WorldWideScience

Sample records for fusion nuclear technologies

  1. The European fusion nuclear technology effort

    International Nuclear Information System (INIS)

    Darvas, J.

    1989-01-01

    The role of fusion technology in the European fusion development strategy is outlined. The main thrust of the present fusion technology programme is responding to development needs of the Next European Torus. A smaller, but important and growing R and D effort is dealing with problems specific to the Demonstration, or Fusion Power, Reactor. The part of the programme falling under the somewhat arbitrarily defined category of 'fusion nuclear technology' is reviewed and an outlook to future activities is given. The review includes tritium technology, blanket technology and breeder materials development, technology and materials for the protection of the first wall and of other plasma facing components, remote handling technology, and safety and environmental impact studies. A few reflections are offered on the future long-term developments in fusion technology. (orig.)

  2. Fusion of Nuclear and Emerging Technology

    International Nuclear Information System (INIS)

    Nahrul Khaer Alang Rashid

    2005-04-01

    The presentation discussed the following subjects: emerging technology; nuclear technology; fusion emerging and nuclear technology; progressive nature of knowledge; optically stimulated luminescence - application of luminescence technology to sediments; Biosystemics technology -convergence nanotechnology, ecological science, biotechnology, cognitive science and IT - prospective impact on materials science, the management of public system for bio-health, eco and food system integrity and disease mitigation

  3. Nuclear data for fusion reactor technology

    International Nuclear Information System (INIS)

    1988-06-01

    The meeting was organized in four sessions and four working groups devoted to the following topics: Requirements of nuclear data for fusion reactor technology (6 papers); Status of experimental and theoretical investigations of microscopic nuclear data (10 papers); Status of existing libraries for fusion neutronic calculations (5 papers); and Status of integral experiments and benchmark tests (6 papers). A separate abstract was prepared for each of these papers

  4. Japanese perspective of fusion nuclear technology from ITER to DEMO

    International Nuclear Information System (INIS)

    Tanaka, Satoru; Takatsu, Hideyuki

    2007-01-01

    The world fusion community is now launching construction of ITER, the first nuclear-grade fusion machine in the world. In parallel to the ITER program, Broader Approach (BA) activities are to be initiated in this year by EU and Japan, mainly at Rokkasho BA site in Japan, as complementary activities to ITER toward DEMO. The BA activities include IFMIFEVEDA (International Fusion Materials Irradiation Facility-Engineering Validation and Engineering Design Activities) and DEMO design activities with generic technology R and Ds, both of which are critical to the rapid development of DEMO and commercial fusion power plants. The Atomic Energy Commission of Japan reviewed on-going third phase fusion program and issued the results of the review, 'On the policy of Nuclear Fusion Research and Development' in November 2005. In this report, it is anticipated that the ITER will be made operational in a decade and the programmatic objective can be met in the succeeding seven or eight years. Under this condition, the report presents a roadmap toward the DEMO and beyond and R and D items on fusion nuclear technology, indispensable for fusion energy utilization, are re-aligned. In the present paper, Japanese view and policy on ITER and beyond is summarized mainly from the viewpoints of nuclear fusion technology, and a minimum set of R and D elements on fusion nuclear technology, essential for fusion energy utilization, is presented. (orig.)

  5. Progress of research and development of nuclear fusion and development of large nuclear fusion device technology

    International Nuclear Information System (INIS)

    1994-01-01

    In the last several years, the results of tokamak experiments were conspicuous, and the progress of plasma confinement performance, transport mechanism, divertors and impurities, helium transport and exhaust, electric current drive, magnetic field ripple effect and high speed particle transport and DT experiment are reported. The other confinement methods than tokamak, the related theories and reactor technology are described. The conceptual design of ITER was carried out by the cooperation of Japan, USA, EC and the former USSR. The projects of developing nuclear fusion in various countries, the design and the required research and development of ITER, the reconstruction and the required research and development of JT-60, JET and TFTR, the design and the required research and development of large helical device, the state of research and development of laser nuclear fusion and inversion magnetic field pinch nuclear fusion, the activities and roles of industrial circles in large nuclear fusion device technology, and the long term perspective of the technical development of nuclear fusion are described. (K.I.)

  6. Overview of fusion nuclear technology in the US

    International Nuclear Information System (INIS)

    Morley, N.B.; Abdou, M.A.; Anderson, M.; Calderoni, P.; Kurtz, R.J.; Nygren, R.; Raffray, R.; Sawan, M.; Sharpe, P.; Smolentsev, S.; Willms, S.; Ying, A.Y.

    2006-01-01

    Fusion nuclear technology (FNT) research in the United States encompasses many activities and requires expertise and capabilities in many different disciplines. The US Enabling Technology program is divided into several task areas, with aspects of magnet fusion energy (MFE) fusion nuclear technology being addressed mainly in the Plasma Chamber, Neutronics, Safety, Materials, Tritium and Plasma Facing Component Programs. These various programs work together to address key FNT topics, including support for the ITER basic machine and the ITER Test Blanket Module, support for domestic plasma experiments, and development of DEMO relevant material and technological systems for blankets, shields, and plasma facing components. In addition, two inertial fusion energy (IFE) research programs conducting FNT-related research for IFE are also described. While it is difficult to describe all these activities in adequate detail, this paper gives an overview of critical FNT activities

  7. The U.S. program for fusion nuclear technology development

    International Nuclear Information System (INIS)

    Clarke, J.F.; Haas, G.M.

    1989-01-01

    The Fusion Nuclear Technology (FNT) research and development program in the United States is shaped by a hierarchy of documents and by the environment for nuclear energy existing in the United States. The fission nuclear industry in the United States has suffered problems with public perception of safety, waste disposal issues, and economics as influenced by safety and environmental issues. For fusion to be a viable energy alternative, it must offer significant improvements in these areas. The hierarchy of documents defining objectives, plans, and strategy of the U.S. FNT program consists of the Magnetic Fusion Program Plan (MFPP) (February 1985), the Technical Planning Activity Final Report (January 1987), the Finesse Program Report (January 1987), and the Blanket Comparison and Selection Study Final Report (September 1984). In addition, two other documents are also significant in shaping FNT policy. These are the IEA report on Material for Fusion (December 1986) and the Summary of the Report of the Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (September 1987). The U.S. Magnetic Fusion Program Plan defines four key technical issues (magnetic confinement systems, properties of burning plasmas, fusion nuclear technology, and fusion materials). (orig./KP)

  8. Nuclear data for fusion technology – the European approach

    Directory of Open Access Journals (Sweden)

    Fischer Ulrich

    2017-01-01

    Full Text Available The European approach for the development of nuclear data for fusion technology applications is presented. Related R&D activities are conducted by the Consortium on Nuclear Data Development and Analysis for Fusion to satisfy the nuclear data needs of the major projects including ITER, the Early Neutron Source (ENS and DEMO. Recent achievements are presented in the area of nuclear data evaluations, benchmarking and validation, nuclear model improvements, and uncertainty assessments.

  9. Technological forecasting a long time of the scientific-technological development of the nuclear fusion

    International Nuclear Information System (INIS)

    Schettert, Plinio G.; Oliveira, Wagner S.; Aquino, Afonso R.

    2009-01-01

    With base in the introduction in long time of the nuclear fusion inside of a system of viable energy, taking in consideration economic factors, would imply on investment in a long period. The objective of this project utilizing the method of the Delphi technique is the technological forecast a long time of the scientific-technological development of the nuclear fusion and its impact. This research project will be carried through different stages of improvement of variables. A questionnaire based on information and analysis of the literature validated for specialists in nuclear fusion becomes this project a tool in the elaboration future of a database contends variables on the theme nuclear fusion and its perspectives. The database will be composed for the answers and suggestions obtained, with exploratory and extrapolatory elements, on the theme a great number of specialists involving in the nuclear fusion area. The database is analyzed for the configuration of variables that represent elements as scientific-technological factors, economical, political, social and environmental among others. As final result of the research with the Delphi technique, different scenes obtained with the variables will be indicated by convergent factors or not on the approached perspectives. The analysis of the data will be possible through of improve of statistical analysis tools. This is the first analyzes of the answers. The questionnaire was validated with nuclear fusion specialists from the Institute of Physics of the University of Sao Paulo in Brazil and the Center of Nuclear Fusion of the Technical University of Lisbon in Portugal. (author)

  10. Chemistry in and from nuclear fusion

    International Nuclear Information System (INIS)

    Okamoto, M.

    1989-01-01

    The time, of the realization of nuclear fusion reactor is not clear even now. However, it is generally believed that the nuclear fusion is only one candidate of the big power source for humanbeing. We may be not able to, but our children or grandchildren would be able to see the nuclear fusion reactors. The nuclear fusion development may be the last and biggest technology program for us, so it will take so long leading time. Now, we are in the first stage of this leading time, I think. As being found in the history of every technology, chemistry is essential to develop the fusion nuclear technology. To assure the safety of the nuclear fusion system, chemistry should play the main role. There have been already not a few advanced chemistry initiated by the connected technologies with the nuclear fusion researches. The nuclear fusion needs chemistry and the nuclear fusion leads some of the new phases of chemistry. (author)

  11. A Study on the Linkage between Nano Fusion Technology and Nuclear Technology

    International Nuclear Information System (INIS)

    Jeong, Ik; Lim, Chae Young; Lee, Jong Hee

    2009-02-01

    1) A survey of national energy policy trends in major nation - to secure renewal energy in the level of making a plan to supply national energy in the future - Tendency of energy policy based on Europe 2) A survey of the nano technology development - Status of major nano technology development - Developmental direction of nano technology related to nuclear energy 3) the nano technology development related with nuclear - high-temperature nuclear reactor by applying nano science and technology under quick development - materials required to high-level radioactive wastes treatment facility - develop materials of nuclear fusion facility in the long-term view 4) Innovation system of nano technology - Energy source -> conversion to energy -> distribution of energy -> energy storage -> energy use

  12. Nuclear fusion and fission, and related technologies department: 2007 progress report

    International Nuclear Information System (INIS)

    2007-12-01

    ENEA continues to contribute to broadening plasma physics knowledge as well as to developing the relevant technologies in the framework of the EURATOM-ENEA Association for fusion. This report describes the 2007 research activities carried out by the ENEA Fusion Research Group of the Nuclear Fusion and Fission, and Related Technologies Department (FPN). Other ENEA research groups also contributed to the activities. The following fields were addressed: magnetically confined nuclear fusion (physics and technology), superconductivity and inertial fusion. Planning of the 2007 fusion activities took into account the different scenarios determined by the new organisation of the European programme based on the start of ITER construction. The establishment of the ITER International Organisation and the European Domestic Agency (Fusion for Energy) required a new organisational scheme. This has implied not only the implementation of a more project oriented structure but also the need to launch the constitution of a consortium agreement between the Associations in order to cope with the needs for the design and construction of the components of ITER that require specific know-how, e.g., diagnostics and test blanket module

  13. Who works with nuclear fusion technology

    International Nuclear Information System (INIS)

    Boettiger, H.

    1977-01-01

    Humanity today, and especially the youth in industrial nations, undergoes a trend towards a 'post-industrial society'. This may be due to the resignation of those who think themselves unable to meet the increasing demands made on social production. The paper draws up a concept to give humanity a new interest in life. First, the paradox educational situation in the FRG today is outlined. Nuclear fusion technology and the industrial development necessary for its implementation are offered as a way out of the paradox situation of the present educational system. The demands to be made on an educational system for fusion technology are discussed. This strategy for world-wide economic growth integrates the intelligence potential of the industrial nations and the potential labour force of the Third World. (GG) [de

  14. Fusion energy and nuclear liability considerations

    International Nuclear Information System (INIS)

    Fork, William E.; Peterson, Charles H.

    2014-01-01

    For over 60 years, fusion energy has been recognised as a promising technology for safe, secure and environmentally-sustainable commercial electrical power generation. Over the past decade, research and development programmes across the globe have shown progress in developing critical underlying technologies. Approaches ranging from high-temperature plasma magnetic confinement fusion to inertial confinement fusion are increasingly better understood. As scientific research progresses in its aim to achieve fusion 'ignition', where nuclear fusion becomes self-sustaining, the international legal community should consider how fusion power technologies fit within the current nuclear liability legal framework. An understanding of the history of the civil nuclear liability regimes, along with the different risks associated with fusion power, will enable nations to consider the proper legal conditions needed to deploy and commercialise fusion technologies for civil power generation. This note is divided into three substantive parts. It first provides background regarding fusion power and describes the relatively limited risks of fusion technologies when compared with traditional nuclear fission technologies. It then describes the international nuclear liability regime and analyses how fusion power fits within the text of the three leading conventions. Finally, it examines how fusion power may fall within the international nuclear liability framework in the future, a discussion that includes possible amendments to the relevant international liability conventions. It concludes that the unique nature of the current civil nuclear liability regime points towards the development of a more tailored liability solution because of the reduced risks associated with fusion power. (authors)

  15. Nuclear fusion research and plasma application technologies in SWIP (Southwestern Institute of Physics)

    International Nuclear Information System (INIS)

    Deng, X.W.

    1990-01-01

    A brief introduction of nuclear fusion research and plasma application technologies in SWIP is reported in this paper. The SWIP focuses its fusion efforts mainly on Tokamak with mirror as the supplemental experiments and fusion reactor conceptual design as preparation for future application of fusion energy. SWIP is making great efforts on fusion technology spin-off to make contribution towards national economic construction. (Author)

  16. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  17. Computational methods, tools and data for nuclear analyses of fusion technology systems

    International Nuclear Information System (INIS)

    Fischer, U.

    2006-01-01

    An overview is presented of the Research and Development work conducted at Forschungszentrum Karlsruhe in co-operation with other associations in the framework of the European Fusion Technology Programme on the development and qualification of computational tools and data for nuclear analyses of Fusion Technology systems. The focus is on the development of advanced methods and tools based on the Monte Carlo technique for particle transport simulations, and the evaluation and qualification of dedicated nuclear data to satisfy the needs of the ITER and the IFMIF projects. (author)

  18. Contributions to the third international symposium on fusion nuclear technologies (ISFNT-3)

    International Nuclear Information System (INIS)

    1994-11-01

    The contributions of ENEA (Italian Agency for New Technologies, Energy and the Environment) Frascati center researchers to the 3rd international symposium on fusion nuclear technologies, held at Los Angeles, 27 June-1 July 1994, are presented

  19. Overview of principles and challenges of fusion nuclear technology

    International Nuclear Information System (INIS)

    Abdou, M.

    2007-01-01

    Fusion offers very attractive features as a sustainable, broadly available energy source: no emissions of greenhouse gases, no risk of severe accident, and no long-lived radioactive waste. Significant advances in the science and technology of fusion have been realized in the past decades. Seven countries (EU, Japan, USA, Russia, S. Korea, China, and India) comprising about half the world population are constructing a major magnetic fusion facility, called ITER, in France. The objectives of ITER are to demonstrate self-sustaining burning fusion plasma and to test fusion technologies relevant to fusion reactor. Many challenges to the practical utilization of fusion energy remain ahead. Among these challenges is the successful development of Fusion Nuclear Technology (FNT). FNT includes those fusion system components circumscribing the plasma and responsible for tritium production and processing, heat removal at high temperature and power density, and high heat flux components. FNT components face a new and more challenging environment than experienced by any previous nuclear application. Beyond plasma physics, FNT has most of the remaining feasibility and attractiveness issues in the development of fusion as an energy source. The blanket, a key FNT component, determines the critical path to DEMO. The blanket is exposed to an intense radiation environment. Radioactivity and decay heat can be produced in the structure and other blanket elements. Hence, material choices have a large impact on safety and environmental attractiveness. The unique conditions of the fusion environment include high radiation flux, high surface heat flux, strong 3-D-component magnetic field with large gradients, and ultra-low vacuum. These conditions, together with the requirements for high-temperature operation and tritium self-sufficiency, make blanket design and development challenging tasks. The blanket concepts being considered worldwide can be classified into solid breeders and liquid

  20. Developments and needs in nuclear analysis of fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Pampin, R., E-mail: raul.pampin@f4e.europa.eu [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Davis, A. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Izquierdo, J. [F4E Fusion For Energy, Josep Pla 2, Torres Diagonal Litoral B3, Barcelona 08019 (Spain); Leichtle, D. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, D-76344 Karlsruhe (Germany); Loughlin, M.J. [ITER Organisation, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Sanz, J. [UNED, Departamento de Ingenieria Energetica, Juan del Rosal 12, 28040 Madrid (Spain); Turner, A. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Villari, R. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Wilson, P.P.H. [University of Wisconsin, Nuclear Engineering Department, Madison, WI (United States)

    2013-10-15

    Highlights: • Complex fusion nuclear analyses require detailed models, sophisticated acceleration and coupling of cumbersome tools. • Progress on development of tools and methods to meet specific needs of fusion nuclear analysis reported. • Advances in production of reference models and in preparation and QA of acceleration and coupling algorithms shown. • Evaluation and adaptation studies of alternative transport codes presented. • Discussion made of the importance of efforts in these and other areas, considering some of the more pressing needs. -- Abstract: Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case of fusion technology in current experiments, ITER, next-step devices and power plant studies. Calculations are intricate and computer-intensive, typically requiring detailed geometry models, sophisticated acceleration algorithms, high-performance parallel computations, and coupling of large and complex transport and activation codes and databases. This paper reports progress on some key areas in the development of tools and methods to meet the specific needs of fusion nuclear analyses. In particular, advances in the production and modernisation of reference models, in the preparation and quality assurance of acceleration algorithms and coupling schemes, and in the evaluation and adaptation of alternative transport codes are presented. Emphasis is given to ITER-relevant activities, which are the main driver of advances in the field. Discussion is made of the importance of efforts in these and other areas, considering some of the more pressing needs and requirements. In some cases, they call for a more efficient and coordinated use of the scarce resources available.

  1. Overview of fusion nuclear technology in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, R. E-mail: roberto.andreani@tech.efda.org; Gasparotto, M. E-mail: maurizio.gasparotto@tech.efda.org

    2002-11-01

    The fusion nuclear technology programme in the EU is focussed on materials and breeding blankets development, tritium and high heat flux component technologies. A strong effort is also devoted to the validation of the design of an intense 14 MeV neutron source (IFMIF). The material programme includes the development of reduced activation ferritic martensitic steel (EUROFER) to be used as structural material in a DEMO reactor, and potentially more attractive higher performance materials: ODS and SiC/SiC composites. The breeding blanket activities are focussed in the preparation of the two European Test Blanket Moduli to be installed in ITER. The Fuel Cycle activities for ITER include development of the torus exhaust cryopump, fuel storage system, performance characterisation of the torus exhaust processing and design of water detritiation system. High heat flux components have been developed in the framework of ITER R and D programme and based on copper alloy heat sink protected by an armour of beryllium, CFC or tungsten. Studies give an important contribution in defining the nuclear technology programme strategy.

  2. Overview of fusion nuclear technology in Europe

    International Nuclear Information System (INIS)

    Andreani, R.; Gasparotto, M.

    2002-01-01

    The fusion nuclear technology programme in the EU is focussed on materials and breeding blankets development, tritium and high heat flux component technologies. A strong effort is also devoted to the validation of the design of an intense 14 MeV neutron source (IFMIF). The material programme includes the development of reduced activation ferritic martensitic steel (EUROFER) to be used as structural material in a DEMO reactor, and potentially more attractive higher performance materials: ODS and SiC/SiC composites. The breeding blanket activities are focussed in the preparation of the two European Test Blanket Moduli to be installed in ITER. The Fuel Cycle activities for ITER include development of the torus exhaust cryopump, fuel storage system, performance characterisation of the torus exhaust processing and design of water detritiation system. High heat flux components have been developed in the framework of ITER R and D programme and based on copper alloy heat sink protected by an armour of beryllium, CFC or tungsten. Studies give an important contribution in defining the nuclear technology programme strategy

  3. Status of fusion technology

    International Nuclear Information System (INIS)

    Mohan, Ashok

    1978-01-01

    The current status of fusion technology is surveyed. Limited reserves of fossil fuel and dangers of proliferation from nuclear reactors have brought into focus the need to develop an optional energy source. Fusion is being looked upon as an optional energy source which is free from environmental hazards unlike fossil fuels and nuclear reactors. Investments in R and D of fusion energy have increased rapidly in USA, Japan, USSR and European countries. Out of the various fusion fuels known, a mixture of D and T is widely chosen. The main problem in fusion technology is the confinement of plasma for a time sufficient to start the fusion reaction. This can be done magnetically or inertially. The three approaches to magnetic confinement are : (1) tokamak, (2) mirror and (3) pinch. Inertial confinement makes use of lasers or electron beams or ion beams. Both the methods of confinement i.e. magnetic and inertial have problems which are identified and their nature is discussed. (M.G.B.)

  4. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume II

    International Nuclear Information System (INIS)

    Abdou, M.

    1984-10-01

    The Nuclear Fusion Issues chapter contains a comprehensive list of engineering issues for fusion reactor nuclear components. The list explicitly defines the uncertainties associated with the engineering option of a fusion reactor and addresses the potential consequences resulting from each issue. The next chapter identifies the fusion nuclear technology testing needs up to the engineering demonstration stage

  5. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.7--nuclear fusion

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear electronics, nuclear detecting technology, pulse power technology, nuclear fusion and plasma

  6. Applications of Research Reactors Towards Research on Materials for Nuclear Fusion Technology. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-11-01

    Controlled nuclear fusion is widely considered to represent a nearly unlimited source of energy. Recent progress in the quest for fusion energy includes the design and current construction of the International Thermonuclear Experimental Reactor (ITER), for which a licence has recently been obtained as a first of its kind fusion nuclear installation. ITER is designed to demonstrate the scientific and technological feasibility of fusion energy production in excess of 500 MW for several consecutive minutes. ITER, however, will not be able to address all the nuclear fusion technology issues associated with the design, construction and operation of a commercial fusion power plant. The demonstration of an adequate tritium or fuel breeding ratio, as well as the development, characterization and testing of structural and functional materials in an integrated nuclear fusion environment, are examples of issues for which ITER is unable to deliver complete answers. To fill this knowledge gap, several facilities are being discussed, such as the International Fusion Materials Irradiation Facility and, eventually, a fusion demonstration power plant (DEMO). However, for these facilities, a vast body of preliminary research remains to be performed, for instance, concerning the preselection and testing of suitable materials able to withstand the high temperature and pressure, and intense radiation environment of a fusion reactor. Given their capacity for material testing in terms of available intense neutron fluxes, dedicated irradiation facilities and post-irradiation examination laboratories, high flux research reactors or material test reactors (MTRs) will play an indispensable role in the development of fusion technology. Moreover, research reactors have already achieved an esteemed legacy in the understanding of material properties and behaviour, and the knowledge gained from experiments in fission materials in certain cases can be applied to fusion systems, particularly those

  7. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1984-04-01

    KfK participates to the Fusion Technology Programme of the European Community. Most of the work in progress addresses the Next European Torus (NET) and the long term technology aspects as defined in the 82/86 programme. A minor part serves to preparation of future contributions and to design studies on fusion concepts in a wider perspective. The Fusion Technology Programme of Euratom covers mainly aspects of nuclear engineering. Plasma engineering, heating, refueling and vacuum technology are at present part of the Physics Programme. In view of NET, integration of the different areas of work will be mandatory. KfK is therefore prepared to address technical aspects beyond the actual scope of the physics experiments. The technology tasks are reported project wise under title and code of the Euratom programme. Most of the projects described here are shared with other European fusion laboratories as indicated in the table annexed to this report. (orig./GG)

  8. The role of nuclear data for fusion technology studies

    International Nuclear Information System (INIS)

    Forrest, Robin A.

    2011-01-01

    Highlights: → Nuclear data are of fundamental importance in studies of nuclear technology. → Data libraries cover: experiments (EXFOR), theory (RIPL) and evaluations (ENDF). → Libraries are general purpose or special purpose (decay, dosimetry and activation). → Activation files contain many reactions, only a fraction needs to be known precisely. → Covariance data are important, but details of formatting are being worked out. - Abstract: Nuclear data are of fundamental importance in studies of nuclear technology. In these studies, experiments to measure cross sections and decay properties and simulations of the design of fission power plants, fusion devices and accelerators are included. The large amount of data required is stored in computer readable formats in data libraries and the most common of these are the general purpose files used for neutronics or transport calculations. These files also contain the standards against which most measurements are made. The other class of libraries are the special purpose ones containing decay data, fission yields and cross section data for dosimetry and activation. This paper gives examples of what data are available and describes their use for various fusion applications. The focus will be on neutron-induced activation data with examples of how the reactions of particular importance can be identified. All data should be accompanied by estimates of the uncertainty. This is best achieved by including covariance data; however, this is extremely challenging and only a subset of the available data has such uncertainty data. The general principles of how covariance matrices are used are outlined.

  9. Muon nuclear fusion and low temperature nuclear fusion

    International Nuclear Information System (INIS)

    Nagamine, Kanetada

    1990-01-01

    Low temperature (or normal temperature) nuclear fusion is one of the phenomena causing nuclear fusion without requiring high temperature. In thermal nuclear fusion, the Coulomb barrier is overcome with the help of thermal energy, but in the low temperature nuclear fusion, the Coulomb barrier is neutralized by the introduction of the particles having larger mass than electrons and negative charges, at this time, if two nuclei can approach to the distance of 10 -13 cm in the neutral state, the occurrence of nuclear fusion reaction is expected. As the mass of the particles is heavier, the neutral region is smaller, and nuclear fusion is easy to occur. The particles to meet this purpose are the electrons within substances and muons. The research on muon nuclear fusion became suddenly active in the latter half of 1970s, the cause of which was the discovery of the fact that the formation of muons occurs resonantly rapidly in D-T and D-D systems. Muons are the unstable elementary particles having the life of 2.2 μs, and they can have positive and negative charges. In the muon catalyzed fusion, the muons with negative charge take part. The principle of the muon catalyzed fusion, its present status and future perspective, and the present status of low temperature nuclear fusion are reported. (K.I.)

  10. Fusion Technologies: 2nd Karlsruhe International Summer School

    International Nuclear Information System (INIS)

    Bahm, W.

    2008-01-01

    Nuclear fusion promises to deliver a future non-polluting energy supply with nearly unlimited fuel reserves. To win young scientists and engineers for nuclear fusion, the Karlsruhe Research Center, together with other partners in the European Fusion Education Network being established by the European Commission, organizes the 2nd Karlsruhe International Summer School on Fusion Technologies on September 1-12, 2008. The program covers all key technologies necessary for construction and operation of a fusion reactor. (orig.)

  11. Nuclear fusion: Pursuing the Soft [Symposium on fusion technology] option

    International Nuclear Information System (INIS)

    Kenward, M.

    1991-01-01

    Fusion research has come a long way since the fusion community held the first Symposium on fusion technology (Soft) in Britain 30 years ago. Some of the recent achievements of the Jet project are reported from this year's symposium, the 16th in the series, held in London at the beginning of September. (author)

  12. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1986-05-01

    In 1982, KfK joined the fusion programme of EURATOM as a further association introducing its experience in nuclear technology. KfK closely cooperates with IPP Garching, the two institutions forming a research unit aiming at planning and realization of future development steps of fusion. KfK has combined its forces in the Nuclear Fusion Project (PKF) with participation of several KfK departments to the project tasks. Previous work of KfK in magnetic fusion has addressed mainly superconducting magnets, plasma heating by cluster ions and studies on structural materials. At present, emphasis of our work has concentrated increasingly on the nuclear part, i.e. the first wall and blanket structures and the elements of the tritium extraction and purification system. Associated to this component development are studies of remote maintenance and safety. Most of the actual work addresses NET, the next step to a demonstration of fusion feasibility. NET is supposed to follow JET, the operating plasma physics experiment of Euratom, on the 1990's. Detailed progress of the work in the past half year is described in this report. (orig./GG)

  13. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1985-10-01

    KfK is involved in the European Fusion Programme predominantly in the NET and Fusion Technology part. The following fields of activity are covered: Studies for NET, alternative confinement concepts, and needs and issues of integral testing. Research on structural materials. Development of superconducting magnets. Gyrotron development (part of the Physics Programme). Nuclear technology (breeding materials, blanket design, tritium technology, safety and environmental aspects of fusion, remote maintenance). Reported here are status and results of work under contracts with the CEC within the NET and Technology Programme. The aim of the major part of this R and D work is the support of NET, some areas (e.g. materials, safety and environmental impact, blanket design) have a wider scope and address problems of a demonstration reactor. In the current working period, several new proposals have been elaborated to be implemented into the 85/89 Euratom Fusion Programme. New KfK contributions relate to materials research (dual beam and fast reactor irradiations, ferritic steels), to blanket engineering (MHD-effects) and to safety studies (e.g. magnet safety). (orig./GG)

  14. Technical requirement of experiments and facilities for fusion nuclear technology

    International Nuclear Information System (INIS)

    Abdou, M.; Tillak, M.; Gierszwski, P.; Grover, J.; Puigh, R.; Sze, D.K.; Berwald, D.

    1986-06-01

    The technical issues and requirements of experiments and facilities for fusion nuclear technology (FNT) have been investigated. The nuclear subsystems addressed are: a) blanket, b) radiation shield, c) tritium processing system, and d) plasma interactive components. Emphasis has been placed on the important and complex development problems of the blanket. A technical planning process for FNT has been developed and applied, including four major elements: 1) characterization of issues, 2) quantification of testing requirements, 3) evaluation of facilities, and 4) development of a test plan to identify the role, timing, characteristics and costs of major experiments and facilities

  15. Fusion fuel blanket technology

    International Nuclear Information System (INIS)

    Hastings, I.J.; Gierszewski, P.

    1987-05-01

    The fusion blanket surrounds the burning hydrogen core of a fusion reactor. It is in this blanket that most of the energy released by the nuclear fusion of deuterium-tritium is converted into useful product, and where tritium fuel is produced to enable further operation of the reactor. As fusion research turns from present short-pulse physics experiments to long-burn engineering tests in the 1990's, energy removal and tritium production capabilities become important. This technology will involve new materials, conditions and processes with applications both to fusion and beyond. In this paper, we introduce features of proposed blanket designs and update and status of international research. In focusing on the Canadian blanket technology program, we discuss the aqueous lithium salt blanket concept, and the in-reactor tritium recovery test program

  16. Argonne National Laboratory contributions to the International Symposium on Fusion Nuclear Technology (ISFNT)

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    A total of sixteen papers with authors from Argonne National Laboratory were presented at the First International Symposium on Fusion Nuclear Technology (ISFNT), held in Tokyo, Japan, in April 1988. The papers cover the results of recent investigations in blanket design and analysis, fusion neutronics, materials experiments in liquid metal corrosion and solid breeders, tritium recovery analysis, experiments and analysis for liquid metal MHD, reactor safety and economic analysis, and transient electromagnetic analysis.

  17. Argonne National Laboratory contributions to the International Symposium on Fusion Nuclear Technology (ISFNT)

    International Nuclear Information System (INIS)

    1988-10-01

    A total of sixteen papers with authors from Argonne National Laboratory were presented at the First International Symposium on Fusion Nuclear Technology (ISFNT), held in Tokyo, Japan, in April 1988. The papers cover the results of recent investigations in blanket design and analysis, fusion neutronics, materials experiments in liquid metal corrosion and solid breeders, tritium recovery analysis, experiments and analysis for liquid metal MHD, reactor safety and economic analysis, and transient electromagnetic analysis

  18. Nuclear Fusion prize laudation Nuclear Fusion prize laudation

    Science.gov (United States)

    Burkart, W.

    2011-01-01

    Clean energy in abundance will be of critical importance to the pursuit of world peace and development. As part of the IAEA's activities to facilitate the dissemination of fusion related science and technology, the journal Nuclear Fusion is intended to contribute to the realization of such energy from fusion. In 2010, we celebrated the 50th anniversary of the IAEA journal. The excellence of research published in the journal is attested to by its high citation index. The IAEA recognizes excellence by means of an annual prize awarded to the authors of papers judged to have made the greatest impact. On the occasion of the 2010 IAEA Fusion Energy Conference in Daejeon, Republic of Korea at the welcome dinner hosted by the city of Daejeon, we celebrated the achievements of the 2009 and 2010 Nuclear Fusion prize winners. Steve Sabbagh, from the Department of Applied Physics and Applied Mathematics, Columbia University, New York is the winner of the 2009 award for his paper: 'Resistive wall stabilized operation in rotating high beta NSTX plasmas' [1]. This is a landmark paper which reports record parameters of beta in a large spherical torus plasma and presents a thorough investigation of the physics of resistive wall mode (RWM) instability. The paper makes a significant contribution to the critical topic of RWM stabilization. John Rice, from the Plasma Science and Fusion Center, MIT, Cambridge is the winner of the 2010 award for his paper: 'Inter-machine comparison of intrinsic toroidal rotation in tokamaks' [2]. The 2010 award is for a seminal paper that analyzes results across a range of machines in order to develop a universal scaling that can be used to predict intrinsic rotation. This paper has already triggered a wealth of experimental and theoretical work. I congratulate both authors and their colleagues on these exceptional papers. W. Burkart Deputy Director General Department of Nuclear Sciences and Applications International Atomic Energy Agency, Vienna

  19. The Fukushima nuclear disaster and its effects on media framing of fission and fusion energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Luisa; Horta, Ana; Pereira, Sergio; Delicado, Ana [Institute of Social Sciences of the University of Lisbon, Av. Prof. Anibal de Bettencourt, 9 1600-189 Lisbon (Portugal)

    2015-07-01

    This paper presents results of a comparison of media coverage of fusion and fission energy technologies in three countries (Germany, Spain and Portugal) and in the English language international print media addressing transnational elite, from 2008 to 2012. The analysis showed that the accident in Fukushima in March 2010 did not have significant impact on media framing of nuclear fusion in the major part of print media under investigation. In fact, fusion is clearly dissociated from traditional nuclear (fission) energy and from nuclear accidents. It tends to be portrayed as a safe, clean and unlimited source of energy, although less credited when confronted with research costs, technological feasibility and the possibility to be achieved in a reasonable period of time. On the contrary, fission is portrayed as a hazardous source of energy, expensive when compared to research costs of renewables, hardly a long-term energy option, susceptible to contribute to the proliferation of nuclear weapons or rogue military use. Fukushima accident was consistently discussed in the context of safety problems of nuclear power plants and in many cases appeared not as an isolated event but rather as a reminder of previous nuclear disasters such as Three Miles Island and Chernobyl. (authors)

  20. The Fukushima nuclear disaster and its effects on media framing of fission and fusion energy technologies

    International Nuclear Information System (INIS)

    Schmidt, Luisa; Horta, Ana; Pereira, Sergio; Delicado, Ana

    2015-01-01

    This paper presents results of a comparison of media coverage of fusion and fission energy technologies in three countries (Germany, Spain and Portugal) and in the English language international print media addressing transnational elite, from 2008 to 2012. The analysis showed that the accident in Fukushima in March 2010 did not have significant impact on media framing of nuclear fusion in the major part of print media under investigation. In fact, fusion is clearly dissociated from traditional nuclear (fission) energy and from nuclear accidents. It tends to be portrayed as a safe, clean and unlimited source of energy, although less credited when confronted with research costs, technological feasibility and the possibility to be achieved in a reasonable period of time. On the contrary, fission is portrayed as a hazardous source of energy, expensive when compared to research costs of renewables, hardly a long-term energy option, susceptible to contribute to the proliferation of nuclear weapons or rogue military use. Fukushima accident was consistently discussed in the context of safety problems of nuclear power plants and in many cases appeared not as an isolated event but rather as a reminder of previous nuclear disasters such as Three Miles Island and Chernobyl. (authors)

  1. Integrated Approach to Dense Magnetized Plasmas Applications in Nuclear Fusion Technology. Report of a Coordinated Research Project 2007-2011

    International Nuclear Information System (INIS)

    2013-04-01

    Through its coordinated research activities, the IAEA promotes the development and application of nuclear technologies in Member States. The scientific and technical knowledge required for the construction and operation of large nuclear fusion research facilities, including ITER and the Laser Megajoule in France, and the Z machine and the National Ignition Facility in the United States of America, necessitates several accompanying research and development programmes in physics and technology. This is particularly true in the areas of materials science and fusion technology. Hence, the long standing IAEA effort to conduct coordinated research projects (CRPs) in these areas is aimed at: (i) the development of appropriate technical tools to investigate the issue of materials damage and degradation in a fusion plasma environment; and (ii) the emergence of a knowledge based understanding of the various processes underlying materials damage and degradation, thereby leading to the identification of suitable candidate materials fulfilling the stringent requirements of a fusion environment in any next step facility. Dense magnetized plasma (DMP) devices serve as a first test bench for testing of fusion relevant plasma facing materials, diagnostic development and calibration, technologies and scaling to conceptual principles of larger devices while sophisticated testing facilities such as the International Fusion Materials Irradiation Facility (IFMIF) are being designed. The CRP on Integrated Approach to Dense Magnetized Plasmas Applications in Nuclear Fusion Technology described herein was initiated in 2007 with the participation of 12 research institutions in 8 Member States and was concluded in 2011. It was designed with specific research objectives falling into two main categories: support to mainstream fusion research and development of DMP technology. This publication is a compilation of the individual reports submitted by the 12 CRP participants. These reports discuss

  2. Controlled Nuclear Fusion: Status and Outlook

    Science.gov (United States)

    Rose, David J.

    1971-01-01

    Presents the history, current concerns and potential developments of nuclear fusion as a major energy source. Controlled fusion research is summarized, technological feasibility is discussed and environmental factors are examined. Relationships of alternative energy sources as well as energy utilization are considered. (JM)

  3. Progress in fusion technology in the U.S. magnetic fusion program

    International Nuclear Information System (INIS)

    Dowling, R.J.; Beard, D.S.; Haas, G.M.; Stone, P.M.; George, T.V.

    1987-01-01

    In this paper the authors discuss the major technological achievements that have taken place during the past few years in the U.S. magnetic fusion program which have contributed to the global efforts. The goal has been to establish the scientific and technological base required for fusion energy. To reach this goal the fusion RandD program is focused on four key technical issues: determine the optimum configuration of magnetic confinement systems; determine the properties of burning plasmas; develop materials for fusion systems; and establish the nuclear technology of fusion systems. The objective of the fusion technology efforts has been to develop advanced technologies and provide the necessary support for research of these four issues. This support is provided in a variety of areas such as: high vacuum technology, large magnetic field generation by superconducting and copper coils, high voltage and high current power supplies, electromagnetic wave and particle beam heating systems, plasma fueling, tritium breeding and handling, remote maintenance, energy recovery. The U.S. Fusion Technology Program provides major support or has the primary responsibility in each of the four key technical issues of fusion, as described in the Magnetic Fusion Program Plan of February 1985. This paper has summarized the Technology Program in terms of its activities and progress since the Proceedings of the SOFT Conference in 1984

  4. Advanced computational tools and methods for nuclear analyses of fusion technology systems

    International Nuclear Information System (INIS)

    Fischer, U.; Chen, Y.; Pereslavtsev, P.; Simakov, S.P.; Tsige-Tamirat, H.; Loughlin, M.; Perel, R.L.; Petrizzi, L.; Tautges, T.J.; Wilson, P.P.H.

    2005-01-01

    An overview is presented of advanced computational tools and methods developed recently for nuclear analyses of Fusion Technology systems such as the experimental device ITER ('International Thermonuclear Experimental Reactor') and the intense neutron source IFMIF ('International Fusion Material Irradiation Facility'). These include Monte Carlo based computational schemes for the calculation of three-dimensional shut-down dose rate distributions, methods, codes and interfaces for the use of CAD geometry models in Monte Carlo transport calculations, algorithms for Monte Carlo based sensitivity/uncertainty calculations, as well as computational techniques and data for IFMIF neutronics and activation calculations. (author)

  5. Nuclear fusion

    International Nuclear Information System (INIS)

    Al-zaelic, M.M.

    2013-01-01

    Nuclear fusion can be relied on to solve the global energy crisis if the process of limiting the heat produced by the fusion reaction (Plasma) is successful. Currently scientists are progressively working on this aspect whereas there are two methods to limit the heat produced by fusion reaction, the two methods are auto-restriction using laser beam and magnetic restriction through the use of magnetic fields and research is carried out to improve these two methods. It is expected that at the end of this century the nuclear fusion energy will play a vital role in overcoming the global energy crisis and for these reasons, acquiring energy through the use of nuclear fusion reactors is one of the most urge nt demands of all mankind at this time. The conclusion given is that the source of fuel for energy production is readily available and inexpensive ( hydrogen atoms) and whole process is free of risks and hazards, especially to general health and the environment . Nuclear fusion importance lies in the fact that energy produced by the process is estimated to be about four to five times the energy produced by nuclear fission. (author)

  6. Nuclear Fusion with Polarized Nucleons & PolFusion

    CERN Document Server

    Engels, Ralf; Büscher, Markus; Vasilyev, Alexander

    2016-01-01

    This book offers a detailed examination of the latest work on the potential of polarized fuel to realize the vision of energy production by nuclear fusion. It brings together contributions from nuclear physicists and fusion physicists with the aims of fostering exchange of information between the two communities, describing the current status in the field, and examining new ideas and projects under development. It is evident that polarized fuel can offer huge improvements for the first generation of fusion reactors and open new technological possibilities for future generations, including neutron lean reactors, which could be the most popular and sustainable energy production option to avoid environmental problems. Nevertheless, many questions must be resolved before polarized fuel can be used for energy production in the different reactor types. Readers will find this book to be a stimulating source of information on the key issues. It is based on contributions from leading scientists delivered at the meetin...

  7. X-Pinch Plasma Generation Testing for Neutron Source Development and Nuclear Fusion

    Directory of Open Access Journals (Sweden)

    Hossam A.Gabbar

    2018-04-01

    Full Text Available Nuclear fusion is a sought-out technology in which two light elements are fused together to create a heavier element and releases energy. Two primary nuclear fusion technologies are being researched today: magnetic and inertial confinement. However, a new type of nuclear fusion technology is currently being research: multi-pinch plasma beams. At the University of Ontario Institute of Technology, there is research on multi-pinch plasma beam technology as an alternative to nuclear fusion. The objective is to intersect two plasma arcs at the center of the chamber. This is a precursor of nuclear fusion using multi-pinch. The innovation portion of the students’ work is the miniaturization of this concept using high energy electrical DC pulses. The experiment achieved the temperature of 2300 K at the intersection. In comparison to the simulation data, the temperature from the simulation is 7000 K at the intersection. Additionally, energy harvesting devices, both photovoltaics and a thermoelectric generator, were placed in the chamber to observe the viable energy extraction.

  8. Overview on Fusion Nuclear Technology Experimental Testing

    Czech Academy of Sciences Publication Activity Database

    Entler, Slavomír; Kysela, J.

    2016-01-01

    Roč. 2, č. 2 (2016), č. článku 021018. ISSN 2332-8983 Institutional support: RVO:61389021 Keywords : fusion * corrosion * thermohydraulic * LiPb * HHF * ITER Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  9. Prospect of realizing nuclear fusion reactors

    International Nuclear Information System (INIS)

    1989-01-01

    This Report describes the results of the research work on nuclear fusion, which CRIEPI has carried out for about ten years from the standpoint of electric power utilities, potential user of its energy. The principal points are; (a) economic analysis (calculation of costs) based on Japanese analysis procedures and database of commercial fusion reactors, including fusion-fission hybrid reactors, and (b) conceptual design of two types of hybrid reactors, that is, fission-fuel producing DMHR (Demonstration Molten-Salt Hybrid Reactor) and electric-power producing THPR (Tokamak Hybrid Power Reactor). The Report consists of the following chapters: 1. Introduction. 2. Conceptual Design of Hybrid Reactors. 3. Economic Analysis of Commercial Fusion Reactors. 4. Basic Studies Applicable Also to Nuclear Fusion Technology. 5. List of Published Reports and Papers; 6. Conclusion. Appendices. (author)

  10. Nuclear fusion - Inexhaustible source of energy for tomorrow

    International Nuclear Information System (INIS)

    Leiser, M.; Demchenko, V.

    1989-09-01

    The purpose of this paper is to provide a general description of nuclear fusion as an energy option for the future and to clarify to some extent the various issues - scientific, technological, economic and environmental - which are likely to be relevant to controlled thermonuclear fusion. Section 1 describes the world energy problem and some advantages of nuclear fusion compared to other energy options. Sections 2 and 3 describe the fundamentals of fusion energy, plasma confinement, heating and technological aspects of fusion researches. Some plasma confinement schemes (tokamak, stellarator, inertial confinement fusion) are described. The main experimental results and parameter devices are cited to illustrate the state of the art as of 1989. Various engineering problems associated with reactor design, magnetic systems, materials, plasma purity, fueling, blankets, environment, economics and safety are discussed. A description of both bilateral and multilateral efforts in fusion research under the auspices of the IAEA is presented in Section 4. (author). 11 refs, 4 figs, 1 tab

  11. Hybrid fission-fusion nuclear reactors

    International Nuclear Information System (INIS)

    Zucchetti, Massimo

    2011-01-01

    A fusion-fission hybrid could contribute to all components of nuclear power - fuel supply, electricity production, and waste management. The idea of the fusion-fission hybrid is many decades old. Several ideas, both new and revisited, have been investigated by hybrid proponents. These ideas appear to have attractive features, but they require various levels of advances in plasma science and fusion and nuclear technology. As a first step towards the development of hybrid reactors, fusion neutron sources can be considered as an option. Compact high-field tokamaks can be a candidate for being the neutron source in a fission-fusion hybrid, essentially due to their design characteristics, such as compact dimensions, high magnetic field, flexibility of operation. This study presents the development of a tokamak neutron source for a material testing facility using an Ignitor-based concept. The computed values show the potential of this neutron-rich device for fusion materials testing. Some full-power months of operation are sufficient to obtain relevant radiation damage values in terms of dpa. (Author)

  12. Studies on nuclear fusion energy potential based on a long-term world energy and environment model

    International Nuclear Information System (INIS)

    Tokimatsu, K.; Fujino, J.; Asaoka, Y.

    2001-01-01

    This study investigates introduction conditions and potential of nuclear fusion energy as energy supply and CO 2 mitigation technologies in the 21st century. Time horizon of the 21st century, 10 regionally allocated world energy/environment model (Linearized Dynamic New Earth 21) is used for this study. Following nuclear fusion technological data are taken into consideration: cost of electricity (COE) in nuclear fusion introduction year, annual COE reduction rates, regional introduction year, and maximum regional plant capacity constraints by maximum plant construction speed. We made simulation under a constraint of atmospheric CO 2 concentration of 550 parts per million by volume (ppmv) targeted at year 2100, assuming that sequestration technologies and unknown innovative technologies for CO 2 reduction are available. The results indicate that under the 550ppm scenario with nuclear fusion within maximum construction speed, 66mill/kWh is required for introducing nuclear fusion in 2050, 92 mill/kWh in 2060, and 106 mill/kWh in 2070. Therefore, tokamak type nuclear fusion reactors of present several reactor cost estimates are expected to be introduced between 2060 and 2070, and electricity generation fraction by nuclear fusion will go around 20% in 2100 if nuclear fusion energy growth is limited only by the maximum construction speed. CO 2 reduction by nuclear fusion introduced in 2050 from business-as-usual (BAU) scenario without nuclear fusion is about 20% of total reduction amount in 2100. In conclusion, nuclear fusion energy is revealed to be one of the candidates of energy supply technologies and CO 2 mitigation technologies. Cost competitiveness and removal of capacity constraint factors are desired for use of nuclear fusion energy in a large scale. (author)

  13. Advanced nuclear reactor and nuclear fusion power generation

    International Nuclear Information System (INIS)

    2000-04-01

    This book comprised of two issues. The first one is a advanced nuclear reactor which describes nuclear fuel cycle and advanced nuclear reactor like liquid-metal reactor, advanced converter, HTR and extra advanced nuclear reactors. The second one is nuclear fusion for generation energy, which explains practical conditions for nuclear fusion, principle of multiple magnetic field, current situation of research on nuclear fusion, conception for nuclear fusion reactor and economics on nuclear fusion reactor.

  14. Data fusion and sensor management for nuclear power plant safety

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1996-05-01

    The paper describes the implementation of the data-sensor fusion and sensor management technology for accident management through simulated severe accident (SA) scenarios subjected to study. By means of accident management the appropriate prompt actions to be taken to avoid nuclear accident (SA) scenarios subjected to study. By means of accident management the appropriate prompt actions to be taken to avoid nuclear accidents are meant, while such accidents are deemed to somehow be imminent during plant operation. The organisation of the present paper is as follows. As the data-sensor fusion and sensor management is an emerging technology which is not widely known, in Sec. 2, the definition and goals of data-sensor fusion and sensor management technology is described. In Sec. 3 first, with reference to Kalman filtering as an information filter, statistical data-sensor fusion technology is described. This is followed by the examples of deterministic data-sensor fusion technology using gross plant state variables and neural networks (NN) and the implementation for severe accident management in NPPs. In Sec. 4, the sensor management technology is described. Finally, the performance of the data-sensor fusion technology for NPP safety is discussed. (orig./WL)

  15. Modeling, analysis and experiments for fusion nuclear technology

    International Nuclear Information System (INIS)

    Abdou, M.A.; Hadid, A.H.; Raffray, A.R.; Tillack, M.S.; Iizuka, T.

    1988-01-01

    Selected issues in the development of fusion nuclear technology (FNT) have been studied. These relate to (1) near-term experiments, modeling, and analysis for several key FNT issues, and (2) FNT testing in future fusion facilities. A key concern for solid breeder blankets is to reduce the number of candidate materials and configurations for advanced experiments to emphasize those with the highest potential. Based on technical analysis, recommendations have been developed for reducing the size of the test matrix and for focusing the testing program on important areas of emphasis. The characteristics of an advanced liquid metal MHD experiment have also been studied. This facility is required in addition to existing facilities in order to address critical uncertainties in MHD fluid flow and heat transfer. In addition to experiments, successful development of FNT will require models for interpreting experimental data, for planning experiments, and for use as a design tool for fusion components. Modeling of liquid metal fluid flows is a particular area of need in which substantial progress is expected, and initial efforts are reported here. Preliminary results on the modeling of tritium transport and inventory in solid breeders are also summarized. Finally, the thermo-mechanical behavior of liquid-metal-cooled limiters is analyzed and the parameter space for feasible designs is explored. Because of the renewed strong interest in a fusion engineering facility, a critical review and analysis of the important FNT testing requirements have been performed. Several areas have been emphasized due to their strong impact on the design and cost of the test facility. These include (1) the length of the plasma burn and the mode of operation (pulsed vs. steady-state), and (2) the need for a tritium-producing blanket and its impact on the availability of the device. (orig.)

  16. Nuclear physics for nuclear fusion

    International Nuclear Information System (INIS)

    Li Xingzhong; Liu Bin; Wei Qingming; Ren Xianzhe

    2004-01-01

    The D-T fusion cross-section is calculated using quantum mechanics with the model of square nuclear potential well and Coulomb potential barrier. The agreement between ENDF data and the theoretically calculated results is well in the range of 0.2-280 keV. It shows that the application of Breit-Wigner formula is not suitable for the case of the light nuclei fusion reaction. When this model is applied to the nuclear reaction between the charged particles confined in a lattice, it explains the 'abnormal phenomena'. It implies a prospect of nuclear fusion energy without strong nuclear radiations

  17. Project Icarus: Nuclear Fusion Propulsion Concept Comparison

    Science.gov (United States)

    Stanic, M.

    Project Icarus will use nuclear fusion as the primary propulsion, since achieving breakeven is imminent within the next decade. Therefore, fusion technology provides confidence in further development and fairly high technological maturity by the time the Icarus mission would be plausible. Currently there are numerous (over 2 dozen) different fusion approaches that are simultaneously being developed around the World and it is difficult to predict which of the concepts is going to be the most successful one. This study tried to estimate current technological maturity and possible technological extrapolation of fusion approaches for which appropriate data could be found. Figures of merit that were assessed include: current technological state, mass and volume estimates, possible gain values, main advantages and disadvantages of the concept and an attempt to extrapolate current technological state for the next decade or two. Analysis suggests that Magnetic Confinement Fusion (MCF) concepts are not likely to deliver sufficient performance due to size, mass, gain and large technological barriers of the concept. However, ICF and PJMIF did show potential for delivering necessary performance, assuming appropriate techno- logical advances. This paper is a submission of the Project Icarus Study Group.

  18. Rencontre on fusion technology

    International Nuclear Information System (INIS)

    Read, S.F.J.

    1979-02-01

    This report of a rencontre held to consider the technology of magnetic confinement fusion devices gives the agenda for the meeting and lists those topics which were identified as areas of research. These topics included materials, tritium, structures and heat transfer, neutronics and nuclear data, and corrosion problems. (UK)

  19. Superconductivity Engineering and Its Application for Fusion 3.Superconducting Technology as a Gateway to Future Technology

    Science.gov (United States)

    Asano, Katsuhiko

    Hopes for achieving a new source of energy through nuclear fusion rest on the development of superconducting technology that is needed to make future equipments more energy efficient as well as increase their performance. Superconducting technology has made progress in a wide variety of fields, such as energy, life science, electronics, industrial use and environmental improvement. It enables the actualization of equipment that was unachievable with conventional technology, and will sustain future “IT-Based Quality Life Style”, “Sustainable Environmental” and “Advanced Healthcare” society. Besides coil technology with high magnetic field performance, superconducting electoronics or device technology, such as SQUID and SFQ-circuit, high temperature superconducting material and advanced cryogenics technology might be great significance in the history of nuclear fusion which requires so many wide, high and ultra technology. Superconducting technology seems to be the catalyst for a changing future society with nuclear fusion. As society changes, so will superconducting technology.

  20. Summaries of special research project on nuclear fusion 1980

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1981-09-01

    This is a report of the research project entitled ''Nuclear fusion'', supported by the grant in aid for fusion research from the Ministry of Education in the fiscal year 1980. The research project was started in April, 1980, and comprises the following seventeen subjects of nuclear fusion research. 1) Heavy irradiation effects, 2) plasma-wall interaction, 3) neutronics, 4) welding engineering, 5) science and technology of tritium, 6) biological effects of tritium, 7) diagnostics of high temperature plasma, 8) new lasers, 9) fundamentals of plasma heating, 10) high efficiency energy conversion, 11) theory and computer simulation, 12) superconducting materials, 13) fundamental phenomena of superconductivity, 14) magnet technology, 15) heat transfer and structural engineering, 16) system design, and 17) resources and assessment of fusion energy. 43 summaries concerning reactor materials and plasma-wall interaction, 29 summaries concerning the science, technology and biological effects of tritium, 41 summaries concerning the fundamentals of reactor plasma control, 15 summaries concerning the technology of superconducting magnets, and 14 summaries concerning the design of fusion reactors and its evaluation are collected in this report, and their results and progress can be known. (Kako, I.)

  1. Role of nuclear fusion in future energy systems and the environment under future uncertainties

    International Nuclear Information System (INIS)

    Tokimatsu, Koji; Fujino, Jun'ichi; Konishi, Satoshi; Ogawa, Yuichi; Yamaji, Kenji

    2003-01-01

    Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. This is because the prospects for nuclear fusion are quite uncertain and the investments therefore carry the risk of quite large regrets, even though investment is needed in order to develop the technology. The timeframe by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we identify three roles that nuclear fusion will take on when breakeven prices are achieved: (i) a portion of the electricity market in 2100, (ii) reduction of annual global total energy systems cost, and (iii) mitigation of carbon tax (shadow price of carbon) under CO 2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction timeframe for nuclear fusion, capacity projections of nuclear fusion, CO 2 target in 2100, capacity utilization ratio of options in energy/environment technologies, and utility discount rates. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 2050-2060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO 2 concentration constraint

  2. Final Technical Report for "Nuclear Technologies for Near Term Fusion Devices"

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Paul P.H. [Univ. of Wisconsin, Madison, WI (United States); Sawan, Mohamed E. [Univ. of Wisconsin, Madison, WI (United States); Davis, Andrew [Univ. of Wisconsin, Madison, WI (United States); Bohm, Tim D. [Univ. of Wisconsin, Madison, WI (United States)

    2017-09-05

    Over approximately 18 years, this project evolved to focus on a number of related topics, all tied to the nuclear analysis of fusion energy systems. For the earliest years, the University of Wisconsin (UW)’s effort was in support of the Advanced Power Extraction (APEX) study to investigate high power density first wall and blanket systems. A variety of design concepts were studied before this study gave way to a design effort for a US Test Blanket Module (TBM) to be installed in ITER. Simultaneous to this TBM project, nuclear analysis supported the conceptual design of a number of fusion nuclear science facilities that might fill a role in the path to fusion energy. Beginning in approximately 2005, this project added a component focused on the development of novel radiation transport software capability in support of the above nuclear analysis needs. Specifically, a clear need was identified to support neutron and photon transport on the complex geometries associated with Computer-Aided Design (CAD). Following the initial development of the Direct Accelerated Geoemtry Monte Carlo (DAGMC) capability, additional features were added, including unstructured mesh tallies and multi-physics analysis such as the Rigorous 2-Step (R2S) methodology for Shutdown Dose Rate (SDR) prediction. Throughout the project, there were also smaller tasks in support of the fusion materials community and for the testing of changes to the nuclear data that is fundamental to this kind of nuclear analysis.

  3. Argonne National Laboratory papers presented at third ANS topical meeting on the technology of controlled nuclear fusion

    International Nuclear Information System (INIS)

    1978-01-01

    The 9 papers included in this Technical Memorandum were presented at the Third ANS Topical Meeting on the Technology of Controlled Nuclear Fusion that was held in Santa Fe, New Mexico on May 9-11, 1978

  4. Fusion research and technology records in INIS database

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1998-01-01

    This article is a summary of a survey study ''''A survey on publications in Fusion Research and Technology. Science and Technology Indicators in Fusion R and T'''' by the same author on Fusion R and T records in the International Nuclear Information System (INIS) bibliographic database. In that study, for the first time, all scientometric and bibliometric information contained in a bibliographic database, using INIS records, is analyzed and quantified, specific to a selected field of science and technology. A variety of new science and technology indicators which can be used for evaluating research and development activities is also presented in that study that study

  5. Stat-of-the art of nuclear fusion and its future outlook in

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.; Elnadi, A.M.; Masoud, M.; Elshaer, M.A.; Khalil, S.M.

    1993-01-01

    The study in this project is carried out with the objective of being able to present a clear view for the state-of-the art of nuclear fusion as one of the most promising coming energy source and its future outlook in Egypt. The study introduce a summary of the world energy problem and the advantages of thermonuclear fusion energy compared to other energy sources. A description of the two main techniques of confining plasma in the fusion experiments, namely the magnetic and the inertial confinement. These techniques are discussed and investigated through linear pinches and tokamaks. Tokamaks showed to be a promising machines for achieving the controlled thermonuclear fusion power reactor. Recent development of the research on laser fusion together with fast progress in pellet and laser technology suggest that it may be possible to achieve laser fusion power reactor. The story of the strange phenomena of cold fusion, muon-catalyzed fusion, and cold fusion in condensed matter are also studied and showed to be non promising. The project study in details the future fusion reactor, its nuclear engineering and its safety and environmental aspects. The study is based on the magnetic fusion using the tokamak configuration. The positive safety and environmental aspects of fusion reactors, if exist, is also investigated. Status of plasma physics and nuclear fusion activities and strategies in the developing countries (including egypt and the arab countries) are reviewed, besides, some national programmes are proposed. In addition, the status of international activities in plasma technology and its application are represented. Future outlook for egyptian programmes on different plasma technologies are studied. Finally, conclusions and recommendations are presented which summarized the principle achiements and future research opportunities in nuclear fusion activities. In fact, it must be emphasized that fusion is an exciting and challenging field of research -the most

  6. Ch. 37, Inertial Fusion Energy Technology

    International Nuclear Information System (INIS)

    Moses, E.

    2010-01-01

    Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of

  7. Safety analysis of fusion reactors pertaining to nuclear incidents and accidents. Final report

    International Nuclear Information System (INIS)

    Raeder, J.; Weller, A.; Wolf, R.; Jin, X.; Boccaccini, L.V.; Stieglitz, R.; Carloni, D.; Pistner, C.; Herb, J.

    2013-11-01

    The BfS gave the projekt partners IPP, KIT, Oeko-Institut e. V., and GRS the order to carry out a literature study on the topic of safety of fusion power plants regarding nuclear incidents and accidents. In the framework of this study the actual status of science and technology of the safety concept of fusion power plants should be determined and the applicability of the nuclear safety regulations hitherto developed for nuclear power plants checked. For future commercial fusion power plants today only conceptional designs exist. The most advanced conceptual study for a future fusion power plant is the European Power Plant Conceptual Study (PPCS) from the year 2005, which is based on the tokamak principle. In this study also fundamental aspects of the safety concept of nuclear fusion are treated. Hereby several different conceptual approaches are discussed, which differ among others also in the lay-out approaches relevant for the safety of a facility like for instance the choice of the breeding concept or the materials for the blanket/divertor structure and the coolants. The safety concept of nuclear fusion is oriented on safety concepts for facilities with radioactive inventory. It is based on the concept of tiered safety levels. In order to check whether for the nuclear fusion a safety concept comparable with the nuclear fission at all is necessary, in a first step it was considered, which consequences are possible at a postulated release o large parts of the radioactive inventory of a fusion power plant. Such a worst-case scenario was compared with a corresponding, postulated release of large parts of the radioactive inventory of a nuclear power plant. As scale hereby served the radiological criterion, at the transgression of which in the environment of the facility an evacuation would be necessary. In a next step the transferability of the safety concept of the tiered safety levels of nuclear technology to the fusion was checked. Beside events transferable from

  8. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.7--nuclear fusion and plasma physics sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 22 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear fusion and plasma physics sub-volume

  9. Fusion technology development annual report, October 1, 1995--September 30, 1996

    International Nuclear Information System (INIS)

    1997-03-01

    In FY96, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the magnetic fusion program. The work is reported in the following sections on Fusion Power Plant Design Studies (Section 2), Plasma Interactive Materials (Section 3), SiC/SiC Composite Material Development (Section 4), Magnetic Diagnostic Probes (Section 5) and RF Technology (Section 6). Meetings attended and publications are listed in their respective sections. The overall objective of GA's fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to ITER and other next-generation fusion experiments, and ultimately to fusion power plants. To achieve this overall objective, the authors carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. They continue to be committed to the development of fusion power and its commercialization by US industry

  10. A review of nuclear data needs and their status for fusion reactor technology with some suggestions on a strategy to satisfy the requirements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L. (Argonne National Lab., IL (United States)); Cheng, E.T. (TSI Research, Inc., Solana Beach, CA (United States))

    1991-09-01

    A review was performed on the needs and status of nuclear data for fusion-reactor technology. Generally, the status of nuclear data for fusion has been improved during the past two decades due to the dedicated effort of the nuclear data developers. However, there are still deficiencies in the nuclear data base, particularly in the areas of activation and neutron scattering cross sections. Activation cross sections were found to be unsatisfactory in 83 of the 153 reactions reviewed. The scattering cross sections for fluorine and boron will need to be improved at energies above 1 MeV. Suggestions concerning a strategy to address the specific fusion nuclear data needs for dosimetry and activation are also provided.

  11. A review of nuclear data needs and their status for fusion reactor technology with some suggestions on a strategy to satisfy the requirements

    International Nuclear Information System (INIS)

    Smith, D.L.; Cheng, E.T.

    1991-09-01

    A review was performed on the needs and status of nuclear data for fusion-reactor technology. Generally, the status of nuclear data for fusion has been improved during the past two decades due to the dedicated effort of the nuclear data developers. However, there are still deficiencies in the nuclear data base, particularly in the areas of activation and neutron scattering cross sections. Activation cross sections were found to be unsatisfactory in 83 of the 153 reactions reviewed. The scattering cross sections for fluorine and boron will need to be improved at energies above 1 MeV. Suggestions concerning a strategy to address the specific fusion nuclear data needs for dosimetry and activation are also provided

  12. Nuclear fusion an energetic option to the future

    International Nuclear Information System (INIS)

    Medialdea Utande, A.; Sanchez Sanz, J.

    2007-01-01

    Nuclear fusion is the energy source of the Sun and the rest of starts. The great availability of deuterium on Earth, the inherent safety of the reactions involved and the intrinsic environmental respect make fusion an attractive energy source for the future of making of man king. International promising contributions are making Fusion Science and Technology progress by leaps and bounds to achieve its long term goal of cost-effective energy-producing plasmas. (Author)

  13. Establishment of KAERI Strategy and Organization for Fusion Power Technology Research

    International Nuclear Information System (INIS)

    Park, Jong Kyun; Kim, Sung Kyu; Park, Keun Bae

    2005-04-01

    International and domestic status of development activities of nuclear fusion energy technologies are analyzed and summarized. From these results a verifiable R and D strategy is derived which allows purposeful and successful participation in the ITER project and thus enables a domestic technological basis of the commercialization of nuclear fusion energy. A 45-year, three-stage plan is proposed with a detailed plan for the 10-year, 1st stage where a conceptual design of a Korean demonstration fusion power plant (KDEMO) will be developed as well as its key component designs such as breeder blanket

  14. Nuclear fusion project. Semi-annual report of the Association KfK/EURATOM

    International Nuclear Information System (INIS)

    1986-11-01

    Nuclear fusion is one of the main activities of the Karlsruhe Nuclear Research Center (KfK). It is organized as a project under the Directorate of Reactor Development and Safety. The work of KfK concentrates on technology aspects of nuclear fusion with magnetic confinement. It is part of the European Fusion Programme where KfK participates as an association to EURATOM. Close links have been established to the Max Planck Institute for Plasma Physics (IPP). In the Entwicklungsgemeinschaft Kernfusion KfK and IPP cooperate for the development of future fusion experiments joining the experience gained in plasma physics (IPP) and materials, safety, and nuclear technology (KfK), respectively. As in the present strategy of the European Fusion Programme the Next European Tokamak (NET) is foreseen as the major next step, most of the activities of KfK address this subject. In addition to the contributions to NET, studies are carried out to innovate INTOR, the worldwide cooperation for an experimental reactor under the auspices of IAEA. Furthermore, the Entwicklungsgemeinschaft Kernfusion has evaluated the feasibility of a fusion reactor with a stellarator confinement. (orig./GG)

  15. Outline of cold nuclear fusion reaction

    International Nuclear Information System (INIS)

    Tachikawa, Enzo

    1991-01-01

    In 2010, as the total supply capacity of primary energy, 666 million liter is anticipated under the measures of thorough energy conservation. The development of energy sources along the energy policy based on environment preservation, safety, the quantity of resources and economy is strongly demanded. The nuclear power generation utilizing nuclear fission has been successfully carried out. As the third means of energy production, the basic research and technical development have been actively advanced on the energy production utilizing nuclear fusion reaction. The main object of the nuclear fusion research being advanced now is D-D reaction and D-T reaction. In order to realize low temperature nuclear fusion reaction, muon nuclear fusion has been studied so far. The cold nuclear fusion reaction by the electrolysis of heavy water has been reported in 1989, and its outline is ixplained in this report. The trend of the research on cold nuclear fusion is described. But the possibility of cold nuclear fusion as an energy source is almost denied. (K.I.)

  16. Portuguese research program on nuclear fusion

    International Nuclear Information System (INIS)

    Varandas, C.A.F.; Cabral, J.A.C.; Manso, M.E.

    1994-01-01

    The Portuguese research program on nuclear fusion is presented. The experimental activity associated with the tokamak ISTTOK as well as the work carried out in the frame of international collaboration are summarized. The main technological features of ISTTOK are described along with studies on microwave reflectometry. Future plans are briefly described

  17. The survey of nuclear fusion technology

    International Nuclear Information System (INIS)

    Hwang, W.K.

    1981-01-01

    The fusion research evaluation model for analyzing various R and D sinarios, the trend analysis of Tokamak research, and the near-term technologies are discussed. The results of the present study are as follows: A computer code, FUSREV, has been developed based on ECON Inc.'s approach. It consists of the plasma power model and the cost/benefit model. Since the State-of-the Knowledges, which are expected to achieve as the result of subproject R and D's, can only be obtained in the form of probability distribution function, Monte-Carlo method is employed. The test computation of the code shows acceptable results. However, FUSREV has been continuously modified employing new models for both technology and economics

  18. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    1993-11-01

    The results of nuclear fusion researches in JAERI are summarized. In this report, following themes are collected: the concept of fusion reactor (including ITER), fusion reactor safety, plasma confinement, fusion reactor equipment, and so on. Includes glossary. (J.P.N.)

  19. New technology and neo-science on the nuclear fusion reactor engineering. ITER and super high speed phenomena

    International Nuclear Information System (INIS)

    1996-12-01

    This research meeting has been held under cooperation of the ''nuclear fusion reactor engineering research group'' and ''nuclear fusion reactor materials research group'' of the Yayoi Research Group. This meeting was planned and conducted for 2 days under the following predominant thema: Present status of research on thermo-nuclear fusion experimental reactor engineering design (ITER/EDA) and its promoting method in Japan, and a new scientific side in the research and development of nuclear fusion reactor materials or the super high speed phenomena. In the former item, the following reports were published: Creative period of R and D on the nuclear fusion reactor, present statue and future development of ITER/EDA, meanings of ITER under realization of the nuclear fusion energy, and others. And in the latter item, the following reports were published: Nuclear fusion materials engineering and system quantum engineering, dynamic imagination of atom and molecule using pulse snap shot method, laser wake field acceleration and ultra short x-ray pulse generation, development of T-cube laser in JAERI, and others. (G.K.)

  20. Nuclear technology for the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    Eighteen papers and abstracts are presented under the following session headings: space nuclear power, health physics and dosimetry, nuclear design and thermal hydraulics, nuclear diagnostics, and fusion technology and plasma physics. The papers were processed separately for the data base. (DLC)

  1. Nuclear technology for the year 2000

    International Nuclear Information System (INIS)

    1987-01-01

    Eighteen papers and abstracts are presented under the following session headings: space nuclear power, health physics and dosimetry, nuclear design and thermal hydraulics, nuclear diagnostics, and fusion technology and plasma physics. The papers were processed separately for the data base

  2. Cold nuclear fusion device

    International Nuclear Information System (INIS)

    Ogino, Shinji.

    1991-01-01

    Selection of cathode material is a key to the attainment of cold nuclear fusion. However, there are only few reports on the cathode material at present and an effective development has been demanded. The device comprises an anode and a cathode and an electrolytic bath having metal salts dissolved therein and containing heavy water in a glass container. The anode is made of gold or platinum and the cathode is made of metals of V, Sr, Y, Nb, Hf or Ta, and a voltage of 3-25V is applied by way of a DC power source between them. The metal comprising V, Sr, Y, Nb, Hf or Ta absorbs deuterium formed by electrolysis of heavy water effectively to cause nuclear fusion reaction at substantially the same frequency and energy efficiency as palladium and titanium. Accordingly, a cold nuclear fusion device having high nuclear fusion generation frequency can be obtained. (N.H.)

  3. ITER: a technology test bed for a fusion reactor

    International Nuclear Information System (INIS)

    Huguet, M.; Green, B.J.

    1996-01-01

    The ITER Project aims to establish nuclear fusion as an energy source that has potential safety and environmental advantages, and to develop the technologies required for a fusion reactor. ITER is a collaborative project between the European Union, Japan, the Russian Federation and the United States of America. During the current phase of the Project, an R and D programme of about 850 million dollars is underway to develop the technologies required for ITER. This technological effort should culminate in the construction of the components and systems of the ITER machine and its auxiliaries. The main areas of technological development include the first wall and divertor technology, the blanket technology and tritium breeding, superconducting magnet technology, pulsed power technology and remote handling. ITER is a test bed and an essential step to establish the technology of future fusion reactors. Many of the ITER technologies are of potential interest to other fields and their development is expected to benefit the industries involved. (author)

  4. Progress of nuclear fusion research and review on development of fusion reactors

    International Nuclear Information System (INIS)

    1976-01-01

    Set up in October 1971, the ad hoc Committee on Survey of Nuclear Fusion Reactors has worked on overall fusion reactor aspects and definition of the future problems under four working groups of core, nuclear heat, materials and system. The presect volume is intended to provide reference materials in the field of fusion reactor engineering, prepared by members of the committee. Contents are broadly the following: concept of the nuclear fusion reactor, fusion core engineering, fusion reactor blanket engineering, fusion reactor materials engineering, and system problems in development of fusion reactors. (Mori, K.)

  5. Fusion technology 1992

    International Nuclear Information System (INIS)

    Ferro, C.; Gasparatto, M.; Knoepfel, H.

    1993-01-01

    The aim of the biennial series of symposia on the title subject, organized by the European Fusion Laboratories, is the exchange of information on the design, construction and operation of fusion experiments and on the technology being developed for the next step devices and fusion reactors. The coverage of the volume includes the technological aspects of fusion reactors in relation to new developments, this forming a guideline for the definition of future work. These proceedings comprise three volumes and contain both the invited lectures and contributed papers presented at the symposium which was attended by 569 participants from around the globe. The 343 papers, including 12 invited papers, characterize the increasing interest of industry in the fusion programme, giving a broad and current overview on the progress and trends fusion technology is experiencing now, as well as indicating the future for fusion devices

  6. Investigating the degree of "stigma" associated with nuclear energy technologies: A cross-cultural examination of the case of fusion power.

    Science.gov (United States)

    Horlick-Jones, Tom; Prades, Ana; Espluga, Josep

    2012-07-01

    The extent to which nuclear energy technologies are, in some sense, "stigmatised" by historical environmental and military associations is of particular interest in contemporary debates about sustainable energy policy. Recent claims in the literature suggest that despite such stigmatisation, lay views on such technologies may be shifting towards a "reluctant acceptance," in the light of concerns about issues like anthropogenic climate change. In this paper, we report on research into learning and reasoning processes concerned with a largely unknown nuclear energy technology; namely fusion power. We focus on the role of the nuclear label, or "brand," in informing how lay citizens make sense of the nature of this technology. Our findings derive from a comparative analysis of data generated in Spain and Britain, using the same methodology.

  7. Fusion Nuclear Science Pathways Assessment

    Energy Technology Data Exchange (ETDEWEB)

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  8. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  9. Plasma nuclear fusion method

    International Nuclear Information System (INIS)

    Yamazaki, Shunpei; Miyanaga, Shoji; Wakaizumi, Kazuhiro; Takemura, Yasuhiko.

    1990-01-01

    Nuclear fusion reactions are attained by plasma gas phase reactions using magnetic fields and microwaves, and the degree of the reactions is controlled. That is, deuterium (D 2 ) is introduced into a plasma container by utilizing the resonance of microwaves capable of generating plasmas at high density higher by more than 10 - 10 3 times as compared with the high frequency and magnetic fields, and an electric energy is applied to convert gaseous D 2 into plasmas and nuclear fusion is conducted. Further, the deuterium ions in the plasmas are attracted to a surface of a material causing nuclear fusion under a negatively biased electric field from the outside (typically represented by Pd or Ti). Then, deuterium nuclei (d) or deuterium ions collide to the surface of the cathode on the side of palladium to conduct nuclear reaction at the surface or the inside (vicinity) thereof. However, a DC bias is applied as an external bias with the side of the palladium being negative. The cold nuclear fusion was demonstrated by placing a neutron counter in the vicinity of the container and confirming neutrons generated there. (I.S.)

  10. The 22nd symposium on fusion technology

    International Nuclear Information System (INIS)

    Taehtinen, S.; Rintamaa, R.; Asikainen, M.; Tuomisto, H.

    2002-01-01

    The Symposium on Fusion Technology (SOFT) was held at the Marina Congress Center, Helsinki, Finland, from 9th to 13th September 2002. It was organized by the Association Euratom-Tekes and hosted by the VTT Technical Research Centre of Finland, Fortum Nuclear Services Ltd. and PrizzTech Oy. The sympoisum included invited and contributed papers as well as poster presentations and an industrial and R and D exhibition. The main topics included all aspects of fusion technology: current and future devices, plasma facing components, plasma heating and current drive, plasma engineering and control, diagnostics, data acquisition and remote participation, magnets and power supplies, fuel cycle, remote handling, vessel, blanket and shield, safety and environment, power plant and socio-economic studies, inertial fusion energy, and transfer of technology. The number of invited speakers was 15, selected presentations 22 and poster presentations 404. The abstracts of the presentations and posters are included in this book. (orig.)

  11. Physics of thermo-nuclear fusion and the ITER project; La physique de la fusion thermonucleaire et le projet ITER

    Energy Technology Data Exchange (ETDEWEB)

    Garin, P [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee - DRFC, 13 - Saint-Paul-lez-Durance (France)

    2003-01-01

    This document gathers the slides of the 6 contributions to the workshop 'the physics of thermo-nuclear fusion and the ITER project': 1) the feasibility of magnetic confinement and the issue of heat recovery, 2) heating and current generation in tokamaks, 3) the physics of wall-plasma interaction, 4) recent results at JET, 5) inertial confinement and fast ignition, and 6) the technology of fusion machines based on magnetic confinement. This document presents the principles of thermo-nuclear fusion machines and gives a lot of technical information about JET, Tore-Supra and ITER.

  12. Results of nuclear fusion development

    International Nuclear Information System (INIS)

    Yamamoto, Kenzo

    1975-01-01

    Compared with the nuclear fission research which followed that in advanced countries, Japan has treaded on its own track in nuclear fusion development; in the former, she had been far behind other leading countries. Characteristic of the efforts in Japan is the collaboration with educational institutions. Works are now carried out mainly in Tokamak plasma confinement, though other means being studied simultaneously. The nation's fusion research program is the realization of a fusion reactor at the turn of the present century, based on the world-level results attained with Tokamak. Past developments in the nuclear fusion research, the current status, and aspects for the future are discribed. (Mori, K.)

  13. Nuclear fusion project. Semi-annual report of the Association KfK/EURATOM

    International Nuclear Information System (INIS)

    Kast, G.

    1987-05-01

    This semi-annual report gives 36 short descriptions of the work done in the framework of the Nuclear Fusion Project and outlines studies for NET/INTOR and for ECRH power sources at 150 GHz. Tables of fusion technology contracts, of NET contracts, of KfK departments contributing to the Fusion Project, and of the Fusion Project management staff complete this report. (GG)

  14. Plasma Physics and Controlled Nuclear Fusion Research 1971. Vol. III. Proceedings of the Fourth International Conference on Plasma Physics and Controlled Nuclear Fusion Research

    International Nuclear Information System (INIS)

    1971-01-01

    The ultimate goal of controlled nuclear fusion research is to make a new energy source available to mankind, a source that will be virtually unlimited and that gives promise of being environmentally cleaner than the sources currently exploited. This goal has stimulated research in plasma physics over the past two decades, leading to significant advances in the understanding of matter in its most common state as well as to progress in the confinement and heating of plasma. An indication of this progress is that in several countries considerable effort is being devoted to design studies of fusion reactors and to the technological problems that will be encountered in realizing these reactors. This range of research, from plasma physics to fusion reactor engineering, is shown in the present three-volume publication of the Proceedings of the Fourth Conference on Plasma Physics and Controlled Nuclear Fusion Research. The Conference was sponsored by the International Atomic Energy Agency and was held in Madison, Wisconsin, USA from 17 to 23 June 1971. The enthusiastic co-operation of the University of Wisconsin and of the United States Atomic Energy Commission in the organization of the Conference is gratefully acknowledged. The Conference was attended by over 500 scientists from 24 countries and 3 international organizations, and 143 papers were presented. These papers are published here in the original language; English translations of the Russian papers will be published in a Special Supplement to the journal Nuclear Fusion. The series of conferences on Plasma Physics and Controlled Nuclear Fusion Research has become a major international forum for the presentation and discussion of results in this important and challenging field. In addition to sponsoring these conferences, the International Atomic Energy Agency supports controlled nuclear fusion research by publishing the journal Nuclear Fusion, and has recently established an International Fusion Research Council

  15. Neutrons and fusion nuclear technology

    International Nuclear Information System (INIS)

    Hirayama, Shoichi

    1991-01-01

    The strategy of the devolopment of the fusion reactor has been compared with the history of the development of the fission reactor. More than 50 neutron reactors (neutron sources for research and development of reactor components and materials, and for Pu production) have been constructed and operated before the introduction of demonstration power reactors. This fact suggests us to introduce a new path of neutron reactor in the strategy of the development of fusion power reactor in addition to the orthodox approach which goes through the break-even, self-ignition, ETR, and DEMO. One of the benefits of the introduction of such neutron reactor or into the strategy of the fusion reactor development has been studied numerically. The results demonstrate that the introduction of fission-fusion hybrid reactor in 2030, can save ∝20% of natural uranium by 2100 in Japan, in comparison with the case when the fast breeder reactor is introduced in 2030. This saving is recognized large enough to justify earlier construction of the fusion neutron reactor. (orig.)

  16. Remote maintenance for fusion: Requirements vs technology gap

    International Nuclear Information System (INIS)

    Davis, F.C.; Kuban, D.P.

    1989-01-01

    Today's remote handling technology was developed in response to the remote maintenance (RM) requirements of the fission community's nuclear fuel recycle process. The needs of the fusion community present new challenges to the remote handling experts of the world. New difficulties are superimposed on the difficulties experienced in maintaining fission processes. Today's technology must be enhanced to respond to the RM needs of these future huge investments. This paper first discusses the current RM needs for fusion based on existing facilities and designs of future machines. It then exposes the gap between these requirements and existing RM technology and recommends ways to extend the state of the art to close this gap

  17. Progress report 1995 on fusion technology tasks

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der [ed.

    1996-07-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1995. The work is organized in R and D contracts for the next step NET/ITER Technology, the Blanket Development Programme, the Long Term Programme and in NET contracts. The topics concern: Irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and structural analysis on magnet coils. In addition the supporting and supplementary tasks and investigations in the category underlying technology are reported. A list of publications and staff members is also given. (orig.).

  18. Progress report 1995 on fusion technology tasks

    International Nuclear Information System (INIS)

    Laan, J.G. van der

    1996-07-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1995. The work is organized in R and D contracts for the next step NET/ITER Technology, the Blanket Development Programme, the Long Term Programme and in NET contracts. The topics concern: Irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and structural analysis on magnet coils. In addition the supporting and supplementary tasks and investigations in the category underlying technology are reported. A list of publications and staff members is also given. (orig.)

  19. Progress report 1992 on fusion technology tasks

    International Nuclear Information System (INIS)

    Klippel, H.T.

    1993-08-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1992. The work is organized in RandD contracts for the next step NET/ITER Technology, the Solid Breeder Blanket Programme, the Long Term Programme and in JET and NET contracts. The topics concern: irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and stress analysis on magnet coils. List of publications and staff members are also given. (orig.)

  20. Progress report 1994 on fusion technology tasks

    Energy Technology Data Exchange (ETDEWEB)

    Klippel, H T [ed.

    1995-09-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1994. The work is organized in R and D contracts for the next step NET/ITER Technology, the Solid Breeder Blanket Programme, the Long Term Programme and in JET and NET contracts. The topics concern: irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and stress analysis on magnet coils. A list of publications and staff members is also given. (orig.).

  1. Progress report 1993 on fusion technology tasks

    Energy Technology Data Exchange (ETDEWEB)

    Klippel, H T [ed.

    1994-09-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1993. The work is organized in RandD contracts for the next step NET/ITER Technology, the Solid Breeder Blanket Programme, the Long Term Programme and in JET and NET contracts. The topics concern: irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and stress analysis on magnet coils. List of publications and staff members are also given. (orig.).

  2. Progress report 1994 on fusion technology tasks

    International Nuclear Information System (INIS)

    Klippel, H.T.

    1995-09-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1994. The work is organized in R and D contracts for the next step NET/ITER Technology, the Solid Breeder Blanket Programme, the Long Term Programme and in JET and NET contracts. The topics concern: irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and stress analysis on magnet coils. A list of publications and staff members is also given. (orig.)

  3. Progress report 1993 on fusion technology tasks

    International Nuclear Information System (INIS)

    Klippel, H.T.

    1994-09-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1993. The work is organized in RandD contracts for the next step NET/ITER Technology, the Solid Breeder Blanket Programme, the Long Term Programme and in JET and NET contracts. The topics concern: irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and stress analysis on magnet coils. List of publications and staff members are also given. (orig.)

  4. Confinement inertial fusion. Power reactors of nuclear fusion by lasers

    International Nuclear Information System (INIS)

    Velarde, G.; Ahnert, C.; Aragones, J.M.; Leira, G; Martinez-Val, J.M.

    1980-01-01

    The energy crisis and the need of the nuclear fusion energy are analized. The nuclear processes in the laser interation with the ablator material are studied, as well as the thermohydrodinamic processes in the implossion, and the neutronics of the fusion. The fusion reactor components are described and the economic and social impact of its introduction in the future energetic strategies.(author)

  5. Controlled Nuclear Fusion.

    Science.gov (United States)

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  6. Research and development plan of fusion technologies in JAERI toward DEMO reactors

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Hayashi, Takumi; Abe, Tetsuya; Akiba, Masato; Isono, Takaaki; Inoue, Takashi; Enoeda, Mikio; Okuno, Kiyoshi; Koizumi, Norikiyo; Sakamoto, Keishi; Sato, Satoshi; Jitsukawa, Shiro; Sugimoto, Masayoshi; Suzuki, Satoshi; Seki, Shogo; Takatsu, Hideyuki; Tanzawa, Sadamitsu; Tsuchiya, Kunihiko; Nishi, Masataka; Hayashi, Kimio; Matsui, Hideki; Yamanishi, Toshihiko; Watanabe, Kazuhiro

    2005-03-01

    In accordance with the 'Third Phase Basic Program on Fusion Research and Development' established by the Fusion Council of the Japan Atomic Energy Commission, research and development (R and D) of fusion technologies aim at realization of two elements: development of ITER key components and their improvement for higher performances; and construction of sound technical basis of fusion nuclear technologies essential for fusion energy utilization. JAERI has been assigned in the Third Phase Basic Program as a responsible institute for developing the above two elements, and accordingly has been implementing technology R and Ds categorized in the following three areas: R and D for ITER construction and operation; R and D for ITER utilization (blanket testing in ITER) and toward DEMO; and R and D on basic fusion technologies. The present report reviews the status and the plan of fusion technology R and Ds in the latter two areas, and presents the technical objectives, technical issues, status of R and D and near-term R and D plans for: breeding blankets; structural materials; the IFMIF program; improvements of the key ITER components for higher performances toward DEMO; and basic fusion technologies. (author)

  7. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. The authors show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  8. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Miller, L.G.; Longhurst, G.R.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. We will show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  9. Cell fusion and nuclear fusion in plants.

    Science.gov (United States)

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Cold nuclear fusion. Germany 2012

    Energy Technology Data Exchange (ETDEWEB)

    Petrescu, Florian Ion

    2012-07-01

    Nuclear fusion is the process by which two or more atomic nuclei join together, or ''fuse'', to form a single heavier nucleus. During this process, matter is not conserved because some of the mass of the fusing nuclei is converted to energy which is released. The binding energy of the resulting nucleus is greater than the binding energy of each of the nuclei that fused to produce it. Fusion is the process that powers active stars. Creating the required conditions for fusion on Earth is very difficult, to the point that it has not been accomplished at any scale for protium, the common light isotope of hydrogen that undergoes natural fusion in stars. In nuclear weapons, some of the energy released by an atomic bomb (fission bomb) is used for compressing and heating a fusion fuel containing heavier isotopes of hydrogen, and also sometimes lithium, to the point of ''ignition''. At this point, the energy released in the fusion reactions is enough to briefly maintain the reaction. Fusion-based nuclear power experiments attempt to create similar conditions using far lesser means, although to date these experiments have failed to maintain conditions needed for ignition long enough for fusion to be a viable commercial power source.

  11. The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies

    Science.gov (United States)

    Campbell, E. Michael

    2010-02-01

    Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )

  12. Nuclear fusion, an energy source of the future

    International Nuclear Information System (INIS)

    Koeppendoerfer, W.

    1994-01-01

    The paper discusses the possibility to obtain energy by nuclear fusion. It deals successively with: The physical bases of nuclear fusion, research and development with a view to harnessing nuclear fusion, properties of a fusion reactor, and programme and timetable to economic exploitation. (orig./UA) [de

  13. Chemical engineering side of nuclear fusion power

    International Nuclear Information System (INIS)

    Johnson, E.F.

    1976-10-01

    It is widely recognized that chemical engineering has important roles to play in the development of national and world wide energy resources through optimal utilization of fossil fuel reserves. It is much less appreciated that there are crucial chemical engineering problems in the development of energy production from other sources. In particular the successful development of nuclear fusion power generating systems will require the solution of many problems that are uniquely suited to chemical engineers. This article presents a brief overview of the fusion development program and an identification of the major technological problems remaining to be solved

  14. Contribution to the actual discussion on the technological problems of nuclear fusion energy exploitation

    International Nuclear Information System (INIS)

    Seifritz, W.

    1982-02-01

    Recently increased criticism has been raised from many sides as to the technical realization of fusion reactors. The basic argument is continually stated whether it is really sensible to invest the enormous sums of money in order to produce a commercial fusion reactor. In this article, the principle problems facing nuclear fusion are presented and it is outlined which priorities should be set for the realization of fusion energy in the near future. (Auth.)

  15. Radioactive waste management and advanced nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    2007-01-01

    In 2007 ENEA's Department of Nuclear Fusion and Fission, and Related Technologies acted according to national policy and the role assigned to ENEA FPN by Law 257/2003 regarding radioactive waste management and advanced nuclear fuel cycle technologies

  16. Fusion power by magnetic confinement: plans and the associated need for nuclear engineers

    International Nuclear Information System (INIS)

    Hirsch, R.L.; Beard, D.S.

    1975-01-01

    An essential ingredient in the fusion development plan will be the training of appropriate scientific and technical manpower. In examining the need for fusion-trained nuclear engineers, it is projected that an additional 120 to 250 engineers at the MS and PhD levels will be needed between now and 1980. To be most effective, these graduates must not only be trained in the ''classic'' physical, nuclear, mechanical, and electrical sciences, but they will need specialized training in fusion plasma physics and fusion materials science. To help develop the appropriate educational programs, close cooperation between U. S. Energy Research and Development Administration (ERDA) headquarters, ERDA laboratories, private industry, and the universities will be essential. An emerging need for a carefully structured ''fusion technology'' option in nuclear engineering departments is plainly evident and is already beginning to be developed at leading institutions

  17. A survey on publications in fusion research and technology science and technology indicators in fusion R and T

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1999-01-01

    Scientific publications disseminate research results and are therefore an interesting subject for science and technology analysis. Bibliographic databases contain scientific publications which are indexed and structured. The paper considers Fusion Research and Technology records which are stored in the International Nuclear Information System (INIS) bibliographic database. For the first time, all scientometric and bibliometric information specific to a selected field of science and technology contained in a bibliographic database, using INIS records, is analysed and quantified. A variety of new science and technology indicators which can be used for assessing research and development activities are also presented. (author)

  18. A survey on publications in fusion research and technology science and technology indicators in fusion R and T

    International Nuclear Information System (INIS)

    Hillebrand, C.-D.

    2001-01-01

    Scientific publications disseminate research results and are therefore an interesting subject for science and technology analysis. Bibliographic databases contain scientific publications which are indexed and structured. The paper considers Fusion Research and Technology records which are stored in the International Nuclear Information System (INIS) bibliographic database. For the first time, all scientometric and bibliometric information specific to a selected field of science and technology contained in a bibliographic database, using INIS records, is analysed and quantified. A variety of new science and technology indicators which can be used for assessing research and development activities are also presented. (author)

  19. Nuclear Power Plants Fault Diagnosis Method Based on Data Fusion

    International Nuclear Information System (INIS)

    Xie Chunli; Liu Yongkuo; Xia Hong

    2009-01-01

    The data fusion is a method suit for complex system fault diagnosis such as nuclear power plants, which is multisource information processing technology. This paper uses data fusion information hierarchical thinking and divides nuclear power plants fault diagnosis into three levels. Data level adopts data mining method to handle data and reduction attributes. Feature level uses three parallel neural networks to deal with attributes of data level reduction and the outputs of three networks are as the basic probability assignment of Dempster-Shafer (D-S) evidence theory. The improved D-S evidence theory synthesizes the outputs of neural networks in decision level, which conquer the traditional D-S evidence theory limitation which can't dispose conflict information. The diagnosis method was tested using correlation data of literature. The test results indicate that the data fusion diagnosis system can diagnose nuclear power plants faults accurately and the method has application value. (authors)

  20. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    International Nuclear Information System (INIS)

    Abdou, M.

    1984-10-01

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios

  1. Studies of breakeven prices and electricity supply potentials of nuclear fusion by a long-term world energy and environment model

    International Nuclear Information System (INIS)

    Tokimatsu, K.; Asaoka, Y.; Okano, K.; Yoshida, T.; Hiwatari, R.; Konishi, S.; Nishio, S.; Fujino, J.; Ogawa, Y.; Yamaji, K.

    2002-01-01

    In response to social demand, this paper investigates the breakeven price (BP) and potential electricity supply of nuclear fusion energy in the 21st century by means of a world energy and environment model. We set the following objectives in this paper: (i) to reveal the economics of the introduction conditions of nuclear fusion; (ii) to know when tokamak-type nuclear fusion reactors are expected to be introduced cost-effectively into future energy systems; (iii) to estimate the share in 2100 of electricity produced by the presently designed reactors that could be economically selected in the year. The model can give in detail the energy and environment technologies and price-induced energy saving, and can illustrate optimal energy supply structures by minimizing the costs of total discounted energy systems at a discount rate of 5%. The following parameters of nuclear fusion were considered: cost of electricity (COE) in the nuclear fusion introduction year, annual COE reduction rates, regional introduction year, and regional nuclear fusion capacity projection. The investigations are carried out for three nuclear fusion projections one of which includes tritium breeding constraints, four future CO 2 concentration constraints, and technological assumptions on fossil fuels, nuclear fission, CO 2 sequestration, and anonymous innovative technologies. It is concluded that: (1) the BPs are from 65 to 125 mill kW -1 h -1 depending on the introduction year of nuclear fusion under the 550 ppmv CO 2 concentration constraints; those of a business-as-usual (BAU) case are from 51 to 68 mill kW -1 h -1 . Uncertainties resulting from the CO 2 concentration constraints and the technological options influenced the BPs by plus/minus some 10-30 mill kW -1 h -1 , (2) tokamak-type nuclear fusion reactors (as presently designed, with a COE range around 70-130 mill kW -1 h -1 ) would be favourably introduced into energy systems after 2060 based on the economic criteria under the 450 and

  2. Studies of breakeven prices and electricity supply potentials of nuclear fusion by a long-term world energy and environment model

    Science.gov (United States)

    Tokimatsu, K.; Asaoka, Y.; Konishi, S.; Fujino, J.; Ogawa, Y.; Okano, K.; Nishio, S.; Yoshida, T.; Hiwatari, R.; Yamaji, K.

    2002-11-01

    In response to social demand, this paper investigates the breakeven price (BP) and potential electricity supply of nuclear fusion energy in the 21st century by means of a world energy and environment model. We set the following objectives in this paper: (i) to reveal the economics of the introduction conditions of nuclear fusion; (ii) to know when tokamak-type nuclear fusion reactors are expected to be introduced cost-effectively into future energy systems; (iii) to estimate the share in 2100 of electricity produced by the presently designed reactors that could be economically selected in the year. The model can give in detail the energy and environment technologies and price-induced energy saving, and can illustrate optimal energy supply structures by minimizing the costs of total discounted energy systems at a discount rate of 5%. The following parameters of nuclear fusion were considered: cost of electricity (COE) in the nuclear fusion introduction year, annual COE reduction rates, regional introduction year, and regional nuclear fusion capacity projection. The investigations are carried out for three nuclear fusion projections one of which includes tritium breeding constraints, four future CO2 concentration constraints, and technological assumptions on fossil fuels, nuclear fission, CO2 sequestration, and anonymous innovative technologies. It is concluded that: (1) the BPs are from 65 to 125 mill kW-1 h-1 depending on the introduction year of nuclear fusion under the 550 ppmv CO2 concentration constraints; those of a business-as-usual (BAU) case are from 51 to 68 mill kW-1h-1. Uncertainties resulting from the CO2 concentration constraints and the technological options influenced the BPs by plus/minus some 10 30 mill kW-1h-1, (2) tokamak-type nuclear fusion reactors (as presently designed, with a COE range around 70 130 mill kW-1h-1) would be favourably introduced into energy systems after 2060 based on the economic criteria under the 450 and 550 ppmv CO2

  3. The high-density Z-pinch as a pulsed fusion neutron source for fusion nuclear technology and materials testing

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Sethian, J.D.; Hagenson, R.L.

    1989-01-01

    The dense Z-pinch (DZP) is one of the earliest and simplest plasma heating and confinement schemes. Recent experimental advances based on plasma initiation from hair-like (10s μm in radius) solid hydrogen filaments have so far not encountered the usually devastating MHD instabilities that plagued early DZP experiments. These encouraging results along with debt of a number of proof-of principle, high-current (1--2 MA in 10--100 ns) experiments have prompted consideration of the DZP as a pulsed source of DT fusion neutrons of sufficient strength (/dot S//sub N/ ≥ 10 19 n/s) to provide uncollided neutron fluxes in excess of I/sub ω/ = 5--10 MW/m 2 over test volumes of 10--30 litre or greater. While this neutron source would be pulsed (100s ns pulse widths, 10--100 Hz pulse rate), giving flux time compressions in the range 10 5 --10 6 , its simplicity, near-time feasibility, low cost, high-Q operation, and relevance to fusion systems that may provide a pulsed commercial end-product (e.g., inertial confinement or the DZP itself) together create the impetus for preliminary considerations as a neutron source for fusion nuclear technology and materials testings. The results of a preliminary parametric systems study (focusing primarily on physics issues), conceptual design, and cost versus performance analyses are presented. The DZP promises an expensive and efficient means to provide pulsed DT neutrons at an average rate in excess of 10 19 n/s, with neutron currents I/sub ω/ /approx lt/ 10 MW/m 2 over volumes V/sub exp/ ≥ 30 litre using single-pulse technologies that differ little from those being used in present-day experiments. 34 refs., 17 figs., 6 tabs

  4. FUSION technology programme 2003-2006

    International Nuclear Information System (INIS)

    Karttunen, S.; Rantamaeki, K.

    2007-01-01

    This report summarises the results of the FUSION technology programme during the period between 2003-2006. FUSION is a continuation of the previous FFusion and FFusion2 technology programmes that took place from 1993 to 2002. The FUSION technology programme was fully integrated into the European Fusion Programme in the sixth Framework Programme (Euratom), through the bilateral Contract of Association between Euratom and Tekes and the multilateral European Fusion Development Agreement (EFDA). The Association Euratom-Tekes was established in 1995. At the moment, there are 26 Euratom Fusion associations working together as an European Research Area. There are four research areas in the FUSION technology programme: (1) fusion physics and plasma engineering, (2) vessel/in-vessel materials, joints and components, (3) in-vessel remote handling systems, and (4) system studies. The FUSION team consists of research groups from the Technical Research Centre of Finland (VTT), the Helsinki, Tampere and Lappeenranta Universities of Technology and the University of Helsinki. The co-ordinating unit is VTT. A key element of the FUSION programme is the close collaboration between VTT, the universities and the industry, which has resulted in dynamic and sufficiently large research teams to tackle challenging research and development projects. The distribution of work between research institutes and industry has also been clear. Industrial activities related to the FUSION programme are co-ordinated through the 'Big Science' Project by Finpro and Prizztech. The total expenditure of the FUSION technology programme for 2003-2006 amounted to euro 14,9 million in research work at VTT and the universities with an additional euro 3,5 million for projects by the Finnish companies including the industry co-ordination. The funding of the FUSION programme and related industrial projects was mainly provided by Tekes (37%), Euratom (38%) and the participating institutes and industry (24%). The

  5. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.7--pulse power technology

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear electronics, nuclear detecting technology, pulse power technology, nuclear fusion and plasma

  6. Development of Fusion Nuclear Technologies and the role of MTR's

    International Nuclear Information System (INIS)

    Laan, J.G. van der; Schaaf, B. van der

    2006-01-01

    Fusion power plant operation will strongly depend on the economy and reliability of crucial components, such as first wall modules, tritium breeding blankets and divertors. Their operating temperature shall be high to accomplish high plant efficiency. The materials properties and component fabrication routes shall also assure long reliable operation to minimize plant outage. The components must be fabricated in large quantities based on demonstrations with a limited amount of test beds. Mock-ups and test loops will, through iteration processes, demonstrate the reliable operation under reference thermal-hydraulic conditions. Although 14 MeV neutrons dominate the nuclear conditions near the first wall, neutron transport analyses have shown that large portions of the components near the plasma have to cope with a neutron spectrum resembling a fission core. Present Materials Test Reactors, MTR's, offer fluxes relevant for large parts of the fusion major components. The mixed and fast fission spectra though is not representative for all fusion conditions. The strong point of MTR's is their ability to generate sufficient displacement damage in the materials in a relatively short time. The cores of MTR's provide sufficient space for irradiation of representative cut-outs of components to allow integrated functional and materials tests in a high flux neutron field. The MTR's are the primary test bed for structural and functional fusion relevant materials. The MTR space and dose rates provide a valuable base line for the developments and demonstrations of fusion key components in a neutron field. In recent years the pebble bed assembly, PBA, irradiated in the HFR, Petten, has shown the feasibility of the helium-cooled concept with lithium ceramics and beryllium multiplier pebble beds. The irradiations produce a wealth of process parameters for the control of the tritium release of the pebbles. The PBA packaging, cooling and tritium purging arrangements closely resemble the

  7. Fusion technology development: first wall/blanket system and component testing in existing nuclear facilities

    International Nuclear Information System (INIS)

    Hsu, P.Y.S.; Bohn, T.S.; Deis, G.A.; Judd, J.L.; Longhurst, G.R.; Miller, L.G.; Millsap, D.A.; Scott, A.J.; Wessol, D.E.

    1980-12-01

    A novel concept to produce a reasonable simulation of a fusion first wall/blanket test environment employing an existing nuclear facility, the Engineering Test Reactor at the Idaho National Engineering Laboratory, is presented. Preliminary results show that an asymmetric, nuclear test environment with surface and volumetric heating rates similar to those expected in a fusion first wall/blanket or divertor chamber surface appears feasible. The proposed concept takes advantage of nuclear reactions within the annulus of an existing test space (15 cm in diameter and approximately 100 cm high) to provide an energy flux to the surface of a test module. The principal reaction considered involves 3 He in the annulus as follows: n + 3 He → p + t + 0.75 MeV. Bulk heating in the test module is accomplished by neutron thermalization, gamma heating, and absorption reactions involving 6 Li in the blanket breeding region. The concept can be extended to modified core configurations that will accommodate test modules of different sizes and types. It makes possible development testing of first wall/blanket systems and other fusion components on a scale and in ways not otherwise available until actual high-power fusion reactors are built

  8. High-Frequency Gravitational Wave Induced Nuclear Fusion

    International Nuclear Information System (INIS)

    Fontana, Giorgio; Baker, Robert M. L. Jr.

    2007-01-01

    Nuclear fusion is a process in which nuclei, having a total initial mass, combine to produce a single nucleus, having a final mass less than the total initial mass. Below a given atomic number the process is exothermic; that is, since the final mass is less than the combined initial mass and the mass deficit is converted into energy by the nuclear fusion. On Earth nuclear fusion does not happen spontaneously because electrostatic barriers prevent the phenomenon. To induce controlled, industrial scale, nuclear fusion, only a few methods have been discovered that look promising, but net positive energy production is not yet possible because of low overall efficiency of the systems. In this paper we propose that an intense burst of High Frequency Gravitational Waves (HFGWs) could be focused or beamed to a target mass composed of appropriate fuel or target material to efficiently rearrange the atomic or nuclear structure of the target material with consequent nuclear fusion. Provided that efficient generation of HFGW can be technically achieved, the proposed fusion reactor could become a viable solution for the energy needs of mankind and alternatively a process for beaming energy to produce a source of fusion energy remotely - even inside solid materials

  9. Nuclear fusion - a strategic approach

    International Nuclear Information System (INIS)

    Colombo, U.

    1989-01-01

    Aspects of nuclear fusion research with particular reference to Europe are reviewed. The energy scenario with regard to nuclear fusion is considered including economic, political and scientific problems of energy policy in view of the long-term research effort required. Mention is also made of the need to phase out the use of fossil fuels for environmental reasons. Research into magnetic and inertial confinement fusion is considered. It is concluded that the development of thermonuclear reactors will eventually be brought to practical fruition. (UK)

  10. Nuclear energy technology transfer: the security barriers

    International Nuclear Information System (INIS)

    Rinne, R.L.

    1975-08-01

    The problems presented by security considerations to the transfer of nuclear energy technology are examined. In the case of fusion, the national security barrier associated with the laser and E-beam approaches is discussed; for fission, the international security requirements, due to the possibility of the theft or diversion of special nuclear materials or sabotage of nuclear facilities, are highlighted. The paper outlines the nuclear fuel cycle and terrorist threat, examples of security barriers, and the current approaches to transferring technology. (auth)

  11. Progress report on research and development work 1983 of the nuclear fusion project

    International Nuclear Information System (INIS)

    Finken, D.

    1984-02-01

    The studies of the Kernforschungszentrum Karlsruhe on fusion using magnetic confinement are included in the nuclear fusion project and embedded into the European Fusion Technology Programme. The studies are promoted via an association contract between KfK and Euratom by the European Commission. Some of the studies exceed the volume defined in the technology programme. These contributions, most of them studies, help to connect the various sectors and prepare new tasks, with regard to the extension of the technology programme to be expected in the coming years and the planning activities for NET. The reports summarized here are contributions of the institutes and thus arranged according to organization units. The tasks which the KfK has taken over from the Fusion Technology Programme of the EC are compiled in the appendix. (orig./GG) [de

  12. New materials in nuclear fusion reactors

    International Nuclear Information System (INIS)

    Iwata, Shuichi

    1988-01-01

    In the autumn of 1987, the critical condition was attained in the JET in Europe and Japanese JT-60, thus the first subject in the physical verification of nuclear fusion reactors was resolved, and the challenge to the next attainment of self ignition condition started. As the development process of nuclear fusion reactors, there are the steps of engineering, economical and social verifications after this physical verification, and in respective steps, there are the critical problems related to materials, therefore the development of new materials must be advanced. The condition of using nuclear fusion reactors is characterized by high fluence, high thermal flux and strong magnetic field, and under such extreme condition, the microscopic structures of materials change, and they behave much differently from usual case. The subjects of material development for nuclear fusion reactors, the material data base being built up, the materials for facing plasma and high thermal flux, first walls, blanket structures, electric insulators and others are described. The serious effect of irradiation and the rate of defect inducement must be taken in consideration in the structural materials for nuclear fusion reactors. (Kako, I.)

  13. Fusion and technology: An introduction to the physics and technology of magnetic confinment fusion

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1984-01-01

    This book is an introduction covering all aspects of magnetic fusion and magnetic fusion technology. Physical property data relevant to fusion technology and a summary of fusion reactor design parameters are provided. Topics covered include: basic properties; equilibrium and transport confinement concepts; plasma heating; plasma wall interaction; magnetics; energy storage and transfer; interaction of radiation with matter; primary energy conversion and tritium breeding blanket; tritium and vacuum; and Fusion Reactor Design

  14. Nuclear Technology Programs

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product 99 Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  15. Nuclear technology programs

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  16. Nuclear Technology Programs

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. (ed.)

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  17. Report on research and development work 1985 on the nuclear fusion project. Annual report of the Association KfK-Euratom

    International Nuclear Information System (INIS)

    Finken, D.

    1986-05-01

    The Nuclear Research Centre Karlsruhe and the Max Planck Institute for Plasma Physics together form the Nuclear Fusion Development Association. The partners collaborate with the aim of creating the physical and technical preconditions for the use of the energy released by nuclear fusion and to plan and carry out future large-scale experiments. The work of the Nuclear Research Centre Karlsruhe on fusion with magnetic containment is included in the nuclear fusion project and is part of the European fusion technology programme. The work is supported by an association contract between KfK and Euratom by the European Commission. Connections are built up between areas of work and new projects are prepared by supplementary KfK contributions, mostly studies. This is done with regard to the expansion of the technology programme to be expected for future years and the planning activities for NET. The reports collected here are contributions of the KfK institutes in 1985. The appendix contains a list of the tasks which KfK has taken over from the fusion technology programme of the EEC. References to the institutes' contributions make the assignment of textual contributions easier. (orig.) [de

  18. Nuclear technology in research and everyday life

    International Nuclear Information System (INIS)

    2015-12-01

    The paper.. discusses the impact of nuclear technology in research and everyday life covering the following issues: miniaturization of memory devices, neutron radiography in material science, nuclear reactions in the universe, sterilization of food, medical applies, cosmetics and packaging materials using beta and gamma radiation, neutron imaging for radioactive waste analysis, microbial transformation of uranium (geobacter uraniireducens), nuclear technology knowledge preservation, spacecrafts voyager 1 and 2, future fusion power plants, prompt gamma activation analysis in archeology, radiation protection and radioecology and nuclear medicine (radiotherapy).

  19. Fusion technology development. Annual report to the US Department of Energy, October 1, 1996--September 30, 1997

    International Nuclear Information System (INIS)

    1998-03-01

    In FY97, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the magnetic fusion program. The work was supported by the Office of Fusion Energy Sciences, International and Technology Division, of the US Department of Energy. The work is reported in the following sections on Fusion Power Plant Studies (Section 2), Plasma Interactive Materials (Section 3), Magnetic Diagnostic Probes (Section 4) and RF Technology (Section 5). Meetings attended and publications are listed in their respective sections. The overall objective of GA's fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to ITER and other next-generation fusion experiments, and ultimately to fusion power plants. To achieve this overall objective, we carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and we conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. We continue to be committed to the development of fusion power and its commercialization by US industry

  20. Nuclear characteristics of D-D fusion reactor blankets

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao

    1978-01-01

    Fusion reactors operating on deuterium (D-D) cycle are considered to be of long range interest for their freedom from tritium breeding in the blanket. The present paper discusses the various possibilities of D-D fusion reactor blanket designs mainly from the standpoint of the nuclear characteristics. Neutronic and photonic calculations are based on presently available data to provide a basis of the optimal blanket design in D-D fusion reactors. It is found that it appears desirable to design a blanket with blanket/shield (BS) concept in D-D fusion reactors. The BS concept is designed to obtain reasonable shielding characteristics for superconducting magnet (SCM) by using shielding materials in the compact blanket. This concept will open the possibility of compact radiation shield design based on assured technology, and offer the advantage from the system economics point of view. (auth.)

  1. Unlocking the atom : the Canadian book on nuclear technology

    International Nuclear Information System (INIS)

    Tammemagi, H.; Jackson, D.

    2002-01-01

    This book describes Canada's role in developing a world-class reactor, medical isotope and food irradiation systems and it's leading role in uranium mining. It gives an introduction to both natural and man-made radiation and covers the spectrum of nuclear technology that includes power reactors, nuclear safety, nuclear waste, medicine, uranium, fusion, industrial and research applications. The second chapter in this book introduces the reader to nuclear fission, the fission reactor, nuclear weapons and the Candu Nuclear Power Reactor. The third chapter familiarizes the reader with different types of natural and man-made radiations. The fourth chapter discusses the biological effects of radiation. Electricity and the different technologies to produce electrical power are the subject of chapter five. The Candu reactor and the various Candu designs and performance are discussed in some detail in chapter six. In chapter seven the authors discuss the different types of reactors that have been constructed worldwide. Nuclear safety and nuclear regulations are the subject of chapter eight. In chapter nine the authors discuss nuclear power and the environment. High-level nuclear waste and nuclear waste disposal are discussed in chapter ten. Diagnostic and therapeutic nuclear medicine is the subject of chapter eleven. The benefits of nuclear technology in industry and science are discussed in chapter twelve. Uranium mining and uranium as the nuclear fuel are discussed in chapter thirteen. Chapter fourteen discusses the future of fission with respect to advanced Candu fuel cycles and advanced Candu reactor designs. Chapter fifteen is a discussion of nuclear fusion and Canada's role in fusion research. Chapter sixteen discusses nuclear science and research and the role of the National nuclear laboratory and the universities

  2. 1986 progress report on R and D work of the Nuclear Fusion Project (PKF)

    International Nuclear Information System (INIS)

    Kast, G.

    1987-03-01

    The Kernforschungszentrum Karlsruhe (KfK) and the Max-Planck-Institute for Plasma Physics, Garching, have joined to form the Entwicklungsgemeinschaft Kernfusion, and under this roof perform research work on the physical and technical conditions and requirements of using the energy from nuclear fusion, and to plan the design and the construction of the necessary equipment for future large-scale experiments. The activities of the KfK for the development of fusion devices with magnetic confinement have been concentrated in the Nuclear Fusion Project, which cooperates in the European Fusion Technology Programme, on the basis of an association agreement between KfK and Euratom, supported by the European Commission. Supplementary KfK contributions, studies in most cases, create a connection between various fields of work, and prepare the road for new tasks, which in the years to come will be found in the extension of the Fusion Technology Programme and the planning work for NET. The reports collected in this annual survey are contributions from KfK Institutes of the year 1986. An annex presents the Easks taken over by KfK within the Fusion Technology Programme of the EC, and notes on the KfK Institutes taking part in the particular activities facilitate reference to the individual, full-text reports. (orig.) [de

  3. Development of Strategic Technology Road map for Establishing Safety Infrastructure of Fusion Energy

    International Nuclear Information System (INIS)

    Han, B. S.; Cho, S. H.; Kam, S. C.; Kim, K. T.

    2009-01-01

    The Korean Government established an 'Act for the Promotion of Fusion Energy Development (APFED)' and formulated a 'Strategy Promotion Plan for Fusion Energy Development.' KINS has carried out a safety review of KSTAR (Korea Superconducting Tokamak Advanced Research), for which an application for use was received in 2002 and the license was issued in August 2007. With respect to the APFED, 'Atomic Energy Acts (AEAs)' shall apply in the fusion safety regulation. However the AEAs are not applicable because they aim for dealing with nuclear energy. In this regard, this study was planned to establish safety infrastructure for fusion energy and to develop technologies necessary for verifying the safety. The purpose of this study is to develop a 'Strategic Technology Roadmap (STR) for establishing safety infrastructure of the fusion energy', which displays the content and development schedule and strategy for developing the laws, safety goals and principles, and safety standards applicable for fusion safety regulation, and core technology required for safety regulation of fusion facilities

  4. Physics and technology of nuclear materials

    CERN Document Server

    Ursu, Ioan

    2015-01-01

    Physics and Technology of Nuclear Materials presents basic information regarding the structure, properties, processing methods, and response to irradiation of the key materials that fission and fusion nuclear reactors have to rely upon. Organized into 12 chapters, this book begins with selectively several fundamentals of nuclear physics. Subsequent chapters focus on the nuclear materials science; nuclear fuel; structural materials; moderator materials employed to """"slow down"""" fission neutrons; and neutron highly absorbent materials that serve in reactor's power control. Other chapters exp

  5. Progress of laser nuclear fusion research

    International Nuclear Information System (INIS)

    Shiraga, Hiroyuki

    2017-01-01

    This paper describes the principle and features of nuclear fusion using laser, as well as its basic concepts such as high-temperature / high-density implosion system and fast ignition of fuel. At present, researches aiming at nuclear fusion ignition have been developing. As the current state of researches, this paper reviews the situations of FIREX (Fast Ignition Realization Experiment) project of Japan focusing on direct irradiation implosion and fast ignition system, as well as NIF (National Ignition Facility) project of the U.S. aiming at ignition combustion based on indirect irradiation implosion and central ignition system. In collaboration with the National Institute for Fusion Science, Osaka University started FIREX-1 project in 2003. It built a heating laser LFEX of 10 kJ/1 to 10ps, and started an implosion/heating integration experiment in 2009. Currently, it is developing experiment to achieve heating to 5 keV. At NIF, the self-heating of central sparks via energy of α particles generated in the nuclear fusion reaction has been realized. This paper also overviews R and D issues surrounding the lasers for reactors for use in laser nuclear fusion power generators. (A.O.)

  6. 1st International School of Fusion Reactor Technology "Ettore Majorana"

    CERN Document Server

    Knoepfel, Heinz; Safety, Environmental Impact and Economic Prospects of Nuclear Fusion

    1990-01-01

    This book contains the lectures and the concluding discussion of the "Seminar on Safety, Environmental Impact, and Economic Prospects of Nuclear Fusion", which was held at Erice, August 6-12, 1989. In selecting the contributions to this 9th meeting held by the International School of Fusion Reactor Technology at the E. Majorana Center for Scientific Cul­ ture in Erice, we tried to provide a comprehensive coverage of the many interre­ lated and interdisciplinary aspects of what ultimately turns out to be the global acceptance criteria of our society with respect to controlled nuclear fusion. Consequently, this edited collection of the papers presented should provide an overview of these issues. We thus hope that this book, with its extensive subject index, will also be of interest and help to nonfusion specialists and, in general, to those who from curiosity or by assignment are required to be informed on these as­ pects of fusion energy.

  7. On the economic prospects of nuclear fusion with tokamaks

    International Nuclear Information System (INIS)

    Pfirsch, D.; Schmitter, K.H.

    1987-12-01

    This paper describes a method of cost and construction energy estimation for tokamak fusion power stations conforming to the present, early stage of fusion development. The method is based on first-wall heat load constraints rather than β limitations, which, however, might eventually be the more critical of the two. It is used to discuss the economic efficiency of pure fusion, with particular reference to the European study entitled 'Environmental Impact and Economic Prospects of Nuclear Fusion'. It is shown that the claims made therein for the economic prospects of pure fusion with tokamaks, when discussed on the basis of the present-day technology, do not stand up to critical examination. A fusion-fission hybrid, however, could afford more positive prospects. Support for the stated method is even derived when it is properly applied for cost estimation of advanced gascooled and Magnox reactors, the two very examples presented by the European study to 'disprove' it. (orig.)

  8. Catalogue of nuclear fusion codes - 1976

    International Nuclear Information System (INIS)

    1976-10-01

    A catalogue is presented of the computer codes in nuclear fusion research developed by JAERI, Division of Thermonuclear Fusion Research and Division of Large Tokamak Development in particular. It contains a total of about 100 codes under the categories: Atomic Process, Data Handling, Experimental Data Processing, Engineering, Input and Output, Special Languages and Their Application, Mathematical Programming, Miscellaneous, Numerical Analysis, Nuclear Physics, Plasma Physics and Fusion Research, Plasma Simulation and Numerical Technique, Reactor Design, Solid State Physics, Statistics, and System Program. (auth.)

  9. Remote handling technology for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sakai, Akira; Maekawa, Hiromichi; Ohmura, Yutaka

    1997-01-01

    Design and R and D on nuclear fuel cycle facilities has intended development of remote handling and maintenance technology since 1977. IHI has completed the design and construction of several facilities with remote handling systems for Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan Atomic Energy Research Institute (JAERI), and Japan Nuclear Fuel Ltd. (JNFL). Based on the above experiences, IHI is now undertaking integration of specific technology and remote handling technology for application to new fields such as fusion reactor facilities, decommissioning of nuclear reactors, accelerator testing facilities, and robot simulator-aided remote operation systems in the future. (author)

  10. Inertial Confinement Fusion R and D and Nuclear Proliferation

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R and D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  11. Prospective conceptual qualification of hybrid centrifugation/distillator for 6LI nuclear fusion technology scaled supply demands

    International Nuclear Information System (INIS)

    Sedano, L.; Herranz, J. L.; Casado, J. L.; Castro, P.; Xiberta, J.

    2013-01-01

    The change in the demand for exploitation of lithium as a resource appears during the last decade, related to the development of the ion-Li batteries market and with the requirements of Nuclear Fusion fuels (deuterium and lithium) as coming energy option. A prospective analysis of synergistic demands of both markets, in its technical and in its economic aspects appears of prospective interest. The civil market 6 Li/ 7 Li enrichment demand is analyzed. Specific technological developments permitting on-line production according to demand is discussed. A [centrifugation /thermal diffusion / combined distillation] technique is selected and qualified as technologically viable option for scaled production of litiated-forms. A conceptual design of a production plant is finally proposed according to the new technical capability.

  12. Evaluation of economical introduction of nuclear fusion based on a long-term world energy and environment model

    International Nuclear Information System (INIS)

    Tokimatsu, K.; Asaoka, Y.; Okano, K.; Konishi, S.; Ogawa, Y.; Yamaji, K.

    2003-01-01

    Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. The time frame by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we chose two roles that nuclear fusion will take on when breakeven prices are achieved: i) reduction of annual global total energy systems cost, and ii) mitigation of carbon tax (shadow price of carbon) under CO 2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction time frame for nuclear fusion, capacity projections of nuclear fusion, CO 2 target in 2100. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 2050-2060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO 2 concentration constraint; however, latter introduction of them decreases the cost and the tax less than five times. Earlier introduction of nuclear fusion reactors are desirable for energy systems and environment. (author)

  13. State of controlled nuclear fusion research

    International Nuclear Information System (INIS)

    Rodrigo, A.B.

    1978-04-01

    The development of a commercial fusion reactor requires an adequate solution to the problems of heating and confinement of the nuclear fuel, as well as a considerable effort in materials technology and reactor engineering. A general discussion is presented of the status of the research connected with the most advanced concepts, indicating in each case the present situation and the main problems that must be solved to meet the requeriments estimated for power reactors. In particular, the laser-inertial concept is reviewed in detail. (author) [es

  14. Developement of technologies for nuclear fusion at the Karlsruhe Research Center. Pt. 1

    International Nuclear Information System (INIS)

    Bahm, W.; Dammertz, G.; Glugla, M.; Janeschitz, G.; Komarek, P.; Mack, A.

    2002-01-01

    The planned ITER plant needs plasma heating powers of approx. 70-150 MW. Work performed at the Karlsruhe Research Center under this heading mainly comprises the development of microwave oscillators (gyrotrons) and their use for an electron cyclotron resonance heating system and for non-inductive plasma current operation. The plasma, which is approx. 100 million C hot, is confined in a 'magnetic cage' so as to avoid any contact with the wall structures of the vacuum vessel. Building up a magnetic field of this magnitude requires field strengths of at least 2-5 tesla in the plasma; field strengths of 11-13 tesla at the magnet coils are required for future fusion plants, such as ITER. Consequently, the development of the required future superconducting magnet coils enjoys high priority. The blanket, i.e. the enclosure around the combustion chamber of a fusion reactor, plays a major role in the design of a future fusion power plant. Blanket concepts meeting technical requirements are being developed and studied. A blanket must meet three requirements: It must convert the neutron energy into heat, breed the tritium fuel by nuclear reactions, and shield the magnets from neutron and gamma radiations. The fuel cycle of fusion reactors is determined by the gaseous phase of the two hydrogen isotopes, deuterium and tritium. In general, hydrogen handling technologies have been developed to a high level, but can be transferred to the handling of deuterium and radioactive tritium only to a very limited extent. Consequently, the necessary development work is carried out. The state of the plasma, also with respect to its purity, is a factor of special importance, as impurities will cause the plasma to dissolve and thus the fusion reaction to break down. Primary vacuum pumps, another area of activity of the Karlsruhe Research Center, first must evacuate the reactor vessel and then, during operation, maintain the necessary atmosphere. (orig.) [de

  15. VNS: A volumetric neutron source for fusion nuclear technology testing and development

    International Nuclear Information System (INIS)

    Abdou, M.A.; Peng, Y.K.; Ying, A.Y.

    1994-01-01

    Recent progress in fusion plasma research and the initiation of the Engineering Design Activity for ITER provide incentives to seriously explore technically sound and logically consistent pathways toward development of fusion as a practical and attractive energy source. A critical goal is the successful construction and operation of a fusion power demonstration plant (DEMO). Major world program strategies call for DEMO operation by the year 2025. Such a date is important in order for fusion to play a significant role in the energy supply market in the second half of the twenty-first century. Without such a DEMO goal, it will be very hard to justify major financial commitments in the near term for major projects such as ITER. The major question is whether a DEMO goal by the year 2025 is attainable from a technical standpoint. This has been the central question being addressed in a study, called VENUS. Results to date show that a DEMO by the year 2025 can be realized if three major facilities begin operation in parallel by the year 2005. These facilities are: (1) ITER, (2) VNS, and (3) IFMIF. Results show that VNS is a necessary element toward DEMO in a strategy consistent with present world program plans. The key requirements to test and develop fusion nuclear components (e.g. blanket) are 1 MW/m 2 neutron wall load, >10 m 2 of test area at the first wall, steady state or long burn plasma operation, fluence of ∼6MWy/m 2 at the first wall in ∼10-12 year period, and duty cycle x availability factor of ∼0.3. Results of the study show that an attractive design envelope for VNS that satisfies the nuclear testing and development requirements exists. Within this design envelope, the most attractive design points for VNS appear to be driven plasma (Q∼1) in tokamak configuration with normal toroidal-field copper coils, major radius 1.5-2.0m, fusion power ∼100MW, and neutron wall load ∼1.5MW/m 2

  16. Present status of design, research and development of nuclear fusion reactors and problems

    International Nuclear Information System (INIS)

    1983-04-01

    Seven years have elapsed since the publication of ''Progress of nuclear fusion research and perspective toward the development of power reactors'' by the Atomic Energy Society of Japan in August, 1976. During this period, the research and development of nuclear fusion have changed from plasma physics to reactor technology, being conscious of the realization of fusion reactors. There are the R project in the Institute of Plasma Physics, Nagoya University, and the design and construction of JT-60 in Japan Atomic Energy Research Institute, to put it concretely. Now the research and development taking the economical efficiency into account are adopted. However, the type of fusion reactors is not reduced to tokamak type, accordingly the research and development to meet the diverse possibilities are forwarded. The progress of tokamak reactor research, core plasma design, nuclear design and shielding design, thermal structure design, the design of superconducting magnets, disassembling and repair, safety, economical efficiency, the conceptual design of other types than tokamak and others are reported. (Kako, I.)

  17. 50 years of controlled nuclear fusion in the European Union

    International Nuclear Information System (INIS)

    Vandenplas, P.; Wolf, G.H.

    2008-01-01

    The author presents the history of fusion energy since its official birth in 1955 during the first conference on the peaceful uses of atomic energy to the expectations put on the ITER project. Nuclear fusion became a major component of the newly created European Atomic Energy Community (EURATOM). The milestones that were: magnetic mirror machines, pinch versions, stellarators and tokamaks are examined. The construction of the first fusion machines were decisive and gave fusion energy enough momentum to overcome greater and greater technological difficulties. At the scale of the world, major machines that were built like TFTR, Princeton (1974), JET, Culham (1977) or JT60, Tokai (1977), appear like a scientific and necessary strategy towards the demonstration reactor. The ITER project is detailed

  18. Nuclear data needs for fusion reactors

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-01-01

    The nuclear design of fusion components (e.g., first wall, blanket, shield, magnet, limiter, divertor, etc.) requires an accurate prediction of the radiation field, the radiation damage parameters, and the activation analysis. The fusion nucleonics for these tasks are reviewed with special attention to point out nuclear data needs and deficiencies which effect the design process. The main areas included in this review are tritium breeding analyses, nuclear heating calculations, radiation damage in reactor components, shield designs, and results of uncertainty analyses as applied to fusion reactor studies. Design choices and reactor parameters that impact the neutronics performance of the blanket are discussed with emphasis on the tritium breeding ratio. Nuclear data required for kerma factors, shielding analysis, and radiation damage are discussed. Improvements in the evaluated data libraries are described to overcome the existing problems. 84 refs., 11 figs., 9 tabs

  19. Scoping of oil shale retorting with nuclear fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1983-01-01

    An engineering scoping study was conducted at the U.S. Department of Energy's request to see if a feasible concept could be developed for using nuclear fusion heat to improve in situ extraction by retorting of underground oil shale. It was found that a fusion heated, oxygen-free inert gas could be used for driving modified, in situ retorts at a higher yield, using lower grade shale and producing less environmental problems than present-day processes. It was also found to be economically attractive with return on investments of 20 to 30%. Fusion blanket technology required was found to be reasonable at hot gas delivery temperatures of about650 0 C (920 K). The scale of a fusion reactor at 2.8 GW(thermal) producing 45 000 Mg/day (335 000 barrel/day) was also found to be reasonable

  20. Confusion about nuclear fusion: a false report is laid bare

    International Nuclear Information System (INIS)

    Hintsches, E.

    1983-01-01

    The author discusses the inaccurate and precipitate news of alleged successful controlled nuclear fusion in the Tokamak Fusion Test Reactor at Princeton University. The later modified published report indicated that in a first test, fractional second operation had produced plasma gas temperature of 100,000 0 C whereas 100 million degrees C is necessary for hydrogen nuclear fusion. Also power generation from nuclear fusion is still a long term goal. Problems of nuclear fusion are very briefly mentioned, and an impression of the Tokamak Fusion Test Reactor is illustrated. (H.V.H.)

  1. ANNETTE Project: Contributing to The Nuclearization of Fusion

    Science.gov (United States)

    Ambrosini, W.; Cizelj, L.; Dieguez Porras, P.; Jaspers, R.; Noterdaeme, J.; Scheffer, M.; Schoenfelder, C.

    2018-01-01

    The ANNETTE Project (Advanced Networking for Nuclear Education and Training and Transfer of Expertise) is well underway, and one of its work packages addresses the design, development and implementation of nuclear fusion training. A systematic approach is used that leads to the development of new training courses, based on identified nuclear competences needs of the work force of (future) fusion reactors and on the current availability of suitable training courses. From interaction with stakeholders involved in the ITER design and construction or the JET D-T campaign, it became clear that the lack of nuclear safety culture awareness already has an impact on current projects. Through the collaboration between the European education networks in fission (ENEN) and fusion (FuseNet) in the ANNETTE project, this project is well positioned to support the development of nuclear competences for ongoing and future fusion projects. Thereby it will make a clear contribution to the realization of fusion energy.

  2. ANNETTE Project: Contributing to The Nuclearization of Fusion

    Directory of Open Access Journals (Sweden)

    Ambrosini W.

    2018-01-01

    Full Text Available The ANNETTE Project (Advanced Networking for Nuclear Education and Training and Transfer of Expertise is well underway, and one of its work packages addresses the design, development and implementation of nuclear fusion training. A systematic approach is used that leads to the development of new training courses, based on identified nuclear competences needs of the work force of (future fusion reactors and on the current availability of suitable training courses. From interaction with stakeholders involved in the ITER design and construction or the JET D-T campaign, it became clear that the lack of nuclear safety culture awareness already has an impact on current projects. Through the collaboration between the European education networks in fission (ENEN and fusion (FuseNet in the ANNETTE project, this project is well positioned to support the development of nuclear competences for ongoing and future fusion projects. Thereby it will make a clear contribution to the realization of fusion energy.

  3. Canadian fusion fuels technology project

    International Nuclear Information System (INIS)

    1986-01-01

    The Canadian Fusion Fuels Technology Project was launched in 1982 to coordinate Canada's provision of fusion fuels technology to international fusion power development programs. The project has a mandate to extend and adapt existing Canadian tritium technologies for use in international fusion power development programs. 1985-86 represents the fourth year of the first five-year term of the Canadian Fusion Fuels Technology Project (CFFTP). This reporting period coincides with an increasing trend in global fusion R and D to direct more effort towards the management of tritium. This has resulted in an increased linking of CFFTP activities and objectives with those of facilities abroad. In this way there has been a continuing achievement resulting from CFFTP efforts to have cooperative R and D and service activities with organizations abroad. All of this is aided by the cooperative international atmosphere within the fusion community. This report summarizes our past year and provides some highlights of the upcoming year 1986/87, which is the final year of the first five-year phase of the program. AECL (representing the Federal Government), the Ministry of Energy (representing Ontario) and Ontario Hydro, have given formal indication of their intent to continue with a second five-year program. Plans for the second phase will continue to emphasize tritium technology and remote handling

  4. Waste management strategy for nuclear fusion power systems from a regulatory perspective

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.

    1977-12-06

    A waste management strategy for future nuclear fusion power systems is developed using existing regulatory methodology. The first step is the development of a reference fuel cycle. Next, the waste streams from such a facility are identified. Then a waste management system is defined to safely handle and dispose of these wastes. The future regulator must identify the decisions necessary to establish waste management performance criteria. The data base and methodologies necessary to make these decisions must then be developed. Safe management of nuclear fusion wastes is not only a technological challenge, but encompasses significant social, political, and ethical questions as well.

  5. Waste management strategy for nuclear fusion power systems from a regulatory perspective

    International Nuclear Information System (INIS)

    Heckman, R.A.

    1977-01-01

    A waste management strategy for future nuclear fusion power systems is developed using existing regulatory methodology. The first step is the development of a reference fuel cycle. Next, the waste streams from such a facility are identified. Then a waste management system is defined to safely handle and dispose of these wastes. The future regulator must identify the decisions necessary to establish waste management performance criteria. The data base and methodologies necessary to make these decisions must then be developed. Safe management of nuclear fusion wastes is not only a technological challenge, but encompasses significant social, political, and ethical questions as well

  6. Fusion tritium program in Japan

    International Nuclear Information System (INIS)

    Okamoto, M.; Yoshida, H.; Naruse, Y.

    1988-01-01

    Nuclear Fusion Council, Atomic Energy Commission of Japan, has started to review the nuclear fusion R and D plan for the next stage, post JT-60. The council launched a subcommittee on fundamental issues in the nuclear fusion development in 1985, for review of the basic strategy of a development plan. The subcommittee presented an interim report in Feb. 1986 after 6 months discussion and the report was approved by the Nuclear Fusion Council. Two major R and D programs described in the interim report are the development of a Tokamak type large facility and the comprehensive development of the fusion reactor technology. The latter means to promote the reactor technologies which will be essential in the future to construct not only a D/T burning but also a DEMO reactor. The Nuclear Fusion Development Program in Japan is shown. The interim report recommended to organize two subcommittees to establish an integrated national R and D plan; one was for the design of the next step large facility and the other was for the R and program of the fusion technology. The subcommittee for the latter consisted of 7 working groups; one of them was organized for the tritium technology

  7. Fusion technology 1998

    International Nuclear Information System (INIS)

    Beaumont, B.; Libeyre, P.; Gentile, B. de; Tonon, G.

    1998-01-01

    The Symposium On Fusion Technology (SOFT) is held every two years with the objective to set the stage for the exchange of information on the design, construction and operation of fusion experiments and on the technology which is being developed for the next step devices and fusion reactors. By decision of the International Organizing Committee, the 20. SOFT includes invited talks, and oral and poster contributions in the following topics: plasma facing components, plasma heating and current drive, plasma engineering and control, experimental systems and diagnostics, magnets and power supplies, fuel technologies, remote operation, blanket and shield technologies, safety and environment, and system engineering and future devices. This symposium differs from the previous ones of this series by the way the present proceedings are produced. In order to have the written material available to the participants and the community at the nearest to the conference event, the papers have been collected 2 months in advance and printed in the present books. The goal was to deliver them to each participant upon arrival to the conference centre. These books contain all the papers corresponding to poster presentation, and the abstracts of the oral contributions and invited papers. The papers corresponding to these presentations, both oral and invited, will be published in 1999, after a standard review process, in a supplement of Fusion Engineering and Design. (author)

  8. Present status of nuclear fusion research and development

    International Nuclear Information System (INIS)

    Discussions are included on the following topics: (1) plasma confinement theoretical research, (2) torus plasma research, (3) plasma measurement research, (4) technical development of equipment, (5) plasma heating, (6) vacuum wall surface phenomena, (7) critical plasma test equipment design, (8) noncircular cross-sectional torus test equipment design, (9) nuclear fusion reactor design, (10) nuclear fusion reactor engineering, (11) summary of nuclear fusion research in foreign countries, and (12) long range plan in Japan

  9. Controllers for high-performance nuclear fusion plasmas

    NARCIS (Netherlands)

    Baar, de M.R.

    2012-01-01

    A succesful nuclear fusion reactor will confine plasma at hig temperatures and densities, with low thermal losses. The workhorse of the nuclear fusion community is the tokamak, a toroidal device in which plasmas are confined by poloidal and toroidal magnetic fields. Ideally, the confirming magnetic

  10. Nuclear Fusion Award 2009 speech Nuclear Fusion Award 2009 speech

    Science.gov (United States)

    Sabbagh, Steven Anthony

    2011-01-01

    This is an exceptional moment in my career, and so I want to thank all of my teachers, colleagues and mentors who have made this possible. From my co-authors and myself, many thanks to the International Atomic Energy Agency, IOP Publishing, the Nuclear Fusion journal team, and the selection committee for the great honor of receiving this award. Also gratitude to Kikuchi-sensei, not only for the inventive and visionary creation of this award, but also for being a key mentor dating back to his efforts in producing high neutron output in JT-60U. It was also a great honor to receive the award directly from IAEA Deputy Director General Burkart during the 23rd IAEA Fusion Energy Conference in Daejeon. Receiving the award at this venue is particularly exciting as Daejeon is home to the new, next-generation KSTAR tokamak device that will lead key magnetic fusion research areas going forward. I would also like to thank the mayor of Daejeon, Dr Yum Hong-Chul, and all of the meeting organizers for giving us all a truly spectacular and singular welcoming event during which the award was presented. The research leading to the award would not have been possible without the support of the US Department of Energy, and I thank the Department for the continued funding of this research. Special mention must be made to a valuable co-author who is no longer with us, Professor A. Bondeson, who was a significant pioneer in resistive wall mode (RWM) research. I would like to thank my wife, Mary, for her infinite patience and encouragement. Finally, I would like to personally thank all of you that have approached and congratulated me directly. There are no units to measure how important your words have been in this regard. When notified that our paper had been shortlisted for the 2009 Nuclear Fusion Award, my co-authors responded echoing how I felt—honored to be included in such a fine collection of research by colleagues. It was unfathomable—would this paper follow the brilliant work

  11. ITER, a major step toward nuclear fusion energy

    International Nuclear Information System (INIS)

    Ikeda, K.; Holtkamp, N.; Pick, M.; Gauche, F.; Garin, P.; Bigot, B.; Luciani, J.F.; Mougniot, J.C.; Watteau, J.P.; Saoutic, B.; Becoulet, A.; Libeyre, P.; Beaumont, B.; Simonin, A.; Giancarli, L.; Rosenvallon, S.; Gastaldi, O.; Marbach, G.; Boudot, C.; Ioki, K.; Mitchell, N.; Girard, J.Ph.; Giraud, B.; Lignini, F.; Giguet, E.; Bofusch, E.; Friconneau, J.P.; Di Pace, L.; Pampin, R.; Cook, I.; Maisonnier, D.; Campbell, D.; Hayward, J.; Li Puma, A.; Norajitra, P.; Sardain, P.; Tran, M.Q.; Ward, D.; Moslang, A.; Carre, F.; Serpantie, J.P.

    2007-01-01

    This document gathers together a series of articles dedicated to ITER. They are organized into 5 parts. The first part describes the potential of fusion as a source of energy that will be able to face the challenge of a continuously increasing demand. After a reminder of the main fusion reactions and the conditions to obtain fusion, the second part focuses on the magnetic fusion based concepts with a special emphasis on the tokamak configuration. In the third part the main components of ITER are described: first the plasma facing components, then the vacuum vessel, the superconducting magnets and the heating systems. In the fourth part short papers concerning ITER safety, the maintenance through remote handling systems, the tritium breeding blanket, are given, along with a full article on the waste management. It is interesting to notice that the nuclear wastes will represent: -) between 1600 and 3800 tons of housekeeping and process wastes produced during the 20 years of operation of ITER (20% very low level waste, 75% low or medium activity with short life and 5% medium activity with long life), -) about 750 tons from component replacement during ITER active operation, and -) about 30000 tons from the decommissioning of ITER. The last part presents the European concepts for a power plant based on a fusion reactor. A basic design is given along with a state of the art of the research on the materials that will be used for the structures. It is highlighted that synergies between fission and fusion technologies exist in at least 4 areas: nuclear design code system, high temperature materials, safety approach, and in-service inspection, maintenance and dismantling. (A.C.)

  12. A Study on Establishing National Technology Strategy of Fusion Energy Development: Combining PEST-SWOT Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Han Soo; Choi, Won Jae; Tho, Hyun Soo; Kang, Dong Yup; Kim, In Chung [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Nuclear fusion, the joining of light nuclei of hydrogen into heavier nuclei of helium, has potential environmental, safety and proliferation characteristics as an energy source. It can also, provide an adequate amount of fuel to power civilization for a long time compared to human history. It is, however, more challenging to convert to an energy source than nuclear fission. To overcome this, Korea enacted a law to promote the development of fusion as an energy source in 2007. In accordance with this law, the government will establish a promotion plan to develop fusion energy, including policy goals, a framework, strategies, infrastructure, funding, human resources, international cooperation and etc. This will be reviewed every five years. This paper is focused on the combining PEST (political, economic, social and technological) method with SWOT (strength, weakness, opportunity and threat) analysis, which is a prerequisite to form national fusion energy technology strategy

  13. A Study on Establishing National Technology Strategy of Fusion Energy Development: Combining PEST-SWOT Methodologies

    International Nuclear Information System (INIS)

    Chang, Han Soo; Choi, Won Jae; Tho, Hyun Soo; Kang, Dong Yup; Kim, In Chung

    2012-01-01

    Nuclear fusion, the joining of light nuclei of hydrogen into heavier nuclei of helium, has potential environmental, safety and proliferation characteristics as an energy source. It can also, provide an adequate amount of fuel to power civilization for a long time compared to human history. It is, however, more challenging to convert to an energy source than nuclear fission. To overcome this, Korea enacted a law to promote the development of fusion as an energy source in 2007. In accordance with this law, the government will establish a promotion plan to develop fusion energy, including policy goals, a framework, strategies, infrastructure, funding, human resources, international cooperation and etc. This will be reviewed every five years. This paper is focused on the combining PEST (political, economic, social and technological) method with SWOT (strength, weakness, opportunity and threat) analysis, which is a prerequisite to form national fusion energy technology strategy

  14. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1985-05-01

    In the current Fusion Technology Programme of the European Community the KfK association is working at present on 16 R and D contracts. Most of the work is strongly oriented towards the Next European Torus. Direct support to NET is given by three KfK delegates being member of the NET study group. In addition to the R and D contracts the association is working on 11 NET study contracts. Though KfK contributes to all areas defined in fusion technology, the main emphasis is put on superconducting magnet and breeding blanket development. Other important fields are tritium technology, materials research, and remote handling. (orig./GG)

  15. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    International Nuclear Information System (INIS)

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-01-01

    laboratory plasmas and inertial fusion energy; Particle accelerator technology; Fusion nuclear science; and Magnetically confined plasmas. Individual sections within the report summarize applications associated with each of these areas. These sections were also informed by a survey that went out to the community, and the subcommittee wishes to thank those who responded, as well as to the national labs and universities that contributed photographs.

  16. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Amy [Univ. of Wisconsin, Madison, WI (United States); Callis, Richard [General Atomics, San Diego, CA (United States); Efthimion, Philip [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Foster, John [Univ. of Michigan, Ann Arbor, MI (United States); Keane, Christopher [Washington State Univ., Pullman, WA (United States); Onsager, Terry [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); O' Shea, Patrick [Univ. of Maryland, College Park, MD (United States)

    2015-09-01

    laboratory plasmas and inertial fusion energy; Particle accelerator technology; Fusion nuclear science; and Magnetically confined plasmas. Individual sections within the report summarize applications associated with each of these areas. These sections were also informed by a survey that went out to the community, and the subcommittee wishes to thank those who responded, as well as to the national labs and universities that contributed photographs.

  17. Nuclear technology and materials science

    International Nuclear Information System (INIS)

    Olander, D.R.

    1992-01-01

    Current and expected problems in the materials of nuclear technology are reviewed. In the fuel elements of LWRs, cladding waterside corrosion, secondary hydriding and pellet-cladding interaction may be significant impediments to extended burnup. In the fuel, fission gas release remains a key issue. Materials issues in the structural alloys of the primary system include stress-corrosion cracking of steel, corrosion of steam generator tubing and pressurized thermal shock of the reactor vessel. Prediction of core behavior in severe accidents requires basic data and models for fuel liquefaction, aerosol formation, fission product transport and core-concrete interaction. Materials questions in nuclear waste management and fusion technology are briefly reviewed. (author)

  18. Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems

    Science.gov (United States)

    Williams, Craig H.

    2004-01-01

    An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.

  19. Towards abundant and pollution-free energy. Laser nuclear fusion

    International Nuclear Information System (INIS)

    Robieux, J.

    2008-01-01

    This book shows that it is now practically certain that by the year 2080 laser nuclear fusion will allow to produce an abundant and relatively cheap energy. Thanks to this energy, it will be possible to convert a mixture of CO 2 , H 2 and water into an automotive fuel or a food product. Laser nuclear fusion will use deuterium as fuel and thus oil and gas will become useless. Also, thanks to this new energy source, global warming and starvation will be overcome. The laser fusion concept was introduced by J. Robieux in 1962 just after the discovery of the laser. This idea was immediately accepted and sustained by the French President De Gaulle. The research on laser fusion was initially undertaken at the Marcoussis research centre from the Compagnie Generale d'Electricite (General Electricity Company - CGE). In 1967, the lasers built at Marcoussis were 30 times more powerful than any other laser in the rest of world. A cooperation with the USA started at that time and is still going on today. In 1969, the CEA centre of Limeil realized the world premiere experiments of laser fusion. This book presents the historical aspects and the state-of-the-art of this technology today. It is written in two parts, the first part does not require any scientific knowledge and is accessible to everybody, while the second part can be understood only by readers having a basic scientific background. (J.S.)

  20. Annual report 2015 of the Institute for Nuclear and Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schulenberg, Thomas

    2016-07-01

    The annual report of the Institute for Nuclear and Energy Technologies of KIT summarizes its research activities and provides some highlights of each working group, like thermal-hydraulic analyses for nuclear fusion reactors, accident analyses for light water reactors, and research on innovative energy technologies: liquid metal technologies for energy conversion, hydrogen technologies and geothermal power plants. The institute has been engaged in education and training in energy technologies.

  1. Nuclear technology and biotechnology for enhancing agricultural production in Malaysia

    International Nuclear Information System (INIS)

    Mohamad Osman

    2005-04-01

    The presentation discussed the following subjects: sustainable development, agriculture in Malaysia, role of biotechnology, role of nuclear technology, improving crops through induced mutations with Malaysian experience in rice and roselle, fusion of nuclear and biotechnology challenges and opportunities

  2. Fusion technologies for Laser Inertial Fusion Energy (LIFE∗

    Directory of Open Access Journals (Sweden)

    Kramer K.J.

    2013-11-01

    Full Text Available The Laser Inertial Fusion-based Energy (LIFE engine design builds upon on going progress at the National Ignition Facility (NIF and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant.

  3. Nuclear fusion energy for the 21st century

    International Nuclear Information System (INIS)

    1983-01-01

    This film explains the principles of nuclear fusion and how it differs from nuclear fission. Culham Laboratory in Oxfordshire has been the UK centre for research into fusion power for over 20 years. In addition Britain and other European countries are working on JET -the Joint European Torus. The film explains how, since 1978, Culham has been the centre of this joint European research project on fusion and it traces the development of fusion research that has led to the construction of JET. (author)

  4. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume III

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.

    1984-10-01

    This chapter deals with the analysis and engineering scaling of solid breeded blankets. The limits under which full component behavior can be achieved under changed test conditions are explored. The characterization of these test requirements for integrated testing contributes to the overall test matrix and test plan for the understanding and development of fusion nuclear technology. The second chapter covers the analysis and engineering scaling of liquid metal blankets. The testing goals for a complete blanket program are described. (MOW)

  5. Impact of nuclear research on the future technology of nuclear power

    International Nuclear Information System (INIS)

    Iyengar, P.K.

    1979-01-01

    Policy makers in the developing countries tend to assess the value of any research project by its end-results. As research projects in the field of applied science or technology promise immediate and tangible benefits to the society, high priority is given to such projects in fund allocation by policy makers. On the other hand, basic or ''pure'' science is usually viewed as pursuit of knowledge for its own sake. It has been pointed out that such a view is a mistaken one and there is no real demarcation between basic science and applied science. More often than not, results of research in basic science form the basis of transforming old technologies into better ones and giving rise to new ones. On this background, a case has been emphatically put forward: (1) to identify areas of science, particularly in nuclear science, which may not appear relevant to the immediate problems but look promising in their application and (2) to make investments, even though heavy, for research in such areas. In case of nuclear science, research areas of potential application are high energy accelerators, implosion, fusion reactions, laser fusion, tokamak devices, fusion-fission hybrid reactor systems, breeding of fissile materials from fertile ones by accelerator based neutron sources. Impact of research in these areas on and its relevance to nuclear power generation is indicated and the-state-of-art in these areas in India is described. An appendix lucidly explains generation of nuclear energy from fission and discusses thermal and fast breeder reactors. (M.G.B.)

  6. Fusion technology (FT)

    International Nuclear Information System (INIS)

    1978-01-01

    The annual report of tha fusion technology (FT) working group discusses the projects carried out by the participating institutes in the fields of 1) fuel injection and plasma heating, 2) magnetic field technology, and 3) systems investigations. (HK) [de

  7. History of controlled nuclear fusion in Japan

    International Nuclear Information System (INIS)

    Uematsu, Eisui; Nishio, Shigeko; Takeda, Tatsuoki

    2001-01-01

    A research development of nuclear fusion was divided four periods: the first period as prehistory (until about 1955), the second period as begin of research (1955 to 1969), the third as the growth period (1970 to 1985) and the forth as the large tokamak age. In this paper I explained the second period, because general physicists and young plasma and controlled nuclear fusion researcher did not know about this period. The controlled nuclear fusion research was begun by the experiment of hydrogen bomb by USA and USSR in 1952 and 1953. In Japan, on the basis of many societies, 'The Controlled Nuclear Fusion Meeting' was established as an independent system and KAKEA (Journal of Fusion Research) was published in 1958. Japan government began to make the system by the Nuclear Commission in 1957. The main research devices in 1962 were linear pinch, mirror device, toroidal pinch, helical system, plasma gun and plasma measurement. USSR showed the excellent results of tokamak device in 1968. Ookawa spoke the effect of the average minimum-B, the best report in this period, at the second IAEA meeting, 1965. JAERI constructed JFT-1 and JFT-2, the latter was the first class device in the world and made the first step of Japanese research into the world, for examples, to attain the equilibrium of divertor plasma and to control impurity. Many research centers of controlled fusion were established in many universities in Japan from 1966 to 1980. Cooperation researchs between Japan and USA, USSR and many countries has been carried out after 1978: JIFT (Joint Institute for Fusion Theory) and FPPC (Fusion Power Coordinating Committee). The important results increased in this period. After 1985, the research activities are processing and data increased very fast depend on the larger devices and system, good measurement system and development of information system. JT-60 in JAERI opened to the large tokamak period. It led controlled fusion researchs in the world the same as TFTR (US

  8. Media analysis of the representations of fusion and other future energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Delicado, Ana; Schmidt, Luisa; Pereira, Sergio [Institute of Social Sciences of the University of Lisbon, Av. Prof. Anibal de Bettencourt, 9 1600-189 Lisbon (Portugal); Oltra, Christian; Prades, Ana [CISOT-CIEMAT. Gran Via de les Corts Catalanes 604, 4, 2, 08007 Barcelona (Spain)

    2015-07-01

    Media representations of energy have a relevant impact on public opinion and public support for investment in new energy sources. Fusion energy is one among several emerging energy technologies that requires a strong public investment on its research and development. This paper aims to characterise and compare the media representations of fusion and other emerging energy technologies in Portugal and in Spain. The emerging energy technologies selected for analysis are wave and tidal power, hydrogen, deep sea offshore wind power, energy applications of nanotechnology, bio-fuels from microalgae and IV generation nuclear fission. This work covered the news published in a selection of newspapers in Portugal and Spain between January 2007 and June 2013. (authors)

  9. Media analysis of the representations of fusion and other future energy technologies

    International Nuclear Information System (INIS)

    Delicado, Ana; Schmidt, Luisa; Pereira, Sergio; Oltra, Christian; Prades, Ana

    2015-01-01

    Media representations of energy have a relevant impact on public opinion and public support for investment in new energy sources. Fusion energy is one among several emerging energy technologies that requires a strong public investment on its research and development. This paper aims to characterise and compare the media representations of fusion and other emerging energy technologies in Portugal and in Spain. The emerging energy technologies selected for analysis are wave and tidal power, hydrogen, deep sea offshore wind power, energy applications of nanotechnology, bio-fuels from microalgae and IV generation nuclear fission. This work covered the news published in a selection of newspapers in Portugal and Spain between January 2007 and June 2013. (authors)

  10. Self-sustaining nuclear pumped laser-fusion reactor experiment

    International Nuclear Information System (INIS)

    Boody, F.P.; Choi, C.K.; Miley, G.H.

    1977-01-01

    The features of a neutron feedback nuclear pumped (NFNP) laser-fusion reactor equipment were studied with the intention of establishing the feasibility of the concept. The NFNP laser-fusion concept is compared schematically to electrically pumped laser fusion. The study showed that, once a method of energy storage has been demonstrated, a self-sustaining fusion-fission hybrid reactor with a ''blanket multiplication'' of two would be feasible using nuclear pumped Xe F* excimer lasers having efficiencies of 1 to 2 percent and D-D-T pellets with gains of 50 to 100

  11. 'Low-activation' fusion materials development and related nuclear data needs

    International Nuclear Information System (INIS)

    Cierjacks, S.

    1990-01-01

    So-called ''low-activation'' materials are presently considered as an important means of improving the safety characteristics of future DT fusion reactors. Essential benefits are expected in various problem areas ranging from operation considerations to aspects of decommissioning and waste disposal. Present programs on ''low-activation'' materials development depend strongly on reliable activity calculations for a wide range of technologically important materials. The related nuclear data requirements and important needs for more and improved nuclear data are discussed. (author). 32 refs, 4 figs, 4 tabs

  12. Controlled energy generation from nuclear fusion. 60th year atw

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Georg [Pintsch Bamag AG, Frankfurt am Main (Germany)

    2015-02-15

    Prospects increase, that with a controlled process of nuclear fusion one day an additional nuclear energy source will be commercially exploitable. In what follows, scientific principles according to the most recent research will be presented. Since approximately 30 years we are aware of the fact, that energy in form of light and heat provided by the sun and other fixed stars since over four billions years resulted from reactions of atomic nuclei. A series of such reactions became known which are considered for 'thermonuclear' processes, for example the carbon cycle by Bethe, where hydrogen is converted into helium. Most of the reflections and experiments dealt until 1938 with the reaction between nuclei of light elements. The possibility of splitting heavy nuclei was not anticipated. Its discovery by Hahn and Strassmann was a complete surprise - so to speak a rash reaction to release energy at the end of the element row. This 'way out' captured the interest of nuclear physicist for more than a decade. Only today, by starting to construct big nuclear power plants - only today, being able to assess the possibilities and limitations of this technology, the idea of energy generation through nuclear fusion steps into the foreground of nuclear research.

  13. Nuclear fusion

    International Nuclear Information System (INIS)

    Huber, H.

    1978-01-01

    A comprehensive survey is presented of the present state of knowledge in nuclear fusion research. In the first part, potential thermonuclear reactions, basic energy balances of the plasma (Lawson criterion), and the main criteria to be observed in the selection of appropriate thermonuclear reactions are dealt with. This is followed by a discussion of the problems encountered in plasma physics (plasma confinement and heating, transport processes, plasma impurities, plasma instabilities and plasma diagnostics) and by a consideration of the materials problems involved, such as material of the first wall, fuel inlet and outlet, magnetic field generation, as well as repair work and in-service inspections. Two main methods have been developed to tackle these problems: reactor concepts using the magnetic pinch (stellarator, Tokamak, High-Beta reactors, mirror machines) on the one hand, and the other concept using the inertial confinement (laser fusion reactor). These two approaches and their specific problems as well as past, present and future fusion experiments are treated in detail. The last part of the work is devoted to safety and environmental aspects of the potential thermonuclear aspects of the potential thermonuclear reactor, discussing such problems as fusion-specific hazards, normal operation and potential hazards, reactor incidents, environmental pollution by thermal effluents, radiological pollution, radioactive wastes and their disposal, and siting problems. (orig./GG) [de

  14. Nuclear fusion research at Tokamak Energy Ltd

    International Nuclear Information System (INIS)

    Windridge, Melanie J.; Gryaznevich, Mikhail; Kingham, David

    2017-01-01

    Tokamak Energy's approach is close to the mainstream of nuclear fusion, and chooses a spherical tokamak, which is an economically developed form of Tokamak reactor design, as research subjects together with a high-temperature superconducting magnet. In the theoretical prediction, it is said that spherical tokamak can make tokamak reactor's scale compact compared with ITER or DEMO. The dependence of fusion energy multiplication factor on reactor size is small. According to model studies, it has been found that the center coil can be protected from heat and radiation damage even if the neutron shielding is optimized to 35 cm instead of 1 m. As a small tokamak with a high-temperature superconducting magnet, ST25 HTS, it demonstrated in 2015 continuous operation for more than 24 hours as a world record. Currently, this company is constructing a slightly larger ST40 type, and it is scheduled to start operation in 2017. ST40 is designed to demonstrate that it can realize a high magnetic field with a compact size and aims at attaining 8-10 keV (reaching the nuclear fusion reaction temperature at about 100 million degrees). This company will verify the startup and heating technology by the coalescence of spherical tokamak expected to have plasma current of 2 MA, and will also use 2 MW of neutral particle beam heating. In parallel with ST40, it is promoting a development program for high-temperature superconducting magnet. (A.O.)

  15. Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket

    Science.gov (United States)

    Slough, John; Pancotti, Anthony; Kirtley, David; Pihl, Christopher; Pfaff, Michael

    2012-01-01

    The future of manned space exploration and development of space depends critically on the creation of a dramatically more proficient propulsion architecture for in-space transportation. A very persuasive reason for investigating the applicability of nuclear power in rockets is the vast energy density gain of nuclear fuel when compared to chemical combustion energy. Current nuclear fusion efforts have focused on the generation of electric grid power and are wholly inappropriate for space transportation as the application of a reactor based fusion-electric system creates a colossal mass and heat rejection problem for space application.

  16. Laser fusion and precision engineering

    International Nuclear Information System (INIS)

    Nakai, Sadao

    1989-01-01

    The development of laser nuclear fusion energy for attaining the self supply of energy in Japan and establishing the future perspective as the nation is based in the wide fields of high level science and technology. Therefore to its promotion, large expectation is placed as the powerful traction for the development of creative science and technology which are particularly necessary in Japan. The research on laser nuclear fusion advances steadily in the elucidation of the physics of pellet implosion which is its basic concept and compressed plasma parameters. In September, 1986, the number of neutron generation 10 13 , and in October, 1988, the high density compression 600 times as high as solid density have been achieved. Based on these results, now the laser nuclear fusion is in the situation to begin the attainment of ignition condition for nuclear fusion and the realization of break even. The optical components, high power laser technology, fuel pellet production, high resolution measurement, the simulation of implosion using a supercomputer and so on are closely related to precision engineering. In this report, the mechanism of laser nuclear fusion, the present status of its research, and the basic technologies and precision engineering are described. (K.I.)

  17. Nuclear Fusion Award 2010 speech Nuclear Fusion Award 2010 speech

    Science.gov (United States)

    Rice, John

    2011-01-01

    Following the suggestion of Earl Marmar in 1995, I installed a compact von Hamos type x-ray spectrometer (originally built with Elisabeth Rachlew and Jan Kallne) on a tangentially viewing port on the Alcator C-Mod tokamak. The spectrometer views the plasma through a 2 cm diameter hole, and is tuned to H-like argon, suitable for passive measurement of the core toroidal rotation velocity from the Doppler shift. It soon became evident that the rotation in Ohmic L-mode discharges, while for the most part directed counter-current, depends in a very complicated fashion on plasma parameters, notably the electron density, current and magnetic configuration. The rotation can even flip sign for almost no apparent reason! In Ohmic and ion cyclotron range of frequencies (ICRF) heated H-mode plasmas the rotation is in the co-current direction and has a relatively simple dependence on plasma parameters, proportional to the stored energy normalized to the current. Rotation velocities as high as 130 km s-1 have been observed without external momentum input. In dimensionless terms this intrinsic (or spontaneous rotation) depends on the normalized plasma pressure. The association of toroidal rotation with plasma pressure in ICRF H-modes was first observed by Lars-Goran Eriksson in JET discharges. Similar results were subsequently reported for Tore Supra enhanced confinement plasmas. In the early 2000s concerns began to surface about the lack of substantial neutral beam driven rotation in ITER, and intrinsic rotation became a topic of interest in the ITPA Transport Group. Through that connection, similar observations from DIII-D, TCV and JT-60U were added to the growing list. A database of intrinsic rotation observations was assembled with the goal of extrapolating to the expected values for ITER. Both dimensional and dimensionless scalings were developed and formed the backbone of the 2007 Nuclear Fusion paper. I gratefully acknowledge the important contributions to this paper from

  18. Nuclear fusion and international cooperation

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1987-01-01

    Work for design, research and development is expected to start in 1988 for a new nuclear fusion reactor called ITER (international thermonuclear experimental reactor), which is to be constructed and operated through cooperation among Japan, U.S., Soviet Union and EC. Many talks and discussions concerning the work have been made on various occasions, including the Reagan-Gorbachev talks at Geneva in November 1985, 5th Fusion Working Group meeting in Germany in January 1986, extraordinary FWG meeting at Tokyo in February-March 1986, 11th International Conference on Plasma Physics and Nuclear Fusion Control held under IAEA at Kyoto in November 1986, and first formal four-party (Japan, U.S., Soviet Union, EC) meeting at the IAEA headquarters in March this year. The ITER Technical Working Group was established and its first meeting was held on May 21 - 23, 1987. It was concluded in the meeting that the operation of ITER will be performed in two phases intended for nuclear combustion plasma physics studies and stationary operation, respectively. Major research and development activities carried out in the U.S., Europe, the Soviet Union, Japan and IAEA in connection with the development of ITER are outlined. (Nogami, K.)

  19. Nuclear fusion. (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-08-01

    The bibliography contains citations concerning research, development, and assessment of nuclear fusion for applications in reactor engineering and technology. Citations discuss various engineering problems associated with reactor design, magnetic systems, nuclear materials, plasma generation and control, blankets, environments, economics, and safety. Also discussed are tokamak devices, stellarators, inertial confinement, reflectometry, and magnetohydrodynamics. Studies sponsored by the Department of Energy are not included. (Contains a minimum of 249 citations and includes a subject term index and title list.)

  20. Nuclear fusion during yeast mating occurs by a three-step pathway.

    Science.gov (United States)

    Melloy, Patricia; Shen, Shu; White, Erin; McIntosh, J Richard; Rose, Mark D

    2007-11-19

    In Saccharomyces cerevisiae, mating culminates in nuclear fusion to produce a diploid zygote. Two models for nuclear fusion have been proposed: a one-step model in which the outer and inner nuclear membranes and the spindle pole bodies (SPBs) fuse simultaneously and a three-step model in which the three events occur separately. To differentiate between these models, we used electron tomography and time-lapse light microscopy of early stage wild-type zygotes. We observe two distinct SPBs in approximately 80% of zygotes that contain fused nuclei, whereas we only see fused or partially fused SPBs in zygotes in which the site of nuclear envelope (NE) fusion is already dilated. This demonstrates that SPB fusion occurs after NE fusion. Time-lapse microscopy of zygotes containing fluorescent protein tags that localize to either the NE lumen or the nucleoplasm demonstrates that outer membrane fusion precedes inner membrane fusion. We conclude that nuclear fusion occurs by a three-step pathway.

  1. Mass Producing Targets for Nuclear Fusion

    Science.gov (United States)

    Wang, T. G.; Elleman, D. D.; Kendall, J. M.

    1983-01-01

    Metal-encapsulating technique advances prospects of controlling nuclear fusion. Prefilled fusion targets form at nozzle as molten metal such as tin flows through outer channel and pressurized deuterium/tritium gas flows through inner channel. Molten metal completely encloses gas charge as it drops off nozzle.

  2. Social assessment on fusion energy technology

    International Nuclear Information System (INIS)

    Nemoto, Kazuyasu

    1981-01-01

    In regard to the research and development for fusion energy technologies which are still in the stage of demonstrating scientific availability, it is necessary to accumulate the demonstrations of economic and environmental availability through the demonstration of technological availability. The purpose of this report is to examine how the society can utilize the new fusion energy technology. The technical characteristics of fusion energy system were analyzed in two aspects, namely the production techniques of thermal energy and electric energy. Also on the social characteristics in the fuel cycle stage of fusion reactors, the comparative analysis with existing fission reactors was carried out. Then, prediction and evaluation were made what change of social cycle fusion power generation causes on the social system formalized as a socio-ecological model. Moreover, the restricting factors to be the institutional obstacles to the application of fusion energy system to the society were analyzed from three levels of the decision making on energy policy. Since the convertor of fusion energy system is steam power generation system similar to existing system, the contents and properties of the social cycle change in the American society to which such new energy technology is applied are not much different even if the conversion will be made in future. (Kako, I.)

  3. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  4. Summary of the fifth International Symposium on Fusion Nuclear Technology (ISFNT-5)

    International Nuclear Information System (INIS)

    Vetter, J.E.

    1999-01-01

    The fifth International Symposium on Fusion Nucler Technology was held in Rome on 19-24 September 1999. It was attended by about 350 participants from 17 countries. The main emphasis during this conference was given to developments in connection with ITER

  5. Nuclear structure and fusion at the barrier

    International Nuclear Information System (INIS)

    Reisdorf, W.

    1985-01-01

    A comparative study of measured fusion excitation functions in the vicinity of the barrier reveals nuclear structure effects, due in particular to the coupling of the fusion process to direct-reaction channels. (orig.)

  6. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Summaries of research are included for each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) the MACK/MACKLIB system for nuclear response functions, and (5) energy storage and power supply systems for fusion reactors

  7. Annual meeting on nuclear technology 2005. Proceedings

    International Nuclear Information System (INIS)

    2005-03-01

    The proceedings of the annual meeting on nuclear technology 2005 covers the following issues: (1) reactor physics and methods of calculation: design and transients; method development and validation; (2): thermodynamics and fluid dynamics: analytical thermohydraulics for existing reactors; experiments and operational behavior; analytical methods for innovative reactors; (3) Safety of nuclear installations - methods, analysis, results: special problems; PSA and in-vessel phenomena; ex-vessel phenomena; (4) front end and back end of the fuel cycle, radioactive waste, storage: intermediate storage of fuel elements, waste treatment, (5) fuel elements and core components: fuel elements, new methods in the interpretation, manufacturing and service; (6) operation of nuclear installations: experience with the operation of NPPs; management systems, digital instrumentation and control of NPPs revision management; (7) decommissioning of nuclear installations: concepts and strategies for decommissioning and dismantling; experiences with decommissioning projects; (8) fusion technology: fusion facilities; materials and test facility; cryo technique and simulations; (9) research reactors: building new and backfitting of existing research reactors; current development; dismantling of research reactors; (10) advanced reactor concepts, energy systems, energy economics; (11) communication with the public; (12) component materials, fabrication and service behavior: degradation effects of component materials; component behavior; (13): radiation protection: PSA and in-vessel phenomena, ex-vessel phenomena.

  8. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1984-10-01

    The KfK-Association has continued work on 17 R and D contracts of the Fusion Technology Programme. An effort of 94 manyears per year is at present contributed by 10 KfK departments, covering all aereas defined in the Fusion Technology Programme. The dominant part of the work is directed towards the need of the NET design or supporting experiments. Some additional effort addresses long term technological issues and system studies relevant to DEMO or confinement schemes alternative to tokamaks. Direct contribution to the NET team has increased by augmentation of NET study contracts and delegation of personnel, three KfK delegates being at present members of the NET team. In reverse, specifications and design guidelines worked out by NET have started to have an impact on the current R and D-work in the laboratory. (orig./GG)

  9. G8 decision on fusion would herald nuclear future

    CERN Multimedia

    Starck, Peter

    2005-01-01

    Nuclear fusion as a future abundant energy source would receive a boost if G8 leaders agree next month on the site for the world's first fusion test reactor, two nuclear scientists said on Wednesday (1 page)

  10. The challenge to keep nuclear fusion alive as a future energy source

    International Nuclear Information System (INIS)

    D'haeseleer, W.D.

    1999-01-01

    responsibility for the future strategic electric energy provision. Although they may be sympathetic to the further development of nuclear fusion research, they do not have any interest in financial support. According to utilities operating in a liberalized market, the research and development for energy technologies must be performed by the manufacturers; if these develop an interesting product, then utilities may buy it. Manufacturers in turn consider the payback time of fusion research and development investments too large to put much money into it. Public funding therefore remains the only option for the next few decades. But strangely enough, regardless of the requirements for a long-term energy policy, policy makers also concentrate on short-term returns. Everybody is blinded by the current cheapness of energy. Utilities will only buy fusion plants if they are competitive. The initial investment cost should therefore be reasonable, the construction time limited, and the availability for operation sufficiently high. Present-day cost estimates for fusion power plants carry little weight; they merely serve to indicate the weak spots in present-day designs. However, there is no doubt that the future fusion reactor must become much simpler and more robust than present-day experiments. Future competitiveness of fusion plants will largely depend on the price of other energy sources. Time works in the right direction for fusion: the other sources will become more expensive, and present-day sophisticated technologies characteristic for fusion (superconductivity, remote handling, etc) will by that time have become daily technologies at a reasonable cost. Fusion may succeed in developing a good electricity generating product for the second half of the 21st century. The major challenge consists of finding sufficient financial funding for the continued development of fusion research. (author)

  11. A look at the fusion reactor technology

    International Nuclear Information System (INIS)

    Rohatgi, V.K.

    1985-01-01

    The prospects of fusion energy have been summarised in this paper. The rapid progress in the field in recent years can be attributed to the advances in various technologies. The commercial fusion energy depends more heavily on the evolution and improvement in these technologies. With better understanding of plasma physics, the fusion reactor designs have become more realistic and comprehensive. It is now possible to make intercomparison between various concepts within the frame work of the established technologies. Assuming certain growth rate of the technological development, it is estimated that fusion energy can become available during the early part of the next century. (author)

  12. Technology transfer: the key to fusion commercialization

    International Nuclear Information System (INIS)

    Burnett, S.C.

    1981-01-01

    The paper brings to light some of the reasons why technology transfer is difficult in fusion, examines some of the impediments to the process, and finally looks at a successful example of technology transfer. The paper considers some subjective features of fusion - one might call them the sociology of fusion - that are none the less real and that serve as impediments to technology transfer

  13. Canadian Fusion Fuels Technology Project annual report 93/94

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Canadian Fusion Fuels Technology Project exists to develop fusion technologies and apply them worldwide in today`s advanced fusion projects and to apply these technologies in fusion and tritium research facilities. CFFTP concentrates on developing capability in fusion fuel cycle systems, in tritium handling technologies and in remote handling. This is an annual report for CFFTP and as such also includes a financial report.

  14. Canadian Fusion Fuels Technology Project annual report 93/94

    International Nuclear Information System (INIS)

    1994-01-01

    The Canadian Fusion Fuels Technology Project exists to develop fusion technologies and apply them worldwide in today's advanced fusion projects and to apply these technologies in fusion and tritium research facilities. CFFTP concentrates on developing capability in fusion fuel cycle systems, in tritium handling technologies and in remote handling. This is an annual report for CFFTP and as such also includes a financial report

  15. Collective dynamics of nuclear fusion: deformation changes and heating during the fusion

    International Nuclear Information System (INIS)

    Mikhailov, I.N.; Mikhailova, T.I.; Toro, M. di; Baran, V.; Briancon, C.

    1996-01-01

    The formalism developed elsewhere for the theoretical description of the dynamics involved in the heavy nucleus fusion is applied in this paper to study the history of the fusion of two identical heavy nuclei experiencing central collision. The evolution of the shape and of the temperature of symmetrical fusing systems is studied. The role of the elastoplasticity of nuclear matter in the nonmonotonical changes of the shape is elucidated in this way. A tentative explanation of the ''extra push'' phenomenon is given in terms of the competition between elastic properties of fusing systems driving to the re-separation of colliding nuclei and the dissipative (plastic) properties of nuclear matter transforming the energy of collective motion into the energy of statistical excitation and thus leading to the fusion. The fingerprints of the heavy-nucleus fusion history as it is depicted by the model are traced in the anisotropy of the dipole and quadrupole γ-radiation emitted during the fusion. The parallels in the description of the fusion dynamics given by the simple model used in this paper and by the more fundamental approaches based on the kinetic equation are emphasised. (orig.)

  16. Nuclear data requirements for fusion reactor nucleonics

    International Nuclear Information System (INIS)

    Bhat, M.R.; Abdou, M.A.

    1980-01-01

    Nuclear data requirements for fusion reactor nucleonics are reviewed and the present status of data are assessed. The discussion is divided into broad categories dealing with data for Fusion Materials Irradiation Test Facility (FMIT), D-T Fusion Reactors, Alternate Fuel Cycles and the Evaluated Data Files that are available or would be available in the near future

  17. 2008 annual meeting on nuclear technology. Pt. 1. Section reports

    International Nuclear Information System (INIS)

    Dagan, Ron; Sanchez Espinoza, Victor Hugo; Faber, Wolfgang; Berlepsch, Thilo v.; Spann, Holger; Schaffrath, Andreas; Schubert, Bernd; Rieger, Udo; Christ, Bernhard G.; Gulden, Werner; Bogusch, Edgar

    2008-01-01

    Summary report on these 5 - out of 11 - Sections of the Annual Conference on Nuclear Technology held in Hamburg on May 27-29, 2008: - Reactor Physics and Methods of Calculation - Thermodynamics and Fluid Dynamics - Safety of Nuclear Installations - Methods, Analysis, Results - Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage - Fusion Technology. Other Sections will be covered in reports in further issues of atw. (orig.)

  18. Fusion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Lackner, Karl; Tran, Minh Quang [eds.

    2012-09-15

    Recreating the energy production process of the Sun - nuclear fusion - on Earth in a controlled fashion is one of the greatest challenges of this century. If achieved at affordable costs, energy supply security would be greatly enhanced and environmental degradation from fossil fuels greatly diminished. Fusion Physics describes the last fifty years or so of physics and research in innovative technologies to achieve controlled thermonuclear fusion for energy production. The International Atomic Energy Agency (IAEA) has been involved since its establishment in 1957 in fusion research. It has been the driving force behind the biennial conferences on Plasma Physics and Controlled Thermonuclear Fusion, today known as the Fusion Energy Conference. Hosted by several Member States, this biennial conference provides a global forum for exchange of the latest achievements in fusion research against the backdrop of the requirements for a net energy producing fusion device and, eventually, a fusion power plant. The scientific and technological knowledge compiled during this series of conferences, as well as by the IAEA Nuclear Fusion journal, is immense and will surely continue to grow in the future. It has led to the establishment of the International Thermonuclear Experimental Reactor (ITER), which represents the biggest experiment in energy production ever envisaged by humankind.

  19. Study on system integration of robots operated in nuclear fusion facility and nuclear power plant facilities

    International Nuclear Information System (INIS)

    Oka, Kiyoshi

    2004-07-01

    A present robot is required to apply to many fields such as amusement, welfare and protection against disasters. The are however only limited numbers of the robots, which can work under the actual conditions as a robot system. It is caused by the following reasons: (1) the robot system cannot be realized by the only collection of the elemental technologies, (2) the performance of the robot is determined by that of the integrated system composed of the complicated elements with many functions, and (3) the respective elements have to be optimized in the integrated robot system with a well balance among them, through their examination, adjustment and improvement. Therefore, the system integration of the robot composed of a large number of elements is the most critical issue to realize the robot system for actual use. In the present paper, I describe the necessary approaches and elemental technologies to solve the issues on the system integration of the typical robot systems for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. These robots work under the intense radiation condition and restricted space in place of human. In particular, I propose a new approach to realize the system integration of the robot for actual use from the viewpoints of not only the environment and working conditions but also the restructure and optimization of the required elemental technologies with a well balance in the robot system. Based on the above approach, I have a contribution to realize the robot systems working under the actual conditions for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. (author)

  20. Power source system for nuclear fusion

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: When using an external system power source and an exclusive power source in a power source circuit for supplying power to the coils of a nuclear fusion apparatus, to minimize the capacity of the exclusive power source and provide an economical power source circuit construction. Structure: In the initial stage of the power supply, rectifying means provided in individual blocks are connected in parallel on the AC side, and power is supplied to the coils of the nuclear fusion apparatus from an external system power source with the exclusive power source held in the disconnected state. Further, at an instant when the limit of permissible input is reached, the afore-mentioned parallel circuit consisting of rectifying means is disconnected, while at the same time the exclusive power source is connected to the input side of the rectifying means provided in a block corresponding to the exclusive power source side, thereby supplying power to the coils of the nuclear fusion apparatus from both the external system power source and exclusive power source. (Kamimura, M.)

  1. Radio frequency system for nuclear fusion

    International Nuclear Information System (INIS)

    Kozeki, Shoichiro; Sagawa, Norimoto; Takizawa, Teruhiro

    1987-01-01

    The importance of radio frequency waves has been increasing in the area of nuclear fusion since they are indispensable for heating of plasma, etc. This report outlines radio frequency techniques used for nuclear fusion and describes the development of radio frequency systems (radio frequency plasma heating system and current drive system). Presently, in-depth studies are underway at various research institutes to achieve plasma heating by injection of radio frequency electric power. Three ranges of frequencies, ICRF (ion cyclotron range of frequency), LHRF (lower hybrid range of frequency) and ECRF (electron cyclotron range of frequency), are considered promissing for radio frequency heating. Candidate waves for plasma current driving include ECW (electron cyclotron wave), LHW (lower hybrid wave), MSW (magnetic sound wave), ICW (ion cyclotron wave) with minority component, and FW (fast wave). FW is the greatest in terms of current drive efficiency. In general, a radio frequency system for nuclear fusion consists of a radio frequency power source, transmission/matching circuit component and plasma connection component. (Nogami, K.)

  2. [Two-nuclear neurons: sincitial fusion or amitotic division].

    Science.gov (United States)

    Sotnikov, O S; Frumkina, L E; Lactionova, A A; Paramonova, N M; Novakovskaia, S A

    2011-01-01

    In the review the history of research two-nuclear neurons is stated and two hypotheses about mechanisms of their formation are analysed: by sincitial fusion or amytotic divisions. The facts of discrepancy of the former orthodox cellular theory categorically denying possibility sincitial of communications in nervous system and of sincitial fusion neurons are mentioned. As an example results of ultrastructural researches of occurrence sincitium in a cortex of the big brain of rats, in autonomic ganglions, in hypocampus and a cerebellum of adult animals are presented. The video data of the sincitial fusion of live neurons and the mechanism of formation multinuclear neurons in tissue culture are analyzed. Existing data about amytotic a way of formation two-nuclear neurons are critically considered. The conclusion becomes, that the mechanism of formation two-nuclear neurons is cellular fusion. Simultaneously the review confirms our representations about existence in nervous system sincitial interneural communications.

  3. Nuclear engineering questions: power, reprocessing, waste, decontamination, fusion

    International Nuclear Information System (INIS)

    Walton, R.D. Jr.

    1979-01-01

    This volume contains papers presented at the chemical engineering symposium on nuclear questions. Specific questions addressed by the speakers included: nuclear power - why and how; commercial reprocessing - permanent death or resurrection; long-term management of commercial high-level wastes; long-term management of defense high-level waste; decontamination and decommissioning of nuclear facilities, engineering aspects of laser fusion I; and engineering aspects of laser fusion II. Individual papers have been input to the Energy Data Base previously

  4. Challenges of nuclear fusion

    International Nuclear Information System (INIS)

    Kunkel, W.B.

    1987-01-01

    After 30 years of research and development in many countries, the magnetic confinement fusion experiments finally seem to be getting close to the original first goal: the point of ''scientific break-even''. Plans are being made for a generation of experiments and tests with actual controlled thermonuclear fusion conditions. Therefore engineers and material scientists are hard at work to develop the required technology. In this paper the principal elements of a generic fusion reactor are described briefly to introduce the reader to the nature of the problems at hand. The main portion of the presentation summarises the recent advances made in this field and discusses the major issues that still need to be addressed in regard to materials and technology for fusion power. Specific examples are the problems of the first wall and other components that come into direct contact with the plasma, where both lifetime and plasma contamination are matters of concern. Equally challenging are the demands on structural materials and on the magnetic-field coils, particularly in connection with the neutron-radiation environment of fusion reactors. Finally, the role of ceramics must be considered, both for insulators and for fuel breeding purposes. It is evident that we still have a formidable task before us, but at this point none of the problems seem to be insoluble. (author)

  5. Fusion technology status and requirements

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1982-01-01

    This paper summarizes the status of fusion technology and discusses the requirements to be met in order to build a demonstration fusion plant. Strategies and programmatic considerations in pursuing engineering feasibility are also outlined

  6. Fusion Nuclear Data activities at FNL, IPR

    OpenAIRE

    P. M. Prajapati; B. Pandey; S. Jakhar; C.V. S. Rao; T. K. Basu; B. K. Nayak; S. V. Suryanarayana; A. Saxena

    2015-01-01

    This paper briefly describes the current fusion nuclear data activities at Fusion Neutronics Laboratory, Institute for Plasma Research. It consist of infrastructure development for the cross-section measurements of structural materials with an accelerator based 14 MeV neutron generator and theoretical study of the cross-section using advanced nuclear reaction modular codes EMPIRE and TALYS. It will also cover the proposed surrogate experiment to measure 55Fe (n, p) 55Mn using BARC-TIFR Pel...

  7. Prm3p is a pheromone-induced peripheral nuclear envelope protein required for yeast nuclear fusion.

    Science.gov (United States)

    Shen, Shu; Tobery, Cynthia E; Rose, Mark D

    2009-05-01

    Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.

  8. Nuclear fusion: technology development and achievements

    International Nuclear Information System (INIS)

    Ana, G.; Brad, S.; Lazar, A.; Spiridon, I.; Vijulie, M.

    2009-01-01

    The strategy for reducing the enhanced greenhouse effect, affecting our planet and the increasing energy demand caused by global growth of population, as well, is, certainly, that of adopting, all the three long-term carbon-free options for energy: renewable sources, fission and fusion reactions. All of them should be further explored and developed for the welfare of future generations, thus leaving them the option of a clean and green energy. From all those available options, the fusion is viewed as an energy source that would be effective in solving future demands, referring to the amount of the energy that can be produced taking into account spent fuel to obtain it. The slow (but steady) progress of fusion development linked with the need for large and expensive experimental devices is remarkable; all available technical and scientific information from experiment shows that progress is being made towards a successful reactor (ITER). The desired objective of this intensive research is obtaining of an industrial reactor able to cover energy future requirements. For the construction of this desired reactor, special designs systems are required. The TRF (TRITIUM RECOVERY FACILITY) is one of the installations that have a major importance maintaining an efficient fuel cycle of the reactor in proper function stage. A test model of TRF for implementation in reactor systems, proposed and developed at ICIT Ramnicu Valcea is presented. (authors)

  9. Nuclear energy technology: theory and practice of commercial nuclear power

    International Nuclear Information System (INIS)

    Knief, R.A.

    1982-01-01

    Reviews Nuclear Energy Technology: Theory and Practice of Commercial Nuclear Power by Ronald Allen Knief, whose contents include an overview of the basic concepts of reactors and the nuclear fuel cycle; the basics of nuclear physics; reactor theory; heat removal; economics; current concerns at the front and back ends of the fuel cycle; design descriptions of domestic and foreign reactor systems; reactor safety and safeguards; Three Mile Island; and a brief overview of the basic concepts of nuclear fusion. Both magnetic and inertial confinement techniques are clearly outlined. Also reviews Nuclear Fuel Management by Harry W. Graves, Jr., consisting of introductory subjects (e.g. front end of fuel cycle); core physics methodology required for fuel depletion calculations; power capability evaluation (analyzes physical parameters that limit potential core power density); and fuel management topics (economics, loading arrangements and core operation strategies)

  10. Magnet Design Considerations for Fusion Nuclear Science Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kessel, C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States) Fusion Technology Institute; Titus, P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  11. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    Science.gov (United States)

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  12. Will nuclear fusion be able to power the next century?

    International Nuclear Information System (INIS)

    Grad, P.

    1989-01-01

    Nuclear fusion is widely regarded as potentially the ultimate energy-generation concept. Although an enormous amount of work and resources has already been committed throughout the world on nuclear fusion research, controlled nuclear fusion has so far proved largely elusive and the difficulties to be overcome before the first commercial fusion reactor is put into operation remain daunting and formidable. In Australia there are three main nuclear fusion research efforts. Sydney University's School of Physics operates a tokamak and a team there has been studying plasma properties in general and in particular radio frequency wave heating of the plasma. At the Australian National University a group has pioneered the construction and operation of an advanced stellarator model called a heliac while at Flinders University in Adelaide a team has developed a rotamak model. The US, Europe, Japan and the USSR each has a frontline fusion research tokamak with Princeton University's TFTR and Culham's JET closest to reactor operation conditions. Although several questions remain to be answered about the safety of a fusion reactor, all experts agree that these problems would be easier to solve than those of conventional fission reactors and there would be no major radioactive waste disposal problem. Some argue that fusion would contribute to the greenhouse effect but most authorities have expressed optimism that fusion, once the technical hurdles are overcome, could economically provide virtually unlimited energy with minimal environmental hazards and at a high safety level

  13. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Research during this report period has covered the following areas: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) MACKLIB-IV, a new library of nuclear response functions, (5) energy storage and power supply requirements for commercial fusion reactors, (6) blanket/shield design evaluation for commercial fusion reactors, and (7) cross section measurements, evaluations, and techniques

  14. Nuclear fusion: sixty years of efforts, great advances and challenges. May nuclear fusion replace fossil energies? The Grail which makes start-ups dream

    International Nuclear Information System (INIS)

    Guilbaud, Sylvain; Pajot, Philippe; Delbecq, Denis

    2016-01-01

    A first article proposes an overview of sixty years of researches, investments and realisations aimed at a better knowledge and control of nuclear fusion to solve the Planet's energy problems. After a brief overview of the Sun as an example, and while presenting the principle of magnetic fusion in a tokamak, some key figures illustration the development of ITER, the authors describe magnetic fusion as the royal road to nuclear fusion (challenges for the ITER project, development of Stellarator as a concurrent of tokamaks), and inertial fusion as an alternate approach (principle, military interest, plasma physics). They also indicate other approaches based on a change of energy source, a change in ignition process, or a change in fuel. In a second article, the author discusses the economic perspectives of nuclear fusion: a supposed unlimited fuel, existence of radioactive releases and pollution, operation risks and costs, technical challenges to be faced, a development to be amortised on more than a century except if more compact processes are elaborated and developed. The author also discusses issues of profitability and of proliferation. The third and last article comments the existence of many start-ups, notably financed by Silicon Valley rich companies, which invest in researches and projects on nuclear fusion. They try to develop more compact systems, and aim at manufacturing their first prototypes by 2020. On the other side, academics remain doubtful about their ability to reach their objectives

  15. Neutron excess generation by fusion neutron source for self-consistency of nuclear energy system

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, V.; Chmelev, A.

    1999-01-01

    The present day fission energy technology faces with the problem of transmutation of dangerous radionuclides that requires neutron excess generation. Nuclear energy system based on fission reactors needs fuel breeding and, therefore, suffers from lack of neutron excess to apply large-scale transmutation option including elimination of fission products. Fusion neutron source (FNS) was proposed to improve neutron balance in the nuclear energy system. Energy associated with the performance of FNS should be small enough to keep the position of neutron excess generator, thus, leaving the role of dominant energy producers to fission reactors. The present paper deals with development of general methodology to estimate the effect of neutron excess generation by FNS on the performance of nuclear energy system as a whole. Multiplication of fusion neutrons in both non-fissionable and fissionable multipliers was considered. Based on the present methodology it was concluded that neutron self-consistency with respect to fuel breeding and transmutation of fission products can be attained with small fraction of energy associated with innovated fusion facilities. (author)

  16. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming.

    Science.gov (United States)

    Mitani, Yasuyuki; Vagnozzi, Ronald J; Millay, Douglas P

    2017-01-01

    Knowledge regarding cellular fusion and nuclear reprogramming may aid in cell therapy strategies for skeletal muscle diseases. An issue with cell therapy approaches to restore dystrophin expression in muscular dystrophy is obtaining a sufficient quantity of cells that normally fuse with muscle. Here we conferred fusogenic activity without transdifferentiation to multiple non-muscle cell types and tested dystrophin restoration in mouse models of muscular dystrophy. We previously demonstrated that myomaker, a skeletal muscle-specific transmembrane protein necessary for myoblast fusion, is sufficient to fuse 10T 1/2 fibroblasts to myoblasts in vitro. Whether myomaker-mediated heterologous fusion is functional in vivo and whether the newly introduced nonmuscle nuclei undergoes nuclear reprogramming has not been investigated. We showed that mesenchymal stromal cells, cortical bone stem cells, and tail-tip fibroblasts fuse to skeletal muscle when they express myomaker. These cells restored dystrophin expression in a fraction of dystrophin-deficient myotubes after fusion in vitro. However, dystrophin restoration was not detected in vivo although nuclear reprogramming of the muscle-specific myosin light chain promoter did occur. Despite the lack of detectable dystrophin reprogramming by immunostaining, this study indicated that myomaker could be used in nonmuscle cells to induce fusion with muscle in vivo, thereby providing a platform to deliver therapeutic material.-Mitani, Y., Vagnozzi, R. J., Millay, D. P. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. © FASEB.

  17. ITER, a major step toward nuclear fusion energy; ITER, une etape majeure vers l'energie de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Holtkamp, N.; Pick, M.; Gauche, F.; Garin, P.; Bigot, B.; Luciani, J.F.; Mougniot, J.C.; Watteau, J.P.; Saoutic, B.; Becoulet, A.; Libeyre, P.; Beaumont, B.; Simonin, A.; Giancarli, L.; Rosenvallon, S.; Gastaldi, O.; Marbach, G.; Boudot, C.; Ioki, K.; Mitchell, N.; Girard, J.Ph.; Giraud, B.; Lignini, F.; Giguet, E.; Bofusch, E.; Friconneau, J.P.; Di Pace, L.; Pampin, R.; Cook, I.; Maisonnier, D.; Campbell, D.; Hayward, J.; Li Puma, A.; Norajitra, P.; Sardain, P.; Tran, M.Q.; Ward, D.; Moslang, A.; Carre, F.; Serpantie, J.P

    2007-01-15

    This document gathers together a series of articles dedicated to ITER. They are organized into 5 parts. The first part describes the potential of fusion as a source of energy that will be able to face the challenge of a continuously increasing demand. After a reminder of the main fusion reactions and the conditions to obtain fusion, the second part focuses on the magnetic fusion based concepts with a special emphasis on the tokamak configuration. In the third part the main components of ITER are described: first the plasma facing components, then the vacuum vessel, the superconducting magnets and the heating systems. In the fourth part short papers concerning ITER safety, the maintenance through remote handling systems, the tritium breeding blanket, are given, along with a full article on the waste management. It is interesting to notice that the nuclear wastes will represent: -) between 1600 and 3800 tons of housekeeping and process wastes produced during the 20 years of operation of ITER (20% very low level waste, 75% low or medium activity with short life and 5% medium activity with long life), -) about 750 tons from component replacement during ITER active operation, and -) about 30000 tons from the decommissioning of ITER. The last part presents the European concepts for a power plant based on a fusion reactor. A basic design is given along with a state of the art of the research on the materials that will be used for the structures. It is highlighted that synergies between fission and fusion technologies exist in at least 4 areas: nuclear design code system, high temperature materials, safety approach, and in-service inspection, maintenance and dismantling. (A.C.)

  18. Nuclear fusion system

    International Nuclear Information System (INIS)

    Dow, W.G.

    1981-01-01

    The invention pertains to the method and apparatus for the confining of a stream of fusible positive ions at values of density and high average kinetic energy, primarily of tightly looping motions, to produce nuclear fusion at a useful rate; more or less intimately mixed with the fusible ions will be lowerenergy electrons at about equal density, introduced solely for the purpose of neutralizing the positive space charge of the ions

  19. Fusion-related work at the Nuclear Energy Agency Data Bank

    International Nuclear Information System (INIS)

    Henriksson, H.; Mompean, F.J.; Kodeli, I.

    2007-01-01

    The OECD Nuclear Energy Agency (NEA) Data Bank is part of an international network of data centres in charge of the compilation and dissemination of basic nuclear reaction data. Through its activities in the reaction data field, the NEA participates in the preparation of data for the modelling of future nuclear facility concepts and the development of reactor installations. A working party at the NEA on international nuclear data evaluation cooperation (WPEC) is established to promote the exchange of nuclear data evaluations, measurements, nuclear model calculations and validation. WPEC provides a framework for co-operative activities, such as the high priority request list for experimental data of special interest for certain applications, such as IFMIF or ITER. The NEA Data Bank administrates the collection and validation as well as the distribution of the Joint Evaluated Fusion and Fission (JEFF) library, where the activities in the European Fusion and Activation File projects (EFF and EAF respectively) play an important role for new data evaluations. The topics cover verification of activation and transport data, calculation methods and validation via integral experiments. The EFF project brings together all available expertise in Europe related to the nuclear data requirements of existing and future fusion devices, and the project contributed greatly to the internationally recognised nuclear data library JEFF-3.1, released in May 2005. The NEA also provides tools for the EFF project, such as computer codes for nuclear energy and radiation physics applications. Of special interest for fusion applications are the integral experiments collected in the Shielding Integral Benchmark Archive Database (SINBAD) database. SINBAD is an internationally established set of radiation shielding and dosimetry data containing over 80 experiments relevant for reactor and accelerator shielding. About 30 of these experiments are dedicated to fusion blanket neutronics. Materials

  20. Distinct roles for key karyogamy proteins during yeast nuclear fusion.

    Science.gov (United States)

    Melloy, Patricia; Shen, Shu; White, Erin; Rose, Mark D

    2009-09-01

    During yeast mating, cell fusion is followed by the congression and fusion of the two nuclei. Proteins required for nuclear fusion are found at the surface (Prm3p) and within the lumen (Kar2p, Kar5p, and Kar8p) of the nuclear envelope (NE). Electron tomography (ET) of zygotes revealed that mutations in these proteins block nuclear fusion with different morphologies, suggesting that they act in different steps of fusion. Specifically, prm3 zygotes were blocked before formation of membrane bridges, whereas kar2, kar5, and kar8 zygotes frequently contained them. Membrane bridges were significantly larger and occurred more frequently in kar2 and kar8, than in kar5 mutant zygotes. The kinetics of NE fusion in prm3, kar5, and kar8 mutants, measured by live-cell fluorescence microscopy, were well correlated with the size and frequency of bridges observed by ET. However the kar2 mutant was defective for transfer of NE lumenal GFP, but not diffusion within the lumen, suggesting that transfer was blocked at the NE fusion junction. These observations suggest that Prm3p acts before initiation of outer NE fusion, Kar5p may help dilation of the initial fusion pore, and Kar2p and Kar8p act after outer NE fusion, during inner NE fusion.

  1. Nuclear technology in research and everyday life; Kerntechnik in Forschung und Alltag

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-12-15

    The paper.. discusses the impact of nuclear technology in research and everyday life covering the following issues: miniaturization of memory devices, neutron radiography in material science, nuclear reactions in the universe, sterilization of food, medical applies, cosmetics and packaging materials using beta and gamma radiation, neutron imaging for radioactive waste analysis, microbial transformation of uranium (geobacter uraniireducens), nuclear technology knowledge preservation, spacecrafts voyager 1 and 2, future fusion power plants, prompt gamma activation analysis in archeology, radiation protection and radioecology and nuclear medicine (radiotherapy).

  2. Commercial objectives, technology transfer, and systems analysis for fusion power development

    Science.gov (United States)

    Dean, Stephen O.

    1988-03-01

    Fusion is an essentially inexhaustible source of energy that has the potential for economically attractive commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion-energy development program is the generation of centralstation electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high-energy neutrons suggests potentially unique applications. These include breeding of fissile fuels, production of hydrogen and other chemical products, transmutation or “burning” of various nuclear or chemical wastes, radiation processing of materials, production of radioisotopes, food preservation, medical diagnosis and medical treatment, and space power and space propulsion. In addition, fusion R&D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other hand, are the two primary criteria for setting long-range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R&D program toward practical applications. The transfer of fusion technology and skills from the national laboratories and universities to industry is the key to achieving the long-range objective of commercial fusion applications.

  3. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  4. Current state of nuclear fusion research

    International Nuclear Information System (INIS)

    Naraghi, M.

    1985-01-01

    During the past quarter century, plasma physics and nuclear fusion research have gone through impressive development. Tokamak, is realized to be the number one candidate for nuclear fusion reactor. Two large experiments, one called Joint European Torus (JET) at Culham, England, and the other JT-60 project in Japan have been completed and have reported preliminary results. In JET an average electron density of 4x10 13 pcls/ cm 3 , ion temperatures of 3Kev and energy confinement of 0.8 sec have been achieved. However, the Zeff has been even equal to 10 which unfortunately is a source of plasma energy loss. JT-60 has not offered any appreciable results yet, however, the objectives and initial tests promise long pulse duration, with very high ion and plasma densities. Both experiments have promised to achieve conditions approaching those needed in a fusion reactor. Other important experiments will be discussed and the role of third world countries will be emphasized. (Author)

  5. The development of controlled nuclear fusion

    International Nuclear Information System (INIS)

    Pease, R.S.

    1978-01-01

    The high temperature conditions needed in a controlled nuclear fusion reactor are now being approached in experiments using magnetic fields to confine and isolate the plasma, especially in systems of the tokamak type. The underlying reasons for the successes are discussed and it is concluded that the remaining advances needed in temperature and thermal insulation may well be achieved in new large tokamak experiments now under construction. Comparable progress is being made also in inertial confinement systems; key experiments on achieving the required super-high densities with high-powered pulsed laser systems are about to commence. To achieve fusion reactors will require the combination of three major disciplines: plasma physics, electromechanical engineering and nuclear engineering. Proposals have been made for an international study group to be set up under the IAEA auspices to consider technical objectives and the nature of the next large fusion device which could be constructed internationally, and in which this synthesis could be attempted. (author)

  6. International ITER fusion energy organization. Paving the way to power generation from nuclear fusion

    International Nuclear Information System (INIS)

    Preuschen-Liebenstein, R. von

    2006-01-01

    ITER (Latin: the way) is the acronym of a new international large research facility gradually taking shape after the meeting of Gorbachev and Reagan in Reykjavik in 1985. Under the auspices of the IAEA, worldwide scientific and industrial cooperation with 'home teams' of each of the ITER partners began at that time which were commissioned to accumulate the knowledge and the technology of nuclear fusion in the participating countries. At the end of the preparation and decisionmaking process, the design draft of the ITER reactor was elaborated in international cooperation as the basis of the ITER Convention. After lengthy negotiations among the international ITER partners, a European site for the ITER organization and its reactor was found at Cadarache, France. As the first ITER member, Europe now initiated worldwide cooperation in research and development, seeking to demonstrate the technical and scientific feasibility of tapping fusion power for peaceful purposes. The Council of the European Union (competitiveness), at its meeting on September 25, 2006, decided to sign the ITER Convention about the establishment of the International ITER Fusion Energy Organization ('ITER Organization') and about the mutual obligation to make the necessary contributions towards the construction of ITER. (orig.)

  7. Data fusion and sensor management for nuclear power plant safety

    Energy Technology Data Exchange (ETDEWEB)

    Ciftcioglu, O [Istanbul Technical Univ., Istanbul (Turkey). Nuclear Power Dept.; Turkcan, E [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

    1997-12-31

    The paper describes the implementation of the data-sensor fusion and sensor management technology for accident management through simulated severe accident (SA) scenarios subjected to study. The organization of the present paper is as follows. As the data-sensor fusion and sensor management is an emerging technology which is not widely known, in Sec. 2, the definition and goals of data-sensor fusion and sensor management technology is described. In Sec. 3 fits, with reference to Kalman filtering as an information filter, statistical data-sensor fusion technology is described. This is followed by deterministic data-sensor fusion technology using gross plant state variables and neural networks (NN) and the implementation for severe accident management in NPPs. In Sec. 4, the sensor management technology is described. Finally, the performance of the data-sensor fusion technology for NPP safety is discussed. 12 refs, 6 figs.

  8. Data fusion and sensor management for nuclear power plant safety

    International Nuclear Information System (INIS)

    Ciftcioglu, O.

    1996-01-01

    The paper describes the implementation of the data-sensor fusion and sensor management technology for accident management through simulated severe accident (SA) scenarios subjected to study. The organization of the present paper is as follows. As the data-sensor fusion and sensor management is an emerging technology which is not widely known, in Sec. 2, the definition and goals of data-sensor fusion and sensor management technology is described. In Sec. 3 fits, with reference to Kalman filtering as an information filter, statistical data-sensor fusion technology is described. This is followed by deterministic data-sensor fusion technology using gross plant state variables and neural networks (NN) and the implementation for severe accident management in NPPs. In Sec. 4, the sensor management technology is described. Finally, the performance of the data-sensor fusion technology for NPP safety is discussed. 12 refs, 6 figs

  9. Past, present and future of the fusion reactors

    International Nuclear Information System (INIS)

    Rosenbaum P, M.

    1992-01-01

    Among the alternate technologies that have acquired a special interest in the present decade, we find the nuclear fusion. Within this, the fusion reactors by magnetic confinement of the Tokamak type have shown an increasing technological progress during this period. For this reason, a new strategy, coordinated at international level, has been implemented for the specific development of the nuclear fusion reactors, aimed to face those scientific and technological aspects which still remain, and which will determine their future economic feasibility. (Author)

  10. Controlled nuclear fusion, a challenging task with a big payoff

    International Nuclear Information System (INIS)

    Noterdaeme, Jean-Marie

    2003-01-01

    Controlled thermonuclear fusion carries the promise of providing the world with a new source of energy, the same energy that powers the stars. Research in this area has progressed steadily for several decades now, and is ready to move into a new phase. The probability is high that a new international experimental machine (ITER) which will prove the scientific and technological feasibility of fusion energy, will be built. This paper introduces nuclear fusion for people familiar with the fission process. It starts from the basic principles common to fusion and fission. It moves on to point out the differences, explains the reasons for those differences and the consequences. Controlled thermonuclear fusion can be obtained in several ways, which have led to different research lines. One line, on which this talk focuses, is by confining the reacting particles with magnetic fields. Another, which is the subject of a different talk, relies on the inertia of the particles to create the conditions necessary for fusion. The progress of the magnetic confinement research is shown, with examples of major hurdles, which have occurred and have been overcome. Recent results, which make us optimistic that the next machine can prove the feasibility of fusion energy, are highlighted. The talk also addresses the challenges that remain before us, and suggests that the promise of fusion energy opens up new perspectives and opportunities for the development and the use of fission energy. (author)

  11. Nuclear inner membrane fusion facilitated by yeast Jem1p is required for spindle pole body fusion but not for the first mitotic nuclear division during yeast mating.

    Science.gov (United States)

    Nishikawa, Shuh-ichi; Hirata, Aiko; Endo, Toshiya

    2008-11-01

    During mating of budding yeast, Saccharomyces cerevisiae, two haploid nuclei fuse to produce a diploid nucleus. The process of nuclear fusion requires two J proteins, Jem1p in the endoplasmic reticulum (ER) lumen and Sec63p, which forms a complex with Sec71p and Sec72p, in the ER membrane. Zygotes of mutants defective in the functions of Jem1p or Sec63p contain two haploid nuclei that were closely apposed but failed to fuse. Here we analyzed the ultrastructure of nuclei in jem1 Delta and sec71 Delta mutant zygotes using electron microscope with the freeze-substituted fixation method. Three-dimensional reconstitution of nuclear structures from electron microscope serial sections revealed that Jem1p facilitates nuclear inner-membrane fusion and spindle pole body (SPB) fusion while Sec71p facilitates nuclear outer-membrane fusion. Two haploid SPBs that failed to fuse could duplicate, and mitotic nuclear division of the unfused haploid nuclei started in jem1 Delta and sec71 Delta mutant zygotes. This observation suggests that nuclear inner-membrane fusion is required for SPB fusion, but not for SPB duplication in the first mitotic cell division.

  12. Office of Basic Energy Sciences program to meet high priority nuclear data needs of the Office of Fusion Energy: 1986 review

    International Nuclear Information System (INIS)

    Lane, R.O.

    1986-09-01

    A coordination meeting of the program was held at Argonne National Laboratory on September 17-19, 1986. Representatives from the participating laboratories and from the fusion technology community met to discuss nuclear data needs for fusion. Most of the standing nuclear data requests for fusion were discussed in considerable detail, and the status of the relevant data was reviewed. Task force groups were organized along disciplinary lines to address many of the issues which confront the program. Plans were laid for several collaborative endeavors, including technical projects to address specific data problems and an intercomparison of methods and codes in the area of nuclear modeling

  13. Propagation of nuclear data uncertainties for fusion power measurements

    Directory of Open Access Journals (Sweden)

    Sjöstrand Henrik

    2017-01-01

    Full Text Available Neutron measurements using neutron activation systems are an essential part of the diagnostic system at large fusion machines such as JET and ITER. Nuclear data is used to infer the neutron yield. Consequently, high-quality nuclear data is essential for the proper determination of the neutron yield and fusion power. However, uncertainties due to nuclear data are not fully taken into account in uncertainty analysis for neutron yield calibrations using activation foils. This paper investigates the neutron yield uncertainty due to nuclear data using the so-called Total Monte Carlo Method. The work is performed using a detailed MCNP model of the JET fusion machine; the uncertainties due to the cross-sections and angular distributions in JET structural materials, as well as the activation cross-sections in the activation foils, are analysed. It is found that a significant contribution to the neutron yield uncertainty can come from uncertainties in the nuclear data.

  14. Verification of cold nuclear fusion reaction, (1)

    International Nuclear Information System (INIS)

    Yoshida, Zenko; Aratono, Yasuyuki; Hirabayashi, Takakuni

    1991-01-01

    Can cold nuclear fusion reaction occur as is expected? If it occurs, what extent is its reaction probability? At present after 2 years elapsed since its beginning, the clear solution of these questions is not yet obtained. In many reaction systems employing different means, the experiments to confirm the cold nuclear fusion reaction have been attempted. In order to confirm that the nuclear fusion reaction of deuterium mutually has occurred, the neutrons, He-3, protons, tritium or generated heat, which were formed by the reaction and released from the system, are measured. Since it is considered that the frequency of the occurrence at normal temperature of the reaction is very low, it is necessary to select the most suitable method upon evaluating the limit of detection peculiar to the measuring methods. The methods of measuring neutrons, protons, gamma ray and generated heat, and the reaction systems by electrolytic process and dry process are explained. The detection of plural kinds of the reaction products and the confirmation of synchronism of signals are important. (K.I.)

  15. Dynamic assembly of brambleberry mediates nuclear envelope fusion during early development.

    Science.gov (United States)

    Abrams, Elliott W; Zhang, Hong; Marlow, Florence L; Kapp, Lee; Lu, Sumei; Mullins, Mary C

    2012-08-03

    To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, mitotic intermediates wherein individual chromatin masses are surrounded by nuclear envelope; the karyomeres then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion, resulting in formation of multiple micronuclei. As karyomeres form, Brambleberry protein localizes to the nuclear envelope, with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. brambleberry corresponds to an unannotated gene with similarity to Kar5p, a protein that participates in nuclear fusion in yeast. We also demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. Our studies provide insight into the machinery required for karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Fusion technology projects

    International Nuclear Information System (INIS)

    Elen, J.D.

    1985-11-01

    The current status of the European Fusion File project (EFF) is reviewed. Some new tools for the nuclear-data evaluation and the processing are discussed. A method description and users manual for the toroidal-geometry neutronic program system FURNACE has been published. Calculations with FURNACE have been started to obtain the effective tritium breeding ratio and the distribution of the nuclear heat for the 17 Li 83 Pb blanket in the NET II torus geometry. The results of several experiments are reported: tensile tests on vanadium alloy V5%Ti doped with boron; creep embrittlement of stainless steel type 316; critical current test of a composite niobium-tin superconductor

  17. TASKA-M - a low cost, near term tandem mirror device for fusion technology testing

    International Nuclear Information System (INIS)

    Badger, B.; Corradini, M.L.; El-Guebaly, L.; Emmert, G.A.; Kulcinski, G.L.; Larsen, E.M.; Maynard, C.W.; Perkins, L.J.; Peterson, R.R.; Plute, K.E.; Santarius, J.F.; Sawan, M.E.; Scharer, J.E.; Sviatoslavsky, I.N.; Sze, D.K.; Vogelsang, W.F.; Wittenberg, L.J.; Leppelmeier, G.W.; Grover, J.M.; Opperman, E.K.; Vogel, M.A.; Borie, E.; Taczanowski, S.; Arendt, F.; Dittrich, H.G.; Fett, T.; Haferkamp, B.; Heinz, W.; Hoelzchen, E.; Kleefeldt, K.; Klingelhoefer, R.; Komarek, P.; Kuntze, M.; Leiste, H.G.; Link, W.; Malang, S.; Manes, B.M.; Maurer, W.; Michael, I.; Mueller, R.A.; Neffe, G.; Schramm, K.; Suppan, A.; Weinberg, D.

    1984-04-01

    TASKA-M (Modifizierte Tandem Spiegelmaschine Karlsruhe) is a study of a dedicated fusion technology device based on the mirror principle, in continuation of the 1981/82 TASKA study. The main objective is to minimize cost while retaining key requirements of neutron flux and fluence for blanket and material development and for component testing in a nuclear environment. Direct costs are reduced to about 400 M$ by dropping reactor-relevant aspects not essential to technology testing: No thermal barrier and electrostatic plugging of the plasma; fusion power of 7 MW at an injected power of 44 MW; tritium supply from external sources. All technologies for operating the machine are expected to be available by 1990; the plasma physics relies on microstabilization in a sloshing ion population. (orig.) [de

  18. Nuclear fusion: power for the next century

    International Nuclear Information System (INIS)

    1980-05-01

    The basis of fusion reactions is outlined, with special reference to deuterium and tritium (from lithium, by neutron reaction) as reactants, and the state of research worldwide is indicated. The problems inherent in fusion reactions are discussed, plasma is defined, and the steps to be taken to generate electricity from controlled nuclear fusion are stated. Methods of plasma heating and plasma confinement are considered, leading to a description of the tokamak plasma confinement system. Devices under construction include the JET (Joint European Torus) Undertaking in the UK. Plans and possibilities for fusion reactors are discussed. (U.K.)

  19. Nuclear Fusion Research Understanding Plasma-Surface Interactions

    CERN Document Server

    Clark, Robert E.H

    2005-01-01

    It became clear in the early days of fusion research that the effects of the containment vessel (erosion of "impurities") degrade the overall fusion plasma performance. Progress in controlled nuclear fusion research over the last decade has led to magnetically confined plasmas that, in turn, are sufficiently powerful to damage the vessel structures over its lifetime. This book reviews current understanding and concepts to deal with this remaining critical design issue for fusion reactors. It reviews both progress and open questions, largely in terms of available and sought-after plasma-surface interaction data and atomic/molecular data related to these "plasma edge" issues.

  20. Closed loop control of the sawtooth instability in nuclear fusion

    NARCIS (Netherlands)

    Witvoet, G.; Steinbuch, M.; Westerhof, E.; Doelman, N.J.; Baar, de M.R.

    2010-01-01

    In nuclear fusion the sawtooth instability is an important plasma phenomenon, having both positive and negative effects on the tokamak plasma. Control of its period is essential in future nuclear fusion reactors. This paper presents a control oriented model of the sawtooth instability, with current

  1. Prospective conceptual qualification of hybrid centrifugation/distillatory for {sup 6}LI nuclear fusion technology scaled supply demands; Calificacion conceptual prospectiva de centrifugador/destilador hibrido para produccion de {sup 6}Li a demanda de la tecnologia Nuclear Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Sedano, L.; Herranz, J. L.; Casado, J. L.; Castro, P.; Xiberta, J.

    2013-07-01

    The change in the demand for exploitation of lithium as a resource appears during the last decade, related to the development of the ion-Li batteries market and with the requirements of Nuclear Fusion fuels (deuterium and lithium) as coming energy option. A prospective analysis of synergistic demands of both markets, in its technical and in its economic aspects appears of prospective interest. The civil market {sup 6}Li/{sup 7}Li enrichment demand is analyzed. Specific technological developments permitting on-line production according to demand is discussed. A [centrifugation /thermal diffusion / combined distillation] technique is selected and qualified as technologically viable option for scaled production of litiated-forms. A conceptual design of a production plant is finally proposed according to the new technical capability.

  2. Energy by nuclear fusion

    International Nuclear Information System (INIS)

    Buende, R.; Daenner, W.; Herold, H.; Raeder, J.

    1976-12-01

    This report reviews the state of knowledge in a number of fields of fusion research up to autumn 1976. Section 1 gives a very brief presentation of the elementary fusion reactions, the energies delivered by them and the most basic energy balances leading to Lawson-type diagrams. Section 2 outlines the reserves and cost of lithium and deuterium, gives estimates of the total energy available from DT fusion and comments on production technology, availlability and handling of the fuels. In section 3 a survey is given of the different concepts of magnetic confinement (stellarators, tokamaks, toroidal pinches, mirror machines, two-component plasmas), of confinement by walls, gas blankets and imploding liners and, finally, of the concepts of interial confinement (laser fusion, beam fusion). The reactors designed or outlined on the basis of the tokamak, high-β, mirror, and laser fusion concepts are presented in section 4, which is followed in section 5 by a discussion of the key problems of fusion power plants. The present-day knowledge of the cost structure of fusion power plants and the sensitivity of this structure with respect to the physical and technical assumptions made is analysed in section 6. Section 7 and 8 treat the aspects of safety and environment. The problems discussed include the hazard potentials of different designs (radiological, toxicological, and with respect to stored energies), release of radioactivity, possible kinds of malfunctioning, and the environmental impact of waste heat, radiation and radioactive waste (orig.) [de

  3. Recent developments in engineering and technology concepts for prospective tokamak fusion reactors

    International Nuclear Information System (INIS)

    Ford, G.W.K.

    1987-01-01

    The tokamak has become the most developed magnetic fusion system and it appears likely that break-even and possibly ignition will first be demonstrated in existing machines of this type. Yet larger tokamaks could also demonstrate the essential technologies for the production of useful power. World-wide, well over a hundred tritium-breeder/heat-removal blanket concepts have been devised and preliminary engineering design studies undertaken, but the effort deployed on breeding and power recovery systems has been very small compared with that assigned to plasma research and development. The European Communities' NET (Next European Torus) project may offer an opportunity to redress this imbalance. The NET pre-design stage now in progress for some three years has selected many of the best features of plasma and nuclear design from the world's total efforts in these fields, and the NET concept is described in this paper as exemplifying where magnetic fusion power reactor technology stands today. It is concluded that although there are numerous more advanced types of magnetic confinement fusion reactor at early stages of their physics development, the tokamak offers the best opportunity for the early demonstration of fusion power

  4. Conceptual design of light ion beam inertia nuclear fusion reactors

    International Nuclear Information System (INIS)

    1983-07-01

    Light ion beam, inertia nuclear fusion system drew attention recently as one of the nuclear fusion systems for power reactors in the history of the research on nuclear fusion. Its beginning seemed to be the judgement that the implosion of fusion fuel pellets with light ions can be realized with the light ions which can be obtained in view of accelerator techniques. Of course, in order to generate practically usable nuclear fusion reaction by this system and maintain it, many technical difficulties must be overcome. This research was carried out for the purpose of discovering such technical problems and searching for their solution. At the time of doing the works, the following policy was adopted. Though their is the difference of fine and rough, the design of a whole reactor system is performed conformably. In order to make comparison with other reactor types and nuclear fusion systems, the design is carried out as the power plant of about one million kWe output. As the extent of the design, the works at conceptual design stage are performed to present the concept of design which satisfies the required function. Basically, the design is made from conservative standpoint. This research of design was started in 1981, and in fiscal 1982, the mutual adjustment among the design of respective parts was performed on the basis of the results in 1981, and the possible revision and new proposal were investigated. (Kako, I.)

  5. Nuclear diagnostics for inertial confinement fusion implosions

    International Nuclear Information System (INIS)

    Murphy, T.J.

    1997-01-01

    This abstract contains viewgraphs on nuclear diagnostic techniques for inertial confinement fusion implosions. The viewgraphs contain information on: reactions of interest in ICF; advantages and disadvantages of these methods; the properties nuclear techniques can measure; and some specifics on the detectors used

  6. Nuclear energy

    International Nuclear Information System (INIS)

    Wethe, Per Ivar

    2009-01-01

    Today we know two forms of nuclear energy: fission and fusion. Fission is the decomposition of heavy nuclei, while fusion is the melting together of light nuclei. Both processes create a large surplus of energy. Technologically, we can currently only use fission to produce energy in today's nuclear power plants, but there is intense research worldwide in order to realize a controlled fusion process. In a practical context, today's nuclear energy is a sustained source of energy since the resource base is virtually unlimited. When fusion technology is realized, the resource supply will be a marginal problem. (AG)

  7. Physics and technology of nuclear materials

    International Nuclear Information System (INIS)

    Ursu, I.

    1985-01-01

    The subject is covered in chapters, entitled; elements of nuclear reactor physics; structure and properties of materials (including radiation effects); fuel materials (uranium, plutonium, thorium); structural materials (including - aluminium, zirconium, stainless steels, ferritic steels, magnesium alloys, neutron irradiation induced changes in the mechanical properties of structural materials); moderator materials (including - nuclear graphite, natural (light) water, heavy water, beryllium, metal hydrides); materials for reactor reactivity control; coolant materials; shielding materials; nuclear fuel elements; nuclear material recovery from irradiated fuel and recycling; quality control of nuclear materials; materials for fusion reactors (thermonuclear fusion reaction, physical processes in fusion reactors, fuel materials, materials for blanket and cooling system, structural materials, materials for magnetic devices, specific problems of material irradiation). (U.K.)

  8. Once more about cold nuclear fusion

    International Nuclear Information System (INIS)

    Brudanin, V.B.; Bystritsky, V.M.; Egorov, V.G.

    1989-01-01

    The results of the experiments on the search for cold nuclear d-d fusion in chemically pure titanium are given both for electrolysis of heavy water D 2 O and for titanium saturation with gaseous deuterium. The saturation took place at the temperature of 77K and pressure of 50 and 150 atm. A round of experiments with temperature varying from 1 to 600 atm was carried out. The limiting values of the partial rate of the nuclear reaction of d-d fusion with neutron production were obtained per deuteron (at the 95% confidence level): λ f ≤4x10 -25 s -1 (experiment with electrolysis), λ f ≤7x10 -28 s -1 (experiment with gaseous deuterium). 7 refs.; 5 figs.; 2 tabs

  9. Nuclear-fusion research. To bring the sun on the earh

    International Nuclear Information System (INIS)

    Zohm, Hartmut

    2009-01-01

    The course treats first the foundations of nuclear fusion. In the second part the concepts for the realization of nuclear fusion in the laboratory are described. Finally in the last part a survey on the present status of the research as well an outlook on future work is given

  10. Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.

    Science.gov (United States)

    Fillo, J. A.

    This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…

  11. Status of fusion maintenance

    International Nuclear Information System (INIS)

    Fuller, G.M.

    1984-01-01

    Effective maintenance will be an essential ingredient in determining fusion system productivity. This level of productivity will result only after close attention is paid to the entire system as an entity and appropriate integration of the elements is made. The status of fusion maintenance is reviewed in the context of the entire system. While there are many challenging developmental tasks ahead in fusion maintenance, the required technologies are available in several high-technology industries, including nuclear fission

  12. Long-term modelling of Carbon Capture and Storage, Nuclear Fusion, and large-scale District Heating

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik; Korsholm, Søren Bang; Lüthje, Mikael

    2011-01-01

    before 2050. The modelling tools developed by the International Energy Agency (IEA) Implementing Agreement ETSAP include both multi-regional global and long-term energy models till 2100, as well as national or regional models with shorter time horizons. Examples are the EFDA-TIMES model, focusing...... on nuclear fusion and the Pan European TIMES model, respectively. In the next decades CCS can be a driver for the development and expansion of large-scale district heating systems, which are currently widespread in Europe, Korea and China, and with large potentials in North America. If fusion will replace...... fossil fuel power plants with CCS in the second half of the century, the same infrastructure for heat distribution can be used which will support the penetration of both technologies. This paper will address the issue of infrastructure development and the use of CCS and fusion technologies using...

  13. Physics and technology of inertial fusion energy targets chambers and drivers. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2005-09-01

    The third IAEA Technical Meeting on Physics and Technology of Inertial Fusion Energy Targets and Chambers took place 11-13 October 2004 in the Yousung Hotel Daejon, Republic of Korea. The first meeting was held in Madrid, Spain, 7-9 June 2000, and the second one in San Diego, California, 17-19 June 2002. Nuclear fusion has the promise of becoming an abundant energy source with good environmental compatibility. Excellent progress has been made in controlled nuclear fusion research on both magnetic and inertial approaches for plasma confinement. The IAEA plays a pro-active role to catalyze innovation and enhance worldwide commitment to fusion. This is done by creating awareness of the different concepts of magnetic as well as inertial confinement. The International Fusion Research Council (IFRC) supports the IAEA in the development of strategies to enhance fusion research in Member States. As part of the recommendations, a technical meeting on the physics and technology of inertial fusion energy (IFE) was proposed in one of the council meetings. The objective of the technical meeting was to contribute to advancing the understanding of targets and chambers for all proposed inertial fusion energy power plant designs. The topics to be covered were: Target design and physics, chamber design and physics, target fabrication injection and Tritium handling, assessment of safety, environment and economy aspect of IFE. It was recognized by the International Advisory Committee that the scope of the meeting should also include fusion drivers. The presentations of the meeting included target and chamber physics and technology for all proposed IFE plant concepts (laser driven, heavy-ion driven, Z-pinches, etc.). The final Research Coordination Meeting of the Coordinated Research Project on Elements of Power Plant Design for Inertial Fusion Energy, including further new results and achievements, followed the technical meeting. Twenty-nine participants from 12 countries participated

  14. JSPS-CAS Core University Program seminar on summary of 10-year collaborations in plasma and nuclear fusion research area

    International Nuclear Information System (INIS)

    Toi, Kazuo; Wang Kongjia

    2011-07-01

    The JSPS-CAS Core University Program (CUP) seminar on “Summary of 10-year Collaborations in Plasma and Nuclear Fusion Research Area” was held from March 9 to March 11, 2011 in the Okinawa Prefectural Art Museum, Naha city, Okinawa, Japan. The collaboration program on plasma and nuclear fusion started from 2001 under the auspices of Japanese Society of Promotion of Science (JSPS) and Chinese Academy of Sciences (CAS). This year is the last year of the CUP. This seminar was organized in the framework of the CUP. In the seminar, 29 oral talks were presented, having 14 Chinese and 30 Japanese participants. These presentations covered key topics related to the collaboration categories: (1) improvement of core plasma properties, (2) basic research on fusion reactor technologies, and (3) theory and numerical simulation. This seminar aims at summarizing the results obtained through the collaborations for 10 years, and discussing future prospects of China-Japan collaboration in plasma and nuclear fusion research areas. (author)

  15. Situation and role of industrial fields in nuclear fusion reactor development

    International Nuclear Information System (INIS)

    Suzuki, Gen-ichi

    1983-01-01

    Japan Atomic Industrial Forum (JAIF) established the nuclear fusion technical committee in October, 1980, and has investigated the attitude of industrial fields in progressing nuclear fusion research and development and the measures to cooperate with national development plans. Corresponding to the new long term plan and the establishment of the basic policy for nuclear fusion research and development by Atomic Energy Commission of Japan in June, 1982, JAIF has settled the policy on the situation and role of industrial fields. In this report, first the necessity of firmly grasping the position of nuclear fusion research in atomic energy development is described, next, the present status of the research and development in Japan is reported, and it is mentioned that the role of manufacturers in reinforcing engineering has become more important in industrial fields. In the stage of the construction of a nuclear fusion reactor, the experiences in the engineering safety in fission reactors, environmental safety and system engineering will be utilized. Japanese industrial fields feature that they have made larger cooperation with national projects even in the research and development stage as compared to foreign countries. When the plan of next phase system will be promoted in the future, the cooperating methods in the past should be evaluated, investigated and improved, and the experiences in fast breeder reactors and advanced heavy water reactors should be referred to. Finally, the problems and the countermeasures in nuclear fusion development are described. (Wakatsuki, Y.)

  16. Security of nuclear materials using fusion multi sensor wavelett

    International Nuclear Information System (INIS)

    Djoko Hari Nugroho

    2010-01-01

    Security of a nuclear material in an installation is determined by how far the installation is to assure that nuclear material remains at a predetermined location. This paper observed a preliminary design on nuclear material tracking system in the installation for decision making support based on multi sensor fusion that is reliable and accurate to ensure that the nuclear material remains inside the control area. Capability on decision making in the Management Information System is represented by an understanding of perception in the third level of abstraction. The second level will be achieved with the support of image analysis and organizing data. The first level of abstraction is constructed by merger between several CCD camera sensors distributed in a building in a data fusion representation. Data fusion is processed based on Wavelett approach. Simulation utilizing Matlab programming shows that Wavelett fuses multi information from sensors as well. Hope that when the nuclear material out of control regions which have been predetermined before, there will arise a warning alarm and a message in the Management Information System display. Thus the nuclear material movement time event can be obtained and tracked as well. (author)

  17. Inner/Outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis.

    Science.gov (United States)

    Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon; Forbes, Douglass J

    2010-12-01

    Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.

  18. The nuclear fusion reactor. How close are we to its realisation

    International Nuclear Information System (INIS)

    Lackner, K.

    2001-01-01

    A fusion power plant would rely on practically unlimited supplies of primary materials, and possess very favourable environmental and safety properties. Exploiting the nuclear fusion reaction for continuous power production requires, however, the solution of some of the most demanding physics and technology issues. At the same time the final proof of principle of a self-sustaining fusion reaction can only be delivered in a device with a thermal power rating in the 1 GW range, as the power production by fusion reactions increases much stronger with volume than the energy losses from a hot plasma. A range of well conceived tokamak devices have generated during the last couple of decades the experimental basis and the physics understanding for proceeding now to the construction of such a demonstration device: ITER. This device will also incorporate, partly in the form of test modules, nearly all the critical technologies required for the operation of a commercial power plant. A notable exception to this are materials, where the much lower neutron fluence of ITER allows to work with readily available, conventional steels, whereas power plants will have to use radiation resistant, low-activation materials now under development. The presentation summarizes briefly the development path that has led to the ITER design, and the physics criteria determining its layout. Seven technologies were identified by the international design team (constituted by engineers and scientists from Japan, the European Union, the Russian Federation, and the USA) as critical, and made subject to seven large R and D projects, successfully carried out with an investment of about 400 Million $. The roadmap for the development beyond ITER foresees as subsequent step a power plant (DEMO) that will already be largely identical to the first generation of commercial installations. The physics of this device will be completely verified by the beginning of its planning by the operating experience of ITER

  19. Fusion science and technology at CIEMAT

    International Nuclear Information System (INIS)

    Sanchez, J.

    2012-01-01

    The presence of the agency Fusion for Energy and the significant participation of Spanish industry in the ITER project bring Spain to a relevant position in the development of fusion. This article reviews briefly the role of Ciemat in the process leading to this situation and analyzers the scientific and technological role of Ciemat in the present and future phases of the fusion programme. (Author)

  20. Effect of a generalized particle momentum distribution on plasma nuclear fusion rates

    International Nuclear Information System (INIS)

    Kim, Yeong E.; Zubarev, Alexander L.

    2006-01-01

    We investigate the effect of a generalized particle momentum distribution derived by Galitskii and Yakimets (GY) on nuclear reaction rates in plasma. We derive an approximate semi-analytical formula for nuclear fusion reaction rate between nuclei in a plasma (quantum plasma nuclear fusion; or QPNF). The QPNF formula is applied to calculate deuteron-deuteron fusion rate in a plasma, and the results are compared with the results calculated with the conventional Maxwell-Boltzmann velocity distribution. As an application, we investigate the deuteron-deuteron fusion rate for mobile deuterons in a deuterated metal/alloy. The calculated deuteron-deuteron fusion rates at low energies are enormously enhanced due to the modified tail of the GY's generalized momentum distribution. Our preliminary estimates indicate also that the deuteron-lithium (D+Li) fusion rate and the proton-lithium (p+Li) fusion rate in a metal/alloy at ambient temperatures are also substantially enhanced. (author)

  1. 21. IAEA fusion energy conference. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Recognizing the prominent role that nuclear energy plays in the world, and based on the expectation that nuclear fusion will be able to provide an abundant source of energy, the International Atomic Energy Agency (IAEA) supports the exchange of scientific and technical information on fusion research through conferences, meetings and projects. The 21st IAEA Fusion Energy Conference (FEC 2006) provided a forum for presenting and discussing the progress that is being made in fusion experiments, theory and technological developments. It is expected that the progress in the establishment of ITER since the last Fusion Energy Conference will put more emphasis on the physics and technology R and D aspects in the realization of fusion as a clean and lasting energy source. FEC 2006 covered the following topics: OV Overviews; EX Magnetic Confinement Experiments; TH Magnetic Confinement Theory and Modelling; IT ITER Activities; IF Inertial Fusion Experiments and Theory; IC Innovative Concepts; FT Fusion Technology and Power Plant Design; SE Safety, Environmental and Economic Aspects of Fusion. At the same time, a series of satellite meetings and fusion related exhibitions took place.

  2. Nuclear data needs for neutron spectrum tailoring at International Fusion Materials Irradiation Facility (IFMIF)

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    2001-01-01

    International Fusion Materials Irradiation Facility (IFMIF) is a proposal of D-Li intense neutron source to cover all aspects of the fusion materials development in the framework of IEA collaboration. The new activity has been started to qualifying the important technical issues called Key Element technology Phase since 2000. Although the neutron spectrum can be adjusted by changing the incident beam energy, it is favorable to be carried out many irradiation tasks at the same time under the unique beam condition. For designing the tailored neutron spectrum, neutron nuclear data for the moderator-reflector materials up to 50 MeV are required. The data for estimating the induced radioactivity is also required to keep the radiation level low enough at maintenance time. The candidate materials and the required accuracy of nuclear data are summarized. (author)

  3. Nuclear data needs for neutron spectrum tailoring at International Fusion Materials Irradiation Facility (IFMIF)

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    International Fusion Materials Irradiation Facility (IFMIF) is a proposal of D-Li intense neutron source to cover all aspects of the fusion materials development in the framework of IEA collaboration. The new activity has been started to qualifying the important technical issues called Key Element technology Phase since 2000. Although the neutron spectrum can be adjusted by changing the incident beam energy, it is favorable to be carried out many irradiation tasks at the same time under the unique beam condition. For designing the tailored neutron spectrum, neutron nuclear data for the moderator-reflector materials up to 50 MeV are required. The data for estimating the induced radioactivity is also required to keep the radiation level low enough at maintenance time. The candidate materials and the required accuracy of nuclear data are summarized. (author)

  4. The technology benefits of inertial confinement fusion research

    International Nuclear Information System (INIS)

    Powell, H.T.

    1999-01-01

    The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10 6 J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10 -6 m) with picosecond (10 -12 s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. The experience of inertial fusion research and development of spinning off technologies has not been unique to any one laboratory or country but has been similar in main research centers in the US, Europe, and Japan. Strengthening and broadening the inertial fusion effort to focus on creating a new source of electrical power (inertial fusion energy [IFE]) that is economically competitive and environmentally benign will yield rich rewards in technology spin-offs. The additional challenges presented by IFE are to make drivers affordable, efficient, and long-lived while operating at a repetition rate of a few Hertz; to make fusion targets that perform consistently at high-fusion yield; and to create target chambers that can repetitively handle greater than 100-MJ yields while producing minimal radioactive by

  5. Measurement of nuclear potentials from fusion excitation functions

    International Nuclear Information System (INIS)

    Huizenga, J.R.; Birkelund, J.R.

    1984-01-01

    The basis for measuring nuclear potentials from fusion excitation functions at energies above barrier is reviewed. It is argued that because of experimental and conceptual problems fusion excitation functions at high energies cannot lead to model independent measurements of internuclear potential at small separations. The Al 27 + Ne 20 reaction previously analyzed by others is used as an example of problems arising from the inability to distinguish complete and incomplete fusion in experimental data

  6. Nuclear structure and heavy-ion fusion

    International Nuclear Information System (INIS)

    Stokstad, R.G.

    1980-10-01

    A series of lectures is presented on experimental studies of heavy-ion fusion reactions with emphasis on the role of nuclear structure in the fusion mechanism. The experiments considered are of three types: the fusion of lighter heavy ions at subcoulomb energies is studied with in-beam γ-ray techniques; the subbarrier fusion of 16 O and 40 Ar with the isotopes of samarium is detected out of beam by x-radiation from delayed activity; and measurements at very high energies, again for the lighter ions, employ direct particle identification of evaporation residues. The experimental data are compared with predictions based on the fusion of two spheres with the only degree of freedom being the separation of the centers, and which interact via potentials that vary smoothly with changes in the mass and charge of the projectile and target. The data exhibit with the isotopes of samarium, a portion of these deviations can be understood in terms of the changing deformation of the target nucleus, but an additional degree of freedom such as neck formation appears necessary. The results on 10 B + 16 O and 12 C + 14 N → 26 Al at high bombarding energies indicate a maximum limiting angular momentum characteristic of the compound nucleus. At lower energies the nuclear structure of the colliding ion seems to affect strongly the cross section for fusion. Measurements made at subbarrier energies for a variety of projectile-target combinations in the 1p and 2s - 1d shell also indicate that the valence nucleons can affect the energy dependence for fusion. About half the systems studied so far have structureless excitation functions which follow a standard prediction. The other half exhibit large variations from this prediction. The possible importance of neutron transfer is discussed. The two-center shell model appears as a promising approach for gaining a qualitative understanding of these phenomena. 95 references, 52 figures, 1 table

  7. Nuclear Technology Programs semiannual progress report, April-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  8. Nuclear Technology Programs semiannual progress report, April-- September 1990

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  9. The Fight for Fusion: A Modern Nuclear War.

    Science.gov (United States)

    Rogers, Adam; Sereda, David

    1992-01-01

    Describes the work of Bogdan Maglich with helium-based fusion and barriers to its development resulting from lack of government support, competition for funding, and political pet projects. Compares tritium-based to helium-based fusion and the potential for nonradioactive nuclear power to supply the world's energy requirements with no negative…

  10. New nuclear data group constant sets for fusion reactor nuclear analyses based on JENDL-4.0 and FENDL-3.0

    International Nuclear Information System (INIS)

    Konno, Chikara; Ohta, Masayuki; Kwon, Saerom; Ochiai, Kentaro; Sato, Satoshi

    2015-01-01

    We have produced new nuclear data group constant sets from JENDL-4.0 and FENDL-3.0 for fusion reactor nuclear analyses; FUSION-J40-175, FUSION-F30-175 (40 materials, neutron 175 groups, gamma 42 groups), FUSION-J40-42 and FUSION-F30-42 (40 materials, neutron 42 groups, gamma 21 groups). MATXS files of JENDL-4.0 and FENDL-3.0 were newly produced with the NJOY2012 code. FUSION-J40-175, FUSION-J40-42, FUSION-F30-175 and FUSION-F30-42 were produced with the TRANSX code. KERMA factors, DPA and gas production cross-section data were also prepared from the MATXS files with TRANSX. Test calculations were carried out in order to validate these nuclear group constant sets. They suggested that these group constant sets had no problem. (author)

  11. The materials production and processing facility at the Spanish National Centre for fusion technologies (TechnoFusion)

    International Nuclear Information System (INIS)

    Munoz, A.; Monge, M.A.; Pareja, R.; Hernandez, M.T.; Jimenez-Rey, D.; Roman, R.; Gonzalez, M.; Garcia-Cortes, I.; Perlado, M.; Ibarra, A.

    2011-01-01

    In response to the urgent request from the EU Fusion Program, a new facility (TechnoFusion) for research and development of fusion materials has been planned with support from the Regional Government of Madrid and the Ministry of Science and Innovation of Spain. TechnoFusion, the National Centre for Fusion Technologies, aims screening different technologies relevant for ITER and DEMO environments while promoting the contribution of international companies and research groups into the Fusion Programme. For this purpose, the centre will be provided with a large number of unique facilities for the manufacture, testing (a triple-beam multi-ion irradiation, a plasma-wall interaction device, a remote handling for under ionizing radiation testing) and analysis of critical fusion materials. Particularly, the objectives, semi-industrial scale capabilities and present status of the TechnoFusion Materials Production and Processing (MPP) facility are presented. Previous studies revealed that the MPP facility will be a very promising infrastructure for the development of new materials and prototypes demanded by the fusion technology and therefore some of them will be here briefly summarized.

  12. The materials production and processing facility at the Spanish National Centre for fusion technologies (TechnoFusion)

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A., E-mail: rpp@fis.uc3m.es [Departamento de Fisica, UC3M, Avda de la Universidad 30, 28911 Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Departamento de Fisica, UC3M, Avda de la Universidad 30, 28911 Leganes, Madrid (Spain); Hernandez, M.T. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain); Jimenez-Rey, D. [CMAM, UAM, C/Faraday 3, 28049, Madrid (Spain); Roman, R.; Gonzalez, M.; Garcia-Cortes, I. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain); Perlado, M. [IFN, ETSII, UPM, C/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Ibarra, A. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain)

    2011-10-15

    In response to the urgent request from the EU Fusion Program, a new facility (TechnoFusion) for research and development of fusion materials has been planned with support from the Regional Government of Madrid and the Ministry of Science and Innovation of Spain. TechnoFusion, the National Centre for Fusion Technologies, aims screening different technologies relevant for ITER and DEMO environments while promoting the contribution of international companies and research groups into the Fusion Programme. For this purpose, the centre will be provided with a large number of unique facilities for the manufacture, testing (a triple-beam multi-ion irradiation, a plasma-wall interaction device, a remote handling for under ionizing radiation testing) and analysis of critical fusion materials. Particularly, the objectives, semi-industrial scale capabilities and present status of the TechnoFusion Materials Production and Processing (MPP) facility are presented. Previous studies revealed that the MPP facility will be a very promising infrastructure for the development of new materials and prototypes demanded by the fusion technology and therefore some of them will be here briefly summarized.

  13. Spin-off produced by the fusion research and development

    International Nuclear Information System (INIS)

    Koizumi, Koichi; Konishi, T.; Tsuji, Hiroshi

    2001-03-01

    Nuclear fusion devices are constructed by the integration of many frontier technologies and fusion science based on a wide area of science such as physics, electromagnetics, thermodynamics, mechanics, electrical engineering, electronics, material engineering, heat transfer and heat flow, thermal engineering, neutronics, cryogenics, chemical engineering, control engineering, instrumentation engineering, vacuum engineering. For this, the research and development of elementary technology for fusion devices contributes to advance the technology level of each basic field. In addition, the mutual stimulus among various research fields contributes to increase the potential level of whole 'science and technology'. The spin-offs produced by the fusion technology development give much contribution not only to the general industrial technologies such as semiconductor technology, precision machining of large component, but also contribute to the progress of the accelerator technology, application technology of superconductivity, instrumentation and diagnostics, plasma application technology, heat-resistant and heavy radiation-resistant material technology, vacuum technology, and computer simulation technology. The spin-off produced by the fusion technology development expedite the development of frontier technology of other field and give much contribution to the progress of basic science on physics, space science, material science, medical science, communication, and environment. This report describes the current status of the spin-off effects of fusion research and development by focusing on the contribution of technology development for International Thermonuclear Experimental Reactor (ITER) to industrial technology. The possibilities of future application in the future are also included in this report from the view point of researchers working for nuclear fusion development. Although the nuclear fusion research has a characteristic to integrate the frontier technologies of

  14. The Canadian Fusion Fuels Technology Project

    International Nuclear Information System (INIS)

    Dautovich, D.P.; Gierszewski, P.J.; Wong, K.Y.; Stasko, R.R.; Burnham, C.D.

    1987-04-01

    The Canadian Fusion Fuels Technology Project (CFFTP) is a national project whose aim is to develop capability in tritium and robotics technologies for application to international fusion development programs. Activities over the first five years have brought substantial interaction with the world's leading projects such as Tokamak Fusion Test Reactor (TFTR), the Joint European Torus (JET), and the Next European Torus (NET), Canadian R and D and engineering services, and hardware are in demand as these major projects prepare for tritium operation leading to the demonstration of energy breakeven around 1990. Global planning is underway for the next generation ignition experiment. It is anticipated this will provide increased opportunity for CFFTP and its contractors among industry, universities and governmental laboratories

  15. Fusion Technology for ITER, the ITER Project. Further Development Towards a DEMO Fusion Power Plant (3/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    This is the second half of a lecture series on fusion and will concentrate on fusion technology. The early phase of fusion development was concentrated on physics. However, during the 1980s it was realized that if one wanted to enter the area of fusion reactor plasmas, even in an experimental machine, a significant advance in fusion technologies would be needed. After several conceptual studies of reactor class fusion devices in the 1980s the engineering design phase of ITER started in earnest during the 1990s. The design team was in the beginning confronted with many challenges in the fusion technology area as well as in physics for which no readily available solution existed and in a few cases it was thought that solutions may be impossible to find. However, after the initial 3 years of intensive design and R&D work in an international framework utilizing basic fusion technology R&D from the previous decade it became clear that for all problems a conceptual solution could be found and further devel...

  16. Nuclear fusion and genome encounter during yeast zygote formation.

    Science.gov (United States)

    Tartakoff, Alan Michael; Jaiswal, Purnima

    2009-06-01

    When haploid cells of Saccharomyces cerevisiae are crossed, parental nuclei congress and fuse with each other. To investigate underlying mechanisms, we have developed assays that evaluate the impact of drugs and mutations. Nuclear congression is inhibited by drugs that perturb the actin and tubulin cytoskeletons. Nuclear envelope (NE) fusion consists of at least five steps in which preliminary modifications are followed by controlled flux of first outer and then inner membrane proteins, all before visible dilation of the waist of the nucleus or coalescence of the parental spindle pole bodies. Flux of nuclear pore complexes occurs after dilation. Karyogamy requires both the Sec18p/NSF ATPase and ER/NE luminal homeostasis. After fusion, chromosome tethering keeps tagged parental genomes separate from each other. The process of NE fusion and evidence of genome independence in yeast provide a prototype for understanding related events in higher eukaryotes.

  17. Some introductory notes on the problem of nuclear energy by controlled fusion reactions

    International Nuclear Information System (INIS)

    Pedretti, E.

    1988-01-01

    Written for scientists and technologist interested in, but unfamiliar with nuclear energy by controlled fusion reactions, this ''sui generis'' review paper attempts to provide the reader, as shortly as possible, with a general idea of the main issues at stake in nuclear fusion research. With the purpose of keeping this paper within a reasonable length, the various subjects are only outlined in their essence, basic features, underlying principles, etc., without entering into details, which are left to the quoted literature. Due to the particular readership of this journal, vacuum problems and/or aspects of fusion research anyhow related with vacuum science and technology are evidentiated. After reviewing fusion reactions' cross sections, fusion by accelerators and muon catalyzed fusion are described, followed by mention of Lawson's criteria and of plasma confinement features. Then, inertial confinement fusion is dealt with, also including one example of laser system (Nova), one of accelerator facility (PBFA-II) and some guesses on the classified Centurion-Halite program. Magnetic confinement fusion research is also reviewed, in particulary reporting one example of linear machine (MFTF-B), two examples of toroidal machines other than Tokamak (ATF and Eta-Beta-II) and various examples of Tokamaks, including PBX and PBX-M; TFTR, JET, JT-60, T-15 and Tore-Supra (large machines); Alcator A, FT, Alcator C/MTX, Alcator C-Mod and T-14 (compact high field machines). Tokamaks under design for ignition experiments (Ignitor, CIT, Ignitex and NET) are also illustrated. Thermal conversion of fusion power and direct generation of electricity are mentioned; conceptual design of fusion power plants are considered and illustrated by four examples (STARFIRE, WILDCAT, MARS and CASCADE). The D 3 He fuel cycle is discussed as an alternative more acceptable than Deuterium-Tritium, and thw Candor proposal is reported. After recalling past experience of the fission power development, some

  18. Present knowledge of nuclear cold fusion

    International Nuclear Information System (INIS)

    Violante, V.; Tripodi, P.; Lombardi, C.

    2001-01-01

    The nuclear cold fusion, disclosed with clamour in 1989, was successively deemed by most people a blunder. However, the research activities went on, even if softly, and they have been producing more convincing and reproducible results, as well as theoretical models capable of explaining the noticeable anomalies of this phenomenon with respect to the hot fusion. Then, now the demonstration of the phenomenon may be considered valid and accepted. More time is needed to know whether and how this new process may be exploitable to produce energy on an industrial scale [it

  19. 2010 ANNUAL MEETING ON NUCLEAR TECHNOLOGY. Pt. 3. Section reports

    International Nuclear Information System (INIS)

    Arnold, Uwe; Baumann, Erik; Fischer, Ulrich; Bohnstedt, Angelika; Gehring, Michael; Roedig, Manfred; Willschuetz, Hans-Georg; Goers, Stefan; Schoenfelder, Christian

    2010-01-01

    Summary report on these 6 - out of 12 - Sessions of the Annual Conference on Nuclear Technology held in Berlin on May 3 to 6, 2010: - Decommissioning of Nuclear Installations (Session 7), - Fusion Technology (Session 8), - Energy Industry and Economics (Session 10), - Radiation Protection (Session 11), - New Build and Innovations (Session 12), and - Education, Expert Knowledge, Know-how-Transfer (Session 13). The other Sessions: - Reactor Physics and Methods of Calculation (Session 1), - Thermodynamics and Fluid Dynamics (Session 2), - Safety of Nuclear Installations - Methods, Analysis, Results (Session 3), - Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Session 4), - Front End of the Fuel Cycle, Fuel Elements and Core Components (Session 5), - Operation of Nuclear Installations (Session 6) have been covered in atw issues 10 and 11 (2010). (orig.)

  20. Innovative designs and technologies of nuclear power. IV International scientific and technical conference. Book of abstracts

    International Nuclear Information System (INIS)

    2016-01-01

    IV International scientific and technical conference “Innovative designs and technologies of nuclear power” has been organized and is conducted by JSC NIKIET with support from Rosatom State Corporation, the International Atomic Energy Agency, the Russian Academy of Sciences and the Nuclear Society of Russia. The conference topics include: innovative designs of nuclear facilities for various applications, nuclear fuel and new materials, closed fuel cycle technologies, SNF and RW management, technological answers to nonproliferation problems, small power reactors (stationary, transportable, floatable, propulsion, space), integrated codes of a new generation for safety analysis of nuclear power plants and fuel cycles, controlled fusion [ru

  1. The European programme for controlled nuclear fusion

    International Nuclear Information System (INIS)

    This illustrated document is intended for information only and should not be used as a technical reference. The nuclear fusion reactors are presented with the two approaches: magnetic confinement and inertial confinement; are described: the place of fusion in the world energy scene and its importance for Europe, how research is at present organized, and the European programme with this next stage: the JET (Joint European Torus), the largest tokamak machine in Europe

  2. ANNETTE Project : contributing to the nuclearization of fusion

    NARCIS (Netherlands)

    Ambrosini, W.; Cizelj, L.; Dieguez Porras, P.; Jaspers, R.; Noterdaeme, J.; Scheffer, M.; Schoenfelder, C.

    2018-01-01

    The ANNETTE Project (Advanced Networking for Nuclear Education and Training and Transfer of Expertise) is well underway, and one of its work packages addresses the design, development and implementation of nuclear fusion training. A systematic approach is used that leads to the development of new

  3. Progress of laser fusion research

    International Nuclear Information System (INIS)

    Yamanaka, Chiyoe

    1988-01-01

    The history of the research on nuclear fusion utilizing laser is described. It started in USSR in 1968, but the full scale start of laser implosion nuclear fusion was in 1972. In Osaka University, nuclear fusion neutrons were detected with a solid deuterium target and the phenomenon of parametric abnormal absorption in laser plasma was found in 1971. The new type target for implosion nuclear fusion ''Canon ball'' was devised in 1975. The phenomenon of the abnormal transmission of laser beam through a thin metal film in a multiple film target was found in 1976, and named ''Osaka effect''. Also the development of lasers has been advanced, and in 1983, a largest glass laser in the world, Gekko 12, with 12 beams, 30 kJ output, 55 TW, was completed. The new target LHART was devised, which enabled the generation of 10 trillion D-T reaction neutrons. Due to the development of high power laser technology, the realization of the new design of fuel pellets, the evaluation of the data by computer simulation, and the realization of new plasma diagnostic method, the research on laser nuclear fusion has developed rapidly, and the attainment of break-even is expected in 1990s. The features of inertial nuclear fusion are enumerated. (Kako, I.)

  4. Recent developments in IFE safety and tritium research and considerations for future nuclear fusion facilities

    International Nuclear Information System (INIS)

    Reyes, Susana; Anklam, Tom; Meier, Wayne; Campbell, Patrick; Babineau, Dave; Becnel, James; Taylor, Craig; Coons, Jim

    2016-01-01

    Highlights: • The safety characteristics and at risk inventories in an IFE facility are discussed. • The primary nuclear hazard is the potential exposure of workers and/or the public to tritium and/or neutronically activated products. • Recent technology developments in tritium processing are key for minimization of inventories. • Initial safety studies indicate that hazards associated to the use of liquid lithium can be appropriately managed. • Simulation of worst-case scenarios indicate that the accident consequences are limited and below the limit for public evacuation. - Abstract: Over the past five years, the fusion energy group at Lawrence Livermore National Laboratory (LLNL) has made significant progress in the area of safety and tritium research for Inertial Fusion Energy (IFE). Focus has been driven towards the minimization of inventories, accident safety, development of safety guidelines and licensing considerations. Recent technology developments in tritium processing and target fill have had a major impact on reduction of tritium inventories in the facility. A safety advantage of inertial fusion energy using indirect-drive targets is that the structural materials surrounding the fusion reactions can be protected from target emissions by a low-pressure chamber fill gas, therefore eliminating plasma-material erosion as a source of activated dust production. An important inherent safety advantage of IFE when compared to other magnetic fusion energy (MFE) concepts that have been proposed to-date (including ITER), is that loss of plasma control events with the potential to damage the first wall, such as disruptions, are non-conceivable, therefore eliminating a number of potential accident initiators and radioactive in-vessel source term generation. In this paper, we present an overview of the safety assessments performed to-date, comparing results to the US DOE Fusion Safety Standards guidelines and the recent lessons-learnt from ITER safety and

  5. Recent developments in IFE safety and tritium research and considerations for future nuclear fusion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Susana, E-mail: reyes20@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Anklam, Tom; Meier, Wayne; Campbell, Patrick [Lawrence Livermore National Laboratory, Livermore, CA (United States); Babineau, Dave; Becnel, James [Savannah River National Laboratory, Aiken, SC (United States); Taylor, Craig; Coons, Jim [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-11-01

    Highlights: • The safety characteristics and at risk inventories in an IFE facility are discussed. • The primary nuclear hazard is the potential exposure of workers and/or the public to tritium and/or neutronically activated products. • Recent technology developments in tritium processing are key for minimization of inventories. • Initial safety studies indicate that hazards associated to the use of liquid lithium can be appropriately managed. • Simulation of worst-case scenarios indicate that the accident consequences are limited and below the limit for public evacuation. - Abstract: Over the past five years, the fusion energy group at Lawrence Livermore National Laboratory (LLNL) has made significant progress in the area of safety and tritium research for Inertial Fusion Energy (IFE). Focus has been driven towards the minimization of inventories, accident safety, development of safety guidelines and licensing considerations. Recent technology developments in tritium processing and target fill have had a major impact on reduction of tritium inventories in the facility. A safety advantage of inertial fusion energy using indirect-drive targets is that the structural materials surrounding the fusion reactions can be protected from target emissions by a low-pressure chamber fill gas, therefore eliminating plasma-material erosion as a source of activated dust production. An important inherent safety advantage of IFE when compared to other magnetic fusion energy (MFE) concepts that have been proposed to-date (including ITER), is that loss of plasma control events with the potential to damage the first wall, such as disruptions, are non-conceivable, therefore eliminating a number of potential accident initiators and radioactive in-vessel source term generation. In this paper, we present an overview of the safety assessments performed to-date, comparing results to the US DOE Fusion Safety Standards guidelines and the recent lessons-learnt from ITER safety and

  6. Nuclear synergism of the light elements

    International Nuclear Information System (INIS)

    Harms, A.A.

    1983-05-01

    Some basic issues concerning accelerator initiated and fusion sustained nuclear energy systems are examined. For this purpose we identify selected nuclear fusion reactions characterized by a variable ion-to-neutron content and explore their intrinsic couplings and regenerative features. These are then related to particular systems concepts which emphasize fusion physics and accelerator technology. It is concluded that several light-element reaction systems possess appealing and interesting properties and can further be associated with selected advanced nuclear technologies. Their eventual implementation as nuclear energy systems requires further research in fusion physics, accelerator technology and mathematical physics. Because of the substantial potential benefits of such nuclear energy systems, it is concluded that research in this area should be pursued with much vigour. (orig.)

  7. A Review on the Potential Use of Austenitic Stainless Steels in Nuclear Fusion Reactors

    Science.gov (United States)

    Şahin, Sümer; Übeyli, Mustafa

    2008-12-01

    Various engineering materials; austenitic stainless steels, ferritic/martensitic steels, vanadium alloys, refractory metals and composites have been suggested as candidate structural materials for nuclear fusion reactors. Among these structural materials, austenitic steels have an advantage of extensive technological database and lower cost compared to other non-ferrous candidates. Furthermore, they have also advantages of very good mechanical properties and fission operation experience. Moreover, modified austenitic stainless (Ni and Mo free) have relatively low residual radioactivity. Nevertheless, they can't withstand high neutron wall load which is required to get high power density in fusion reactors. On the other hand, a protective flowing liquid wall between plasma and solid first wall in these reactors can eliminate this restriction. This study presents an overview of austenitic stainless steels considered to be used in fusion reactors.

  8. Fusion reactor safety

    International Nuclear Information System (INIS)

    1987-12-01

    Nuclear fusion could soon become a viable energy source. Work in plasma physics, fusion technology and fusion safety is progressing rapidly in a number of Member States and international collaboration continues on work aiming at the demonstration of fusion power generation. Safety of fusion reactors and technological and radiological aspects of waste management are important aspects in the development and design of fusion machines. In order to provide an international forum to review and discuss the status and the progress made since 1983 in programmes related to operational safety aspects of fusion reactors, their waste management and decommissioning concepts, the IAEA had organized the Technical Committee on ''Fusion Reactor Safety'' in Culham, 3-7 November 1986. All presentations of this meeting were divided into four sessions: 1. Statements on National-International Fusion Safety Programmes (5 papers); 2. Operation and System Safety (15 papers); 3. Waste Management and Decommissioning (5 papers); 4. Environmental Impacts (6 papers). A separate abstract was prepared for each of these 31 papers. Refs, figs, tabs

  9. Stockpile tritium production from fusion

    International Nuclear Information System (INIS)

    Lokke, W.A.; Fowler, T.K.

    1986-01-01

    A fusion breeder holds the promise of a new capability - ''dialable'' reserve capacity at little additional cost - that offers stockpile planners a new way to deal with today's uncertainties in forecasting long range needs. Though still in the research stage, fusion can be developed in time to meet future military requirements. Much of the necessary technology will be developed by the ongoing magnetic fusion energy program. However, a specific program to develop the nuclear technology required for materials production is needed if fusion is to become a viable option for a new production complex around the turn of the century

  10. Present status and problems of remote systems technology in nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This reports the activities of Special Committee on Remote Systems Technology, Atomic Energy Society of Japan, during the period from Oct. 1984 to Sep. 1988. The Committee studied and reviewed the present status and problems of remote operation and maintenance in various fields of nuclear industry. Reported items are; reactor operation, reprocessing, nuclear fusion and decommissioning. It also reviews robotics and remote systems tehcnology applied to space and marine development.

  11. Present status and problems of remote systems technology in nuclear industry

    International Nuclear Information System (INIS)

    1989-01-01

    This reports the activities of Special Committee on Remote Systems Technology, Atomic Energy Society of Japan, during the period from Oct. 1984 to Sep. 1988. The Committee studied and reviewed the present status and problems of remote operation and maintenance in various fields of nuclear industry. Reported items are; reactor operation, reprocessing, nuclear fusion and decommissioning. It also reviews robotics and remote systems tehcnology applied to space and marine development. (author)

  12. Compilation of benchmark results for fusion related Nuclear Data

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Wada, Masayuki; Oyama, Yukio; Ichihara, Chihiro; Makita, Yo; Takahashi, Akito

    1998-11-01

    This report compiles results of benchmark tests for validation of evaluated nuclear data to be used in nuclear designs of fusion reactors. Parts of results were obtained under activities of the Fusion Neutronics Integral Test Working Group organized by the members of both Japan Nuclear Data Committee and the Reactor Physics Committee. The following three benchmark experiments were employed used for the tests: (i) the leakage neutron spectrum measurement experiments from slab assemblies at the D-T neutron source at FNS/JAERI, (ii) in-situ neutron and gamma-ray measurement experiments (so-called clean benchmark experiments) also at FNS, and (iii) the pulsed sphere experiments for leakage neutron and gamma-ray spectra at the D-T neutron source facility of Osaka University, OKTAVIAN. Evaluated nuclear data tested were JENDL-3.2, JENDL Fusion File, FENDL/E-1.0 and newly selected data for FENDL/E-2.0. Comparisons of benchmark calculations with the experiments for twenty-one elements, i.e., Li, Be, C, N, O, F, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, W and Pb, are summarized. (author). 65 refs

  13. Interim report of working group of Nuclear Fusion Committee

    International Nuclear Information System (INIS)

    Takuma, Hiroshi

    1986-01-01

    The conclusion of the working group was presented as an interim report to the general meeting of Nuclear Fusion Committee, which became the base for deciding the future plan. The report was the result of the hard work for about a half year by five Committee experts and 23 researchers, and has the rich contents. At present, the supply of petroleum relaxed, and the trend that a large amount of investment for a long period for nuclear fusion research is problematical has become strong. Of course, the importance of the nuclear fusion research never changes. The research projects of Heliotron E, Gekko 12, Gamma 10 and so on have advanced, and the base for synthetically promoting the research has been completed. It is indispensable to decide the most effective plan for the next stage. The working group discussed on the five year plan, especially on the research based on a large project. The policy of the works and problems, the progress of the works of respective subgroups, and the summarization are reported. The researches on nuclear burning simulation, no current plasma using an external conductor system and making an axisymmetrical high-beta torus steady were proposed. (Kako, I.)

  14. 1982 annual status report: thermonuclear fusion technology

    International Nuclear Information System (INIS)

    1982-01-01

    The objective of this programme is to study the technological problems related to ''Post Jet'' experimental machines and, in a longer range, to assess the engineering aspects of Fusion Power Reactor Plants. According to the decision taken by the Council of Ministers on the JRC multiannual programme (1980-1983), the work performed on 1982 concerns four projects, namely: The Project 1: ''Fusion Reactor Studies''concerns mainly the NET (Next European Torus) studies which have been continued in the framework of the European participation to INTOR (INternational TOkamak Reactor). This represents a collaborative effort to design a major fusion experiment beyond the-upcoming generation of large tokamaks. The Project 2: ''Blanket Technology'' has the aim to investigate the behaviour of blanket materials in fusion conditions. The Project 3: ''Materials Sorting and Development'' has the aim to assess the mechanical properties and radiation damage of standard and advanced materials suited for structures, in particular for application as first wall of the fusion reactors. The Project 4: ''Cyclotron Operation and Experiments''has the task to exploit a cyclotron to simulate radiation damages to materials in a fusion ambient

  15. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume IV

    International Nuclear Information System (INIS)

    Abdou, M.

    1984-10-01

    This volume contains the following chapters (1) neutronics tests, (2) fluence considerations, (3) instrumentation and test matrix, (4) non-neutron test stands, (5) accelerator-based point neutron sources, (6) utilization of fission reactors, (7) tandem mirror test facilities, (8) tokamak fusion test facilities, (9) reliability development testing impacts on fusion reactor availability, and (10) fusion development scenarios. In addition, the following appendices are included: (1) evaluation of experience from fast breeder reactors, (2) observations of experts from the fission field, (3) evaluation of experience from the aerospace industry, (4) characterization of fusion nuclear systems operating environment, (5) modelling of MFTF-α+T high gamma mode performance, and (6) small-scale, multiple effects testing at US/DOE breeder reactor in-pile facilities

  16. Fusion development and technology

    International Nuclear Information System (INIS)

    Montgomery, D.B.

    1991-01-01

    This report discusses the following topics: superconducting magnet technology high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies -- Aries; ITER physics; ITER superconducting PF scenario and magnet analysis; and safety, environmental and economic factors in fusion development

  17. The recent status of nuclear technology development in Thailand

    International Nuclear Information System (INIS)

    Laoharojanaphand, Sirinart; Cherdchu, Chainarong; Sumitra, Tatchai; Sudprasert, Wanwisa; Chankow, Nares; Tiyapan, Kanokrat; Onjun, Thawatchai; Bhanthumnavin, Duangduen

    2016-01-01

    Thailand has started the peaceful utilization of nuclear program in 1961. The program has developed considerably in various aspects. Laws and regulations were established while applications in medical, agriculture, industry as well as research and education have been accomplished successfully in the country. As for the energy production, Thailand has realized the importance of nuclear power generation several years back. However, the implementation has been delayed. There are four main nuclear organizations namely The Thai Atomic Energy Commission - the country's policy holder, the Office of Atoms for Peace (OAP) - the nuclear regulatory bodies, Thailand Institute of Nuclear Technology (TINT: Public Organization) - the research and services provider in nuclear field and the Nuclear Society of Thailand the non-governmental organization. Major research in nuclear technology is actively carried out at TINT. Filed of research include medical and public health, agricultural, material and industrial, environmental and advanced technology like neutron scattering and nuclear fusion. Nuclear density gauge has been utilized in many industries including petrochemical production and refineries. TINT is also providing services on nuclear radiography to industrial and clients. Additionally, x-ray techniques have been utilized in many manufacturers for quality and process control. Nuclear applications for medical purpose have been utilized in Thailand several years back both for diagnostic and therapeutic purposes. To ensure safe and peaceful use of nuclear technology and for the safety of the general public in Thailand, OAP has launched laws, regulations and ministerial announcements. Thailand has only one multi-purposes nuclear research reactor and no NPP. Yet we have realized the importance of nuclear power generation several years back. (N.T.)

  18. Technological implications of fusion power: requirements and status

    International Nuclear Information System (INIS)

    Steiner, D.

    1978-01-01

    The major technological requirements for fusion power, as implied by current conceptual designs of fusion power plants, are identified and assessed relative to the goals of existing technology programs. The focus of the discussion is on the tokamak magnetic confinement concept; however, key technological requirements of mirror magnetic confinement systems and of inertial confinement concepts will also be addressed. The required technology is examined on the basis of three general areas of concern: (a) the power balance, that is, the unique power handling requirements associated with the production of electrical power by fusion; (b) reactor design, focusing primarily on the requirements imposed by a tritium-based fuel cycle, thermal hydraulic considerations, and magnet systems; and (c) materials considerations, including radiation damage effects, neutron-induced activation, and resource limitations

  19. Mechanical technology unique to laser fusion experimental systems

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1980-01-01

    Hardware design for laser fusion experimental machines has led to a combination of engineering technologies that are critical to the successful operation of these machines. These large opto-mechanical systems are dependent on extreme cleanliness, accommodation to efficient maintenance, and high stability. These three technologies are the primary mechanical engineering criteria for laser fusion devices

  20. Status of tritium technology development for magnetic-fusion energy

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1983-01-01

    The development of tritium technology for the magnetic fusion energy program has progressed at a rapid rate over the past two years. The focal points for this development in the United States have been the Tritium Systems Test Assembly at Los Alamos and the FED/INTOR studies supported by the Fusion Engineering Design Center at Oak Ridge. In Canada the Canadian Fusion Fuel Technology Project has been initiated and promises to make significant contributions to the tritium technology program in the next few years. The Japanese government has now approved funding for the Tritium Processing Laboratory at the Japan Atomic Energy Research Institute's Tokai Research Establishment. Construction on this new facility is scheduled to begin in April 1983. This facility will be the center for fusion tritium technology development in Japan. The European Community is currently working on the design of the tritium facility for the Joint European Torus. There is considerable interaction between all of these programs, thus accelerating the overall development of this crucial technology

  1. Nuclear Technology Programs semiannual progress report, April-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. (ed.)

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  2. Nuclear technology programs. Semiannual progress report, April--September 1991

    International Nuclear Information System (INIS)

    1993-07-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  3. Technological and engineering challenges of fusion

    International Nuclear Information System (INIS)

    Maisonnier, David; Hayward, Jim

    2008-01-01

    The current fusion development scenario in Europe assumes the sequential achievement of key milestones. Firstly, the qualification of the DEMO/reactor physics basis in ITER, secondly, the qualification of materials for in-vessel components in IFMIF and, thirdly, the qualification of components and processes in DEMO. Although this scenario is constrained by budgetary considerations, it assumes the resolution of many challenges in physics, technology and engineering. In the first part of the paper, the technological and engineering challenges to be met in order to satisfy the current development scenario will be highlighted. These challenges will be met by an appropriate share of the work between ITER, IFMIF, DEMO and the necessary accompanying programme, which will have to include a number of dedicated facilities (e.g. for the development of H and CD systems). In the second part of the paper, the consequences of a considerable acceleration of the fusion development programme will be discussed. Although most of the technological and engineering challenges identified above will have to be met within a shorter timescale, it is possible to limit the requirements and expectation for a first fusion power plant with respect to those adopted for the current fusion development scenario. However, it must be recognised that such a strategy will inevitably result in increased risk and a reduction in the economy of the plant. (author)

  4. 2010 ANNUAL MEETING ON NUCLEAR TECHNOLOGY. Pt. 4. Section reports

    International Nuclear Information System (INIS)

    Berlepsch, Thilo v.; Hering, Wolfgang

    2011-01-01

    Summary report on 2 Sessions of Section: - New Build and Innovations (Section 12) of the ANNUAL MEETING On NUCLEAR TECHNOLOGY held in Berlin on May 4 to 6, 2010. The other Sections 'Reactor Physics and Methods of Calculation (Section 1)', 'Thermodynamics and Fluid Dynamics (Section 2)', 'Safety of Nuclear Installations - Methods, Analysis, Results (Section 3)', 'Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Section 4)', 'Front End of the Fuel Cycle, Fuel Elements and Core Components (Section 5)', 'Operation of Nuclear Installations (Section 6)', 'Decommissioning of Nuclear Installations (Section 7)', 'Fusion Technology (Section 8)', 'Energy Industry and Economics (Section 10)', 'Radiation Protection (Section 11)', 'New Build and Innovations (Session New Build and Innovations, Section 12)', and 'Education, Expert Knowledge, Know-how-Transfer (Section 13)' have been covered in atw issues 10, 11 and 12 (2010). (orig.)

  5. 2009 annual meeting on nuclear technology. Pt. 1. Section reports

    International Nuclear Information System (INIS)

    Schaffrath, Andreas; Hartmann, Miks; Hoffmann, Petra Britt; Stieglitz, Robert; Hoehne, Thomas; Weiss, Frank-Peter; Hollands, Thorsten; Sanchez Espinoza, Victor Hugo; Tietsch, Wolfgang; Sonnenburg, H.G.

    2009-01-01

    Summary report on these 3 - out of 13 - Sessions of the Annual Conference on Nuclear Technology held in Dresden on May 12 to 14, 2009: Thermodynamics and Fluid Dynamics (Session 2), Safety of Nuclear Installations - Methods, Analysis, Results (Session 3), and, Front End of the Fuel Cycle, Fuel Elements and Core Components (Session 4). The other Sessions Reactor Physics and Methods of Calculation (Session 1), Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Session 5), Operation of Nuclear Installations (Session 6), Decommissioning of Nuclear Installations (Session 7), Fusion Technology (Session 8), Research Reactors, Neutron Sources (Session 9), Energy Industry and Economics (Session 10), Radiation Protection (Session 11), New Build and Innovations (Session 12), and Education, Expert Knowledge, Know How Transfer (Session 13) have be covered in reports in further issues of atw. (orig.)

  6. Fusion option to dispose of spent nuclear fuel and transuranic elements

    International Nuclear Information System (INIS)

    Gohar, Y.

    2000-01-01

    The fusion option is examined to solve the disposition problems of the spent nuclear fuel and the transuranic elements. The analysis of this report shows that the top rated solution, the elimination of the transuranic elements and the long-lived fission products, can be achieved in a fusion reactor. A 167 MW of fusion power from a D-T plasma for sixty years with an availability factor of 0.75 can transmute all the transuranic elements and the long-lived fission products of the 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. The operating time can be reduced to thirty years with use of 334 MW of fusion power, a system study is needed to define the optimum time. In addition, the fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future. Fusion blankets with a liquid carrier for the transuranic elements can achieve a transmutation rate for the transuranic elements up to 80 kg/MW.y of fusion power with k eff of 0.98. In addition, the liquid blankets have several advantages relative to the other blanket options. The energy from this transmutation is utilized to produce revenue for the system. Molten salt (Flibe) and lithium-lead eutectic are identified as the most promising liquids for this application, both materials are under development for future fusion blanket concepts. The Flibe molten salt with transuranic elements was developed and used successfully as nuclear fuel for the molten salt breeder reactor in the 1960's

  7. Analysis of nuclear export using photoactivatable GFP fusion proteins and interspecies heterokaryons.

    Science.gov (United States)

    Nakrieko, Kerry-Ann; Ivanova, Iordanka A; Dagnino, Lina

    2010-01-01

    In this chapter, we review protocols for the analysis of nucleocytoplasmic shuttling of transcription factors and nuclear proteins, using two different approaches. The first involves the use of photoactivatable forms of the protein of interest by fusion to photoactivatable green fluorescent protein to follow its movement out of the nucleus by live-cell confocal microscopy. This methodology allows for the kinetic characterization of protein movements as well as measurement of steady-state levels. In a second procedure to assess the ability of a nuclear protein to move into and out of the nucleus, we describe the use of interspecies heterokaryon assays, which provide a measurement of steady-state distribution. These technologies are directly applicable to the analysis of nucleocytoplasmic movements not only of transcription factors, but also other nuclear proteins.

  8. Vegetative hyphal fusion and subsequent nuclear behavior in Epichloë grass endophytes.

    Science.gov (United States)

    Shoji, Jun-Ya; Charlton, Nikki D; Yi, Mihwa; Young, Carolyn A; Craven, Kelly D

    2015-01-01

    Epichloë species (including the former genus Neotyphodium) are fungal symbionts of many agronomically important forage grasses, and provide their grass hosts with protection from a wide range of biotic and abiotic stresses. Epichloë species include many interspecific hybrids with allodiploid-like genomes, which may provide the potential for combined traits or recombination to generate new traits. Though circumstantial evidence suggests that such interspecific hybrids might have arisen from nuclear fusion events following vegetative hyphal fusion between different Epichloë strains, this hypothesis has not been addressed empirically. Here, we investigated vegetative hyphal fusion and subsequent nuclear behavior in Epichloë species. A majority of Epichloë strains, especially those having a sexual stage, underwent self vegetative hyphal fusion. Vegetative fusion also occurred between two hyphae from different Epichloë strains. Though Epichloë spp. are uninucleate fungi, hyphal fusion resulted in two nuclei stably sharing the same cytoplasm, which might ultimately lead to nuclear fusion. In addition, protoplast fusion experiments gave rise to uninucleate putative hybrids, which apparently had two markers, one from each parent within the same nucleus. These results are consistent with the notion that interspecific hybrids arise from vegetative hyphal fusion. However, we also discuss additional factors, such as post-hybridization selection, that may be important to explain the recognized prevalence of hybrids in Epichloë species.

  9. ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating.

    Science.gov (United States)

    Rogers, Jason V; Arlow, Tim; Inkellis, Elizabeth R; Koo, Timothy S; Rose, Mark D

    2013-12-01

    During yeast mating, two haploid nuclei fuse membranes to form a single diploid nucleus. However, the known proteins required for nuclear fusion are unlikely to function as direct fusogens (i.e., they are unlikely to directly catalyze lipid bilayer fusion) based on their predicted structure and localization. Therefore we screened known fusogens from vesicle trafficking (soluble N-ethylmaleimide-sensitive factor attachment protein receptors [SNAREs]) and homotypic endoplasmic reticulum (ER) fusion (Sey1p) for additional roles in nuclear fusion. Here we demonstrate that the ER-localized SNAREs Sec20p, Ufe1p, Use1p, and Bos1p are required for efficient nuclear fusion. In contrast, Sey1p is required indirectly for nuclear fusion; sey1Δ zygotes accumulate ER at the zone of cell fusion, causing a block in nuclear congression. However, double mutants of Sey1p and Sec20p, Ufe1p, or Use1p, but not Bos1p, display extreme ER morphology defects, worse than either single mutant, suggesting that retrograde SNAREs fuse ER in the absence of Sey1p. Together these data demonstrate that SNAREs mediate nuclear fusion, ER fusion after cell fusion is necessary to complete nuclear congression, and there exists a SNARE-mediated, Sey1p-independent ER fusion pathway.

  10. Fusion an introduction to the physics and technology of magnetic confinement fusion

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    This second edition of a popular textbook is thoroughly revised with around 25% new and updated content.It provides an introduction to both plasma physics and fusion technology at a level that can be understood by advanced undergraduates and graduate students in the physical sciences and related engineering disciplines.As such, the contents cover various plasma confinement concepts, the support technologies needed to confine the plasma, and the designs of ITER as well as future fusion reactors.With end of chapter problems for use in courses.

  11. 2014 Nuclear Fusion Prize Acceptance Speech 2014 Nuclear Fusion Prize Acceptance Speech

    Science.gov (United States)

    Snyder, P. B.

    2015-01-01

    It is a great honor to receive the 2014 Nuclear Fusion Prize, here at the 25th IAEA Fusion Energy Conference. On behalf of everyone involved in this work, I would like to thank the IAEA, the Nuclear Fusion journal team, the IOP, and specifically Mitsuru Kikuchi, for their support of this important award. I would also like to acknowledge the many important contributions made by the other ten papers nominated for this prize. Our paper investigates the physics of the H-mode pedestal in tokamaks, specifically the development of a predictive understanding of the pedestal structure based on electromagnetic instabilities which constrain it, and the testing of the resulting theoretical model (EPED) against detailed observations on multiple devices. In addition to making pedestal predictions for existing devices, the paper also presents predictions for ITER, including methods for optimizing its pedestal height and fusion performance. What made this work possible, and indeed a pleasure to be involved with, was an extensive set of collaborations, including theory-experiment, multi-institutional, and international collaborations. Many of these collaborations have gone on for over a decade, and have been fostered in part by the ITPA Pedestal Group. The eight authors of this paper, from five institutions, all made important contributions. Rich Groebner, Tom Osborne and Tony Leonard carried out dedicated experiments and data analysis on the DIII-D tokamak, testing the EPED model over a very wide range of parameters. Jerry Hughes led dedicated experiments on Alcator C-Mod which tested the model at high magnetic field and pedestal pressure. Marc Beurskens carried out experiments and data analysis on the JET tokamak, testing the model at large scale. Xueqiao Xu conducted two-fluid studies of diamagnetic stabilization, which enabled a more accurate treatment of this important effect. Finally, Howard Wilson and I have been working together for many years to develop analytic formalism

  12. Nuclear data requirements for fusion reactor shielding

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1979-01-01

    The nuclear data requirements for experimental, demonstration and commercial fusion reactors are reviewed. Particular emphasis is given to the shield as well as major reactor components of concern to the nuclear performance. The nuclear data requirements are defined as a result of analyzing four key areas. These are the most likely candidate materials, energy range, types of needed nuclear data, and the required accuracy in the data. Deducing the latter from the target goals for the accuracy in prediction is also discussed. A specific proposal of measurements is recommended. Priorities for acquisition of data are also assigned. (author)

  13. Advanced fuels for nuclear fusion reactors

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1974-01-01

    Should magnetic confinement of hot plasma prove satisfactory at high β (16 πnkT//sub B 2 / greater than 0.1), thermonuclear fusion fuels other than D.T may be contemplated for future fusion reactors. The prospect of the advanced fusion fuels D.D and 6 Li.D for fusion reactors is quite promising provided the system is large, well reflected and possesses a high β. The first generation reactions produce the very active, energy-rich fuels t and 3 He which exhibit a high burnup probability in very hot plasmas. Steady state burning of D.D can ensue in a 60 kG field, 5 m reactor for β approximately 0.2 and reflectivity R/sub mu/ = 0.9 provided the confinement time is about 38 sec. The feasibility of steady state burning of 6 Li.D has not yet been demonstrated but many important features of such systems still need to be incorporated in the reactivity code. In particular, there is a need for new and improved nuclear cross section data for over 80 reaction possibilities

  14. Technology assessment of laser-fusion power production

    International Nuclear Information System (INIS)

    Booth, L.A.; Frank, T.G.

    1976-01-01

    The inherent features of laser-induced fusion, some laser-fusion reactor concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation are discussed. Theoretical fusion-pellet microexplosion energy release characteristics are described and the effects of pellet design options on pellet-microexplosion characteristics are discussed. The results of analyses to assess the engineering feasibility of reactor cavities for which protection of cavity components is provided either by suitable ablative materials or by diversion of plasmas by magnetic fields are presented. Two conceptual laser-fusion electric generating stations, based on different laser-fusion reactor concepts, are described. Technology developments for ultimate commercial application are outlined

  15. Nuclear microbeam study of advanced materials for fusion reactor technology

    International Nuclear Information System (INIS)

    Alves, L.C.; Alves, E.; Grime, G.W.; Silva, M.F. da; Soares, J.C.

    1999-01-01

    The Oxford scanning proton microprobe was used to study SiC fibres, SiC/SiC ceramic composites and Be pebbles, which are some of the most important materials for fusion technology. For the SiC materials, although the results reveal a high degree of homogeneity and purity in the composition of the fibres, some grains containing heavy metals were detected in the composites. Rutherford backscattering analysis further allowed establishing that at least some of these grains are not on the surface of the material but rather distributed throughout the bulk of the SiC composites. The two different types of Be pebbles analysed also showed very different levels of contaminants. The information obtained with the microbeam analysis is confronted with the one resulting from the broad beam PIXE and RBS analysis

  16. Revitalizing Fusion via Fission Fusion

    Science.gov (United States)

    Manheimer, Wallace

    2001-10-01

    Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000

  17. Plasma physics and controlled nuclear fusion research 1988. V.3

    International Nuclear Information System (INIS)

    1989-01-01

    Volume 3 of the proceedings of the twelfth international conference on plasma physics and controlled nuclear fusion, held in Nice, France, 12-19 October, 1988, contains papers presented on inertial fusion. Direct and indirect laser implosion experiments, programs of laser construction, computer modelling of implosions and resulting plasmas, and light ion beam fusion experiments are discussed. Refs, figs and tabs

  18. Nuclear hydrogen production: re-examining the fusion option

    International Nuclear Information System (INIS)

    Baindur, S.

    2007-01-01

    This paper describes a scheme for nuclear hydrogen production by fusion. The basic idea is to use nuclear energy of the fuel (hydrogen plasma) to produce molecular hydrogen fro carbon-free hydrogen compounds. The hydrogen is then stored and utilized electrochemically in fuel cells or chemically as molecular hydrogen in internal combustion engines

  19. Nuclear structure in cold rearrangement processes in fission and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, P.

    1998-11-01

    In fission and fusion of heavy nuclei large numbers of nucleons are rearranged at a scale of excitation energy very small compared to the binding energy of the nuclei. The energies involved are less than 40 MeV at nuclear temperatures below 1.5 MeV. The shapes of the configurations in the rearrangement of a binary system into a monosystem in fusion, or vice versa in fission, change their elongations by as much as 8 fm, the radius of the monosystem. The dynamics of the reactions macroscopically described by a potential energy surface, inertia parameters, dissipation, and a collision energy is strongly modified by the nuclear structure of the participating nuclei. Experiments showing nuclear structure effects in fusion and fission of the heaviest nuclei are reviewed. The reaction kinematics and the multitude of isotopes involved are investigated by detector techniques and by recoil spectrometers. The advancement of the latter allows to find very small reaction branches in the range of 10{sup -5} to 10{sup -10}. The experiments reveal nuclear structure effects in all stages of the rearrangement processes. These are discussed pointing to analogies in fusion and fission on the microscopic scale, notwithstanding that both processes macroscopically are irreversible. Heavy clusters, as 132Sn, 208Pb, nuclei with closed shell configurations N=82,126, Z=50,82 survive in large parts of the nuclear rearrangement. They determine the asymmetry in the mass distribution of low energy fission, and they allow to synthesise superheavy elements, until now up to element 112. Experiments on the cold rearrangement in fission and fusion are presented. Here, in the range of excitation energies below 12 MeV the phenomena are observed most convincingly. (orig.)

  20. Research in the field of neutronics and nuclear data for fusion

    International Nuclear Information System (INIS)

    Batistoni, P.

    2001-01-01

    A reliable and validated nuclear database is required for the design of a fusion reactor. Neutrons produced by the fusion reactions between deuterium and tritium have a very peaked energy spectrum at 14 MeV, requiring a substantial extrapolation with respect to the database made available from fission studies. The correct evaluation of shielding properties, damage, nuclear heating and of tritium breeding performance in the blanket surrounding the reaction chamber is crucial to the correct reactor design. Moreover, the attractiveness of fusion relies in the low activation of the reactor components and in the minimal production of long-term radioactive waste that is pursued with development of low activation materials. Beside the materials development, Europe is carrying out a co-ordinated program for the development of adequate nuclear database and numerical tools, directed to evaluations, processing, application, and benchmarking of cross sections including uncertainty information. Experimental validation of data and of the relative uncertainties is also pursued, both on material samples and on more design-oriented experiments. A general view of the research work in the field of neutronics and nuclear data for fusion will be given in the presentation, with emphasis to the experimental validation activity.(author)

  1. Nuclear fusion experimental study on 16 O + 60 Ni system

    International Nuclear Information System (INIS)

    Silva, C.P. da.

    1990-01-01

    Nuclear fusion cross section measurements were performed in the energy range near The Coulomb Barrier (E Lab -> 40-72 MeV), for the system 16 O + 60 Ni, aiming the study of Fusion Process involving heavy ions. (L.C.J.A.)

  2. Progress in fusion technology at SWIP

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X.R., E-mail: duanxr@swip.ac.cn; Chen, J.M.; Feng, K.M.; Liu, X.; Li, B.; Wu, J.H.; Wang, X.Y.; Zheng, P.F.; Wang, Y.Q.; Wang, P.H.; Liu, Yong

    2016-11-01

    Highlights: • Dispersion strengthened CLF-1 steel, vanadium alloys and tungsten alloys are developed. • The HCCB TBM conceptual design, development of functional materials such as Li{sub 4}SiO{sub 4} pebbles and Be pebbles are in progress. • A full size prototype shield block has been fabricated and passed ITER qualification. • Advanced divertor for a new tokamak are designed and analyzed. • GIS and GDC have entered the engineering design phase. - Abstract: The fusion research activities at Southwestern Institute of Physics (SWIP) include the HL-2A & HL-2M tokamak programs, fusion reactor design and materials, along with key fusion technologies including R&D on ITER procurement packages. This paper presents the progress of fusion technology at SWIP, including the ITER first wall and blanket, Chinese helium cooled ceramic breeder test blanket module (HCCB–TBM) for ITER, gas injection system and gas discharge cleaning system, as well as the recent activities on reactor materials and R&D related to advanced divertor. The final design for ITER first wall and blanket shielding blocks allocated to SWIP have been completed, and were validated by recent tests. Major manufacturing technologies, such as forging, deep drilling, explosion bonding and deep laser welding, have been successfully demonstrated. Furthermore, the conceptual design of CN–HCCB–TBM has been completed, the related materials’ preparation, mock-up manufacturing and tests have been implemented. The tungsten divertor has been studied with various bonding and coating technologies. Meanwhile, highlights of functional material for TBM, oxides and carbides dispersion strengthened (ODS, CDS) reduced activation ferritic/martensitic (RAFM) steel, vanadium and tungsten alloys are also presented.

  3. Survey of fusion reactor technology

    International Nuclear Information System (INIS)

    Chung, M.K.; Kang, H.D.; Oh, Y.K.; Lee, K.W.; In, S.Y.; Kim, Y.C.

    1983-01-01

    The present object of the fusion research is to accomplish the scientific break even by the year of 1986. In view of current progress in the field of Fusion reactor development, we decided to carry out the conceptual design of Tokamak-type fusion reactor during the year of 82-86 in order to acquire the principles of the fusion devices, find the engineering problems and establish the basic capabilities to develop the key techniques with originality. In this year the methods for calculating the locations of the poloidal coils and distribution of the magnetic field, which is one of the most essential and complicated task in the fusion reactor design works, were established. Study on the optimization of the design method of toroidal field coil was also done. Through this work, we established the logic for the design of the toroidal field coil in tokamak and utilize this technique to the design of small compact tokamak. Apart from the development work as to the design technology of tokamak, accelerating column and high voltage power supply (200 KVDC, 100 mA) for intense D-T neutron generator were constructed and now beam transport systems are under construction. This device will be used to develop the materials and the components for the tokamak fusion reactor. (Author)

  4. Fusion research activities in China

    International Nuclear Information System (INIS)

    Deng Xiwen

    1998-01-01

    The fusion program in China has been executed in most areas of magnetic confinement fusion for more than 30 years. Basing on the situation of the power supply requirements of China, the fusion program is becoming an important and vital component of the nuclear power program in China. This paper reviews the status of fusion research and next step plans in China. The motivation and goal of the Chinese fusion program is explained. Research and development on tokamak physics and engineering in the southwestern institute of physics (SWIP) and the institute of plasma physics of Academic Sinica (ASIPP) are introduced. A fusion breeder program and a pure fusion reactor design program have been supported by the state science and technology commission (SSTC) and the China national nuclear corporation (CNNC), respectively. Some features and progress of fusion reactor R and D activities are reviewed. Non fusion applications of plasma science are an important part of China fusion research; a brief introduction about this area is given. Finally, an introductional collaboration network on fusion research activities in China is reported. (orig.)

  5. Possible in-lattice confinement fusion (LCF). Dynamic application of atomic and nuclear data

    International Nuclear Information System (INIS)

    Kawarasaki, Yuuki

    1995-01-01

    New scheme of a nuclear fusion reactor system is proposed, the basic concept of which comes from ingenious combination of hitherto developed techniques and verified facts; 1) so-called cold fusion (CF), 2) plasma of both magnetic confinement fusion (MCF) and inertial confinement fusion (ICF), and 3) accelerator-based D-T(D) neutron source. Details of the LCF reactor physics require dynamics of atomic data as well as nuclear data; interaction of ions with matters in solid and the problems of radiation damage. (author)

  6. Review of gas gun technology with emphasis on fusion fueling applications

    International Nuclear Information System (INIS)

    Flagg, R.F.

    1978-01-01

    A review is made of current light gas gun and related hyper-velocity launcher technology with emphasis on physical and technological limits, advantages, and disadvantages as they apply to injection requirements for refueling Tokamak type nuclear fusion reactors. It is shown that the mass and velocity requirements for refueling are well within the capabilities of the state of the art and can be produced by several of the different types of gun/launching devices. The practical problems of adapting this performance capability to the refueling task are addressed and some possible configurations are given including both single pellet and multiple pellet injection. A short bibliography is given for those who wish additional detailed information

  7. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    International Nuclear Information System (INIS)

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin; Liu, Ke; Shang, Zheng-jun

    2014-01-01

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo

  8. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kai [Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Shandong Province (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Song, Yong [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Department of Stomatology, Liu Zhou People' s Hospital, Guangxi (China); Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Liu, Ke, E-mail: liuke.1999@aliyun.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Shang, Zheng-jun, E-mail: shangzhengjun@hotmail.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China)

    2014-10-15

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo.

  9. Electrochemically induced nuclear fusion of deuterium

    International Nuclear Information System (INIS)

    Jorne, J.

    1990-01-01

    In this paper cold fusion of deuterium by electrolysis of heavy water onto a palladium (or titanium) cathode is reported. Contrary to the assumption of Fleishmann and Pons that electrochemically compressed D + exists inside the palladium cathode, the observations of Jones et al. can be partially explained by the simultaneous presence of deuteride D - and the highly mobile positive deuterium ion D + . The opposite charges reduce the intranuclear distance and enhance the tunneling fusion rate. Furthermore, alloying of lithium with palladium can stabilize a negatively charged deuteride ion due to the salinelike character of lithium deuteride. The enormous pressure (or fugacity), achieved by the applied electrochemical potential (10 30 atm), is a virtual pressure that would have existed in equilibrium with palladium deuteride (PdD x ). It is speculated that nuclear fusion occurs at the surface, and the PdD x serves as a reservoir for the supply of deuteride ions

  10. Fusion Canada issue 19

    International Nuclear Information System (INIS)

    1992-12-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the IAEA Plasma Biasing Meeting, the new IEA program -Nuclear Technology of Fusion reactors, TFTR tritium purification system, an update by CCFM on machine additions and modifications, and news of a new compact Toroid injector at the University of Saskatchewan. 1 fig

  11. Canonical form of an elastoplastic model of nuclear fusion

    International Nuclear Information System (INIS)

    Mikhajlova, T.I.; Mikhajlov, I.N.; Do Dang, G.

    1997-01-01

    Starting from equations of motion describing the fusion process in symmetrical nuclear systems of low angular momenta we reconstruct the collective Lagrangian and dissipation Rayleigh functions. This opens new perspectives in studying the dynamical effects in the heavy nuclei collisions. In particular, it provides a basis for a quantal description of the fusion process and accompanying its effects

  12. Concept evaluation of nuclear fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    This paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders. Two different blanket types were used: metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing. All fusion-driven blankets are assumed to have spherical geometries, with a 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries. These neutronics calculations are coupled with a scenario optimization and cost analysis code. Also, the fusion burn was shaped so as to keep the blanket maximum power density below a preset value, and to improve the performance of the fusion-driven systems. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The nuclear fission breeders that were used as drivers have parameters characteristic of heterogeneous, oxide LMFBRs. They are net plutonium users - the plutonium is obtained from the discharges of LWRs - and U233 is bred in the fission breeder thorium blankets. The analyses of the symbiotic energy systems were performed at equilibrium, at maximum rate of grid expansion, and for a given nuclear power demand

  13. Nuclear dynamics during germination, conidiation, and hyphal fusion of Fusarium oxysporum.

    Science.gov (United States)

    Ruiz-Roldán, M Carmen; Köhli, Michael; Roncero, M Isabel G; Philippsen, Peter; Di Pietro, Antonio; Espeso, Eduardo A

    2010-08-01

    In many fungal pathogens, infection is initiated by conidial germination. Subsequent stages involve germ tube elongation, conidiation, and vegetative hyphal fusion (anastomosis). Here, we used live-cell fluorescence to study the dynamics of green fluorescent protein (GFP)- and cherry fluorescent protein (ChFP)-labeled nuclei in the plant pathogen Fusarium oxysporum. Hyphae of F. oxysporum have uninucleated cells and exhibit an acropetal nuclear pedigree, where only the nucleus in the apical compartment is mitotically active. In contrast, conidiation follows a basopetal pattern, whereby mononucleated microconidia are generated by repeated mitotic cycles of the subapical nucleus in the phialide, followed by septation and cell abscission. Vegetative hyphal fusion is preceded by directed growth of the fusion hypha toward the receptor hypha and followed by a series of postfusion nuclear events, including mitosis of the apical nucleus of the fusion hypha, migration of a daughter nucleus into the receptor hypha, and degradation of the resident nucleus. These previously unreported patterns of nuclear dynamics in F. oxysporum could be intimately related to its pathogenic lifestyle.

  14. Comparative energetics of three fusion-fission symbiotic nuclear reactor systems

    International Nuclear Information System (INIS)

    Gordon, C.W.; Harms, A.A.

    1975-01-01

    The energetics of three symbiotic fusion-fission nuclear reactor concepts are investigated. The fuel and power balances are considered for various values of systems parameters. The results from this analysis suggest that symbiotic fusion-fission systems are advantageous from the standpoint of economy and resource utilization. (Auth.)

  15. Nuclear technology programs; Semiannual progress report, October 1989--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  16. 2008 annual meeting on nuclear technology. Pt. 1. Section reports; JAHRESTAGUNG KERNTECHNIK 2008. T. 1. Sektionsberichte

    Energy Technology Data Exchange (ETDEWEB)

    Dagan, Ron; Sanchez Espinoza, Victor Hugo [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Reaktorsicherheit; Rohde, U.; Kliem, Soeren [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany); Faber, Wolfgang; Berlepsch, Thilo v.; Spann, Holger [E.ON Kernkraft GmbH, Hannover (Germany); Schaffrath, Andreas [TUEV Nord SysTec GmbH und Co. KG, Hamburg (Germany); Schubert, Bernd [Vattenfall Europe Nuclear Energy GmbH, Hamburg (Germany); Rieger, Udo [Vattenfall Nuclear Energy GmbH, Hamburg (Germany); Christ,, Bernhard G. [NUKEM Technologies GmbH, Alzenau (Germany); Gulden, Werner [Fusion for Energy, Barcelona (Spain); Bogusch, Edgar [AREVA NP GmbH, Erlangen (Germany)

    2008-08-15

    Summary report on these 5 - out of 11 - Sections of the Annual Conference on Nuclear Technology held in Hamburg on May 27-29, 2008: - Reactor Physics and Methods of Calculation - Thermodynamics and Fluid Dynamics - Safety of Nuclear Installations - Methods, Analysis, Results - Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage - Fusion Technology. Other Sections will be covered in reports in further issues of atw. (orig.)

  17. Nuclear design of a very-low-activation fusion reactor

    International Nuclear Information System (INIS)

    Cheng, E.T.; Hopkins, G.R.

    1983-06-01

    An investigation was conducted to study the nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE tokamak reactor design

  18. Nuclear technology programs semiannual progress report, April--September 1989

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1991-08-01

    This document reports on the work done by the Nuclear Technology Program of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1989. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with developing a process for separating the organic and inorganic constitutents of the red-water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories. 154 refs., 154 figs., 100 tabs

  19. Future of nuclear energy technology in Switzerland

    International Nuclear Information System (INIS)

    Tiberini, A.; Brogli, R.; Jermann, M.; Alder, H.P.; Stratton, R.W.; Troyon, F.

    1988-01-01

    Despite the present gloom surrounding the nuclear option for electricity and heat generation, there are still people in Switzerland in industry, research, banking and even politics willing and capable to think in terms of long-range projections. The basis for these projections is the belief that a well-functioning and prosperous society always needs large and reliable sources of acceptably priced energy, which must be generated with a high respect for the necessity of a clean environment. Being aware of the current low acceptance level of the nuclear option, efforts to keep this option open are directed to achieving the following goals: to maintain and improve the country's capabilities to safely operate the four existing nuclear power plants of Beznau (twin units), Muehleberg, Goesgen and Leibstadt; to keep the capability of extending the applications of nuclear energy technology. In practice, this could be in the fields of district heating, fusion, and advanced power reactors

  20. Fusion reactor design and technology program in China

    International Nuclear Information System (INIS)

    Huang, J.H.

    1994-01-01

    A fusion-fission hybrid reactor program was launched in 1987. The purpose of development of the hybrid reactor is twofold: to solve the problem of nuclear fuel supply for an expected large-scale development of fission reactor plants, and to maintain the momentum of fusion research. The program is described and the activities and progress of the program are presented. Two conceptual designs of an engineering test reactor with tokamak configuration were developed at the Southwestern Institute of Physics and the Institute of Plasma Physics. The results are a tokamak engineering test breeder (TETB) series design and a fusion-fission hybrid reactor design (SSEHR), characterized by a liquid-Li self-cooled blanket and an He-cooled solid tritium breeder blanket respectively. In parallel with the design studies, relevant technological experiments on a small or medium scale have been supported by this program. These include LHCD, ICRH and pellet injection in the area of plasma engineering; neutronics integral experiments with U, Pu, Fe and Be; various irradiation tests of austenitic and ferritic steels, magnetohydrodynamic (MHD) pressure drop experiments using a liquid metal loop; research into permeation barriers for tritium and hydrogen isotopes; solid tritium breeder tests using an in-situ loop in a fission reactor. All these experiments have proceeded successfully. The second step of this program is now starting. It seems reasonable that most of the research carried out in the first step will continue. ((orig.))

  1. Fusion science and technology at CIEMAT; Ciencia y Tecnologia de fusion en el Ciemat

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J.

    2012-07-01

    The presence of the agency Fusion for Energy and the significant participation of Spanish industry in the ITER project bring Spain to a relevant position in the development of fusion. This article reviews briefly the role of Ciemat in the process leading to this situation and analyzers the scientific and technological role of Ciemat in the present and future phases of the fusion programme. (Author)

  2. Low-Z coating as a first wall of nuclear fusion devices

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Okada, Masatoshi

    1984-01-01

    The tokamak nuclear fusion devices of the largest scale in the world, TFTR in USA and JET in Europe, started the operation from the end of 1982 to 1983. Also in Japan, the tokamak JT-60 is scheduled to begin the operation in 1985. One of the technological obstacles is the problem of first walls facing directly to plasma and subjected to high particle loading and thermal loading. Moreover, first walls achieve the active role of controlling impurities in plasma and recycling hydrogen isotopes. It is impossible to find a single material which satisfies all these requirements. The compounding of materials can create a material having new function, but also has the meaning of expanding the range of material selection. One of the material compounding methods is surface coating. In this paper, as the materials for first walls, the characteristics of low Z materials are discussed from the design examples of actual takamak nuclear fusion devices. The outline of first walls is explained. High priority is given to the impurity control in plasma, and in view of plasma energy emissivity and the rate of self sputtering, low Z material coating seems to be the solution. The merits and the problems of such low Z material coating are discussed. (Kako, I.)

  3. Civilian applications of particle-beam-initiated inertial confinement fusion technology

    International Nuclear Information System (INIS)

    Varnado, S.G.; Mitchiner, J.L.

    1977-05-01

    Electrical power generation by controlled fusion may provide a partial solution to the world's long-term energy supply problem. Achievement of a fusion reaction requires the confinement of an extremely hot plasma for a time long enough to allow fuel burnup. Inertial confinement of the plasma may be possible through the use of tightly focused, relativistic electron or ion beams to compress a fuel pellet. The Sandia Particle Beam Fusion program is developing the particle-beam accelerators necessary to achieve fuel ignition. In this report we review the status of the particle-beam fusion technology development program and identify several potential civilian applications for this technology. We describe program objectives, discuss the specific accelerators presently under development, and briefly review the results of beam-focusing and target-irradiation experiments. Then we identify and discuss applications for the beam technology and for the fusion neutrons. The applications are grouped into near-term, intermediate-term, and long-term categories. Near-term applications for the beam technology include electron-beam (e-beam) pumping of gas lasers and several commercial applications. Intermediate-term applications (pellet gain less than 50) include hybrid reactors for electrical power production and fissile fuel breeding, pure fusion reactors for electrical power production, and medical therapy using ion accelerators. In the long term, complex, high-gain pellets may be used in pure fusion reactors

  4. The preliminary research for biosynthetic engineering by radiation fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Jung, U Hee; Park, Hae Ran [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    The purpose of this project is to elucidate the solution to the production of bioactive substance using biotransformation process from core technology of biosynthetic engineering by radiation fusion technology. And, this strategy will provide core technology for development of drugs as new concept and category. Research scopes and contents of project include 1) The development of mutant for biosynthetic engineering by radiation fusion technology 2) The development of host for biosynthetic engineering by radiation fusion technology 3) The preliminary study for biosynthetic engineering of isoflavone by radiation fusion technology. The results are as follows. Isoflavone compounds(daidzein, hydroxylated isoflavone) were analyzed by GC-MS. The study of radiation doses and p-NCA high-throughput screening for mutant development were elucidated. And, it was carried out the study of radiation doses for host development. Furthermore, the study of redox partner and construction of recombinant strain for region-specific hydroxylation(P450, redox partner). In addition, the biological effect of 6,7,4'-trihydroxyisoflavone as an anti-obesity agent was elucidated in this study.

  5. Inertial fusion and energy production

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1982-01-01

    Inertial-confinement fusion (ICF) is a technology for releasing nuclear energy from the fusion of light nuclei. For energy production, the most reactive hydrogen isotopes (deuterium (D) and tritium (T)) are commonly considered. The energy aplication requires the compression of a few milligrams of a DT mixture to great density, approximately 1000 times its liquid-state density, and to a high temperature, nearly 100 million 0 K. Under these conditions, efficient nuclear-fusion reactions occur, which can result in over 30% burn-up of the fusion fuel. The high density and temperature can be achieved by focusing very powerful laser or ion beams onto the target. The resultant ablation of the outer layers of the target compresses the fuel in the target, DT ignition occurs, and burn-up of the fuel results as the thermonuclear burn wave propagates outward. The DT-fuel burn-up occurs in about 199 picoseconds. On this short time scale, inertial forces are sufficiently strong to prevent target disassembly before fuel burn-up occurs. The energy released by the DT fusion is projected to be several hundred times greater than the energy delivered by the driver. The present statuds of ICF technology is described

  6. Educating nuclear engineers by nuclear science and technology master at UPM

    Energy Technology Data Exchange (ETDEWEB)

    Ahnert, C.; Minguez, E.; Perlado, M. [Universidad Politecnica de Madrid (Spain). Dept. de Ingenieria Nuclear; and others

    2014-05-15

    One of the main objectives of the Master on Nuclear Science and Technology implemented in the Universidad Politecnica de Madrid, is the training for the development of methodologies of simulation and advanced analysis necessary in research and in professional work in the nuclear field, for Fission Reactors and Nuclear Fusion, including fuel cycle and safety aspects. The students are able to use the current computational methodologies/codes for nuclear engineering that covers a difficult gap between nuclear reactor theory and simulations. Also they are able to use some facilities, as the Interactive Graphical Simulator of PWR power plant that is an optimal tool to transfer the knowledge of the physical phenomena that are involved in the nuclear power plants, from the nuclear reactor to the whole set of systems and equipment on a nuclear power plant. The new Internet reactor laboratory to be implemented will help to understand the Reactor Physics concepts. The experimental set-ups for neutron research and for coating fabrication offer new opportunities for training and research activities. All of them are relevant tools for motivation of the students, and to complete the theoretical lessons. They also follow the tendency recommended for the European Space for higher Education (Bologna) adapted studies. (orig.)

  7. Educating nuclear engineers by nuclear science and technology master at UPM

    International Nuclear Information System (INIS)

    Ahnert, C.; Minguez, E.; Perlado, M.

    2014-01-01

    One of the main objectives of the Master on Nuclear Science and Technology implemented in the Universidad Politecnica de Madrid, is the training for the development of methodologies of simulation and advanced analysis necessary in research and in professional work in the nuclear field, for Fission Reactors and Nuclear Fusion, including fuel cycle and safety aspects. The students are able to use the current computational methodologies/codes for nuclear engineering that covers a difficult gap between nuclear reactor theory and simulations. Also they are able to use some facilities, as the Interactive Graphical Simulator of PWR power plant that is an optimal tool to transfer the knowledge of the physical phenomena that are involved in the nuclear power plants, from the nuclear reactor to the whole set of systems and equipment on a nuclear power plant. The new Internet reactor laboratory to be implemented will help to understand the Reactor Physics concepts. The experimental set-ups for neutron research and for coating fabrication offer new opportunities for training and research activities. All of them are relevant tools for motivation of the students, and to complete the theoretical lessons. They also follow the tendency recommended for the European Space for higher Education (Bologna) adapted studies. (orig.)

  8. Nuclear characteristics of D-D fusion reactor blankets, (1)

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao; Seki, Yasushi.

    1977-01-01

    Fusion reactors operating on the deuterium (D-D) cycle are considered promising for their freedom from tritium breeding in the blanket. In this paper, neutronic and photonic calculations are undertaken covering several blanket models of the D-D fusion reactor, using presently available data, with a view to comparing the nuclear characteristics of these models, in particular, the nuclear heating rates and their spatial distributions. Nine models are taken up for the study, embodying various combinations of coolant, blanket, structural and reflector materials. About 10 MeV is found to be a typical value for the total nuclear energy deposition per source neutron in the models considered here. The realization of high energy gain is contingent upon finding a favorable combination of blanket composition and configuration. The resulting implications on the thermal design aspect are briefly discussed. (auth.)

  9. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    Science.gov (United States)

    Rieth, M.; Dudarev, S. L.; Gonzalez de Vicente, S. M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D. E. J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W. W.; Battabyal, M.; Becquart, C. S.; Blagoeva, D.; Boldyryeva, H.; Brinkmann, J.; Celino, M.; Ciupinski, L.; Correia, J. B.; De Backer, A.; Domain, C.; Gaganidze, E.; García-Rosales, C.; Gibson, J.; Gilbert, M. R.; Giusepponi, S.; Gludovatz, B.; Greuner, H.; Heinola, K.; Höschen, T.; Hoffmann, A.; Holstein, N.; Koch, F.; Krauss, W.; Li, H.; Lindig, S.; Linke, J.; Linsmeier, Ch.; López-Ruiz, P.; Maier, H.; Matejicek, J.; Mishra, T. P.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Opschoor, J.; Ordás, N.; Palacios, T.; Pintsuk, G.; Pippan, R.; Reiser, J.; Riesch, J.; Roberts, S. G.; Romaner, L.; Rosiński, M.; Sanchez, M.; Schulmeyer, W.; Traxler, H.; Ureña, A.; van der Laan, J. G.; Veleva, L.; Wahlberg, S.; Walter, M.; Weber, T.; Weitkamp, T.; Wurster, S.; Yar, M. A.; You, J. H.; Zivelonghi, A.

    2013-01-01

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme's main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  10. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    International Nuclear Information System (INIS)

    Rieth, M.; Dudarev, S.L.; Gonzalez de Vicente, S.M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W.W.; Battabyal, M.; Becquart, C.S.; Blagoeva, D.; Boldyryeva, H.

    2013-01-01

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme’s main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  11. Liquid metal technology in fusion

    International Nuclear Information System (INIS)

    Torre Cabezas, M. de la; Martin Espigares, M.; Lapena, J.

    1985-01-01

    Lithium (or Li-Pb) is one of the several possible coolants being considered for the blanket of magnetic toroidal fusion reactor, not only because of its good thermal and neutron properties, but also because the tritium required to fuel the reactor can be produced by neutron reactions in the lithium. In this paper two main technology tasks to be proposed in our fusion programme have been identified: 1) the development of impurity monitoring devices for use in lithium and Li-Pb environments; 2) effects of Li and Li-Pb environments on the low cycle fatigue properties of different steels. (author)

  12. Development of DEMO-FNS tokamak for fusion and hybrid technologies

    Science.gov (United States)

    Kuteev, B. V.; Azizov, E. A.; Alexeev, P. N.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-07-01

    The history of fusion-fission hybrid systems based on a tokamak device as an extremely efficient DT-fusion neutron source has passed through several periods of ample research activity in the world since the very beginning of fusion research in the 1950s. Recently, a new roadmap of the hybrid program has been proposed with the goal to build a pilot hybrid plant (PHP) in Russia by 2030. Development of the DEMO-FNS tokamak for fusion and hybrid technologies, which is planned to be built by 2023, is the key milestone on the path to the PHP. This facility is in the phase of conceptual design aimed at providing feasibility studies for a full set of steady state tokamak technologies at a fusion energy gain factor Q ˜ 1, fusion power of ˜40 MW and opportunities for testing a wide range of hybrid technologies with the emphasis on continuous nuclide processing in molten salts. This paper describes the project motivations, its current status and the key issues of the design.

  13. Magnetic fusion 1985: what next

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1985-03-01

    Recent budget reductions for magnetic fusion have led to a re-examination of program schedules and objectives. Faced with delays and postponement of major facilities as previously planned, some have called for a near-term focus on science, others have stressed technology. This talk will suggest a different focus as the keynote for this conference, namely, the applications of fusion. There is no doubt that plasma science is by now mature and fusion technology is at the forefront. This has and will continue to benefit many fields of endeavor, both in actual new discoveries and techniques and in attracting and training scientists and engineers who move on to make significant contributions in science, defense and industry. Nonetheless, however superb the science or how challenging the technology, these are means, not ends. To maintain its support, the magnetic fusion program must also offer the promise of power reactors that could be competitive in the future. At this conference, several new reactor designs will be described that claim to be smaller and economically competitive with fission reactors while retaining the environmental and safety characteristics that are the hallmark of fusion. The American Nuclear Society is an appropriate forum in which to examine these new designs critically, and to stimulate better ideas and improvements. As a preview, this talk will include brief discussions of new tokamak, tandem mirror and reversed field pinch reactor designs to be presented in later sessions. Finally, as a preview of the session on fusion breeders, the talk will explore once again the economic implications of a new nuclear age, beginning with improved fission reactors fueled by fusion breeders, then ultimately evolving to reactors based solely on fusion

  14. Magnetic fusion energy technology fellowship: Report on survey of institutional coordinators

    International Nuclear Information System (INIS)

    1993-02-01

    In 1980, the Magnetic Fusion Energy Technology (MFET) Fellowship program was established by the US Department of Energy, Office of Fusion Energy, to encourage outstanding students interested in fusion energy technology to continue their education at a qualified graduate school. The basic objective of the MFET Fellowship program is to ensure an adequate supply of scientists in this field by supporting graduate study, training, and research in magnetic fusion energy technology. The program also supports the broader objective of advancing fusion toward the realization of commercially viable energy systems through the research by MFET fellows. The MFET Fellowship program is administered by the Science/Engineering Education Division of Oak Ridge Institute for Science and Education. Guidance for program administration is provided by an academic advisory committee

  15. Nuclear data for structural materials of fission and fusion reactors

    International Nuclear Information System (INIS)

    Goulo, V.

    1989-06-01

    The document presents the status of nuclear reaction theory concerning optical model development, level density models and pre-equilibrium and direct processes used in calculation of neutron nuclear data for structural materials of fission and fusion reactors. 6 refs

  16. Case for the fusion hybrid

    International Nuclear Information System (INIS)

    Rose, R.P.

    1981-01-01

    The use of nuclear fusion to produce fuel for nuclear fission power stations is discussed in the context of a crucial need for future energy options. The fusion hybrid is first considered as an element in the future of nuclear fission power to provide long term assurance of adequate fuel supplies for both breeder and convertor reactors. Generic differences in neutronic characteristics lead to a fuel production potential of fusion-fission hybrid systems which is significantly greater than that obtainable with fission systems alone. Furthermore, cost benefit studies show a variety of scenarios in which the hybrid offers sufficient potential to justify development costs ranging in the tens of billions of dollars. The hybrid is then considered as an element in the ultimate development of fusion electric power. The hybrid offers a near term application of fusion where experience with the requisite technologies can be derived as a vital step in mapping a credible route to eventual commercial feasibility of pure fusion systems. Finally, the criteria for assessment of future energy options are discussed with prime emphasis on the need for rational comparision of alternatives

  17. Twenty years of ''Nuclear Fusion''. Inertial confinement

    International Nuclear Information System (INIS)

    Yamanaka, C.

    1980-01-01

    Inertial confinement (ICF) fusion research is directed towards demonstrating the feasibility of very rapidly heating and compressing small pellets of suitable fuel until conditions exist where thermonuclear fusion can occur and useful amounts of power can be produced. Major problems which have to be solved are the following: 1) pellet design based on driver-plasma coupling; 2) the technology of energy drivers; 3) feasibility of ICF reactor systems

  18. Summary: Fusion technology, safety and environmental aspects

    International Nuclear Information System (INIS)

    Matsuda, S.

    2003-01-01

    The year 2002 was in the middle of successive governmental negotiation toward the start of the ITER Construction. The ITER Engineering Design Activities (EDA) continued until July 2001, and most of the highlighted topics were already reported at the last IAEA Fusion Energy Conference in Montreal or in other opportunities. However, the ITER EDA was followed by the Coordinated Technical Activities that provided a lot of qualitative achievements such as, the search for predictions on operation capabilities based on various data bases and analysis, optimization of the design based on its validating technology R and D. As a consequence, at this conference, major contribution in the field of Fusion Technology was again from ITER, and its related topics occupied about 38% of the total number of contributions of 86. In ITER, physics analysis, predictions and heating/current drive technologies are highlighted. Another key feature at this conference was the progress of study toward steady-state operation in both physics and technology research as well as their application to toroidal devices. Several tokamaks and helical devises are under construction or under design, and most of them incorporate super-conducting magnet for their coils. Studies were made for various types of fusion reactors including Spherical Torus, Tokamaks, Helical systems etc., and their common understandings are progressing through their comparative study. Looking in the near term, but beyond ITER, about 20% of the papers were devoted to the fusion materials and blanket development, with the neutron irradiation facilities for the research. Because of the importance of this field to be implemented in parallel with ITER, more contributions would be expected in future. With these themes in mind, the remaining sections of this paper are arranged in the order of 2) ITER, 3) Toroidal Devices under Construction or under Design, 4) Reactor Technology, 5) Safety and Environment, and 6) Conclusion

  19. Remote operation of the GOLEM tokamak for Fusion Education

    Czech Academy of Sciences Publication Activity Database

    Grover, O.; Kocman, J.; Odstrčil, M.; Odstrčil, T.; Matušů, M.; Stöckel, Jan; Svoboda, V.; Vondrášek, G.; Žára, J.

    2016-01-01

    Roč. 112, November (2016), s. 1038-1044 ISSN 0920-3796. [Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research IAEA /10./. Ahmedabad, 20.04.2015-24.04.2015] Institutional support: RVO:61389021 Keywords : Tokamak technology * Remote participation * Education * Nuclear fusion Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379616303441

  20. Cold nuclear fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganov, E.N., E-mail: edward.tsyganov@coldfusion-power.com [Cold Fusion Power, International (United States); Bavizhev, M.D. [LLC “Radium”, Moscow (Russian Federation); Buryakov, M.G. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Dabagov, S.B. [RAS P.N. Lebedev Physical Institute, Leninsky pr. 53, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Golovatyuk, V.M.; Lobastov, S.P. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation)

    2015-07-15

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction’s theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300–700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of {sup 4}He{sup ∗}.

  1. Canadian capabilities in fusion fuels technology and remote handling

    International Nuclear Information System (INIS)

    1987-10-01

    This report describes Canadian expertise in fusion fuels technology and remote handling. The Canadian Fusion Fuels Technology Project (CFFTP) was established and is funded by the Canadian government, the province of Ontario and Ontario Hydro to focus on the technology necessary to produce and manage the tritium and deuterium fuels to be used in fusion power reactors. Its activities are divided amongst three responsibility areas, namely, the development of blanket, first wall, reactor exhaust and fuel processing systems, the development of safe and reliable operating procedures for fusion facilities, and, finally, the application of these developments to specific projects such as tritium laboratories. CFFTP also hopes to utilize and adapt Canadian developments in an international sense, by, for instance, offering training courses to the international tritium community. Tritium management expertise is widely available in Canada because tritium is a byproduct of the routine operation of CANDU reactors. Expertise in remote handling is another byproduct of research and development of of CANDU facilities. In addition to describing the remote handling technology developed in Canada, this report contains a brief description of the Canadian tritium laboratories, storage beds and extraction plants as well as a discussion of tritium monitors and equipment developed in support of the CANDU reactor and fusion programs. Appendix A lists Canadian manufacturers of tritium equipment and Appendix B describes some of the projects performed by CFFTP for offshore clients

  2. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype.

    Science.gov (United States)

    Fahrenkrog, Birthe; Martinelli, Valérie; Nilles, Nadine; Fruhmann, Gernot; Chatel, Guillaume; Juge, Sabine; Sauder, Ursula; Di Giacomo, Danika; Mecucci, Cristina; Schwaller, Jürg

    2016-01-01

    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis.

  3. Trends of plasma physics and nuclear fusion research life cycle and research effort curve

    International Nuclear Information System (INIS)

    Ohe, Takeru; Kanada, Yasumasa; Momota, Hiromu; Ichikawa, Y.H.

    1979-05-01

    This paper presents a quantitative analysis of research trends in the fields of plasma physics and nuclear fusion. This analysis is based on information retrieval from available data bases such as INSPEC tapes. The results indicate that plasma physics research is now in the maturation phase of its life cycle, and that nuclear fusion research is in its growth phase. This paper indicates that there is a correlation between the number of accumulated papers in the fields of plasma physics and nuclear fusion and the experimentally attained values of the plasma ignition parameter ntT. Using this correlation ''research effort curve'', we forecast that the scientific feasibility of controlled fusion using magnetic confinement systems will be proved around 1983. (author)

  4. Status and development plan of nuclear fusion research in the US

    International Nuclear Information System (INIS)

    Kang Weihong

    2012-01-01

    This paper presents the background of nuclear fusion research and current status of major devices with accomplishments in the US, as well as the national fusion plans and budgets for fusion energy development by the US government. As a fusion power in the world, the US has made significant contributions to the development of international fusion research. The strategy of fusion research developments and the accomplishments may exert a subtle influence on international fusion development situation. Withdrawing from the ITER partnership for 2 times, the US rejoined it subsequently. This paper gives a brief introduction of changes in the US fusion research policy, summarizes the implementation of ITER procurement packages undertaken by the US, and the overview of the US inertial confinement fusion re- search. The US future energy development plan is the development of magnetic confinement fusion approach in parallel with inertial confinement fusion approach. (author)

  5. Cell-fusion method to visualize interphase nuclear pore formation.

    Science.gov (United States)

    Maeshima, Kazuhiro; Funakoshi, Tomoko; Imamoto, Naoko

    2014-01-01

    In eukaryotic cells, the nucleus is a complex and sophisticated organelle that organizes genomic DNA to support essential cellular functions. The nuclear surface contains many nuclear pore complexes (NPCs), channels for macromolecular transport between the cytoplasm and nucleus. It is well known that the number of NPCs almost doubles during interphase in cycling cells. However, the mechanism of NPC formation is poorly understood, presumably because a practical system for analysis does not exist. The most difficult obstacle in the visualization of interphase NPC formation is that NPCs already exist after nuclear envelope formation, and these existing NPCs interfere with the observation of nascent NPCs. To overcome this obstacle, we developed a novel system using the cell-fusion technique (heterokaryon method), previously also used to analyze the shuttling of macromolecules between the cytoplasm and the nucleus, to visualize the newly synthesized interphase NPCs. In addition, we used a photobleaching approach that validated the cell-fusion method. We recently used these methods to demonstrate the role of cyclin-dependent protein kinases and of Pom121 in interphase NPC formation in cycling human cells. Here, we describe the details of the cell-fusion approach and compare the system with other NPC formation visualization methods. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Nuclear technology review 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-08-15

    The viability and credibility of a wide range of nuclear-based technologies require ready access to high-quality atomic, molecular and nuclear data. The demands of new nuclear technologies continue to determine the direction(s) of future data development, including the requirements for data that address innovative fuel cycles, accelerator-driven systems, nuclear incineration, fusion devices, diagnostic and therapeutic medical treatment by radiation, optimization of medical isotope production, non-destructive materials testing, radiation analytical techniques, minerals exploration and land-mine detection. Some recent data development projects with diverse applications are a search engine for Atomic and Molecular data to permit simultaneous data retrieval from a number of different sources for both numerical and bibliographic databases to aid designers. For over 50 years, research reactors have made valuable contributions to the development of nuclear power, basic science, materials development, radioisotope production for medicine and industry, and education and training. They remain core experimental instruments. As of June 2004, 672 research reactors are recorded in the IAEA's Research Reactor Data Base (RRDB), of which 274 are operational in 56 countries (85 in 39 developing countries), 214 are shut down, 168 have been decommissioned and 16 are planned or under construction. Nuclear power supplied 16% of global electricity generation in 2002, and as of 31 December 2003 there were 439 NPPs operating worldwide. Their global energy availability factor has risen steadily from 74.2% in 1991 to approximately 84% in 2003. In 2003 two new NPPs were connected to the grid, a 665 MW(e) pressurized heavy water reactor (PHWR) in China and a 960 MW(e) pressurized water reactor (PWR) in the Republic of Korea. In addition Canada restarted two units that had been shutdown. Construction started on one new NPP in India. Four 50 MW(e) units in the UK were retired, as were one 640 MW

  7. Nuclear technology review 2004

    International Nuclear Information System (INIS)

    2004-08-01

    The viability and credibility of a wide range of nuclear-based technologies require ready access to high-quality atomic, molecular and nuclear data. The demands of new nuclear technologies continue to determine the direction(s) of future data development, including the requirements for data that address innovative fuel cycles, accelerator-driven systems, nuclear incineration, fusion devices, diagnostic and therapeutic medical treatment by radiation, optimization of medical isotope production, non-destructive materials testing, radiation analytical techniques, minerals exploration and land-mine detection. Some recent data development projects with diverse applications are a search engine for Atomic and Molecular data to permit simultaneous data retrieval from a number of different sources for both numerical and bibliographic databases to aid designers. For over 50 years, research reactors have made valuable contributions to the development of nuclear power, basic science, materials development, radioisotope production for medicine and industry, and education and training. They remain core experimental instruments. As of June 2004, 672 research reactors are recorded in the IAEA's Research Reactor Data Base (RRDB), of which 274 are operational in 56 countries (85 in 39 developing countries), 214 are shut down, 168 have been decommissioned and 16 are planned or under construction. Nuclear power supplied 16% of global electricity generation in 2002, and as of 31 December 2003 there were 439 NPPs operating worldwide. Their global energy availability factor has risen steadily from 74.2% in 1991 to approximately 84% in 2003. In 2003 two new NPPs were connected to the grid, a 665 MW(e) pressurized heavy water reactor (PHWR) in China and a 960 MW(e) pressurized water reactor (PWR) in the Republic of Korea. In addition Canada restarted two units that had been shutdown. Construction started on one new NPP in India. Four 50 MW(e) units in the UK were retired, as were one 640 MW

  8. Fusion reactor design and technology 1986. V. 1

    International Nuclear Information System (INIS)

    1987-01-01

    The first volume of the Proceedings of the Fourth Technical Committee Meeting and Workshop on Fusion Reactor Design and Technology organized by the IAEA (Yalta, 26 May - 6 June 1986) includes 36 papers devoted to the following topics: fusion programmes (3 papers), tokamaks (15 papers), non-tokamak reactors and open systems (9 papers), inertial confinement concepts (5 papers), fission-fusion hybrids (4 papers). Each of these papers has a separate abstract. Refs, figs and tabs

  9. Magnetic Fusion Energy Technology Fellowship Program: Summary of program activities for calendar year 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This report summarizes the activities of the US Department of Energy (DOE) Magnetic Fusion Energy Technology Fellowship program (MFETF) for the 1985 calendar year. The MFETF program has continued to support the mission of the Office of Fusion Energy (OFE) and its Division of Development and Technology (DDT) by ensuring the availability of appropriately trained engineering manpower needed to implement the OFE/DDT magnetic fusion energy agenda. This program provides training and research opportunities to highly qualified students at DOE-designated academic, private sector, and government magnetic fusion energy institutions. The objectives of the Magnetic Fusion Energy Technology Fellowship program are: (1) to provide support for graduate study, training, and research in magnetic fusion energy technology; (2) to ensure an adequate supply of appropriately trained manpower to implement the nation's magnetic fusion energy agenda; (3) to raise the visibility of careers in magnetic fusion energy technology and to encourage students to pursue such careers; and (4) to make national magnetic fusion energy facilities available for manpower training

  10. Use of nuclear fusion systems for spent nuclear fuel degradation

    International Nuclear Information System (INIS)

    Nieto, M.; Ramos, G.; Herrera V, J. J. E.

    2009-10-01

    One of the severe problems of the nuclear industry that should be resolved to facilitate its acceptance like viable energy alternative is of the wastes. In spite of having alternative of fuel reprocessing, many of them have been abandoned by economic or security reasons. In the present work, the alternative is described for using reactors of nuclear fusion as sources of fast neutrons with two important applications in mind: the plutonium burning and the transmutation of the elements that contribute in way more important to their radioactivity, mainly the smaller actinides and the fission products of long half life. (Author)

  11. Fusion development and technology

    International Nuclear Information System (INIS)

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R ampersand D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development

  12. Oscillatory vapour shielding of liquid metal walls in nuclear fusion devices

    NARCIS (Netherlands)

    van Eden, G.G.; Kvon, V.; Van De Sanden, M.C.M.; Morgan, T.W.

    2017-01-01

    Providing an efficacious plasma facing surface between the extreme plasma heat exhaust and the structural materials of nuclear fusion devices is a major challenge on the road to electricity production by fusion power plants. The performance of solid plasma facing surfaces may become critically

  13. TBM/MTM for HTS-FNSF: An Innovative Testing Strategy to Qualify/Validate Fusion Technologies for U.S. DEMO

    Directory of Open Access Journals (Sweden)

    Laila El-Guebaly

    2016-08-01

    Full Text Available The qualification and validation of nuclear technologies are daunting tasks for fusion demonstration (DEMO and power plants. This is particularly true for advanced designs that involve harsh radiation environment with 14 MeV neutrons and high-temperature operating regimes. This paper outlines the unique qualification and validation processes developed in the U.S., offering the only access to the complete fusion environment, focusing on the most prominent U.S. blanket concept (the dual cooled PbLi (DCLL along with testing new generations of structural and functional materials in dedicated test modules. The venue for such activities is the proposed Fusion Nuclear Science Facility (FNSF, which is viewed as an essential element of the U.S. fusion roadmap. A staged blanket testing strategy has been developed to test and enhance the DCLL blanket performance during each phase of FNSF D-T operation. A materials testing module (MTM is critically important to include in the FNSF as well to test a broad range of specimens of future, more advanced generations of materials in a relevant fusion environment. The most important attributes for MTM are the relevant He/dpa ratio (10–15 and the much larger specimen volumes compared to the 10–500 mL range available in the International Fusion Materials Irradiation Facility (IFMIF and European DEMO-Oriented Neutron Source (DONES.

  14. Nuclear measurements, techniques and instrumentation, industrial applications, plasma physics and nuclear fusion 1986-1996. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1997-03-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques, and Instrumentation, Industrial Applications, Plasma Physics and Nuclear Fusion, issued during the period 1986-1996. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all of these papers have abstracts in English. Contents cover the three main areas of (i) Nuclear Measurements, Techniques and Instrumentation (Physics, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactor and Particle Accelerator Applications, and Nuclear Data), (ii) Industrial Applications (Radiation Processing, Radiometry, and Tracers), and (iii) Plasma Physics and Controlled Thermonuclear Fusion

  15. Review of the safety concept for fusion reactor concepts and transferability of the nuclear fission regulation to potential fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Juergen; Weller, Arthur; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik (IPP), Garching (Germany); Jin, Xue Zhou; Boccaccini, Lorenzo V.; Stieglitz, Robert; Carloni, Dario [Karlsruher Institute fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany); Pistner, Christoph [Oeko-Institut e.V., Darmstadt (Germany); Herb, Joachim [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany)

    2016-01-15

    This paper summarizes the current state of the art in science and technology of the safety concept for future fusion power plants (FPPs) and examines the transferability of the current nuclear fission regulation to the concepts of future fusion power plants. At the moment there exist only conceptual designs of future fusion power plants. The most detailed concepts with regards to safety aspects were found in the European Power Plant Conceptual Study (PPCS). The plant concepts discussed in the PPCS are based on magnetic confinement of the plasma. The safety concept of fusion power plants, which has been developed during the last decades, is based on the safety concepts of installations with radioactive inventories, especially nuclear fission power plants. It applies the concept of defence in depth. However, there are specific differences between the implementations of the safety concepts due to the physical and technological characteristics of fusion and fission. It is analysed whether for fusion a safety concept is required comparable to the one of fission. For this the consequences of a purely hypothetical release of large amounts of the radioactive inventory of a fusion power plant and a fission power plant are compared. In such an event the evacuation criterion outside the plant is exceeded by several orders of magnitude for a fission power plant. For a fusion power plant the expected radiological consequences are of the order of the evacuation criterion. Therefore, a safety concept is also necessary for fusion to guarantee the confinement of the radioactive inventory. The comparison between the safety concepts for fusion and fission shows that the fundamental safety function ''confinement of the radioactive materials'' can be transferred directly in a methodical way. For a fusion power plant this fundamental safety function is based on both, physical barriers as well as on active retention functions. After the termination of the fusion

  16. Brief history and current developments of nuclear fusion

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    The history of nuclear fusion is briefly outlined, the ITER project is described, the advantages of the Wendelstein 7-X stellarator are described, alternative projects and mentioned, and prospects for the nearest time to come are shown. (P.A.)

  17. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT. ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2001-01-01

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility

  18. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product 99 Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories. 127 refs., 76 figs., 103 tabs

  19. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

  20. ITER and the fusion reactor: status and challenge to technology

    International Nuclear Information System (INIS)

    Lackner, K.

    2001-01-01

    Fusion has a high potential, but requires an integrated physics and technology effort without precedence in non-military R and D, the basic physics feasibility demonstration will be concluded with ITER, although R and D for efficiency improvement will continue. The essential technological issues remaining at the start of ITER operation concern materials questions: first wall components and radiation tolerant (low activation materials). This paper comprised just the copy of the slides presentation with the following subjects: magnetic confinement fusion, the Tokamak, progress in Tokamak performance, ITER: its geneology, physics basis-critical issues, cutaway of ITER-FEAT, R and D - divertor cassette (L-5), differences power plant-ITER, challenges for ITER and fusion plants, main technological problems (plasma facing materials), structural and functional materials for fusion power plants, ferritic steels, EUROFER development, improvements beyond ferritic steels, costing among others. (nevyjel)

  1. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rieth, M., E-mail: Michael.rieth@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Dudarev, S.L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Gonzalez de Vicente, S.M. [EFDA-Close Support Unit, Garching (Germany); Aktaa, J. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Ahlgren, T. [University of Helsinki, Department of Physics, Helsinki (Finland); Antusch, S. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Armstrong, D.E.J. [Department of Materials, University of Oxford (United Kingdom); Balden, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Baluc, N. [Centre de Recherches en Physique des Plasmas, CRPP EPFL - Materials, 5232 Villigen/PSI (Switzerland); Barthe, M.-F. [CNRS, UPR3079 CEMHTI, 1D Avenue, de la Recherche Scientifique, 45071 Orleans cedex 2 (France); Universite d' Orleans, Polytech ou Faculte des Sciences, Avenue du Parc Floral, BP 6749, 45067 Orleans cedex 2 (France); Basuki, W.W. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Battabyal, M. [Centre de Recherches en Physique des Plasmas, CRPP EPFL - Materials, 5232 Villigen/PSI (Switzerland); Becquart, C.S. [Unite Materiaux et Transformations, UMR 8207, 59655 Villeneuve d' Ascq (France); Blagoeva, D. [NRG, Nuclear Research and consultancy Group, Petten (Netherlands); Boldyryeva, H. [Institute of Plasma Physics, Za Slovankou 3, 18200 Praha (Czech Republic); and others

    2013-01-15

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme's main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  2. Thermonuclear fusion

    International Nuclear Information System (INIS)

    Weisse, J.

    2000-01-01

    This document takes stock of the two ways of thermonuclear fusion research explored today: magnetic confinement fusion and inertial confinement fusion. The basic physical principles are recalled first: fundamental nuclear reactions, high temperatures, elementary properties of plasmas, ignition criterion, magnetic confinement (charged particle in a uniform magnetic field, confinement and Tokamak principle, heating of magnetized plasmas (ohmic, neutral particles, high frequency waves, other heating means), results obtained so far (scale laws and extrapolation of performances, tritium experiments, ITER project), inertial fusion (hot spot ignition, instabilities, results (Centurion-Halite program, laser experiments). The second part presents the fusion reactor and its associated technologies: principle (tritium production, heat source, neutron protection, tritium generation, materials), magnetic fusion (superconducting magnets, divertor (role, principle, realization), inertial fusion (energy vector, laser adaptation, particle beams, reaction chamber, stresses, chamber concepts (dry and wet walls, liquid walls), targets (fabrication, injection and pointing)). The third chapter concerns the socio-economic aspects of thermonuclear fusion: safety (normal operation and accidents, wastes), costs (costs structure and elementary comparison, ecological impact and external costs). (J.S.)

  3. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    International Nuclear Information System (INIS)

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described

  4. Window of cold nuclear fusion and biased-pulse electrolysis experiment

    International Nuclear Information System (INIS)

    Takahashi, Akito; Jida, Toshiyuki; Maekawa, Fujio; Sugimoto, Hisashi; Yoshida, Shigeo

    1989-01-01

    Based on the electron screening effect and the excitation of deuteron harmonic oscillators in palladium lattice, theoretical aspects are given to explain the cold fusion phenomena and the possibility of nuclear heating. A narrow window is proposed to meet ≅ 10 watts per cubic centimeter for the nuclear heating, by the hypothetical excitation-screening model. A relatively wide window is feasible to meet a few fusion events per second per cc under the non-stationary conditions of deuteron-charging and discharging. For stationary lattice conditions, the probability of cold fusion is not feasible at all. To confirm the cold fusion phenomena, a heavy water electrolysis experiment was carried out using biased-pulse-electrolytic currents, expecting the enhancement of cold fusion events under charging and discharging of deuterons. For the neutron detection, a cross-checking system between a recoil-proton scintillation detector and a 3 He thermal neutron detector was employed to see coincident time-patterns of neutron emission from an electrolysis cell. To check the energy of emitted neutrons, pulse height spectrum of the recoil-proton detector was monitored. Up to the D-charging time of 300 hr, neutron yields of 1-2 n/s/cc were obtained for time-intervals of 60-200 hr. From the recoil-proton spectra, it was confirmed that 2.45 MeV neutrons by the D(d, n) 3 He fusion branch were emitted. The observed time-patterns of neutron emission suggest the existence of cold fusion under the charging and discharging conditions. (orig.)

  5. Present status of nuclear fusion research and development in JAERI. 1984 ed.

    International Nuclear Information System (INIS)

    1984-01-01

    This year is the 10th year in the ''Second stage nuclear fusion research and development project'', and the main plan to construct a critical plasma testing apparatus, JT-60, is about to be completed. The test of the power source and control system, and the assembling of the main body were finished, and the final general test is about to be started. In foreign countries, already experiment was begun with the TFTR and the JET, and the formation of the plasma at 20 million deg with the containment time of about 0.3 sec was accomplished. The results of heating experiment by incorporating heating devices are anxiously waited for. As the next generation projects, the conceptual design of the burning core experiment aiming at the attainment of self ignition condition was started in USA, and the next European torus is to be developed in EC before reaching the prototype DEMO. In Japan, it is intended to advanced to the attainment of self ignition condition and an experimental reactor for verifying nuclear fusion technology. In USSR, the construction of a superconducting tokamak T-15 is likely to be completed in 1986. The international cooperation is expected because of the financial condition of respective countries. (Kako, I.)

  6. Nuclear fusion induced by x rays in a crystal

    Science.gov (United States)

    Belyaev, V. B.; Miller, M. B.; Otto, J.; Rakityansky, S. A.

    2016-03-01

    The nuclei that constitute a crystalline lattice oscillate relative to each other with a very low energy that is not sufficient to penetrate through the Coulomb barriers separating them. An additional energy, which is needed to tunnel through the barrier and fuse, can be supplied by external electromagnetic waves (x rays or synchrotron radiation). Exposing the solid compound LiD (lithium deuteride) to x rays for the duration of 111 h, we detect 88 events of nuclear fusion d +6Li→8Be* . Our theoretical estimate agrees with what we observed. One possible application of the phenomenon we found is in measurements of the rates of various nuclear reactions (not necessarily fusion) at extremely low energies inaccessible in accelerator experiments.

  7. Intense fusion neutron sources

    International Nuclear Information System (INIS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-01-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  8. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  9. Controlled nuclear fusion. Theoretical and technical-physical aspects

    International Nuclear Information System (INIS)

    Donne, T.; Oomens, N.

    1995-01-01

    It is stated that the realization of controlled fusion is not only a matter of solving technical problems. Also theoretical research in the field of plasma physics is required. A brief state-of-the-art is given of theoretical and technical-physical aspects of nuclear fusion. Attention is paid to magnetic confinement, the importance of theoretical research, plasma heating, plasma diagnostics, and the control of plasma transport. Throughout the article special attention is paid to the International Thermonuclear Experimental Reactor (ITER) project. 5 figs., 1 tab., 3 refs

  10. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  11. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  12. Study of a spherical torus based volumetric neutron source for nuclear technology testing and development

    International Nuclear Information System (INIS)

    Cheng, E.T.; Cerbone, R.J.; Sviatoslavsky, I.N.; Galambos, L.D.; Peng, Y.-K.M.

    2000-01-01

    A plasma based, deuterium and tritium (DT) fueled, volumetric 14 MeV neutron source (VNS) has been considered as a possible facility to support the development of the demonstration fusion power reactor (DEMO). It can be used to test and develop necessary fusion blanket and divertor components and provide sufficient database, particularly on the reliability of nuclear components necessary for DEMO. The VNS device can be complement to ITER by reducing the cost and risk in the development of DEMO. A low cost, scientifically attractive, and technologically feasible volumetric neutron source based on the spherical torus (ST) concept has been conceived. The ST-VNS, which has a major radius of 1.07 m, aspect ratio 1.4, and plasma elongation three, can produce a neutron wall loading from 0.5 to 5 MW m -2 at the outboard test section with a modest fusion power level from 38 to 380 MW. It can be used to test necessary nuclear technologies for fusion power reactor and develop fusion core components include divertor, first wall, and power blanket. Using staged operation leading to high neutron wall loading and optimistic availability, a neutron fluence of more than 30 MW year m -2 is obtainable within 20 years of operation. This will permit the assessments of lifetime and reliability of promising fusion core components in a reactor relevant environment. A full scale demonstration of power reactor fusion core components is also made possible because of the high neutron wall loading capability. Tritium breeding in such a full scale demonstration can be very useful to ensure the self-sufficiency of fuel cycle for a candidate power blanket concept

  13. Nuclear elastic scattering effects on fusion product transport in compact tori

    International Nuclear Information System (INIS)

    DeVeaux, J.; Greenspan, E.; Miley, G.H.

    1980-01-01

    This paper seeks to advance previous work including the effects of nuclear elastic scattering (NES) on fusion-product transport. We have found that NES may dominate the slowing-down process for high-temperature, advance-fuel plasmas which burn Cat.D or D- 3 He. A modified version of the Monte Carlo fusion product transport code, MCFRM, was used to evaluate the effects of NES on discrete fusion-product orbits in the FRM

  14. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion. 1980-1994. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1995-04-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1994. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (i) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  15. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion, 1980-1993. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1994-01-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1993. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (I) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  16. Development of materials of low activation for nuclear fusion

    International Nuclear Information System (INIS)

    Kamata, Koji

    1986-01-01

    Unlike nuclear fission, in nuclear fusion, it is a feature that activated products are not formed, but this merit is to be lost if the structural materials of the equipment are activated by generated neutrons. Accordingly, the elements which are activated by neutrons must be excluded from the structural materials in nuclear fusion reactors and fusion experiment apparatuses. As the result of evaluating the materials for low induced activation, aluminum alloys are the most promising. Aluminum alloys have also excellent properties in gas release, the thermal stress of first walls due to the temperature distribution, vaporizing quantity at the time of disruption and so on. However, in the existing aluminum alloys, the lowering of strength above 150 deg C is remarkable, and when the aluminum walls of vacuum vessels are too thick, the rate of tritium breeding may lower. The Institute of Plasma Physics, Nagoya University, carried out the total design of a tokamak made of an aluminum alloy for the first time in the world. In this paper, the properties of the aluminum alloy and the feasibility of its industrial manufacture are described, and the course of improving this alloy is pointed out. Improved 5083 alloy and Al-4 % Mg-1 % Li alloy were investigated. The industrial manufacture of large plates with this Al-Mg-Li alloy is possible now. (Kako, I.)

  17. Innovative nuclear thermal propulsion technology evaluation: Results of the NASA/DOE Task Team study

    International Nuclear Information System (INIS)

    Howe, S.; Borowski, S.; Helms, I.; Diaz, N.; Anghaie, S.; Latham, T.

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops held in the summer of 1990, six task teams were formed to continue evaluation of various nuclear propulsion concepts. The Task Team on Nuclear Thermal Propulsion (NTP) created the Innovative Concepts Subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. The Subpanel endeavored to evaluate each of the concepts on a ''level technological playing field,'' and to identify critical technologies, issues, and early proof-of-concept experiments. The concepts included the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter. The results of the studies by the panel will be provided. 13 refs., 6 figs., 2 tabs

  18. Mirror Fusion vacuum technology developments

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  19. Mirror fusion vacuum technology developments

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  20. Heat transfer and mechanical interactions in fusion nuclear systems

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1984-01-01

    This general review of design issues in heat transfer and mechanical interactions of the first wall, blanket and shield systems of tokamak and mirror fusion reactors begins with a brief introduction to fusion nuclear systems. The design issues are summarized in tables and the following examples are described to illustrate these concerns: the surface heating of limiters, heat transfer from solid breeders, MHD effects in liquid metal blankets, mechanical loads from electromagnetic transients and remote maintenance

  1. Technology-development needs for magnetic fusion

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Baker, C.C.; Conn, R.W.; Krakowski, R.A.; Steiner, D.; Thomassen, K.I.

    1983-03-01

    The technology-development needs for magnetic fusion have been identified from an assessment of the conceptual design studies which have been performed. A summary of worldwide conceptual design effort is presented. The relative maturity of the various confinement concepts and the intensity and continuity of the design efforts are taken into account in identifying technology development needs. A major conclusion of this study is that there is a high degree of commonality among the technology requirements identified for the various confinement concepts

  2. Work on fusion technology at Studsvik during 1978

    International Nuclear Information System (INIS)

    Pauli, R.; Espefaelt, R.; Lorenzen, J.

    1978-02-01

    Studsvik is associated with the EUR-ATOM fusion research program and work within fusion technology is carried out regarding reactor control, conceptual design, safety and environmental impact; radiation damage. In addition research by subcontracts is done in atomic physics data at Lund university and in surface physics at Research Institute of Physics, Stockholm university. (author)

  3. Cluster dynamics transcending chemical dynamics toward nuclear fusion.

    Science.gov (United States)

    Heidenreich, Andreas; Jortner, Joshua; Last, Isidore

    2006-07-11

    Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 10(15)-10(20) W.cm(-2)). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C(4+)(D(+))(4))(n) and (D(+)I(22+))(n) at I(M) = 10(18) W.cm(-2), that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D(2))(n), (HT)(n), (CD(4))(n), (DI)(n), (CD(3)I)(n), and (CH(3)I)(n) clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D(2))(n) clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., (12)C(P,gamma)(13)N driven by CE of (CH(3)I)(n) clusters, were explored.

  4. Nuclear Fusion Project. Semi-annual report of the Association KfK/EURATOM

    International Nuclear Information System (INIS)

    Kast, G.

    1987-12-01

    Short communications give a survey of 38 technology tasks, the development of ECRH power sources at 150 GHz, and 8 NET study contracts. The fusion technology contracts and the NET contracts are listed in the appendices I and II, respectively, while the KfK departments contributing to the Fusion Project and the Fusion Project Management Staff are listed in appendices III and IV, respectively. (GG)

  5. FENDL: International reference nuclear data library for fusion applications

    International Nuclear Information System (INIS)

    Pashchenko, A.B.; Wienke, H.; Ganesan, S.

    1996-01-01

    The IAEA nuclear data section, in co-operation with several national nuclear data centres and research groups, has created the first version of an internationally available fusion evaluated nuclear data library (FENDL-1). The FENDL library has been selected to serve as a comprehensive source of processed and tested nuclear data tailored to the requirements of the engineering design activity (EDA) of the ITER project and other fusion-related development projects. The present version of FENDL consists of the following sublibraries covering the necessary nuclear input for all physics and engineering aspects of the material development, design, operation and safety of the ITER project in its current EDA phase: FENDL/A-1.1: neutron activation cross-sections, selected from different available sources, for 636 nuclides, FENDL/D-1.0: nuclear decay data for 2900 nuclides in ENDF-6 format, FENDL/DS-1.0: neutron activation data for dosimetry by foil activation, FENDL/C-1.0: data for the fusion reactions D(d,n), D(d,p), T(d,n), T(t,2n), He-3(d,p) extracted from ENDF/B-6 and processed, FENDL/E-1.0:data for coupled neutron-photon transport calculations, including a data library for neutron interaction and photon production for 63 elements or isotopes, selected from ENDF/B-6, JENDL-3, or BROND-2, and a photon-atom interaction data library for 34 elements. The benchmark validation of FENDL-1 as required by the customer, i.e. the ITER team, is considered to be a task of high priority in the coming months. The well tested and validated nuclear data libraries in processed form of the FENDL-2 are expected to be ready by mid 1996 for use by the ITER team in the final phase of ITER EDA after extensive benchmarking and integral validation studies in the 1995-1996 period. The FENDL data files can be electronically transferred to users from the IAEA nuclear data section online system through INTERNET. A grand total of 54 (sub)directories with 845 files with total size of about 2 million

  6. Kar5p is required for multiple functions in both inner and outer nuclear envelope fusion in Saccharomyces cerevisiae.

    Science.gov (United States)

    Rogers, Jason V; Rose, Mark D

    2014-12-02

    During mating in the budding yeast Saccharomyces cerevisiae, two haploid nuclei fuse via two sequential membrane fusion steps. SNAREs (i.e., soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and Prm3p mediate outer nuclear membrane fusion, but the inner membrane fusogen remains unknown. Kar5p is a highly conserved transmembrane protein that localizes adjacent to the spindle pole body (SPB), mediates nuclear envelope fusion, and recruits Prm3p adjacent to the SPB. To separate Kar5p's functions, we tested localization, Prm3p recruitment, and nuclear fusion efficiency in various kar5 mutants. All domains and the conserved cysteine residues were essential for nuclear fusion. Several kar5 mutant proteins localized properly but did not mediate Prm3p recruitment; other kar5 mutant proteins localized and recruited Prm3p but were nevertheless defective for nuclear fusion, demonstrating additional functions beyond Prm3p recruitment. We identified one Kar5p domain required for SPB localization, which is dependent on the half-bridge protein Mps3p. Electron microscopy revealed a kar5 mutant that arrests with expanded nuclear envelope bridges, suggesting that Kar5p is required after outer nuclear envelope fusion. Finally, a split-GFP assay demonstrated that Kar5p localizes to both the inner and outer nuclear envelope. These insights suggest a mechanism by which Kar5p mediates inner nuclear membrane fusion. Copyright © 2015 Rogers and Rose.

  7. New Burnup Calculation System for Fusion-Fission Hybrid System

    International Nuclear Information System (INIS)

    Isao Murata; Shoichi Shido; Masayuki Matsunaka; Keitaro Kondo; Hiroyuki Miyamaru

    2006-01-01

    Investigation of nuclear waste incineration has positively been carried out worldwide from the standpoint of environmental issues. Some candidates such as ADS, FBR are under discussion for possible incineration technology. Fusion reactor is one of such technologies, because it supplies a neutron-rich and volumetric irradiation field, and in addition the energy is higher than nuclear reactor. However, it is still hard to realize fusion reactor right now, as well known. An idea of combination of fusion and fission concepts, so-called fusion-fission hybrid system, was thus proposed for the nuclear waste incineration. Even for a relatively lower plasma condition, neutrons can be well multiplied by fission in the nuclear fuel, tritium is thus bred so as to attain its self-sufficiency, enough energy multiplication is then expected and moreover nuclear waste incineration is possible. In the present study, to realize it as soon as possible with the presently proven technology, i.e., using ITER model with the achieved plasma condition of JT60 in JAEA, Japan, a new calculation system for fusion-fission hybrid reactor including transport by MCNP and burnup by ORIGEN has been developed for the precise prediction of the neutronics performance. The author's group already has such a calculation system developed by them. But it had a problem that the cross section libraries in ORIGEN did not have a cross section library, which is suitable specifically for fusion-fission hybrid reactors. So far, those for FBR were approximately used instead in the analysis. In the present study, exact derivation of the collapsed cross section for ORIGEN has been investigated, which means it is directly evaluated from calculated track length by MCNP and point-wise nuclear data in the evaluated nuclear data file like JENDL-3.3. The system realizes several-cycle calculation one time, each of which consists of MCNP criticality calculation, MCNP fixed source calculation with a 3-dimensional precise

  8. Fusion-supported decentralized nuclear energy system

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1979-04-01

    A decentralized nuclear energy system is proposed comprising mass-produced pressurized water reactors in the size range 10 to 300 MW (thermal), to be used for the production of process heat, space heat, and electricity in applications where petroleum and natural gas are presently used. Special attention is given to maximizing the refueling interval with no interim batch shuffling in order to minimize fuel transport, reactor downtime, and opportunity for fissile diversion. These objectives demand a substantial fissile enrichment (7 to 15%). The preferred fissile fuel is U-233, which offers an order of magnitude savings in ore requirements (compared with U-235 fuel), and whose higher conversion ratio in thermal reactors serves to extend the period of useful reactivity and relieve demand on the fissile breeding plants (compared with Pu-239 fuel). Application of the neutral-beam-driven tokamak fusion-neutron source to a U-233 breeding pilot plant is examined. This scheme can be extended in part to a decentralized fusion energy system, wherein remotely located large fusion reactors supply excess tritium to a distributed system of relatively small nonbreeding D-T reactors

  9. Conservation of proteo-lipid nuclear membrane fusion machinery during early embryogenesis.

    Science.gov (United States)

    Byrne, Richard D; Veeriah, Selvaraju; Applebee, Christopher J; Larijani, Banafshé

    2014-01-01

    The fusogenic lipid diacylglycerol is essential for remodeling gamete and zygote nuclear envelopes (NE) during early embryogenesis. It is unclear whether upstream signaling molecules are likewise conserved. Here we demonstrate PLCγ and its activator SFK1, which co-operate during male pronuclear envelope formation, also promote the subsequent male and female pronuclear fusion. PLCγ and SFK1 interact directly at the fusion site leading to PLCγ activation. This is accompanied by a spatially restricted reduction of PtdIns(4,5)P2. Consequently, pronuclear fusion is blocked by PLCγ or SFK1 inhibition. These findings identify new regulators of events in the early embryo and suggest a conserved "toolkit" of fusion machinery drives successive NE fusion events during embryogenesis.

  10. Nuclear fusion in a solid body

    International Nuclear Information System (INIS)

    Romodanov, V.A.; Savin, V.I.; Shakhurin, M.V.; Chernyavskij, V.T.; Pustovit, A.E.

    1991-01-01

    The present work was aimed at investigating a possibility to have a fusion reaction during the interaction of gaseous deuterium with various metals under conditions of glow discharge. It is shown that neutron flux which presumably occurs due to the reaction of nuclear fusion exceeded the background level two times maximum for such materials as Cr, Pd, B, Li. A conclusion is made that for the recording of neutrons which can be generated under bombardment of material surfaces with accelerated ions an additional shielding of standard recorders is required against electromagnetic oscillations both in the input circuits and power supply circuits. A significant increase of tritium concentration in deuterium was recorded (by mass spectrometry and β activity measurement) during the passage of the latter through the metal being bombarded with accelerated ions from glow discharge plasma

  11. International fusion research

    International Nuclear Information System (INIS)

    Pease, R.S.

    1983-01-01

    Nuclear energy of the light elements deuterium and lithium can be released if the 100 MK degree temperature required for deuterium-tritium thermonuclear fusion reactions can be achieved together with sufficient thermal insulation for a net energy yield. Progress of world-wide research shows good prospect for these physical conditions being achieved by the use of magnetic field confinement and of rapidly developing heating methods. Tokamak systems, alternative magnetic systems and inertial confinement progress are described. International co-operation features a number of bilateral agreements between countries: the Euratom collaboration which includes the Joint European Torus, a joint undertaking of eleven Western European nations of Euratom, established to build and operate a major confinement experiment; the development of co-operative projects within the OECD/IEA framework; the INTOR workshop, a world-wide study under IAEA auspices of the next major step in fusion research which might be built co-operatively; and assessments of the potential of nuclear fusion by the IAEA and the International Fusion Research Council. The INTOR (International Tokamak Reactor) studies have outlined a major plant of the tokamak type to study the engineering and technology of fusion reactor systems, which might be constructed on a world-wide basis to tackle and share the investment risks of the developments which lie ahead. This paper summarizes the recent progress of research on controlled nuclear fusion, featuring those areas where international co-operation has played an important part, and describes the various arrangements by which this international co-operation is facilitated. (author)

  12. Prospects for fusion applications of reversed-field pinches

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.; Hagenson, R.L.

    1985-01-01

    The applicability of the Reversed-Field Pinch (RFP) as a source of fusion neutrons for use in developing key fusion nuclear technologies is examined. This Fusion Test Facility (FTF) would emphasize high neutron wall loading, small plasma volume, low fusion and driver powers, and steady-state operation. Both parametric tradeoffs based on present-day physics understanding and a conceptual design based on an approx.1-MW/m 2 (neutron) driven operation are reported. 10 refs

  13. 1981 Annual Status Report: thermonuclear fusion technology

    International Nuclear Information System (INIS)

    1982-01-01

    The work perfomed on 1981 concerns four projects, namely: - The project 1: ''Reactor Studies''. During 1981 this activity was made in support to the European participation to the INTOR (INternational TOkamak Reactor) studies. This represents a collaborative effort among Europe, Japan; USA and USSR, under the auspices of IAEA, to design a major fusion experiment beyond the upcoming generation of large tokamaks. - The Project 2: ''Blanket Technology'' has the aim to investigate the behaviour of blanket materials in fusion conditions. - The Project 3: ''Materials Sorting and Development'' has the aim to assess the mechanical properties and radiation damage of standard and advanced materials suited for structures, in particular for application as first wall of the fusion reactors. - The Project 4: ''Cyclotron Operation and Experiments'' has the task to exploit a cyclotron to simulate radiation damages to materials in a fusion ambient

  14. West European magnetic confinement fusion research

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Hogan, J.T.; Porkolab, M.; Thomassen, K.I.

    1990-01-01

    This report presents a technical assessment and review of the West European program in magnetic confinement fusion by a panel of US scientists and engineers active in fusion research. Findings are based on the scientific and technical literature, on laboratory reports and preprints, and on the personal experiences and collaborations of the panel members. Concerned primarily with developments during the past 10 years, from 1979 to 1989, the report assesses West European fusion research in seven technical areas: tokamak experiments; magnetic confinement technology and engineering; fusion nuclear technology; alternate concepts; theory; fusion computations; and program organization. The main conclusion emerging from the analysis is that West European fusion research has attained a position of leadership in the international fusion program. This distinction reflects in large measure the remarkable achievements of the Joint European Torus (JET). However, West European fusion prominence extends beyond tokamak experimental physics: the program has demonstrated a breadth of skill in fusion science and technology that is not excelled in the international effort. It is expected that the West European primacy in central areas of confinement physics will be maintained or even increased during the early 1990s. The program's maturity and commitment kindle expectations of dramatic West European advances toward the fusion energy goal. For example, achievement of fusion breakeven is expected first in JET, before 1995

  15. Outline of research project on nuclear fusion, 1985

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1985-08-01

    When the advance of nuclear fusion research during 10 years hereafter is predicted, the next project should start the research toward nuclear burning, adopt the diversified ways, and develop the research in wide related fields. The central subject such as the containment of plasma is studies with large experimental facilities, but in the related fields, the research subsidies must be utilized positively. The organization to perform the research compries 6 groups, 1) reactor materials and plasma-wall interactions 2) science and engineering of tritium, and influence on living things, 4) development of superconducting magnets, 5) fusion blanket engineering, and 6) design and assessment of thermonuclear reactors. The distribution and management of the scientific research subsidy are explained. All of the subjects of planned and publicly invited research a listed, and the researchers concerned, the amount of subsidy, the objective and the plan of execution in fiscal year 1984 of each research are outlined. (J.P.N.)

  16. Outline of research project on nuclear fusion, 1984

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1984-08-01

    When the advance of nuclear fusion research during 10 years hereafter is predicted, the next project should start the research toward nuclear burning, adopt the diversified ways, a nd develop the research in wide related fields. The central subject such as the containment of plasma is studies with large experimental facilities, but in the related fields, the research subsidies must be utilized positively. The organization to perform the research compries 6 groups, 1) reactor materials and plasma-wall interaction, 2) science and engineering of tritium and influence on living things, 3) fundamentals of core control, 4) development of superconducting magnets, 5) fusion blanket engineering, and 6) design and assessment of thermonuclear reactors. The distribution and management of the scientific research subsidy are explained. All of the subjects of planned and publicly invited research a listed, and the researchers concerned, the amount of subsidy, the objective and the plan of execution in fiscal 1983 of each research are outlined. (J.P.N.)

  17. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Wiffen, Frederick W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Noe, Susan P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-10-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.

  18. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas

    Science.gov (United States)

    De, B. R.; Srnka, L. J.

    1978-01-01

    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  19. Tritium production potential of beam research and magnetic fusion program technologies

    International Nuclear Information System (INIS)

    Lee, J.D.

    1989-03-01

    Regular replenishment of tritium in the nuclear weapons stockpile is essential to maintain our nuclear deterrent. Nuclear reactor facilities presently used for the production of tritium are aging, and their operation is being curtailed awaiting the repairs and upgrades needed to meet modern standards of safety and environment. To provide improved capability in the future, DOE plans to construct a new production reactor. Alternatives to nuclear reactor methods for the production of tritium, mainly electrically-driven accelerator or fusion systems, have been proposed many times in the past. Given the critical national security implications of maintaining adequate tritium production facilities, it is clearly worthwhile for political decision-makers to have a clear and accurate picture of the technical options that could be made available at various points in the future. The goal of this white paper is to summarize available technical information on a set of non-nuclear-reactor options for tritium production with a minimum of advocacy for any one system of implicit assumptions about politically desirable attributes. Indeed, these various options differ considerably in aspects such as the maturity of the technology, the development cost and timescales required, and the capital and operating costs of a typical ''optimized'' facility

  20. Review of Fusion Systems and Contributing Technologies for SIHS-TD (Examen des Systemes de Fusion et des Technologies d'Appui pour la DT SIHS)

    National Research Council Canada - National Science Library

    Angel, Harry H; Ste-Croix, Chris; Kittel, Elizabeth

    2007-01-01

    The major objectives of the report were to identify and review the field of image fusion and contributing technologies and to recommend systems, algorithms and metrics for the proposed SIHS TD Vision SST fusion test bed...

  1. Inhibition of CRM1-mediated nuclear export of transcription factors by leukemogenic NUP98 fusion proteins.

    Science.gov (United States)

    Takeda, Akiko; Sarma, Nayan J; Abdul-Nabi, Anmaar M; Yaseen, Nabeel R

    2010-05-21

    NUP98 is a nucleoporin that plays complex roles in the nucleocytoplasmic trafficking of macromolecules. Rearrangements of the NUP98 gene in human leukemia result in the expression of numerous fusion oncoproteins whose effect on nucleocytoplasmic trafficking is poorly understood. The present study was undertaken to determine the effects of leukemogenic NUP98 fusion proteins on CRM1-mediated nuclear export. NUP98-HOXA9, a prototypic NUP98 fusion, inhibited the nuclear export of two known CRM1 substrates: mutated cytoplasmic nucleophosmin and HIV-1 Rev. In vitro binding assays revealed that NUP98-HOXA9 binds CRM1 through the FG repeat motif in a Ran-GTP-dependent manner similar to but stronger than the interaction between CRM1 and its export substrates. Two NUP98 fusions, NUP98-HOXA9 and NUP98-DDX10, whose fusion partners are structurally and functionally unrelated, interacted with endogenous CRM1 in myeloid cells as shown by co-immunoprecipitation. These leukemogenic NUP98 fusion proteins interacted with CRM1, Ran, and the nucleoporin NUP214 in a manner fundamentally different from that of wild-type NUP98. NUP98-HOXA9 and NUP98-DDX10 formed characteristic aggregates within the nuclei of a myeloid cell line and primary human CD34+ cells and caused aberrant localization of CRM1 to these aggregates. These NUP98 fusions caused nuclear accumulation of two transcription factors, NFAT and NFkappaB, that are regulated by CRM1-mediated export. The nuclear entrapment of NFAT and NFkappaB correlated with enhanced transcription from promoters responsive to these transcription factors. Taken together, the results suggest a new mechanism by which NUP98 fusions dysregulate transcription and cause leukemia, namely, inhibition of CRM1-mediated nuclear export with aberrant nuclear retention of transcriptional regulators.

  2. Tore supra: towards the 'long time' fusion. Press journey

    International Nuclear Information System (INIS)

    2008-01-01

    After a recall of the interest in the fusion for the development of energy sources, the document presents the fusion from the solar reaction to the nuclear fusion in laboratory. Then it discusses the great challenges of this technology and the Tore Supra installation. The last part is devoted to ITER and DEMO projects. (A.L.B.)

  3. Tritium breeding in fusion reactors

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1982-10-01

    Key technological problems that influence tritium breeding in fusion blankets are reviewed. The breeding potential of candidate materials is evaluated and compared to the tritium breeding requirements. The sensitivity of tritium breeding to design and nuclear data parameters is reviewed. A framework for an integrated approach to improve tritium breeding prediction is discussed with emphasis on nuclear data requirements

  4. 2nd Symposium on applied nuclear physics and innovative technologies

    CERN Document Server

    2014-01-01

    Symposium on Applied Nuclear Physics and Innovative Technologies will be held for the second time at Collegium Maius, the oldest building of the Jagiellonian University in Cracow, the same building where Nicolaus Copernicus has studied astronomy. Symposium is organized in the framework of the MPD programme carried out by the Foundation for Polish science based on the European Structural Funds. The aim of this conference is to gather together young scientists and experts in the field of applied and fundamental nuclear as well as particle physics. Aiming at interplay of fundamental and applied science the conference will be devoted to the following topics: * Medical imaging and radiotherapy * New materials and technologies in radiation detection * Fission, fusion and spallation processes * High-performance signal processing and data analysis * Tests of foundations of physics and search for a new kind of sub-atomic matter

  5. Nuclear fusion rate of the muonic T3 molecule

    International Nuclear Information System (INIS)

    Faghihi, F.; Eskandari, M. R.

    2004-01-01

    The ground state binding energy, size and effective nuclear charge of the muonic T 3 molecule are calculated using Born-Oppenheimer adiabatic approximation. The system possesses two minimum positions, one at typically muonic and the second at the atomic distances. A symmetric planar vibrational model between two minima is assumed and the approximated potential are calculated. Moreover, nuclear fusion rate calculations of the short-life molecule is carried out due to the overlap integral of the resonance nuclear compound nucleus and the molecular wave functions

  6. Tore supra: towards the 'long time' fusion. Press journey; Tore Supra: vers la fusion 'longue duree'. Voyage de presse

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    After a recall of the interest in the fusion for the development of energy sources, the document presents the fusion from the solar reaction to the nuclear fusion in laboratory. Then it discusses the great challenges of this technology and the Tore Supra installation. The last part is devoted to ITER and DEMO projects. (A.L.B.)

  7. Future directions in fusion research

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1987-01-01

    The author discusses his analysis to quantify the priority of fusion R and D in the United States. The conclusion is that this priority has been essentially constant for 35 years with only two exceptions. He identifies four basic problems that must be solved. These problems are: to improve the scientific understanding of confinement concepts if we are going to have an energy source that can be utilized some day; to understand the physics of burning plasmas; to develop the materials for fusion use to realize the environmental potential of fusion; and to develop fusion nuclear technology. A response to these problems is given, based on the author's argument for international collaboration in fusion research

  8. IAEA specialists' meeting on the fusion evaluated nuclear data library related to the ITER activity

    International Nuclear Information System (INIS)

    Goulo, V.; Lorenz, A.

    1988-01-01

    This is the summary report of an IAEA Specialists' Meeting on the Fusion Evaluated Nuclear Data Library Related to the ITER Activity, convened by the IAEA Nuclear Data Section in Vienna from 16 to 18 November 1987. The objective of the meeting was to formulate a detailed programme and time schedule for the development of the Fusion Evaluated Nuclear Data Library (FENDL) to meet the future needs of the ITER activity

  9. 8th International School of Fusion Reactor Technology "Ettore Majorana"

    CERN Document Server

    Leotta, G G; Muon-catalyzed fusion and fusion with polarized nuclei

    1988-01-01

    The International School of Fusion Reactor Technology started its courses 15 years ago and since then has mantained a biennial pace. Generally, each course has developed the subject which was announced in advance at the closing of the previous course. The subject to which the present proceedings refer was chosen in violation of that rule so as to satisfy the recent and diffuse interest in cold fusion among the main European laboratories involved in controlled thermonuclear research (CTR). In the second half of 1986 we started to prepare a workshop aimed at assessing the state of the art and possibly of the perspectives of muon- catalyzed fusion. Research in this field has recently produced exciting experimental results open to important practical applications. We thought it worthwhile to consider also the beneficial effects and problems of the polarization ofthe nuclei in both cold and thermonuclear fusion. In preparing the 8th Course on Fusion Reactor Technology, it was necessary to abandon the tradi...

  10. Massachusetts Institute of Technology Plasma Fusion Center, 1988--1989 report to the President

    International Nuclear Information System (INIS)

    1989-07-01

    This report discusses the following topics on fusion energy: cold fusion; alcator confinement experiments; applied plasma physics research; fusion systems; coherent electromagnetic wave generation; and fusion technology and engineering

  11. Fusion reactor cost reductions by employing non-nuclear grade components

    International Nuclear Information System (INIS)

    Bourque, R.F.; Maya, I.; Schultz, K.R.; Sonn, D.L.; Wise, R.K.

    1987-09-01

    The Cascade inertial confinement fusion reactor fits the requirements of low radioactive inventories and inherent safety and is therefore a candidate for non-nuclear construction throughout. This reactor consists of a rotating blanket of ceramic granules that absorb the energy from D-T target explosions occurring along the rotational axis. Laser energy is beamed in axially from both ends. Two cost estimates were made for an 815 MWe Cascade power plant. One was based on an ''all conventional'' plant, which is constructed and costed using well-established, conventional fossil power plant methods. The second was a ''nuclear plus conventional'' design, constructed and costed using a combination of fossil and fission reactor plant methods and standards that would be typical of advanced fission reactors. The total capital requirements for the ''all conventional'' construction plant were estimated in 1985 dollars at $1490 M, including indirect costs. Similarly, the ''nuclear plus conventional'' construction plant was estimated at $1940 M. The savings of $450 M (23%) represents strictly the difference between Cascade ICF power plants designed and constructed to nuclear safety-related requirements versus all non-nuclear. This example clearly shows that, if fusion plants can take advantage of low activation materials and inherent safety features to eliminate the need for nuclear-related expenses, then such plants may have economic advantages over nuclear-grade systems. 13 refs., 1 fig., 5 tabs

  12. Quark-level analogue of nuclear fusion with doubly heavy baryons.

    Science.gov (United States)

    Karliner, Marek; Rosner, Jonathan L

    2017-11-01

    The essence of nuclear fusion is that energy can be released by the rearrangement of nucleons between the initial- and final-state nuclei. The recent discovery of the first doubly charmed baryon , which contains two charm quarks (c) and one up quark (u) and has a mass of about 3,621 megaelectronvolts (MeV) (the mass of the proton is 938 MeV) also revealed a large binding energy of about 130 MeV between the two charm quarks. Here we report that this strong binding enables a quark-rearrangement, exothermic reaction in which two heavy baryons (Λ c ) undergo fusion to produce the doubly charmed baryon and a neutron n (), resulting in an energy release of 12 MeV. This reaction is a quark-level analogue of the deuterium-tritium nuclear fusion reaction (DT → 4 He n). The much larger binding energy (approximately 280 MeV) between two bottom quarks (b) causes the analogous reaction with bottom quarks () to have a much larger energy release of about 138 MeV. We suggest some experimental setups in which the highly exothermic nature of the fusion of two heavy-quark baryons might manifest itself. At present, however, the very short lifetimes of the heavy bottom and charm quarks preclude any practical applications of such reactions.

  13. Cell fusion through a microslit between adhered cells and observation of their nuclear behavior.

    Science.gov (United States)

    Wada, Ken-Ichi; Hosokawa, Kazuo; Kondo, Eitaro; Ito, Yoshihiro; Maeda, Mizuo

    2014-07-01

    This paper describes a novel cell fusion method which induces cell fusion between adhered cells through a microslit for preventing nuclear mixing. For this purpose, a microfluidic device which had ∼ 100 cell pairing structures (CPSs) making cell pairs through microslits with 2.1 ± 0.3 µm width was fabricated. After trapping NIH3T3 cells with hydrodynamic forces at the CPSs, the cells were fused through the microslit by the Sendai virus envelope method. With following timelapse observation, we discovered that the spread cells were much less susceptible to nuclear migration passing through the microslit compared with round cells, and that cytoplasmic fraction containing mitochondria was transferred through the microslit without nuclear mixing. These findings will provide an effective method for cell fusion without nuclear mixing, and will lead to an efficient method for reprograming and transdifferentiation of target cells toward regenerative medicine. © 2014 Wiley Periodicals, Inc.

  14. R and D of tritium technology for fusion in CAEP: progress and prospect

    International Nuclear Information System (INIS)

    Jiangfeng, Song; Daqiao, Meng; Rong, Li; Zhiyong, Huang; Guoqiang, Huang; Chang-an, Chen; Xiaojun, Deng; Cheng, Qin; Xiaojing, Qian; Guikai, Zhang

    2015-01-01

    China has decided to develop its own fusion engineering test reactor and has also joined ITER. Tritium plant is one of the key systems of fusion system. Programs supposed by China ministry of Science and technology named 'Conceptual design and key technologies research on TBM tritium system' and 'Conceptual design and key technologies research on tritium plant for fusion reactor' were finished in 2013 and 2014. After several years of research, we have finished the design of TBM tritium system, TEP, SDS, WDS, ISS and tritium safety system. The key technologies such as TES, CPS, hydrogen storage materials for SDS, catalysts for WDS, palladium alloy membranes for TEP are under research. In this paper, the progress and prospect of tritium technology for R and D of fusion is introduced. (author)

  15. Nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Takizawa, Teruhiro.

    1975-01-01

    Object: To provide a nuclear fusion apparatus which can make a disorderly magnetic field due to shell current as small as possible, thereby enhancing efficiency. Structure: On each divided end of each shell is integrally projected an auxiliary shell which has thick greater than the other portion of shell. These auxiliary shells are made of a material of high electric conductivity, and the shape of the auxiliary shells may properly be selected so that electric resistance of the auxiliary shell at the divided end of the shell to the shell current may be made smaller than the electric resistance of intermediate of the shell to the shell current. With this, the shell current is concentrated on the auxiliary shell at the divided end of the shell to form an adjacent reciprocating current between it and the shell current opposite the auxiliary shell, thus reducing the disorderly magnetic field. (Yoshihara, H.)

  16. 2nd Karlsruhe International Summer School on Fusion Technologies

    International Nuclear Information System (INIS)

    Bahm, W.; Stycz, K.

    2008-01-01

    For the second time, the Karlsruhe Research enter together with European research institutions and industries invited young scientists and engineers to its ''International Summer School on Fusion Technologies.'' Fifty participants from all over Europe attended the lectures by 35 experts preesenting contributions from their areas of competence. Ten young scientists from India and another 10 from China were connected to the events by video link. Physics student Kornelia Stycz describes her impressions as a participant in the ''2 nd International Summer School on Fusion Technologies.'' (orig.)

  17. Fusion reactor nucleonics: status and needs

    International Nuclear Information System (INIS)

    Lee, J.D.; Engholm, B.A.; Dudziak, D.J.; Haight, R.C.

    1980-01-01

    The national fusion technology effort has made a good start at addressing the basic nucleonics issues, but only a start. No fundamental nucleonics issues are seen as insurmountable barriers to the development of commercial fusion power. To date the fusion nucleonics effort has relied almost exclusively on other programs for nuclear data and codes. But as we progress through and beyond ETF type design studies the fusion program will need to support a broad based nucleonics effort including code development, sensitivity studies, integral experiments, data acquisition etc. It is clear that nucleonics issues are extremely important to fusion development and that we have only scratched the surface

  18. The fusion reactor - a chance to solve the energy problem

    International Nuclear Information System (INIS)

    Wienecke, R.

    1975-01-01

    The work deals with the physical fundamentals of nuclear fusion and the properties of the necessary plasma and gives a survey on the arrangements used today for magnetic confinement such as tokamak, stellarator, high-beta experiments and laser fusion. Finally, the technology of the fusion reactor and its potential advantages are explained. (RW/LH) [de

  19. Fusion Technology 1996. Proceedings. Volume 1 and 2

    International Nuclear Information System (INIS)

    Varandas, C.; Serra, F.

    1997-01-01

    The objective of these proceedings was to provide a platform for the exchange of information on the design, construction and operation of fusion experiments. The technology which is being developed for the next step devices and fusion reactors was also covered. Sections in volume 1 concern (A) first wall, divertors and vacuum systems; (B) plasma heating and control; (C) plasma engineering and control; and (D) experimental systems. The sections in volume 2 deal with (E) magnet and related power supplies; (F) fuel cycle and tritium processing systems; (G) blanket technology/materials; (H) assembly, remote handling and waste management and storage; and (I) safety and environment, and reactor studies

  20. Thermonuclear fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, B

    1977-01-01

    The present state and future possibilities of controlled-nuclear-fusion research are reviewed, including basic concepts and problems, as well as various approaches based on magnetic- and nonmagnetic-confinement schemes. Considerable progress has so far been made in both plasma physics and fusion-reactor technology, and a closer relationship has been established between theory and experiments. Still, none of the present approaches will, for certain, lead to the final solution of a full-scale reactor. Intensified work along broad lines, with emphasis also on basic research and new ideas, is necessary for future success.

  1. Economic, safety and environmental prospects of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Conn, R W; Holdren, J P; Sharafat, S [California Univ., Los Angeles, CA (USA). Inst. of Plasma and Fusion Research; and others

    1990-09-01

    Controlled fusion energy is one of the long term, non-fossil energy sources available to mankind. It has the potential of significant advantages over fission nuclear power in that the consequences of severe accidents are predicted to be less and the radioactive waste burden is calculated to be smaller. Fusion can be an important ingredient in the future world energy mix as a hedge against environmental, supply or political difficulties connected with the use of fossil fuel and present-day nuclear power. Progress in fusion reactor technology and design is described for both magnetic and inertial fusion energy systems. The projected economic prospects show that fusion will be capital intensive, and the historical trend is towards greater mass utilization efficiency and more competitive costs. Recent studies emphasizing safety and environmental advantages show that the competitive potential of fusion can be further enhanced by specific choices of materials and design. The safety and environmental prospects of fusion appear to exceed substantially those of advanced fission and coal. Clearly, a significant and directed technology effort is necessary to achieve these advantages. Typical parameters have been established for magnetic fusion energy reactors, and a tokamak at moderately high magnetic field (about 7 T on axis) in the first regime of MHD stability ({beta} {le} 3.5 I/aB) is closest to present experimental achievement. Further improvements of the economic and technological performance of the tokamak are possible. In addition, alternative, non-tokamak magnetic fusion approaches may offer substantive economic and operational benefits, although at present these concepts must be projected from a less developed physics base. (Abstract Truncated)

  2. LLNL nuclear data libraries used for fusion calculations

    International Nuclear Information System (INIS)

    Howerton, R.J.

    1984-01-01

    The Physical Data Group of the Computational Physics Division of the Lawrence Livermore National Laboratory has as its principal responsibility the development and maintenance of those data that are related to nuclear reaction processes and are needed for Laboratory programs. Among these are the Magnetic Fusion Energy and the Inertial Confinement Fusion programs. To this end, we have developed and maintain a collection of data files or libraries. These include: files of experimental data of neutron induced reactions; an annotated bibliography of literature related to charged particle induced reactions with light nuclei; and four main libraries of evaluated data. We also maintain files of calculational constants developed from the evaluated libraries for use by Laboratory computer codes. The data used for fusion calculations are usually these calculational constants, but since they are derived by prescribed manipulation of evaluated data this discussion will describe the evaluated libraries

  3. Fusion neutronics plan in the development of fusion reactor. With the aim of realizing electric power

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Morimoto, Yuichi; Ochiai, Kentarou; Sugimoto, Masayoshi; Nishitani, Takeo; Takeuchi, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    On June 1992, Atomic Energy Commission in Japan has settled Third Phase Program of Fusion Research and Development to achieve self-ignition condition, to realize long pulse burning plasma and to establish basis of fusion engineering for demonstration reactor. This report describes research plan of Fusion Neutron Laboratory in JAERI toward a development of fusion reactor with an aim of realizing electric power. The fusion neutron laboratory has a fusion neutronics facility (FNS), intense fusion neutron source. The plan includes research items in the FNS; characteristics of shielding and breeding materials, nuclear characteristics of materials, fundamental irradiation process of insulator, diagnostics materials and structural materials, and development of in-vessel diagnostic technology. Upgrade of the FNS is also described. Also, the International Fusion Material Irradiation Facility (IFMIF) for intense neutron source to develop fusion materials is described. (author)

  4. rf coupler technology for fusion applications

    International Nuclear Information System (INIS)

    Hoffman, D.J.

    1983-01-01

    Radio frequency (rf) oscillations at critical frequencies have successfully provided a means to convey power to fusion plasmas due to the electrical-magnetic properties of the plasma. While large rf systems to couple power to the plasma have been designed, built, and tested, the main link to the plasma, the coupler, is still in an evolutionary stage of development. Design and fabrication of optimal antennas for fusion applications are complicated by incomplete characterizations of the harsh plasma environment and of coupling mechanisms. A brief description of rf coupler technology required for plasma conditions is presented along with an assessment of the status and goals of coupler development

  5. Realizing Technologies for Magnetized Target Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wurden, Glen A. [Los Alamos National Laboratory

    2012-08-24

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  6. Nuclear fusion - The Sun's promise: the race for nuclear fusion. The Canadian who wants to save the World. How ITER wants to get back on track

    International Nuclear Information System (INIS)

    Dupin, Ludovic; Lucas, Thierry

    2016-01-01

    As some projects of development of reactor based on nuclear fusion already exist in France and in North America as prototypes or only projects with different objectives in terms of fabrication and exploitation, with the high ambition to produce an unlimited energy, a first article describes the works performed by start-ups in North America to develop new concepts of reactors based on nuclear fusion. These reactors are smaller, more flexible and less expensive than previous projects, and their development is supported by actors of the digital economy. A second article focuses on the example of General Fusion, a young Canadian company located near Vancouver, which is building its first prototypes of fusion reactor, and which succeeded in raising funds (more than hundred millions dollars), and grew from 4 to 65 employees in five years. The third article discusses the situation of ITER, the international experimental reactor which is being built in Cadarache, its delays and cost overruns, and the policy implemented by its new manager to try to get the project back on track

  7. Nuclear dynamics around the barrier: from fusion to evaporation

    International Nuclear Information System (INIS)

    Simenel, Cedric

    2003-01-01

    This work is devoted to aspects of nuclear dynamics around the barrier. It is shown that for fusion reactions, the Coulomb field couples relative motion of nuclei to rotation of a deformed projectile independently of the energy and the charge of the nuclei. An experimental study of the reaction 6 He + 190 Os via gamma spectroscopy of product nuclei has shown that the break up of the 6 He is coupled to the relative motion too, a strong hindrance resulting in the fusion around and above the fusion barrier. The path to fusion after overcoming the barrier, especially the charge equilibration, have been studied in the framework of the TDHF theory via the preequilibrium GDR excited in N/Z asymmetric reactions. An application to formation of the super-heavy elements has been proposed. Finally, couplings between protons and neutrons have been shown up in mean field calculations. Their main expected effect is an emission of protons under the Coulomb barrier. (author)

  8. Health physics in fusion reactor design

    International Nuclear Information System (INIS)

    Wong, K.Y.; Dinner, P.J.

    1984-06-01

    Experience in the control of tritium exposures to workers and the public gained through the design and operation of Ontario Hydro's nuclear stations has been applied to fusion projects and to design studies on emerging fusion reactor concepts. Ontario Hydro performance in occupational tritium exposure control and environmental impact is reviewed. Application of tritium control technologies and dose management methodology during facility design is highlighted

  9. Nuclear fusion apparatus and method for operating the same

    International Nuclear Information System (INIS)

    Nagata, Daizaburo.

    1974-01-01

    Object: To provide a nuclear fusion apparatus in which a magnetic limiter is disposed within a vacuum vessel, the magnetic limiter having a limiter coil whose outer periphery is vacuumized to thereby facilitate insulating treatment of the coil and to prevent the coil from lowering of insulation, and to minimize the force applied to a protective pipe for the limiter coil and the bellows. Structure: A lengthwise exhaust groove is provided in the outer periphery of a coil conductor of the magnetic limiter disposed within the vacuum vessel and a lateral exhaust groove in communication with the first-mentioned exhaust groove is provided, said exhaust grooves being connected to an exhaust pipe. Since operation is performed so as to produce nuclear fusion reaction while exhausted by the exhaust pipe, the coil is not required to be vacuum-impregnated with resin or the like, thus facilitating insulating treatment. (Kamimura, M.)

  10. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Kevin James [Univ. of California, Berkeley, CA (United States)

    2010-04-08

    of fixed fuel configurations that would normally require a computationally burdensome number of depletion zones. Alternatively, Adaptive Mesh Refinement (AMR) adjusts the depletion zone size according to the variation in flux across the zone or fractional contribution to total absorption or fission. A parametric analysis on a fully mixed fuel core was performed using the LNC and ABL code suites. The resulting system parameters are found to optimize performance metrics using a 20 MT DU fuel load with a 20% TRISO packing and a 300 μm kernel radius operated with a fusion input power of 500 MW and a fission blanket gain of 4.0. LFFH potentially offers a proliferation resistant technology relative to other nuclear energy systems primarily because of no need for fuel enrichment or reprocessing. A figure of merit of the material attractiveness is examined and it is found that the fuel is effectively contaminated to an unattractive level shortly after the system is started due to fission product and minor actinide build up.

  11. The role of the CNEA like organization of scientific and technological support to accentuate the nuclear security

    International Nuclear Information System (INIS)

    2007-01-01

    The activity developed by the CNEA in this subject from its creation, is based on an attitude responsible in the care for the people, the society and the environment, conduct that has remained after its restructuring in 1994. PEN No 1540/74 decree transferred the nuclear power generation activity to NUCLEOELECTRICA ARGENTINA S.A. and the regulatory activities to the ENTE NACIONAL REGULADOR NUCLEAR, today NUCLEAR REGULATORY AUTHORITY (ARN). The CNEA has the following attributions by Law No 24,804/97 'National Law of the Nuclear Activity', regulator of the Nuclear Activity in the Argentine Republic that it establishes, among other aspects, that the CNEA will have: a) Advising the Executive Power on nuclear policy issues. b) Promoting training of highly specialized human resources, scientific and technological developments in the nuclear field, and including the promotion and development programs for technological innovations. c) Fostering technology transfer programs for the technology that was acquired and developed by the Institution, arid for which the Institution has a patent, in compliance with the non-proliferation commitments signed by the Argentine Republic. d) Exercising the responsibility of radioactive waste management activities as established by the specific law. e) Defining the procedures for decommissioning nuclear energy generation facilities and all other relevant radioactive installations. f) Providing the services requested by nuclear power plants and other nuclear installations. g) Exercising the rights of the National Government on special fissionable materials included in irradiated fuel elements. h) Exercising the rights of property of the National Government on special fusion materials, which are imported or developed in the country. i) Developing, building and operating experimental nuclear reactors. j) Developing uses for radioisotopes and radiation in biological, medical and industrial applications. k) Performing exploration of minerals for

  12. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  13. Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion

    Science.gov (United States)

    Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.

    2005-01-01

    A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.

  14. Steady state technologies for tokamak based fusion neutron sources and hybrids

    International Nuclear Information System (INIS)

    Azizov, E.A.; Kuteev, B.V.

    2015-01-01

    Full text of publication follows. The development of demonstration fusion neutron sources for fusion nuclear science activity and hybrid applications has reached the stage of conceptual design on the basis of tokamak device in Russia. The conceptual design of FNS-ST has been completed in details (plasma current 1.5 MA, magnetic field 1.5 T, major radius 0.5 m, aspect ratio 1.67 and auxiliary heating power up to 15 MW) [1, 2]. A comparison of physical plasma parameters and economics for FNS-ST and a conventional tokamak FNS-CT (plasma current 1.5 MA, magnetic field 6.7 T, major radius 2.25 m, aspect ratio 3 and auxiliary heating power up to 30 MW) has been fulfilled [3]. This study suggested the feasibility to reach 1-20 MW of fusion power using these magnetic configuration options. Nevertheless, the efficiency of neutron production Q remains comparable for both due to the beam fusion input. The total ST-economics for the full project including operation and utilization costs is by a factor of 2 better than of CT. Zero [4] and one-dimensional [5] models have been developed and used in this system analysis. The characteristics of plasma confinement, stability and current drive in operation have been confirmed by numerous benchmarking simulations of modern experiments. Scenarios allowing us to reach and maintain steady state operation have been considered and optimized. The results of these studies will be presented. Prospective technical solutions for SSO-technology systems have been evaluated, and the choice of enabling technologies and materials of the basic FNS options has been made. A conceptual design of a thin-wall water cooled vacuum chamber for heat loadings up to 1.5 MW/m 2 has been fulfilled. The chamber consists of 2 mm Be tiles, pre-shaped CuCrZr 1 mm shell and 1 mm of stainless steel shell as a structural material. A concept of double-null divertor for FNS-ST has been offered that is capable to withstand heat fluxes up to 6 MW/m 2 . Lithium dust

  15. Preliminary analysis of patent trends for magnetic fusion technology

    International Nuclear Information System (INIS)

    Levine, L.O.; Ashton, W.B.; Campbell, R.S.

    1984-02-01

    This study presents a preliminary analysis of development trends in magnetic fusion technology based on data from US patents. The research is limited to identification and description of general patent activity and ownership characteristics for 373 patents. The results suggest that more detailed studies of fusion patents could provide useful R and D planning information

  16. Advanced fusion technology research and development. Annual report to the U.S. Department of Energy

    International Nuclear Information System (INIS)

    2001-01-01

    OAK-B135 The General Atomics (GA) Advanced Fusion Technology program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility, the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility. The report summarizes GA's FY00 work in the areas of Fusion Power Plant Studies, Next Step Options, Advanced Liquid Plasma Facing Surfaces, Advanced Power Extraction Study, Plasma Interactive Materials, Radiation Testing of Magnetic Coil, Vanadium Component Demonstration, RF Technology, Inertial Fusion Energy Target Supply System, ARIES Integrated System Studies, and Spin-offs Brochure. The work in these areas continues to address many of the issues that must be resolved for the successful construction and operation of next-generation experiments and, ultimately, the development of safe, reliable, economic fusion power plants

  17. Fusion technology: The Iter fusion experiment

    International Nuclear Information System (INIS)

    Dietz, K.J.

    1994-01-01

    Plans for the Iter international fusion experiment, in which the European Union, Japan, Canada, Russia, Sweden, Switzerland, and the USA cooperate, were begun in 1985, and construction work started in early 1994. These activities serve for the preparation of the design and construction documents for a research reactor in which a stable fusion plasma is to be generated. This is to be the basis for the construction of a fusion reactor for electricity generation. Preparatory work was performed in the Tokamak experiments with JET and TFTR. The fusion power of 1.5 GW will be attained, thus enabling Iter to keep a deuterium-tritium plasma burning. (orig.) [de

  18. Nuclear fusion as new energy option in a global single-regional energy system model

    International Nuclear Information System (INIS)

    Eherer, C.; Baumann, M.; Dueweke, J.; Hamacher, T.

    2005-01-01

    Is there a window of opportunity for fusion on the electricity market under 'business as usual' conditions, and if not, how do the boundary conditions have to look like to open such a window? This question is addressed within a subtask of the Socio-Economic Research on Fusion (SERF) programme of the European Commission. The most advanced energy-modelling framework, the TIMES model generator developed by the Energy Technology System Analysis Project group of the IEA (ETSAP) has been used to implement a global single-regional partial equilibrium energy model. Within the current activities the potential role of fusion power in various future energy scenarios is studied. The final energy demand projections of the baseline of the investigations are based on IIASA-WEC Scenario B. Under the quite conservative baseline assumptions fusion only enters the model solution with 35 GW in 2100 and it can be observed that coal technologies dominate electricity production in 2100. Scenario variations show that the role of fusion power is strongly affected by the availability of GEN IV fission breeding technologies as energy option and by CO 2 emission caps. The former appear to be a major competitor of fusion power while the latter open a window of opportunity for fusion power on the electricity market. An interesting outcome is furthermore that the possible share of fusion electricity is more sensitive to the potential of primary resources like coal, gas and uranium, than to the share of solar and wind power in the system. This indicates that both kinds of technologies, renewables and fusion power, can coexist in future energy systems in case of CO 2 emission policies and/or resource scarcity scenarios. It is shown that Endogenous Technological Learning (ETL), a more consistent description of technological progress than mere time series, has an impact on the model results. (author)

  19. Reprocessing free nuclear fuel production via fusion fission hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Kotschenreuther, Mike, E-mail: mtk@mail.utexas.edu [Intitute for Fusion Studies, University of Texas at Austin (United States); Valanju, Prashant; Mahajan, Swadesh [Intitute for Fusion Studies, University of Texas at Austin (United States)

    2012-05-15

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively 'new' cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th{sup 232}-U{sup 233} conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO{sub 2} matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U{sup 235} fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  20. Reprocessing free nuclear fuel production via fusion fission hybrids

    International Nuclear Information System (INIS)

    Kotschenreuther, Mike; Valanju, Prashant; Mahajan, Swadesh

    2012-01-01

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively “new” cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th 232 –U 233 conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO 2 matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U 235 fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  1. Outer nuclear membrane fusion of adjacent nuclei in varicella-zoster virus-induced syncytia.

    Science.gov (United States)

    Wang, Wei; Yang, Lianwei; Huang, Xiumin; Fu, Wenkun; Pan, Dequan; Cai, Linli; Ye, Jianghui; Liu, Jian; Xia, Ningshao; Cheng, Tong; Zhu, Hua

    2017-12-01

    Syncytia formation has been considered important for cell-to-cell spread and pathogenesis of many viruses. As a syncytium forms, individual nuclei often congregate together, allowing close contact of nuclear membranes and possibly fusion to occur. However, there is currently no reported evidence of nuclear membrane fusion between adjacent nuclei in wild-type virus-induced syncytia. Varicella-zoster virus (VZV) is one typical syncytia-inducing virus that causes chickenpox and shingles in humans. Here, we report, for the first time, an interesting observation of apparent fusion of the outer nuclear membranes from juxtaposed nuclei that comprise VZV syncytia both in ARPE-19 human epithelial cells in vitro and in human skin xenografts in the SCID-hu mouse model in vivo. This work reveals a novel aspect of VZV-related cytopathic effect in the context of multinucleated syncytia. Additionally, the information provided by this study could be helpful for future studies on interactions of viruses with host cell nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Nuclear technology and societal needs

    International Nuclear Information System (INIS)

    2004-11-01

    This volume aims to review the present status of development of nuclear technologies and their applications in the country and also to make projections for future requirements. This will also cover state-of-the-art technologies in these areas. The following topics are covered in detail: nuclear technologies for water desalination, water resources development and management using nuclear technology, industrial applications of isotopes and radiation technology, radiation technology in health care, nuclear technology for food preservation, agricultural applications of nuclear technology. Papers relevant to INIS are indexed separately

  3. Nuclear Technology Programs semiannual progress report, October 1987--March 1988

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1990-08-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1987--March 1988. Work in applied physical chemistry included investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product 99 Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  4. The international thermonuclear experimental reactor and the future of nuclear fusion energy

    International Nuclear Information System (INIS)

    Pan Chuanhong

    2010-01-01

    Energy shortage and environmental problems are now the two largest challenges for human beings. Magnetic confinement nuclear fusion, which has achieved great progress since the 1990's, is anticipated to be a way to realize an ideal source of energy in the future because of its abundance, environmental compatibility, and zero carbon release. Exemplified by the construction of the International Thermonuclear Experimental Reactor (ITER), the development of nuclear fusion energy is now in its engineering phase, and should be realized by the middle of this century if all objectives of the ITER project are met. (author)

  5. Mechanical-engineering aspects of mirror-fusion technology

    International Nuclear Information System (INIS)

    Fisher, D.K.; Doggett, J.N.

    1982-01-01

    The mirror approach to magnetic fusion has evolved from the original simple mirror cell to today's mainline effort: the tandem-mirror machine with thermal barriers. Physics and engineering research is being conducted throughout the world, with major efforts in Japan, the USSR, and the US. At least one facility under construction (MFTF-B) will approach equivalent energy breakeven in physics performance. Significant mechanical engineering development is needed, however, before a demonstration reactor can be constructed. The principal areas crucial to mirror reactor development include large high-field superconducting magnets, high-speed continuous vacuum-pumping systems, long-pulse high-power neutral-beam and rf-plasma heating systems, and efficient high-voltage high-power direct converters. Other areas common to all fusion systems include tritium handling technology, first-wall materials development, and fusion blanket design

  6. The European fusion technology programme

    International Nuclear Information System (INIS)

    Goedkoop, J.A.

    1984-01-01

    With the 1982-86 pluriannual programme, reactor technology became a separate chapter in the fusion research programme of the European Commission. It comprises work on materials, the breeder blanket, tritium management, magnet coils, maintenance and the safety and environmental aspects. After an overview of the programme each of these areas is discussed briefly and some remarks are made on the role played by the European fission energy and magnet laboratories. (author)

  7. 2013 Nuclear Fusion Prize Acceptance Speech 2013 Nuclear Fusion Prize Acceptance Speech

    Science.gov (United States)

    Whyte, D.

    2015-01-01

    I would like to express gratitude to the IAEA, the journal Nuclear Fusion and its board for this acknowledgement of work carried out at the MIT Alcator C-Mod tokamak. I must begin by making it clear that this is in no way an award to an individual. The experiments, data analysis and paper were a true collaborative effort from the C-Mod team. It is a honor to work with them and to accept the award on their behalf. I would also like to thank the US Department of Energy for their support in funding this research. The paper describes the exploration of the 'improved' confinement regime dubbed 'I-mode'. The distinguishing feature of this operational mode is a robust boundary pedestal in temperature with the somewhat surprising lack of any form of density pedestal. Thus the regime exhibits an enhanced energy confinement similar to H-mode, roughly double of L-mode at fixed input power, yet has global fuel and impurity particle transport of L-mode. These features are intriguing from a scientific and practical point of view. On the science side it is extremely useful to obtain such a clear demarcation between the energy and particle transport. For example, soon after its discovery, the I-mode was used to extract the observation that the edge T pedestal is the strongest determinant for intrinsic rotation in work by John Rice, Pat Diamond and colleagues. Recent results regarding core transport by Anne White, Nate Howard and colleagues show that I-mode has intriguing properties with respect to core response of fluctuations and profile stiffness. Mike Churchill's recent Ph. D study on C-Mod shows that I-mode exhibits no strong poloidal impurity asymmetry, unlike H-mode. The I-mode posed an interesting test for the peeling-ballooning-KBM model of the pedestal, the subject of the 2014 Nuclear Fusion award of Phil Snyder, and was examined by John Walk and Jerry Hughes showing that in fact the lack of the density pedestal pushed the I-mode far away from the P-B limit, and thus the

  8. Color-coded Live Imaging of Heterokaryon Formation and Nuclear Fusion of Hybridizing Cancer Cells.

    Science.gov (United States)

    Suetsugu, Atsushi; Matsumoto, Takuro; Hasegawa, Kosuke; Nakamura, Miki; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Bouvet, Michael; Hoffman, Robert M

    2016-08-01

    Fusion of cancer cells has been studied for over half a century. However, the steps involved after initial fusion between cells, such as heterokaryon formation and nuclear fusion, have been difficult to observe in real time. In order to be able to visualize these steps, we have established cancer-cell sublines from the human HT-1080 fibrosarcoma, one expressing green fluorescent protein (GFP) linked to histone H2B in the nucleus and a red fluorescent protein (RFP) in the cytoplasm and the other subline expressing RFP in the nucleus (mCherry) linked to histone H2B and GFP in the cytoplasm. The two reciprocal color-coded sublines of HT-1080 cells were fused using the Sendai virus. The fused cells were cultured on plastic and observed using an Olympus FV1000 confocal microscope. Multi-nucleate (heterokaryotic) cancer cells, in addition to hybrid cancer cells with single-or multiple-fused nuclei, including fused mitotic nuclei, were observed among the fused cells. Heterokaryons with red, green, orange and yellow nuclei were observed by confocal imaging, even in single hybrid cells. The orange and yellow nuclei indicate nuclear fusion. Red and green nuclei remained unfused. Cell fusion with heterokaryon formation and subsequent nuclear fusion resulting in hybridization may be an important natural phenomenon between cancer cells that may make them more malignant. The ability to image the complex processes following cell fusion using reciprocal color-coded cancer cells will allow greater understanding of the genetic basis of malignancy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Nuclear technology review 2005 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-08-15

    The year 2004 marked the 50th anniversary of civilian nuclear power generation. While the current outlook for nuclear energy remains mixed, there is clearly a sense of rising expectations. Both the OECD International Energy Agency and the IAEA adjusted their medium-term projections for nuclear power upwards. The IAEA now projects 423 - 592 GW(e) of nuclear power installed worldwide in 2030, compared to 366 GW(e) at the end of 2004. This is driven by nuclear power's performance record, by growing energy needs around the world coupled with rising oil and natural gas prices, by new environmental constraints including entry-into-force of the Kyoto Protocol, by concerns about energy supply security in a number of countries, and by ambitious expansion plans in several key countries. National research on advanced reactor designs continues on all reactor categories - water cooled, gas cooled, liquid metal cooled, and hybrid systems. Five members of the US-initiated Generation IV International Forum (GIF) signed a framework agreement on international collaboration in research and development on Generation IV nuclear energy systems in February 2005. The IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) grew to 23 members. It completed a series of case studies testing its assessment methodology and the final report on the updated INPRO methodology was published in December. The realization of the International Thermonuclear Experimental Reactor, ITER, came closer with the announcement on 28 June 2005 by the ITER parties. The aim of ITER is to demonstrate the scientific and technological feasibility of fusion energy by constructing a functional fusion power plant. Nuclear technology developments are rapid and cover many fields of application. Not all can be covered in this update review, but certain key areas and trends are covered where these are seen to be of significant interest to IAEA Member States, and which are of relevance to and have

  10. Nuclear technology review 2005 update

    International Nuclear Information System (INIS)

    2005-08-01

    The year 2004 marked the 50th anniversary of civilian nuclear power generation. While the current outlook for nuclear energy remains mixed, there is clearly a sense of rising expectations. Both the OECD International Energy Agency and the IAEA adjusted their medium-term projections for nuclear power upwards. The IAEA now projects 423 - 592 GW(e) of nuclear power installed worldwide in 2030, compared to 366 GW(e) at the end of 2004. This is driven by nuclear power's performance record, by growing energy needs around the world coupled with rising oil and natural gas prices, by new environmental constraints including entry-into-force of the Kyoto Protocol, by concerns about energy supply security in a number of countries, and by ambitious expansion plans in several key countries. National research on advanced reactor designs continues on all reactor categories - water cooled, gas cooled, liquid metal cooled, and hybrid systems. Five members of the US-initiated Generation IV International Forum (GIF) signed a framework agreement on international collaboration in research and development on Generation IV nuclear energy systems in February 2005. The IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) grew to 23 members. It completed a series of case studies testing its assessment methodology and the final report on the updated INPRO methodology was published in December. The realization of the International Thermonuclear Experimental Reactor, ITER, came closer with the announcement on 28 June 2005 by the ITER parties. The aim of ITER is to demonstrate the scientific and technological feasibility of fusion energy by constructing a functional fusion power plant. Nuclear technology developments are rapid and cover many fields of application. Not all can be covered in this update review, but certain key areas and trends are covered where these are seen to be of significant interest to IAEA Member States, and which are of relevance to and have

  11. Fusion, magnetic confinement

    International Nuclear Information System (INIS)

    Berk, H.L.

    1992-01-01

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or 3 He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied

  12. Physics of fusion-fuel cycles

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1981-01-01

    The evaluation of nuclear fusion fuels for a magnetic fusion economy must take into account the various technological impacts of the various fusion fuel cycles as well as the relative reactivity and the required β's and temperatures necessary for economic steady-state burns. This paper will review some of the physics of the various fusion fuel cycles (D-T, catalyzed D-D, D- 3 He, D- 6 Li, and the exotic fuels: 3 He 3 He and the proton-based fuels such as P- 6 Li, P- 9 Be, and P- 11 B) including such items as: (1) tritium inventory, burnup, and recycle, (2) neutrons, (3) condensable fuels and ashes, (4) direct electrical recovery prospects, (5) fissile breeding, etc. The advantages as well as the disadvantages of the different fusion fuel cycles will be discussed. The optimum fuel cycle from an overall standpoint of viability and potential technological considerations appears to be catalyzed D-D, which could also support smaller relatively clean, lean-D, rich- 3 He satellite reactors as well as fission reactors

  13. The 2014 Integrated Field Exercise of the Comprehensive Nuclear-Test-Ban Treaty revisited: the case for data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, Jonathan L.; Miley, Harry S.; Bowyer, Theodore W.; Cameron, Ian M.

    2018-04-18

    The International Monitoring System of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) uses a global network of radionuclide monitoring stations to detect evidence of a nuclear explosion. The two radionuclide technologies employed—particulate and noble gas (radioxenon) detection—have applications for data fusion to improve detection of a nuclear explosion. Using the hypothetical 0.5 kT nuclear explosive test scenario of the CTBTO 2014 Integrated Field Exercise, the intrinsic relationship between particulate and noble gas signatures has been examined. This study shows that, depending upon the time of the radioxenon release, the particulate progeny can produce the more detectable signature. Thus, as both particulate and noble gas signatures are inherently coupled, the authors recommend that the sample categorization schemes should be linked.

  14. R and D toward highly repetitive laser fusion demonstration

    International Nuclear Information System (INIS)

    Satoh, Nakahiro; Matsukado, Koji; Watari, Takeshi; Sekine, Takashi; Takeuchi, Yasuki; Kawashima, Toshiyuki

    2017-01-01

    Hamamatsu Photonics conducts research on a unique continuous neutron generation method by integrating and utilizing elemental technologies such as laser, target, and measurement for laser nuclear fusion research. In addition, in collaboration with the Graduate School for the Creation of New Photonics Industries, Toyota Motor Corporation, and others, it is conducting research on laser fusion. As a high power laser of element technology, it constructed an ultrahigh intensity laser system by combining glass slab laser KURE-I and ultrahigh intensity femtosecond laser MATSU-I equipped with titanium sapphire transmitter, and achieved a peak output of 20 TW, It plans to further increase this to 100 TW. As other element technologies, it is also considering nuclear fusion fuel - target technology and light - high energy particle measurement technology. Regarding the demonstration of continuous generation of laser fusion neutrons, it performed 100 times of continuous laser beam irradiation at 1 Hz, and actually measured the number of neutrons generated. It measured 4.5x10 4 pieces of neutrons on average (maximum 10 5 ) with a frequency of 98%. Since 100% of neutron generation should occur in principle, in the future it will be necessary to enhancing laser collecting intensity and to improve solid particle number density in order to put this process into practical use as a neutron source. (A.O.)

  15. Protector in a nuclear fusion device

    International Nuclear Information System (INIS)

    Furukawa, Masayuki; Yamane, Katsumi; Niwa, Sadahiko; Ogata, Fumio; Masuda, Jun-ichi.

    1975-01-01

    Object: To block an abnormal voltage, which shifts from plasma to coil or power supply by means of action of mutual induction, by a circuit utilizing non-linear impedance elements. Structure: The nuclear fusion device includes a current transformer coil, a vertical field coil and a plasma circuit, with a non-linear impedance element disposed in parallel with at least the current transformer coil, said impedance element being disposed in parallel with a short-circuiting switch, relative to the abnormal voltage moving from the plasma by means of action of mutual induction. (Kamimura, M.)

  16. Teaching and research in fusion plasmas and technology at the University of Illinois

    International Nuclear Information System (INIS)

    Miley, G.H.; Southworth, F.H.

    1975-01-01

    Teaching in fusion at the University of Illinois is an integrated part of the nuclear engineering curriculum. Through the use of two key courses, ''Introduction to Fusion'' and ''Fusion Systems,'' basic preparation for those wishing to specialize in fusion is provided. These courses are primarily directed to plasma aspects of fusion, but materials and other engineering aspects have been integrated into the curriculum through a broadened coverage in such existing courses as nuclear materials, shielding, and reactor physics. Research is primarily focused at the PhD level, although some MS studies are in progress. While current theses involve a wide variety of topics, one major area being pursued is the study of advanced fuel (non-deuterium-tritium) reactors based on two-component fusion and other concepts. This effort consists of a series of loosely knit subtasks related to such problems as cyclotron emission and direct energy conversion. Also, various research involving charge-exchange losses during neutral-beam injection, vacuum-wall sputtering, and related topics has developed as a direct outgrowth of the PROMETHEUS project, which involved the conceptual design of a power-consuming mirror-type reactor for materials and engineering tests

  17. Prospects for Tokamak Fusion Reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.

    1995-01-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant

  18. Nuclear fusion power

    International Nuclear Information System (INIS)

    Dinghee, D.A.

    1983-01-01

    In this chapter, fusion is compared with other inexhaustible energy sources. Research is currently being conducted both within and outside the USA. The current confinement principles of thermonuclear reactions are reveiwed with the discussion of economics mainly focusing on the magnetic confinement concepts. Environmental, health and safety factors are of great concern to the public and measures are being taken to address them. The magnetic fusion program logic and the inertial fusion program logic are compared

  19. Chemical aspects of fusion technology

    International Nuclear Information System (INIS)

    Ache, H.J.; Karlsruhe Univ.

    1989-01-01

    Managing thermally controlled nuclear fusion will certainly be regarded one day as one of the most successful accomplishments in nuclear physics. At the same time, however, it will represent a technical achievement unparalleled in the history of science and engineering. This in turn would mean, in retrospect, that decisive contributions had to come from a number of disciplines as diverse as materials and engineering sciences and classical chemistry, and that the same collaboration will have to continue in the future in order to reach the ultimate goal, to construct a reactor capable of producing energy from almost inexhaustible source materials (fuels), such as deuterium and lithium. What is the chemist's role in this development? Similarly as in the development of fission reactors, i.e., the nuclear power plants currently in operation, chemists will have to ensure the existence of a reliable fuel cycle - starting from the availability, storage and reprocessing of the fuel through to the provision for safe storage of the waste. In this review article an attempt will be made to outline the problems associated with these tasks and the approaches to be made by the chemist in solving them. (orig.) [de

  20. Fusion-Fission Transmutation Scheme-Efficient destruction of nuclear waste

    International Nuclear Information System (INIS)

    Kotschenreuther, M.; Valanju, P.M.; Mahajan, S.M.; Schneider, E.A.

    2009-01-01

    A fusion-assisted transmutation system for the destruction of transuranic nuclear waste is developed by combining a subcritical fusion-fission hybrid assembly uniquely equipped to burn the worst thermal nonfissile transuranic isotopes with a new fuel cycle that uses cheaper light water reactors for most of the transmutation. The center piece of this fuel cycle, the high power density compact fusion neutron source (100 MW, outer radius <3 m), is made possible by a new divertor with a heat-handling capacity five times that of the standard alternative. The number of hybrids needed to destroy a given amount of waste is an order of magnitude below the corresponding number of critical fast-spectrum reactors (FRs) as the latter cannot fully exploit the new fuel cycle. Also, the time needed for 99% transuranic waste destruction reduces from centuries (with FR) to decades