocity and bounce-averaging, related to the inhomogeneity of the magnetic field in a toroidal configuration. In particular, a sufficient degree of anisotropy in the energetic particle distribution is required in order to have a positive growth rate for realistic parameters. Only a small region of phase space is involved in the resonant interactions associated with the considered modes. We consider first the limit where the growth rate is larger than the bounce frequency (local approximation), that is the simplest case by which it is possible to identify the regions of phase space that are involved in the instability. Another evaluation of the growth rate is given in the case, that we consider realistic, where γ is comparable to the average bounce frequency of the interacting particles. We solve for γ by integrating the linearized Vlasov equation over the unperturbed particle orbits, and by reducing the integrals through saddle-point approximations

  14. Initial Results from the Lost Alpha Diagnostics on Joint European Torus

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, Doug; Cecil, Ed; Ellis, Bob; Fullard, Keith; Hill, Ken; Horton, Alan; Kiptily, Vasily; Pedrick, Les; Reich, Matthias

    2007-07-25

    Two devices have been installed in the Joint European Torus (JET) vacuum vessel near the plasma boundary to investigate the loss of energetic ions and fusion products in general and alpha particles in particular during the upcoming JET experiments. These devices are (i) a set of multichannel thin foil Faraday collectors, and (ii) a well collimated scintillator which is optically connected to a charge-coupled device. Initial results, including the radial energy and poloidal dependence of lost ions from hydrogen and deuterium plasmas during the 2005–06 JET restart campaign, will be presented.

  15. Initial Results from the Lost Alpha Diagnostics on Joint European Torus

    International Nuclear Information System (INIS)

    Darrow, Doug; Baeumel, Stefan; Cecil, Ed; Ellis, Bob; Fullard, Keith; Hill, Ken; Horton, Alan; Kiptily, Vasily; Pedrick, Les; Reich, Matthias; Werner, Andreas

    2007-01-01

    Two devices have been installed in the Joint European Torus (JET) vacuum vessel near the plasma boundary to investigate the loss of energetic ions and fusion products in general and alpha particles in particular during the upcoming JET experiments. These devices are (i) a set of multichannel thin foil Faraday collectors, and (ii) a well collimated scintillator which is optically connected to a charge-coupled device. Initial results, including the radial energy and poloidal dependence of lost ions from hydrogen and deuterium plasmas during the 2005-06 JET restart campaign, will be presented.

  16. Alpha Channeling in a Rotating Plasma

    International Nuclear Information System (INIS)

    Abraham J. Fetterman; Nathaniel J. Fisch

    2008-01-01

    The wave-particle α-channeling effect is generalized to include rotating plasma. Specifically, radio frequency waves can resonate with α particles in a mirror machine with E x B rotation to diffuse the α particles along constrained paths in phase space. Of major interest is that the α-particle energy, in addition to amplifying the RF waves, can directly enhance the rotation energy which in turn provides additional plasma confinement in centrifugal fusion reactors. An ancillary benefit is the rapid removal of alpha particles, which increases the fusion reactivity

  17. Synthetic fuels and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J A; Powell, J; Steinberg, M [Brookhaven National Lab., Upton, NY (USA)

    1981-03-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. equal to 40-60% and hydrogen production efficiencies by high temperature electrolysis of approx. equal to 50-70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long-term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  18. [Anti-TNF alpha in dermatology].

    Science.gov (United States)

    Mahe, E; Descamps, V

    2002-12-01

    The discovery of the major role of TNF alpha in the physiopathology of certain inflammatory diseases and notably in rheumatoid arthritis and Crohn's disease has led to the development of anti-TNF alpha drugs. These new therapeutic arms issued from bio-technology have rapidly demonstrated their efficacy in the treatment of these two diseases. The anti-TNF alpha arsenal is currently dominated by etanercept, a fusion protein composed of a soluble TNF alpha receptor, and infliximab, a chimeric monoclonal antibody. However, new molecules will soon enrich this arsenal. TNF alpha is a major cytokine of inflammatory diseases of the skin. Many dermatological diseases will probably benefit from these new treatments. Two studies have already demonstrated their interest in cutaneous and articular psoriasis. Encouraging sporadic results suggest other potential indications (Behcet's disease, bullous dermatitis, neutrophilic dermatitis, toxic epidermal necrolysis, systemic vascularitis,.). These promising new treatments, although expensive, and with yet unknown long term side effects, justify rigorous assessment of their efficacy and tolerance in each indication. Here again the dermatologist has a major role to play in post-marketing pharmacovigilance.

  19. MFTF-. cap alpha. + T progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.D. (ed.)

    1985-04-01

    Early in FY 1983, several upgrades of the Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) were proposed to the fusion community. The one most favorably received was designated MFTF-..cap alpha..+T. The engineering design of this device, guided by LLNL, has been a principal activity of the Fusion Engineering Design Center during FY 1983. This interim progress report represents a snapshot of the device design, which was begun in FY 1983 and will continue for several years. The report is organized as a complete design description. Because it is an interim report, some parts are incomplete; they will be supplied as the design study proceeds. As described in this report, MFTF-..cap alpha..+T uses existing facilities, many MFTF-B components, and a number of innovations to improve on the physics parameters of MFTF-B. It burns deuterium-tritium and has a central-cell Q of 2, a wall loading GAMMA/sub n/ of 2 MW/m/sup 2/ (with a central-cell insert module), and an availability of 10%. The machine is fully shielded, allows hands-on maintenance of components outside the vacuum vessel 24 h after shutdown, and has provisions for repair of all operating components.

  20. Field production and functional evaluation of chloroplast-derived interferon-alpha2b.

    Science.gov (United States)

    Arlen, Philip A; Falconer, Regina; Cherukumilli, Sri; Cole, Amy; Cole, Alexander M; Oishi, Karen K; Daniell, Henry

    2007-07-01

    Type I interferons (IFNs) inhibit viral replication and cell growth and enhance the immune response, and therefore have many clinical applications. IFN-alpha2b ranks third in world market use for a biopharmaceutical, behind only insulin and erythropoietin. The average annual cost of IFN-alpha2b for the treatment of hepatitis C infection is $26,000, and is therefore unavailable to the majority of patients in developing countries. Therefore, we expressed IFN-alpha2b in tobacco chloroplasts, and transgenic lines were grown in the field after obtaining United States Department of Agriculture Animal and Plant Health Inspection Service (USDA-APHIS) approval. Stable, site-specific integration of transgenes into chloroplast genomes and homoplasmy through several generations were confirmed. IFN-alpha2b levels reached up to 20% of total soluble protein, or 3 mg per gram of leaf (fresh weight). Transgenic IFN-alpha2b had similar in vitro biological activity to commercially produced PEG-Introntrade mark when tested for its ability to protect cells against cytopathic viral replication in the vesicular stomatitis virus cytopathic effect (VSV CPE) assay and to inhibit early-stage human immunodeficiency virus (HIV) infection. The antitumour and immunomodulating properties of IFN-alpha2b were also seen in vivo. Chloroplast-derived IFN-alpha2b increased the expression of major histocompatibility complex class I (MHC I) on splenocytes and the total number of natural killer (NK) cells. Finally, IFN-alpha2b purified from chloroplast transgenic lines (cpIFN-alpha2b) protected mice from a highly metastatic tumour line. This demonstration of high levels of expression of IFN-alpha2b, transgene containment and biological activity akin to that of commercial preparations of IFN-alpha2b facilitated the first field production of a plant-derived human blood protein, a critical step towards human clinical trials and commercialization.

  1. Alpha particle diagnostics using impurity pellet injection (invited)

    International Nuclear Information System (INIS)

    Fisher, R.K.; McChesney, J.M.; Howald, A.W.; Parks, P.B.; Snipes, J.A.; Terry, J.L.; Marmar, E.S.; Zweben, S.J.; Medley, S.S.

    1992-01-01

    We have proposed using impurity pellet injection to measure the energy distribution of the fast confined alpha particles in a reacting plasma [R. K. Fisher et al., Fusion Technol. 13, 536 (1988)]. The ablation cloud surrounding the injected pellet is thick enough that an equilibrium fraction F ∞ 0 (E) of the incident alphas should be neutralized as they pass through the cloud. By observing neutrals created in the large spatial region of the cloud which is expected to be dominated by the heliumlike ionization state, e.g., Li + ions, we can determine the incident alpha distribution dn He 2+ /dE from the measured energy distribution of neutral helium atoms dn He 0 /dE using dn He 0 /dE = dn He 2+ /dE·F ∞ 0 (E,Li + ). Initial experiments were performed on the Texas Experimental Tokamak (TEXT) in which we compared pellet penetration with our impurity pellet ablation model [P. B. Parks et al., Nucl. Fusion 28, 477 (1988)], and measured the spatial distribution of various ionization states in carbon pellet clouds [R. K. Fisher et al., Rev. Sci. Instrum. 61, 3196 (1990)]. Experiments have recently begun on the Tokamak Fusion Test Reactor (TFTR) with the goal of measuring the alpha particle energy distribution during D--T operation in 1993--94. A series of preliminary experiments are planned to test the diagnostic concept. The first experiments will observe neutrals from beam-injected deuterium ions and the high energy 3 He tail produced during ion cyclotron (ICH) minority heating on TFTR interacting with the cloud. We will also monitor by line radiation the charge state distributions in lithium, boron, and carbon clouds

  2. Anomalous loss of DT alpha particles in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Hans W. [Princeton Univ., NJ (United States)

    1997-09-01

    An escaping alpha collector probe has been developed for TFTR`s DT phase. Energy distributions of escaping alphas have been determined by measuring the range of α-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous delayed loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on α-particle loss has led to a better understanding of α-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing α-particles forced to move toward higher magnetic field during an inward major radius shift (i.e., compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90° lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an α-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized α-particles near the passing/trapped boundary was observed to occur between inward and outward shifts at an intermediate value of plasma current (1.4 MA). This anomalous loss feature is not yet understood.

  3. Low energy incomplete fusion and its relevance to the synthesis of super heavy elements

    Directory of Open Access Journals (Sweden)

    Yadav Abhishek

    2015-01-01

    Full Text Available To study the presence of incomplete fusion at energies around the Coulomb-barrier and to understand its dependence on various entrance-channel parameters, the incomplete fusion fractions have been deduced (i from excitation function measurements for 18O,13,12C+159Tb, and (ii from forward recoil range measurements for 12C+159Tb systems, at low energies (<7MeV/A. The data have been analyzed within the framework of compound nucleus decay, which suggests the production of xn/pxn-channels via complete fusion, as these are found to be well reproduced by PACE4 predictions, while, a significant enhancement in the excitation functions of α-emitting channels has been observed over the theoretical ones, which has been attributed due to the incomplete fusion processes. Further, the incomplete fusion events observed in case of forward recoil ranges have been explained on the basis of the breakup fusion model, where these events may be attributed to the fusion of 8Be and/or 4He from 12C projectile to the target nucleus. For better insight into the underlying dynamics, the deduced fractions of incomplete fusion have been compared with other nearby systems as a function of various entrance channel parameters. The incomplete fusion has been found to be sensitive to the projectile’s energy and alpha-Q-value of the projectile.

  4. Determination of procedures for transmutation of fission product wastes by fusion neutrons. Volume 2. Final report

    International Nuclear Information System (INIS)

    Lang, G.P.

    1980-12-01

    This study is concerned with the engineering aspects of the transmutation of fission products utilizing neutrons generated in fusion reactors. It is assumed that fusion reactors, although not yet developed, will be available around the turn of the century. Therefore, early studies of this type are appropriate as a guide to the large amount of further investigations that will be needed to fully evaluate this concept. Not all of the radioactive products from light water reactors can be economically transmuted, but it appears that the most hazardous can. This requires that fission-product wastes must first be separated into a number of fractions, and in some instances this must be accomplished with extremely high separation factors. A review of current commercial separation processes and of promising methods that are now in the laboratory stage indicate that the necessary processes can most likely be developed but will require an active and sustained development program. Current fusion reactor concepts were examined as to their suitability for transmuting the separated fission wastes. It was concluded that the long-lived fission products were most amenable to transmutation. The medium-lived fission products, Cs-137 and Sr-90, require higher neutron fluxes than are available in the most developed fusion reactor concepts. Concepts which are less developed may eventually be adaptable as transmuters of these fission products

  5. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.

    1994-01-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  6. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  7. Innovative energy production in fusion reactors

    Science.gov (United States)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are: (1) traveling wave direct energy conversion of 14.7 MeV protons; (2) cusp type direct energy conversion of charged particles; (3) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas; and (4) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising.

  8. Innovative energy production in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author).

  9. Enhanced loss of fusion products during mode conversion heating in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Majeski, R.; Fisch, N.J.; Heeter, R.F.; Herrmann, H.W.; Herrmann, M.C.; Zarnstorff, M.C.; Zweben, S.J.

    1995-07-01

    Ion Bernstein waves (IBWS) have been generated by mode conversion of ion cyclotron range of frequency (ICRF) fast waves in TFTR. The loss rate of fusion products in these discharges can be large, up to 10 times the first orbit loss rate. The losses are observed at the passing/trapped boundary, indicating that passing particles are being moved onto loss orbits either by increase of their v perpendicular due to the wave, by outward transport in minor radius, or both. The lost particles appear to be DD fusion produced tritons heated to ∼1.5 times their birth energy

  10. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    Science.gov (United States)

    Jessen, Holly Jean [Chanhassen, MN; Liao, Hans H [Eden Prairie, MN; Gort, Steven John [Apple Valley, MN; Selifonova, Olga V [Plymouth, MN

    2011-10-04

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  11. Numerical studies of deuterium-tritium ignition in impact-fusion targets

    International Nuclear Information System (INIS)

    Zubrin, R.M.; Ribe, F.L.

    1989-01-01

    A numerical one-dimensional solution of the Euler equations for an imploding spherical tungsten shell with internal deuterium-tritium gas is applied to study impact-fusion dynamics with parameters of fusion reactor relevance. Thermal conduction and radiative energy loss by the plasma are taken into account, as is heating by fusion generated alpha particles. A variety of target sizes and impact velocities are examined, and scaling laws for fusion yields are deduced which define possible parameters for conceptual commercial impact-fusion power reactors. It is found that shell energies and velocities of about 30 MJ and 110 km/s would be satisfactory. A commercial impact-fusion reactor based on such parameters is discussed

  12. Alpha decay of {sup 181}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Henderson, D.J.; Hermann, R. [and others

    1995-08-01

    The {alpha}-decay energy of {sup 181}Pb was measured as 7211(10) keV and 7044(15). In the first study the isotope was produced in {sup 90}Zr bombardments of {sup 94}Mo and, after traversing a velocity filter, implanted in a position-sensitive Si detector; no half life for {sup 181}Pb was reported. In the second study the isotope was produced in {sup 40}Ca bombardments of {sup 144}Sm and transported to a position in front of a Si(Au) surface barrier detector with a fast He-gas-jet capillary system; an estimate of 50 ms was determined for the {sup 181}Pb half life. Recently we investigated {sup 181}Pb {alpha} decay at ATLAS as part of a survey experiment in which a l-pnA beam of 400-MeV {sup 92}Mo was used to irradiate targets of {sup 89}Y, {sup 90,92,94}Zr, and {sup 92}Mo to examine yields for one- and two-nucleon evaporation products from symmetric cold-fusion reactions. Recoiling nuclei of interest were passed through the Fragment Mass Analyzer and implanted in a double-sided silicon strip detector for {alpha}-particle assay. With the {sup 90}Zr target we observed a group at 7065(20) keV which was correlated with A = 181 recoils and had a half life of 45(20) ms. Our new results for {sup 181}Pb therefore agreed with those of the second study. There was no indication in the {sup 90}Zr + {sup 92}Mo data of the 7211(10)-keV {alpha} particles seen by Keller et al. The interested reader is referred to the 1993 atomic mass evaluation wherein the input {alpha}-decay energies and resultant masses of the light Pb isotopes (including {sup 181}Pb) are discussed.

  13. Diagnostics developments and applications for laser fusion experiments

    International Nuclear Information System (INIS)

    Coleman, L.W.

    1977-01-01

    Some diagnostics techniques applied to current laser fusion target experiments are reviewed. Specifically, holographic interferometry of target plasmas, coded aperture imaging of thermonuclear alpha-particles and neutron energy spectrum measurements are discussed

  14. Current generation by alpha particles interacting with lower hybrid waves in TOKAMAKS

    International Nuclear Information System (INIS)

    Belikov, V.S.; Kolesnichenko, Ya.I.; Lisak, M.; Anderson, D.

    1990-01-01

    The problem of the influence of fusion generated alpha particles on lower-hybrid-wave current drive is examined. Analysis is based on a new equation for the LH-wave-fast ion interaction which is derived by taking into consideration the non-zero value of the longitudinal wave number. The steady-state velocity distribution function for high energy alpha particles is found. The alpha current driven by LH-waves as well as the RF-power absorbed by alpha particle are calculated. (authors)

  15. ICRF-induced fusion product loss in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Chang, C.S.; Zweben, S.J.

    1994-01-01

    When ICRF power is applied to plasmas in which there is no externally-supplied minority species, an enhanced loss of DD fusion products results. The characteristics of the loss are consistent with particles at or near the birth energy having their perpendicular velocity increased by the ICRF such that those near the passing/trapped boundary are carried into the first orbit loss cone. A rudimentary model of this process predicts losses of a magnitude similar to those seen. Predictions based upon this data for hypothetical ICRF ash removal from reactor plasmas suggest that the technique will not be energy efficient

  16. Achievement of solid-state plasma fusion ('Cold-Fusion')

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Zhang, Yue-Chang

    1995-01-01

    Using a 'QMS' (Quadrupole Mass Spectrometer), the authors detected a significantly large amount (10 20 -10 21 [cm -3 ]) of helium ( 2 4 He), which was concluded to have been produced by a deuterium nuclear reaction within a host solid. These results were found to be fully repeatable and supported the authors' proposition that solid state plasma fusion ('Cold Fusion') can be generated in energetic deuterium Strongly Coupled Plasma ('SC-plasma'). This fusion reaction is thought to be sustained by localized 'Latticequake' in a solid-state media with the deuterium density equivalent to that of the host solid. While exploring this basic proposition, the characteristic differences when compared with ultra high temperature-state plasma fusion ('Hot Fusion') are clarified. In general, the most essential reaction product in both types of the deuterium plasma fusion is considered to be helium, irrespective of the 'well-known and/or unknown reactions', which is stored within the solid-state medium in abundance as a 'Residual Product', but which generally can not enter into nor be released from host-solid at a room temperature. Even measuring instruments with relatively poor sensitivity should be able to easily detect such residual helium. An absence of residual helium means that no nuclear fusion reaction has occurred, whereas its presence provides crucial evidence that nuclear fusion has, in fact, occurred in the solid. (author)

  17. Biological effects of activation products and other chemicals released from fusion power plants

    International Nuclear Information System (INIS)

    Strand, J.A.; Poston, T.M.

    1976-09-01

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of 26 Al, 49 V, 51 Cr, 54 Mn, 55 Fe, 58 Co, 60 Co, 93 Nb, and 94 Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs

  18. Heavy ion beam propagation through a gas-filled chamber for inertial confinement fusion

    International Nuclear Information System (INIS)

    Barboza, N.O.

    1996-10-01

    The work presented here evaluates the dynamics of a beam of heavy ions propagating through a chamber filled with gas. The motivation for this research stems from the possibility of using heavy ion beams as a driver in inertial confinement fusion reactors for the purpose of generating electricity. Such a study is important in determining the constraints on the beam which limit its focus to the small radius necessary for the ignition of thermonuclear microexplosions which are the source of fusion energy. Nuclear fusion is the process of combining light nuclei to form heavier ones. One possible fusion reaction combines two isotopes of hydrogen, deuterium and tritium, to form an alpha particle and a neutron, with an accompanying release of ∼17.6 MeV of energy. Generating electricity from fusion requires that we create such reactions in an efficient and controlled fashion, and harness the resulting energy. In the inertial confinement fusion (ICF) approach to energy production, a small spherical target, a few millimeters in radius, of deuterium and tritium fuel is compressed so that the density and temperature of the fuel are high enough, ∼200 g/cm 3 and ∼20 keV, that a substantial number of fusion reactions occur; the pellet microexplosion typically releases ∼350 MJ of energy in optimized power plant scenarios

  19. Differentiation of the mRNA transcripts originating from the alpha 1- and alpha 2-globin loci in normals and alpha-thalassemics.

    OpenAIRE

    Liebhaber, S A; Kan, Y W

    1981-01-01

    The alpha-globin polypeptide is encoded by two adjacent genes, alpha 1 and alpha 2. In the normal diploid state (alpha alpha/alpha alpha) all four alpha-globin genes are expressed. Loss or dysfunction of one or more of these genes leads to deficient alpha-globin production and results in alpha-thalassemia. We present a technique to differentially assess the steady-state levels of the alpha 1- and alpha-2-globin messenger RNA (mRNA) transcripts and thus delineate the relative level of expressi...

  20. alpha AD alpha hybrids of Cryptococcus neoformans: evidence of same-sex mating in nature and hybrid fitness.

    Directory of Open Access Journals (Sweden)

    Xiaorong Lin

    2007-10-01

    Full Text Available Cryptococcus neoformans is a ubiquitous human fungal pathogen that causes meningoencephalitis in predominantly immunocompromised hosts. The fungus is typically haploid, and sexual reproduction involves two individuals with opposite mating types/sexes, alpha and a. However, the overwhelming predominance of mating type (MAT alpha over a in C. neoformans populations limits alpha-a mating in nature. Recently it was discovered that C. neoformans can undergo same-sex mating under laboratory conditions, especially between alpha isolates. Whether same-sex mating occurs in nature and contributes to the current population structure was unknown. In this study, natural alpha AD alpha hybrids that arose by fusion between two alpha cells of different serotypes (A and D were identified and characterized, providing definitive evidence that same-sex mating occurs naturally. A novel truncated allele of the mating-type-specific cell identity determinant SXI1 alpha was also identified as a genetic factor likely involved in this process. In addition, laboratory-constructed alpha AD alpha strains exhibited hybrid vigor both in vitro and in vivo, providing a plausible explanation for their relative abundance in nature despite the fact that AD hybrids are inefficient in meiosis/sporulation and are trapped in the diploid state. These findings provide insights on the origins, genetic mechanisms, and fitness impact of unisexual hybridization in the Cryptococcus population.

  1. Civilian applications of laser fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

    1978-01-01

    The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. We have found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser fusion studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented

  2. Ion cyclotron and spin-flip emissions from fusion products in tokamaks

    International Nuclear Information System (INIS)

    Arunasalam, V.; Greene, G.J.; Young, K.M.

    1993-02-01

    Power emission by fusion products of tokamak plasmas in their ion cyclotron range of frequencies (ICRF) and at their spin-flip resonance frequency is calculated for some specific model fusion product velocity-space distribution functions. The background plasma of say deuterium (D) is assumed to be in equilibrium with a Maxwellian distribution both for the electrons and ions. The fusion product velocity distributions analyzed here are: (1) A monoenergetic velocity space ring distribution. (2) A monoenergetic velocity space spherical shell distribution. (3) An anisotropic Maxwellian distribution with T perpendicular ≠ T parallel and with appreciable drift velocity along the confining magnetic field. Single ''dressed'' test particle spontaneous emission calculations are presented first and the radiation temperature for ion cyclotron emission (ICE) is analyzed both for black-body emission and nonequilibrium conditions. Thresholds for instability and overstability conditions are then examined and quasilinear and nonlinear theories of the electromagnetic ion cyclotron modes are discussed. Distinctions between ''kinetic or causal instabilities'' and ''hydrodynamic instabilities'' are drawn and some numerical estimates are presented for typical tokamak parameters. Semiquantitative remarks are offered on wave accessibility, mode conversion, and parametric decay instabilities as possible for spatially localized ICE. Calculations are carried out both for k parallel = 0 for k parallel ≠ 0. The effects of the temperature anisotropy and large drift velocities in the parallel direction are also examined. Finally, proton spin-flip resonance emission and absorption calculations are also presented both for thermal equilibrium conditions and for an ''inverted'' population of states

  3. Ion cyclotron and spin-flip emissions from fusion products in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Arunasalam, V.; Greene, G.J.; Young, K.M.

    1993-02-01

    Power emission by fusion products of tokamak plasmas in their ion cyclotron range of frequencies (ICRF) and at their spin-flip resonance frequency is calculated for some specific model fusion product velocity-space distribution functions. The background plasma of say deuterium (D) is assumed to be in equilibrium with a Maxwellian distribution both for the electrons and ions. The fusion product velocity distributions analyzed here are: (1) A monoenergetic velocity space ring distribution. (2) A monoenergetic velocity space spherical shell distribution. (3) An anisotropic Maxwellian distribution with T [perpendicular] [ne] T[parallel]and with appreciable drift velocity along the confining magnetic field. Single dressed'' test particle spontaneous emission calculations are presented first and the radiation temperature for ion cyclotron emission (ICE) is analyzed both for black-body emission and nonequilibrium conditions. Thresholds for instability and overstability conditions are then examined and quasilinear and nonlinear theories of the electromagnetic ion cyclotron modes are discussed. Distinctions between kinetic or causal instabilities'' and hydrodynamic instabilities'' are drawn and some numerical estimates are presented for typical tokamak parameters. Semiquantitative remarks are offered on wave accessibility, mode conversion, and parametric decay instabilities as possible for spatially localized ICE. Calculations are carried out both for k[parallel] = 0 for k[parallel] [ne] 0. The effects of the temperature anisotropy and large drift velocities in the parallel direction are also examined. Finally, proton spin-flip resonance emission and absorption calculations are also presented both for thermal equilibrium conditions and for an inverted'' population of states.

  4. Interferon-alpha suppressed granulocyte colony stimulating factor production is reversed by CL097, a TLR7/8 agonist.

    LENUS (Irish Health Repository)

    Tajuddin, Tariq

    2012-02-01

    BACKGROUND AND AIM: Neutropenia, a major side-effect of interferon-alpha (IFN-alpha) therapy can be effectively treated by the recombinant form of granulocyte colony stimulating factor (G-CSF), an important growth factor for neutrophils. We hypothesized that IFN-alpha might suppress G-CSF production by peripheral blood mononuclear cells (PBMCs), contributing to the development of neutropenia, and that a toll-like receptor (TLR) agonist might overcome this suppression. METHODS: Fifty-five patients who were receiving IFN-alpha\\/ribavirin combination therapy for chronic hepatitis C virus (HCV) infection were recruited. Absolute neutrophil counts (ANC), monocyte counts and treatment outcome data were recorded. G-CSF levels in the supernatants of PBMCs isolated from the patients and healthy controls were assessed by enzyme-linked immunosorbent assay following 18 h of culture in the absence or presence of IFN- alpha or the TLR7\\/8 agonist, CL097. RESULTS: Therapeutic IFN-alpha caused a significant reduction in neutrophil counts in all patients, with 15 patients requiring therapeutic G-CSF. The reduction in ANC over the course of IFN-alpha treatment was paralleled by a decrease in the ability of PBMCs to produce G-CSF. In vitro G-CSF production by PBMCs was suppressed in the presence of IFN-alpha; however, co-incubation with a TLR7\\/8 agonist significantly enhanced G-CSF secretion by cells obtained both from HCV patients and healthy controls. CONCLUSIONS: Suppressed G-CSF production in the presence of IFN-alpha may contribute to IFN-alpha-induced neutropenia. However, a TLR7\\/8 agonist elicits G-CSF secretion even in the presence of IFN-alpha, suggesting a possible therapeutic role for TLR agonists in treatment of IFN-alpha-induced neutropenia.

  5. Parton-shower matching systematics in vector-boson-fusion WW production

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Michael [Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany); Plaetzer, Simon [Durham University, Institute for Particle Physics Phenomenology, Durham (United Kingdom); University of Manchester, School of Physics and Astronomy, Manchester (United Kingdom)

    2017-05-15

    We perform a detailed analysis of next-to-leading order plus parton-shower matching in vector-boson-fusion WW production including leptonic decays. The study is performed in the Herwig 7 framework interfaced to VBFNLO 3, using the angular-ordered and dipole-based parton-shower algorithms combined with the subtractive and multiplicative-matching algorithms. (orig.)

  6. INFLUENCE OF ALPHA-1-ACID GLYCOPROTEIN UPON PRODUCTION OF CYTOKINES BY PERIPHERAL BLOOD MONONUCLEARS

    Directory of Open Access Journals (Sweden)

    М. V. Osikov

    2007-01-01

    Full Text Available Abstract. Alpha-1-acid glycoprotein (orosomucoid is a multifunctional acute phase reactant belonging to the family of lipocalines from plasma alpha-2 globulin fraction. In present study, we investigated dosedependent effects of orosomucoid upon secretion of IL-1â, IL-2, IL-3, IL-4 by mononuclear cells from venous blood of healthy volunteers. Mononuclear cells were separated by means of gradient centrifugation, followed by incubation for 24 hours with 250, 500, or 1000 mcg of orosomucoid per ml RPMI-1640 medium (resp., low, medium and high dose. The levels of cytokine production were assayed by ELISA technique. Orosomucoid-induced secretion of IL-1â and IL-4 was increased, whereas IL-3 secretion was inhibited. IL-2 production was suppressed at low doses of orosomucoid, and stimulated at medium and high doses. The effect of alpha-1-acid glycoprotein upon production of IL-2, IL-3 and IL-4 was dose-dependent. Hence, these data indicate that orosomucoid is capable of modifying IL-1â, IL-2, IL-3, and IL-4 secretion by blood mononuclear cells.

  7. ALPHA-AMYLASE PRODUCTION FROM Aspergillus oryzae M BY SUBMERGED FERMENTATION

    Directory of Open Access Journals (Sweden)

    Suleimenova

    2016-08-01

    Full Text Available The main goal of present study was implementation of the Aspergillus oryzae M strain improved technology using earlier developed method of microorganism selection. 8 pure strains of Aspergillus fungi were screened for the production of extra cellular alpha-amylase using agar medium with starch as a substrate and incubated for 72h at 30 ºС. Zone of clearance was observed for screening of the amylolytic fungi (in mm. Aspergillus oryzae M has demonstrated the highest zone of clearance. Aspergillus oryzae M was cultivated for 42 days in submerged conditions of growth using new method of fungal cultivation. This method based on immobilizing enzymes producers on solid career in submerged conditions of growth gives the way to improve quality of filtrates, which remain clear, does not require additional filtering and easily separated from the mycelium. Moreover, it allows to prolong the process of fungal cultivation and to maintain high enzymatic activity for a long period of time. Presented method allowed increasing alpha-amylase production from 321 U/ml (before immobilization to 502 U/ml (after immobilization.

  8. Preparations for deuterium--tritium experiments on the Tokamak Fusion Test Reactor*

    International Nuclear Information System (INIS)

    Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Aschroft, D.; Barnes, C.W.; Barnes, G.; Batchelor, D.B.; Bateman, G.; Batha, S.; Baylor, L.A.; Beer, M.; Bell, M.G.; Biglow, T.S.; Bitter, M.; Blanchard, W.; Bonoli, P.; Bretz, N.L.; Brunkhorst, C.; Budny, R.; Burgess, T.; Bush, H.; Bush, C.E.; Camp, R.; Caorlin, M.; Carnevale, H.; Chang, Z.; Chen, L.; Cheng, C.Z.; Chrzanowski, J.; Collazo, I.; Collins, J.; Coward, G.; Cowley, S.; Cropper, M.; Darrow, D.S.; Daugert, R.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Faunce, J.; Fonck, R.J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Garzotto, V.; Gentile, C.; Gettelfinger, G.; Gilbert, J.; Gioia, J.; Goldfinger, R.C.; Golian, T.; Gorelenkov, N.; Gouge, M.J.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Heidbrink, W.; Hermann, H.W.; Hill, K.W.; Hirshman, S.; Hoffman, D.J.; Hosea, J.; Hulse, R.A.; Hsuan, H.; Jaeger, E.F.; Janos, A.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kamperschroer, J.; Kesner, J.; Kugel, H.; Kwon, S.; Labik, G.; Lam, N.T.; LaMarche, P.H.; Laughlin, M.J.; Lawson, E.; LeBlanc, B.; Leonard, M.; Levine, J.; Levinton, F.M.; Loesser, D.; Long, D.; Machuzak, J.; Mansfield, D.E.; Marchlik, M.; Marmar, E.S.; Marsala, R.; Martin, A.; Martin, G.; Mastrocola, V.; Mazzucato, E.; McCarthy, M.P.; Majeski, R.; Mauel, M.; McCormack, B.; McCune, D.C.; McGuire, K.M.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Milora, S.L.; Monticello, D.; Mueller, D.; Murakami, M.; Murphy, J.A.; Nagy, A.; Navratil, G.A.; Nazikian, R.; Newman, R.; Nishitani, T.; Norris, M.; O'Connor, T.; Oldaker, M.; Ongena, J.; Osakabe, M.; Owens, D.K.; Park, H.; Park, W.; Paul, S.F.; Pavlov, Y.I.; Pearson, G.; Perkins, F.; Perry, E.; Persing, R.; Petrov, M.; Phillips, C.K.; Pitcher, S.; Popovichev, S.; Qualls, A.L.; Raftopoulos, S.; Ramakrishnan, R.; Ramsey, A.; Rasmussen, D.A.; Redi, M.H.

    1994-01-01

    The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinert TM system, modification of the vacuum system to handle tritium, preparation, and testing of the neutral beam system for tritium operation and a final deuterium--deuterium (D--D) run to simulate expected deuterium--tritium (D--T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D--T experiments using D--D have been performed. The physics objectives of D--T operation are production of ∼10 MW of fusion power, evaluation of confinement, and heating in deuterium--tritium plasmas, evaluation of α-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined α particles. Experimental results and theoretical modeling in support of the D--T experiments are reviewed

  9. Determination of radium-226 by high-resolution alpha spectrometry

    International Nuclear Information System (INIS)

    Sill, C.W.

    1983-01-01

    The determination of radium-226 by alpha spectrometry has been investigated critically to determine experimental conditions under which high resolution and accurate and reliable results can be obtained. Refractory solids such as soils, ores, and tailings from uranium mills are dissolved completely by fusion with potassium fluoride in the presence of barium-133 tracer. The fluoride cake is then transposed with sulfuric acid to a pyrosulfate fusion with simultaneous volatilization of all silica and fluoride. Radium is precipitated with barium already present in the sample by addition of lead perchlorate to a dilute hydrochloric acid solution of the pyrosulfate cake. The resulting insoluble sulfates are dissolved in an alkaline solution of diethylenetriaminepentaacetic acid, and the radium and barium sulfates are reprecipitated with acetic acid. The precipitate is mounted on a membrane filter and analyzed by alpha spectrometry. Water samples are partially evaporated and treated similarly. Resolution of the subsequent alpha spectra is much better than has been achieved previously from barium sulfate, and is almost as good as is obtainable with actinides electrodeposited on polished steel plates. The resolution is about 60 keV full-width-half-maximum with 100 μg of barium on a 1-inch filter with a 450 mm 2 detector at 20% counting efficiency. Recovery is about 97% and accuracy is generally as good as the counting statistics obtained will permit. Grossly inaccurate results can be obtained under certain conditions when barium-133 tracer is used to determine the chemical yield of radium-226. Severe contamination of the surface-barrier detector by polonium-210 and by recoil products of the radium isotopes being counted is demonstrated, amd methods for virtual elimination of both problems are discussed

  10. Economic analyses of alpha channeling in tokamak power plants

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1998-01-01

    The hot-ion-mode of operation [1] has long been thought to offer optimized performance for long-pulse or steady-state magnetic fusion power plants. This concept was revived in recent years when theoretical considerations suggested that nonthermal fusion alpha particles could be made to channel their power density preferentially to the fuel ions [2,3]. This so-called anomalous alpha particle slowing down can create plasmas with fuel ion temperate T i somewhat larger than the electron temperature T e , which puts more of the beta-limited plasma pressure into the useful fuel species (rather than non-reacting electrons). As we show here, this perceived benefit may be negligible or nonexistent for tokamaks with steady state current drive. It has likewise been argued [2,3] that alpha channeling could be arranged such that little or no external power would be needed to generate the steady state toroidal current. Under optimistic assumptions we show that such alpha-channeling current drive would moderately improve the economic performance of a first stability tokamak like ARIES-I [4], however a reversed-shear (advanced equilibrium) tokamak would likely not benefit since traditional radio-wave (rf) electron-heating current drive power would already be quite small

  11. Radiolytic gas production in the alpha particle degradation of plastics

    International Nuclear Information System (INIS)

    Reed, D.T.; Hoh, J.; Emery, J.; Hobbs, D.

    1992-01-01

    Net gas generation due to alpha particle irradiation of polyethylene and polyvinyl chloride was investigated. Experiments were performed in an air environment at 30, 60, and 100 degree C. The predominant radiolytic degradation products of polyethylene were hydrogen and carbon dioxide with a wide variety of trace organic species noted. Irradiation of polyvinyl chloride resulted in the formation of HCl in addition to the products observed for polyethylene. For both plastic materials, a strong enhancement of net yields was noted at 100 degree C

  12. Production, purification, and characterization of human alpha1 proteinase inhibitor from Aspergillus niger.

    Science.gov (United States)

    Chill, Liat; Trinh, Loc; Azadi, Parastoo; Ishihara, Mayumi; Sonon, Roberto; Karnaukhova, Elena; Ophir, Yakir; Golding, Basil; Shiloach, Joseph

    2009-02-15

    Human alpha one proteinase inhibitor (alpha1-PI) was cloned and expressed in Aspergillus niger, filamentious fungus that can grow in defined media and can perform glycosylation. Submerged culture conditions were established using starch as carbon source, 30% dissolved oxygen concentration, pH 7.0 and 28 degrees C. Eight milligrams per liter of active alpha1-PI were secreted to the growth media in about 40 h. Controlling the protein proteolysis was found to be an important factor in the production. The effects of various carbon sources, pH and temperature on the production and stability of the protein were tested and the product was purified and characterized. Two molecular weights variants of the recombinant alpha1-PI were produced by the fungus; the difference is attributed to the glycosylated part of the molecule. The two glycoproteins were treated with PNGAse F and the released glycans were analyzed by HPAEC, MALDI/TOF-MS, NSI-MS(n), and GC-MS. The MALDI and NSI- full MS spectra of permethylated N-glycans revealed that the N-glycans of both variants contain a series of high-mannose type glycans with 5-20 hexose units. Monosaccharide analysis showed that these were composed of N-acetylglucos-amine, mannose, and galactose. Linkage analysis revealed that the galactosyl component was in the furanoic conformation, which was attaching in a terminal non-reducing position. The Galactofuranose-containing high-mannnose type N-glycans are typical structures, which recently have been found as part of several glycoproteins produced by Aspergillus niger.

  13. Nuclear elastic scattering effects on fusion product transport in the FRM

    International Nuclear Information System (INIS)

    DeVeaux, J.C.; Greenspan, E.; Miley, G.H.

    1981-01-01

    Large energy transfer (LET) events such as nuclear elastic scatterng (NES) are shown to have significant effects on fusion product transport in the field-reversed mirror. The method used and preliminary results obtained from the study on NES effects on f/sub p/ orbits are described

  14. Phenomenological analysis of Higgs boson production through gluon fusion in association with jets

    International Nuclear Information System (INIS)

    Greiner, Nicolas; Luisoni, Gionata; Winter, Jan-Christopher; Yundin, Valery; Schoenherr, Marek

    2015-06-01

    We present a detailed phenomenological analysis of the production of a Standard Model Higgs boson in association with up to three jets. We consider the gluon fusion channel using an effective theory in the large top-quark mass limit. Higgs boson production in gluon fusion constitutes an irreducible background to the vector boson fusion (VBF) process; hence the precise knowledge of its characteristics is a prerequisite for any measurement in the VBF channel. The calculation is carried out at next-to-leading order (NLO) in QCD in a fully automated way by combining the two programs GoSam and Sherpa. We present numerical results for a large variety of observables for both standard cuts and VBF selection cuts. We find that for all jet multiplicities the NLO corrections are sizeable. This is particularly true in the presence of kinematic selections enhancing the VBF topology, which are based on vetoing additional jet activity. In this case, precise predictions for the background can be made using our calculation by taking the difference between the inclusive H+2 jets and the inclusive H+3 jets result.

  15. Effective donor cell fusion conditions for production of cloned dogs by somatic cell nuclear transfer.

    Science.gov (United States)

    Park, JungEun; Oh, HyunJu; Hong, SoGun; Kim, MinJung; Kim, GeonA; Koo, OkJae; Kang, SungKeun; Jang, Goo; Lee, ByeongChun

    2011-03-01

    As shown by the birth of the first cloned dog 'Snuppy', a protocol to produce viable cloned dogs has been reported. In order to evaluate optimum fusion conditions for improving dog cloning efficiency, in vivo matured oocytes were reconstructed with adult somatic cells from a female Pekingese using different fusion conditions. Fusion with needle vs chamber methods, and with low vs high pulse strength was compared by evaluating fusion rate and in vivo development of canine cloned embryos. The fusion rates in the high voltage groups were significantly higher than in the low voltage groups regardless of fusion method (83.5 vs 66.1% for the needle fusion method, 67.4 vs 37.9% for the fusion chamber method). After embryo transfer, one each pregnancy was detected after using the needle fusion method with high and low voltage and in the chamber fusion method with high voltage, whereas no pregnancy was detected using the chamber method with low voltage. However, only the pregnancy from the needle fusion method with high voltage was maintained to term and one healthy puppy was delivered. The results of the present study demonstrated that two DC pulses of 3.8 to 4.0 kV/cm for 15 μsec using the needle fusion method were the most effective method for the production of cloned dogs under the conditions of this experiment. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Thermonuclear fusion: from fundamental research to energy production? Science and technology report No. 26

    International Nuclear Information System (INIS)

    Laval, Guy; Blanzat, Bernard; Aspect, Alain; Aymar, Robert; Bielak, Bogdan; Decroisette, Michel; Martin, Georges; Andre, Michel; Schirmann, Daniel; Garbet, Xavier; Jacquinot, Jean; Laviron, Clement; Migus, Arnold; Moreau, Rene; Pironneau, Olivier; Quere, Yves; Vallee, Alain; Dercourt, Jean; Bayer, Charles; Juraszek, Denis; Deutsch, Claude; Le Garrec, Bruno; Hennequin, Pascale; Peysson, Yves; Rax, Jean-Marcel; Pesme, Denis; Bauche, Jacques; Monier-Garbet, Pascale; Stamm, Roland; Zerah, Gilles; Ghendrih, Philippe; Layet, Roland; Grosman, Andre; Alamo, Ana; Giancarli, Luciano; Poitevin, Yves; Rigal, Emmanuel; Chieze, Jean-Pierre

    2007-01-01

    This work has been commissioned by the French ministry of Education, Sciences and Research, its aim is to provide a reliable account of the state of development of thermonuclear fusion. This report makes a point on the scientific knowledge accumulated on the topic and highlights the research programs that are necessary to overcome the technological difficulties and draws the necessary steps before an industrial application to electricity production. This report is divided into 10 chapters: 1) tokamak technology and ITER, 2) inertial fusion, 3) magnetized hot plasmas, 4) laser-plasma interaction and peta-watt lasers, 5) atomic physics and fusion, 6) computer simulation, 7) plasma-wall interaction, 8) materials for fusion reactors, 9) safety analysis, and 10) inertial fusion and astrophysics. This report has been written by a large panel of experts gathered by the French Academy of Sciences. The comments on the issue by the 3 French organizations: Cea, Cnrs and SFP (French Society of Physics) follow the last chapter

  17. Identification and quantification of N alpha-acetylated Y. pestis fusion protein F1-V expressed in Escherichia coli using LCMS E.

    Science.gov (United States)

    Bariola, Pauline A; Russell, Brett A; Monahan, Steven J; Stroop, Steven D

    2007-05-31

    N-terminal acetylation in E coli is a rare event catalyzed by three known N-acetyl-transferases (NATs), each having a specific ribosomal protein substrate. Multiple, gram-scale lots of recombinant F1-V, a fusion protein constructed from Y. Pestis antigens, were expressed and purified from a single stably transformed E. coli cell bank. A variant form of F1-V with mass increased by 42-43 Da was detected in all purified lots by electrospray orthogonal acceleration time-of-flight mass spectrometry (MS). Peptide mapping LCMS localized the increased mass to an N-terminal Lys-C peptide, residues 1-24, and defined it as +42.0308+/-0.0231 Da using a LockSpray exact mass feature and a leucine enkaphalin mass standard. Sequencing of the variant 1-24 peptide by LCMS and high-energy collision induced dissociation (LCMS(E)) further localized the modification to the amino terminal tri-peptide ADL and identified the modification as N(alpha)-acetylation. The average content of N(alpha)-acetylated F1-V in five lots was 24.7+/-2.6% indicating that a stable acetylation activity for F1-V was established in the E. coli expression system. Alignment of the F1-V N-terminal sequence with those of other known N(alpha)-acetylated ectopic proteins expressed in E. coli reveals a substrate motif analogous to the eukaryote NatA' acetylation pathway and distinct from endogenous E. coli NAT substrates.

  18. Civilian applications of laser fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

    1977-01-01

    The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. It was found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented

  19. Civilian applications of laser fusion

    Energy Technology Data Exchange (ETDEWEB)

    Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

    1977-11-17

    The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. It was found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented.

  20. Experimental study of the influence of partner structure in the fusion of the almost symmetrical systems; Etude experimentale de l`influence de la structure des partenaires dans la fusion de systemes presque symetriques

    Energy Technology Data Exchange (ETDEWEB)

    Stodel-Le Lay, Christelle [Lab. de Physique Corpusculaire, Caen Univ., 14 - Caen (France)

    1998-12-04

    The cross-sections for the formation of evaporation residues in {sup 70}Zn and {sup 86}Kr reactions with {sup 150}Nd and {sup 130,136}Xe isotopes were measured for excitation energies of the compound nuclei ({sup 216,220,222}Th) varied from 7 MeV to 70 MeV, at the linear accelerator UNILAC of the nuclear facility GSI, Darmstadt (Germany). After de-excitation by evaporation (xn,pxn and {alpha}xn), the residual nuclei are separated from the primary beam and from spurious reaction products by the velocity filter SHIP and implanted into a silicon localization detector. Their subsequent decay via alpha particles with characteristic energies allows us to identify them and to deduce their yields. Experimental fusion-evaporation excitation functions are compared with those leading to the same compound nuclei obtained with other projectile and target combinations and with those calculated with a code developed at GSI. This code allows us to evaluate the evolution of the fission probability as a function of the incident energy for each system. The variation of cross-sections and of the fusion probability is studied as a function of the macroscopic and microscopic variables of the partners. For the synthesis of super-heavy elements, these results demonstrate quantitatively the interest in using partners of fusion with closed shell structures and rich in neurons (the fusion cross-section increases by a factor of 9 for a complementary pair of neutrons). On the other hand, closed shell compound nuclei do not influence the fusion cross-section. It will be worth synthesizing isotopes approaching the predicted stability region, nuclei with Z greater than 110 using neutron rich projectiles coming from secondary beams. (author) 104 refs., 71 figs., 11 tabs.

  1. Next-to-leading order QCD corrections to W+W- production via vector-boson fusion

    International Nuclear Information System (INIS)

    Jaeger, Barbara; Oleari, Carlo; Zeppenfeld, Dieter

    2006-01-01

    Vector-boson fusion processes constitute an important class of reactions at hadron colliders, both for signals and backgrounds of new physics in the electroweak interactions. We consider what is commonly referred to as W + W - production via vector-boson fusion (with subsequent leptonic decay of the Ws), or, more precisely, e + ν e μ - ν-bar μ + 2 jets production in proton-proton scattering, with all resonant and non-resonant Feynman diagrams and spin correlations of the final-state leptons included, in the phase-space regions which are dominated by t-channel electroweak-boson exchange. We compute the next-to-leading order QCD corrections to this process, at order α 6 α s . The QCD corrections are modest, changing total cross sections by less than 10%. Remaining scale uncertainties are below 2%. A fully-flexible next-to-leading order partonic Monte Carlo program allows to demonstrate these features for cross sections within typical vector-boson-fusion acceptance cuts. Modest corrections are also found for distributions

  2. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  3. Fusion development and technology

    International Nuclear Information System (INIS)

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R ampersand D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development

  4. Conventional sources of fast neutrons in 'cold fusion' experiments

    International Nuclear Information System (INIS)

    Cribier, M.; Spiro, M.; Favier, J.

    1989-04-01

    In 'cold fusion' experiments with heavy water a source of neutrons is the dissociation of deuterium induced by alpha particles emitted by natural occurring radioisotopes. We evaluate the rate of fast neutron emission as a function of the concentration of U, Th, Rn in contact with deuterium and discuss the possibility that the neutrons claimed to have been observed in 'cold fusion' experiments could be due to this conventional source

  5. Biodistribution analysis of 125I-albumin-IFN-alpha2b fusion protein in rats

    International Nuclear Information System (INIS)

    Zhou Yaoyuan; Zhang Rongjun; Cai Gangming; Gu Xiaobo; Jiang Mengjun; Zhang Bo; Yang Min; Cao Guoxian; Yang Jianliang

    2009-01-01

    125 I-albumin-IFN-alpha2b was prepared with the methods of Ch-T and purified with PD-10 column. The radiochemical purity was measured with TCA (trichloroacetic acid) precipitation. The antiviral activities of 125 I-albumin-IFN-alpha2b and albumin-IFN-alpha2b were compared with WISH/VSV system in vitro. SD rats were injected with 125 I-albumin-IFN-alpha2b subcutaneously and sacrificed at 0.5, 2, 6, 24, 48, 90, 180 and 300 h post-injection. Selected organs were dissected, weighed and their radioactivity was measured using γ-counter. The accumulated radioactivity in the tissues was calculated in terms of percentage of injected dose per gram organ (%ID·g -1 ). The labeling yield was 82.72%. The radiochemical purity of 125 I-albumin-IFN-alpha2b was 95.53%, and its radioactivity was 0.26 MBq/μg. The antiviral bioactivities of albumin-IFN-alpha2b and 125 I-albumin- IFN-alpha2b did not change. Biodistribution analysis of 125 I-albumin-IFN-alpha2b in rats showed that concentrated 125 I-albumin-IFN-alpha2b in blood reached maximum at 6 h post injection, and eliminated slowly. No specific accumulation was seen in other tissues. 125 I-albumin-IFN-alpha2b could maintain in peripheral blood for a long time and it meant albumin-IFN-alpha2b would be an effective long-term interferon. (authors)

  6. Nuclear Fusion with Polarized Nucleons & PolFusion

    CERN Document Server

    Engels, Ralf; Büscher, Markus; Vasilyev, Alexander

    2016-01-01

    This book offers a detailed examination of the latest work on the potential of polarized fuel to realize the vision of energy production by nuclear fusion. It brings together contributions from nuclear physicists and fusion physicists with the aims of fostering exchange of information between the two communities, describing the current status in the field, and examining new ideas and projects under development. It is evident that polarized fuel can offer huge improvements for the first generation of fusion reactors and open new technological possibilities for future generations, including neutron lean reactors, which could be the most popular and sustainable energy production option to avoid environmental problems. Nevertheless, many questions must be resolved before polarized fuel can be used for energy production in the different reactor types. Readers will find this book to be a stimulating source of information on the key issues. It is based on contributions from leading scientists delivered at the meetin...

  7. Premises for use of fusion systems for actinide waste incineration

    International Nuclear Information System (INIS)

    Taczanowski, S.

    2007-01-01

    more economic devices. Yet, perhaps even more important advantages of the FDI system are: well homogeneous heating distribution and - first of all - reduced load of the First Wall (FW) with 14 MeV neutrons i.e. the main source of radiation damage. Simultaneously, the alpha yield from plasma to materials directly exposed to (e.g. the FW) is reduced, whereas the neutron yield attenuation reduces the gas production, DPA and the induced activity. Though instead of D-T neutrons the fission ones appear, but are much softer (below gas production thresholds) and in a much lesser number (ca.1/3). The performed calculations show that the plasma Q can be lessened to about 1 and the 14 MeV neutron yield even by a factor of ca. 30. Finally, it is emphasised that though the radiotoxicity gathered in the FDI system alone is larger than that in a fusion system free of fission waste, yet the whole radiotoxicity of the symbiotic nuclear energy system, i.e. consisted of a Fusion Driven incinerator of transuranics (Pu, Np and Am) received from associated Light Water Reactors is to be lower. In conclusion, the picture of hybrid option of fusion presented herewith as a means to solve the problems of both fission and fusion based nuclear energy should facilitate the development and then launching of the fusion power

  8. Aggregation and fusion of modified low density lipoprotein.

    Science.gov (United States)

    Pentikäinen, M O; Lehtonen, E M; Kovanen, P T

    1996-12-01

    In atherogenesis, low density lipoprotein (LDL, diameter 22 nm) accumulates in the extracellular space of the arterial intima in the form of aggregates of lipid droplets (droplet diameter up to 400 nm). Here we studied the effects of various established in vitro LDL modifications on LDL aggregation and fusion. LDL was subjected to vortexing, oxidation by copper ions, proteolysis by alpha-chymotrypsin, lipolysis by sphingomyelinase, and nonenzymatic glycosylation, and was induced to form adducts with malondialdehyde or complexes with anti-apoB-100 antibodies. To assess the amount of enlarged LDL-derived structures formed (due to aggregation or fusion), we measured the turbidity of solutions containing modified LDL, and quantified the proportion of modified LDL that 1) sedimented at low-speed centrifugation (14,000 g), 2) floated at an increased rate at high-speed centrifugation (rate zonal flotation at 285,000 gmax), 3) were excluded in size-exclusion column chromatography (exclusion limit 40 MDa), or 4) failed to enter into 0.5%. Fast Lane agarose gel during electrophoresis. To detect whether particle fusion had contributed to the formation of the enlarged LDL-derived structures, particle morphology was examined using negative staining and thin-section transmission electron microscopy. We found that 1) aggregation was induced by the formation of LDL-antibody complexes, malondialdehyde treatment, and glycosylation of LDL; 2) fusion of LDL was induced by proteolysis of LDL by alpha-chymotrypsin; and 3) aggregation and fusion of LDL were induced by vortexing, oxidation by copper ions, and lipolysis by sphingomyclinase of LDL. The various modifications of LDL differed in their ability to induce aggregation and fusion.

  9. Diffusion of alpha-like MeV ions in TFTR

    International Nuclear Information System (INIS)

    Boivin, R.L.; Zweben, S.J.; Chang, C.S.; Hammett, G.; Mynick, H.E.; White, R.B.

    1991-01-01

    Single particle confinement of alpha particles is of crucial importance in reactor-grade tokamaks like BPX and ITER. Besides the well-known process of first-orbit losses, mechanisms that could lead to significant loss of alpha particles are turbulence-induced diffusion and toroidal field ripple stochastic diffusion. These two mechanisms have been separately studied in TFTR using two different detectors (one at the bottom of the machine and the other near the outer midplane) which can detect escaping charged fusion products, namely the 1 MeV triton and the 3 MeV proton in D-D plasmas (and also the 3.5 MeV alpha in D-T). The main difficulty in this type of experiment lies in the necessity of distinguishing the diffusion process from the always-present first-orbit loss-process. In this paper, we show how these two processes can be distinguished using the pitch-angle discrimination of the detectors. The pitch-angle is defined here as the angle of the particle trajectory with respect to the toroidal direction and so is a measure of the ion magnetic moment, μ. Results obtained at the midplane would be the first reported evidence of TF ripple diffusion in a tokamak. (author) 3 refs., 2 figs

  10. High circulating levels of tumor necrosis factor-alpha in centenarians are not associated with increased production in T lymphocytes

    DEFF Research Database (Denmark)

    Sandmand, Marie; Bruunsgaard, Helle; Kemp, Kåre

    2003-01-01

    BACKGROUND: Aging is characterized by increased inflammatory activity reflected by increased plasma levels of proinflammatory cytokines, concomitant with an altered cytokine profile of T lymphocytes. High plasma levels of tumor necrosis factor (TNF)-alpha are strongly associated with morbidity...... and mortality in elderly humans. However, the cellular source and mechanisms for the increased circulating TNF-alpha levels are unknown. OBJECTIVE: The aim of the present study was to investigate if high plasma levels of TNF-alpha are associated with increased production of TNF-alpha by T lymphocytes in elderly...... humans. METHODS: TNF-alpha production by CD4+ and CD8+ T lymphocytes was measured by flow cytometry following stimulation with phorbol 12-myristate 13-acetate and ionomycin in 28 young controls, 14, 81-year-olds and 25 centenarians. RESULTS: Plasma levels of TNF-alpha increased with increasing age...

  11. Production method of {alpha} particles; Une methode de production des particules {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Prevot, F [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    It is proposed a method to get an intense beam of {alpha} particles. With a source of ordinary ions, we form a helium beam, once ionized, it is accelerated with an energy of a few hundreds of keV. While crossing a matter any that can be a thin leaf or a gaseous blade, the second electron of helium is pulled with a yield that only depends on the energy of the beam of helium and that is equal to 1/2 for 650 keV. (author) [French] Il est propose une methode pour obtenir un faisceau intense de particules {alpha}. Avec une source d'ions ordinaire, on forme un faisceau d'helium une fois ionise qu'on accelere avec une energie de quelques centaines de keV. En traversant une matiere quelconque qui peut etre sous forme de feuille mince ou de lame gazeuse, le deuxieme electron de l'helium est arrache avec un rendement qui ne depend que de l'energie du faisceau d'helium et qui vaut 1/2 pour 650 keV. (auteur)

  12. Destabilizing effect of alpha particles in a Maxwellian plasma

    International Nuclear Information System (INIS)

    Wang, M.Y.

    1976-01-01

    Various plasma waves which are possibly excited by MeV alphas have been investigated. For a delta birth distribution it is found that: a) The right-circularly polarized Alfven wave can be excited. Its growth rate is linearly proportional to the α-particle density. b) The drift Alfven wave is stable against α-particles. c) For a uniform temperature, the plasma wave spectrum changes from three branches with n/sub α/ = 0 to four branches for n/sub α/ not equal to 0 case. d) α-particles can destabilize the ion drift acoustic wave even with uniform temperature. However, the ion acoustic wave appears to be stable against fusion products in a fusion grade plasma. e) If their effect on the background plasma spectrum is neglected, α-particles can excite the electromagnetic cyclotron wave in a range of harmonics (band structure). The growth rate is proportional to the square root of α-particle density. f) If the effect of α-particle on the plasma spectrum is included, we find that electromagnetic cyclotron wave is stable

  13. Catalyzed deuterium-deuterium and deuterium-tritium fusion blankets for high temperature process heat production

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Salimi, B.

    1982-01-01

    Tritiumless blanket designs, associated with a catalyzed deuterium-deuterium (D-D) fusion cycle and using a single high temperature solid pebble or falling bed zone, for process heat production, are proposed. Neutronics and photonics calculations, using the Monte Carlo method, show that an about 90% heat deposition fraction is possible in the high temperature zone, compared to a 30 to 40% fraction if a deuterium-tritium (D-T) fusion cycle is used with separate breeding and heat deposition zones. Such a design is intended primarily for synthetic fuels manufacture through hydrogen production using high temperature water electrolysis. A system analysis involving plant energy balances and accounting for the different fusion energy partitions into neutrons and charged particles showed that plasma amplification factors in the range of 2 are needed. In terms of maximization of process heat and electricity production, and the maximization of the ratio of high temperature process heat to electricity, the catalyzed D-D system outperforms the D-T one by about 20%. The concept is thought competitive to the lithium boiler concept for such applications, with the added potential advantages of lower tritium inventories in the plasma, reduced lithium pumping (in the case of magnetic confinement) and safety problems, less radiation damage at the first wall, and minimized risks of radioactive product contamination by tritium

  14. Recombinant hepatitis B surface antigen production in Aspergillus niger: evaluating the strategy of gene fusion to native glucoamylase

    CSIR Research Space (South Africa)

    James, ER

    2012-10-01

    Full Text Available Microbiology and Biotechnology October 2012/ Vol. 96, No.2 Recombinant hepatitis B surface antigen production in Aspergillus niger: evaluating the strategy of gene fusion to native glucoamylase ER James a,c & WH van Zyl b & PJ van Zyl c & JF Görgens..., Pretoria 0001, South Africa Abstract This study demonstrates the potential of Aspergillus niger as a candidate expression system for virus- like particle production using gene fusion. Hepatitis B surface antigen (HBsAg) production, targeted...

  15. Fusion energy for space missions in the 21st Century

    International Nuclear Information System (INIS)

    Schulze, N.R.

    1991-08-01

    Future space missions were hypothesized and analyzed and the energy source for their accomplishment investigated. The mission included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous mission with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing the High Energy Space Mission were investigated. Potential energy options which could provide the propulsion and electric power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified

  16. Higgs production in gluon fusion beyond NNLO

    International Nuclear Information System (INIS)

    Ball, Richard D.; Bonvini, Marco; Forte, Stefano; Marzani, Simone; Ridolfi, Giovanni

    2013-01-01

    We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N 3 LO) in α s with finite top mass. We argue that an accurate approximation can be constructed by exploiting the analyticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N 3 LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result

  17. Higgs production in gluon fusion beyond NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Richard D. [Tait Institute, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom); Bonvini, Marco [Deutsches Elektronen-Synchroton, DESY, Notkestraße 85, D-22603 Hamburg (Germany); Forte, Stefano, E-mail: forte@mi.infn.it [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Marzani, Simone [Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE, England (United Kingdom); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy)

    2013-09-21

    We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N{sup 3}LO) in α{sub s} with finite top mass. We argue that an accurate approximation can be constructed by exploiting the analyticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N{sup 3}LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result.

  18. Higgs production in gluon fusion beyond NNLO

    International Nuclear Information System (INIS)

    Ball, Richard D.; Forte, Stefano; Marzani, Simone

    2013-03-01

    We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N 3 LO) in α s with finite top mass. We argue that an accurate approximation can be constructed by exploiting the analiticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N 3 LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result.

  19. Myc-nick: a cytoplasmic cleavage product of Myc that promotes alpha-tubulin acetylation and cell differentiation.

    Science.gov (United States)

    Conacci-Sorrell, Maralice; Ngouenet, Celine; Eisenman, Robert N

    2010-08-06

    The Myc oncoprotein family comprises transcription factors that control multiple cellular functions and are widely involved in oncogenesis. Here we report the identification of Myc-nick, a cytoplasmic form of Myc generated by calpain-dependent proteolysis at lysine 298 of full-length Myc. Myc-nick retains conserved Myc box regions but lacks nuclear localization signals and the bHLHZ domain essential for heterodimerization with Max and DNA binding. Myc-nick induces alpha-tubulin acetylation and altered cell morphology by recruiting histone acetyltransferase GCN5 to microtubules. During muscle differentiation, while the levels of full-length Myc diminish, Myc-nick and acetylated alpha-tubulin levels are increased. Ectopic expression of Myc-nick accelerates myoblast fusion, triggers the expression of myogenic markers, and permits Myc-deficient fibroblasts to transdifferentiate in response to MyoD. We propose that the cleavage of Myc by calpain abrogates the transcriptional inhibition of differentiation by full-length Myc and generates Myc-nick, a driver of cytoplasmic reorganization and differentiation. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Fluorescent Protein Approaches in Alpha Herpesvirus Research

    Directory of Open Access Journals (Sweden)

    Ian B. Hogue

    2015-11-01

    Full Text Available In the nearly two decades since the popularization of green fluorescent protein (GFP, fluorescent protein-based methodologies have revolutionized molecular and cell biology, allowing us to literally see biological processes as never before. Naturally, this revolution has extended to virology in general, and to the study of alpha herpesviruses in particular. In this review, we provide a compendium of reported fluorescent protein fusions to herpes simplex virus 1 (HSV-1 and pseudorabies virus (PRV structural proteins, discuss the underappreciated challenges of fluorescent protein-based approaches in the context of a replicating virus, and describe general strategies and best practices for creating new fluorescent fusions. We compare fluorescent protein methods to alternative approaches, and review two instructive examples of the caveats associated with fluorescent protein fusions, including describing several improved fluorescent capsid fusions in PRV. Finally, we present our future perspectives on the types of powerful experiments these tools now offer.

  1. Expression of human lymphotoxin alpha in Aspergillus niger

    NARCIS (Netherlands)

    Krasevec, N.; Hondel, C.A.M.J.J. van de; Komel, R.

    2000-01-01

    A gene-fusion expression strategy was applied for heterologous expression of human lymphotoxin alpha (LTα) in the Aspergillus niger AB1.13 protease-deficient strain. The LTα gene was fused with the A. niger glucoamylase GII-form as a carrier-gene, behind its transcription control and secretion

  2. Production of alpha-amylase in batch and chemostat culture by bacillus stearothermophilus

    Energy Technology Data Exchange (ETDEWEB)

    Davis, P E; Cohen, D L; Whitaker, A

    1980-01-01

    The production of alpha-amylase by a strain of B.stearothermophilus isolated from leaf litter was investigated in a tryptone-maltose medium at 55 degrees in batch and chemostat culture. Amylase production was growth-limited and restricted to the exponential phase in batch culture. The enzyme yield was reduced by 40% when the culture pH was maintained at pH 7.2. Amylase production in chemostat culture was influenced by the growth rate throughout the dilution rate range used.

  3. Study on conceptual design system of tritium production fusion reactor

    International Nuclear Information System (INIS)

    He Kaihui

    2004-11-01

    Conceptual design of an advanced tritium production reactor based on spherical torus, which is intermediate application of fusion energy, was presented. Different from traditional tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST were used to minimize tritium leakage and to maximize tritium breeding ratio with arrangement of tritium production blankets as possible as it can within vacuum vessel in order to produce 1 kg excess tritium except self-sufficient plasma core, corresponding plant availability 40% or more. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR was presented. Besides systematical analyses; design risk, uncertainty and backup are introduced generally for the backgrounds of next detailed conceptual design. (author)

  4. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    DEFF Research Database (Denmark)

    Schneider, M.; Johnson, T.; Dumont, R.

    2016-01-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail...... enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast...

  5. K factor for Higgs boson production via gluon fusion process at hadron colliders

    International Nuclear Information System (INIS)

    Tanaka, H.

    1992-01-01

    In this paper soft gluon corrections for Higgs boson production at hadron colliders are calculated. It is found that the soft contributions for the Higgs boson production via gluon fusion process is large and it cannot be neglected even at SSC energy. Some qualitative discussions for the QCD corrections to the Higgs boson production at hadron colliders and their background processes are presented for various Higgs boson mass cases

  6. Temperature derivatives for fusion reactivity of D-D and D-T

    Energy Technology Data Exchange (ETDEWEB)

    Langenbrunner, James R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makaruk, Hanna Ewa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-29

    Deuterium-tritium (D-T) and deuterium-deuterium (D-D) fusion reaction rates are observable using leakage gamma flux. A direct measurement of γ-rays with equipment that exhibits fast temporal response could be used to infer temperature, if the detector signal is amenable for taking the logarithmic time-derivative, alpha. We consider the temperature dependence for fusion cross section reactivity.

  7. Transport theory for energetic alpha particles and tolerable magnitude of error fields in tokamaks with broken symmetry

    International Nuclear Information System (INIS)

    Shaing, K.C.; Hsu, C.T.

    2014-01-01

    A transport theory for energetic fusion born alpha particles in tokamaks with broken symmetry has been developed. The theory is a generalization of the theory for neoclassical toroidal plasma viscosity for thermal particles in tokamaks. It is shown that the radial energy transport rate can be comparable to the slowing down rate for energetic alpha particles when the ratio of the typical magnitude of the perturbed magnetic field strength to that of the equilibrium magnetic field strength is of the order of 10 −4 or larger. This imposes a constraint on the magnitude of the error fields in thermonuclear fusion reactors. The implications on stellarators as potential fusion reactors are also discussed. (paper)

  8. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  9. Saturation of alpha particle driven instability in Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.; Chen, Y.; White, R.B.; Berk, H.L.

    1999-01-01

    A nonlinear theory of kinetic instabilities near threshold [Berk et al., Plasma Phys. Rep. 23, 842 (1997)] is applied to calculate the saturation level of toroidicity-induced Alfven eigenmodes (TAE), and to be compared with the predictions of δf method calculations (Y. Chen, Ph.D. thesis, Princeton University, 1998). Good agreement is observed between the predictions of both methods and the predicted saturation levels are comparable to experimentally measured amplitudes of the TAE oscillations in Tokamak Fusion Test Reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)]. copyright 1999 American Institute of Physics

  10. Reciprocal products of chromosomal translocations in human cancer pathogenesis: key players or innocent bystanders?

    Science.gov (United States)

    Rego, Eduardo M; Pandolfi, Pier Paolo

    2002-08-01

    Chromosomal translocations are frequently involved in the pathogenesis of leukemias, lymphomas and sarcomas. They can lead to aberrant expression of oncogenes or the generation of chimeric proteins. Classically, one of the products is thought to be oncogenic. For example, in acute promyelocytic leukaemia (APL), reciprocal chromosomal translocations involving the retinoic acid receptor alpha (RARalpha) gene lead to the formation of two fusion genes: X-RARalpha and RARalpha-X (where X is the alternative RARalpha fusion partner: PML, PLZF, NPM, NuMA and STAT 5b). The X-RARalpha fusion protein is indeed oncogenic. However, recent data indicate that the RARalpha-X product is also critical in determining the biological features of this leukemia. Here, we review the current knowledge on the role of reciprocal products in cancer pathogenesis, and highlight how their expression might impact on the biology of their respective tumour types.

  11. ICRF-induced DD fusion product losses in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Zweben, S.J.; Budny, R.V.

    1994-10-01

    When ICRF power is applied to TFTR plasmas in which there is no externally-supplied minority species, an enhanced loss of DD fusion products results. The characteristics of the loss are consistent with particles at or near the birth energy having their perpendicular velocity increased by the ICRF such that those near the passing/trapped boundary are carried into the first orbit loss cone. A rudimentary model of this process predicts losses of a magnitude similar to those seen. Extrapolations based upon this data for hypothetical ICRF ash removal from reactor plasmas suggest that the technique will not be energy efficient

  12. K-shell X-ray production cross sections of Ni induced by protons, alpha-particles, and He{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Bertol, A.P.L. [Programa de Pós-graduação em Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Hinrichs, R. [Programa de Pós-graduação em Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Vasconcellos, M.A.Z., E-mail: marcos@if.ufrgs.br [Programa de Pós-graduação em Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2015-11-15

    The proton, alpha-particle, and He{sup +} induced X-ray emissions of Ni were measured on mono-elemental thin films in order to obtain the K-shell X-ray production cross section in the energy range of 0.7–2.0 MeV for protons, 4.0–6.5 MeV for alpha-particles, and 3.0–4.0 MeV for He{sup +}. The proton-induced X-ray production cross section for Ni agreed well with the theoretical values, endorsing the quality of the measurements. The X-ray production cross section induced with alpha-particles is in good agreement with ECPSSR theory in the complete range of energies, while for He{sup +} that quantity is systematically below. K{sub β}/K{sub α} ratios were evaluated and compared with experimental and theoretical values.

  13. The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi

    NARCIS (Netherlands)

    Joosten, V.; Lokman, C.; Hondel, C.A.M.J.J. van den; Punt, P.J.

    2003-01-01

    In this review we will focus on the current status and views concerning the production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. We will focus on single-chain antibody fragment production (scFv and VHH) by these lower eukaryotes and the possible applications

  14. Production of fungal alpha-amylase by Saccharomyces kluyveri in glucose-limited cultivations

    DEFF Research Database (Denmark)

    Møller, Kasper; Sharif, M.Z.; Olsson, Lisbeth

    2004-01-01

    Heterologous protein production by the yeast Saccharomyces kluyveri was investigated under aerobic glucose-limited conditions. alpha-Amylase from Aspergillus oryzae was used as model protein and the gene was expressed from a S. cerevisiae 2 mu plasmid. For comparison, strains of both S. kluyveri ...

  15. Foil deposition alpha collector probe for TFTR's D-T phase

    International Nuclear Information System (INIS)

    Hermann, H.W.; Darrow, D.S.; Timberlake, J.; Zweben, S.J.; Chong, G.P.; Pitcher, C.S.; Macaulay-Newcombe, R.G.

    1995-03-01

    A new foil deposition alpha collector sample probe has been developed for TFTR's D-T phase. D-T fusion produced alpha particles escaping from the plasma are implanted in nickel foils located in a series of collimating ports on the detector. The nickel foils are removed from the tokamak after exposure to one or more plasma discharges and analyzed for helium content. This detector is intended to provide improved alpha particle energy resolution and pitch angle coverage over existing lost alpha detectors, and to provide an absolutely calibrated cross-check with these detectors. The ability to resolve between separate energy components of alpha particle loss is estimated to be ∼ 20%. A full 360 degree of pitch angle coverage is provided for by 8 channels having an acceptance range of ∼ 53 degree per channel. These detectors will be useful in characterizing classical and anomalous alpha losses and any collective alpha instabilities that may be excited during the D-T campaign of TFTR

  16. Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121 Using Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Dibyangana Raul

    2014-01-01

    Full Text Available Amylase is an enzyme that catalyzes the breakdown of starch into sugars and plays a pivotal role in a variety of areas like use as digestives, for the production of ethanol and high fructose corn syrup, detergents, desiring of textiles, modified starches, hydrolysis of oil-field drilling fluids, and paper recycling. In the present work, solid state fermentation (SSF for α-amylase production has been used in lieu of submerged fermentation (SmF due to its simple technique, low capital investment, lower levels of catabolite repression, and better product recovery. Bacillus subtilis has been well known as producer of alpha amylase and was tested using solid state fermentation for 48 hours at 37°C with wheat bran as substrate. Comparison between different fermentation hours demonstrated high yield of alpha amylase after 48 hours. This alpha amylase has optimum pH and temperature at 7.1 and 40°C, respectively. With the goal to purify alpha amylase, 30–70% (NH42SO4 cut concentrated the amylase activity threefold with respect to crude fermented extract. This was verified in quantitative DNS assay method as well as in zymogram gel profile. The exact molecular weight of the amylase is yet to be determined with the aid of other protein purification techniques.

  17. Overview of nonelectrical applications of fusion

    International Nuclear Information System (INIS)

    Miley, G.H.

    1979-01-01

    The potential for, and importance of, nonelectrical applications of fusion energy is discussed. Three possibilities are reviewed in some detail: fusion-fission hybrids for fissile fuel production; high-temperature electrolysis and thermochemical processes for hydrogen production; and high-temperature steam for coal gasification. The hybrid could be an early application of fusion if this route is identified as a desirable goal. Hydrogen production and coal gasification processes appear feasible and could be developed as a part of the conventional fusion blanket research and development. The question of economics, particularly in view of the high capital cost of fusion plants, remains an open issue requiring more study

  18. Fusion of product and process data: Batch-mode and real-time streaming

    Energy Technology Data Exchange (ETDEWEB)

    Vincent De Sapio; Spike Leonard

    1999-12-01

    In today's DP product realization enterprise it is imperative to reduce the design-to-fabrication cycle time and cost while improving the quality of DP parts (reducing defects). Much of this challenge resides in the inherent gap between the product and process worlds. The lack of seamless, bi-directional flow of information prevents true concurrency in the product realization world. This report addresses a framework for product-process data fusion to help achieve next generation product realization. A fundamental objective is to create an open environment for multichannel observation of process date, and subsequent mapping of that data onto product geometry. In addition to the sensor-based observation of manufacturing processes, model-based process data provides an important complement to empirically acquired data. Two basic groups of manufacturing models are process physics, and machine kinematics and dynamics. Process physics addresses analytical models that describe the physical phenomena of the process itself. Machine kinematic and dynamic models address the mechanical behavior of the processing equipment. As a secondary objective, an attempt has been made in this report to address part of the model-based realm through the development of an open object-oriented library and toolkit for machine kinematics and dynamics. Ultimately, it is desirable to integrate design definition, with all types of process data; both sensor-based and model-based. Collectively, the goal is to allow all disciplines within the product realization enterprise to have a centralized medium for the fusion of product and process data.

  19. Cold fusion research

    International Nuclear Information System (INIS)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy

  20. Alpha particle studies during JET DT experiments

    International Nuclear Information System (INIS)

    1999-01-01

    The 1997 DT experiment (DTE1) at the Joint European Torus included studies of the behaviour of alpha particles in high temperature plasmas. Clear alpha particle heating was observed in a series of otherwise similar 10MW hot-ion H-modes by scanning the DT mixture from 0%T to 93%T. Maxima in central temperature and energy content were obtained which corresponded with the maximum in fusion yield. Alfven Eigenmodes (AEs) have been detected in JET, driven by NBI or ICRH fast ions. However, in agreement with theory, no AE activity was observed in DT plasmas which could be attributed to alpha particle drive, except in the afterglow of some Optimised Shear pulses. Ion Cyclotron Emission (ICE) was detected at harmonics of the alpha particle cyclotron frequency at the outer edge of the plasma. The ICE is interpreted as being close to magnetoacoustic cyclotron instability, driven by inverted alpha distributions at the plasma edge. The high-energy neutral particle spectra showed features, which are ascribed to a mixture of alphas, neutralised by helium-like impurities, and deuterons, born from elastic collisions with alpha particles and neutralised by hydrogen-like impurities. The results of all these studies are consistent with classical alpha particle trapping and slowing-down. Future DT experiments will aim to increase alpha particle pressure, so interactions with plasma instabilities can be studied. The measurement of knock-on neutral triton spectra offers a clean way to determine confined alpha densities in these future experiments. (author)

  1. Alpha particle studies during JET DT experiments

    International Nuclear Information System (INIS)

    2001-01-01

    The 1997 DT experiment (DTE1) at the Joint European Torus included studies of the behaviour of alpha particles in high temperature plasmas. Clear alpha particle heating was observed in a series of otherwise similar 10MW hot-ion H-modes by scanning the DT mixture from 0%T to 93%T. Maxima in central temperature and energy content were obtained which corresponded with the maximum in fusion yield. Alfven Eigenmodes (AEs) have been detected in JET, driven by NBI or ICRH fast ions. However, in agreement with theory, no AE activity was observed in DT plasmas which could be attributed to alpha particle drive, except in the afterglow of some Optimised Shear pulses. Ion Cyclotron Emission (ICE) was detected at harmonics of the alpha particle cyclotron frequency at the outer edge of the plasma. The ICE is interpreted as being close to magnetoacoustic cyclotron instability, driven by inverted alpha distributions at the plasma edge. The high-energy neutral particle spectra showed features, which are ascribed to a mixture of alphas, neutralised by helium-like impurities, and deuterons, born from elastic collisions with alpha particles and neutralised by hydrogen-like impurities. The results of all these studies are consistent with classical alpha particle trapping and slowing-down. Future DT experiments will aim to increase alpha particle pressure, so interactions with plasma instabilities can be studied. The measurement of knock-on neutral triton spectra offers a clean way to determine confined alpha densities in these future experiments. (author)

  2. Status of fusion maintenance

    International Nuclear Information System (INIS)

    Fuller, G.M.

    1984-01-01

    Effective maintenance will be an essential ingredient in determining fusion system productivity. This level of productivity will result only after close attention is paid to the entire system as an entity and appropriate integration of the elements is made. The status of fusion maintenance is reviewed in the context of the entire system. While there are many challenging developmental tasks ahead in fusion maintenance, the required technologies are available in several high-technology industries, including nuclear fission

  3. Production and characterization of active recombinant interleukin-12/eGFP fusion protein in stably-transfected DF1 chicken cells.

    Science.gov (United States)

    Wu, Hsing Chieh; Chen, Yu San; Shen, Pin Chun; Shien, Jui Hung; Lee, Long Huw; Chiu, Hua Hsien

    2015-01-01

    The adjuvant activity of chicken interleukin-12 (chIL-12) protein has been described as similar to that of mammalian IL-12. Recombinant chIL-12 can be produced using several methods, but chIL-12 production in eukaryotic cells is lower than that in prokaryotic cells. Stimulating compounds, such as dimethyl sulfoxide (DMSO), can be added to animal cell cultures to overcome this drawback. In this study, we constructed a cell line, DF1/chIL-12 which stably expressed a fusion protein, chIL-12 and enhanced green fluorescent protein (eGFP) connected by a (G4 S)3 linker sequence. Fusion protein production was increased when cells were cultured in the presence of DMSO. When 1 × 10(6) DF1/chIL-12 cells were inoculated in a T-175 flask containing 30 mL of media, incubated for 15 h, and further cultivated in the presence of 4% DMSO for 48 h, the production of total fusion protein was mostly enhanced compared with the production of total fusion protein by using cell lysates induced with DMSO at other concentrations. The concentrations of the unpurified and purified total fusion proteins in cell lysates were 2,781 ± 2.72 ng mL(-1) and 2,207 ± 3.28 ng mL(-1) , respectively. The recovery rate was 79%. The fusion protein stimulated chicken splenocytes to produce IFN-γ, which was measured using an enzyme-linked immunosorbent assay, in the culture supernatant, indicating that treating DF1/chIL-12 cells with DMSO or producing chIL-12 in a fusion protein form does not have adverse effects on the bioactivity of chIL-12. © 2015 American Institute of Chemical Engineers.

  4. Assessing a new direction for fusion

    International Nuclear Information System (INIS)

    Waganer, L.M.

    2000-01-01

    The principal application proposed for fusion for the past 40 years has been the central station, electrical power generation plant. However, the sizable increases that were forecast for future electrical power demands have not been realized to date. Only coal power plants have been increasing (3%/year) generating capacity (Annual Energy Outlook, 1998) . Likewise, the ability of fusion to deliver economical electrical power has not been credibly postulated, much less demonstrated. Together these two factors have stagnated the commercialization of fusion power. It is now time for a reassessment of what fusion can best do for the world. Fusion, with a practically inexhaustible energy supply, has many unique properties that enable a wide variety of useful products. A study by the ARIES team is underway to review possible fusion applications and assess those with the potential to provide useful and worthwhile new products. A roadmap of possible applications has been developed to assess the utilization of the unique properties of the fusion process. The potential product categories are energy production (fuel, electricity, heat), space propulsion, altered or transmuted material properties (transmutation, waste treatment, tritium production), chemical compound dissociation (waste treatment, ore reduction, refining), and direct use of fusion nuclear products (radiography, lithography, radiotherapy, activation analyses). An evaluation methodology based on the success and failure of previous large, national and international technology development projects was developed to assess and recommend encouraging fusion product applications. A list of significant attributes was defined to describe and characterize projects that are likely to succeed or fail in the global marketplace. These attributes were assigned weights according to their perceived value to the national or global enterprise. An additive utility theory methodology was used to qualitatively evaluate the proposed

  5. The heavy quarkonium spectrum at order $m\\alpha_{s}^{5}\\ln\\alpha_{s}$

    CERN Document Server

    Brambilla, Nora; Soto, Joan; Vairo, Antonio

    1999-01-01

    We compute the complete leading-log terms of the next-to-next-to-next-to-leading-order corrections to potential NRQCD. As a by-product we obtain the leading logs at $O(m\\alpha_s^5)$ in the heavy quarkonium spectrum. These leading logs, when $\\Lambda_{QCD} \\ll m\\alpha_s^2$, give the complete $O(m\\alpha_s^5 \\ln \\alpha_s)$ corrections to the heavy quarkonium spectrum.

  6. Thermonuclear fusion

    International Nuclear Information System (INIS)

    Weisse, J.

    2000-01-01

    This document takes stock of the two ways of thermonuclear fusion research explored today: magnetic confinement fusion and inertial confinement fusion. The basic physical principles are recalled first: fundamental nuclear reactions, high temperatures, elementary properties of plasmas, ignition criterion, magnetic confinement (charged particle in a uniform magnetic field, confinement and Tokamak principle, heating of magnetized plasmas (ohmic, neutral particles, high frequency waves, other heating means), results obtained so far (scale laws and extrapolation of performances, tritium experiments, ITER project), inertial fusion (hot spot ignition, instabilities, results (Centurion-Halite program, laser experiments). The second part presents the fusion reactor and its associated technologies: principle (tritium production, heat source, neutron protection, tritium generation, materials), magnetic fusion (superconducting magnets, divertor (role, principle, realization), inertial fusion (energy vector, laser adaptation, particle beams, reaction chamber, stresses, chamber concepts (dry and wet walls, liquid walls), targets (fabrication, injection and pointing)). The third chapter concerns the socio-economic aspects of thermonuclear fusion: safety (normal operation and accidents, wastes), costs (costs structure and elementary comparison, ecological impact and external costs). (J.S.)

  7. Fusion fuel blanket technology

    International Nuclear Information System (INIS)

    Hastings, I.J.; Gierszewski, P.

    1987-05-01

    The fusion blanket surrounds the burning hydrogen core of a fusion reactor. It is in this blanket that most of the energy released by the nuclear fusion of deuterium-tritium is converted into useful product, and where tritium fuel is produced to enable further operation of the reactor. As fusion research turns from present short-pulse physics experiments to long-burn engineering tests in the 1990's, energy removal and tritium production capabilities become important. This technology will involve new materials, conditions and processes with applications both to fusion and beyond. In this paper, we introduce features of proposed blanket designs and update and status of international research. In focusing on the Canadian blanket technology program, we discuss the aqueous lithium salt blanket concept, and the in-reactor tritium recovery test program

  8. Atomic and plasma-material interaction data for fusion. V. 3

    International Nuclear Information System (INIS)

    1992-01-01

    This volume of Atomic and Plasma-Material Interaction Data for Fusion is devoted to atomic collision processes of helium atoms and of beryllium and boron atoms and ions in fusion plasmas. Most of the articles included in this volume are extended versions of the contributions presented at the IAEA experts' meetings on Atomic Data for Helium Beam Fusion Alpha Particle Diagnostics and on the Atomic Database for Beryllium and Boron, held in June 1991 at the IAEA headquarters in Vienna, or have resulted from the cross-section data analyses and evaluations performed by the working groups of these meetings. Refs, figs and tabs

  9. The effect of toroidal field ripple on confined alphas in TFTR D-T plasmas

    International Nuclear Information System (INIS)

    Duong, H.H.; Medley, S.S.

    1996-05-01

    The Pellet Charge Exchange (PCX) diagnostic on the Tokamak Fusion Test Reactor (TFTR) presently measures trapped alpha distribution functions with very small pitch angle (v parallel /v ∼ 0.05) at the midplane. The measured PCX alpha signal exhibits a depletion region near the outboard region. Results of the alpha energy spectra and radial profile suggest stochastic ripple diffusion is the cause of the depletion. Comparison of the ripple stochastization boundary with Goldston-White-Boozer theory also shows the correct functional dependence on alpha energy and q-profile

  10. MHD deceleration of fusion reaction products

    International Nuclear Information System (INIS)

    Chow, S.; Bohachevsky, I.O.

    1979-04-01

    The feasibility of magnetohydrodynamic (MHD) deceleration of fuel pellet debris ions exiting from an inertial confinement fusion (ICF) reactor cavity is investigated using one-dimensional flow equations. For engineering reasons, induction-type devices are emphasized; their performance characteristics are similar to those of electrode-type decelerators. Results of the analysis presented in this report indicate that MHD decelerators can be designed within conventional magnet technology to not only decelerate the high-energy fusion pellet debris ions but also to produce some net electric power in the process

  11. Engineered aggregation inhibitor fusion for production of highly amyloidogenic human islet amyloid polypeptide.

    Science.gov (United States)

    Mirecka, Ewa Agnieszka; Gremer, Lothar; Schiefer, Stephanie; Oesterhelt, Filipp; Stoldt, Matthias; Willbold, Dieter; Hoyer, Wolfgang

    2014-12-10

    Human islet amyloid polypeptide (IAPP) is the major component of pancreatic amyloid deposits in type 2 diabetes. The structural conversion of IAPP from a monomeric state into amyloid assemblies is the subject of intense research. Recombinant production of IAPP is, however, difficult due to its extreme aggregation propensity. Here we describe a novel strategy for expression of IAPP in Escherichia coli, based on an engineered protein tag, which sequesters IAPP monomers and prevents IAPP aggregation. The IAPP-binding protein HI18 was selected by phage display from a β-wrapin library. Fusion of HI18 to IAPP enabled the soluble expression of the construct. IAPP was cleaved from the fusion construct and purified to homogeneity with a yield of 3mg of isotopically labeled peptide per liter of culture. In the monomeric state, IAPP was largely disordered as evidenced by far-UV CD and liquid-state NMR spectroscopy but competent to form amyloid fibrils according to atomic force microscopy. These results demonstrate the ability of the engineered β-wrapin HI18 for shielding the hydrophobic sequence of IAPP during expression and purification. Fusion of aggregation-inhibiting β-wrapins is a suitable approach for the recombinant production of aggregation-prone proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Alternative splicing of T cell receptor (TCR) alpha chain transcripts containing V alpha 1 or V alpha 14 elements.

    Science.gov (United States)

    Mahotka, C; Hansen-Hagge, T E; Bartram, C R

    1995-10-01

    Human acute lymphoblastic leukemia cell lines represent valuable tools to investigate distinct steps of the complex regulatory pathways underlying T cell receptor recombination and expression. A case in point are V delta 2D delta 3 and subsequent V delta 2D delta 3J alpha rearrangements observed in human leukemic pre-B cells as well as in normal lymphopoiesis. The functional expression of these unusual (VD) delta (JC) alpha hybrids is almost exclusively prevented by alternative splicing events. In this report we show that alternative splicing at cryptic splice donor sites within V elements is not a unique feature of hybrid TCR delta/alpha transcripts. Among seven V alpha families analyzed by RT-PCR, alternatively spliced products were observed in TCR alpha recombinations containing V alpha 1 or V alpha 14 elements. In contrast to normal peripheral blood cells and thymocytes, the leukemia cell line JM expressing functional V alpha 1J alpha 3C alpha transcripts lacked evidence of aberrant TCR alpha RNA species.

  13. A Protein Disulfide Isomerase Gene Fusion Expression System That Increases the Extracellular Productivity of Bacillus brevis

    Science.gov (United States)

    Kajino, Tsutomu; Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Udaka, Shigezo; Yamada, Yukio; Takahashi, Haruo

    2000-01-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system. PMID:10653729

  14. Alpha particles emitted from the surface of granite, clay, and its fired products, 1

    International Nuclear Information System (INIS)

    Aratani, Michi; Otsuka, Hideko

    1975-01-01

    As a part of an investigation on ''the effect of long-time irradiation from a trace amount of radioisotopes'', the emitting rate of alpha particles per unit surface area (apparent) coming from natural alpha-particle emitters has been measured. The samples measured were granite and its weathered product; clay, especially potter's clay, and its fired product; pottery ware. The values obtained were 39.1 +-0.9--0.73+-0.08 cpm/100 cm 2 in granite, 16.8+-0.4--6.4+-0.2 cpm/100cm 2 in potter's clay, and 1.36+-0.04--0.82+-0.04 cpm/100cm 2 in pottery ware on substrate, and 1.33+-0.05--0.32+-0.02 cpm/100cm 2 on glazer. (auth.)

  15. Vacuum fusion of uranium; Fusion de l'uranium sous vide

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J. A.

    1957-06-04

    After having outlined that vacuum fusion and moulding of uranium and of its alloys have some technical and economic benefits (vacuum operations avoid uranium oxidation and result in some purification; precision moulding avoids machining, chip production and chemical reprocessing of these chips; direct production of the desired shape is possible by precision moulding), this report presents the uranium fusion unit (its low pressure enclosure and pumping device, the crucible-mould assembly, and the MF supply device). The author describes the different steps of cast production, and briefly comments the obtained results.

  16. Jet Production in ep Collisions at High $Q^2$ and Determination of $\\alpha_s$

    CERN Document Server

    Aaron, F.D.; Alimujiang, K.; Andreev, V.; Antunovic, B.; Asmone, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.-J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Naroska, B.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; von den Driesch, M.; Wegener, D.; Wissing, Ch.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.; Zus, R.

    2010-01-01

    The production of jets is studied in deep-inelastic ep scattering at large negative four momentum transfer squared 150alpha_s(M_Z) = 0.1168 +/-0.0007 (exp.) +0.0046/-0.0030 (th.) +/-0.0016(pdf).

  17. Mechanical design of a magnetic fusion production reactor

    International Nuclear Information System (INIS)

    Neef, W.S.; Jassby, D.L.

    1986-01-01

    The mechanical aspects of a tandem mirror and tokamak concepts for the tritium production mission are compared, and a proposed breeding blanket configuration for each type of reactor is presented in detail, along with a design outline of the complete fusion reaction system. In both cases, the reactor design is developed sufficiently to permit preliminary cost estimates of all components. A qualitative comparison is drawn between both concepts from the view of mechanical design and serviceability, and suggestions are made for technology proof tests on unique mechanical features. Detailed cost breakdowns indicate less than 10% difference in the overall costs of the two reactors

  18. Immunostimulatory effects of natural human interferon-alpha (huIFN-alpha) on carps Cyprinus carpio L.

    Science.gov (United States)

    Watanuki, Hironobu; Chakraborty, Gunimala; Korenaga, Hiroki; Kono, Tomoya; Shivappa, R B; Sakai, Masahiro

    2009-10-15

    Human interferon-alpha (huIFN-alpha) is an important immunomodulatory substance used in the treatment and prevention of numerous infectious and immune-related diseases in animals. However, the immunostimulatory effects of huIFN-alpha in fish remain to be investigated. In the current study, the immune responses of the carp species Cyprinus carpio L. to treatment with huIFN-alpha were analyzed via measurement of superoxide anion production, phagocytic activity and the expression of cytokine genes including interleukin-1beta, tumor necrosis factor-alpha and interleukin 10. Low doses of huIFN-alpha were administered orally once a day for 3 days, and sampling was carried out at 1, 3 and 5 days post-treatment. Our results indicate that a low dose of huIFN-alpha significantly increased phagocytic activity and superoxide anion production in the carp kidney. The huIFN-alpha-treated fish also displayed a significant upregulation in cytokine gene expression. The current study demonstrates the stimulatory effects of huIFN-alpha on the carp immune system and highlights the immunomodulatory role of huIFN-alpha in fish.

  19. Simultaneous improvement in production of microalgal biodiesel and high-value alpha-linolenic acid by a single regulator acetylcholine.

    Science.gov (United States)

    Parsaeimehr, Ali; Sun, Zhilan; Dou, Xiao; Chen, Yi-Feng

    2015-01-01

    Photoautotrophic microalgae are a promising avenue for sustained biodiesel production, but are compromised by low yields of biomass and lipids at present. We are developing a chemical approach to improve microalgal accumulation of feedstock lipids as well as high-value alpha-linolenic acid which in turn might provide a driving force for biodiesel production. We demonstrate the effectiveness of the small bioactive molecule "acetylcholine" on accumulation of biomass, total lipids, and alpha-linolenic acid in Chlorella sorokiniana. The effectiveness exists in different species of Chlorella. Moreover, the precursor and analogs of acetylcholine display increased effectiveness at higher applied doses, with maximal increases by 126, 80, and 60% over controls for biomass, total lipids, and alpha-linolenic acid, respectively. Production of calculated biodiesel was also improved by the precursor and analogs of acetylcholine. The biodiesel quality affected by changes in microalgal fatty acid composition was addressed. The chemical approach described here could improve the lipid yield and biodiesel production of photoautotrophic microalgae if combined with current genetic approaches.

  20. U. S. Fusion Energy Future

    International Nuclear Information System (INIS)

    Schmidt, John A.; Jassby, Dan; Larson, Scott; Pueyo, Maria; Rutherford, Paul H.

    2000-01-01

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems

  1. Intergenus Protoplast Fusion between Pichia manshurica and Rhodosporidium paludigenum to Increase the Production of Inulinase

    Directory of Open Access Journals (Sweden)

    Wijanarka Wijanarka

    2014-12-01

    Full Text Available The purposes of this study was to identify the optimum concentration of the lytic enzyme Glucanex for protoplast isolation and to conduct fusion for the purpose of increasing inulinase production. The study performs the protoplast fusion technique using Pichia manshurica and Rhodosporidium paludigenum. Protoplast fusion consists of a series of stages: protoplast isolation, protoplast fusion, protoplast regeneration, and analysis of hybrid fusion results. Protoplast isolation and fusion success rate are determined by various factors, including age of the culture, media type, and type of lytic enzymes used. Hybrid results were analyzed using a fungicide as a marker and measuring specific growth rate (μ of the hybrid compared with parental growth rates. Results demonstrated that a concentration of 4 mg/mL of Glucanex produces the greatest number of protoplasts, 7.2 x 1010 (cell/mL for P. manshurica and 8.8 x 1010 (cell/mL for Rh. paludigenum. The results of analysis of hybrid fusions indicate that the study has identified a new fusant, called fusant F4. Fusant F4 is capable of producing the highest inulinase, 0.6892 IU, compared with parentals P. manshurica, 0557 IU, and Rh. paludigenum, 0.3263 IU. Fusant F4 has specific growth rate (μ of 0.3360/h and generation time (g of 2.0629 h.

  2. “CLEAR BRANDY” PRODUCTION USING ALPHA ACID EXTRACT FROM HOPS IN THE BIOCIDAL CONTROL OF THE FERMENTATION PROCESS

    Directory of Open Access Journals (Sweden)

    Tassiana Amélia de Oliveira e Silva

    2016-01-01

    Full Text Available The major problem in the production of “clear brandy” is the contamination of the must by bacteria of the species Lactobacillus. To overcome this problem, this work intends to evaluate the usage of the alpha acids from hop extract (Humulus lupulus as antibacterial agent during brandy production. In addition, the maximum cell recycling was evaluated during the clear brandy production. Preliminary experiments using the Sabourand synthetic medium added with 40 ppm of the alpha acids reduced the cell viability of L. casei and L. plantarum bacteria from 108 CFU.mL-1 to 105 CFU.mL-1 and showed no effect in the growth of Saccharomyces cerevisiae. These experiments were conducted at 120 rpm and 25°C. The clear brandy production (200 L using the same alpha acids concentration (40 ppm and Saccharomyces cerevisiae cell recycling (14 times showed no contamination by bacteria. Then, the clear brandy was distilled in a 160 L cooper distiller. The clear brandy produced with and without alpha acids, was analyzed in the Laboratory of Alcohol and Beverages as well as in the Laboratory of Spectroscopy of the Cuban Research Institute of the Sugarcane Derivatives (ICIDCA in Spanish in Havana and showed similarities in their composition and sensorial chemical analysis.

  3. Transformer Recharging with Alpha Channeling in Tokamaks

    International Nuclear Information System (INIS)

    Fisch, N.J.

    2009-01-01

    Transformer recharging with lower hybrid waves in tokamaks can give low average auxiliary power if the resistivity is kept high enough during the radio frequency (rf) recharging stage. At the same time, operation in the hot ion mode via alpha channeling increases the effective fusion reactivity. This paper will address the extent to which these two large cost saving steps are compatible.

  4. Measurement of Higgs boson production via vector boson fusion in decays into W bosons with the ATLAS detector

    International Nuclear Information System (INIS)

    Bronner, Johanna

    2014-01-01

    The vector boson fusion production rate of the Standard Model Higgs boson has been measured in decays into two W bosons, each subsequently decaying into an electron or muon and a neutrino, with the ATLAS detector at the Large Hadron Collider (LHC). The vector boson fusion production cross section in the Standard Model is about an order of magnitude smaller than the dominant Higgs boson production cross section from gluon fusion. Proton-proton collision data at a center-of-mass energy of 8 TeV delivered by the LHC recorded with the ATLAS detector corresponding to an integrated luminosity of 21 fb -1 have been analyzed. Motivated by the recent discovery of a Higgs-like boson with a mass of (125.5±0.6) GeV and (125.7±0.4) GeV by the ATLAS and CMS collaborations at the LHC, the analysis is optimized for this mass. An excess of events, compatible with the Standard Model expectation for a Higgs boson with m H =125 GeV, is observed with a significance of 2.8 standard deviations when compared to the background-only expectation. The corresponding signal strength, the observed event rate relative to the Standard Model prediction of m H =125 GeV is 2.1 -0.8 +1.0 . A Higgs boson produced via vector boson fusion is excluded with 95% confidence level in the mass range between 152 GeV and 185 GeV. When combined with measurements of other Higgs boson production and decay channels by ATLAS, evidence for vector boson fusion production with a significance of 3.3 standard deviations is observed. All measurements of Higgs boson couplings to Standard Model particles are in agreement with the predictions of the Standard Model.

  5. Production of N-acetyl-D-neuraminic acid using two sequential enzymes overexpressed as double-tagged fusion proteins

    Directory of Open Access Journals (Sweden)

    Cheng Chung-Hsien

    2009-07-01

    Full Text Available Abstract Background Two sequential enzymes in the production of sialic acids, N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase and N-acetyl-D-neuraminic acid aldolase (Neu5Ac aldolase, were overexpressed as double-tagged gene fusions. Both were tagged with glutathione S-transferase (GST at the N-terminus, but at the C-terminus, one was tagged with five contiguous aspartate residues (5D, and the other with five contiguous arginine residues (5R. Results Both fusion proteins were overexpressed in Escherichia coli and retained enzymatic activity. The fusions were designed so their surfaces were charged under enzyme reaction conditions, which allowed isolation and immobilization in a single step, through a simple capture with either an anionic or a cationic exchanger (Sepharose Q or Sepharose SP that electrostatically bound the 5D or 5R tag. The introduction of double tags only marginally altered the affinity of the enzymes for their substrates, and the double-tagged proteins were enzymatically active in both soluble and immobilized forms. Combined use of the fusion proteins led to the production of N-acetyl-D-neuraminic acid (Neu5Ac from N-acetyl-D-glucosamine (GlcNAc. Conclusion Double-tagged gene fusions were overexpressed to yield two enzymes that perform sequential steps in sialic acid synthesis. The proteins were easily immobilized via ionic tags onto ionic exchange resins and could thus be purified by direct capture from crude protein extracts. The immobilized, double-tagged proteins were effective for one-pot enzymatic production of sialic acid.

  6. Genetics Home Reference: alpha thalassemia

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Alpha thalassemia Alpha thalassemia Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Alpha thalassemia is a blood disorder that reduces the production ...

  7. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  8. Cold fusion

    International Nuclear Information System (INIS)

    Koster, J.

    1989-01-01

    In this contribution the author the phenomenom of so-called cold fusion, inspired by the memorable lecture of Moshe Gai on his own search for this effect. Thus much of what follows was presented by Dr. Gai; the rest is from independent reading. What is referred to as cold fusion is of course the observation of possible products of deuteron-deuteron (d-d) fusion within deuterium-loaded (dentended) electrodes. The debate over the two vanguard cold fusion experiments has raged under far more public attention than usually accorded new scientific phenomena. The clamor commenced with the press conference of M. Fleishmann and S. Pons on March 23, 1989 and the nearly simultaneous wide circulation of a preprint of S. Jones and collaborators. The majority of work attempting to confirm these observations has at the time of this writing yet to appear in published form, but contributions to conferences and electronic mail over computer networks were certainly filled with preliminary results. To keep what follows to a reasonable length the author limit this discussion to the searches for neutron (suggested by ref. 2) or for excessive heat production (suggested by ref. 1), following a synopsis of the hypotheses of cold fusion

  9. Tumour necrosis factor-alpha blockers: potential limitations in the management of advanced endometriosis? A case report.

    Science.gov (United States)

    Shakiba, Khashayar; Falcone, Tommaso

    2006-09-01

    Several studies have shown that tumour necrosis factor (TNF)-alpha levels are increased in the peritoneal fluid of women with endometriosis, with correlation between TNF-alpha concentrations and the degree of disease. It is also likely that elevation of peritoneal fluids' TNF-alpha levels may play a role in the pathogenesis of infertility associated with endometriosis. Use of drugs such as etanercept, a TNF-alpha receptor immunoglobulin fusion protein which inhibits TNF-alpha activity, showed in an animal study to reduce the severity of the disease, and the size of endometriotic foci. TNF-alpha blockers were recommended as a possible new line of therapy for endometriosis. Our case involved a 35-year-old Para 0, with rheumatic arthritis and stage 4 endometriosis. After 6 years of constant use of etanercept, she showed no improvement of endometriosis as demonstrated at laparoscopy. However, she underwent a successful IVF after the first attempt. TNF-alpha-blocker medications might not be beneficial for patients with advanced endometriosis. However, we cannot exclude the possible effect of these medications on early-stage endometriosis, and further study is required. Some of the immunologic abnormalities in the pelvis of patients with endometriosis could be the consequence of the disease and not the cause, and possibly suppression of immune cells and their products may not have a major effect on endometriotic lesions at an advanced stage. This also could explain why suppression of TNF-alpha showed no effect on infertility. However, use of TNF-alpha-blockers before IVF might increase the success rate in advanced endometriosis.

  10. Determination of radium-226 by high-resolution alpha spectrometry

    International Nuclear Information System (INIS)

    Sill, C.W.

    1983-01-01

    Condition were determined under which high resolution and accurate and reliable results can be obtained. Refractory solids are dissolved completely by fusion with KF and Ba-133 tracer. The fluoride cake is then transposed with sulfuric acid to a pyrosulfate fusion. Radium is precipitated with barium by addition of lead perchlorate to a dilute HCl solution of the pyrosulfate cake. The resulting insoluble sulfates are dissolved in an alkaline solution of DTPA and the Ra and Ba sulfates are reprecipitated with acetic acid to produce very small crystals. The precipitate is mounted on 0.1-μm membrane filter and analyzed by alpha spectrometry. Water samples are partially evaporated and treated similarly. Resolution, almost as good as with actinides electrodeposited on polished steel plates, is about 60 keV full-width-half-maximum with 100 μg of barium on a 1-inch filter with a 450 mm 2 detector at 20% counting efficiency. Recovery is about 97%. One solid sample can be prepared for counting in less than 2 hours. Methods are discussed for ensuring reliability of the results. Severe contamination of the surface-barrier detector by polonium-210 and recoil products is discussed

  11. Peaceful fusion

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Matthias [IANUS, TU Darmstadt (Germany)

    2014-07-01

    Like other intense neutron sources fusion reactors have in principle a potential to be used for military purposes. Although the use of fissile material is usually not considered when thinking of fusion reactors (except in fusion-fission hybrid concepts) quantitative estimates about the possible production potential of future commercial fusion reactor concepts show that significant amounts of weapon grade fissile materials could be produced even with very limited amounts of source materials. In this talk detailed burnup calculations with VESTA and MCMATH using an MCNP model of the PPCS-A will be presented. We compare different irradiation positions and the isotopic vectors of the plutonium bred in different blankets of the reactor wall with the liquid lead-lithium alloy replaced by uranium. The technical, regulatory and policy challenges to manage the proliferation risks of fusion power will be addressed as well. Some of these challenges would benefit if addressed at an early stage of the research and development process. Hence, research on fusion reactor safeguards should start as early as possible and accompany the current research on experimental fusion reactors.

  12. Fusion: an energy source for synthetic fuels

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J; Steinberg, M.

    1980-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  13. Response surface methodology for the optimization of alpha amylase production by serratia marcescens SB08

    International Nuclear Information System (INIS)

    Venil, C.K.; Lakshmanaperumalsamy, P.

    2008-01-01

    In this work, central composite design combining with response surface methodology was successfully employed to optimize medium composition for the production of alpha amylase by Serratia marcescens SB08 in submerged fermentation. The process parameters that influence the enzyme production were identified using Plackett- Burman design. Among the various factors screened, inoculum concentration, pH, NaCl and CaCl/sub 2/ were found to be most significant. The optimum level of pH was 5.0, inoculum concentration 3%, NaCl 0.30 g/l and CaCl/sub 2/ 0.13 g/l. The actual enzyme yield before and after optimization was 56.43 U/ml and 87.23 U/ml, respectively. Thus, it is advisable to the microbial industry sponsors to apply such profitable bioprocess to maintain high yield for mass production of alpha amylase. (author)

  14. Concomitant production of two proteases and alpha-amylase by a novel strain of Bacillus subtilis in a microprocessor controlled bioreactor

    Directory of Open Access Journals (Sweden)

    Hamid Mukhtar

    2012-09-01

    Full Text Available We describe the simultaneous production of Bacillus subtilis based proteases and alpha amylase using a computer controlled laboratory scale 7.5 L batch bioreactor. The present strain is the first to be reported that concomitantly produces these two industrially important enzymes. The growth and sporulation of Bacillus subtilis was monitored and maximum production of alkaline protease and alpha amylase was found to coincide with maximum sporulation. Two types of proteases were detected in the fermentation broth; a neutral and an alkaline protease most active in a pH range of 7.0-8.0 and 8.0-10, respectively. Maximum production of proteases was observed at an incubation temperature of 37ºC while that of alpha amylase was observed at 40ºC. The optimum aeration and agitation levels for protease production were 0.6 L/L/min and 200rpm, respectively, and for alpha amylase were 0.6 L/L/min and 150 rpm. The kinetic parameters Yp/x and qp were also found to be significant at the given fermentation conditions.

  15. Higgs pair production in vector-boson fusion at the LHC and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Bishara, Fady [University of Oxford, Rudolf Peierls Centre for Theoretical Physics, Oxford (United Kingdom); Contino, Roberto [Scuola Normale Superiore, Pisa (Italy); EPFL, Institut de Theorie des Phenomenes Physiques, Lausanne (Switzerland); CERN, Theoretical Physics Department, Geneva (Switzerland); INFN Pisa, Pisa (Italy); Rojo, Juan [VU University Amsterdam, Department of Physics and Astronomy, Amsterdam (Netherlands); Nikhef, Amsterdam (Netherlands)

    2017-07-15

    The production of pairs of Higgs bosons at hadron colliders provides unique information on the Higgs sector and on the mechanism underlying electroweak symmetry breaking (EWSB). Most studies have concentrated on the gluon-fusion production mode which has the largest cross section. However, despite its small production rate, the vector-boson fusion channel can also be relevant since even small modifications of the Higgs couplings to vector bosons induce a striking increase of the cross section as a function of the invariant mass of the Higgs boson pair. In this work we exploit this unique signature to propose a strategy to extract the hhVV quartic coupling and provide model-independent constraints on theories where EWSB is driven by new strong interactions. We take advantage of the higher signal yield of the b anti bb anti b final state and make extensive use of jet-substructure techniques to reconstruct signal events with a boosted topology, characteristic of large partonic energies, where each Higgs boson decays to a single collimated jet. Our results demonstrate that the hhVV coupling can be measured with 45% (20%) precision at the LHC for L = 300 (3000) fb{sup -1}, while a 1% precision can be achieved at a 100 TeV collider. (orig.)

  16. Higgs pair production in vector-boson fusion at the LHC and beyond.

    Science.gov (United States)

    Bishara, Fady; Contino, Roberto; Rojo, Juan

    2017-01-01

    The production of pairs of Higgs bosons at hadron colliders provides unique information on the Higgs sector and on the mechanism underlying electroweak symmetry breaking (EWSB). Most studies have concentrated on the gluon-fusion production mode which has the largest cross section. However, despite its small production rate, the vector-boson fusion channel can also be relevant since even small modifications of the Higgs couplings to vector bosons induce a striking increase of the cross section as a function of the invariant mass of the Higgs boson pair. In this work we exploit this unique signature to propose a strategy to extract the hhVV quartic coupling and provide model-independent constraints on theories where EWSB is driven by new strong interactions. We take advantage of the higher signal yield of the [Formula: see text] final state and make extensive use of jet-substructure techniques to reconstruct signal events with a boosted topology, characteristic of large partonic energies, where each Higgs boson decays to a single collimated jet. Our results demonstrate that the hhVV coupling can be measured with 45% (20%) precision at the LHC for [Formula: see text] (3000) fb[Formula: see text], while a 1% precision can be achieved at a 100 TeV collider.

  17. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1994-07-01

    40 papers are presented at this 21. conference on controlled fusion and plasma physics (JET). Titles are: effects of sawtooth crashes on beams ions and fusion product tritons; beta limits in H-modes and VH-modes; impurity induced neutralization of MeV energy protons in JET plasmas; lost α particle diagnostic for high-yield D-T fusion plasmas; 15-MeV proton emission from ICRF-heated plasmas; pulse compression radar reflectometry for density measurements; gamma-ray emission profile measurements during ICRH discharges; the new JET phase ICRH array; simulation of triton burn-up; parametric dependencies of JET electron temperature profiles; detached divertor plasmas; excitation of global Alfven Eigenmodes by RF heating; mechanisms of toroidal rotation; effect of shear in the radial electric field on confinement; plasma transport properties at the L-H transition; numerical study of plasma detachment conditions in JET divertor plasmas; the SOL width and the MHD interchange instability; non linear magnetic reconnection in low collisionality plasmas; topology and slowing down of high energy ion orbits; sawtooth crashes at high beta; fusion performances and alpha heating in future JET D-T plasmas; a stable route to high-beta plasmas with non-monotonic q-profiles; theory of propagation of changes to confinement; spatial distribution of gamma emissivity and fast ions during ICRF heating; multi-camera soft X-ray diagnostic; radiation phenomena and particle fluxes in the X-event; local measurement of transport parameters for laser injected trace impurities; impurity transport of high performance discharges; negative snakes and negative shear; neural-network charge exchange analysis; ion temperature anisotropy in helium neutral beam fuelling; impurity line emission due to thermal charge exchange in edge plasmas; control of convection by fuelling and pumping; VH mode accessibility and global H-mode properties; ion cyclotron emission by spontaneous emission; LHCD/ICRH synergy

  18. Inertial fusion commercial power plants

    International Nuclear Information System (INIS)

    Logan, B.G.

    1994-01-01

    This presentation discusses the motivation for inertial fusion energy, a brief synopsis of five recently-completed inertial fusion power plant designs, some general conclusions drawn from these studies, and an example of an IFE hydrogen synfuel plant to suggest that future fusion studies consider broadening fusion use to low-emission fuels production as well as electricity

  19. The ALPHA detector : Module Production and Assembly

    CERN Document Server

    Andresen, G; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Gill, D R; Hangst, J S; Hydomako, R; Jenkins, M J; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y; Ashkezari, M D; Baquero-Ruiz, M; Butler, E; Deller, A; Eriksson, S; Friesen, T; Gutierrez, A; Hardy, W N; Hayden, M E; Humphries, A J; Jonsell, S; McKenna, J T K; Menary, S; Pusa, P; Sampson, J; Seddon, D; Seif el Nasr, S; So, C; Thornhill, J; Wells, D; Jorgensen, L V

    2012-01-01

    ALPHA is one of the experiments situated at CERN's Antiproton Decelerator (AD). A Silicon Vertex Detector (SVD) is placed to surround the ALPHA atom trap. The main purpose of the SVD is to detect and locate antiproton annihilation events by means of the emitted charged pions. The SVD system is presented with special focus given to the design, fabrication and performance of the modules.

  20. Alpha diagnostics using pellet charge exchange: Results on TFTR and prospects for ITER

    International Nuclear Information System (INIS)

    Fisher, R.K.; Duong, H.H.; McChesney, J.M.

    1996-05-01

    Confinement of alpha particles is essential for fusion ignition and alpha physics studies are a major goal of the TFTR, JET, and ITER DT experiments, but alpha measurements remain one of the most challenging plasma diagnostic tasks. The Pellet Charge Exchange (PCX) diagnostic has successfully measured the radial density profile and energy distribution of fast (0.5 to 3.5 MeV) confined alpha particles in TFTR. This paper describes the diagnostic capabilities of PCX demonstrated on TFTR and discusses the prospects for applying this technique to ITER. Major issues on ITER include the pellet's perturbation to the plasma and obtaining satisfactory pellet penetration into the plasma

  1. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  2. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Science.gov (United States)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  3. Fusion of 8He with 206Pb around Coulomb barrier energies

    Directory of Open Access Journals (Sweden)

    Raabe R.

    2011-10-01

    Full Text Available The experimental study of the fusion of light neutron-rich nucleus 8He with 206Pb is reported in this work. A fusion stack of 206Pb targets has been used for this study. The most prominent evaporation residue (210Po, which has half-life of 138 days and decays by alpha emission, is populated in the reaction. Radiochemical analysis technique is used to extract the yield of this evaporation residue.

  4. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  5. Unweighted event generation in hadronic WZ production at order $(\\alpha_{S})$

    CERN Document Server

    Dobbs, Matt; Lefebvre, Michel

    2001-01-01

    We present an algorithm for unweighted event generation in the partonic process pp -> WZ (j) with leptonic decays at next-to-leading order in alpha_S. Monte Carlo programs for processes such as this frequently generate events with negative weights in certain regions of phase space. For simulations of experimental data one would like to have unweighted events only. We demonstrate how the phase space from the matrix elements can be combined to achieve unweighted event generation using a second stage Monte Carlo integration over a volume of real emissions (jets). Observable quantities are kept fixed in the laboratory frame throughout the integration. The algorithm is applicable to a broader class of processes and is CPU intensive.

  6. Novel, spherically-convergent ion systems for neutron source and fusion energy production

    International Nuclear Information System (INIS)

    Barnes, D.C.; Nebel, R.A.; Ribe, F.L.; Schauer, M.M.; Schranck, L.S.; Umstadter, K.R.

    1999-01-01

    Combining spherical convergence with electrostatic or electro-magnetostatic confinement of a nonneutral plasma offers the possibility of high fusion gain in a centimeter-sized system. The physics principles, scaling laws, and experimental embodiments of this approach are presented. Steps to development of this approach from its present proof-of-principle experiments to a useful fusion power reactor are outlined. This development path is much less expensive and simpler, compared to that for conventional magnetic confinement and leads to different and useful products at each stage. Reactor projections show both high mass power density and low to moderate wall loading. This approach is being tested experimentally in PFX-I (Penning Fusion eXperiment-Ions), which is based on the following recent advances: 1) Demonstration, in PFX (our former experiment), that it is possible to combine nonneutral electron plasma confinement with nonthermal, spherical focussing; 2) Theoretical development of the POPS (Periodically Oscillating Plasma Sphere) concept, which allows spherical compression of thermal-equilibrium ions; 3) The concept of a massively-modular approach to fusion power, and associated elimination of the critical problem of extremely high first wall loading. PFX-I is described. PFX-I is being designed as a small (<1.5 cm) spherical system into which moderate-energy electrons (up to 100 kV) are injected. These electrons are magnetically insulated from passing to the sphere and their space charge field is then used to spherically focus ions. Results of initial operation with electrons only are presented. Deuterium operation can produce significant neutron output with unprecedented efficiency (fusion gain Q). copyright 1999 American Institute of Physics

  7. Alpha Beam Energy Determination Using a Range Measuring Device for Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun Yong; Kim, Byeon Gil; Hong, Seung Pyo; Kim, Ran Young; Chun, Kwon Soo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-05-15

    The threshold energy of the {sup 209}Bi(α,3n){sup 210} At reaction is at about 30MeV. Our laboratory suggested an energy measurement method to confirm the proton-beam's energy by using a range measurement device. The experiment was performed energy measurement of alpha beam. The alpha beam of energy 29 MeV has been extracted from the cyclotron for the production of {sup 211}At. This device was composed of four parts: an absorber, a drive shaft, and a servo motor and a Faraday cup. The drive shaft was mounted on the absorber and connects with the axis of the servo motor and rotates linearly and circularly by this servo motor. A Faraday cup is for measuring the beam flux. As this drive shaft rotates, the thickness of the absorber varies depending on the rotation angle of the absorber. The energy of the alpha particle accelerated and extracted from MC-50 cyclotron was calculated with the measurement of the particle range in Al foil and using ASTAR, SRIM, MCNPX software. There were a little discrepancy between the expected energy and the calculated energy within the 0.5MeV error range. We have a plan to make an experiment with various alpha particle energies and another methodology, for example, the cross section measurement of the nuclear reaction.

  8. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase

    DEFF Research Database (Denmark)

    Kramhøft, Birte; Bak-Jensen, Kristian Sass; Mori, Haruhide

    2005-01-01

    Barley alpha-amylase 1 (AMY1) hydrolyzed amylose with a degree of multiple attack (DMA) of 1.9; that is, on average, 2.9 glycoside bonds are cleaved per productive enzyme-substrate encounter. Six AMY1 mutants, spanning the substrate binding cleft from subsites -6 to +4, and a fusion protein, AMY1...... translocation of substrate in the binding cleft upon the initial cleavage to produce G6-G10, essentially independent of subsite mutations, and short-distance moves resulting in individually very different rates of release of G1-G4. Accordingly, the degree of multiple attack as well as the profile of products...

  9. Magnetic-fusion program

    International Nuclear Information System (INIS)

    1980-08-01

    In February 1980, the Director of Energy Research requested that the Energy Research Advisory Board (ERAB) review the Department of Energy (DOE) Magnetic Fusion Program. Of particular concern to the DOE was the judicious choice of the next major steps toward demonstration of economic power production from fusion. Of equal concern was the overall soundness of the DOE Magnetic Fusion Program: its pace, scope, and funding profiles. Their finding and recommendations are included

  10. DD fusion neutron production at UW-Madison using IEC devices

    Science.gov (United States)

    Fancher, Aaron; Michalak, Matt; Kulcinski, Gerald; Santarius, John; Bonomo, Richard

    2017-10-01

    An inertial electrostatic confinement (IEC) device using spherical, gridded electrodes at high voltage accelerates deuterium ions, allowing for neutrons to be produced within the device from DD fusion reactions. The effects of the device cathode voltage (30-170 kV), current (30-100 mA), and pressure (0.15-1.25 mTorr) on the neutron production rate have been measured. New high voltage capabilities have resulted in the achievement of a steady state neutron production rate of 3.3x108 n/s at 175 kV, 100 mA, and 1.0 mTorr of deuterium. Applications of IEC devices include the production of DD neutrons to detect chemical explosives and special nuclear materials using active interrogation methods. Research supported by US Dept. of Homeland Security Grant 2015-DN-077-AR1095 and the Grainger Foundation.

  11. Heterologous production of peptides in plants: fusion proteins and beyond.

    Science.gov (United States)

    Viana, Juliane Flávia Cançado; Dias, Simoni Campos; Franco, Octávio Luiz; Lacorte, Cristiano

    2013-11-01

    Recombinant DNA technology has allowed the ectopic production of proteins and peptides of different organisms leading to biopharmaceutical production in large cultures of bacterial, yeasts and mammalian cells. Otherwise, the expression of recombinant proteins and peptides in plants is an attractive alternative presenting several advantages over the commonly used expression systems including reduced production costs, easy scale-up and reduced risks of pathogen contamination. Different types of proteins and peptides have been expressed in plants, including antibodies, antigens, and proteins and peptides of medical, veterinary and industrial applications. However, apart from providing a proof of concept, the use of plants as platforms for heterologous protein and peptide production still depends on key steps towards optimization including the enhancement of expression levels, manipulation of post-transcriptional modifications and improvements in purification methods. In this review, strategies to increase heterologous protein and peptide stability and accumulation are discussed, focusing on the expression of peptides through the use of gene fusions.

  12. Cellulose binding domain fusion proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  13. Fusion reaction around the Coulomb barrier with neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Atsushi [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-07-01

    Two fusion reactions with neutron-rich nuclei are reported in this work. On the first reaction: {sup 9,10,11}Be+{sup 209}Bi, the fusion cross sections around the coulomb barrier were measured by determing {alpha} disintegration from compound nucleus Fr. In the field of 10-100 mb, the same total fusion cross sections were obtained. The phenomenon {sup 11}Be(neutron halo nucleus) alone increased and decreased was not observed. The fusion cross sections of {sup 27,29,31}Al+{sup 197}Au system were determined by using 130 kcps and 30 kcps of beam strength of {sup 29,31}Al, respectively. The value of {sup 27}Al was reproduced by calculation, but that of {sup 29}Al increased around barrier which could not be explained by CCDEF calculation. (S.Y.)

  14. Multineutron emission cross-sections of Pb-208 and Bi-209 for use in fusion technology

    International Nuclear Information System (INIS)

    Garg, S.

    1995-01-01

    Pb-208 and Bi-209 are considered as promising materials for fusion blankets because of their superior neutron multiplying characteristics. In this paper, emission cross-sections for neutrons, protons, alpha-particles and gamma-rays are investigated for these nuclides in the energy range 8-30 MeV using the framework of the multistep Hauser-Feshbach statistical theory combined with the Kalbach exciton model for the pre-equilibrium decay and the Brink - Axel model of the giant dipole resonance to account for the radiative capture competition. Appropriate optical model potential parameters are selected to evaluate the compound nucleus reaction cross-sections at different neutron incident energies. (n,n'), (n,2n), (n,3n), (n,4n) and the total production cross-sections for neutrons, protons, alpha-particles and gamma-rays are inferred by performing consistent calculations. (author). 22 refs, 3 figs

  15. Tritium experience in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Skinner, C.H.; Blanchard, W.; Hosea, J.; Mueller, D.; Nagy, A.; Hogan, J.

    1998-01-01

    Tritium management is a key enabling element in fusion technology. Tritium fuel was used in 3.5 years of successful deuterium-tritium (D-T) operations in the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The D-T campaign enabled TFTR to explore the transport, alpha physics, and MHD stability of a reactor core. It also provided experience with tritium retention and removal that highlighted the importance of these issues in future D-T machines. In this paper, the authors summarize the tritium retention and removal experience in TFTR and its implications for future reactors

  16. The fusion-fission hybrid

    International Nuclear Information System (INIS)

    Teller, E.

    1985-01-01

    As the history of the development of fusion energy shows, a sustained controlled fusion reaction is much more difficult to produce than rapid uncontrolled release of fusion energy. Currently, the ''magnetic bottle'' technique shows sufficient progress that it might applied for the commercial fuel production of /sup 233/U, suitable for use in fission reactors, by developing a fusion-fission hybrid. Such a device would consist of a fusion chamber core surrounded by a region containing cladded uranium pellets cooled by helium, with lithium salts also present to produce tritium to refuel the fusion process. Successful development of this hybrid might be possible within 10 y, and would provide both experience and funds for further development of controlled fusion energy

  17. The perspectives of fusion energy: The roadmap towards energy production and fusion energy in a distributed energy system

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Korsholm, Søren Bang

    2014-01-01

    at very high temperature where all matter is in the plasma state as the involved energies are orders of magnitude higher than typical chemical binding energies. It is one of the great science and engineering challenges to construct a viable power plant based on fusion energy. Fusion research is a world...... The presentation will discuss the present status of the fusion energy research and review the EU Roadmap towards a fusion power plant. Further the cost of fusion energy is assessed as well as how it can be integrated in the distributed energy system......Controlled thermonuclear fusion has the potential of providing an environmentally friendly and inexhaustible energy source for mankind. Fusion energy, which powers our sun and the stars, is released when light elements, such as the hydrogen isotopes deuterium and tritium, fuse together. This occurs...

  18. Subinhibitory concentrations of thymol reduce enterotoxins A and B and alpha-hemolysin production in Staphylococcus aureus isolates.

    Directory of Open Access Journals (Sweden)

    Jiazhang Qiu

    Full Text Available BACKGROUND: Targeting bacterial virulence factors is now gaining interest as an alternative strategy to develop new types of anti-infective agents. It has been shown that thymol, when used at low concentrations, can inhibit the TSST-1 secretion in Staphylococcus aureus. However, there are no data on the effect of thymol on the production of other exotoxins (e.g., alpha-hemolysin and enterotoxins by S. aureus. METHODOLOGY/PRINCIPAL FINDINGS: Secretion of alpha-hemolysin, SEA and SEB in both methicillin-sensitive and methicillin-resistant S. aureus isolates cultured with graded subinhibitory concentrations of thymol was detected by immunoblot analysis. Hemolysin and tumor necrosis factor (TNF release assays were performed to elucidate the biological relevance of changes in alpha-hemolysin, SEA and SEB secretion induced by thymol. In addition, the influence of thymol on the transcription of hla, sea, and seb (the genes encoding alpha-hemolysin, SEA and SEB, respectively was analyzed by quantitative RT-PCR. Thymol inhibited transcription of hla, sea and seb in S. aureus, resulting in a reduction of alpha-hemolysin, SEA and SEB secretion and, thus, a reduction in hemolytic and TNF-inducing activities. CONCLUSIONS/SIGNIFICANCE: Subinhibitory concentrations of thymol decreased the production of alpha-hemolysin, SEA and SEB in both MSSA and MRSA in a dose-dependent manner. These data suggest that thymol may be useful for the treatment of S. aureus infections when used in combination with beta-lactams and glycopeptide antibiotics, which induce expression of alpha-hemolysin and enterotoxins at subinhibitory concentrations. Furthermore, the structure of thymol may potentially be used as a basic structure for development of drugs aimed against these bacterial virulence factors.

  19. A phenomenological explanation for the anomalous ion heating observed in the JET alpha-heating experiment of 1997

    Science.gov (United States)

    Testa, D.; Albergante, M.

    2012-08-01

    In the so-called ‘alpha-heating’ experiment performed on the JET tokamak during the deuterium-tritium campaign of 1997, the ion temperature was found to be far exceeding (both in absolute value and in its rise time) the level that could have been expected from direct collisional heating by the fusion-born alpha particles themselves and energy equipartition with the electrons. To date, no explanation has been put forward for this long standing puzzle, despite much work having been performed on this subject in the early 2000s. Two analysis methods that have recently become available have been employed to re-analyse these observations of an anomalous ion heating. First, an algorithm based on the sparse representation of signals has been used to analyse magnetic, reflectometry and electron-cyclotron emission measurements of the turbulence spectra in the drift-wave range of frequencies. This analysis has then been complemented with turbulence simulations performed with the GENE code. We find, both experimentally and in the simulations, that the presence of a minority, but sufficiently large, population of fusion-born alpha particles that have not yet fully thermalized stabilizes the turbulence in the ion-drift direction, but practically does not affect the turbulence in the electron-drift direction. We link such stabilization of the ion-drift-wave turbulence to the increase in the ion temperature above the level achieved in similar discharges that did not have (at all or enough) alpha particles. When the fusion-born alpha particles have fully thermalized, the turbulence spectrum in the ion-drift direction reappears at somewhat larger amplitudes, which we link to the ensuing reduction in the ion temperature. This phenomenological dynamics fully corresponds to the actual experimental observations. By taking into account an effect of the alpha particles that had not been previously considered, our new analysis finally presents a phenomenological explanation for the so

  20. A phenomenological explanation for the anomalous ion heating observed in the JET alpha-heating experiment of 1997

    International Nuclear Information System (INIS)

    Testa, D.; Albergante, M.

    2012-01-01

    In the so-called ‘alpha-heating’ experiment performed on the JET tokamak during the deuterium–tritium campaign of 1997, the ion temperature was found to be far exceeding (both in absolute value and in its rise time) the level that could have been expected from direct collisional heating by the fusion-born alpha particles themselves and energy equipartition with the electrons. To date, no explanation has been put forward for this long standing puzzle, despite much work having been performed on this subject in the early 2000s. Two analysis methods that have recently become available have been employed to re-analyse these observations of an anomalous ion heating. First, an algorithm based on the sparse representation of signals has been used to analyse magnetic, reflectometry and electron-cyclotron emission measurements of the turbulence spectra in the drift-wave range of frequencies. This analysis has then been complemented with turbulence simulations performed with the GENE code. We find, both experimentally and in the simulations, that the presence of a minority, but sufficiently large, population of fusion-born alpha particles that have not yet fully thermalized stabilizes the turbulence in the ion-drift direction, but practically does not affect the turbulence in the electron-drift direction. We link such stabilization of the ion-drift-wave turbulence to the increase in the ion temperature above the level achieved in similar discharges that did not have (at all or enough) alpha particles. When the fusion-born alpha particles have fully thermalized, the turbulence spectrum in the ion-drift direction reappears at somewhat larger amplitudes, which we link to the ensuing reduction in the ion temperature. This phenomenological dynamics fully corresponds to the actual experimental observations. By taking into account an effect of the alpha particles that had not been previously considered, our new analysis finally presents a phenomenological explanation for the

  1. Fusion program overview

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1983-01-01

    There has been and continues to be a perceived need for the fusion energy option in our energy future. The National Energy Plan states that ''the Federal Government recognizes a direct responsibility to demonstrate the scientific and engineering feasibility of fusion''. The goal of the program, in exercising this responsibility, is to develop the knowledge base upon which decisions on the commercial feasibility of fusion will be made after the conclusion of the present scientific feasibility phase of the program. The strategy is to preceed sequentially through a product definition phase, to the product development phase. Product definition is the identification of an attractive fusion reactor concept supported by a sound base of scientific and technological information. Product development is the further refinement of scientific, technological and engineering information base of the selected concept to provide a firm basis for commercial application. Each of these phases will be discussed with special emphasis on the relationship between the annual appropriation process and the influence of external forces on the pace of the program. This discussion will include the use of international cooperation to maintain and extend program scope. Further discussion will cover the important scientific and technological advances of the last few years and the way in which they have influenced the development of our management strategy to maximize our resources

  2. Fusion reactor wastes

    International Nuclear Information System (INIS)

    Young, J.R.

    1976-01-01

    The fusion reactor currently is being developed as a clean source of electricity with an essentially infinite source of fuel. These reactors are visualized as using a fusion reaction to generate large quantities of high temperature energy which can be used as process heat or for the generation of electricity. The energy would be created primarily as the kinetic energy of neutrons or other reaction products. Neutron energy could be converted to high-temperature heat by moderation and capture of the neutrons. The energy of other reaction products could be converted to high-temperature heat by capture, or directly to electricity by direct conversion electrostatic equipment. An analysis to determine the wastes released as a result of operation of fusion power plants is presented

  3. Socio-economic aspects of fusion

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    2005-01-01

    Fusion power systems, if developed and deployed, would have many attractive features including power production not dependant on weather or solar conditions, flexible siting, and minimal carbon dioxide production. In this paper we quantify the benefit of these features. In addition, fusion deployment scenarios are developed for the last half of this century and these scenarios are analyzed for resource requirements and waste production. (author)

  4. Socio-economic Aspects of Fusion

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    2004-01-01

    Fusion power systems, if developed and deployed, would have many attractive features including power production not dependant on weather or solar conditions, flexible siting, and minimal carbon dioxide production. In this paper, we quantify the benefit of these features. In addition, fusion deployment scenarios are developed for the last half of this century and these scenarios are analyzed for resource requirements and waste production

  5. Fusion Power Deployment

    International Nuclear Information System (INIS)

    Schmidt, J.A.; Ogden, J.M.

    2002-01-01

    Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment

  6. Conceptual design of a hybrid fusion-fission reactor with intrinsic safety and optimized energy productivity

    International Nuclear Information System (INIS)

    Talebi, Hosein; Sadat Kiai, S.M.

    2017-01-01

    Highlights: • Designing a high yield and feasible Dense Plasma Focus for driving the reactor. • Presenting a structural method to design the dual layer cylindrical blankets. • Finding, the blanket production energy, in terms of its geometrical and material parameters. • Designing a subcritical blanket with optimization of energy amplification in detail. - Abstract: A hybrid fission-fusion reactor with a Dense Plasma Focus (DPF) as a fusion core and the dual layer fissionable blanket as the energy multiplier were conceptually designed. A cylindrical DPF, energized by a 200 kJ bank energy, is considered to produce fusion neutron, and these neutrons drive the subcritical fission in the surrounding blankets. The emphasis has been placed on the safety and energy production with considering technical and economical limitations. Therefore, the k eff-t of the dual cylindrical blanket was defined and mathematically, specified. By applying the safety criterion (k eff-t ≤ 0.95), the geometrical and material parameters of the blanket optimizing the energy amplification were obtained. Finally, MCNPX code has been used to determine the detailed dimensions of the blankets and fuel rods.

  7. Taraxacum officinale induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.

    Science.gov (United States)

    Koo, Hyun-Na; Hong, Seung-Heon; Song, Bong-Keun; Kim, Cheorl-Ho; Yoo, Young-Hyun; Kim, Hyung-Min

    2004-01-16

    Taraxacum officinale (TO) has been frequently used as a remedy for women's disease (e.g. breast and uterus cancer) and disorders of the liver and gallbladder. Several earlier studies have indicated that TO exhibits anti-tumor properties, but its mechanism remains to be elucidated. In this study, we investigated the effect of TO on the cytotoxicity and production of cytokines in human hepatoma cell line, Hep G2. Our results show that TO decreased the cell viability by 26%, and significantly increased the tumor necrosis factor (TNF)-alpha and interleukin (IL)-1alpha production compared with media control (about 1.6-fold for TNF-alpha, and 2.4-fold for IL-1alpha, P < 0.05). Also, TO strongly induced apoptosis of Hep G2 cells as determined by flow cytometry. Increased amounts of TNF-alpha and IL-1alpha contributed to TO-induced apoptosis. Anti-TNF-alpha and IL-1alpha antibodies almost abolished it. These results suggest that TO induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.

  8. Bacterial expression and one-step purification of an isotope-labeled heterotrimeric G-protein {alpha}-subunit

    Energy Technology Data Exchange (ETDEWEB)

    Abdulaev, Najmoutin G. [University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology (United States); Zhang Cheng; Dinh, Andy [University of Texas Health Science Center, Center for Membrane Biology, Department of Biochemistry and Molecular Biology (United States); Ngo, Tony; Bryan, Philip N. [University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology (United States); Brabazon, Danielle M. [Loyola College in Maryland, Department of Chemistry (United States); Marino, John P. [University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology (United States)], E-mail: marino@carb.nist.gov; Ridge, Kevin D. [University of Texas Health Science Center, Center for Membrane Biology, Department of Biochemistry and Molecular Biology (United States)

    2005-05-15

    Heterologous expression systems are often employed to generate sufficient quantities of isotope-labeled proteins for high-resolution NMR studies. Recently, the interaction between the prodomain region of subtilisin and an active, mutant form of the mature enzyme has been exploited to develop a cleavable affinity tag fusion system for one-step generation and purification of full-length soluble proteins obtained by inducible prokaryotic expression. As a first step towards applying high-resolution NMR methods to study heterotrimeric G-protein {alpha}-subunit (G{sub {alpha}}) conformation and dynamics, the utility of this subtilisin prodomain fusion system for expressing and purifying an isotope-labeled G{sub {alpha}} chimera ({approx}40 kDa polypeptide) has been tested. The results show that a prodomain fused G{sub {alpha}} chimera can be expressed to levels approaching 6-8 mg/l in minimal media and that the processed, mature protein exhibits properties similar to those of G{sub {alpha}} isolated from natural sources. To assay for the functional integrity of the purified G{sub {alpha}} chimera at NMR concentrations and probe for changes in the structure and dynamics of G{sub {alpha}} that result from activation, {sup 15}N-HSQC spectra of the GDP/Mg{sup 2+} bound form of G{sub {alpha}} obtained in the absence and presence of aluminum fluoride, a well known activator of the GDP bound state, have been acquired. Comparisons of the {sup 15}N-HSQC spectra reveals a number of changes in chemical shifts of the {sup 1}HN, {sup 15}N crosspeaks that are discussed with respect to expected changes in the protein conformation associated with G{sub {alpha}} activation.

  9. Heavy-quark production in gluon fusion at two loops in QCD

    International Nuclear Information System (INIS)

    Czakon, M.

    2007-07-01

    We present the two-loop virtual QCD corrections to the production of heavy quarks in gluon fusion. The results are exact in the limit when all kinematical invariants are large compared to the mass of the heavy quark up to terms suppressed by powers of the heavy-quark mass. Our derivation uses a simple relation between massless and massive QCD scattering amplitudes as well as a direct calculation of the massive amplitude at two loops. The results presented here together with those obtained previously for quark-quark scattering form important parts of the next-to-next-to-leading order QCD corrections to heavy-quark production in hadron-hadron collisions. (orig.)

  10. The European Fusion Energy Research Programme towards the realization of a fusion demonstration reactor

    International Nuclear Information System (INIS)

    Gasparotto, M.; Laesser, R.

    2006-01-01

    Since its inception, the European Fusion Programme has been orientated towards the establishment of the knowledge base needed for the definition of a reactor to be used for power production. Its ultimate goal is then to demonstrate the scientific and the technological feasibility of fusion power while incorporating the assessment of the safety, environmental, social and economic features of this type of energy source. At present, the JET device, the largest tokamak in the world, and the other medium-sized experimental machines are contributing essentially to the basic scientific phase of this development path. Their successful operation greatly contributed to support the design basis of ITER, the next step in fusion, which will aim to demonstrate the scientific and technical feasibility of fusion power production by achieving extended D-T burning plasma operation. Following ITER, the conception and construction of the DEMO device is planned. DEMO will be a demonstration power plant which will be the first fusion device to generate a significant amount of electrical power from fusion. This paper describes the status of fusion research and the European strategy for achievement of the ultimate goal of construction of a prototype reactor. (author)

  11. Application of controlled thermonuclear reactor fusion energy for food production

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, M.

    1975-06-01

    Food and energy shortages in many parts of the world in the past two years raise an immediate need for the evaluation of energy input in food production. The present paper investigates systematically (1) the energy requirement for food production, and (2) the provision of controlled thermonuclear fusion energy for major energy intensive sectors of food manufacturing. Among all the items of energy input to the ''food industry,'' fertilizers, water for irrigation, food processing industries, such as beet sugar refinery and dough making and single cell protein manufacturing, have been chosen for study in detail. A controlled thermonuclear power reactor was used to provide electrical and thermal energy for all these processes. Conceptual design of the application of controlled thermonuclear power, water and air for methanol and ammonia synthesis and single cell protein production is presented. Economic analysis shows that these processes can be competitive. (auth)

  12. Advanced fusion welding processes, solid state joining and a successful marriage. [production of aerospace structures

    Science.gov (United States)

    Miller, F. R.

    1972-01-01

    Joining processes for aerospace systems combine fusion welding and solid state joining during production of metal structures. Detailed characteristics of electron beam welding, plasma arc welding, diffusion welding, inertia welding and weldbond processes are discussed.

  13. Higgs production via weak boson fusion in the standard model and the MSSM

    International Nuclear Information System (INIS)

    Figy, Terrance; Palmer, Sophy

    2010-12-01

    Weak boson fusion is expected to be an important Higgs production channel at the LHC. Complete one-loop results for weak boson fusion in the Standard Model have been obtained by calculating the full virtual electroweak corrections and photon radiation and implementing these results into the public Monte Carlo program VBFNLO (which includes the NLO QCD corrections). Furthermore the dominant supersymmetric one-loop corrections to neutral Higgs production, in the general case where the MSSM includes complex phases, have been calculated. These results have been combined with all one-loop corrections of Standard Model type and with the propagator-type corrections from the Higgs sector of the MSSM up to the two-loop level. Within the Standard Model the electroweak corrections are found to be as important as the QCD corrections after the application of appropriate cuts. The corrections yield a shift in the cross section of order 5% for a Higgs of mass 100-200 GeV, confirming the result obtained previously in the literature. For the production of a light Higgs boson in the MSSM the Standard Model result is recovered in the decoupling limit, while the loop contributions from superpartners to the production of neutral MSSM Higgs bosons can give rise to corrections in excess of 10% away from the decoupling region. (orig.)

  14. Preparations for deuterium tritium experiments on the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Ashcroft, D.; Barnes, G.

    1994-04-01

    The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR). These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinet trademark system, modification of the vacuum system to handle tritium, preparation and testing of the neutral beam system for tritium operation and a final deuterium-deuterium (D-D) run to simulate expected deuterium-tritium (D-T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D-T experiments using D-D have been performed. The physics objectives of D-T operation are production of ∼ 10 megawatts (MW) of fusion power, evaluation of confinement and heating in deuterium-tritium plasmas, evaluation of α-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined α-particles. Experimental results and theoretical modeling in support of the D-T experiments are reviewed

  15. Discourse, Power, and Knowledge in the Management of "Big Science": The Production of Consensus in a Nuclear Fusion Research Laboratory.

    Science.gov (United States)

    Kinsella, William J.

    1999-01-01

    Extends a Foucauldian view of power/knowledge to the archetypical knowledge-intensive organization, the scientific research laboratory. Describes the discursive production of power/knowledge at the "big science" laboratory conducting nuclear fusion research and illuminates a critical incident in which the fusion research…

  16. NNLO QCD corrections for the differential Higgs boson production cross-section in gluon fusion

    International Nuclear Information System (INIS)

    Anastasiou, Charalampos

    2006-01-01

    I describe a recent computation of the NNLO QCD corrections for the fully differential cross-section for Higgs boson production in the gluon fusion channel. This result is an application of a new method for calculating perturbative corrections beyond the next-to-leading order

  17. Computer simulation of charged fusion-product trajectories and detection efficiency expected for future experiments within the COMPASS tokamak

    International Nuclear Information System (INIS)

    Kwiatkowski, Roch; Malinowski, Karol; Sadowski, Marek J

    2014-01-01

    This paper presents results of computer simulations of charged particle motions and detection efficiencies for an ion-pinhole camera of a new diagnostic system to be used in future COMPASS tokamak experiments. A probe equipped with a nuclear track detector can deliver information about charged products of fusion reactions. The calculations were performed with a so-called Gourdon code, based on a single-particle model and toroidal symmetry. There were computed trajectories of fast ions (> 500 keV) in medium-dense plasma (n e  < 10 14  cm −3 ) and an expected detection efficiency (a ratio of the number of detected particles to that of particles emitted from plasma). The simulations showed that charged fusion products can reach the new diagnostic probe, and the expected detection efficiency can reach 2 × 10 −8 . Based on such calculations, one can determine the optimal position and orientation of the probe. The obtained results are of importance for the interpretation of fusion-product images to be recorded in future COMPASS experiments. (paper)

  18. Higgs production via vector-boson fusion at NNLO in QCD

    International Nuclear Information System (INIS)

    Bolzoni, Paolo; Moch, Sven-Olaf; Maltoni, Fabio; Zaro, Marco

    2010-03-01

    We present the total cross sections at next-to-next-to-leading order (NNLO) in the strong coupling for Higgs production via weak boson fusion. Our results are obtained via the structure function approach, which builds upon the approximate, though very accurate, factorization of the QCD corrections between the two quark lines. The theoretical uncertainty on the total cross sections at the LHC from higher order corrections and the parton distribution uncertainties are estimated at the 2% level each for a wide range of Higgs boson masses. (orig.)

  19. Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser

    Directory of Open Access Journals (Sweden)

    A. Picciotto

    2014-08-01

    Full Text Available We show that a spatially well-defined layer of boron dopants in a hydrogen-enriched silicon target allows the production of a high yield of alpha particles of around 10^{9} per steradian using a nanosecond, low-contrast laser pulse with a nominal intensity of approximately 3×10^{16}  W cm^{−2}. This result can be ascribed to the nature of the long laser-pulse interaction with the target and with the expanding plasma, as well as to the optimal target geometry and composition. The possibility of an impact on future applications such as nuclear fusion without production of neutron-induced radioactivity and compact ion accelerators is anticipated.

  20. Tritium Aspects of Fueling and Exhaust Pumping in Magnetic Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, Larry R. [ORNL; Meitner, Steven J. [ORNL

    2017-04-01

    Magnetically confined fusion plasmas generate energy from deuterium-tritium (DT) fusion reactions that produce energetic 3.5 MeV alpha particles and 14 MeV neutrons. Since the DT fusion reaction rate is a strong function of plasma density, an efficient fueling source is needed to maintain high plasma density in such systems. Energetic ions in fusion plasmas are able to escape the confining magnetic fields at a much higher rate than the fusion reactions occur, thus dictating the fueling rate needed. These lost ions become neutralized and need to be pumped away as exhaust gas to be reinjected into the plasma as fuel atoms.The technology to fuel and pump fusion plasmas has to be inherently compatible with the tritium fuel. An ideal holistic solution would couple the pumping and fueling such that the pump exhaust is directly fed back into pellet formation without including impurity gases. This would greatly reduce the processing needs for the exhaust. Concepts to accomplish this are discussed along with the fueling and pumping needs for a DT fusion reactor.

  1. Threshold region for Higgs boson production in gluon fusion.

    Science.gov (United States)

    Bonvini, Marco; Forte, Stefano; Ridolfi, Giovanni

    2012-09-07

    We provide a quantitative determination of the effective partonic kinematics for Higgs boson production in gluon fusion in terms of the collider energy at the LHC. We use the result to assess, as a function of the Higgs boson mass, whether the large m(t) approximation is adequate and Sudakov resummation advantageous. We argue that our results hold to all perturbative orders. Based on our results, we conclude that the full inclusion of finite top mass corrections is likely to be important for accurate phenomenology for a light Higgs boson with m(H)~125 GeV at the LHC with √s=14 TeV.

  2. 5alphaDH-DOC (5alpha-dihydro-deoxycorticosterone) activates androgen receptor in castration-resistant prostate cancer.

    Science.gov (United States)

    Uemura, Motohide; Honma, Seijiro; Chung, Suyoun; Takata, Ryo; Furihata, Mutsuo; Nishimura, Kazuo; Nonomura, Norio; Nasu, Yasutomo; Miki, Tsuneharu; Shuin, Taro; Fujioka, Tomoaki; Okuyama, Akihiko; Nakamura, Yusuke; Nakagawa, Hidewaki

    2010-08-01

    Prostate cancer often relapses during androgen-depletion therapy, even under the castration condition in which circulating androgens are drastically reduced. High expressions of androgen receptor (AR) and genes involved in androgen metabolism indicate a continued role for AR in castration-resistant prostate cancers (CRPCs). There is increasing evidence that some amounts of 5alpha-dihydrotestosterone (DHT) and other androgens are present sufficiently to activate AR within CRPC tissues, and enzymes involved in the androgen and steroid metabolism, such as 5alpha-steroid reductases, are activated in CRPCs. In this report, we screened eight natural 5alphaDH-steroids to search for novel products of 5alpha-steroid reductases, and identified 11-deoxycorticosterone (DOC) as a novel substrate for 5alpha-steroid reductases in CRPCs. 11-Deoxycorticosterone (DOC) and 5alpha-dihydro-deoxycorticosterone (5alphaDH-DOC) could promote prostate cancer cell proliferation through AR activation, and type 1 5alpha-steroid reductase (SRD5A1) could convert from DOC to 5alphaDH-DOC. Sensitive liquid chromatography-tandem mass spectrometric analysis detected 5alphaDH-DOC in some clinical CRPC tissues. These findings implicated that under an extremely low level of DHT, 5alphaDH-DOC and other products of 5alpha-steroid reductases within CRPC tissues might activate the AR pathway for prostate cancer cell proliferation and survival under castration.

  3. Safety aspects of activation products in a compact Tokamak Fusion Power Plant

    International Nuclear Information System (INIS)

    Willenberg, H.J.; Bickford, W.E.

    1978-10-01

    Neutron activation of materials in a compact tokamak fusion reactor has been investigated. Results of activation product inventory, dose rate, and decay heat calculations in the blanket and injectors are presented for a reactor design with stainless steel structures. Routine transport of activated materials into the plasma and vacuum systems is discussed. Accidental release of radioactive materials as a result of liquid lithium spills is also considered

  4. Correlation between potential well structure and neutron production in inertial electrostatic confinement fusion

    International Nuclear Information System (INIS)

    Ohnishi, M.; Yamamoto, Y.; Yoshikawa, K.; Sato, K.H.

    1997-01-01

    The electrostatic potential well in inertial electrostatic confinement (IEC) is studied using two approaches. First, the equilibrium potential profile is obtained by solving the charge neutrality condition, i.e. n i n e , assuming the appropriate distribution functions for the ions and the electrons. The formation of a double well structure is demonstrated, with a depth depending upon the ratio between the focus radii of the electrons and the ions. The correlations between the well depth and the volume integrated neutron production due to deuterium-deuterium (DD) reactions are obtained. Second, in order to study the stability of the well, the dynamic behaviours of the potential well are calculated by performing time advancing numerical simulations on the basis of the particle in cell method. Single, double and triple wells, depending on the amount of injected ion current, are observed to be formed for ions with a monoenergetic distribution. The well in the centre of the multiwell structure is unstable and oscillates with a periods much longer than the inverse ion plasma frequency. A double well structure can be formed even for ions with a spread out energy distribution when the ion current is larger than the threshold value. The time averaged neutron production by DD fusion events is proportional to a power of the ion current involved in forming the double well structure. The results strongly suggest that the high neutron production rate should be attributed to not only the well depth but also the unstable behaviour of the potential, i.e. the intermittent peaking of the density in the centre region. A numerical simulation reveals that IEC possesses a favourable dependence of fusion reactions on the injected ion current for the application to a neutron source or a fusion reactor. (author). 9 refs, 9 figs

  5. Fast wave current drive on ITER in the presence of energetic alphas

    International Nuclear Information System (INIS)

    Mau, T.K.

    1989-01-01

    The impact of energetic alpha particle wave absorption on the range of frequencies for efficient fast wave current drive in an ITER-like fusion reactor core is investigated. The energetic alpha damping decrement is calculated, using an exact slowing down distribution function, and compared to electron and fuel ion damping over a wide range of frequencies. A combination of strong alpha damping and edge electron absorption in the higher ion harmonic regime limits efficient core fast wave current drive to the lower harmonics (1=2.3). However, high frequency fast waves may be employed to generate current in the outer plasma region. 11 refs., 7 figs

  6. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  7. Accurate alpha sticking fractions from improved calculations relevant for muon catalyzed fusion

    International Nuclear Information System (INIS)

    Szalewicz, K.

    1990-05-01

    Recent experiments have shown that under proper conditions a single muon may catalyze almost two hundred fusions in its lifetime. This process proceeds through formation of muonic molecular ions. Properties of these ions are central to the understanding of the phenomenon. Our work included the most accurate calculations of the energy levels and Coulombic sticking fractions for tdμ and other muonic molecular ions, calculations of Auger transition rates, calculations of corrections to the energy levels due to interactions with the most molecule, and calculation of the reactivation of muons from α particles. The majority of our effort has been devoted to the theory and computation of the influence of the strong nuclear forces on fusion rates and sticking fractions. We have calculated fusion rates for tdμ including the effects of nuclear forces on the molecular wave functions. We have also shown that these results can be reproduced to almost four digit accuracy by using a very simple quasifactorizable expression which does not require modifications of the molecular wave functions. Our sticking fractions are more accurate than any other theoretical values. We have used a more sophisticated theory than any other work and our numerical calculations have converged to at least three significant digits

  8. Fusion Plasma Theory project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  9. Fusion plasma theory project summaries

    Science.gov (United States)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at U.S. government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the U.S. Fusion Energy Program.

  10. Fusion Plasma Theory project summaries

    International Nuclear Information System (INIS)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program

  11. Measurement and analysis of excitation functions and observation of mass-asymmetry effect on incomplete fusion dynamics

    Directory of Open Access Journals (Sweden)

    Rashid M.H.

    2011-10-01

    Full Text Available Excitation functions for sixteen evaporation residues produced in the interaction of 20Ne with 165Ho have been measured in the projectile energy range ≈88-164 MeV, using catcher foil activation technique followed by gamma-ray spectrometry. It has been found in general that the excitation functions of evaporation residues produced via xn/pxn channels satisfactorily reproduced with the statistical model code PACE-2 after subtraction of precursor decay contribution. The significant enhancement in the measured excitation functions for the residues produced in alpha emission channels over the PACE-2 predictions has been observed. These alpha emission channels are attributed to incomplete fusion reaction process. The results indicate the occurrence of incomplete fusion involving break-up of projectile 20Ne into 4He + 16O and /or 8Be + 12C followed by fusion of one of the fragments with target nucleus 165Ho. The analysis of the present data suggest that probability of incomplete fusion increases with projectile energy. The ICF fraction FICF also increases with increasing mass-asymmetry of the entrance channel.

  12. Optimization of cultural conditions for the production of alpha amylase by aspergillus niger (btm-26) in solid state fermentation

    International Nuclear Information System (INIS)

    Abdullah, R.; Shaheen, N.; Iqtedar, M.; Naz, S.

    2014-01-01

    The present study deals with the isolation, screening and selection of native fungal strain for the alpha amylase production. Forty fungal strains were isolated from different soil samples. These strains were initially screened qualitatively on starch agar medium and quantitative screening was carried out in solid state fermentation. A strain of Aspergillus niger showing maximum production (432 +- 0.9 U/ml/min) of enzyme was selected and assigned the code BTM-26. The yield on various agricultural products, namely, coconut oil cake (COC), rice bran (RB), vegetable wastes or banana peel and wheat bran (WB) was compared. Wheat bran proved to be the best substrate for alpha amylase production. The effect of incubation temperature, initial pH, and inoculum size was investigated for the enzyme production. The maximum enzyme production was obtained at 30 degree C, pH 5, and inoculum size of 1 ml. The rate of fermentation was also studied and the highest yield of enzyme was obtained after 72 h of inoculation. Addition of 1.5% lactose as carbon source and 0.2% (NH/sub 4/)2SO/sub 4/ and 0.3% yeast extract as inorganic and organic nitrogen sources respectively gave enzyme production 990 +- 0.81 U/ml/min which reflects about 1.87 fold increase in alpha amylase production as compared to the medium containing wheat bran alone as substrate. (author)

  13. Vacuum fusion of uranium

    International Nuclear Information System (INIS)

    Stohr, J.A.

    1957-01-01

    After having outlined that vacuum fusion and moulding of uranium and of its alloys have some technical and economic benefits (vacuum operations avoid uranium oxidation and result in some purification; precision moulding avoids machining, chip production and chemical reprocessing of these chips; direct production of the desired shape is possible by precision moulding), this report presents the uranium fusion unit (its low pressure enclosure and pumping device, the crucible-mould assembly, and the MF supply device). The author describes the different steps of cast production, and briefly comments the obtained results

  14. Experimental investigation of the confinement of d(He-3,p)alpha and d(d,p)t fusion reaction products in JET

    Czech Academy of Sciences Publication Activity Database

    Bonheure, G.; Hult, M.; González de Orduña, R.; Arnold, D.; Dombrowski, H.; Laubenstein, M.; Wieslander, E.; Vidmar, T.; Vermaercke, P.; Von Thun, C.P.; Reich, M.; Jachmich, S.; Murari, A.; Popovichev, S.; Mlynář, Jan; Salmi, A.; Asunta, O.; Garcia-Munoz, M.; Pinches, S.; Koslowski, R.; Nielsen, S.K.

    2012-01-01

    Roč. 52, č. 8 (2012), s. 083004 ISSN 0029-5515 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * activation * diagnostics * fusion * confinement Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.734, year: 2012 http://iopscience.iop.org/0029-5515/52/8/083004?fromSearchPage=true

  15. Alpha particles (citations from the International Aerospace Abstracts data base). Report for 1974-July 1979

    International Nuclear Information System (INIS)

    Mauk, S.C.

    1979-09-01

    This bibliography of citations to the international literature covers various aspects of alpha particles as applied to controlled fusion devices, solar activity, and geomagnetically trapped particles. Included are articles concerning Tokamak devices, plasma heating and control, plasma-particle interactions, solar particles, solar wind, solar flares, energy spectra, and magnetohydrodynamic stability. Articles concerning effects of alpha particles on different kinds of devices are also included

  16. Tritium production in fusion reactors

    International Nuclear Information System (INIS)

    Roth, E.

    1981-08-01

    The present analyses on the possibilities of extracting tritium from the liquid and solid fusion reactor blankets show up many problems. A consistent ensemble of materials and devices for extracting the heat and the tritium has not yet been integrated in a fusion reactor blanket project. The dimensioning of the many pipes required for shifting the tritium can only be done very approximately and the volume taken up by the blanket is difficult to evaluate, etc. The utilization of present data leads to over-dimensioning the installations by prudence and perhaps rejecting the best solutions. In order to measure the parameters of the most promising materials, work must be carried out on well defined samples and not only determine the base physical-chemical coefficients, such as thermal conductivity, scattering coefficients, Sievert parameters, but also the kinetic parameters conventional in chemical engineering, such as the hourly space rates of degassing. It is also necessary to perform long duration experiments under radiation and at operating temperatures, or above, in order to study the ageing of the bodies employed [fr

  17. Nuclear fusion

    International Nuclear Information System (INIS)

    Al-zaelic, M.M.

    2013-01-01

    Nuclear fusion can be relied on to solve the global energy crisis if the process of limiting the heat produced by the fusion reaction (Plasma) is successful. Currently scientists are progressively working on this aspect whereas there are two methods to limit the heat produced by fusion reaction, the two methods are auto-restriction using laser beam and magnetic restriction through the use of magnetic fields and research is carried out to improve these two methods. It is expected that at the end of this century the nuclear fusion energy will play a vital role in overcoming the global energy crisis and for these reasons, acquiring energy through the use of nuclear fusion reactors is one of the most urge nt demands of all mankind at this time. The conclusion given is that the source of fuel for energy production is readily available and inexpensive ( hydrogen atoms) and whole process is free of risks and hazards, especially to general health and the environment . Nuclear fusion importance lies in the fact that energy produced by the process is estimated to be about four to five times the energy produced by nuclear fission. (author)

  18. The fusion applications study - FAME

    International Nuclear Information System (INIS)

    Schultz, K.R.; Engholm, B.A.; Bourque, R.F.; Cheng, E.T.; Schaffer, M.J.; Wong, C.P.C.

    1986-01-01

    The Fusion Applications and Market Evaluation (''FAME'') study, being conducted by GA Technologies for Lawrence Livermore National Laboratory (LLNL) and US Department of Energy, Office of Fusion Energy, (US DOE) is described. This two-year program has a FY86 objective of Evaluating Alternative Applications of Fusion, and a FY87 goal of Exploring Innovative Applications. Applications are being reviewed and categorized into Baseline, Nuclear, Chemical, Electromagnetic, and Thermal application categories. The ''traditional'' applications of electricity generation, fissile fuel and tritium production, and hydrogen production continue to look attractive. Particularly promising new applications to date, with potential for near-term markets, are isotope production and radiation processing, especially when allied with the traditional application of electricity production. The economics of separate applications as well as coproduction are discussed. The combination of electricity and /sup 60/Co production appears to be one of the most attractive

  19. Application of a statistical design to the optimization of parameters and culture medium for alpha-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product).

    Science.gov (United States)

    Kammoun, Radhouane; Naili, Belgacem; Bejar, Samir

    2008-09-01

    The production optimization of alpha-amylase (E.C.3.2.1.1) from Aspergillus oryzae CBS 819.72 fungus, using a by-product of wheat grinding (gruel) as sole carbon source, was performed with statistical methodology based on three experimental designs. The optimisation of temperature, agitation and inoculum size was attempted using a Box-Behnken design under the response surface methodology. The screening of nineteen nutrients for their influence on alpha-amylase production was achieved using a Plackett-Burman design. KH(2)PO(4), urea, glycerol, (NH(4))(2)SO(4), CoCl(2), casein hydrolysate, soybean meal hydrolysate, MgSO(4) were selected based on their positive influence on enzyme formation. The optimized nutrients concentration was obtained using a Taguchi experimental design and the analysis of the data predicts a theoretical increase in the alpha-amylase expression of 73.2% (from 40.1 to 151.1 U/ml). These conditions were validated experimentally and revealed an enhanced alpha-amylase yield of 72.7%.

  20. Transition to thermonuclear burn in fusion plasmas

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1991-01-01

    An analytical investigation is made of the time evolution of the 1-D temperature profile in a fusion reactor plasma where the nonlinear energy balance equation is dominated by alpha-particle heating and thermal conduction losses. Special emphasis is given to the problem of establishing sufficient conditions for the transition to thermonuclear burn for given initial temperature profiles. In particular, it is demonstrated that for strongly nonlinear alpha-particle heating, temperature profiles initially peaked on-axis are more easily ignited than profiles similar in form to the equilibrium profile of the energy balance equation. Simple analytical criteria for ignition are established and are shown to compare favourably with results of numerical calculations. (author)

  1. Fusion energy research for ITER and beyond

    International Nuclear Information System (INIS)

    Romanelli, Francesco; Laxaaback, Martin

    2011-01-01

    The achievement in the last two decades of controlled fusion in the laboratory environment is opening the way to the realization of fusion as a source of sustainable, safe and environmentally responsible energy. The next step towards this goal is the construction of the International Thermonuclear Experimental Reactor (ITER), which aims to demonstrate net fusion energy production on the reactor scale. This paper reviews the current status of magnetic confinement fusion research in view of the ITER project and provides an overview of the main remaining challenges on the way towards the realization of commercial fusion energy production in the second half of this century. (orig.)

  2. The effective cost of tritium for tokamak fusion power reactors with reduced tritium production systems

    International Nuclear Information System (INIS)

    Gilligan, J.G.; Evans, K.

    1983-01-01

    If sufficient tritium cannot be produced and processed in tokamak blankets then at least two alternatives are possible. Tritium can be purchased; or reactors with reduced tritium (RT) content in the plasma can be designed. The latter choice may require development of magnet technology etc., but the authors show that the impact on the cost-of-electricity may be mild. Cost tradeoffs are compared to the market value of tritium. Adequate tritium production in fusion blankets is preferred, but the authors show there is some flexibility in the deployment of fusion if this is not possible

  3. Specific interaction of capsid protein and importin-{alpha}/{beta} influences West Nile virus production

    Energy Technology Data Exchange (ETDEWEB)

    Bhuvanakantham, Raghavan; Chong, Mun-Keat [Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597 (Singapore); Ng, Mah-Lee, E-mail: micngml@nus.edu.sg [Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597 (Singapore)

    2009-11-06

    West Nile virus (WNV) capsid (C) protein has been shown to enter the nucleus of infected cells. However, the mechanism by which C protein enters the nucleus is unknown. In this study, we have unveiled for the first time that nuclear transport of WNV and Dengue virus C protein is mediated by their direct association with importin-{alpha}. This interplay is mediated by the consensus sequences of bipartite nuclear localization signal located between amino acid residues 85-101 together with amino acid residues 42 and 43 of C protein. Elucidation of biological significance of importin-{alpha}/C protein interaction demonstrated that the binding efficiency of this association influenced the nuclear entry of C protein and virus production. Collectively, this study illustrated the molecular mechanism by which the C protein of arthropod-borne flavivirus enters the nucleus and showed the importance of importin-{alpha}/C protein interaction in the context of flavivirus life-cycle.

  4. Coatings for fusion reactor environments

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1979-01-01

    The internal surfaces of a tokamak fusion reactor control the impurity injection and gas recycling into the fusion plasma. Coating of internal surfaces may provide a desirable and possibly necessary design flexibility for achieving the temperatures, ion densities and containment times necessary for net energy production from fusion reactions to take place. In this paper the reactor environments seen by various componentare reviewed along with possible materials responses. Characteristics of coating-substrate systems, important to fusion applications, are delineated and the present status of coating development for fusion applications is reviewed. Coating development for fusion applications is just beginning and poses a unique and important challenge for materials development

  5. Next-to-next-to-leading order O({alpha}{sup 2}{alpha}{sup 2}{sub s}) results for top quark pair production in photon-photon collisions. The loop-by-loop contribution

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, J.G. [Johannes Gutenberg Univ., Mainz (Germany). Inst. fuer Phys.; Merebashvili, Z. [Tbilisi State Univ. (Georgia). Inst. of High Energy Physics and Informatization; Rogal, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2006-08-15

    We calculate the so-called loop-by-loop contributions to the next-to-next-to-leading order O({alpha}{sup 2}{alpha}{sup 2}{sub s}) radiative QCD corrections for the production of heavy quark pairs in the collisions of unpolarized on-shell photons. In particular, we present analytical results for the squared matrix elements that correspond to the product of the one-loop amplitudes. All results of the perturbative calculation are given in the dimensional regularization scheme. These results represent the Abelian part of the corresponding gluon-induced next-to-next-to-leading order cross section for heavy quark pair hadroproduction. (orig.)

  6. Intelligible seminar on fusion reactors. (12) Next step toward the realization of fusion reactors. Future vision of fusion energy research and development

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Kurihara, Kenichi; Tobita, Kenji

    2006-01-01

    In the last session of this seminar the progress of research and development for the realization of fusion reactors and future vision of fusion energy research and development are summarized. The some problems to be solved when the commercial fusion reactors would be realized, (1) production of deuterium as the fuel, (2) why need the thermonuclear reactors, (3) environmental problems, and (4) ITER project, are described. (H. Mase)

  7. Towards fusion power

    International Nuclear Information System (INIS)

    Venkataraman, G.

    1975-01-01

    An attempt has been made to present general but broad review of the recent developments in the field of plasma physics and its application to fusion power. The first chapter describes the fusion reactions and fusion power systems. The second chapter deals in detail with production and behaviour of plasma, screening, oscillations, instability, energy losses, temperature effects, etc. Magnetic confinements, including pinch systems, toroidal systems such as Tokamac and stellarator, minor machine, etc. are discussed in detail in chapter III. Laser produced plasma, laser implosion and problems associated with it and future prospects are explained in chapter IV. Chapter V is devoted entirely to the various aspects of hybrid systems. The last chapter throws light on problems of fusion technology, such as plasma heating, vacuum requirements, radiation damage, choice of materials, blanket problems, hazards of fusion reactions, etc. (K.B.)

  8. Ion beam inertial fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1995-01-01

    About twenty years ago, A. W. Maschke of Brookhaven National Laboratory and R. L. Martin of Argonne National Laboratory recognized that the accelerators that have been developed for high energy and nuclear physics are, in many ways, ideally suited to the requirements of inertial fusion power production. These accelerators are reliable, they have a long operating life, and they can be efficient. Maschke and Martin noted that they can focus ion beams to small focal spots over distances of many meters and that they can readily operate at the high pulse repetition rates needed for commercial power production. Fusion, however, does impose some important new constraints that are not important for high energy or nuclear physics applications. The most challenging new constraint from a scientific standpoint is the requirement that the accelerator deliver more than 10 14 W of beam power to a small quantity (less than 100 mg) of matter. The most challenging constraint from an engineering standpoint is accelerator cost. Maschke showed theoretically that accelerators could produce adequate work. Heavy-ion fusion is widely recognized to be a promising approach to inertial fusion power production. It provides an excellent opportunity to apply methods and technology developed for basic science to an important societal need. The pulsed-power community has developed a complementary, parallel approach to ion beam fusion known as light-ion fusion. The talk will discuss both heavy-ion and light-ion fusion. It will explain target physics requirements and show how they lead to constraints on the usual accelerator parameters such as kinetic energy, current, and emittance. The talk will discuss experiments that are presently underway, specifically experiments on high-current ion sources and injectors, pulsed-power machines recirculating induction accelerators, and transverse beam combining. The talk will give a brief description of a proposed new accelerator called Elise

  9. Fusion breeder: its potential role and prospects

    International Nuclear Information System (INIS)

    Lee, J.D.

    1981-01-01

    The fusion breeder is a concept that utilizes 14 MeV neutrons from D + T → n(14.1 MeV) + α(3.5 MeV) fusion reactions to produce more fuel than the tritium (T) needed to sustain the fusion process. This excess fuel production capacity is used to produce fissile material (Pu-239 or U-233) for subsequent use in fission reactors. We are concentrating on a class of blankets we call fission suppressed. The blanket is the region surrounding the fusion plasma in which fusion neutrons interact to produce fuel and heat. The fission-suppressed blanket uses non-fission reactions (mainly (n,2n) or (n,n't)) to generate excess neutrons for the production of net fuel. This is in contrast to the fast fission class of blankets which use (n,fiss) reactions to generate excess neutrons. Fusion reactors with fast fission blankets are commony known as fusion-fission hybrids because they combine fusion and fission in the same device

  10. Production of Medical isotope Technecium-99 from DT Fusion neutrons

    Science.gov (United States)

    Boguski, John; Gentile, Charles; Ascione, George

    2011-10-01

    High energy neutrons produced in DT fusion reactors have a secondary application for use in the synthesis of valuable man-made isotopes utilized in industry today. One such isotope is metastable Technecium-99 (Tc99m), a low energy gamma emitter used in ~ 85% of all medical imaging diagnostics. Tc99m is created through beta decay of Molybdenum-99 (Mo99), which itself has only a 66 hour half-life and must be created from a neutron capture by the widely available and stable isotope Molydenum-98. Current worldwide production of Tc99m occurs in just five locations and relies on obtaining the fission byproduct Mo99 from highly enriched Uranium reactors. A Tc99m generator using DT fusion neutrons, however, could potentially be operated at individual hospitals and medical facilities without the use of any fissile material. The neutron interaction of the DT neutrons with Molybdenum in a potential device geometry was modeled using Monte Carlo neutron transport code MCNP. Trial experiments were also performed to test the viability of using DT neutrons to create ample quantities of Tc99m. Modeling and test results will follow.

  11. Risks from principal components and their daughter products in alpha-contaminated waste

    International Nuclear Information System (INIS)

    Rogers, V.

    1982-01-01

    This paper presents an overview on risk assessment, particularly as it applies to limits for alpha-contaminated waste. The general conclusions are: (1) no special characteristics of transuranic (TRU) waste justify its being a special category; (2) model calculations are largely subjective and can be influenced by the bias of the modeler; (3) ingrowth and concentration of TRU daughter products could be an important consideration in risk assessment. 13 figures

  12. Analytical formulas for calculation of K X-ray production cross sections by alpha ions

    International Nuclear Information System (INIS)

    Abdellatif, A.; Kahoul, A.; Deghfel, B.; Nekkab, M.; Medjadi, D.E.

    2012-01-01

    In the present study, different procedures are followed to deduce the semi-empirical and the empirical K X-rayX-ray production cross sections induced by alpha ions from the available experimental data and the theoretical results of the ECPSSR model for elements with 20≤Z≤30. The deduced K X-ray production cross sections are compared with predictions from ECPSSR model and with other earlier works. Generally, the deduced K X-ray production cross sections obtained by fitting the available experimental data for each element separately give the most reliable values than those obtained by a global fit. - Highlights: ► The results were presented for elements with atomic numbers 20≤Z≤30 by alpha impact. ► The present semi-empirical formulas were derived from both theoretical and experimental values. ► The available experimental data are directly fitted to deduce the empirical one. ► The results obtained for each element separately give the most reliable values than those obtained by a global fit. ► This procedure is proposed as a black-box way to quickly estimate the cross section.

  13. The interaction of fast alpha particles with pellet ablation clouds

    International Nuclear Information System (INIS)

    McChesney, J.M.; Parks, P.B.; Fisher, R.K.; Olson, R.E.

    1997-01-01

    The energy spectra of energetic confined alpha particles are being measured using the pellet charge exchange method [R. K. Fisher, J. S. Leffler, A. M. Howald, and P. B. Parks, Fusion Technol. 13, 536 (1988)]. The technique uses the dense ablation cloud surrounding an injected impurity pellet to neutralize a fraction of the incident alpha particles, allowing them to escape from the plasma where their energy spectrum can be measured using a neutral particle analyzer. The signal calculations given in the above-mentioned reference disregarded the effects of the alpha particles' helical Larmor orbits, which causes the alphas to make multiple passes through the cloud. Other effects such as electron ionization by plasma and ablation cloud electrons and the effect of the charge state composition of the cloud, were also neglected. This report considers these issues, reformulates the signal level calculation, and uses a Monte-Carlo approach to calculate the neutralization fractions. The possible effects of energy loss and pitch angle scattering of the alphas are also considered. copyright 1997 American Institute of Physics

  14. Barrier for cold-fusion production of superheavy elements

    International Nuclear Information System (INIS)

    Ichikawa, Takatoshi; Iwamoto, Akira; Moeller, Peter; Sierk, Arnold J.

    2005-01-01

    We estimate the fusion-barrier height B fu (two-body) for approaching ions in cold-fusion reactions in a model where the projectile deformation and quadrupole zero-point vibrational energy are taken into account. This barrier height is defined as the barrier energy at the target and projectile separation distance where an original oblate deformation of projectile and/or target caused by a repulsive Coulomb force turns into a large prolate deformation caused by the attractive nuclear force as the target and projectile come closer. The instability develops before touching because the attractive short-range nuclear force overcomes the repulsive Coulomb force and the shape-stabilizing effect of shell structure. The shell structure of the doubly magic 208 Pb target is sufficiently strong that its shape remains very close to spherical in all cases studied here. The fusion potential for approaching ions in the two-body channel is calculated in the macroscopic-microscopic model with the quadrupole vibrational zero-point energy obtained in the WKB approximation. We compare our results with data from 10 experimental cold-fusion reactions and with the Bass barriers. Differences and similarities between the Yukawa-plus-exponential model and the Bass model are discussed. We also calculate five-dimensional potential-energy surfaces for the single compound system and show that well-established fission and fusion valleys are both present. For heavy systems, B fu (two-body) becomes lower than the fission barrier just beyond the ground state of the compound system. In the vicinity of this transition, the optimum collision energy for formation of evaporation residues can be expected to depend in a delicate fashion on the interplay among B fu (two-body) , the fusion valley, the fission barrier of the compound system, and the one- and two-neutron separation energies S 1n and S 2n . We discuss these issues in detail and calculate fission-barrier heights. Except for reactions in which

  15. First dedicated in-beam X-ray measurement in heavy-ion fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Berner, C. [Technische Universitaet Muenchen, Lehrstuhl E12 (Germany); RIKEN, Research Group for Superheavy Elements (Japan); Henning, W. [Argonne National Laboratory, Physics Division (United States); RIKEN, Research Group for Superheavy Elements (Japan); Muecher, D.; Gernhaeuser, R.; Hellgartner, S.; Maier, L. [Technische Universitaet Muenchen, Lehrstuhl E12 (Germany); Morita, K.; Morimoto, K.; Kaji, D.; Wakabayashi, Y.; Baba, H. [RIKEN, Research Group for Superheavy Elements (Japan); Lutter, R. [Ludwig-Maximilians-Universitaet, Muenchen (Germany)

    2016-07-01

    We report on an experiment aiming at in-beam X-ray spectroscopy of heavy and superheavy elements (SHE). The goal is to establish K-X-ray spectroscopy as a sensitive tool to identify SHE produced in fusion reactions. SHE, formed after cold or hot fusion, are usually identified via the alpha-decay products, which have to be connected to well-known elements. However, various theories predict spontaneous fission as the dominant decay mode for the daughter nuclides. Additionally, half-lives of these elements are expected to increase to values impeding the identification of SHE solely by their decay. The in-beam identification of the characteristic X-rays would precisely allow to identify the charge number of the produced SHE. Experiments were performed at the RIKEN Nishina Centre for Accelerator based Science by using the gas-filled magnet separator GARIS for superheavy element detection. A high-purity, low-energy planar germanium LEGe-detector was adapted to the GARIS system at the target place for the first time in order to measure the element-characteristic, prompt X-ray emission.

  16. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. The authors show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  17. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Miller, L.G.; Longhurst, G.R.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. We will show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  18. Deuterium-tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Bell, M.G.; Beer, M.

    1997-02-01

    Experiments in the Tokamak Fusion Test Reactor (TFTR) have explored several novel regimes of improved tokamak confinement in deuterium-tritium (D-T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high-l i ). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through in-situ deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q a ∼ 4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l i plasmas produced by rapid expansion of the minor cross-section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D-T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D-T plasmas with q 0 > 1 and weak magnetic shear in the central region, a toroidal Alfven eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode-conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions

  19. Laser fusion program overview

    International Nuclear Information System (INIS)

    Emmett, J.L.

    1977-01-01

    This program is structured to proceed through a series of well defined fusion milestones to proof of the scientific feasibility, of laser fusion with the Shiva Nova system. Concurrently, those key technical areas, such as advanced lasers, which are required to progress beyond proof of feasibility, are being studied. We have identified and quantified the opportunities and key technical issues in military applications, such as weapons effects simulations, and in civilian applications, such as central-station electric power production. We summarize the current status and future plans for the laser fusion program at LLL, emphasizing the civilian applications of laser fusion

  20. PANP is a novel O-glycosylated PILR{alpha} ligand expressed in neural tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kogure, Amane [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); Shiratori, Ikuo [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Wang, Jing [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); Lanier, Lewis L. [Department of Microbiology and Immunology and the Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143 (United States); Arase, Hisashi, E-mail: arase@biken.osaka-u.ac.jp [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); JST CREST, Saitama 332-0012 (Japan)

    2011-02-18

    Research highlights: {yields} A Novel molecule, PANP, was identified to be a PILR{alpha} ligand. {yields} Sialylated O-glycan structures on PANP were required for PILR{alpha} recognition. {yields} Transcription of PANP was mainly observed in neural tissues. {yields} PANP seems to be involved in immune regulation as a ligand for PILR{alpha}. -- Abstract: PILR{alpha} is an immune inhibitory receptor possessing an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic domain enabling it to deliver inhibitory signals. Binding of PILR{alpha} to its ligand CD99 is involved in immune regulation; however, whether there are other PILR{alpha} ligands in addition to CD99 is not known. Here, we report that a novel molecule, PILR-associating neural protein (PANP), acts as an additional ligand for PILR{alpha}. Transcription of PANP was mainly observed in neural tissues. PILR{alpha}-Ig fusion protein bound cells transfected with PANP and the transfectants stimulated PILR{alpha} reporter cells. Specific O-glycan structures on PANP were found to be required for PILR recognition of this ligand. These results suggest that PANP is involved in immune regulation as a ligand of the PILR{alpha}.

  1. Fusion energy applied to synthetic fuel production: a report to the DOE Division of Magnetic Fusion Energy based on a preliminary study by an ad-hoc advisory group

    International Nuclear Information System (INIS)

    Booth, L.A.

    1977-10-01

    The general conclusion is that the potential for utilization of fusion energy for synthetic fuel production is favorable. Three basic methods of hydrogen production are identified: high-temperature electrolysis, thermochemical cycles, and direct radiolysis. Combinations of these and their use as in combined cycles for electric power generation are considered

  2. Outline of cold nuclear fusion reaction

    International Nuclear Information System (INIS)

    Tachikawa, Enzo

    1991-01-01

    In 2010, as the total supply capacity of primary energy, 666 million liter is anticipated under the measures of thorough energy conservation. The development of energy sources along the energy policy based on environment preservation, safety, the quantity of resources and economy is strongly demanded. The nuclear power generation utilizing nuclear fission has been successfully carried out. As the third means of energy production, the basic research and technical development have been actively advanced on the energy production utilizing nuclear fusion reaction. The main object of the nuclear fusion research being advanced now is D-D reaction and D-T reaction. In order to realize low temperature nuclear fusion reaction, muon nuclear fusion has been studied so far. The cold nuclear fusion reaction by the electrolysis of heavy water has been reported in 1989, and its outline is ixplained in this report. The trend of the research on cold nuclear fusion is described. But the possibility of cold nuclear fusion as an energy source is almost denied. (K.I.)

  3. Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta.

    Directory of Open Access Journals (Sweden)

    Marc Liesa

    Full Text Available There is no evidence to date on whether transcriptional regulators are able to shift the balance between mitochondrial fusion and fission events through selective control of gene expression.Here, we demonstrate that reduced mitochondrial size observed in knock-out mice for the transcriptional regulator PGC-1beta is associated with a selective reduction in Mitofusin 2 (Mfn2 expression, a mitochondrial fusion protein. This decrease in Mfn2 is specific since expression of the remaining components of mitochondrial fusion and fission machinery were not affected. Furthermore, PGC-1beta increases mitochondrial fusion and elongates mitochondrial tubules. This PGC-1beta-induced elongation specifically requires Mfn2 as this process is absent in Mfn2-ablated cells. Finally, we show that PGC-1beta increases Mfn2 promoter activity and transcription by coactivating the nuclear receptor Estrogen Related Receptor alpha (ERRalpha.Taken together, our data reveal a novel mechanism by which mammalian cells control mitochondrial fusion. In addition, we describe a novel role of PGC-1beta in mitochondrial physiology, namely the control of mitochondrial fusion mainly through Mfn2.

  4. The Terra Data Fusion Project: An Update

    Science.gov (United States)

    Di Girolamo, L.; Bansal, S.; Butler, M.; Fu, D.; Gao, Y.; Lee, H. J.; Liu, Y.; Lo, Y. L.; Raila, D.; Turner, K.; Towns, J.; Wang, S. W.; Yang, K.; Zhao, G.

    2017-12-01

    Terra is the flagship of NASA's Earth Observing System. Launched in 1999, Terra's five instruments continue to gather data that enable scientists to address fundamental Earth science questions. By design, the strength of the Terra mission has always been rooted in its five instruments and the ability to fuse the instrument data together for obtaining greater quality of information for Earth Science compared to individual instruments alone. As the data volume grows and the central Earth Science questions move towards problems requiring decadal-scale data records, the need for data fusion and the ability for scientists to perform large-scale analytics with long records have never been greater. The challenge is particularly acute for Terra, given its growing volume of data (> 1 petabyte), the storage of different instrument data at different archive centers, the different file formats and projection systems employed for different instrument data, and the inadequate cyberinfrastructure for scientists to access and process whole-mission fusion data (including Level 1 data). Sharing newly derived Terra products with the rest of the world also poses challenges. As such, the Terra Data Fusion Project aims to resolve two long-standing problems: 1) How do we efficiently generate and deliver Terra data fusion products? 2) How do we facilitate the use of Terra data fusion products by the community in generating new products and knowledge through national computing facilities, and disseminate these new products and knowledge through national data sharing services? Here, we will provide an update on significant progress made in addressing these problems by working with NASA and leveraging national facilities managed by the National Center for Supercomputing Applications (NCSA). The problems that we faced in deriving and delivering Terra L1B2 basic, reprojected and cloud-element fusion products, such as data transfer, data fusion, processing on different computer architectures

  5. Pitch angle resolved measurements of escaping charged fusion products in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Zweben, S.J.

    1989-01-01

    Measurements of the flux of charged fusion products escaping from the TFTR plasma have been made with a new type of detector which can resolve the particle flux vs. pitch angle, energy, and time. The design of this detector is described, and results from the 1987 TFTR run are presented. These results are roughly consistent with predictions from a simple first-orbit particle loss model with respect to the pitch angle, energy, time, and plasma current dependence of the signals. 11 refs., 9 figs.

  6. Pitch angle resolved measurements of escaping charged fusion products in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.

    1989-01-01

    Measurements of the flux of charged fusion products escaping from the TFTR plasma have been made with a new type of detector which can resolve the particle flux vs. pitch angle, energy, and time. The design of this detector is described, and results from the 1987 TFTR run are presented. These results are roughly consistent with predictions from a simple first-orbit particle loss model with respect to the pitch angle, energy, time, and plasma current dependence of the signals. 11 refs., 9 figs

  7. Strong neutron sources - How to cope with weapon material production capabilities of fusion and spallation neutron sources?

    International Nuclear Information System (INIS)

    Englert, M.; Franceschini, G.; Liebert, W.

    2013-01-01

    In this article we investigate the potential and relevance for weapon material production in future fusion power plants and spallation neutron sources (SNS) and sketch what should be done to strengthen these technologies against a non-peaceful use. It is shown that future commercial fusion reactors may have military implications: first, they provide an easy source of tritium for weapons, an element that does not fall under safeguards and for which diversion from a plant could probably not be detected even if some tritium accountancy is implemented. Secondly, large fusion reactors - even if not designed for fissile material breeding - could easily produce several hundred kg Pu per year with high weapon quality and very low source material requirements. If fusion-only reactors will prevail over fission-fusion hybrids in the commercialization phase of fusion technology, the safeguard challenge will be more of a legal than of a technical nature. In pure fusion reactors (and in most SNS) there should be no nuclear material present at any time by design. The presence of undeclared nuclear material would indicate a military use of the plant. This fact offers a clear-cut detection criterion for a covert use of a declared facility. Another important point is that tritium does not fall under the definition of 'nuclear material', so a pure fusion reactor or a SNS that do not use nuclear materials are not directly falling under any international non-proliferation treaty requirements. Non-proliferation treaties have to be amended to take into account that fact. (A.C.)

  8. Decomposition of incomplete fusion

    International Nuclear Information System (INIS)

    Sobotka, L.B.; Sarantities, D.G.; Stracener, D.W.; Majka, Z.; Abenante, V.; Semkow, T.M.; Hensley, D.C.; Beene, J.R.; Halbert, M.L.

    1989-01-01

    The velocity distribution of fusion-like products formed in the reaction 701 MeV 28 Si+ 100 Mo is decomposed into 26 incomplete fusion channels. The momentum deficit of the residue per nonevaporative mass unit is approximately equal to the beam momentum per nucleon. The yields of the incomplete fusion channels correlate with the Q-value for projectile fragmentation rather than that for incomplete fusion. The backward angle multiplicities of light particles and heavy ions increase with momentum transfer, however, the heavy ion multiplicities also depend on the extent of the fragmentation of the incomplete fusion channel. These data indicate that at fixed linear momentum transfer, increased fragmentation of the unfused component is related to a reduced transferred angular momentum. 22 refs., 6 figs., 1 tab

  9. Low-Cost alpha Alane for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, Tibor [Ardica Technologies, San Francisco, CA (United States); Petrie, Mark [SRI International, Menlo Park, CA (United States); Crouch-Baker, Steven [SRI International, Menlo Park, CA (United States); Fong, Henry [SRI International, Menlo Park, CA (United States)

    2017-10-10

    This project was directed towards the further development of the Savannah River National Laboratory (SRNL) lab-scale electrochemical synthesis of the hydrogen storage material alpha-alane and Ardica Technologies-SRI International (SRI) chemical downstream processes that are necessary to meet DoE cost metrics and transition alpha-alane synthesis to an industrial scale. Ardica has demonstrated the use of alpha-alane in a fuel-cell system for the U.S. Army WFC20 20W soldier power system that has successfully passed initial field trials with individual soldiers. While alpha-alane has been clearly identified as a desirable hydrogen storage material, cost-effective means for its production and regeneration on a scale of use applicable to the industry have yet to be established. We focused on three, principal development areas: 1. The construction of a comprehensive engineering techno-economic model to establish the production costs of alpha-alane by both electrochemical and chemical routes at scale. 2. The identification of critical, cost-saving design elements of the electrochemical cell and the quantification of the product yields of the primary electrochemical process. A moving particle-bed reactor design was constructed and operated. 3. The experimental quantification of the product yields of candidate downstream chemical processes necessary to produce alpha-alane to complete the most cost-effective overall manufacturing process. Our techno-economic model shows that under key assumptions most 2015 and 2020 DOE hydrogen storage system cost targets for low and medium power can be achieved using the electrochemical alane synthesis process. To meet the most aggressive 2020 storage system cost target, $1/g, our model indicates that 420 metric tons per year (MT/y) production of alpha-alane is required. Laboratory-scale experimental work demonstrated that the yields of two of the three critical component steps within the overall “electrochemical process” were

  10. Linear induction accelerators for fusion and neutron production

    International Nuclear Information System (INIS)

    Barletta, W.A.; California Univ., Los Angeles, CA

    1993-08-01

    Linear induction accelerators (LIA) with pulsed power drives can produce high energy, intense beams or electrons, protons, or heavy ions with megawatts of average power. The continuing development of highly reliable LIA components permits the use such accelerators as cost-effective beam sources to drive fusion pellets with heavy ions, to produce intense neutron fluxes using proton beams, and to generate with electrons microwave power to drive magnetic fusion reactors and high gradient, rf-linacs

  11. Altered cortisol metabolism in polycystic ovary syndrome: insulin enhances 5alpha-reduction but not the elevated adrenal steroid production rates.

    Science.gov (United States)

    Tsilchorozidou, Tasoula; Honour, John W; Conway, Gerard S

    2003-12-01

    homeostasis model insulin resistance index (HOMA-R): alpha-THF/THF and HOMA-R (r = 0.34; P = 0.03), androsterone/etiocholanolone and HOMA-R (r = 0.32; P = 0.04), and total 5alpha /total 5beta and HOMA-R (r = 0.37; P = 0.02). A positive correlation was also found between measures of 5alpha-R and BMI (r = 0.37; P = 0.02). No correlation was found between measures of 11beta-HSD1 activity and indices of insulin sensitivity or BMI. We have demonstrated that there is an increased production rate of cortisol and androgens as measured in vivo in lean PCOS women. Insulin seems to enhance 5alpha reduction of steroids in PCOS but was not associated with the elevated cortisol production rate. The changes in 5alpha-R, 11beta-HSD1, and 20alpha/beta-HSD enzyme activities observed in PCOS may contribute to the increased production rates of cortisol and androgens, supporting the concept of a widespread dysregulation of steroid metabolism. This dysregulation does not seem to be the primary cause of PCOS because no correlation was found between serum androgen levels or urinary excretion of androgens with measurements of either 5alpha-R or 11beta-HSD1 activities.

  12. Physics Regimes in the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    D.M. Meade; S.C.Jardin; C.E. Kessel; M.A. Ulrickson; J.H. Schultz; P.H. Rutherford; J.A. Schmidt; J.C. Wesley; K.M. Young; N.A.Uckan; R.J. Thome; P. Heitzenroeder; B.E. Nelson; and C.C.Baker

    2001-01-01

    Burning plasma science is recognized widely as the next frontier in fusion research. The Fusion Ignition Research Experiment (FIRE) is a design study of a next-step burning plasma experiment with the goal of developing a concept for an experimental facility to explore and understand the strong nonlinear coupling among confinement, magnetohydrodynamic (MHD) self-heating, stability, edge physics, and wave-particle interactions that is fundamental to fusion plasma behavior. This will require plasmas dominated by alpha heating (Q greater than or equal to 5) that are sustained for a duration comparable to characteristic plasma timescales (greater than or equal to 10) tau(subscript ''E''), approximately 4 tau(subscript ''He''), approximately 2 tau(subscript ''skin''). The work reported here has been undertaken with the objective of finding the minimum size (cost) device to achieve these physics goals

  13. Case Study - Alpha

    Directory of Open Access Journals (Sweden)

    Stephen Leybourne

    2016-11-01

    Full Text Available This case study was developed from an actual scenario by Dr. Steve Leybourne of Boston University.  The case documents the historical evolution of an organization, and has been used successfully in courses dealing with organizational and cultural change, and the utilization of ‘soft skills’ in project-based management. This is a short case, ideal for classroom use and discussion.  The issues are easily accessible to students, and there is a single wide ranging question that allows for the inclusion of many issues surrounding strategic decision-making, and behavioural and cultural change. Alpha was one of the earlier companies in the USA to invest in large, edge-of-town superstores, with plentiful free vehicle parking, selling food and related household products. Alpha was created in the 1950s as a subsidiary of a major publicly quoted retail group.  It started business by opening a string of very large discount stores in converted industrial and warehouse premises in the south of the United States. In the early days shoppers were offered a limited range of very competitively priced products. When Alpha went public in 1981 it was the fourth largest food retailer in the US, selling an ever-widening range of food and non-food products.  Its success continued to be based on high volume, low margins and good value for money, under the slogan of ‘Alpha Price.’

  14. Charged Higgs production via vector-boson fusion at NNLO in QCD

    International Nuclear Information System (INIS)

    Zaro, Marco; Maltoni, Fabio

    2010-12-01

    We present the total cross sections at next-to-next-to-leading order (NNLO) in the strong coupling for single and double charged Higgs production via weak boson fusion. Results are obtained via the structure function approach, which builds upon the approximate, though very accurate, factorization of the QCD corrections between the two quark lines. The theoretical uncertainty on the total cross sections at the LHC from higher order corrections and the parton distribution uncertainties are estimated at the 2% level each for a wide range of Higgs boson masses. (orig.)

  15. Production and properties of alpha-amylase from Citrobacter species

    Directory of Open Access Journals (Sweden)

    Ebuta N. Etim-Osowo

    2009-04-01

    Full Text Available Amylase production by Citrobacter sp. isolated from potato was optimized in batch culture studies under shake flask conditions. Effects and interactions of best sources and levels of carbon and nitrogen estimated by 4 x 5 and 4 x 4 factorial experimental arrangements were significant (P < 0.01 on amylase production. Optimal alpha-amylase yield was obtained in a medium containing sorghum flour (2.0 % w/v and a mixture of (NH42SO4 + soybean meal (1.5% w/v with an initial medium pH of 8.0. Under optimum conditions, amylase yield was maximal (0.499 U/ml after 60h incubation at room temperature (28oC ± 2oC. Characterization studies showed that the enzyme had maximum activity at 60oC, retained 100% of its original activities at 60oC for 2h, was maximally active at pH 7.0 and retained 100% of original activities at pH 9.0 for 2h. Enzyme activity was stimulated by urea, Mg2+, Ca2+ and Zn2+ but inhibited by Hg2+.

  16. International bulletin on atomic and molecular data for fusion. No. 18

    International Nuclear Information System (INIS)

    Katsonis, K.

    1982-02-01

    This bulletin deals with atomic and molecular data for fusion. A bibliography for the most recent data presented in the document is provided. Work in progress is briefly reported (electron impact excitation of hydrogen-like argon ions, excitation and charge transfer in collisions of Li atoms with alpha particles)

  17. Reactor potential of the magnetically insulated inertial fusion (MICF) system

    International Nuclear Information System (INIS)

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    The Magnetically Insulated Inertial Confinement Fusion (MICF) scheme is examined with regard to its potential as a power-producing reactor. This approach combines the favorable aspects of both magnetic and inertial fusions in that physical containment of the plasma is provided by a metallic shell while thermal insulation of its energy is provided by a strong, self-generated magnetic field. The plasma is created at the core of the target as a result of irradiation of the fuel-coated inner surface by a laser beam that enters through a hole in the spherical shell. The instantaneous magnetic field is generated by the current loops formed by the laser-heated, laser-ablated electrons, and preliminary experimental results at Osaka University have confirmed the presence of such a field. These same experiments have also yielded a Lawson parameter of about 5x10 12 cm -3 sec, and because of these unique properties, the plasma lifetimes in MICF have been shown to be about two orders of magnitude longer than conventional, pusher type inertial fusion schemes. In this paper a quasi one dimensional, time dependent set of particle and energy balance equations for the thermal species, namely, electrons, ions and thermal alphas which also allows for an appropriate set of fast alpha groups is utilized to assess the reactor prospects of a DT-burning MICF system. (author) [pt

  18. Fusion energy - an abundant energy source for the future

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of fusion energy production and the status and future prospects of the research. Considerations...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  19. Fusion energy for space missions in the 21st century: Executive summary

    International Nuclear Information System (INIS)

    Schulze, N.R.

    1991-08-01

    Future space missions were hypothesized and analyzed, and the energy source of their accomplishment investigated. The missions included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous missions with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing missions where delta v requirements range from 90 km/sec to 30,000 km/sec (High Energy Space Mission) were investigated. The need to develop a power space of this magnitude is a key issue to address if the U.S. civil space program is to continue to advance as mandated by the National Space Policy. Potential energy options which could provide the propulsion and electrical power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Additionally, fusion energy can offer significant safety, environmental, economic, and operational advantages. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified. A strategy that will produce fusion powered vehicles as part of the space transportation infrastructure was developed. Space program resources must be directed toward this issue as a matter of the top policy priority

  20. Fusion energy for space missions in the 21st century: Executive summary

    Science.gov (United States)

    Schulze, Norman R.

    1991-08-01

    Future space missions were hypothesized and analyzed, and the energy source of their accomplishment investigated. The missions included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous missions with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing missions where delta v requirements range from 90 km/sec to 30,000 km/sec (High Energy Space Mission) were investigated. The need to develop a power space of this magnitude is a key issue to address if the U.S. civil space program is to continue to advance as mandated by the National Space Policy. Potential energy options which could provide the propulsion and electrical power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Additionally, fusion energy can offer significant safety, environmental, economic, and operational advantages. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified. A strategy that will produce fusion powered vehicles as part of the space transportation infrastructure was developed. Space program resources must be directed toward this issue as a matter of the top policy priority.

  1. In parkinsonian substantia nigra, alpha-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proteasome activity.

    Science.gov (United States)

    Shamoto-Nagai, M; Maruyama, W; Hashizume, Y; Yoshida, M; Osawa, T; Riederer, P; Naoi, M

    2007-01-01

    alpha-Synuclein (alphaSYN) plays a central role in the neural degeneration of Parkinson's disease (PD) through its conformational change. In PD, alphaSYN, released from the membrane, accumulates in the cytoplasm and forms Lewy body. However, the mechanism behind the translocation and conformational change of alphaSYN leading to the cell death has not been well elucidated. This paper reports that in the dopamine neurons of the substantia nigra containing neuromelanin from PD patients, alphaSYN was modified with acrolein (ACR), an aldehyde product of lipid peroxidation. Histopathological observation confirmed the co-localization of protein immunoreactive to anti-alphaSYN and ACR antibody. By Western blot analyses of samples precipitated with either anti-alphaSYN or anti-ACR antibody, increase in ACR-modified alphaSYN was confirmed in PD brain. Modification of recombinant alphaSYN by ACR enhanced its oligomerization, and at higher ACR concentrations alphaSYN was fragmented and polymerized forming a smear pattern in SDS-PAGE. ACR reduced 20S proteasome activity through the direct modification of the proteasome proteins and the production of polymerized ACR-modified proteins, which inhibited proteasome activity in vitro. These results suggest that ACR may initiate vicious cycle of modification and aggregation of proteins, including alphaSYN, and impaired proteolysis system, to cause neuronal death in PD.

  2. Determination of the pr of laser fusion targets using the α-particle TOF technique

    International Nuclear Information System (INIS)

    Slivinsky, V.W.; Lent, E.; Shay, H.D.; Manes, K.R.

    1975-01-01

    A computer code was written to describe the alpha particle energy loss. The problem of a symmetric compression of the DT gas by an exploding microsphere is analyzed. The code calculates the energy spectrum of a Gaussian distribution of alpha particles after passing through the compressed gas and the exploded glass. The calculations are being used to determine design parameters for diagnostic instruments for measuring charged particle energy distributions from laser fusion targets

  3. Intense fusion neutron sources

    International Nuclear Information System (INIS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-01-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  4. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  5. A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria).

    Science.gov (United States)

    Formighieri, Cinzia; Melis, Anastasios

    2015-11-01

    Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial applications. Transformation of Synechocystis and heterologous expression of the β-phellandrene synthase (PHLS) gene alone is necessary and sufficient to confer to Synechocystis the ability to divert intermediate terpenoid metabolites and to generate the monoterpene β-phellandrene during photosynthesis. However, terpene synthases, including the PHLS, have a slow Kcat (low Vmax) necessitating high levels of enzyme concentration to enable meaningful rates and yield of product formation. Here, a novel approach was applied to increase the PHLS protein expression alleviating limitations in the rate and yield of β-phellandrene product generation. Different PHLS fusion constructs were generated with the Synechocystis endogenous cpcB sequence, encoding for the abundant in cyanobacteria phycocyanin β-subunit, expressed under the native cpc operon promoter. In one of these constructs, the CpcB·PHLS fusion protein accumulated to levels approaching 20% of the total cellular protein, i.e., substantially higher than expressing the PHLS protein alone under the same endogenous cpc promoter. The CpcB·PHLS fusion protein retained the activity of the PHLS enzyme and catalyzed β-phellandrene synthesis, yielding an average of 3.2 mg product g(-1) dry cell weight (dcw) versus the 0.03 mg g(-1)dcw measured with low-expressing constructs, i.e., a 100-fold yield improvement. In conclusion, the terpene synthase fusion-protein approach is promising, as, in this case, it substantially increased the amount of the PHLS in cyanobacteria, and commensurately improved rates and yield of β-phellandrene hydrocarbons production in these photosynthetic microorganisms. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Alpha radioisotopes Ac-225 and Bi-213: a production and labelling of antibodies and peptides for clinical use

    Energy Technology Data Exchange (ETDEWEB)

    Bruchertseifer, Frank, E-mail: frank.bruchertseifer@ec.europa.eu [European Commission, Joint Research Centre, Karlsruhe (Germany)

    2017-07-01

    Full text: In various preclinical and clinical works the potential of the alpha emitters {sup 225}Ac and {sup 213}Bi as therapeutic radionuclides for application in targeted alpha therapy of cancer and infectious diseases was demonstrated. Both alpha emitters are available with high specific activity from established radionuclide generators. Their favorable chemical and physical properties have led to the conduction of a large number of preclinical studies and several clinical trials, demonstrating the feasibility, safety and therapeutic efficacy of targeted alpha therapy with {sup 225}Ac and {sup 213}Bi. This presentation will give an overview about the methods for the production of {sup 225}Ac and {sup 213}Bi, the {sup 225}Ac/{sup 213}Bi radionuclide generator systems, labelling of peptides and antibodies with {sup 225}Ac and {sup 213}Bi and relevant in vivo and in vitro works. (author)

  7. Accumulation of glycation products in. cap alpha. -H pig lens crystallin and its bearing to diabetic cataract genesis

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, P; Cabezas-Cerrato, J

    1988-01-01

    The incorporation of /sup 11/C-glucose in native pig crystalline by in vitro incubation was found, after subsequent dialysis, to affect all 5 classes of crystallin separated by Sepharose CL-6B column chromatography. Though the radioactivity of the ..cap alpha..-H fraction was three times greater than that of any of the others, autoradiographs of SDS-PAGE gels showed /sup 11/C-glucose adducts to be present in all soluble protein subunits, without there being any evidence of preferential glycation of the ..cap alpha..-H subunits. The concentration of stable glycation products in the ..cap alpha..-H chromatographic fraction of soluble crystallins is suggested to be due the addition of glycated material to this fraction as result of glycation-induced hyperaggregation, and not because the ..cap alpha..-H subunits were especially susceptible to glycation.

  8. Alpha-Synuclein Toxicity in the Early Secretory Pathway: How it Drives Neurodegeneration in Parkinsons Disease

    Directory of Open Access Journals (Sweden)

    Ting eWang

    2015-11-01

    Full Text Available Alpha-synuclein is a predominant player in the pathogenesis of Parkinson’s Disease. However, despite extensive study for two decades, its physiological and pathological mechanisms remain poorly understood. Alpha-synuclein forms a perplexing web of interactions with lipids, trafficking machinery, and other regulatory factors. One emerging consensus is that synaptic vesicles are likely the functional site for alpha-synuclein, where it appears to facilitate vesicle docking and fusion. On the other hand, the disfunctions of alpha-synuclein are more dispersed and numerous; when mutated or over-expressed, alpha-synuclein affects several membrane trafficking and stress pathways, including exocytosis, ER-to-Golgi transport, ER stress, Golgi homeostasis, endocytosis, autophagy, oxidative stress and others. Here we examine recent developments in alpha-synuclein’s toxicity in the early secretory pathway placed in the context of emerging themes from other affected pathways to help illuminate its underlying pathogenic mechanisms in neurodegeneration.

  9. Colorado School of Mines Fusion Gamma Ray Project

    International Nuclear Information System (INIS)

    Cecil, F.E.

    1990-01-01

    This report summarizes the activities and accomplishments of the CSM Fusion Gamma Ray Project for the calendar year 1989. As reported in last year's Technical Progress Report, the initial objective of the project was the design and bench testing of an eight channel, very high count rate gamma ray spectrometer. The next objective of the project was the installation and field testing of a comparable fifteen channel spectrometer on TFTR. This objective has been accomplished over the past year and the system has been operated successfully at count rates approaching 10 MHz during neutral beam injected (NBI) deuterium plasmas with injected beam powers in excess of 20 MW. The MFE computer network link between CSM and TFTR has been most valuable in the accomplishment of the year's objectives and should serve as a model for future collaborations of outside researchers with experiments on TFTR and CIT. The coming year's work includes the spectrometry of high energy fusion gamma rays during 3 He minority ICRH heating of deuterium plasmas and hydrogen minority ICRH heating during Lithium pellet injection as diagnostics of energetic alpha particle production. We include in this report selected results from our parallel grant from the DOE Office of High Energy and Nuclear Physics as they pertain to the present APP grant. These results include experimentally derived thermonuclear reactivities of various light ion fusion plasmas for temperatures up to 40 keV. We would emphasize that our APP project is highly collaborative in nature and that Sid Medley and other members of the TFTR staff deserve much of the credit and bore much of the cost for many of the important accomplishments summarized in this report

  10. Fusion reactors-high temperature electrolysis (HTE)

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1978-01-01

    Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 1800 0 C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 1400 0 C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) [$1000/KW(E) equivalent], the H 2 energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 10 6 scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen

  11. Overview of the Fusion Z-Pinch Experiment FuZE

    Science.gov (United States)

    Weber, T. R.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; UW/LLNL Team

    2016-10-01

    Previously, the ZaP device, at the University of Washington, demonstrated sheared flow stabilized (SFS) Z-pinch plasmas. Instabilities that have historically plagued Z-pinch plasma confinement were mitigated using sheared flows generated from a coaxial plasma gun of the Marshall type. Based on these results, a new SFS Z-pinch experiment, the Fusion Z-pinch Experiment (FuZE), has been constructed. FuZE is designed to investigate the scaling of SFS Z-pinch plasmas towards fusion conditions. The experiment will be supported by high fidelity physics modeling using kinetic and fluid simulations. Initial plans are in place for a pulsed fusion reactor following the results of FuZE. Notably, the design relies on proven commercial technologies, including a modest discharge current (1.5 MA) and voltage (40 kV), and liquid metal electrodes. Supported by DoE FES, NNSA, and ARPA-E ALPHA.

  12. Plasma physics for controlled fusion. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2016-08-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  13. Plasma physics for controlled fusion. 2. ed.

    International Nuclear Information System (INIS)

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  14. Bioethanol production by a flocculent hybrid, CHFY0321 obtained by protoplast fusion between Saccharomyces cerevisiae and Saccharomyces bayanus

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gi-Wook; Kang, Hyun-Woo; Kim, Yule [Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., LTD, Palbok-Dong 829, Dukjin-Gu, Jeonju 561-203 (Korea); Um, Hyun-Ju; Kim, Mina; Kim, Yang-Hoon [Department of Microbiology, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju 361-763 (Korea)

    2010-08-15

    Fusion hybrid yeast, CHFY0321, was obtained by protoplast fusion between non-flocculent-high ethanol fermentative Saccharomyces cerevisiae CHY1011 and flocculent-low ethanol fermentative Saccharomyces bayanus KCCM12633. The hybrid yeast was used together with the parental strains to examine ethanol production in batch fermentation. Under the conditions tested, the fusion hybrid CHFY0321 flocculated to the highest degree and had the capacity to ferment well at pH 4.5 and 32 C. Simultaneous saccharification and fermentation for ethanol production was carried out using a cassava (Manihot esculenta) powder hydrolysate medium containing 19.5% (w v{sup -1}) total sugar in a 5 l lab scale jar fermenter at 32 C for 65 h with an agitation speed of 2 Hz. Under these conditions, CHFY0321 showed the highest flocculating ability and the best fermentation efficiency for ethanol production compared with those of the wild-type parent strains. CHFY0321 gave a final ethanol concentration of 89.8 {+-} 0.13 g l{sup -1}, a volumetric ethanol productivity of 1.38 {+-} 0.13 g l{sup -1} h{sup -1}, and a theoretical yield of 94.2 {+-} 1.58%. These results suggest that CHFY0321 exhibited the fermentation characteristics of S. cerevisiae CHY1011 and the flocculent ability of S. bayanus KCCM12633. Therefore, the strong highly flocculent ethanol fermentative CHFY0321 has potential for improving biotechnological ethanol fermentation processes. (author)

  15. Bioethanol production by a flocculent hybrid, CHFY0321 obtained by protoplast fusion between Saccharomyces cerevisiae and Saccharomyces bayanus

    International Nuclear Information System (INIS)

    Choi, Gi-Wook; Um, Hyun-Ju; Kang, Hyun-Woo; Kim, Yule; Kim, Mina; Kim, Yang-Hoon

    2010-01-01

    Fusion hybrid yeast, CHFY0321, was obtained by protoplast fusion between non-flocculent-high ethanol fermentative Saccharomyces cerevisiae CHY1011 and flocculent-low ethanol fermentative Saccharomyces bayanus KCCM12633. The hybrid yeast was used together with the parental strains to examine ethanol production in batch fermentation. Under the conditions tested, the fusion hybrid CHFY0321 flocculated to the highest degree and had the capacity to ferment well at pH 4.5 and 32 o C. Simultaneous saccharification and fermentation for ethanol production was carried out using a cassava (Manihot esculenta) powder hydrolysate medium containing 19.5% (w v -1 ) total sugar in a 5 l lab scale jar fermenter at 32 o C for 65 h with an agitation speed of 2 Hz. Under these conditions, CHFY0321 showed the highest flocculating ability and the best fermentation efficiency for ethanol production compared with those of the wild-type parent strains. CHFY0321 gave a final ethanol concentration of 89.8 ± 0.13 g l -1 , a volumetric ethanol productivity of 1.38 ± 0.13 g l -1 h -1 , and a theoretical yield of 94.2 ± 1.58%. These results suggest that CHFY0321 exhibited the fermentation characteristics of S. cerevisiae CHY1011 and the flocculent ability of S. bayanus KCCM12633. Therefore, the strong highly flocculent ethanol fermentative CHFY0321 has potential for improving biotechnological ethanol fermentation processes.

  16. Second-order QCD effects in Higgs boson production through vector boson fusion

    Science.gov (United States)

    Cruz-Martinez, J.; Gehrmann, T.; Glover, E. W. N.; Huss, A.

    2018-06-01

    We compute the factorising second-order QCD corrections to the electroweak production of a Higgs boson through vector boson fusion. Our calculation is fully differential in the kinematics of the Higgs boson and of the final state jets, and uses the antenna subtraction method to handle infrared singular configurations in the different parton-level contributions. Our results allow us to reassess the impact of the next-to-leading order (NLO) QCD corrections to electroweak Higgs-plus-three-jet production and of the next-to-next-to-leading order (NNLO) QCD corrections to electroweak Higgs-plus-two-jet production. The NNLO corrections are found to be limited in magnitude to around ± 5% and are uniform in several of the kinematical variables, displaying a kinematical dependence only in the transverse momenta and rapidity separation of the two tagging jets.

  17. Production of alpha-amylase from Aspergillus oryzae for several industrial applications in a single step.

    Science.gov (United States)

    Porfirif, María C; Milatich, Esteban J; Farruggia, Beatriz M; Romanini, Diana

    2016-06-01

    A one-step method as a strategy of alpha-amylase concentration and purification was developed in this work. This methodology requires the use of a very low concentration of biodegradable polyelectrolyte (Eudragit(®) E-PO) and represents a low cost, fast, easy to scale up and non-polluting technology. Besides, this methodology allows recycling the polymer after precipitation. The formation of reversible soluble/insoluble complexes between alpha-amylase and the polymer Eudragit(®) E-PO was studied, and their precipitation in selected conditions was applied with bioseparation purposes. Turbidimetric assays allowed to determine the pH range where the complexes are insoluble (4.50-7.00); pH 5.50 yielded the highest turbidity of the system. The presence of NaCl (0.05M) in the medium totally dissociates the protein-polymer complexes. When the adequate concentration of polymer was added under these conditions to a liquid culture of Aspergillus oryzae, purification factors of alpha-amylase up to 7.43 and recoveries of 88% were obtained in a simple step without previous clarification. These results demonstrate that this methodology is suitable for the concentration and production of alpha-amylase from this source and could be applied at the beginning of downstream processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Expression of alpha-amylase in Bacillus licheniformis.

    OpenAIRE

    Rothstein, D M; Devlin, P E; Cate, R L

    1986-01-01

    In Bacillus licheniformis, alpha-amylase production varied more than 100-fold depending on the presence or absence of a catabolite-repressing carbon source in the growth medium. alpha-Amylase was produced during the growth phase and not at the onset of the stationary phase. Induction of alpha-amylase correlated with synthesis of mRNA initiating at the promoter of the alpha-amylase gene.

  19. Non-electrical uses of thermal energy generated in the production of fissile fuel in fusion--fission reactors: a comparative economic parametric analysis for a hybrid with or without synthetic fuel production

    International Nuclear Information System (INIS)

    Tai, A.S.; Krakowski, R.A.

    1979-01-01

    A parametric analysis has been carried out for testing the sensitivity of the synfuel production cost in relation to crucial economic and technologic quantities (investment costs of hybrid and synfuel plant, energy multiplication of the fission blanket, recirculating power fraction of the fusion driver, etc.). In addition, a minimum synfuel selling price has been evaluated, from which the fission--fusion--synfuel complex brings about a higher economic benefit than does the fusion--fission hybrid entirely devoted to fissile-fuel and electricity generation. Assuming an electricity cost of 2.7 cents/kWh, an annual investment cost per power unit of 4.2 to 6 $/GJ (132 to 189 k$/MWty) for the fission--fusion complex and 1.5 to 3 $/GJ (47 to 95 k$/MWty) for the synfuel plant, the synfuel production net cost (i.e., revenue = cost) varies between 6.5 and 8.6 $/GJ. These costs can compete with those obtained by other processes (natural gas reforming, resid partial oxidation, coal gasification, nuclear fission, solar electrolysis, etc.). This study points out a potential use of the fusion--fission hybrid other than fissile-fuel and electricity generation

  20. Optimization of nonthermal fusion power consistent with energy channeling

    International Nuclear Information System (INIS)

    Snyder, P.B.; Herrmann, M.C.; Fisch, N.J.

    1995-02-01

    If the energy of charged fusion products can be diverted directly to fuel ions, non-Maxwellian fuel ion distributions and temperature differences between species will result. To determine the importance of these nonthermal effects, the fusion power density is optimized at constant-β for nonthermal distributions that are self-consistently maintained by channeling of energy from charged fusion products. For D-T and D- 3 He reactors, with 75% of charged fusion product power diverted to fuel ions, temperature differences between electrons and ions increase the reactivity by 40-70%, while non- Maxwellian fuel ion distributions and temperature differences between ionic species increase the reactivity by an additional 3-15%

  1. Commercial applications of inertial confinement fusion

    International Nuclear Information System (INIS)

    Booth, L.A.; Frank, T.G.

    1977-05-01

    This report describes the fundamentals of inertial-confinement fusion, some laser-fusion reactor (LFR) concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation. In addition, other commercial energy-related applications, such as the production of fissionable fuels, of synthetic hydrocarbon-based fuels, and of process heat for a variety of uses, as well as the environmental and safety aspects of fusion energy, are discussed. Finally, the requirements for commercialization of laser fusion technologies are described

  2. Status report on fusion research

    International Nuclear Information System (INIS)

    Burkhart, Werner

    2005-01-01

    At the beginning of the twenty-first century mankind is faced with the serious problem of meeting the energy demands of a rapidly industrializing population around the globe. This, against the backdrop of fast diminishing fossil fuel resources (which have been the main source of energy of the last century) and the increasing realization that the use of fossil fuels has started to adversely affect our environment, has greatly intensified the quest for alternative energy sources. In this quest, fusion has the potential to play a very important role and we are today at the threshold of realizing net energy production from controlled fusion experiments. Fusion is, today, one of the most promising of all alternative energy sources because of the vast reserves of fuel, potentially lasting several thousands of years and the possibility of a relatively 'clean' form of energy, as required for use in concentrated urban industrial settings, with minimal long term environmental implications. The last decade and a half has seen unprecedented advances in controlled fusion experiments with the discovery of new regimes of operations in experiments, production of 16 MW of fusion power and operations close to and above the so-called 'break-even' conditions. A great deal of research has also been carried out in analysing various socio-economic aspects of fusion energy. This paper briefly reviews the various aspects and achievements of fusion research all over the world during this period

  3. Confined trapped-alpha behavior in TFTR deuterium-tritium plasmas

    International Nuclear Information System (INIS)

    Medley, S.S.; Budny, R.V.; Redi, M.H.; Roquemore, A.L.; White, R.B.; Petrov, M.P.; Gorelenkov, N.N.

    1997-10-01

    Confined trapped-alpha energy spectra and differential radial density profiles in TFTR D-T plasmas are obtained with the Pellet Charge-eXchange (PCX) diagnostic which measures high energy (E α = 0.5--3.5 MeV), trapped alphas (v parallel /v = - 0.048) at a single time slice (Δt ∼ 1 msec) with a spatial resolution of Δr ∼ 5 cm. Tritons produced in D-D plasmas and RF-driven ion tails (H, 3 He or T) were also observed and energetic tritium ion tail measurements will be discussed. PCX alpha and triton energy spectra extending up to their birth energies were measured in the core of MHD-quiescent discharges where the expected classical slowing down and pitch angle scattering effects are not complicated by stochastic ripple diffusion and sawtooth activity. Both the shape of the measured alpha and triton energy distributions and their density ratios are in good agreement with TRANSP predictions, indicating that the PCX measurements are consistent with classical thermalization of the fusion-generated alphas and tritons. From calculations, these results set an upper limit on possible anomalous radial diffusion for trapped alphas of D α ≤ 0.01 m 2 s -1 . Outside the core, where the trapped alphas are influenced by stochastic ripple diffusion effects, the PCX measurements are consistent with the functional dependence of the Goldston-White-Boozer stochastic ripple threshold on the alpha energy and the q-profile. In the presence of strong sawtooth activity, the PCX diagnostic observes significant redistribution of the alpha signal radial profile wherein alphas are depleted in the core and redistributed to well outside the q = 1 radius, but apparently not beyond the energy-dependent stochastic ripple loss boundary

  4. Production of Alpha Amylase by Bacillus cereus in Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Helen H. Raplong

    2014-09-01

    Full Text Available Microorganisms have the ability to secrete enzymes when they are grown in the presence of certain substrates. Amylases are among the most important industrial enzymes and are of great significance in biotechnological studies. Bacteria belonging to the genus Bacillus were isolated using mannitol egg yolk polymyxin B (MYP agar a highly selective media for Bacillus cereus isolation. The isolates were tested for α-amylase production on nutrient agar supplemented with starch and in submerged fermentation. The bacteria isolated and identified (using the Microgen Bacillus identification kit were all Bacillus cereus and SB2 had the largest zone of hydrolysis of 12mm on nutrient agar supplemented with starch as well as the highest enzyme activity of 1.62U/ml. Amylase activity of 2.56U/ml was obtained after 24 hours incubation in submerged fermentation. When amylase enzyme production parameters where optimized, maximum amylase activity was obtained at a pH of 6.5, temperature of 350C, incubation time of 24 hours and 4% inoculums concentration. Bacillus cereus SB2 is a potential isolate for alpha-amylase production with soluble starch as the sole carbon source in submerged fermentation.

  5. Measurement of airborne concentrations of radon-220 daughter products by alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Kerr, G.D.; Ryan, M.T.; Perdue, P.T.

    1978-01-01

    The decay of naturally occurring uranium-238 and thorium-232 produces radon-222 and radon-220 isotopes which can escape into the atmosphere. If these radon gases become concentrated in air, their daughter products may present an inhalation hazard to man. The airborne concentrations of radon-222 can usually be measured very accurately in the presence of normal airborne concentrations of radon-220 and its daughters. In contrast, the measurements of the airborne concentrations of radon-220 daughters are usually complicated by the presence of radon-222 and its daughters even at normally occurring airborne concentrations. The complications involved in these measurements can be overcome in most situations by using an alpha particle spectrometer to distinguish the activity of radon-222 daughters from that due to radon-220 daughters collected on a filter. A practical spectrometer for field measurements of alpha particle activity on a filter is discussed

  6. Economic effect of fusion in energy market. Economic impact of fusion deployment in energy market

    International Nuclear Information System (INIS)

    Konishi, Satoshi

    2002-01-01

    Energy model analysis estimates the significant contribution of fusion in the latter half of the century under the global environment constraints if it will be successfully developed and introduced into the market. The total possible economical impact of fusion is investigated from the aspect of energy cost savings, sales, and its effects on Gross Domestic Products. Considerable economical possibility will be found in the markets for fusion related devices, of currently developing countries, and for synthesized fuel. The value of fusion development could be evaluated from these possible economic impact in comparison with its necessary investment. (author)

  7. Commercial objectives, technology transfer, and systems analysis for fusion power development

    Science.gov (United States)

    Dean, Stephen O.

    1988-03-01

    Fusion is an essentially inexhaustible source of energy that has the potential for economically attractive commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion-energy development program is the generation of centralstation electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high-energy neutrons suggests potentially unique applications. These include breeding of fissile fuels, production of hydrogen and other chemical products, transmutation or “burning” of various nuclear or chemical wastes, radiation processing of materials, production of radioisotopes, food preservation, medical diagnosis and medical treatment, and space power and space propulsion. In addition, fusion R&D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other hand, are the two primary criteria for setting long-range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R&D program toward practical applications. The transfer of fusion technology and skills from the national laboratories and universities to industry is the key to achieving the long-range objective of commercial fusion applications.

  8. Particle diagnostics for magnetic fusion experiments

    International Nuclear Information System (INIS)

    Post, D.E.

    1983-01-01

    This chapter summarizes the subset of diagnostics that relies primarily on the use of particles, and attempts to show how atomic and molecular data play a role in these diagnostics. Discusses passive charge-exchange ion temperature measurements; hydrogen beams for density, ion temperature, q and ZEFF measurements; impurity diagnostics using charge-exchange recombination; plasma electric and magnetic measurements using beams heavier than hydrogen; and alpha particle diagnostics. Points out that as fusion experiments become larger and hotter, most traditional particle diagnostics become difficult because large plasmas are difficult for neutral atoms to penetrate and the gyro-orbits of charged particles need to be larger than typically obtained with present beams to be comparable with the plasma size. Concludes that not only does the current profile affect the plasma stability, but there is a growing opinion that any serious fusion reactor will have to be steady state

  9. Fusion Power Associates annual meeting

    International Nuclear Information System (INIS)

    Nickerson, S.B.

    1985-03-01

    The Fusion Power Associates symposium, 'The Search for Attractive Fusion Concepts', was held January 31 - February 1 1985 in La Jolla, California. The purpose of this meeting was to bring together industry, university and government managers of the US fusion program to discuss the state of fusion development and the direction in which the program should be heading, given the cutbacks in the US fusion budget. There was a strong, minority opinion that until the best concept could be identified, the program should be broadly based. But there was also widespread criticism, aimed mainly at the largest segment of the magnetic fusion program, the tokamak. It was felt by many that the tokamak would not develop into a reactor that would be attractive to a utility and therefore should be phased out of the program. If the tokamak will indeed not lead to a commercial product then this meeting shows the US fusion program to be in a healthy state, despite the declining budgets

  10. Kaliski's explosive driven fusion experiments

    International Nuclear Information System (INIS)

    Marshall, J.

    1979-01-01

    An experiment performed by a group in Poland on the production of DD fusion neutrons by purely explosive means is discussed. A method for multiplying shock velocities ordinarily available from high explosives by a factor of ten is described, and its application to DD fusion experiments is discussed

  11. Computer simulation of defect behavior under fusion irradiation environments

    International Nuclear Information System (INIS)

    Muroga, T.; Ishino, S.

    1983-01-01

    To simulate defect behavior under irradiation, three kinds of cascade-annealing calculations have been carried out in alpha-iron using the codes MARLOWE, DAIQUIRI and their modifications. They are (1) cascade-annealing calculation with different masses of projectile, (2) defect drifting near dislocations after cascade production and (3) cascade-overlap calculation. The defect survival ratio is found to increase as decreasing mass of the projectile both after athermal close-pair recombination and after thermal annealing. It is shown that at moderate temperatures vacancy clustering is enhanced near dislocations. Cascade-overlap is found to decrease the defect survivability. In addition, the role of helium in vacancy clustering has been calculated in aluminium lattices and its effect is found to depend strongly on temperature, interstitials and the mobility of small clusters. These results correspond well to the experimental data and will be helpful for correlating between fusion and simulation irradiations. (orig.)

  12. The IGNITEX fusion project

    International Nuclear Information System (INIS)

    Carrera, R.

    1987-01-01

    The author discusses the recently proposed fusion ignition experiment, IGNITEX. He emphasizes the basic ideas of this concept rather than the specific details of the physics and engineering aspects of the experiment. This concept is a good example of the importance of maintaining an adequate balance between the basic scientific progress in fusion physics and the new technologies that are becoming available in order to make fusion work. The objective of the IGNITEX project is to produce and control ignited plasmas for scientific study in the simplest and least expensive way possible. Being able to study this not-yet-produced regime of plasma operation is essential to fusion research. Two years after the fission nuclear reaction was discovered, a non-self-sustained fission reaction was produced in a laboratory, and in one more year a self-sustained reaction was achieved at the University of Chicago. However, after almost forty years of fusion research, a self-sustained fusion reaction has yet not been produced in a laboratory experiment. This fact indicates the greater difficulty of the fusion experiment. Because of the difficulty involved in the production of a self-sustained fusion reaction, it is necessary to propose such an experiment with maximum ignition margins, maximum simplicity, and minimum financial risk

  13. Overview of the first workshop on alpha particle physics in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Biglari, H.

    1991-07-01

    The ''First Workshop on Alpha Physics in TFTR'' was held at the Princeton Plasma Physics Lab March 28--29, 1991. The motivation for this meeting was to clarify and strengthen the TFTR alpha physics program, and to increase the involvement of the fusion community outside PPPL in the TFTR D-T experiments. Therefore the meeting was sharply focused on alpha physics relevant to the upcoming TFTR D-T simulation, and was asked to devote half of his talk to specific TFTR issues. The Workshop consisted of 27 talks on: (1) experimental possibilities; (2) theoretical possibilities; (3) diagnostic possibilities; (4) relevance for future machines; and (5) discussion/summary session. This summary contains a brief sampling of the new results and ideas brought out by these talks, followed by two more general overviews of the status of experiment and theory

  14. Techniques for measuring the alpha-particle distribution in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Post, D.E.; Mikkelsen, D.R.; Hulse, R.A.; Stewart, L.D.; Weisheit, J.C.

    1979-10-01

    Methods are proposed for measuring the alpha-particle distribution in magnetically confined fusion plasmas using neutral-atom doping beams, ultraviolet spectroscopy, and neutral particle detectors. In the first method single charge exchange reactions, A 0 + He ++ - > A + (He + )*, are used to populate the n=2 and n=3 levels of He + . The ultraviolet photons from the decaying excited states are Doppler shifted by 5 to 10 Angstroms from those produced by the thermalized alpha-particle ash. In the second method double charge exchange reactions, A 0 + He ++ - > A ++ + He 0 , enable fast neutralized alpha-particles to escape from the plasma and be detected by neutral particle analysers. Detector configurations are analyzed, count rates are estimated and their detectability is discussed. A preliminary analysis of the feasibility of the required neutral beams is presented, and exploratory experiments on existing devices are suggested

  15. Test of the Flavour Independence of $\\alpha_{s}$ using Next-to-Leading Order Calculations for Heavy Quarks

    CERN Document Server

    Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fleck, I.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lauber, J.; Lawson, I.; Layter, J.G.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycien, M.; Quadt, A.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    1999-01-01

    We present a test of the flavour independence of the strong coupling constant for charm and bottom quarks with respect to light (uds) quarks, based on a hadronic event sample obtained with the OPAL detector at LEP. Five observables related to global event shapes were used to measure alpha_s in three flavour tagged samples (uds, c and b). The event shape distributions were fitted by Order(alpha_s**2) calculations of jet production taking into account mass effects for the c and b quarks. We find: = 0.997 +- 0.038(stat.) +- 0.030(syst.) +- 0.012(theory) and = 0.993 +- 0.008(stat.) +- 0.006(syst.) +- 0.011(theory) for the ratios alpha_s(charm)/alpha_s(uds) and alpha_s(b)/alpha_s(uds) respectively.

  16. Production of interleukin-1alpha by human endometrial stromal cells is triggered during menses and dysfunctional bleeding and is induced in culture by epithelial interleukin-1alpha released upon ovarian steroids withdrawal.

    Science.gov (United States)

    Pretto, Chrystel M; Gaide Chevronnay, Héloïse P; Cornet, Patricia B; Galant, Christine; Delvaux, Denis; Courtoy, Pierre J; Marbaix, Etienne; Henriet, Patrick

    2008-10-01

    Endometrial breakdown during menstruation and dysfunctional bleeding is triggered by the abrupt expression of matrix metalloproteinases (MMPs), including interstitial collagenase (MMP-1). The paracrine induction of MMP-1 in stromal cells via epithelium-derived IL-1alpha is repressed by ovarian steroids. However, the control by estradiol (E) and progesterone (P) of endometrial IL-1alpha expression and bioactivity remains unknown. Variations of endometrial IL-1alpha mRNA and protein along the menstrual cycle and during dysfunctional bleeding were determined using RT-PCR, in situ hybridization, and immunolabeling. The mechanism of EP control was analyzed using culture of explants, laser capture microdissection, and purified cells. Data were compared with expression changes of IL-1beta and IL-1 receptor antagonist. IL-1alpha is synthesized by epithelial cells throughout the cycle but E and/or P prevents its release. In contrast, endometrial stromal cells produce IL-1alpha only at menses and during irregular bleeding in areas of tissue breakdown. Stromal expression of IL-1alpha, like that of MMP-1, is repressed by P (alone or with E) but triggered by epithelium-derived IL-1alpha released upon EP withdrawal. Our experiments in cultured endometrium suggest that IL-1alpha released by epithelial cells triggers the production of IL-1alpha by stromal cells in a paracrine amplification loop to induce MMP-1 expression during menstruation and dysfunctional bleeding. All three steps of this amplification cascade are repressed by EP.

  17. The ITER fusion reactor and its role in the development of a fusion power plant

    International Nuclear Information System (INIS)

    McLean, A.

    2002-01-01

    Energy from nuclear fusion is the future source of sustained, full life-cycle environmentally benign, intrinsically safe, base-load power production. The nuclear fusion process powers our sun, innumerable other stars in the sky, and some day, it will power the Earth, its cities and our homes. The International Thermonuclear Experimental Reactor, ITER, represents the next step toward fulfilling that promise. ITER will be a test bed for key steppingstones toward engineering feasibility of a demonstration fusion power plant (DEMO) in a single experimental step. It will establish the physics basis for steady state Tokamak magnetic containment fusion reactors to follow it, exploring ion temperature, plasma density and containment time regimes beyond the breakeven power condition, and culminating in experimental fusion self-ignition. (author)

  18. Measurement of tritium production rate distribution for a fusion-fission hybrid conceptual reactor

    International Nuclear Information System (INIS)

    Wang Xinhua; Guo Haiping; Mou Yunfeng; Zheng Pu; Liu Rong; Yang Xiaofei; Yang Jian

    2013-01-01

    A fusion-fission hybrid conceptual reactor is established. It consists of a DT neutron source and a spherical shell of depleted uranium and hydrogen lithium. The tritium production rate (TPR) distribution in the conceptual reactor was measured by DT neutrons using two sets of lithium glass detectors with different thicknesses in the hole in the vertical direction with respect to the D + beam of the Cockcroft-Walton neutron generator in direct current mode. The measured TPR distribution is compared with the calculated results obtained by the three-dimensional Monte Carlo code MCNP5 and the ENDF/B-Ⅵ data file. The discrepancy between the measured and calculated values can be attributed to the neutron data library of the hydrogen lithium lack S(α, β) thermal scattering model, so we show that a special database of low-energy and thermal neutrons should be established in the physics design of fusion-fission hybrid reactors. (authors)

  19. Engineering Status of the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    Heitzenroeder, Philip J.; Meade, Dale; Thome, Richard J.

    2000-01-01

    FIRE is a compact, high field tokamak being studied as an option for the next step in the US magnetic fusion energy program. FIRE's programmatic mission is to attain, explore, understand, and optimize alpha-dominated plasmas to provide the knowledge necessary for the design of attractive magnetic fusion energy systems. This study began in 1999 with broad participation of the US fusion community, including several industrial participants. The design under development has a major radius of 2 m, a minor radius of 0.525 m, a field on axis of 10T and capability to operate at 12T with upgrades to power supplies. Toroidal and poloidal field magnets are inertially cooled with liquid nitrogen. An important goal for FIRE is a total project cost in the $1B range. This paper presents an overview of the engineering details which were developed during the FIRE preconceptual design study in FY99 and 00

  20. Expression and secretion of Bacillus amyloliquefaciens alpha-amylase by using the yeast pheromone alpha-factor promoter and leader sequence in Saccharomyces cerevisiae.

    OpenAIRE

    Southgate, V J; Steyn, A J; Pretorius, I S; Van Vuuren, H J

    1993-01-01

    Replacement of the regulatory and secretory signals of the alpha-amylase gene (AMY) from Bacillus amylolique-faciens with the complete yeast pheromone alpha-factor prepro region (MF alpha 1p) resulted in increased levels of extracellular alpha-amylase production in Saccharomyces cerevisiae. However, the removal of the (Glu-Ala)2 peptide from the MF alpha 1 spacer region (Lys-Arg-Glu-Ala-Glu-Ala) yielded decreased levels of extracellular alpha-amylase.

  1. Magneized target fusion: An overview of the concept

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.

    1994-01-01

    Magnetized target fusion (MTF) seeks to take advantage of the reduction of thermal conductivity through the application of a strong magneticfield and thereby ease the requirements for reaching fusion conditions in a thermonuclear (TN) fusion fuel. A potentially important benefit of the strong field in the partial trapping of energetic charged particles to enhance energy deposition by the TN fusion reaction products. The essential physics is described. MTF appears to lead to fusion targets that require orders of magnitude less power and intensity for fusion ignition than currently proposed (unmagnetized) inertial confinement fusion (ICF) targets do, making some very energetic pulsed power drivers attractive for realizing controlled fusion

  2. Alpha-in-air monitor for continuous monitoring based on alpha to beta ratio

    International Nuclear Information System (INIS)

    Somayaji, K.S.; Venkataramani, R.; Swaminathan, N.; Pushparaja

    1997-01-01

    Measurement of long-lived alpha activity collected on a filter paper in continuous air monitoring of ambient working environment is difficult due to interference from much larger concentrations of short-lived alpha emitting daughter products of 222 Rn and 220 Rn. However, the ratio between the natural alpha and beta activity is approximately constant and this constancy of the ratio is used to discriminate against short-lived natural radioactivity in continuous air monitoring. Detection system was specially designed for the purpose of simultaneous counting of alpha and beta activity deposited on the filter paper during continuous monitoring. The activity ratios were calculated and plotted against the monitoring duration up to about six hours. Monitoring was carried out in three facilities with different ventilation conditions. Presence of any long-lived alpha contamination on the filter paper results in increase in the alpha to beta ratio. Long-lived 239 Pu contamination of about 16 DAC.h could be detected after about 45 minutes of commencement of the sampling. The experimental results using prototype units have shown that the approach of using alpha to beta activity ratio method to detect long-lived alpha activity in the presence of short-lived natural activity is satisfactory. (author)

  3. Production of recombinant proteins in Escherichia coli tagged with the fusion protein CusF3H.

    Science.gov (United States)

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2017-04-01

    Recombinant protein expression in the bacterium Escherichia coli still is the number one choice for large-scale protein production. Nevertheless, many complications can arise using this microorganism, such as low yields, the formation of inclusion bodies, and the requirement for difficult purification steps. Most of these problems can be solved with the use of fusion proteins. Here, the use of the metal-binding protein CusF3H+ is described as a new fusion protein for recombinant protein expression and purification in E. coli. We have previously shown that CusF produces large amounts of soluble protein, with low levels of formation of inclusion bodies, and that proteins can be purified using IMAC resins charged with Cu(II) ions. CusF3H+ is an enhanced variant of CusF, formed by the addition of three histidine residues at the N-terminus. These residues then can bind Ni(II) ions allowing improved purity after affinity chromatography. Expression and purification of Green Fluorescent Protein tagged with CusF3H+ showed that the mutation did not alter the capacity of the fusion protein to increase protein expression, and purity improved considerably after affinity chromatography with immobilized nickel ions; high yields are obtained after tag-removal since CusF3H+ is a small protein of just 10 kDa. Furthermore, the results of experiments involving expression of tagged proteins having medium to large molecular weights indicate that the presence of the CusF3H+ tag improves protein solubility, as compared to a His-tag. We therefore endorse CusF3H+ as a useful alternative fusion protein/affinity tag for production of recombinant proteins in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Tritium production potential of beam research and magnetic fusion program technologies

    International Nuclear Information System (INIS)

    Lee, J.D.

    1989-03-01

    Regular replenishment of tritium in the nuclear weapons stockpile is essential to maintain our nuclear deterrent. Nuclear reactor facilities presently used for the production of tritium are aging, and their operation is being curtailed awaiting the repairs and upgrades needed to meet modern standards of safety and environment. To provide improved capability in the future, DOE plans to construct a new production reactor. Alternatives to nuclear reactor methods for the production of tritium, mainly electrically-driven accelerator or fusion systems, have been proposed many times in the past. Given the critical national security implications of maintaining adequate tritium production facilities, it is clearly worthwhile for political decision-makers to have a clear and accurate picture of the technical options that could be made available at various points in the future. The goal of this white paper is to summarize available technical information on a set of non-nuclear-reactor options for tritium production with a minimum of advocacy for any one system of implicit assumptions about politically desirable attributes. Indeed, these various options differ considerably in aspects such as the maturity of the technology, the development cost and timescales required, and the capital and operating costs of a typical ''optimized'' facility

  5. Development scenario for laser fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hovingh, J.; Buntzen, R.R.

    1976-01-01

    This scenario proposes establishment of test and engineering facilities to (1) investigate the technological problems associated with laser fusion, (2) demonstrate fissile fuel production, and (3) demonstrate competitive electrical power production. Such facilities would be major milestones along the road to a laser-fusion power economy. The relevant engineering and economic aspects of each of these research and development facilities are discussed. Pellet design and gain predictions corresponding to the most promising laser systems are presented for each plant. The results show that laser fusion has the potential to make a significant contribution to our energy needs. Beginning in the early 1990's, this new technology could be used to produce fissile fuel, and after the turn of the century it could be used to generate electrical power

  6. Benfotiamine alleviates diabetes-induced cerebral oxidative damage independent of advanced glycation end-product, tissue factor and TNF-alpha.

    Science.gov (United States)

    Wu, Shan; Ren, Jun

    2006-02-13

    Diabetes mellitus leads to thiamine deficiency and multiple organ damage including diabetic neuropathy. This study was designed to examine the effect of benfotiamine, a lipophilic derivative of thiamine, on streptozotocin (STZ)-induced cerebral oxidative stress. Adult male FVB mice were made diabetic with a single injection of STZ (200 mg/kg, i.p.). Fourteen days later, control and diabetic (fasting blood glucose >13.9 mM) mice received benfotiamine (100 mg/kg/day, i.p.) for 14 days. Oxidative stress and protein damage were evaluated by glutathione/glutathione disulfide (GSH/GSSG) assay and protein carbonyl formation, respectively. Pro-oxidative or pro-inflammatory factors including advanced glycation end-product (AGE), tissue factor and tumor necrosis factor-alpha (TNF-alpha) were evaluated by immunoblot analysis. Four weeks STZ treatment led to hyperglycemia, enhanced cerebral oxidative stress (reduced GSH/GSSG ratio), elevated TNF-alpha and AGE levels without changes in protein carbonyl or tissue factor. Benfotiamine alleviated diabetes-induced cerebral oxidative stress without affecting levels of AGE, protein carbonyl, tissue factor and TNF-alpha. Collectively, our results indicated benfotiamine may antagonize diabetes-induced cerebral oxidative stress through a mechanism unrelated to AGE, tissue factor and TNF-alpha.

  7. Fusion Plasma Physics and ITER - An Introduction (2/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The second lecture will explore some of the key physics phenomena which govern the behaviour of magnetic fusion plasmas and which have been the subject of intense research during the past 50 years: plasma confinement, magnetohydrodynamic stability and plasma-wall interactions encompass the major areas of plasma physics which must be understood to assemble an overall description of fusion plasma behaviour. In addition, as fusion plasmas approach the “burning plasma” regime, where internal heating due to fusion products dominates other forms of heating, the physics of the interaction between the α-particles produced by D-T fusion reactions and the thermal “background” plasma becomes significant. This lecture will also introduce the basic physics of fusion plasma production, plasma heating and current drive, and plasma measurements (“diagnostics”).

  8. Enantioselective conjugate radical addition to alpha'-hydroxy enones.

    Science.gov (United States)

    Lee, Sunggi; Lim, Chae Jo; Kim, Sunggak; Subramaniam, Rajesh; Zimmerman, Jake; Sibi, Mukund P

    2006-09-14

    Enantioselective conjugate radical addition to alpha'-hydroxy alpha,beta-unsaturated ketones, compounds containing bidentate donors, has been investigated. It has been found that radical additions to alpha'-hydroxy alpha,beta-unsaturated ketones in the presence of Mg(NTf2)2 and bisoxazoline ligand 5a proceeded cleanly, yielding the addition products in high chemical yields and good enantiomeric excesses.

  9. Higgs boson decays and production via gluon fusion at LHC in littlest Higgs models with T parity

    International Nuclear Information System (INIS)

    Wang Lei; Yang Jinmin

    2009-01-01

    We study the Higgs boson decays and production via gluon fusion at the LHC as a probe of two typical littlest Higgs models which introduce a top quark partner with different (even and odd) T parity to cancel the Higgs mass quadratic divergence contributed by the top quark. For each model, we consider two different choices for the down-type quark Yukawa couplings. We first examine the branching ratios of the Higgs boson decays and then study the production via gluon fusion followed by the decay into two photons or two weak gauge bosons. We find that the predictions can be quite different for different models or different choices of down-type quark Yukawa couplings, and all these predictions can sizably deviate from the standard model predictions. So the Higgs boson processes at the LHC can be a sensitive probe for these littlest Higgs models.

  10. Search for charged-particle d-d fusion products in an encapsulated Pd thin film

    International Nuclear Information System (INIS)

    Lopez, E.; Neuhauser, B.; Ziemba, F.; Jackson, J.; Mapoles, E.; McVittie, J.; Powell, R.

    1991-01-01

    Motivated by reports by Fleischmann and Pons and also Jones et al. of nuclear fusion occurring at room temperature, we attempted to look for charged particle reaction products from d-d fusion in a deuterated palladium thin film. A silicon nitride encapsulated palladium thin film (340 nanometers thick and one square centimeter in area) was fabricated on top of a semiconductor particle detector and implanted with an 80 keV D 2 + beam. The purpose of the nitride cap was to prevent deuterium from diffusing out or from being sputtered away during implantation. The detector temperature was maintained below 200 K in order to reduce pressure on the cap. During the first run of this experiment, after the ion implanter had been turned off, apparent charged particle pulses as well as bursts of activity in two nearby Geiger counters were observed with the film loaded to a nominal 150% deuterium-to-palladium ratio and a 1.3% does of 6 Li. No spectrum was obtained because of equipment malfunction. In a second run no apparent charged particles pulses were observed, but a record of the neutron flux due to induced fusion during implantation suggested that the nitride cap had failed. More experimental runs are expected in the near future

  11. Opimization of fusion-driven fissioning systems

    International Nuclear Information System (INIS)

    Chapin, D.L.; Mills, R.G.

    1976-01-01

    Potential advantages of hybrid or fusion/fission systems can be exploited in different ways. With selection of the 238 U-- 239 Pu fuel cycle, we show that the system has greatest value as a power producer. Numerical examples of relative revenue from power production vs. 239 Pu production are discussed, and possible plant characteristics described. The analysis tends to show that the hybrid may be more economically attractive than pure fusion systems

  12. Plasma current sustained by fusion charged particles in a field reversed configuration

    International Nuclear Information System (INIS)

    Berk, H.L.; Momota, H.; Tajima, T.

    1987-04-01

    The distribution of energetic charged particles generated by thermonuclear fusion reactions in a field reversed configuration (FRC) are studied analytically and numerically. A fraction of the charged fusion products escapes directly while the others are trapped to form a directed particle flow parallel to the plasma current. It is shown that the resultant current density produced by these fusion charged particles can be comparable to background plasma current density that produces the original field reversed configuration in a D- 3 He reactor. Self-consistent equilibria arising from the currents of the background plasma and proton fusion products are constructed where the Larmor radius of the fusion product is of arbitrary size. Reactor relevant parameters are examined, such as how the fusion reactivity rate varies as a result of supporting the pressure associated with the fusion products. We also model the synchrotron emission from various pressure profiles and quantitatively show how synchrotron losses vary with different pressure profiles in an FRC configuration

  13. 15 beta-hydroxysteroids (Part IV). Steroids of the human perinatal period: the synthesis of 3 alpha,15 beta,17 alpha-trihydroxy-5 alpha-pregnan-20-one and its A/B-ring configurational isomers.

    Science.gov (United States)

    Reeder, A Y; Joannou, G E

    1995-12-01

    In recent years several 15 beta-hydroxysteroids have emerged pathognomonic of adrenal disorders in human neonates of which 3 alpha,15 beta,17 alpha-trihydroxy-5 beta-pregnan-20-one (2) was the first to be identified in the urine of newborn infants affected with congenital adrenal hyperplasia. In this investigation we report the synthesis of the three remaining 3 xi,5 xi-isomers, namely 3 alpha,15 beta,17 alpha-trihydroxy-5 alpha-pregnan-20-one (3), 3 beta,15 beta,17 alpha-trihydroxy-5 alpha-pregnan-20-one (7) and 3 beta,15 beta,17 alpha-trihydroxy-5 beta-pregnan-20-one (8) for their definitive identification in pathological conditions in human neonates. 3 beta,15 beta-Diacetoxy-17 alpha-hydroxy-5-pregnen-20-one (11), a product of chemical synthesis was converted to the isomeric 3 and 7, while conversion of 15 beta,17 alpha-dihydroxy-4-pregnen-3,20-dione (4), a product of microbiological transformation, resulted in the preparation of 8. In brief, selective acetate hydrolysis of 11 gave 15 beta-acetoxy-3 beta,17 alpha-dihydroxy-5-pregnen-20-one (12) which on catalytic hydrogenation gave 15 beta-acetoxy-3 beta,17 alpha-dihydroxy-5 alpha-pregnan-20-one (13) a common intermediate for the synthesis of the 3 beta(and alpha),5 alpha-isomers. Hydrolysis of the 15 beta-acetate gave 7, whereas oxidation with pyridinium chlorochromate gave 15 beta-acetoxy-17 alpha-hydroxy-5 alpha-pregnan-3,20-dione (14) which on reduction with L-Selectride and hydrolysis of the 15 beta-acetate gave 3. Finally, hydrogenation of 4 gave 15 beta, 17 alpha-dihydroxy-5 beta-pregnan-3,20-dione (10) which on reduction with L-Selectride gave 8.

  14. The Analysis of Product Traits and Innovation Process of Multi Level Marketing Business at Talk Fusion

    OpenAIRE

    Suwarno, Sutrisno

    2013-01-01

    Multi Level Marketing Business nowadays is rapidly growing. In recent years, there have been so many new Multi Level Marketing Business coming out with their own specific offers and products. One of the advantages of MLM Business is the contribution it makes to economic growth. It makes it possible for the national income to continuously grow. The objectives can be achieved from this research are to examine product traits and innovation process of Talk Fusion. Theories supporting research are...

  15. Peaceful Uses of Fusion

    Science.gov (United States)

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  16. Higgs production in bottom-quark fusion in a matched scheme

    Directory of Open Access Journals (Sweden)

    Stefano Forte

    2015-12-01

    Full Text Available We compute the total cross-section for Higgs boson production in bottom-quark fusion using the so-called FONLL method for the matching of a scheme in which the b-quark is treated as a massless parton to that in which it is treated as a massive final-state particle. We discuss the general framework for the application of the FONLL method to this process, and then we present explicit expressions for the case in which the next-to-next-to-leading-log five-flavor scheme result is combined with the leading-order O(αs2 four-flavor scheme computation. We compare our results in this case to the four- and five-flavor scheme computations, and to the so-called Santander matching.

  17. Quasi-elastic scattering an alternative tool for mapping the fusion barriers for heavy-ion induced fusion reaction

    International Nuclear Information System (INIS)

    Behera, B.R.

    2016-01-01

    Heavy element synthesis through heavy-ion induced fusion reaction is an active field in contemporary nuclear physics. Exact knowledge of fusion barrier is one of the essential parameters for planning any experiments for heavy element production. Theoretically there are many models available to predict the exact barrier. Though these models are successful for predicting the fusion of medium mass nuclei, it somehow fails for predicting the exact location of barrier for fusion of heavy nuclei. Experimental determination of barrier for such reactions is required for future experiments for the synthesis of heavy elements. Traditionally fusion barrier is determined taking a double derivative of fusion excitation function. However, such method is difficult in case of fusion of heavy nuclei due to its very low fusion/capture cross section and its experimental complications. Alternatively fusion barrier can be determined by measuring the quasi-elastic cross section at backward angles. This method can be applied for determining the fusion barrier for the fusion of heavy nuclei. Experimental determination of fusion barrier by different methods and comparison of the fusion excitation function and quasi-elastic scattering methods for the determination of fusion barrier are reviewed. At IUAC, New Delhi recently a program has been started for the measurement of fusion barrier through quasi-elastic scattering methods. The experimental facility and the first results of the experiments carried out with this facility are presented. (author)

  18. Post-Fusion Membrane Reorganization.

    Science.gov (United States)

    1993-01-27

    diphosphoglycerate , and NEM (a crosslinking agent), and ethanol treatments all had reproducible and very specific effects on the kinetic phases and the fusion product...actually, at the ultrastructure level , a double membrane multiply perforated with fusion sites (or pores). Also, because the heat treatment was within...relationships. Moreover. 2.3- Diphosphoglycerate (2-3-DPG). a naturally occuring metabolite which is known to have a regulatory role in spectrin-cytoskeletal

  19. Neutronic Parametric Study on a Conceptual Design for a Transmutation Fusion Blanket

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2011-01-01

    Fusion energy may be the one of options of future energy. In all over the world, researchers are putting their efforts for its commercial and economical availability. Fusion-fission hybrid reactors have been studied for various applications in China. First milestone of fusion energy is expected to be the fusion fission hybrid reactors. In fusion-fission hybrid reactor the blanket design is of second prime importance after fusion source. In this study conceptual design of a fusion blanket is initiated for calculation of tritium production, transmutation of minor actinides (MA) and fission products (FP) and energy multiplication calculations

  20. Electrostatic levitation, control and transport in high rate, low cost production of inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Hendricks, C.D.; Johnson, W.L.

    1979-01-01

    Inertial confinement fusion requires production of power plant grade targets at high rates and process yield. A review of present project specifications and techniques to produce targets is discussed with special emphasis on automating the processes and combining them with an electrostatic transport and suspension system through the power plant target factory

  1. Schubert calculus and threshold polynomials of affine fusion

    International Nuclear Information System (INIS)

    Irvine, S.E.; Walton, M.A.

    2000-01-01

    We show how the threshold level of affine fusion, the fusion of Wess-Zumino-Witten (WZW) conformal field theories, fits into the Schubert calculus introduced by Gepner. The Pieri rule can be modified in a simple way to include the threshold level, so that calculations may be done for all (non-negative integer) levels at once. With the usual Giambelli formula, the modified Pieri formula deforms the tensor product coefficients (and the fusion coefficients) into what we call threshold polynomials. We compare them with the q-deformed tensor product coefficients and fusion coefficients that are related to q-deformed weight multiplicities. We also discuss the meaning of the threshold level in the context of paths on graphs

  2. Second international comparison on measuring techniques of tritium production rate for fusion neutronics experiments (ICMT-2)

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Maekawa, Hiroshi

    1993-02-01

    An second international comparison on measuring techniques of tritium production rates for fusion neutronics experiments (ICMT-2) has been performed. The purpose is to evaluate the measurement accuracy of tritium production rates in the current measurement techniques. Two 14 MeV neutron source facilities, FNS at JAERI-Japan and LOTUS at EPFL-Switzerland, were used for this purpose. Nine groups out of seven countries participated in this program. A fusion simulated blanket assembly of simple-geometry was served as the test bed at each facility, in which Li-containing samples from the participants were irradiated in an uniform neutron field. The tritium production rates were determined by the participants using their own ways by using the liquid scintillation counting method. Tritiated water sample with unknown but the same concentration was also distributed and its concentration was measured to make a common reference. The standard deviation of measured tritium production rates among participants was about 10 % for both FNS and LOTUS irradiation levels: 4x10 -13 T-atoms/Li-atom and 1.6x10 -12 T-atoms/Li-atom at a sample, respectively. This standard deviation exceeds the expected deviation of 5 % in this program. It is presumed that the deviation of 10 % is caused mainly by the systematic and unknown errors in a process of tritium extraction from the irradiated samples depending on each organization. (author)

  3. A study on conceptual design of tritium production fusion reactor based on spherical torus

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinhua

    2003-01-01

    Conceptual design of an advanced tritium production reactor based on spherical torus (ST), which is an intermediate application of fusion energy, is presented. Different from traditional Tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST are used to minimize tritium leakage and to maximize tritium breeding ratio with arrangement of tritium production blankets as possible as it can do within vacuum vessel in order to produce certain amount of excess tritium except self-sufficient plasma core, corresponding plant availability 40% or more. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR is presented. Based on systematical analysis, design risk, uncertainty and backup are introduced generally for the backgrounds of next detailed conceptual design. (authors)

  4. The scientific status of fusion

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1989-01-01

    The development of fusion energy has been a large-scale scientific undertaking of broad interest. The magnetic plasma containment in tokamaks and the laser-drive ignition of microfusion capsules appear to be scientifically feasible sources of energy. These concepts are bounded by questions of required intensity in magnetid field and plasma currents or in drive energy and, for both concepts, by issues of plasma stability and energy transport. The basic concept and the current scientific issues are described for magnetic fusion and for the interesting, but likely infeasible, muon-catalyzed fusion concept. Inertial fusion is mentioned, qualitatively, to complete the context. For magnetic fusion, the required net energy production within the plasma may be accomplished soon, but the more useful goal of self-sustained plasma ignition requires a new device of somewhat uncertain (factor of 2) cost and size. (orig.)

  5. On fusion and fission breeder reactors

    International Nuclear Information System (INIS)

    Brandt, B.; Schuurman, W.; Klippel, H.Th.

    1981-02-01

    Fast breeder reactors and fusion reactors are suitable candidates for centralized, long-term energy production, their fuel reserves being practically unlimited. The technology of a durable and economical fusion reactor is still to be developed. Such a development parallel with the fast breeder is valuable by reasons of safety, proliferation, new fuel reserves, and by the very broad potential of the development of the fusion reactor. In order to facilitate a discussion of these aspects, the fusion reactor and the fast breeder reactor were compared in the IIASA-report. Aspects of both reactor systems are compared

  6. Alpha Hydroxy Acids

    Science.gov (United States)

    ... or tenderness (8), chemical burns (6), and increased sunburn (3). The frequency of such reports for skin ... bear a statement that conveys the following information: Sunburn Alert: This product contains an alpha hydroxy acid ( ...

  7. Overview of fusion reactor safety

    International Nuclear Information System (INIS)

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Present trends in magnetic fusion research and development indicate the promise of commercialization of one of a limited number of inexhaustible energy options early in the next century. Operation of the large-scale fusion experiments, such as the Joint European Torus (JET) and Takamak Fusion Test Reactor (TFTR) now under construction, are expected to achieve the scientific break even point. Early design concepts of power producing reactors have provided problem definition, whereas the latest concepts, such as STARFIRE, provide a desirable set of answers for commercialization. Safety and environmental concerns have been considered early in the development of magnetic fusion reactor concepts and recognition of proplem areas, coupled with a program to solve these problems, is expected to provide the basis for safe and environmentally acceptable commercial reactors. First generation reactors addressed in this paper are expected to burn deuterium and tritium fuel because of the relatively high reaction rates at lower temperatures compared to advanced fuels such as deuterium-deuterium. This paper presents an overwiew of the safety and environmental problems presently perceived, together with some of the programs and techniques planned and/or underway to solve these problems. A preliminary risk assessment of fusion technology relative to other energy technologies is made. Improvements based on material selection are discussed. Tritium and neutron activation products representing potential radiological hazards in fusion reactor are discussed, and energy sources that can lead to the release of radioactivity from fusion reactors under accident conditions are examined. The handling and disposal of radioactive waste are discussed; the status of biological effects of magnetic fields are referenced; and release mechanisms for tritium and activation products, including analytical methods, are presented. (orig./GG)

  8. ROK-PRC Cooperation on Laser Fusion Energy

    International Nuclear Information System (INIS)

    Rhee, Yong Joo; Han, J. M.; Lee, S. M.; Nam, S. M.; Kwan, D. H.; Cha, Y. H.; Baek, S. H.

    2009-03-01

    International treaties on the reduction of green-house gases are now being established worldwide and Korea is supposed to join these treaties in a near future. Meanwhile the energy production via fission reactors proposed as a solution to this global environmental contamination has still inherent problems in that it also produces long-life radioactive nuclear waste in the long run, causing many serious social issues. Now the ultimate solution in this situation is believed to be the production of energy by the nuclear fusion reaction. In this project, the collaboration regarding high energy laser fusion has been carried out mainly at the Chinese facility such as ShengGuang II (SG II) laser facility, and ultrahigh intensity laser system of KAERI has been used for the small scale laser fusion and production of fast neutrons. Thomson scattering experiment to analyze the fusion plasma, opacity measurement to understand and develop the computer simulation techniques have been carried out at SG II facility, and experiments on implosion reaction which is basic to laser fusion as well as that of X-ray absorption and transmission have been done at the GEKKO XII facility of ILE, Japan. Satisfactory results both for Korea and China have been deduced by the strategy of project such that different approaches for high energy laser fusion and low energy laser fusion were applied. That is, Korean partner could get opportunities of doing experiments at the large laser facilities to get plasma diagnostic technologies and high density simulation technologies, besides the opportunity to participate in the K-C-J collaborative experiments of implosion and X-ray spectroscopy. And Chinese partner could solve their problem related to the laser fusion and neutron generation which were not successful even with their far high 300TW laser system

  9. Additional evaluation of alpha induced neutron production nuclear data. 9Be, 27Al, 28,29,30Si

    International Nuclear Information System (INIS)

    Murata, Toru; Shibata, Keiichi

    2005-01-01

    Alpha particle induced neutron production cross sections, emitted neutron energy spectrum and angular distributions were evaluated for the target nucleus 9 Be, 27 Al and Si isotopes; 28 Si, 29 Si and 30 Si in the incident energy region below 15 MeV. (author)

  10. Fusion-breeder program

    International Nuclear Information System (INIS)

    Moir, R.W.

    1982-01-01

    The various approaches to a combined fusion-fission reactor for the purpose of breeding 239 Pu and 233 U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed

  11. Fusion power demonstration - a baseline for the mirror engineering test reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Neef, W.S.

    1983-01-01

    Developing a definition of an engineering test reactor (ETR) is a current goal of the Office of Fusion Energy (OFE). As a baseline for the mirror ETR, the Fusion Power Demonstration (FPD) concept has been pursued at Lawrence Livermore National Laboratory (LLNL) in cooperation with Grumman Aerospace, TRW, and the Idaho National Engineering Laboratory. Envisioned as an intermediate step to fusion power applications, the FPD would achieve DT ignition in the central cell, after which blankets and power conversion would be added to produce net power. To achieve ignition, a minimum central cell length of 67.5 m is needed to supply the ion and alpha particles radial drift pumping losses in the transition region. The resulting fusion power is 360 MW. Low electron-cyclotron heating power of 12 MW, ion-cyclotron heating of 2.5 MW, and a sloshing ion beam power of 1.0 MW result in a net plasma Q of 22. A primary technological challenge is the 24-T, 45-cm bore choke coil, comprising a copper hybrid insert within a 15 to 18 T superconducting coil

  12. Heavy-ion accelerator research for inertial fusion

    International Nuclear Information System (INIS)

    1987-08-01

    Thermonuclear fusion offers a most attractive long-term solution to the problem of future energy supplies: The fuel is virtually inexhaustible and the fusion reaction is notably free of long-lived radioactive by-products. Also, because the fuel is in the form of a plasma, there is no solid fuel core that could melt down. The DOE supports two major fusion research programs to exploit these virtues, one based on magnetic confinement and a second on inertial confinement. One part of the program aimed at inertial fusion is known as Heavy Ion Fusion Accelerator Research, or HIFAR. In this booklet, the aim is to place this effort in the context of fusion research generally, to review the brief history of heavy-ion fusion, and to describe the current status of the HIFAR program

  13. Alpha particle effects as a test domain for PAP, a Plasma Apprentice Program

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1987-01-01

    A new type of computational tool under development, employing techniques of symbolic computation and artificial intelligence to automate as far as possible the research activities of a human plasma theorist, is described. Its present and potential uses are illustrated using the area of the theory of alpha particle effects in fusion plasmas as a sample domain. (orig.)

  14. Radial-velocity variations in Alpha Ori, Alpha Sco, and Alpha Her

    International Nuclear Information System (INIS)

    Smith, M.A.; Patten, B.M.; Goldberg, L.

    1989-01-01

    Radial-velocity observations of Alpha Ori, Alpha Sco A, and Alpha Her A are used to study radial-velocity periodicities in M supergiants. The data refer to several metallic lines in the H-alpha region and to H-alpha itself. It is shown that Alpha Ori and Alpha Sco A have cycle lengths of about 1 yr and semiamplitudes of 2 km/s. It is suggested that many semiregular red supergiant varibles such as Alpha Ori may be heading toward chaos. All three stars show short-term stochastic flucutations with an amplitude of 1-2 km/s. It is found that the long-term variability of H-alpha velocities may be a consequence of intermittent failed ejections. 58 refs

  15. Methane impurity production in the fusion reactor environment

    International Nuclear Information System (INIS)

    Dawson, P.T.

    1984-11-01

    Fusion requires temperatures of the order of 10 8 degrees C. In order to attain the required temperature it will be essential to minimise the energy losses from the plasma. Impurities are a major cause of plasma cooling. Ionization of impurity species in the plasma leads to a subsequent decay and emission of radiation. The most common low Z contaminants to be consideed are water and methane produced by reaction of hydrogen isotopes with oxygen and carbon. This review focuses on the methane production problem. We will be concerned with the sources of carbon in the reactor and also with the reactivity of carbon with hydrogen molecules, atoms and ions and the synergistic effects which can arise from coincident fluxes of electrons and photons and the effects of radiation-induced damage of the materials involved. While the reactor first wall will provide the most hostile environment for methane producton, most of the reactions discussed can occur in breeder blankets and also in other tritium facilities such as fuel handling, purification and storage facilities

  16. Energy by nuclear fusion

    International Nuclear Information System (INIS)

    Buende, R.; Daenner, W.; Herold, H.; Raeder, J.

    1976-12-01

    This report reviews the state of knowledge in a number of fields of fusion research up to autumn 1976. Section 1 gives a very brief presentation of the elementary fusion reactions, the energies delivered by them and the most basic energy balances leading to Lawson-type diagrams. Section 2 outlines the reserves and cost of lithium and deuterium, gives estimates of the total energy available from DT fusion and comments on production technology, availlability and handling of the fuels. In section 3 a survey is given of the different concepts of magnetic confinement (stellarators, tokamaks, toroidal pinches, mirror machines, two-component plasmas), of confinement by walls, gas blankets and imploding liners and, finally, of the concepts of interial confinement (laser fusion, beam fusion). The reactors designed or outlined on the basis of the tokamak, high-β, mirror, and laser fusion concepts are presented in section 4, which is followed in section 5 by a discussion of the key problems of fusion power plants. The present-day knowledge of the cost structure of fusion power plants and the sensitivity of this structure with respect to the physical and technical assumptions made is analysed in section 6. Section 7 and 8 treat the aspects of safety and environment. The problems discussed include the hazard potentials of different designs (radiological, toxicological, and with respect to stored energies), release of radioactivity, possible kinds of malfunctioning, and the environmental impact of waste heat, radiation and radioactive waste (orig.) [de

  17. Public acceptance of fusion energy and scientific feasibility of a fusion reactor. Spin-off effects of fusion research and development

    International Nuclear Information System (INIS)

    Morino, Nobuyuki; Ogawa, Yuichi

    1998-01-01

    It is observed that new and sophisticated technologies developed through research and development in relation to magnetic confinement fusion have been transferred to other industrial and scientific fields with remarkable spin-off effects. Approximately 10 years ago, the Japan Atomic Industrial Forum (JAIF) has investigated technical transfer and spin-off effects of fusion technologies developed in Japan. The essence of the results of this investigation as well as high technologies developed in the last decade, some of which are in the early stage of technical spin-off, are described. It is additionally explained that independent technical development conducted by our country as well as by engineers themselves is important in achieving effective spin-off. An outline of scientific spin-off effects is also described, including utilization technologies of fusion reactions besides those for energy production purposes, the progress of scientific understanding in the course of fusion research, and scientific information transfer and communication with other fields. (author)

  18. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride

    International Nuclear Information System (INIS)

    Reed, D.T.; Hoh, J.; Emery, J.; Okajima, S.; Krause, T.

    1998-07-01

    Alpha particle degradation experiments were performed on polyethylene (PE) and polyvinylchloride (PVC) plastic samples typical of Westinghouse Savannah River Company (WSRC) transuranic (TRU) waste. This was done to evaluate the effects of sealing TRU waste during shipment. Experiments were conducted at three temperatures using low dose rates. Predominant products from both plastics were hydrogen, carbon dioxide, and various organic species, with the addition of hydrochloric acid from PVC. In all experiments, the total pressure decreased. Irradiation at 30 and 60 C and at various dose rates caused small changes for both plastics, but at 100 C coupled thermal-radiolytic effects included discoloration of the material as well as large differences in the gas phase composition

  19. Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines

    Directory of Open Access Journals (Sweden)

    Marcos Roberto A. Ferreira

    2016-11-01

    Full Text Available Clostridium perfringens is a spore-forming, commensal, ubiquitous bacterium that is present in the gastrointestinal tract of healthy humans and animals. This bacterium produces up to 18 toxins. The species is classified into five toxinotypes (A–E according to the toxins that the bacterium produces: alpha, beta, epsilon, or iota. Each of these toxinotypes is associated with myriad different, frequently fatal, illnesses that affect a range of farm animals and humans. Alpha, beta, and epsilon toxins are the main causes of disease. Vaccinations that generate neutralizing antibodies are the most common prophylactic measures that are currently in use. These vaccines consist of toxoids that are obtained from C. perfringens cultures. Recombinant vaccines offer several advantages over conventional toxoids, especially in terms of the production process. As such, they are steadily gaining ground as a promising vaccination solution. This review discusses the main strategies that are currently used to produce recombinant vaccines containing alpha, beta, and epsilon toxins of C. perfringens, as well as the potential application of these molecules as vaccines for mammalian livestock animals.

  20. Excitation functions for alpha-particle-induced reactions with natural antimony

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N. L.; Shah, D. J.; Mukherjee, S.; Chintalapudi, S. N. [Vadodara, M. S. Univ. of Baroda (India). Fac. of Science. Dept. of Physics

    1997-07-01

    Stacked-foil activation technique and {gamma} - rays spectroscopy were used for the determination of the excitation functions of the {sup 121}Sb [({alpha}, n); ({alpha}, 2n); ({alpha},4 n); ({alpha}, p3n); ({alpha}, {alpha}n)]; and Sb [({alpha}, 3n); ({alpha}, 4n); ({alpha}, {alpha}3n)] reactions. The excitation functions for the production of {sup 124}I, {sup 123}I, {sup 121}I, {sup 121}Te and {sup 120}Sb were reported up to 50 MeV. The reactions {sup 121} Sb ({alpha}, {alpha}n) + {sup 123} Sb ({alpha}, {alpha}3n) are measured for the first time. Since natural antimony used as the target has two odd mass stable isotopes of abundances 57.3 % ({sup 121}Sb), their activation in some cases gives the same product nucleus through different reaction channels but with very different Q-values. In such cases, the individual reaction cross-sections are separated with the help of theoretical cross-sections. The experimental cross-sections were compared with the predictions based on hybrid model of Blann. The high-energy part of the excitation functions are dominated by the pre-equilibrium reaction mechanism and the initial exciton number n{sub 0} = 4 (4 p 0 h) gives fairly good agreement with presently measured results.