WorldWideScience

Sample records for fusion magnet systems

  1. Compact magnetic fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.

    1983-12-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak/sup 1/ and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics.

  2. Compact magnetic fusion systems

    International Nuclear Information System (INIS)

    Linford, R.K.

    1983-01-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak 1 and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics

  3. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  4. Magnetic systems for fusion devices

    International Nuclear Information System (INIS)

    Henning, C.D.

    1985-02-01

    Mirror experiments have led the way in applying superconductivity to fusion research because of unique requirements for high and steady magnetic fields. The first significant applications were Baseball II at LLNL and IMP at ORNL. More recently, the MFTF-B yin-yang coil was successfully tested and the entire tandem configuration is nearing completion. Tokamak magnets have also enjoyed recent success with the large coil project tests at ORNL, preceded by single coil tests in Japan and Germany. In the USSR, the T-7 Tokamak has been operational for many years and the T-15 Tokamak is under construction, with the TF coils nearing completion. Also the Tore Supra is being built in France

  5. Magnetic mirror fusion systems: Characteristics and distinctive features

    International Nuclear Information System (INIS)

    Post, R.F.

    1987-01-01

    A tutorial account is given of the main characteristics and distinctive features of conceptual magnetic fusion systems employing the magnetic mirror principle. These features are related to the potential advantages that mirror-based fusion systems may exhibit for the generation of economic fusion power

  6. Comments on open-ended magnetic systems for fusion

    International Nuclear Information System (INIS)

    Post, R.F.

    1990-01-01

    Differentiating characteristics of magnetic confinement systems having externally generated magnetic fields that are ''open'' are listed and discussed in the light of their several potential advantages for fusion power systems. It is pointed out that at this stage of fusion research ''high-Q'' (as deduced from long energy confinement times) is not necessarily the most relevant criterion by which to judge the potential of alternate fusion approaches for the economic generation of fusion power. An example is given of a hypothetical open-geometry fusion power system where low-Q operation is essential to meeting one of its main objectives (low neutron power flux)

  7. Introduction to the controlled nuclear fusion (magnetic containment systems)

    International Nuclear Information System (INIS)

    Cabrera, J.A.; Guasp, J.; Martin, R.

    1975-01-01

    The magnetic containment systems, their more important features, and their potentiality to became thermonuclear reactors is described. The work is based upon the first part of a set of lectures dedicated to Plasma and Fusion Physics. (author)

  8. Neutral beam systems for the magnetic fusion program

    International Nuclear Information System (INIS)

    Beal, J.W.; Staten, H.S.

    1977-01-01

    The attainment of economic, safe fusion power has been described as the most sophisticated scientific problem ever attacked by mankind. The presently established goal of the magnetic fusion program is to develop and demonstrate pure fusion central electric power stations for commercial applications. Neutral beam heating systems are a basic component of the tokamak and mirror experimental fusion plasma confinement devices. The requirements placed upon neutral beam heating systems are reviewed. The neutral beam systems in use or being developed are presented. Finally, the needs of the future are discussed

  9. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  10. Generic structural mechanics aspects of fusion magnet systems

    International Nuclear Information System (INIS)

    Reich, M.; Powell, J.R.

    1980-01-01

    Structural mechanic requirements for future large superconducting fusion magnets are assessed. Current structural analysis methods and standards do not yet appear sufficient for a complete evaluation of such systems, under all potential operating and accident conditions. Recommendations are made for development of needed structural methods and specialized standards for fusion magnets. These include, among others, better composite structural methods with various failure criteria for metallic, as well as non-metallic materials, coupled thermal-electrical-structural codes, incorporating winding and fabrication effects, and use of probabilistic methods for life prediction. In order to help meet program goals for fusion commericialization, it is recommended that such work be initiated relatively soon. (orig.)

  11. Use of high temperature superconductors for future fusion magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Fietz, W H [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Celentano, G; Della Corte, A [Superconductivity Division, ENEA - Frascati Research Center, Frascati (Italy); Goldacker, W; Heller, R; Komarek, P; Kotzyba, G; Nast, R; Obst, B; Schlachter, S I; Schmidt, C; Zahn, G [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Pasztor, G; Wesche, R [Centre de Recherches en Physique des Plasmas, Villingen (Switzerland); Salpietro, E; Vostner, A [European Fusion Development Agreement, Close Support Unit, Garching (Germany)

    2005-01-01

    With the construction of ITER the feasibility of a fusion machine will be demonstrated. To commercialize fusion it is essential to keep losses as small as possible in future fusion power plants. One major component where losses can be strongly reduced is the cooling system. For example in ITER where efficiency is not a major goal, a cooling power of 64 kW at 4.4 K is foreseen taking more than 20 MW electric power. Considering the size of future commercial fusion machines this consumption of electric power for cooling will even be higher. With a magnet system working at 20 K a fusion machine would work more efficient by a factor of 5-10 with respect to electric power consumption for cryogenics. Even better than that, would be a machine with a magnet system operating at 65 K to 77 K. In this case liquid nitrogen could be used as coolant saving money for investment and operation costs. Such an increase in the operating temperature of the magnet system can be achieved by the use of High- Temperature Superconductors (HTS). In addition the use of HTS would allow much smaller efforts for thermal shielding and alternative thermal insulation concepts may be possible, e.g. for an HTS bus bar system. This contribution will give an overview about status, promises and challenges of HTS conductors on the way to an HTS fusion magnet system beyond ITER. (author)

  12. Tandem mirror magnet system for the mirror fusion test facility

    International Nuclear Information System (INIS)

    Bulmer, R.H.; Van Sant, J.H.

    1980-01-01

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper

  13. Open-ended magnetic confinement systems for fusion

    International Nuclear Information System (INIS)

    Post, R.F.; Ryutov, D.D.

    1995-05-01

    Magnetic confinement systems that use externally generated magnetic fields can be divided topologically into two classes: ''closed'' and 'open''. The tokamak, the stellarator, and the reversed-field-pinch approaches are representatives of the first category, while mirror-based systems and their variants are of the second category. While the recent thrust of magnetic fusion research, with its emphasis on the tokamak, has been concentrated on closed geometry, there are significant reasons for the continued pursuit of research into open-ended systems. The paper discusses these reasons, reviews the history and the present status of open-ended systems, and suggests some future directions for the research

  14. Laser-start-up system for magnetic mirror fusion

    International Nuclear Information System (INIS)

    Frank, A.M.; Thomas, S.R.; Denhoy, B.S.; Chargin, A.K.

    1976-01-01

    A CO 2 laser system has been developed at LLL to provide hot start-up plasmas for magnetic mirror fusion experiments. A frozen ammonia pellet is irradiated with a laser power density in excess of 10 13 W/cm 2 in a 50-ns pulse. This system uses commercially available laser systems. Optical components were fabricated both by direct machining and standard techniques. The technologies used in this system are directly applicable to reactor scale systems

  15. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  16. Failure modes and effects analysis of fusion magnet systems

    International Nuclear Information System (INIS)

    Zimmermann, M.; Kazimi, M.S.; Siu, N.O.; Thome, R.J.

    1988-12-01

    A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs

  17. Neutral-beam systems for magnetic-fusion reactors

    International Nuclear Information System (INIS)

    Fink, J.H.

    1981-01-01

    Neutral beams for magnetic fusion reactors are at an early stage of development, and require considerable effort to make them into the large, reliable, and efficient systems needed for future power plants. To optimize their performance to establish specific goals for component development, systematic analysis of the beamlines is essential. Three ion source characteristics are discussed: arc-cathode life, gas efficiency, and beam divergence, and their significance in a high-energy neutral-beam system is evaluated

  18. Reactor potential of the magnetically insulated inertial fusion (MICF) system

    International Nuclear Information System (INIS)

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    The Magnetically Insulated Inertial Confinement Fusion (MICF) scheme is examined with regard to its potential as a power-producing reactor. This approach combines the favorable aspects of both magnetic and inertial fusions in that physical containment of the plasma is provided by a metallic shell while thermal insulation of its energy is provided by a strong, self-generated magnetic field. The plasma is created at the core of the target as a result of irradiation of the fuel-coated inner surface by a laser beam that enters through a hole in the spherical shell. The instantaneous magnetic field is generated by the current loops formed by the laser-heated, laser-ablated electrons, and preliminary experimental results at Osaka University have confirmed the presence of such a field. These same experiments have also yielded a Lawson parameter of about 5x10 12 cm -3 sec, and because of these unique properties, the plasma lifetimes in MICF have been shown to be about two orders of magnitude longer than conventional, pusher type inertial fusion schemes. In this paper a quasi one dimensional, time dependent set of particle and energy balance equations for the thermal species, namely, electrons, ions and thermal alphas which also allows for an appropriate set of fast alpha groups is utilized to assess the reactor prospects of a DT-burning MICF system. (author) [pt

  19. Aspects of safety and reliability for fusion magnet systems first annual report

    International Nuclear Information System (INIS)

    Powell, J.

    1976-01-01

    General systems aspects of fusion magnet safety are examined first, followed by specific detailed analyses covering structural, thermal, electrical, and other aspects of fusion magnet safety. The design examples chosen for analysis are illustrative and are not intended to be definitive, since fusion magnet designs are rapidly evolving. Included is a comprehensive collection of design and operating data relating to the safety of existing superconducting magnet systems. The remainder of the overview lists the main conclusions developed from the work to date. These should be regarded as initial steps. Since this study has concentrated on examining potential safety concerns, it may tend to overemphasize the problems of fusion magnets. In fact, many aspects of fusion magnets are well developed and are consistent with good safety practice. A short summary of the findings of this study is given

  20. Magnetic fusion

    International Nuclear Information System (INIS)

    2002-01-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project

  1. Large superconducting magnet systems for plasma and fusion applications

    International Nuclear Information System (INIS)

    Heinz, W.

    1976-05-01

    Work on superconducting magnet systems and state of the art of superconducting magnet technology are described. Conceptual design consideration and problems of large magnet systems (stability, magnetic forces, cooling modes, safety) are discussed. Recent results of experimental work at Karlsruhe are reported. An outline of American and European programs is given. (orig.) [de

  2. Fusion, magnetic confinement

    International Nuclear Information System (INIS)

    Berk, H.L.

    1992-01-01

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or 3 He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied

  3. DEALS: a maintainable superconducting magnet system for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Hseih, S.Y.; Danby, G.; Powell, J.R.

    1979-01-01

    The feasibility of demountable superconducting magnet systems has been examined in a design study of a DEALS [Demountable Externally Anchored Low Stress] TF magnet for an HFITR [High Field Ignition Test Reactor] Tokamak device. All parts of the system appear feasible, including the demountable superconducting joints. Measurements on small scale prototype joints indicate that movable pressure contact joints exhibit acceptable electrical, mechanical, and cryogenic performance. Such joints permit a relatively simple support structure and are readily demountable. Assembly and disassembly sequences are described whereby any failed portion of the magnet, or any part of the reactor inside the TF coils can be removed and replaced if necessary

  4. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, Jill [General Atomics, San Diego, CA (United States); Corones, James [Krell Inst., Ames, IA (United States); Batchelor, Donald [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bramley, Randall [Indiana Univ., Bloomington, IN (United States); Greenwald, Martin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jardin, Stephen [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Krasheninnikov, Sergei [Univ. of California, San Diego, CA (United States); Laub, Alan [Univ. of California, Davis, CA (United States); Leboeuf, Jean-Noel [Univ. of California, Los Angeles, CA (United States); Lindl, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lokke, William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosenbluth, Marshall [Univ. of California, San Diego, CA (United States); Ross, David [Univ. of Texas, Austin, TX (United States); Schnack, Dalton [Science Applications International Corporation, Oak Ridge, TN (United States)

    2002-11-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC

  5. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    International Nuclear Information System (INIS)

    Dahlburg, Jill; Corones, James; Batchelor, Donald; Bramley, Randall; Greenwald, Martin; Jardin, Stephen; Krasheninnikov, Sergei; Laub, Alan; Leboeuf, Jean-Noel; Lindl, John; Lokke, William; Rosenbluth, Marshall; Ross, David; Schnack, Dalton

    2002-01-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world's energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the

  6. Magnetic-fusion program

    International Nuclear Information System (INIS)

    1980-08-01

    In February 1980, the Director of Energy Research requested that the Energy Research Advisory Board (ERAB) review the Department of Energy (DOE) Magnetic Fusion Program. Of particular concern to the DOE was the judicious choice of the next major steps toward demonstration of economic power production from fusion. Of equal concern was the overall soundness of the DOE Magnetic Fusion Program: its pace, scope, and funding profiles. Their finding and recommendations are included

  7. Mirror fusion test facility magnet system. Final design report

    International Nuclear Information System (INIS)

    Henning, C.D.; Hodges, A.J.; VanSant, J.H.; Dalder, E.N.; Hinkle, R.E.; Horvath, J.A.; Scanlan, R.M.; Shimer, D.W.; Baldi, R.W.; Tatro, R.E.

    1980-01-01

    Information is given on each of the following topics: (1) magnet description, (2) superconducting manufacture, (3) mechanical behavior of conductor winding, (4) coil winding, (5) thermal analysis, (6) cryogenic system, (7) power supply system, (8) structural analysis, (9) structural finite element analysis refinement, (10) structural case fault analysis, and (11) structural metallurgy

  8. A remote monitoring system of environmental electromagnetic field in magnetic confinement fusion test facilities

    International Nuclear Information System (INIS)

    Tanaka, Masahiro; Uda, Tatsuhiko; Takami, Shigeyuki; Wang, Jianqing; Fujiwara, Osamu

    2010-01-01

    A remote, continuous environmental electromagnetic field monitoring system for use in magnetic confinement fusion test facilities is developed. Using this system, both the static magnetic field and the high frequency electromagnetic field could be measured. The required frequency range of the measurement system is from 25 to 100 MHz for the ICRF (Ion Cyclotron Range of Frequencies) heating system. The outputs from the measurement instruments are measured simultaneously by custom-built software using a laptop-type personal computer connected to a local area network. In this way, the electromagnetic field strength could be monitored from a control room located about 200 m from the fusion device building. Examples of measurement data from the vicinity of a high-frequency generator and amplifier and the leakage static magnetic field from a fusion test device are presented. (author)

  9. Magnetic fusion energy and computers

    International Nuclear Information System (INIS)

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups

  10. Direct measurement of the impulse in a magnetic thrust chamber system for laser fusion rocket

    Energy Technology Data Exchange (ETDEWEB)

    Maeno, Akihiro; Yamamoto, Naoji; Nakashima, Hideki [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1 Kasuga-kouen, Kasuga, Fukuoka 816-8580 (Japan); Fujioka, Shinsuke; Johzaki, Tomoyuki [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-087 (Japan); Mori, Yoshitaka [Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka 431-1202 (Japan); Sunahara, Atsushi [Institute for Laser Technology, Suita, Osaka 565-087 (Japan)

    2011-08-15

    An experiment is conducted to measure an impulse for demonstrating a magnetic thrust chamber system for laser fusion rocket. The impulse is produced by the interaction between plasma and magnetic field. In the experiment, the system consists of plasma and neodymium permanent magnets. The plasma is created by a single-beam laser aiming at a polystyrene spherical target. The impulse is 1.5 to 2.2 {mu}Ns by means of a pendulum thrust stand, when the laser energy is 0.7 J. Without magnetic field, the measured impulse is found to be zero. These results indicate that the system for generating impulse is working.

  11. Magnetic fusion reactor economics

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission → fusion. The present projections of the latter indicate that capital costs of the fusion ''burner'' far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ''implementation-by-default'' plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant

  12. Magnetic fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The efforts of the Chemical Technology Division in the area of fusion energy include fuel handling, processing, and containment. These studies are closely coordinated with the ORNL Fusion Energy Division. Current experimental studies are concerned with the development of vacuum pumps for fusion reactors, the evaluation and development of techniques for recovering tritium (fuel) from either solid or liquid lithium containing blankets, and the use of deep beds of sorbents as roughing pumps and/or transfer operations. In addition, a small effort is devoted to the support of the ORNL design of The Next Step (TNS) in tokamak reactor development. The more applied studies--vacuum pump development and TNS design--are funded by the DOE/Magnetic Fusion Energy, and the more fundamental studies--blanket recovery and sorption in deep beds--are funded by the DOE/Basic Energy Sciences

  13. Magnetic fusion energy

    International Nuclear Information System (INIS)

    McNamara, B.

    1977-01-01

    A brief review of fusion research during the last 20 years is given. Some highlights of theoretical plasma physics are presented. The role that computational plasma physics is playing in analyzing and understanding the experiments of today is discussed. The magnetic mirror program is reviewed

  14. Energy system for the generation of divertor magnetic fields in the PDX fusion research device

    International Nuclear Information System (INIS)

    Turitzin, N.M.

    1975-01-01

    One of the major problems encountered in the development of Tokamak type fusion reactors is the presence of impurities in the plasma. The PDX device is designed to study the operation of poloidal magnetic field divertors and consequent magnetic limiters for controlling and reducing the amount of impurities. A system of coils placed at specific locations produces a required field configuration for the poloidal divertor. This paper describes the system of energy supplies required and the interrelations of field coil currents during plasma current initiation, growth and steady state

  15. Energy system for the generation of divertor magnetic fields in the PDX fusion research device

    International Nuclear Information System (INIS)

    Turitzin, N.M.

    1976-05-01

    One of the major problems encountered in the development of Tokamak type fusion reactors is the presence of impurities in the plasma. The PDX device is designed to study the operation of poloidal magnetic field divertors and consequent magnetic limiters for controlling and reducing the amount of impurities. A system of coils placed at specific locations produces a required field configuration for the poloidal divertor. This paper describes the system of energy supplies required and the interrelations of field coil currents during plasma current initiation, growth and steady state

  16. Demountable low stress high field toroidal field magnet system for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.; Hsieh, D.; Lehner, J.; Suenaga, M.

    1978-01-01

    A new type of superconducting magnet system for large fusion reactors is described. Instead of winding large planar or multi-axis coils, as has been proposed in previous fusion reactor designs, the superconducting coils are made by joining together several prefabricated conductor sections. The joints can be unmade and sections removed if they fail. Conductor sections can be made at a factory and shipped to the reactor site for assembly. The conductor stress level in the assembled coil can be kept small by external support of the coil at a number of points along its perimeter, so that the magnetic forces are transmitted to an external warm reinforcement structure. This warm reinforcement structure can also be the primary containment for the fusion reactor, constructed similar to a PCRV (Prestressed Concrete Reactor Vessel) used in fission reactors. Low thermal conductivity, high strength supports are used to transfer the magnetic forces to the external reinforcement through a hydraulic system. The hydraulic supports are movable and can be programmed to accommodate thermal contraction and to minimize stress in the superconducting coil. (author)

  17. Demountable low stress high field toroidal field magnet system for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.; Hsieh, D.; Lehner, J.; Suenaga, M.

    1977-01-01

    A new type of superconducting magnet system for large fusion reactors is described in this report. Instead of winding large planar or multi-axis coils, as has been proposed in previous fusion reactor designs, the superconducting coils are made by joining together several prefabricated conductor sections. The joints can be unmade and sections removed if they fail. Conductor sections can be made at a factory and shipped to the reactor site for assembly. The conductor stress level in the assembled coil can be kept small by external support of the coil at a number of points along its perimeter, so that the magnetic forces are transmitted to an external warm reinforcement structure. This warm reinforcement structure can also be the primary containment for the fusion reactor, constructed similar to a PCRV (Prestressed Concrete Reactor Vessel) used in fission reactors. Low thermal conductivity, high strength supports are used to transfer the magnetic forces to the external reinforcement through a hydraulic system. The hydraulic supports are movable and can be programmed to accommodate thermal contraction and to minimize stress in the superconducting coil

  18. Fusion magnet safety studies program: superconducting magnet protection system and failure. Interim report

    International Nuclear Information System (INIS)

    Allinger, J.; Danby, G.; Hsieh, S.Y.; Keane, J.; Powell, J.; Prodell, A.

    1975-11-01

    This report includes the first two quarters study of available information on schemes for protecting superconducting magnets. These schemes can be divided into two different categories. The first category deals with the detection of faulty regions (or normal regions) in the magnet. The second category relates to the protection of the magnet when a fault is detected, and the derived signal which can be used to activate a safety system (or energy removal system). The general detection and protection methods are first described briefly and then followed by a survey of the protection systems used by different laboratories for various magnets. A survey of the cause of the magnet difficulties or failures is also included. A preliminary discussion of these protection schemes and the experimental development of this program is given

  19. Magnetic fusion; La fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project.

  20. Highly radiation-resistant vacuum impregnation resin systems for fusion magnet insulation

    International Nuclear Information System (INIS)

    Fabian, P.E.; Munshi, N.A.; Denis, R.J.

    2002-01-01

    Magnets built for fusion devices such as the newly proposed Fusion Ignition Research Experiment (FIRE) need to be highly reliable, especially in a high radiation environment. Insulation materials are often the weak link in the design of superconducting magnets due to their sensitivity to high radiation doses, embrittlement at cryogenic temperatures, and the limitations on their fabricability. An insulation system capable of being vacuum impregnated with desirable properties such as a long pot-life, high strength, and excellent electrical integrity and which also provides high resistance to radiation would greatly improve magnet performance and reduce the manufacturing costs. A new class of insulation materials has been developed utilizing cyanate ester chemistries combined with other known radiation-resistant resins, such as bismaleimides and polyimides. These materials have been shown to meet the demanding requirements of the next generation of devices, such as FIRE. Post-irradiation testing to levels that exceed those required for FIRE showed no degradation in mechanical properties. In addition, the cyanate ester-based systems showed excellent performance at cryogenic temperatures and possess a wide range of processing variables, which will enable cost-effective fabrication of new magnets. This paper details the processing parameters, mechanical properties at 76 K and 4 K, as well as post-irradiation testing to dose levels surpassing 10 8 Gy

  1. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems.

    Science.gov (United States)

    Lai, J; Domier, C W; Luhmann, N C

    2014-03-01

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T(e) and n(e) fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ~60,000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50-75 GHz), significant improvement of noise temperature from the current 60,000 K to measured 4000 K has been obtained.

  2. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems

    International Nuclear Information System (INIS)

    Lai, J.; Domier, C. W.; Luhmann, N. C.

    2014-01-01

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T e and n e fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ∼60 000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50–75 GHz), significant improvement of noise temperature from the current 60 000 K to measured 4000 K has been obtained

  3. Conceptual design of the superconducting magnet system for the helical fusion reactor

    International Nuclear Information System (INIS)

    Yanagi, Nagato; Hamaguchi, Shinji; Takahata, Kazuya; Natsume, Kyohei

    2013-01-01

    Current status of conceptual design of superconducting magnet system and low temperature system for the helical fusion reactor are introduced. There are three kinds of candidates of superconducting magnets such as Cable-in-conduit (CIC), Low-Temperature Superconductor (LTS) and High-Temperature Superconductor (HTS). Their characteristic properties, coil designs and cooling systems are stated. The freezer and low temperature distribution system, bus line and current lead, and excitation power source for superconducting coil are reported. The various elements of superconducting magnet system of FFHR-d1, partial cross section of FFHR helical coil using CIC, conceptual diagram of helical coil winding method of FFHR using CIC, relation among mass flow of supercritical helium supplied into CIC conductor and temperature increasing and pressure loss, cross section structure of LTS indirect-cooling conductor at 100 kA, cross section of 100-kA HTS conductor, connection method of helical coil segment and YBCO conductor are illustrated. (S.Y.)

  4. Advanced real-time control systems for magnetically confined fusion plasmas

    International Nuclear Information System (INIS)

    Goncalves, B.; Sousa, J.; Fernandes, H.; Rodrigues, A.P.; Carvalho, B.B.; Neto, A.; Varandas, C.A.F.

    2008-01-01

    Real-time control of magnetically confined plasmas is a critical issue for the safety, operation and high performance scientific exploitation of the experimental devices on regimes beyond the current operation frontiers. The number of parameters and the data volumes used for the plasma properties identification scale normally not only with the machine size but also with the technology improvements, leading to a great complexity of the plant system. A strong computational power and fast communication infrastructure are needed to handle in real-time this information, allowing just-in-time decisions to achieve the fusion critical plasma conditions. These advanced control systems require a tiered infrastructure including the hardware layer, the signal-processing middleware, real-time timing and data transport, the real-time operating system tools and drivers, the framework for code development, simulation, deployment and experiment parameterization and the human real-time plasma condition monitoring and management. This approach is being implemented at CFN by offering a vertical solution for the forthcoming challenges, including ITER, the first experimental fusion reactor. A given set of tools and systems are described on this paper, namely: (i) an ATCA based hardware multiple-input-multiple-output (MIMO) platform, PCI and PCIe acquisition and control modules; (ii) FPGA and DSP parallelized signal processing algorithms; (iii) a signal data and event distribution system over a 2.5/10Gb optical network with sub-microsecond latencies; (iv) RTAI and Linux drivers; and (v) the FireSignal, FusionTalk, SDAS FireCalc application tools. (author)

  5. Structural analysis of magnetic fusion energy systems in a combined interactive/batch computer environment

    International Nuclear Information System (INIS)

    Johnson, N.E.; Singhal, M.K.; Walls, J.C.; Gray, W.H.

    1979-01-01

    A system of computer programs has been developed to aid in the preparation of input data for and the evaluation of output data from finite element structural analyses of magnetic fusion energy devices. The system utilizes the NASTRAN structural analysis computer program and a special set of interactive pre- and post-processor computer programs, and has been designed for use in an environment wherein a time-share computer system is linked to a batch computer system. In such an environment, the analyst must only enter, review and/or manipulate data through interactive terminals linked to the time-share computer system. The primary pre-processor programs include NASDAT, NASERR and TORMAC. NASDAT and TORMAC are used to generate NASTRAN input data. NASERR performs routine error checks on this data. The NASTRAN program is run on a batch computer system using data generated by NASDAT and TORMAC. The primary post-processing programs include NASCMP and NASPOP. NASCMP is used to compress the data initially stored on magnetic tape by NASTRAN so as to facilitate interactive use of the data. NASPOP reads the data stored by NASCMP and reproduces NASTRAN output for selected grid points, elements and/or data types

  6. Overview of stoppering of open magnetic containment systems for controlled fusion

    International Nuclear Information System (INIS)

    Hinrichs, C.K.; Lichtenberg, A.J.; Dolan, T.J.

    1977-06-01

    Magnetic confinement systems with the field lines leading out of the system are subject to end loss. The rate of end loss must be reduced to a sufficiently small value in a reactor such that fusion energy is generated more rapidly than energy is lost. The basic open ended systems either have too high an end loss to satisfy the reactor criterion (single mirrors and cusps), or are too long to be considered practical (long solenoids). Various end stoppering schemes have been proposed to reduce the end loss of open ended systems, and thus make the energy balance more favorable. The end stoppering techniques reviewed in this paper are electrostatic, r.f., magnetic, material walls, and hybrid systems. We summarize here the more important characteristics and the potentialities of the first three methods of end stoppering. End stoppering with material walls has been insufficiently explored for further comment and hybrid systems, being mainly beyond the scope of this report, have been summarized in the main text

  7. Magnetic-fusion energy and computers

    International Nuclear Information System (INIS)

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups

  8. Mirror Fusion Test Facility magnet

    International Nuclear Information System (INIS)

    Henning, C.H.; Hodges, A.J.; Van Sant, J.H.; Hinkle, R.E.; Horvath, J.A.; Hintz, R.E.; Dalder, E.; Baldi, R.; Tatro, R.

    1979-01-01

    The Mirror Fusion Test Facility (MFTF) is the largest of the mirror program experiments for magnetic fusion energy. It seeks to combine and extend the near-classical plasma confinement achieved in 2XIIB with the most advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from the 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime. Design specifics of the magnet are given

  9. Contribution to the study of superconducting magnetic systems in the frame of fusion projects

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Artiguelongue, H.; Bej, Z.; Ciazynski, D.; Cloez, H.; Decool, P.; Hertout, P.; Libeyre, P.; Martinez, A.; Nicollet, S.; Rubino, M.; Schild, T.; Verger, J.M.

    2000-02-01

    This report is a presentation of all the 55 publications made by the Magnet Group of the 'Departement de Recherche sur la Fusion Controlee' during the 94-99 period. These publications have been made mainly in the frame of EURATOM contracts and task for ITER. This collection deals with most of the dimensioning aspects of large superconducting magnets and hence the field interest is wider than the restricted field of magnets for fusion by magnetic confinement. Whenever it is possible, simple expressions and criteria are given for dimensioning superconducting strands, assembling them to build cables and cooling them by an adapted forced flow cooling. This is hence a major for the understanding of the behaviour of large modern superconducting magnets and provides many tools for design and construction. (author)

  10. Contribution to the study of superconducting magnetic systems in the frame of fusion projects

    Energy Technology Data Exchange (ETDEWEB)

    Duchateau, J.L.; Artiguelongue, H.; Bej, Z.; Ciazynski, D.; Cloez, H.; Decool, P.; Hertout, P.; Libeyre, P.; Martinez, A.; Nicollet, S.; Rubino, M.; Schild, T.; Verger, J.M. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee DRFC, 13 - Saint-Paul-lez-Durance (France)

    2000-02-01

    This report is a presentation of all the 55 publications made by the Magnet Group of the 'Departement de Recherche sur la Fusion Controlee' during the 94-99 period. These publications have been made mainly in the frame of EURATOM contracts and task for ITER. This collection deals with most of the dimensioning aspects of large superconducting magnets and hence the field interest is wider than the restricted field of magnets for fusion by magnetic confinement. Whenever it is possible, simple expressions and criteria are given for dimensioning superconducting strands, assembling them to build cables and cooling them by an adapted forced flow cooling. This is hence a major for the understanding of the behaviour of large modern superconducting magnets and provides many tools for design and construction. (author)

  11. Proposal of a concept and reliability analysis for a fusion plant magnet protection system

    International Nuclear Information System (INIS)

    Schnauder, H.; Pamfilie, E.

    1993-05-01

    The unavailability for the current switch down in case of a demand in the magnet coils of a fusion demonstration plant must be decreased by a few orders of magnitude as compared to the one of experimental facilities. The safety requirements to prevent initiation of event sequences which might lead to the release of radioactivity and energy by the plant must be fulfilled with the same standards as applied in a normally applicable plant. On the basis of this proven technology a general usable magnet protection system will be proposed, which achieves some considerable improvements in the failure detectability as compared to the conventional protection systems. It will be demonstrated by fault tree analysis that the principal demands on safety can be satisfied by that approach. The improvements are achieved by the use of an additional microprocessor supported system for failure detection without being used for initiation of any safety related actions. An influence on a safety action by the additional system therefore is excluded. (orig.) [de

  12. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Lai, J.; Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California at Davis, Davis, California 95616 (United States)

    2014-03-15

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T{sub e} and n{sub e} fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ∼60 000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50–75 GHz), significant improvement of noise temperature from the current 60 000 K to measured 4000 K has been obtained.

  13. Design and fabrication of the superconducting-magnet system for the Mirror Fusion Test Facility (MFTF-B)

    International Nuclear Information System (INIS)

    Tatro, R.E.; Wohlwend, J.W.; Kozman, T.A.

    1982-01-01

    The superconducting magnet system for the Mirror Fusion Test Facility (MFTF-B) consists of 24 magnets; i.e. two pairs of C-shaped Yin-Yang coils, four C-shaped transition coils, four solenoidal axicell coils, and a 12-solenoid central cell. General Dynamics Convair Division has designed all the coils and is responsible for fabricating 20 coils. The two Yin-Yang pairs (four coils) are being fabricated by the Lawrence Livermore National Laboratory. Since MFTF-B is not a magnet development program, but rather a major physics experiment critical to the mirror fusion program, the basic philosophy has been to use proven materials and analytical techniques wherever possible. The transition and axicell coils are currently being analyzed and designed, while fabrication is under way on the solenoid magnets

  14. Magnetic Fusion Program Plan

    International Nuclear Information System (INIS)

    1985-02-01

    This Plan reflects the present conditions of the energy situation and is consistent with national priorities for the support of basic and applied research. It is realistic in taking advantage of the technical position that the United States has already established in fusion research to make cost-effective progress toward the development of fusion power as a future energy option

  15. Reactor potential for magnetized target fusion

    International Nuclear Information System (INIS)

    Dahlin, J.E.

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well

  16. Reactor potential for magnetized target fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, J.E

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well.

  17. Pacing the US magnetic fusion program

    International Nuclear Information System (INIS)

    1989-01-01

    This study addresses the priority and pace of the nation's magnetic fusion research and development program in the context of long-term national energy policy. In particular, the committee interpreted its task as follows: To review the implications of long-term national energy policy for current research and development in magnetic fusion; to identify factors that should enter the further development of such policy to reduce risks associated with the future electricity supply system; to propose criteria applicable to research and develop in electric generation in reaching long-term energy policy goals; to apply these criteria to magnetic fusion and alternative electric generation technologies in order to develop recommendations on the priority pace of the magnetic fusion program; and to present its results in a final report. The most important goals of the US Department of Energy's current Magnetic Fusion Energy Program Plan are to demonstrate the scientific and engineering feasibility of fusion, Demonstrating engineering feasibility will require the design, construction, and operation of an engineering test reactor, which the plan envisions financing through a combination of domestic and international funding. The committee believes that current domestic program funding levels are inadequate to meet even the near-term objectives of the plan

  18. Increasing the magnetic-field capability of the magneto-inertial fusion electrical discharge system using an inductively coupled coil

    Science.gov (United States)

    Barnak, D. H.; Davies, J. R.; Fiksel, G.; Chang, P.-Y.; Zabir, E.; Betti, R.

    2018-03-01

    Magnetized high energy density physics (HEDP) is a very active and relatively unexplored field that has applications in inertial confinement fusion, astrophysical plasma science, and basic plasma physics. A self-contained device, the Magneto-Inertial Fusion Electrical Discharge System, MIFEDS [G. Fiksel et al., Rev. Sci. Instrum. 86, 016105 (2015)], was developed at the Laboratory for Laser Energetics to conduct magnetized HEDP experiments on both the OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495-506 (1997)] and OMEGA EP [J. H. Kelly et al., J. Phys. IV France 133, 75 (2006) and L. J. Waxer et al., Opt. Photonics News 16, 30 (2005)] laser systems. Extremely high magnetic fields are a necessity for magnetized HEDP, and the need for stronger magnetic fields continues to drive the redevelopment of the MIFEDS device. It is proposed in this paper that a magnetic coil that is inductively coupled rather than directly connecting to the MIFEDS device can increase the overall strength of the magnetic field for HEDP experiments by increasing the efficiency of energy transfer while decreasing the effective magnetized volume. A brief explanation of the energy delivery of the MIFEDS device illustrates the benefit of inductive coupling and is compared to that of direct connection for varying coil size and geometry. A prototype was then constructed to demonstrate a 7-fold increase in energy delivery using inductive coupling.

  19. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Summaries of research are included for each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) the MACK/MACKLIB system for nuclear response functions, and (5) energy storage and power supply systems for fusion reactors

  20. Superconductor technology for fusion magnets

    International Nuclear Information System (INIS)

    Dustmann, C.H.; Juengst, K.P.; Komarek, P.; Krafft, G.; Krauth, H.; Maier, P.; Ries, G.; Schauer, W.; Schmidt, C.; Seibt, E.; Turowski, P.

    1976-11-01

    The development of advanced suoerconductors for magnets in fusion experiments is an essential problem. In this report the parameters of a big Tokamak magnet system are presented and the resulting constraints for the conductor are given. Comparing this constraints with the state of the art of the magnet and conductor technology, the goals of the needed conductor development are defined. Existing conductor concepts are described. Based on considerations on the main problems (cooling concepts, mechanical stress analysis, stabilization, ac-losses) a concept of an economically feasable and cryogenically stabilized flat cable conductor is developed. Typical parameters of a 10 kA conductor with NbTi at 8 T are given. The experimental investigations needed for the conductor development are discussed. Existing devices for measurements of Isub(c), ac-losses and the behaviour of the conductor under mechanical stress are described and typical experimental results are presented. The need of the completion of the measuring devices and programmes is stressed. The construction of a versatile conductor test facility is proposed. (orig.) [de

  1. Reactor potential of the Magnetically Insulated Inertial Confinement Fusion (MICF) system

    International Nuclear Information System (INIS)

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    In this paper a quasi one dimensional, time dependent set of particle and energy balance equations for the thermal species, namely, electrons, ions and thermal alphas which also allows for an appropriate set of fast alpha groups is utilized to assess the reactor prospects of a DT-burning Magnetically Insulated Inertial Confinement Fusion (MICF) system. A reference reactor consisting of an initial plasma with density of 10 21 cm -3 , temperature of keV, a radius of 0.25 cm is shown to ignite and yield an energy multiplication factor ''Q'' of about 60 when the plasma is allowed to burn for 2 microseconds. When the burntime is extended to 9 microseconds for the same initial conditions our calculations show that Q almost doubles just before the final radius becomes equal to the inner radius of the shell. These preliminary results seem to indicate that MICF does indeed have the potential for a reactor although some relevant physics issues need to be addressed first. 42 refs., 6 figs

  2. Magnetic fusion energy. Part VI

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The first chapter of this part describes briefly the DOE policy for fusion energy. Subsequent chapters include: FY 1980 overview - activities of the Office of Fusion Energy; subactivity descriptions (confinement systems, development and technology, applied plasma physics, and reactor projects); field activities (DOE laboratories, educational institutions, nonprofit organizations, and commercial firms); commercialization; environmental implications; regional activities; and international programs

  3. Superconducting magnets for fusion applications

    International Nuclear Information System (INIS)

    Henning, C.D.

    1987-01-01

    Fusion magnet technology has made spectacular advances in the past decade; to wit, the Mirror Fusion Test Facility and the Large Coil Project. However, further advances are still required for advanced economical fusion reactors. Higher fields to 14 T and radiation-hardened superconductors and insulators will be necessary. Coupled with high rates of nuclear heating and pulsed losses, the next-generation magnets will need still higher current density, better stability and quench protection. Cable-in-conduit conductors coupled with polyimide insulations and better steels seem to be the appropriate path. Neutron fluences up to 10 19 neutrons/cm 2 in niobium tin are achievable. In the future, other amorphous superconductors could raise these limits further to extend reactor life or decrease the neutron shielding and corresponding reactor size

  4. Magnetic fusion 1985: what next

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1985-03-01

    Recent budget reductions for magnetic fusion have led to a re-examination of program schedules and objectives. Faced with delays and postponement of major facilities as previously planned, some have called for a near-term focus on science, others have stressed technology. This talk will suggest a different focus as the keynote for this conference, namely, the applications of fusion. There is no doubt that plasma science is by now mature and fusion technology is at the forefront. This has and will continue to benefit many fields of endeavor, both in actual new discoveries and techniques and in attracting and training scientists and engineers who move on to make significant contributions in science, defense and industry. Nonetheless, however superb the science or how challenging the technology, these are means, not ends. To maintain its support, the magnetic fusion program must also offer the promise of power reactors that could be competitive in the future. At this conference, several new reactor designs will be described that claim to be smaller and economically competitive with fission reactors while retaining the environmental and safety characteristics that are the hallmark of fusion. The American Nuclear Society is an appropriate forum in which to examine these new designs critically, and to stimulate better ideas and improvements. As a preview, this talk will include brief discussions of new tokamak, tandem mirror and reversed field pinch reactor designs to be presented in later sessions. Finally, as a preview of the session on fusion breeders, the talk will explore once again the economic implications of a new nuclear age, beginning with improved fission reactors fueled by fusion breeders, then ultimately evolving to reactors based solely on fusion

  5. Environmental development plan: magnetic fusion

    International Nuclear Information System (INIS)

    1979-09-01

    This Environmental Development Plan (EDP) identifies the planning and management requirements and schedules needed to evaluate and assess the environmental, health and safety (EH and S) aspects of the Magnetic Fusion Energy Program (MFE). Environment is defined to include the environmental, health (occupational and public), and safety aspects

  6. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Research during this report period has covered the following areas: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) MACKLIB-IV, a new library of nuclear response functions, (5) energy storage and power supply requirements for commercial fusion reactors, (6) blanket/shield design evaluation for commercial fusion reactors, and (7) cross section measurements, evaluations, and techniques

  7. Simulation of electric arc with hysteresis during discharge of a fusion superconducting magnet system

    International Nuclear Information System (INIS)

    Kraus, H.G.; Jones, J.L.

    1986-01-01

    Simulation of an internal voltage induced arc strike and attendant voltage-current hysteresis characteristics in an FED/INTOR scale superconducting magnet and circuit protection system during discharge was performed. To begin, an analytical solution was used to investigate system response for an internally shorted magnet and simplified circuit protection system during magnet discharge. The short produced a current split within the magnet resulting in a transformer like mutual inductance effect. Thus, the coupling coefficient was introduced in the equations to be physically realistic and to prevent degeneration of the associated eigenvalue problem. The effects of varying short resistance, dump resistance, and number of coil turns shorted are presented. This led to simulation of an arc strike, including hysteresis effects, which is then compared to the usual constant resistance used to simulate magnet shorts. Tracking of arc characteristics was made possible through specially developed multiple tripping capabilities recently incorporated into MSCAP (Magnet Systems Circuitry Analysis Program) for safety and instrumentation control simulation

  8. Lower activation materials and magnetic fusion reactors

    International Nuclear Information System (INIS)

    Conn, R.W.; Bloom, E.E.; Davis, J.W.; Gold, R.E.; Little, R.; Schultz, K.R.; Smith, D.L.; Wiffen, F.W.

    1984-01-01

    Radioactivity in fusion reactors can be effectively controlled by materials selection. The detailed relationship between the use of a material for construction of a magnetic fusion reactor and the material's characteristics important to waste disposal, safety, and system maintainability has been studied. The quantitative levels of radioactivation are presented for many materials and alloys, including the role of impurities, and for various design alternatives. A major outcome has been the development of quantitative definitions to characterize materials based on their radioactivation properties. Another key result is a four-level classification scheme to categorize fusion reactors based on quantitative criteria for waste management, system maintenance, and safety. A recommended minimum goal for fusion reactor development is a reference reactor that (a) meets the requirements for Class C shallow land burial of waste materials, (b) permits limited hands-on maintenance outside the magnet's shield within 2 days of a shutdown, and (c) meets all requirements for engineered safety. The achievement of a fusion reactor with at least the characteristics of the reference reactor is a realistic goal. Therefore, in making design choices or in developing particular materials or alloys for fusion reactor applications, consideration must be given to both the activation characteristics of a material and its engineering practicality for a given application

  9. Cryogenic aspects of a demountable toroidal field magnet system for tokamak type fusion reactors

    International Nuclear Information System (INIS)

    Hsieh, S.Y.; Powell, J.; Lehner, J.

    1977-01-01

    A new concept for superconducting Toroidal Field (TF) magnet construction is presented. It is termed the ''Demountable Externally Anchored Low Stress'' (DEALS) magnet system. In contrast to continuous wound conventional superconducting coils, each magnet coil is made from several straight coil segments to form a polygon which can be joined and disjoined to improve reactor maintenance accessibility or to replace failed coil segments if necessary. A design example is presented of a DEALS magnet system for a UWMAK II size reactor. The overall magnet system is described, followed by a detailed analysis of the major heat loads in order to assess the refrigeration requirements for the concept. Despite the increased heat loads caused by high current power leads (200,000 amps) and the coil warm reinforcement support system, the analysis shows that at most, only about one percent (approximately 20 Mw) of the plant electrical output (approximately 2,000 Mw) is needed to operate the magnet cryogenic system. The advantages and the drawbacks of the DEALS magnet system are also discussed. The advantages include: capability to replace failed coils, increased accessibility to the blanket shield assembly, reduced reliability requirements for the magnet, much lower stress in conductor, easier application of improved high field brittle superconductors like Nb 3 Sn, improved magnet safety features, etc. The drawbacks are the increased refrigeration requirements and the necessity of a movable coil support system. A comparison with a conventional magnet system is made. It is concluded that the benefits of the DEALS approach far outweigh its penalties, and that the DEALS concept is the most practical, economical way to construct TF magnet systems for Tokamak reactors

  10. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Information is given on each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of CTR concepts, and (4) cross section measurements and techniques

  11. Magnetic mirror fusion: status and prospects

    International Nuclear Information System (INIS)

    Post, R.F.

    1980-01-01

    Two improved mirror systems, the tandem mirror (TM) and the field-reversed mirror (FRM) are being intensively studied. The twin practical aims of these studies: to improve the economic prospects for mirror fusion power plants and to reduce the size and/or complexity of such plants relative to earlier approaches to magnetic fusion. While at the present time the program emphasis is still strongly oriented toward answering scientific questions, the emphasis is shifting as the data accumulates and as larger facilities - ones with a heavy technological and engineering orientation - are being prepared. The experimental and theoretical progress that led to the new look in mirror fusion research is briefly reviewed, the new TM and the FRM ideas are outlined, and the projected future course of mirror fusion research is discussed

  12. Magnetic fusion and project ITER

    International Nuclear Information System (INIS)

    Park, H.K.

    1992-01-01

    It has already been demonstrated that our economics and international relationship are impacted by an energy crisis. For the continuing prosperity of the human race, a new and viable energy source must be developed within the next century. It is evident that the cost will be high and will require a long term commitment to achieve this goal due to a high degree of technological and scientific knowledge. Energy from the controlled nuclear fusion is a safe, competitive, and environmentally attractive but has not yet been completely conquered. Magnetic fusion is one of the most difficult technological challenges. In modem magnetic fusion devices, temperatures that are significantly higher than the temperatures of the sun have been achieved routinely and the successful generation of tens of million watts as a result of scientific break-even is expected from the deuterium and tritium experiment within the next few years. For the practical future fusion reactor, we need to develop reactor relevant materials and technologies. The international project called ''International Thermonuclear Experimental Reactor (ITER)'' will fulfill this need and the success of this project will provide the most attractive long-term energy source for mankind

  13. Safety issues for superconducting fusion magnets

    International Nuclear Information System (INIS)

    Hsieh, S.Y.; Reich, M.; Powell, J.R.

    1978-01-01

    Safety issues for future superconducting fusion magnet systems are examined. It is found that safety and failure experience with existing superconducting magnets is not very applicable to predictions as to the safety and reliability of fusion magnets. Such predictions will have to depend on analysis and judgement for many years to come, rather than on accumulated experience. A number of generic potential structural, thermal-hydraulic, and electrical safety problems are identified and analyzed. Prevention of quenches and non-uniform temperature distributions, if quenches should occur, is of great importance, since such events can trigger processes which lead to magnet damage or failure. Engineered safety features will be necessary for fusion magnets. Two of these, an energy dispersion system and external coil containment, appear capable of reducing the probability of coil disruption to very low levels. However, they do not prevent loss of function accidents which are of economic concern. Elaborate detector, temperature equalization, and energy removal systems will be required to minimize the chances of loss of function accidents

  14. Direct conversion of fusion energy into the electric one in the 'Dragon' magnetic confinement system

    International Nuclear Information System (INIS)

    Glagolev, V.M.; Timofeev, A.V.

    1993-01-01

    It is shown that recuperator in which the thermal energy of particles is transformed into electric oue under drift in crossed fields is naturally coupled with dragontype magnetic confinement system, so the recuperation process can be initiated in the dragon magnetic field. A number of questions occuring under analysis of recuperator-dragon system is considered, including the dynamics of particle transfer to the recuperator, the share of particles entering the recuperator, the effect of rotational transform and the recuperation efficiency

  15. Magnetized Target Fusion At General Fusion: An Overview

    Science.gov (United States)

    Laberge, Michel; O'Shea, Peter; Donaldson, Mike; Delage, Michael; Fusion Team, General

    2017-10-01

    Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma on a timescale faster than the thermal confinement time of the plasma. If near adiabatic compression is achieved, volumetric compression of 350X or more of a 500 eV target plasma would achieve a final plasma temperature exceeding 10 keV. Interesting fusion gains could be achieved provided the compressed plasma has sufficient density and dwell time. General Fusion (GF) is developing a compression system using pneumatic pistons to collapse a cavity formed in liquid metal containing a magnetized plasma target. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although pneumatic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the pneumatic driver front.

  16. Magnetic fusion research in developing countries

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1990-01-01

    This article is a presentation prepared by the Third World Academy of Sciences on magnetic fusion research activity in the developing countries and its connection with the IAEA's own fusion programme. 6 figs, 1 tab

  17. Introduction to magnetic fusion reactor design

    International Nuclear Information System (INIS)

    Watanabe, Kenji

    1988-01-01

    Trend of the tokamak reactor design works so far carried out is reviewed, and method of conceptual design for commercial fusion reactor is critically considered concerning the black-box conpepts. System-framework of the engineering of magnetic fusion (commercial) reactor design is proposed as four steps. Based on it the next design studies are recommended in parallel approaches for making real-overcome of reactor material problem, from the view point of technological realization and not from the economical one. Real trials are involved. (author)

  18. Stress analysis of superconducting magnets for magnetic fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Akin, J.E.; Gray, W.H.; Baudry, T.V.

    1980-01-01

    Superconducting devices involve several factors that normally are not encountered in the structural analysis of more common systems. Several of these factors ae noted and methods for including them in an analysis are cited. To illustrate the state of the analysis art for superconducting magnets, in magnetic fusion reactors, two specific projects are illustrated. They are the Large Coil Program (LCP) and the Engineering Test Facility (ETF).

  19. Stress analysis of superconducting magnets for magnetic fusion reactors

    International Nuclear Information System (INIS)

    Akin, J.E.; Gray, W.H.; Baudry, T.V.

    1980-01-01

    Superconducting devices involve several factors that normally are not encountered in the structural analysis of more common systems. Several of these factors ae noted and methods for including them in an analysis are cited. To illustrate the state of the analysis art for superconducting magnets, in magnetic fusion reactors, two specific projects are illustrated. They are the Large Coil Program (LCP) and the Engineering Test Facility

  20. Heavy Ion Fusion Systems Assessment study

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Herrmannsfeldt, W.B.

    1986-07-01

    The Heavy Ion Fusion Systems Assessment (HIFSA) study was conducted with the specific objective of evaluating the prospects of using induction linac drivers to generate economical electrical power from inertial confinement fusion. The study used algorithmic models of representative components of a fusion system to identify favored areas in the multidimensional parameter space. The resulting cost-of-electricity (COE) projections are comparable to those from other (magnetic) fusion scenarios, at a plant size of 100 MWe

  1. Computing for magnetic fusion energy research: The next five years

    International Nuclear Information System (INIS)

    Mann, L.; Glasser, A.; Sauthoff, N.

    1991-01-01

    This report considers computing needs in magnetic fusion for the next five years. It is the result of two and a half years of effort by representatives of all aspects of the magnetic fusion community. The report also factors in the results of a survey that was distributed to the laboratories and universities that support fusion. There are four areas of computing support discussed: theory, experiment, engineering, and systems

  2. Acoustically Driven Magnetized Target Fusion At General Fusion: An Overview

    Science.gov (United States)

    O'Shea, Peter; Laberge, M.; Donaldson, M.; Delage, M.; the Fusion Team, General

    2016-10-01

    Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma of about 1e23 m-3, 100eV, 7 Tesla, 20 cm radius, >100 μsec life with a 1000x volume compression in 100 microseconds. If near adiabatic compression is achieved, the final plasma of 1e26 m-3, 10keV, 700 Tesla, 2 cm radius, confined for 10 μsec would produce interesting fusion energy gain. General Fusion (GF) is developing an acoustic compression system using pneumatic pistons focusing a shock wave on the CT plasma in the center of a 3 m diameter sphere filled with liquid lead-lithium. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although acoustic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated Aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the acoustic driver front.

  3. Pressure measurements in magnetic-fusion devices

    International Nuclear Information System (INIS)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration

  4. Pressure measurements in magnetic-fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration.

  5. Overview of the Magnetic Fusion Energy Devlopment and Technology Program

    International Nuclear Information System (INIS)

    1978-03-01

    This publication gives a comprehensive introduction to controlled fusion research. Topics covered in the discussion include the following: (1) fusion system engineering and advanced design, (2) plasma engineering, (3) magnetic systems, (4) materials, (5) environment and safety, and (6) alternate energy applications

  6. Progress in fusion technology in the U.S. magnetic fusion program

    International Nuclear Information System (INIS)

    Dowling, R.J.; Beard, D.S.; Haas, G.M.; Stone, P.M.; George, T.V.

    1987-01-01

    In this paper the authors discuss the major technological achievements that have taken place during the past few years in the U.S. magnetic fusion program which have contributed to the global efforts. The goal has been to establish the scientific and technological base required for fusion energy. To reach this goal the fusion RandD program is focused on four key technical issues: determine the optimum configuration of magnetic confinement systems; determine the properties of burning plasmas; develop materials for fusion systems; and establish the nuclear technology of fusion systems. The objective of the fusion technology efforts has been to develop advanced technologies and provide the necessary support for research of these four issues. This support is provided in a variety of areas such as: high vacuum technology, large magnetic field generation by superconducting and copper coils, high voltage and high current power supplies, electromagnetic wave and particle beam heating systems, plasma fueling, tritium breeding and handling, remote maintenance, energy recovery. The U.S. Fusion Technology Program provides major support or has the primary responsibility in each of the four key technical issues of fusion, as described in the Magnetic Fusion Program Plan of February 1985. This paper has summarized the Technology Program in terms of its activities and progress since the Proceedings of the SOFT Conference in 1984

  7. Assessment of technical risks and R and D requirements for a magnetic confinement fusion fuel system. Final report

    International Nuclear Information System (INIS)

    DeFreece, D.A.

    1983-11-01

    This report documents a specific use and results of a novel technique for assessing the technical risks associated with the hardware development of a possible future commercial fusion power plant fuel system. Technical risk is defined as the risk that a particular technology or component which is currently under development will not achieve a set of required technical specifications. A technical risk assessment is the quantification of this risk. This Technical Risk Assessment (TRA) methodology was applied to a deuterium-tritium fuel system for a magnetic-confinement fusion power plant. The fuel system is defined to support a generic commercial reactor with at least two viable options for each critical subsystem. Each subsystem option is defined in detail including nominal performance requirements and subsystem interfaces. Subsystem experts were canvassed to obtain values for past, present and future technical performance parameters for each of the subsystem options. These forecasts are presented as probabilities of achieving given levels of performance in specific time periods for assumed funding scenarios. Several funding scenarios were examined to discern whether performance limitations are caused by funding or technology. A computerized Fuel System simulation is described which uses these subsystem performance parameter forecasts as inputs

  8. Transient Behaviour of Superconducting Magnet Systems of Fusion Reactor ITER during Safety Discharge

    Directory of Open Access Journals (Sweden)

    A. M. Miri

    2008-01-01

    Full Text Available To investigate the transient behaviour of the toroidal and poloidal field coils magnet systems of the International Thermonuclear Experimental Reactor during safety discharge, network models with lumped elements are established. Frequency-dependant values of the network elements, that is, inductances and resistances are calculated with the finite element method. That way, overvoltages can be determined. According to these overvoltages, the insulation coordination of coils has to be selected.

  9. Controlled thermonuclear fusion: research on magnetic fusion

    International Nuclear Information System (INIS)

    Paris, P.J.

    1988-12-01

    Recent progress in thermonuclear fusion research indicates that the scientists' schedule for the demonstration of the scientific feasibility will be kept and that break-even will be attained in the course of the next decade. To see the implementation of ignition, however, the generation of future experiments must be awaited. These projects are currently under study. With technological research going on in parallel, they should at the same time contribute to the design of a reactor. Fusion reactors will be quite different from the fission nuclear reactors we know, and the waste of the plants will also be of a different nature. It is still too early to define the precise design of a fusion reactor. On the basis of a toric machine concept like that of the tokamak, we can, however, envisage that the problems with which we are confronted will be solved one after the other. As we have just seen, these will be the objectives of the future experimental installations where ignition will be possible and where the flux of fast neutrons will be so strong that they will allow the study of low-activation materials which will be used in the structure of the reactor. But this is also a task in which from now onwards numerous laboratories in Europe and in the world participate. The works are in fact punctiform, and often the mutual incidences can only be determined by an approach simulated by numerical codes. (author) 19 figs., 6 tabs., 8 refs

  10. Neutral beams for magnetic fusion

    International Nuclear Information System (INIS)

    Hooper, B.

    1977-01-01

    Significant advances in forming energetic beams of neutral hydrogen and deuterium atoms have led to a breakthrough in magnetic fusion: neutral beams are now heating plasmas to thermonuclear temperatures, here at LLL and at other laboratories. For example, in our 2XIIB experiment we have injected a 500-A-equivalent current of neutral deuterium atoms at an average energy of 18 keV, producing a dense plasma (10 14 particles/cm 3 ) at thermonuclear energy (14 keV or 160 million kelvins). Currently, LLL and LBL are developing beam energies in the 80- to 120-keV range for our upcoming MFTF experiment, for the TFTR tokamak experiment at Princeton, and for the Doublet III tokamak experiment at General Atomic. These results increase our long-range prospects of producing high-intensity beams of energies in the hundreds or even thousands of kilo-electron-volts, providing us with optimistic extrapolations for realizing power-producing fusion reactors

  11. Magnetic fusion: Environmental Readiness Document

    International Nuclear Information System (INIS)

    1981-03-01

    Environmental Readiness Documents are prepared periodically to review and evaluate the environmental status of an energy technology during the several phases of development of that technology. Through these documents, the Office of Environment within the Department of Energy provides an independent and objective assessment of the environmental risks and potential impacts associated with the progression of the technology to the next stage of development and with future extensive use of the technology. This Environmental Readiness Document was prepared to assist the Department of Energy in evaluating the readiness of magnetic fusion technology with respect to environmental issues. An effort has been made to identify potential environmental problems that may be encountered based upon current knowledge, proposed and possible new environmental regulations, and the uncertainties inherent in planned environmental research

  12. Generic magnetic fusion reactor cost assessment

    International Nuclear Information System (INIS)

    Sheffield, J.

    1985-01-01

    The Fusion Energy Division of the Oak Ridge National Laboratory discusses ''generic'' magnetic fusion reactors. The author comments on DT burning magnetic fusion reactor models being possibly operational in the 21st century. Representative parameters from D-T reactor studies are given, as well as a shematic diagram of a generic fusion reactor. Values are given for winding pack current density for existing and future superconducting coils. Topics included are the variation of the cost of electricity (COE), the dependence of the COE on the net electric power of the reactor, and COE formula definitions

  13. West European magnetic confinement fusion research

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Hogan, J.T.; Porkolab, M.; Thomassen, K.I.

    1990-01-01

    This report presents a technical assessment and review of the West European program in magnetic confinement fusion by a panel of US scientists and engineers active in fusion research. Findings are based on the scientific and technical literature, on laboratory reports and preprints, and on the personal experiences and collaborations of the panel members. Concerned primarily with developments during the past 10 years, from 1979 to 1989, the report assesses West European fusion research in seven technical areas: tokamak experiments; magnetic confinement technology and engineering; fusion nuclear technology; alternate concepts; theory; fusion computations; and program organization. The main conclusion emerging from the analysis is that West European fusion research has attained a position of leadership in the international fusion program. This distinction reflects in large measure the remarkable achievements of the Joint European Torus (JET). However, West European fusion prominence extends beyond tokamak experimental physics: the program has demonstrated a breadth of skill in fusion science and technology that is not excelled in the international effort. It is expected that the West European primacy in central areas of confinement physics will be maintained or even increased during the early 1990s. The program's maturity and commitment kindle expectations of dramatic West European advances toward the fusion energy goal. For example, achievement of fusion breakeven is expected first in JET, before 1995

  14. Inertial fusion reactors and magnetic fields

    International Nuclear Information System (INIS)

    Cornwell, J.B.; Pendergrass, J.H.

    1985-01-01

    The application of magnetic fields of simple configurations and modest strengths to direct target debris ions out of cavities can alleviate recognized shortcomings of several classes of inertial confinement fusion (ICF) reactors. Complex fringes of the strong magnetic fields of heavy-ion fusion (HIF) focusing magnets may intrude into reactor cavities and significantly affect the trajectories of target debris ions. The results of an assessment of potential benefits from the use of magnetic fields in ICF reactors and of potential problems with focusing-magnet fields in HIF reactors conducted to set priorities for continuing studies are reported. Computational tools are described and some preliminary results are presented

  15. LiWall Fusion - The New Concept of Magnetic Fusion

    International Nuclear Information System (INIS)

    Zakharov, L.E.

    2011-01-01

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  16. Review of alternative concepts for magnetic fusion

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1980-01-01

    Although the Tokamak represents the mainstay of the world's quest for magnetic fusion power, with the tandem mirror serving as a primary backup concept in the US fusion program, a wide range of alternative fusion concepts (AFC's) have been and are being pursued. This review presents a summary of past and present reactor projections of a majority of AFC's. Whenever possible, quantitative results are given

  17. Structural analysis of the magnet system for Mirror Fusion Test Facility (MFTF). Addendum I

    International Nuclear Information System (INIS)

    Loss, K.R.; Wohlwend, J.W.

    1979-09-01

    The stress analysis refinement of the MFTF magnet system using GDSAP (General Dynamics Structural Analysis Program) and NASTRAN finite element computer models has been completed. The objective of this analysis was to calculate a more refined case and jacket stress distribution. The GDSAP model was refined in the minor radius area to yield a more detailed prediction of the stress distributions in critical areas identified by the previous analysis. Modifications in the case plate thickness (from 3.0 inches to 3.2 inches) and in the conductor pack load distribution and stiffness were included. The GDSAP model was converted to an identical NASTRAN model to determine the influence on stress results using higher order elements

  18. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  19. Solenoidal fusion system

    International Nuclear Information System (INIS)

    Linlor, W.I.

    1980-01-01

    This invention discloses apparatus and methods to produce nuclear fusion utilizing fusible material in the form of high energy ion beams confined in magnetic fields. For example, beams of deuterons and tritons are injected in the same direction relative to the axis of a vacuum chamber. The ion beams are confined by the magnetic fields of long solenoids. The products of the fusion reactions, such as neutrons and alpha particles, escape to the wall surrounding the vacuum chamber, producing heat. The momentum of the deuterons is approximately equal to the momentum of the tritons, so that both types of ions follow the same path in the confining magnetic field. The velocity of the deuteron is sufficiently greater than the velocity of the triton so that overtaking collisions occur at a relative velocity which produces a high fusion reaction cross section. Electrons for space charge neutralization are obtained by ionization of residual gas in the vacuum chamber, and additionally from solid material (Irradiated with ultra-violet light or other energetic radiation) adjacent to the confinement region. For start-up operation, injected high-energy molecular ions can be dissociated by intense laser beam, producing trapping via change of charge state. When sufficiently intense deuteron and triton beams have been produced, the laser beam can be removed, and subsequent change of charge state can be achieved by collisions

  20. Magnetic confinement fusion energy research

    International Nuclear Information System (INIS)

    Grad, H.

    1977-03-01

    Controlled Thermonuclear Fusion offers probably the only relatively clean energy solution with completely inexhaustible fuel and unlimited power capacity. The scientific and technological problem consists in magnetically confining a hot, dense plasma (pressure several to hundreds of atmospheres, temperature 10 8 degrees or more) for an appreciable fraction of a second. The scientific and mathematical problem is to describe the behavior, such as confinement, stability, flow, compression, heating, energy transfer and diffusion of this medium in the presence of electromagnetic fields just as we now can for air or steam. Some of the extant theory consists of applications, routine or ingenious, of known mathematical structures in the theory of differential equations and in traditional analysis. Other applications of known mathematical structures offer surprises and new insights: the coordination between sub-supersonic and elliptic-hyperbolic is fractured; supersonic propagation goes upstream; etc. Other completely nonstandard mathematical structures with significant theory are being rapidly uncovered (and somewhat less rapidly understood) such as non-elliptic variational equations and new types of weak solutions. It is these new mathematical structures which one should expect to supply the foundation for the next generation's pure mathematics, if history is a guide. Despite the substantial effort over a period of some twenty years, there are still basic and important scintific and mathematical discoveries to be made, lying just beneath the surface

  1. Safety of magnetic fusion facilities: Requirements

    International Nuclear Information System (INIS)

    1996-05-01

    This Standard identifies safety requirements for magnetic fusion facilities. Safety functions are used to define outcomes that must be achieved to ensure that exposures to radiation, hazardous materials, or other hazards are maintained within acceptable limits. Requirements applicable to magnetic fusion facilities have been derived from Federal law, policy, and other documents. In addition to specific safety requirements, broad direction is given in the form of safety principles that are to be implemented and within which safety can be achieved

  2. Magnet operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1991-11-01

    This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries

  3. Economic potential of magnetic fusion energy

    International Nuclear Information System (INIS)

    Henning, C.D.

    1981-01-01

    Scientific feasibility of magnetic fusion is no longer seriously in doubt. Rapid advances have been made in both tokamak and mirror research, leading to a demonstration in the TFTR tokamak at Princeton in 1982 and the tandem mirror MFTF-B at Livermore in 1985. Accordingly, the basis is established for an aggressive engineering thrust to develop a reactor within this century. However, care must be taken to guide the fusion program towards an economically and environmentally viable goal. While the fusion fuels are essentially free, capital costs of reactors appear to be at least as large as current power plants. Accordingly, the price of electricity will not decline, and capital availability for reactor constructions will be important. Details of reactor cost projections are discussed and mechanisms suggested for fusion power implementation. Also discussed are some environmental and safety aspects of magnetic fusion

  4. Technology spin-offs from the magnetic fusion energy program

    International Nuclear Information System (INIS)

    1982-05-01

    A description is given of 138 possible spin-offs from the magnetic fusion program. The spin-offs cover the following areas: (1) superconducting magnets, (2) materials technology, (3) vacuum systems, (4) high frequency and high power rf, (5) electronics, (6) plasma diagnostics, (7) computers, and (8) particle beams

  5. Magnetic fusion program summary document

    International Nuclear Information System (INIS)

    1979-04-01

    This document outlines the current and planned research, development, and commercialization (RD and C) activities of the Offic of Fusion Energy under the Assistant Secretary for Energy Technology, US Department of Energy (DOE). The purpose of this document is to explain the Office of Fusion Energy's activities to Congress and its committees and to interested members of the public

  6. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  7. Driven reconnection in magnetic fusion experiments

    International Nuclear Information System (INIS)

    Fitzpatrick, R.

    1995-11-01

    Error fields (i.e. small non-axisymmetric perturbations of the magnetic field due to coil misalignments, etc.) are a fact of life in magnetic fusion experiments. What effects do error fields have on plasma confinement? How can any detrimental effects be alleviated? These, and other, questions are explored in detail in this lecture using simple resistive magnetohydrodynamic (resistance MHD) arguments. Although the lecture concentrates on one particular type of magnetic fusion device, namely, the tokamak, the analysis is fairly general and could also be used to examine the effects of error fields on other types of device (e.g. Reversed Field Pinches, Stellerators, etc.)

  8. The giant superconducting magnet system of 10,000 tons mass for fusion experiment at Cadarache, France

    International Nuclear Information System (INIS)

    Sahu, A.K.

    2013-01-01

    The International Thermonuclear Experimental Reactor (ITER) being built at Cadarache, France has many unique features and is one of the biggest scientific adventures in the history of science and technology. Seven partners (India, EU, US, China, Japan, Korea and Russia) have made an International Organization situated at Cadarache, France to provide direction and co-ordination for R and D and construction of this project. The R and D labs and manufacturing industries are spread in these seven partner countries. Components manufactured in these countries will be transported to Cadarache in France for assembly. Institute for Plasma Research, Bhat, Gandhinagar, Gujarat is coordinating this project activities on behalf of India. The magnet system, required for confinement and control of plasma leading to fusion reaction in ITER is one of the key systems of this project. There are 18 TF (Toroidal Field) Coils, 6 PF (Poloidal Field) coils, 6 CS (Central Solenoid) coils and 18 correction coils (CC), all of which are of superconducting type. All TF and CS coils have Nb3Sn superconductor and all PF and CC coils have NbTi superconductor. Each TF coil has height 15 m and width 9 m and 330 tons mass. The biggest PF coil has diameter 24 m and 300 tons mass. The total mass of these superconducting magnet systems is about 10000 tons. Use of Nb3Sn superconductor for manufacturing superconducting cables for successful use had not reached a matured stage earlier and this project gave a thrust for significant R and D activities worldwide and now due to this project, it is a matured and reliable technology. The jacketing and manufacturing of long cables need up to about 760 m long special infrastructure at Industry. The special building built for PF coil winding at ITER, Cadarache site is of size 250 m X 45 m. All these coils are made using cable-in-conduit conductors (CICC). These long CICCs have to carry current as high as 68 kA in case of TF coils. Due to this high current and

  9. Safety of magnetic fusion facilities: Guidance

    International Nuclear Information System (INIS)

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities

  10. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    Science.gov (United States)

    Chowdhury, Amor; Sarjaš, Andrej

    2016-09-15

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  11. Accelerated plan to develop magnetic fusion energy

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1986-01-01

    We have shown that, despite funding delays since the passage of the Magnetic Fusion Engineering Act of 1980, fusion development could still be carried to the point of a demonstration plant by the year 2000 as called for in the Act if funding, now about $365 million per year, were increased to the $1 billion range over the next few years (see Table I). We have also suggested that there may be an economic incentive for the private sector to become in accelerating fusion development on account of the greater stability of energy production costs from fusion. Namely, whereas fossil fuel prices will surely escalate in the course of time, fusion fuel will always be abundantly available at low cost; and fusion technology poses less future risk to the public and the investor compared to conventional nuclear power. In short, once a fusion plant is built, the cost of generating electricity mainly the amortization of the plant capital cost - would be relatively fixed for the life of the plant. In Sec. V, we found that the projected capital cost of fusion plants ($2000 to $4000 per KW/sub e/) would probably be acceptable if fusion plants were available today

  12. Case fault analysis for the mirror fusion test facility (MFTF) magnet system

    International Nuclear Information System (INIS)

    Baldi, R.W.; Poniktera, C.D.

    1979-03-01

    This report describes the stress analysis performed to determine the criticality of selected failures in the magnet case, jacket, and intercoil member. The selected faults were idealized by adding additional nodes coincidental to existing nodes in the baseline finite element model and changing fault boundary plate connectivities. No attempt was made to alter the analysis mesh size adjacent to any fault as this degree of effort was beyond the intent and scope of this task. Results of this analysis indicated that two of the five faults analyzed would be catastrophic in nature. Faults of this cateogry were: Fault No. 1 - A weld joint failure in the minor radius 3 to 5 inch plate inter section in the chamfer region at the centerline of symmetry. Fault No. 5 - Failuree of the 3 to 5 inch transition butt weld joint at the major to minor radius transition on the magnet case top plate

  13. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  14. LLL magnetic fusion energy program: an overview

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Over the last 12 months, significant progress has been made in the LLL magnetic fusion energy program. In the 2XIIB experiment, a tenfold improvement was achieved in the plasma confinement factor (the product of plasma density and confinement time), pushed plasma temperature and pressure to values never before reached in a magnetic fusion experiment, and demonstrated--for the first time--plasma startup by neutral beam injection. A new laser-pellet startup technique for Baseball IIT has been successfully tested and is now being incorporated in the experiment. Technological improvements have been realized, such as a breakthrough in fabricating niobium-tin conductors for superconducting magnets. These successes, together with complementary progress in theory and reactor design, have led to a proposal to build the MX facility, which could be on the threshold of a mirror fusion reactor

  15. The international magnetic fusion energy program

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T.K.

    1988-10-06

    In May of 1988, the long tradition of international cooperation in magnetic fusion energy research culminated in the initiation of design work on the International Thermonuclear Experimental Reactor (ITER). If eventually constructed in the 1990s, ITER would be the world's first magnetic fusion reactor. This paper discusses the background events that led to ITER and the present status of the ITER activity. This paper presents a brief summary of the technical, political, and organizational activities that have led to the creation of the ITER design activity. The ITER activity is now the main focus of international cooperation in magnetic fusion research and one of the largest international cooperative efforts in all of science. 2 refs., 12 figs.

  16. The international magnetic fusion energy program

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1988-01-01

    In May of 1988, the long tradition of international cooperation in magnetic fusion energy research culminated in the initiation of design work on the International Thermonuclear Experimental Reactor (ITER). If eventually constructed in the 1990s, ITER would be the world's first magnetic fusion reactor. This paper discusses the background events that led to ITER and the present status of the ITER activity. This paper presents a brief summary of the technical, political, and organizational activities that have led to the creation of the ITER design activity. The ITER activity is now the main focus of international cooperation in magnetic fusion research and one of the largest international cooperative efforts in all of science. 2 refs., 12 figs

  17. On the possibility of laser diagnostics of anisotropically superheated electrons in magnetic fusion systems

    International Nuclear Information System (INIS)

    Kukushkin, A.B.

    1990-01-01

    The anisotropically superheated electrons (ASE) are known to be generated by a resonance interaction of high-frequency electromagnetic waves with electron plasma. Under definite conditions the ASE energy may essentially exceed (by the order of magnitude or even more) thermal energies of background electron plasma, the ASE distribution in pitch-angle being concentrated around definite directions. This situation is typical for, e.g. electron cyclotron heating of magnetic mirror plasmas (generation of 'sloshing' electrons) and for current drive in tokamaks by means of lower-hybrid or, sometimes, electron cyclotron waves. In this work, an analysis of the possibility of the ASE laser diagnostics is based on the calculations of Thomson scattering of laser radiation by plasma electrons. The model electron velocity distribution functions, which provide qualitative description of the ASE peculiar features, were used in calculations. (author) 4 refs., 1 fig

  18. Structural analysis interpretation task for the magnet system for Mirror Fusion Test Facility (MFTF)

    International Nuclear Information System (INIS)

    Baldi, R.W.

    1979-11-01

    The primary objective of this study was to develop recommendations to improve and substantiate the structural integrity of the highly stresses small radius region of the MFTF magnet. The specific approach is outlined: (1) Extract detail stress/strain data from General Dynamics Convair Finite-Element Refinement Analysis. (2) Diagram local plate stress distribution and its relationship to the adjacent weldment. (3) Update the parametric fracture mechanics analysis using most recent MFTF related data developed by National Bureau of Standards. (4) Review sequence and assembly as modified by Chicago Bridge and Iron for adaptability to refinements. (5) Investigate the need for fillet radii weldments to reduce stress concentrations at critical corners. (6) Review quality assurance plan for adequacy to insure structural quality in the small radius region. (7) Review instrumentation plan for adequacy of structural diagnostics in small radius region. (8) Participate in planning a small-scale fatigue test program of a typical MFTF weldment

  19. Software problems in magnetic fusion research

    International Nuclear Information System (INIS)

    Gruber, R.

    1982-01-01

    The main world effort in magnetic fusion research involves studying the plasma in a Tokamak device. Four large Tokamaks are under construction (TFTR in USA, JET in Europe, T15 in USSR and JT60 in Japan). To understand the physical phenomena that occur in these costly devices, it is generally necessary to carry out extensive numerical calculations. These computer simulations make use of sophisticated numerical methods and demand high power computers. As a consequence they represent a substantial investment. To reduce software costs, the computer codes are more and more often exhanged among scientists. Standardization (STANDARD FORTRAN, OLYMPUS system) and good documentation (CPC program library) are proposed to make codes exportable. Centralized computing centers would also help in the exchange of codes and ease communication between the staff at different laboratories. (orig.)

  20. Cermet coatings for magnetic fusion reactors

    International Nuclear Information System (INIS)

    Smith, M.F.; Whitley, J.B.; McDonald, J.M.

    1984-01-01

    Cermet coatings consisting of SiC particles in an aluminum matrix were produced by a low pressure chamber plasma spray process. Properties of these coatings are being investigated to evaluate their suitability for use in the next generation of magnetic confinement fusion reactors. Although this preliminary study has focused primarily upon SiC-Al cermets, the deposition process can be adapted to other ceramic-metal combinations. Potential applications for cermet coatings in magnetic fusion devices are presented along with experimental results from thermal tests of candidate coatings. (Auth.)

  1. Fusion propulsion systems

    International Nuclear Information System (INIS)

    Haloulakos, V.E.; Bourque, R.F.

    1989-01-01

    The continuing and expanding national efforts in both the military and commercial sectors for exploration and utilization of space will require launch, assembly in space, and orbital transfer of large payloads. The currently available delivery systems, utilizing various forms of chemical propulsion, do not have the payload capacity to fulfill the planned missions. National planning documents such as Air Force Project Forecast II and the National Commission on Space Report to the President contain numerous missions and payload delivery schedules that are beyond the present capabilities of the available systems, such as the Space Shuttle and the Expendable Launch Vehicles (ELVs). The need, therefore, is very pressing to design, develop, and deploy propulsion systems that offer a quantum level increase in delivered performance. One such potential system is fusion propulsion. This paper summarizes the result of an Air Force Astronautics Laboratory (AFAL) sponsored study of fusion propulsion conducted by the McDonnell Douglas Astronautics Company (MDAC), and its subcontractor General Atomics This study explored the potential of fusion propulsion for Air Force missions. Fusion fuels and existing confinement concepts were evaluated according to elaborate criteria. Two fuels, deuterium-tritium and deuterium-helium 3 (D- 3 He) were considered worthy of further consideration. D- 3 He was selected as the most attractive for this Air Force study. The colliding translating compact torus confinement concept was evaluated in depth and found to possibly possess the low mass and compactness required. Another possible concept is inertial confinement with the propellant surrounding the target. 5 refs., 5 figs., 8 tabs

  2. Fusion and technology: An introduction to the physics and technology of magnetic confinment fusion

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1984-01-01

    This book is an introduction covering all aspects of magnetic fusion and magnetic fusion technology. Physical property data relevant to fusion technology and a summary of fusion reactor design parameters are provided. Topics covered include: basic properties; equilibrium and transport confinement concepts; plasma heating; plasma wall interaction; magnetics; energy storage and transfer; interaction of radiation with matter; primary energy conversion and tritium breeding blanket; tritium and vacuum; and Fusion Reactor Design

  3. Advanced materials: The key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural material for the first wail and blanket (FWB), (2) plasma-facing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications

  4. Advanced materials - the key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural materials for the first wall and blanket (FWB), (2) plasmafacing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications. (author)

  5. SPINS-IND: Pellet injector for fuelling of magnetically confined fusion systems

    Science.gov (United States)

    Gangradey, R.; Mishra, J.; Mukherjee, S.; Panchal, P.; Nayak, P.; Agarwal, J.; Saxena, Y. C.

    2017-06-01

    Using a Gifford-McMahon cycle cryocooler based refrigeration system, a single barrel hydrogen pellet injection (SPINS-IND) system is indigenously developed at Institute for Plasma Research, India. The injector is based on a pipe gun concept, where a pellet formed in situ in the gun barrel is accelerated to high speed using high pressure light propellant gas. The pellet size is decided by considering the Greenwald density limit and its speed is decided by considering a neutral gas shielding model based scaling law. The pellet shape is cylindrical of dimension (1.6 mm ℓ × 1.8 mm φ). For pellet ejection and acceleration, a fast opening valve of short opening duration is installed at the breech of the barrel. A three-stage differential pumping system is used to restrict the flow of the propellant gas into the plasma vacuum vessel. Diagnostic systems such as light gate and fast imaging camera (240 000 frames/s) are employed to measure the pellet speed and size, respectively. A trigger circuit and a programmable logic controller based integrated control system developed on LabVIEW enables to control the pellet injector remotely. Using helium as a propellant gas, the pellet speed is varied in the range 650 m/s-800 m/s. The reliability of pellet formation and ejection is found to be more than 95%. This paper describes the details of SPINS-IND and its test results.

  6. Data-Acquisition Systems for Fusion Devices

    NARCIS (Netherlands)

    van Haren, P. C.; Oomens, N. A.

    1993-01-01

    During the last two decades, computerized data acquisition systems (DASs) have been applied at magnetic confinement fusion devices. Present-day data acquisition is done by means of distributed computer systems and transient recorders in CAMAC systems. The development of DASs has been technology

  7. Linear magnetic fusion: summary of Seattle workshop

    International Nuclear Information System (INIS)

    1977-12-01

    The linear-geometry magnetic confinement concept is among the oldest used in the study of high-temperature plasmas. However, it has generally been discounted as a suitable approach for demonstrating controlled thermonuclear fusion because rapid losses from the plasma column ends necessitate very long devices. Further, the losses and how to overcome them have not yet received parametric experimental study, nor do facilities exist with which such definitive experiments could be performed. Nonetheless, the important positive attribute, simplicity, together with the appearance of several ideas for reducing end losses have provided motivation for continued research on linear magnetic fusion (LMF). These motivations led to the LMF workshop, held in Seattle, March 9--11, 1977, which explored the potential of LMF as an alternate approach to fusion. A broad range of LMF aspects were addressed, including radial and axial losses, stability and equilibrium, heating, technology, and reactor considerations. The conclusions drawn at the workshop are summarized

  8. Radiation effects on superconducting fusion magnet components

    International Nuclear Information System (INIS)

    Weber, H.W.

    2011-01-01

    Nuclear fusion devices based on the magnetic confinement principle heavily rely on the existence and performance of superconducting magnets and have always significantly contributed to advancing superconductor and magnet technology to their limits. In view of the presently ongoing construction of the tokamak device ITER and the stellerator device Wendelstein 7X and their record breaking parameters concerning size, complexity of design, stored energy, amperage, mechanical and magnetic forces, critical current densities and stability requirements, it is deemed timely to review another critical parameter that is practically unique to these devices, namely the radiation response of all magnet components to the lifetime fluence of fast neutrons and gamma rays produced by the fusion reactions of deuterium and tritium. I will review these radiation effects in turn for the currently employed standard "technical" low temperature superconductors NbTi and Nb 3 Sn, the stabilizing material (Cu) as well as the magnet insulation materials and conclude by discussing the potential of high temperature superconducting materials for future generations of fusion devices, such as DEMO. (author)

  9. International program activities in magnetic fusion energy

    International Nuclear Information System (INIS)

    1986-03-01

    The following areas of our international activities in magnetic fusion are briefly described: (1) policy; (2) background; (3) strategy; (4) strategic considerations and concerns; (5) domestic program inplications, and (6) implementation. The current US activities are reviewed. Some of our present program needs are outlined

  10. Overview of the US Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    Wiffen, F.W.; Dowling, R.J.; Marton, W.A.; Eckstrand, S.A.

    1990-01-01

    Since the 1988 Symposium on Fusion Technology, steady progress has been made in the US Magnetic Fusion Energy Program. The large US tokamaks have reached new levels of plasma performance with associated improvements in the understanding of transport. The technology support for ongoing and future devices is similarly advancing with notable advances in magnetic, rf heating tubes, pellet injector, plasma interactive materials, tritium handling, structural materials, and system studies. Currently, a high level DOE review of the program is underway to provide recommendations for a strategic plan

  11. Radiation considerations for superconducting fusion magnets

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1977-01-01

    Radiation environment for the magnets is characterized for various conditions expected for tokamak power reactor operation. The radiation levels are translated into radiation effects using available experimental data. The impact of the tradeoffs in radiation shielding and the change in the properties of the superconducting magnets on reactor performance and economics is examined. It is shown that (1) superconducting magnets in fusion reactors will operate at much higher radiation level than was previously anticipated; (2) additional data on radiation damage is required to better accuracy than is presently available in order to accurately quantify the change in properties in the superconducting magnet components; and (3) there is a substantial penalty for increasing (or overestimating) the shielding requirements. A perspective of future tokamak power reactors is presented and questions relating to desirable magnetic field strength and selection of materials for superconducting magnets are briefly examined

  12. Stored energy in fusion magnet materials irradiated at low temperatures

    International Nuclear Information System (INIS)

    Chaplin, R.L.; Kerchner, H.R.; Klabunde, C.E.; Coltman, R.R.

    1989-08-01

    During the power cycle of a fusion reactor, the radiation reaching the superconducting magnet system will produce an accumulation of immobile defects in the magnet materials. During a subsequent warm-up cycle of the magnet system, the defects will become mobile and interact to produce new defect configurations as well as some mutual defect annihilations which generate heat-the release of stored energy. This report presents a brief qualitative discussion of the mechanisms for the production and release of stored energy in irradiated materials, a theoretical analysis of the thermal response of irradiated materials, theoretical analysis of the thermal response of irradiated materials during warm-up, and a discussion of the possible impact of stored energy release on fusion magnet operation 20 refs

  13. Coherence imaging spectro-polarimetry for magnetic fusion diagnostics

    International Nuclear Information System (INIS)

    Howard, J

    2010-01-01

    This paper presents an overview of developments in imaging spectro-polarimetry for magnetic fusion diagnostics. Using various multiplexing strategies, it is possible to construct optical polarization interferometers that deliver images of underlying physical parameters such as flow speed, temperature (Doppler effect) or magnetic pitch angle (motional Stark and Zeeman effects). This paper also describes and presents first results for a new spatial heterodyne interferometric system used for both Doppler and polarization spectroscopy.

  14. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  15. Use of fusion-welding techniques in fabrication of a superconducting-magnet thermal-shield system

    International Nuclear Information System (INIS)

    Dalder, E.N.C.; Berkey, J.H.; Chang, Y.; Johnson, G.L.; Lathrop, G.H.; Podesta, D.L.; Van Sant, J.H.

    1983-01-01

    Success of the thermal shield system was demonstrated by the results of acceptance tests performed with the magnet and all its ancillary equipment. During these tests the thermal shield system was: (1) thermally cycled several times from 300 0 K to 77 0 K; (2) pressure cycled several times from 0 to 5 atmospheres; (3) operated for more than 500 hours at 77 0 K and in a vacuum environment of less than 10 - 5 torr; (4) operated in a magnetic field up to 6.0 Telsa; (5) exposed to a rapidly collapsing magnetic field of more than 250 gauss per second; (6) drained of all LN 2 in a few minutes, without any weld failures. The successful (and relatively problem free) operation of the magnet system validates the choice of the welding processes used, as well as their execution in both shop and field environments

  16. Cost assessment of a generic magnetic fusion reactor

    International Nuclear Information System (INIS)

    Sheffield, J.; Dory, R.A.; Cohn, S.M.; Delene, J.G.; Parsly, L.F.; Ashby, D.E.T.F.; Reiersen, W.T.

    1986-03-01

    A generic reactor model is used to examine the economic viability of generating electricity by magnetic fusion. The simple model uses components that are representative of those used in previous reactor studies of deuterium-tritium-burning tokamaks, stellarators, bumpy tori, reversed-field pinches (RFPs), and tandem mirrors. Conservative costing assumptions are made. The generic reactor is not a tokamak; rather, it is intended to emphasize what is common to all magnetic fusion rectors. The reactor uses a superconducting toroidal coil set to produce the dominant magnetic field. To this extent, it is not as good an approximation to systems such as the RFP in which the main field is produced by a plasma current. The main output of the study is the cost of electricity as a function of the weight and size of the fusion core - blanket, shield, structure, and coils. The model shows that a 1200-MW(e) power plant with a fusion core weight of about 10,000 tonnes should be competitive in the future with fission and fossil plants. Studies of the sensitivity of the model to variations in the assumptions show that this result is not sensitively dependent on any given assumption. Of particular importance is the result that a fusion reactor of this scale may be realized with only moderate advances in physics and technology capabilities

  17. Realizing Technologies for Magnetized Target Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wurden, Glen A. [Los Alamos National Laboratory

    2012-08-24

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  18. Magnetic compression/magnetized target fusion (MAGO/MTF)

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.; Lindemuth, I.R.

    1997-03-01

    Magnetized Target Fusion (MTF) was reported in two papers at the First Symposium on Current Trends in International Fusion Research. MTF is intermediate between two very different mainline approaches to fusion: Inertial Confinement Fusion (ICF) and magnetic confinement fusion (MCF). The only US MTF experiments in which a target plasma was compressed were the Sandia National Laboratory ''Phi targets''. Despite the very interesting results from that series of experiments, the research was not pursued, and other embodiments of MTF concept such as the Fast Liner were unable to attract the financial support needed for a firm proof of principle. A mapping of the parameter space for MTF showed the significant features of this approach. The All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) has an on-going interest in this approach to thermonuclear fusion, and Los Alamos National Laboratory (LANL) and VNIIEF have done joint target plasma generation experiments relevant to MTF referred to as MAGO (transliteration of the Russian acronym for magnetic compression). The MAGO II experiment appears to have achieved on the order of 200 eV and over 100 KG, so that adiabatic compression with a relatively small convergence could bring the plasma to fusion temperatures. In addition, there are other experiments being pursued for target plasma generation and proof of principle. This paper summarizes the previous reports on MTF and MAGO and presents the progress that has been made over the past three years in creating a target plasma that is suitable for compression to provide a scientific proof of principle experiment for MAGO/MTF

  19. Materials program for magnetic fusion energy

    International Nuclear Information System (INIS)

    Zwilsky, K.M.; Cohen, M.M.; Finfgeld, C.R.; Reuther, T.C.

    1978-01-01

    The Magnetic Fusion Reactor Materials Program is currently operating at a level of $7.8M. The program is divided into four technical areas which cover both short and long term problems. These are: Alloy Development for Irradiation Performance, Damage Analysis and Fundamental Studies, Plasma-Materials Interaction, and Special Purpose Materials. A description of the program planning process, the continuing management structure, and the resulting documents is presented

  20. Technology-development needs for magnetic fusion

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Baker, C.C.; Conn, R.W.; Krakowski, R.A.; Steiner, D.; Thomassen, K.I.

    1983-03-01

    The technology-development needs for magnetic fusion have been identified from an assessment of the conceptual design studies which have been performed. A summary of worldwide conceptual design effort is presented. The relative maturity of the various confinement concepts and the intensity and continuity of the design efforts are taken into account in identifying technology development needs. A major conclusion of this study is that there is a high degree of commonality among the technology requirements identified for the various confinement concepts

  1. The physics of magnetic fusion energy

    International Nuclear Information System (INIS)

    Roberts, K.V.

    1980-01-01

    A personal account is given covering the period April 1956 until the present day of the challenging theoretical problems posed by the controlled release of energy by magnetic confinement fusion. The need to analyse in detail the working of a plasma apparatus or reactor as a function of time is stressed and the application of such analysis to the various thermonuclear devices which have been considered during this period, is examined. (UK)

  2. Magnet Design Considerations for Fusion Nuclear Science Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kessel, C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States) Fusion Technology Institute; Titus, P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  3. Summary of existing superconducting magnet experience and its relevance to the safety of fusion magnet

    International Nuclear Information System (INIS)

    Hsieh, S.Y.; Allinger, J.; Danby, G.; Keane, J.; Powell, J.; Prodell, A.

    1975-01-01

    A comprehensive summary of experience with over twenty superconducting magnet systems has been collected through visits to and discussions about existing facilities including, for example, the bubble chamber magnets at Brookhaven National Laboratory, Argonne National Laboratory and Fermi National Accelerator Laboratory, and the large superconducting spectrometer at Stanford Linear Accelerator Center. This summary includes data relating to parameters of these magnets, magnet protection methods, and operating experiences. The information received is organized and presented in the context of its relevance to the safe operation of future, very large superconducting magnet systems for fusion power plants

  4. Liquid first walls for magnetic fusion energy

    International Nuclear Information System (INIS)

    Moir, R.W.

    1996-01-01

    Liquids (∼7 neutron mean free paths thick) with certain restrictions can probably be used in magnetic fusion designs between the burning plasma and the structural materials of the plant. If this works there are a number of profound advantages: lower the cost of electricity by more than 35%; remove the need to develop first wall materials saving over 4B$ in development costs; reduce the amount and kind of wastes generated in the plant; and permit a wider choice of materials. Evaporated liquid must be efficiently ionized in an edge plasma to prevent penetrating into the burning plasma and diminishing the burn rate. The fraction of evaporated material ionized is estimated to be 0.993 for Li, 0.98 for Flibe and 0.9999 for Li 17 Pb 83 . This ionized vapor would be swept along open field lines into a remote burial chamber. The most practical systems would be those with topological open field lines on the outer surface as is the case of a field reversed configuration (FRC), a Spheromak, a Z-pinch, or a mirror machine. In a Tokamak, including the Spherical Tokamak, the field lines outside the separatrix are restricted to a small volume inside the toroidal coil making for difficulties in introducing the liquid and removing the ionized vapor

  5. Magnetic fusion energy research and development

    International Nuclear Information System (INIS)

    1984-02-01

    This report on the Department of Energy's Magnetic Fusion Program was requested by the Secretary of Energy. The Panel finds that substantial progress has been made in the three years since the previous ERAB review, although budget constraints have precluded the engineering initiatives recommended in that review and authorized in the Magnetic Fusion Energy Engineering Act of 1980 (the Act). Recognizing that the goals of the Act cannot now be met, the Panel recommends that the engineering phase be further postponed in favor of a strong base program in physics and technology, including immediate commitment to a major new tokamak-based device for the investigation of an ignited long-pulse plasma designated in this report as the Burning Core Experiment or BCX. Resources to design such a device could be obtained from within the existing program by redirecting work toward to BCX. At this time it is not possible to assess accurately the potential economic viability of fusion power in the future. The Panel strongly recommends expansion of international collaboration, particularly the joint construction and operation of major new unique facilities, such as the proposed BCX

  6. Magnetic Fusion Energy Program of India

    International Nuclear Information System (INIS)

    Sen, Abhijit

    2013-01-01

    The magnetic fusion energy program of India started in the early eighties with the construction of an indigenous tokamak device ADITYA at the Institute for Plasma Research in Gandhinagar. The initial thrust was on fundamental studies related to plasma instabilities and turbulence phenomena but there was also a significant emphasis on technology development in the areas of magnetics, high vacuum, radio-frequency heating and neutral beam technology. The program took a major leap forward in the late nineties with the decision to build a state-of-the-art superconducting tokamak (SST-1) that catapulted India into the mainstream of the international tokamak research effort. The SST experience and the associated technological and human resource development has now earned the country a place in the ITER collaboration as an equal partner with other major nations. Keeping in mind the rapidly growing and enormous energy needs of the future the program has also identified and launched key development projects that can lead us to a DEMO reactor and eventually a Fusion Power Plant in a systematic manner. I will give a brief overview of the early origins, the present status and some of the highlights of the future road map of the Indian Fusion Program. (author)

  7. Design of force-cooled conductors for large fusion magnets

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.; Lue, J.W.

    1977-01-01

    Conductors cooled by supercritical helium in forced convection are under active consideration for large toroidal fusion magnets. One of the central problems in designing such force cooled conductors is to maintain an adequate stability margin while keeping the pumping power tolerably low. A method has been developed for minimizing the pumping power for fixed stability by optimally choosing the matrix-to-superconductor and the metal-to-helium ratios. Such optimized conductors reduce pumping power requirements for fusion size magnets to acceptable limits. Furthermore, the mass flow and hence pumping losses can be varied through a magnet according to the local magnetic field and magnitude of desired stability margin. Force cooled conductors give flexibility in operation, permitting, for example, higher fields to be obtained than originally intended by lowering the bath temperature or increasing the pumping power or both. This flexibility is only available if the pumping power is low to begin with. Scaling laws for the pumping requirement and stability margin as functions of operating current density, number of strands and such physical parameters as stabilizer resistivity and critical current density, have been proved. Numerical examples will be given for design of conductors intended for use in large toroidal fusion magnet systems.

  8. Design of force-cooled conductors for large fusion magnets

    International Nuclear Information System (INIS)

    Dresner, L.; Lue, J.W.

    1977-01-01

    Conductors cooled by supercritical helium in forced convection are under active consideration for large toroidal fusion magnets. One of the central problems in designing such force cooled conductors is to maintain an adequate stability margin while keeping the pumping power tolerably low. A method has been developed for minimizing the pumping power for fixed stability by optimally choosing the matrix-to-superconductor and the metal-to-helium ratios. Such optimized conductors reduce pumping power requirements for fusion size magnets to acceptable limits. Furthermore, the mass flow and hence pumping losses can be varied through a magnet according to the local magnetic field and magnitude of desired stability margin. Force cooled conductors give flexibility in operation, permitting, for example, higher fields to be obtained than originally intended by lowering the bath temperature or increasing the pumping power or both. This flexibility is only available if the pumping power is low to begin with. Scaling laws for the pumping requirement and stability margin as functions of operating current density, number of strands and such physical parameters as stabilizer resistivity and critical current density, have been proved. Numerical examples will be given for design of conductors intended for use in large toroidal fusion magnet systems

  9. Construction and testing of the Mirror Fusion Test Facility magnets

    International Nuclear Information System (INIS)

    Kozman, T.; Shimer, D.; VanSant, J.; Zbasnik, J.

    1986-08-01

    This paper describes the construction and testing of the Mirror Fusion Test Facility superconducting magnet set. Construction of the first Yin Yang magnet was started in 1978. And although this particular magnet was later modified, the final construction of these magnets was not completed until 1985. When completed these 42 magnets weighed over 1200 tonnes and had a maximum stored energy of approximately 1200 MJ at full field. Together with power supplies, controls and liquid nitrogen radiation shields the cost of the fabrication of this system was over $100M. General Dynamics/Convair Division was responsible for the system design and the fabrication of 20 of the magnets. This contract was the largest single procurement action at the Lawrence Livermore National Laboratory. During the PACE acceptance tests, the 26 major magnets were operated at full field for more than 24 hours while other MFTF subsystems were tested. From all of the data, the magnets operated to the performance specifications. For physics operation in the future, additional helium and nitrogen leak checking and repair will be necessary. In this report we will discuss the operation and testing of the MFTF Magnet System, the world's largest superconducting magnet set built to date. The topics covered include a schedule of the major events, summary of the fabrication work, summary of the installation work, summary of testing and test results, and lessons learned

  10. Particle diagnostics for magnetic fusion experiments

    International Nuclear Information System (INIS)

    Post, D.E.

    1983-01-01

    This chapter summarizes the subset of diagnostics that relies primarily on the use of particles, and attempts to show how atomic and molecular data play a role in these diagnostics. Discusses passive charge-exchange ion temperature measurements; hydrogen beams for density, ion temperature, q and ZEFF measurements; impurity diagnostics using charge-exchange recombination; plasma electric and magnetic measurements using beams heavier than hydrogen; and alpha particle diagnostics. Points out that as fusion experiments become larger and hotter, most traditional particle diagnostics become difficult because large plasmas are difficult for neutral atoms to penetrate and the gyro-orbits of charged particles need to be larger than typically obtained with present beams to be comparable with the plasma size. Concludes that not only does the current profile affect the plasma stability, but there is a growing opinion that any serious fusion reactor will have to be steady state

  11. Magnet design considerations for Tokamak fusion reactors

    International Nuclear Information System (INIS)

    Purcell, J.R.; Chen, W.; Thomas, R.

    1976-01-01

    Design problems for superconducting ohmic heating and toroidal field coils for large Tokamak fusion reactors are discussed. The necessity for making these coils superconducting is explained, together with the functions of these coils in a Tokamak reactor. Major problem areas include materials related aspects and mechanical design and cryogenic considerations. Projections and comparisons are made based on existing superconducting magnet technology. The mechanical design of large-scale coils, which can contain the severe electromagnetic loading and stress generated in the winding, are emphasized. Additional major tasks include the development of high current conductors for pulsed applications to be used in fabricating the ohmic heating coils. It is important to note, however, that no insurmountable technical barriers are expected in the course of developing superconducting coils for Tokamak fusion reactors. (Auth.)

  12. Magnetic Fusion Advisory Committee report on recommended fusion program priorities and strategy

    International Nuclear Information System (INIS)

    1983-09-01

    The Magnetic Fusion Advisory Committee recommends a new program strategy with the following principal features: (1) Initiation in FY86 of the Tokamak Fusion Core Experiment (TFCX), a moderate-cost tokamak reactor device (less than $1 B PACE) designed to achieve ignition and long-pulse equilibrium burn. Careful trade-off studies are needed before making key design choices in interrelated technology areas. Cost reductions relative to earlier plans can be realized by exploiting new plasma technology, by locating the TFCX at the TFTR site, and by assigning responsibility for complementary reactor engineering tasks to other sectors of the fusion program. (2) Potential utilization of the MFTF Upgrade to provide a cost-effective means for quasi-steady-state testing of blanket and power-system components, complementary to TFCX. This will depend on future assessments of the data base for tandem mirrors. (3) Vigorous pursuit of the broad US base program in magnetic confinement, including new machine starts, where appropriate, at approximately the present total level of support. (4) Utilization of Development and Technology programs in plasma and magnet technology in support of specific hardware requirements of the TFCX and of other major fusion facilities, so as to minimize overall program cost

  13. Cost Accounting System for fusion studies

    International Nuclear Information System (INIS)

    Hamilton, W.R.; Keeton, D.C.; Thomson, S.L.

    1985-12-01

    A Cost Accounting System that is applicable to all magnetic fusion reactor design studies has been developed. This system provides: (1) definitions of the elements of cost and methods for the combination of these elements to form a cost estimate; (2) a Code of Accounts that uses a functional arrangement for identification of the plant components; and (3) definitions and methods to analyze actual cost data so that the data can be directly reported into this Cost Accounting System. The purpose of the Cost Accounting System is to provide the structure for the development of a fusion cost data base and for the development of validated cost estimating procedures. This system has been developed through use at the Fusion Engineering Design Center (FEDC) and has been applied to different confinement concepts (tokamaks and tandem mirrors) and to different types of projects (experimental devices and commercial power plants). The use of this Cost Accounting System by all magnetic fusion projects will promote the development of a common cost data base, allow the direct comparison of cost estimates, and ultimately establish the cost credibility of the program

  14. Cost Accounting System for fusion studies

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, W.R.; Keeton, D.C.; Thomson, S.L.

    1985-12-01

    A Cost Accounting System that is applicable to all magnetic fusion reactor design studies has been developed. This system provides: (1) definitions of the elements of cost and methods for the combination of these elements to form a cost estimate; (2) a Code of Accounts that uses a functional arrangement for identification of the plant components; and (3) definitions and methods to analyze actual cost data so that the data can be directly reported into this Cost Accounting System. The purpose of the Cost Accounting System is to provide the structure for the development of a fusion cost data base and for the development of validated cost estimating procedures. This system has been developed through use at the Fusion Engineering Design Center (FEDC) and has been applied to different confinement concepts (tokamaks and tandem mirrors) and to different types of projects (experimental devices and commercial power plants). The use of this Cost Accounting System by all magnetic fusion projects will promote the development of a common cost data base, allow the direct comparison of cost estimates, and ultimately establish the cost credibility of the program.

  15. Effects of magnetization on fusion product trapping and secondary neutron spectra

    International Nuclear Information System (INIS)

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.

    2015-01-01

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/−0.06) MG · cm, a ∼ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux

  16. Personnel Safety for Future Magnetic Fusion Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee Cadwallader

    2009-07-01

    exposure value is ~1000 times the Earth’s magnetic field, but the Earth’s field is a very low value. Allowable static magnetic field exposure limits have remained constant over the recent past and would appear to remain constant for the foreseeable future. Some existing fusion experiments have suffered from RF energy leakage from waveguides, the typical practice to protect personnel is establishing personnel exclusion areas when systems are operating. RF exposure limits have remained fairly constant for overall body exposures, but have become more specific in the exposure frequency values. This paper describes the occupational limits for those types of exposure, how these exposures are managed, and also discusses the likelihood of more restrictive regulations being promulgated that will affect the design of future fusion power plants and safety of their personnel.

  17. Personnel Safety for Future Magnetic Fusion Power Plants

    International Nuclear Information System (INIS)

    Cadwallader, Lee

    2009-01-01

    exposure value is ∼1000 times the Earth's magnetic field, but the Earth's field is a very low value. Allowable static magnetic field exposure limits have remained constant over the recent past and would appear to remain constant for the foreseeable future. Some existing fusion experiments have suffered from RF energy leakage from waveguides, the typical practice to protect personnel is establishing personnel exclusion areas when systems are operating. RF exposure limits have remained fairly constant for overall body exposures, but have become more specific in the exposure frequency values. This paper describes the occupational limits for those types of exposure, how these exposures are managed, and also discusses the likelihood of more restrictive regulations being promulgated that will affect the design of future fusion power plants and safety of their personnel

  18. Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns

    Science.gov (United States)

    Griffin, Steven T.

    2003-01-01

    To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.

  19. Magnetized Target Fusion (MTF): A Low-Cost Fusion Development Path

    International Nuclear Information System (INIS)

    Lindemuth, I.R.; Siemon, R.E.; Kirkpatrick, R.C.; Reinovsky, R.E.

    1998-01-01

    Simple transport-based scaling laws are derived to show that a density and time regime intermediate between conventional magnetic confinement and conventional inertial confinement offers attractive reductions in system size and energy when compared to magnetic confinement and attractive reductions in heating power and intensity when compared to inertial confinement. This intermediate parameter space appears to be readily accessible by existing and near term pulsed power technologies. Hence, the technology of the Megagauss conference opens up an attractive path to controlled thermonuclear fusion

  20. Magnetic field coil in nuclear fusion device

    International Nuclear Information System (INIS)

    Yamaguchi, Mitsugi; Takano, Hirohisa.

    1975-01-01

    Object: To provide an electrical-insulatively stabilized magnetic field coil in nuclear fusion device, restraining an increase in voltage when plasma current is rapidly changed. Structure: A magnetic field coil comprises coils arranged coaxial with respective vacuum vessels, said coils being wound in positive and reverse polarities so as to form a vertical magnetic field within the plasma. The coils of the positive polarity are arranged along the vacuum vessel inside of an axis vertical in section of the annular plasma and are arranged symmetrically up and down of a horizontal axis. On the other hand, the coils of the reverse polarity are arranged along the vacuum vessel outside of a vertical axis and arranged symmetrically up and down of the horizontal axis. These positive and reverse polarity coils are alternately connected in series, and lead portions of the coils are connected to a power source by means of connecting wires. In this case, lead positions of the coils are arranged in one direction, and the connecting wires are disposed in closely contact relation to offset magnetic fields formed by the connecting wires each other. (Kawakami, Y.)

  1. High magnetic field induced otolith fusion in the zebrafish larvae.

    Science.gov (United States)

    Pais-Roldán, Patricia; Singh, Ajeet Pratap; Schulz, Hildegard; Yu, Xin

    2016-04-11

    Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an "all-or-none" manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish.

  2. High density, high magnetic field concepts for compact fusion reactors

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1996-01-01

    One rather discouraging feature of our conventional approaches to fusion energy is that they do not appear to lend themselves to a small reactor for developmental purposes. This is in contrast with the normal evolution of a new technology which typically proceeds to a full scale commercial plant via a set of graduated steps. Accordingly' several concepts concerned with dense plasma fusion systems are being studied theoretically and experimentally. A common aspect is that they employ: (a) high to very high plasma densities (∼10 16 cm -3 to ∼10 26 cm -3 ) and (b) magnetic fields. If they could be shown to be viable at high fusion Q, they could conceivably lead to compact and inexpensive commercial reactors. At least, their compactness suggests that both proof of principle experiments and development costs will be relatively inexpensive compared with the present conventional approaches. In this paper, the following concepts are considered: (1) The staged Z-pinch, (2) Liner implosion of closed-field-line configurations, (3) Magnetic ''fast'' ignition of inertial fusion targets, (4) The continuous flow Z-pinch

  3. LLL magnetic fusion research: the first 25 years

    International Nuclear Information System (INIS)

    Post, R.F.

    1978-01-01

    From its inception, the Laboratory has supported research directed at tapping controlled fusion. Our magnetic fusion energy program--now one of the major elements of the national fusion energy research effort--dates back to the Laboratory's founding in 1952. This article reviews the program's beginnings, progress, and present status in terms of its ultimate goal: to demonstrate a practical and economical means of generating power from controlled fusion reactions

  4. Fusion Energy Advisory Committee report on program strategy for US magnetic fusion energy research

    International Nuclear Information System (INIS)

    Conn, R.W.; Berkner, K.H.; Culler, F.L.; Davidson, R.C.; Dreyfus, D.A.; Holdren, J.P.; McCrory, R.L.; Parker, R.R.; Rosenbluth, M.N.; Siemon, R.E.; Staudhammer, P.; Weitzner, H.

    1992-09-01

    The Fusion Energy Advisory Committee (FEAC) was charged by the Department of Energy (DOE) with developing recommendations on how best to pursue the goal of a practical magnetic fusion reactor in the context of several budget scenarios covering the period FY 1994-FY 1998. Four budget scenarios were examined, each anchored to the FY 1993 figure of $337.9 million for fusion energy (less $9 million for inertial fusion energy which is not examined here)

  5. Role of supercomputers in magnetic fusion and energy research programs

    International Nuclear Information System (INIS)

    Killeen, J.

    1985-06-01

    The importance of computer modeling in magnetic fusion (MFE) and energy research (ER) programs is discussed. The need for the most advanced supercomputers is described, and the role of the National Magnetic Fusion Energy Computer Center in meeting these needs is explained

  6. Physics of mirror fusion systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1976-01-01

    Recent experimental results with the 2XIIB mirror machine at Lawrence Livermore Laboratory have demonstrated the stable confinement of plasmas at fusion temperatures and with energy densities equaling or exceeding that of the confining fields. The physics of mirror confinement is discussed in the context of these new results. Some possible approaches to further improving the confinement properties of mirror systems and the impact of these new approaches on the prospects for mirror fusion reactors are discussed

  7. Nuclear fusion system

    International Nuclear Information System (INIS)

    Dow, W.G.

    1981-01-01

    The invention pertains to the method and apparatus for the confining of a stream of fusible positive ions at values of density and high average kinetic energy, primarily of tightly looping motions, to produce nuclear fusion at a useful rate; more or less intimately mixed with the fusible ions will be lowerenergy electrons at about equal density, introduced solely for the purpose of neutralizing the positive space charge of the ions

  8. Thermochemical hydrogen production based on magnetic fusion

    International Nuclear Information System (INIS)

    Krikorian, O.H.; Brown, L.C.

    1982-01-01

    Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO 3 decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars

  9. Safety concerns for superconducting magnets of upcoming fusion experiments

    International Nuclear Information System (INIS)

    Turner, L.R.

    1983-01-01

    -Several fusion experiments being constructed (Tore Supra) or contemplated (DCT 8, Alcator DCT) feature superconducting coils. These coils introduce the following safety concerns: 1. Internally Cooled Conductor (ICC). ICC's are found to be highly stable against short heat pulses, even when the coolant is stagnant or moving at low steady-state velocity. However, a large heat pulse is certain to quench the conductor. Thus, determining the stability limits is vital. 2. Helium II Cooling. Helium II has both unique advantages as a coolant and unique safety problems. 3. Shorted Turns. In magnets with shorts from operational accidents, the current can switch back and forth between the short and the shorted turns, as those alternatively go normal and superconducting. 4. Hybrid Superconducting-Normal Conducting Coil System. The possibility of unequal currents in the different magnets and thus of unexpected forces on the superconducting magnets is much greater than for an all-superconducting system. Analysis of these problems are presented

  10. Magnetized Target Fusion Driven by Plasma Liners

    Science.gov (United States)

    Thio, Y. C. Francis; Cassibry, Jason; Eskridge, Richard; Kirkpatrick, Ronald C.; Knapp, Charles E.; Lee, Michael; Martin, Adam; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    For practical applications of magnetized target fusion, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Quasi-spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a quasi-spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). Theoretical analysis and computer modeling of the concept are presented. It is shown that, with the appropriate choice of the flow parameters in the liner and the target, the impact between the liner and the target plasma can be made to be shockless in the liner or to generate at most a very weak shock in the liner. Additional information is contained in the original extended abstract.

  11. Magnetic confinement fusion plasma theory, Task 1

    International Nuclear Information System (INIS)

    Callen, J.D.

    1991-07-01

    The research performed under this grant during the current year has concentrated on a few key tokamak plasma confinement and heating theory issues: extensive development of a new Chapman-Enskog-like fluid/kinetic hybrid approach to deriving rigorously valid fluid moment equations; applications (neoclassical viscous force, instabilities in the banana-plateau collisionality regime, nonlinear gyroviscous force, unified plasma microinstability equations and their implications, semi-collisional presheath modeling, etc.) of this new formalism; interactions of fluctuating bootstrap-current-driven magnetic islands; determination of net transport processes and equations for a tokamak; and some other topics (extracting more information from heat-pulse-propagation data, modeling of BES fluctuation data, exploring sawtooth effects on energy confinement in DIII-D, divertor X-point modeling). Recent progress and publications in these areas, and in the management of the local NERSC node and fusion theory DECstation 5000 at UW-Madison are summarized briefly in this report

  12. General principles of magnetic fusion confinement

    International Nuclear Information System (INIS)

    Hogan, J.T.

    1980-01-01

    A few of the areas are described in which there is close interaction between atomic/molecular (A and M) and magnetic fusion physics. The comparisons between predictions of neoclassical transport theory and experiment depend on knowledge of ionization and recombination rate coefficients. Modeling of divertor/scrapeoff plasmas requires better low energy charge exchange cross sections for H + A/sup n+/ collisions. The range of validity of neutral beam trapping cross sections must be broadened, both to encompass the energies typical of present injection experiments and to deal with the problem of prompt trapping of highly excited beam atoms at high energy. Plasma fueling models present certain anomalies that could be resolved by calculation and measurement of low energy (<1 keV) charge exchange cross sections

  13. Mirror fusion test facility plasma diagnostics system

    International Nuclear Information System (INIS)

    Thomas, S.R. Jr.; Coffield, F.E.; Davis, G.E.; Felker, B.

    1979-01-01

    During the past 25 years, experiments with several magnetic mirror machines were performed as part of the Magnetic Fusion Energy (MFE) Program at LLL. The latest MFE experiment, the Mirror Fusion Test Facility (MFTF), builds on the advances of earlier machines in initiating, stabilizing, heating, and sustaining plasmas formed with deuterium. The goals of this machine are to increase ion and electron temperatures and show a corresponding increase in containment time, to test theoretical scaling laws of plasma instabilities with increased physical dimensions, and to sustain high-beta plasmas for times that are long compared to the energy containment time. This paper describes the diagnostic system being developed to characterize these plasma parameters

  14. Magnetic field considerations in fusion power plant environs

    International Nuclear Information System (INIS)

    Liemohn, H.B.; Lessor, D.L.; Duane, B.H.

    1976-09-01

    A summary of magnetic field production mechanisms and effects is given. Discussions are included on the following areas: (1) stray magnetic and electric fields from tokamaks, (2) methods for reducing magnetic fields, (3) economics of magnetic field reductions, (4) forces on magnetizable objects near magnetic confinement fusion reactors, (5) electric field transients in tokamaks, (6) attenuation and decay of electromagnetic fields, and (7) magnetic field transients from tokamak malfunctions

  15. Tritium accountancy in fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S. [Savannah River National Laboratory, Aiken, SC (United States); Moore, M.L. [Savannah River Nuclear Solutions, Aiken, SC (United States)

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  16. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server

    AUTHOR|(CDS)2078397

    2013-01-01

    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  17. Compact magnetic confinement fusion: Spherical torus and compact torus

    Directory of Open Access Journals (Sweden)

    Zhe Gao

    2016-05-01

    Full Text Available The spherical torus (ST and compact torus (CT are two kinds of alternative magnetic confinement fusion concepts with compact geometry. The ST is actually a sub-category of tokamak with a low aspect ratio; while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch. The ST and CT have potential advantages for ultimate fusion reactor; while at present they can also provide unique fusion science and technology contributions for mainstream fusion research. However, some critical scientific and technology issues should be extensively investigated.

  18. The Broader Spectrum of Magnetic Configurations for Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prager, S C [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Ryutov, D D [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-09-15

    Over the decades, a large array of magnetic configurations has been studied, producing a huge amount of fusion plasma science. As configurations are developed, information and techniques learned through one configuration influence the development of other configurations. In this way, configurations evolve unexpectedly in response to new information. Configurations that were at a pause can become unstuck by new discoveries, and configurations that appeared promising for fusion energy can become unattractive as new limits are uncovered. The plasma science of fusion energy is sufficiently complex that, as we approach ever closer to practical fusion power, the need for potential contributions of broad research of multiple magnetic configurations remains strong. (author)

  19. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb$_{3}$Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  20. Large Superconducting Magnet Systems

    Energy Technology Data Exchange (ETDEWEB)

    Védrine, P [Saclay (France)

    2014-07-01

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  1. Fusion reactor systems studies

    International Nuclear Information System (INIS)

    1993-01-01

    Fusion Technology Institute personnel actively participated in the ARIES/PULSAR project during the present contract period. Numerous presentations were made at PULSAR project meetings, major contributions were written for the ARIES-II/IV Final Report presentations and papers were given at technical conferences contributions were written for the ARIES Lessons Learned report and a very large number of electronic-mail and regular-mail communications were sent. The remaining sections of this progress report win summarize the work accomplished and in progress for the PULSAR project during the contract period. The main areas of effort are: PULSAR Research; ARIES-II/IV Report Contributions; ARIES Lessons Learned Report Contributions; and Stellarator Study

  2. Status of tritium technology development for magnetic-fusion energy

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1983-01-01

    The development of tritium technology for the magnetic fusion energy program has progressed at a rapid rate over the past two years. The focal points for this development in the United States have been the Tritium Systems Test Assembly at Los Alamos and the FED/INTOR studies supported by the Fusion Engineering Design Center at Oak Ridge. In Canada the Canadian Fusion Fuel Technology Project has been initiated and promises to make significant contributions to the tritium technology program in the next few years. The Japanese government has now approved funding for the Tritium Processing Laboratory at the Japan Atomic Energy Research Institute's Tokai Research Establishment. Construction on this new facility is scheduled to begin in April 1983. This facility will be the center for fusion tritium technology development in Japan. The European Community is currently working on the design of the tritium facility for the Joint European Torus. There is considerable interaction between all of these programs, thus accelerating the overall development of this crucial technology

  3. The role of alpha particles in magnetically confined fusion plasmas

    International Nuclear Information System (INIS)

    Lisak, M.; Wilhelmsson, H.

    1986-01-01

    Recent progress in the confinement of hot plasmas in magnetic fusion experiments throughout the world has intensified interest and research in the physics of D-T burning plasmas especially in the wide range of unresolved theoretical as well as experimental questions associated with the role of alpha particles in such devices. In order to review the state-of-the- art in this field, and to identify new issues and problems for further research, the Symposium on the Role of Alpha Particles in Magnetically Confined Fusion Plasmas was held from 24 to 26 June 1986 at Aspenaesgaarden near Goeteborg, Sweden. About 25 leading experts from nine countries attended the Symposium and gave invited talks. The major part of the programme was devoted to alpha-particle effects in tokamaks but some aspects of open systems were also discussed. The possibilities of obtaining ignition in JET and TFTR as well as physics issues for the compact ignition experiments were considered in particular. A special session was devoted to the diagnostics of alpha particles and other fusion products. In this report are summarised some of the highlights of the symposium. (authors)

  4. Radiation resistant organic composites for superconducting fusion magnets

    International Nuclear Information System (INIS)

    Nishijima, S.; Okada, T.

    1993-01-01

    Organic composite materials (usually reinforced by glas fibers: GFRP) are to be used in fusion superconducting magnets as insulating and/or structural materials. The fusion superconducting magnets are operated under radiation environments and hence the radiation induced degradation of magnet components is ought to be estimated. Among the components the organic composite materials were evaluated to be the most radiation sensitive. Consequently the development of radiation resistant organic composite materials is thought one of the 'key' technologies for fusion superconducting magnets. The mechanism of radiation-induced degradation was studied and the degradation of interlaminar shear strength (ILSS) was found to be the intrinsic phenomenon which controlled the overall degradation of organic composite materials. The degradation of ILSS was studied changing matrix resin, reinforcement and type of fabrics. The possible combination of the organic composites for the fusion superconducting magnet will be discussed. (orig.)

  5. Strategy and progress in the US magnetic fusion program

    International Nuclear Information System (INIS)

    Kintner, E.E.

    1982-01-01

    The US implements the world's most extensive fusion research program. Most of this activity is concentrated on the Tokamak system (one third of the total budget, not including heating and technology). A large machine, TFTR, is to be started up in 1982. This is to be followed by tritium operation. A machine of the JET follow-on generation, FED, is in the definition phase. In the sector of magnetic confinement, the tandem mirror machine is the most important alternative. Twenty percent of the whole budget is spent on this item. Major programs are under way in the fields of heating and technology, which total some 12% of the whole budget. (orig.) [de

  6. Magnetic fusion energy and computers: the role of computing in magnetic fusion energy research and development

    International Nuclear Information System (INIS)

    1979-10-01

    This report examines the role of computing in the Department of Energy magnetic confinement fusion program. The present status of the MFECC and its associated network is described. The third part of this report examines the role of computer models in the main elements of the fusion program and discusses their dependence on the most advanced scientific computers. A review of requirements at the National MFE Computer Center was conducted in the spring of 1976. The results of this review led to the procurement of the CRAY 1, the most advanced scientific computer available, in the spring of 1978. The utilization of this computer in the MFE program has been very successful and is also described in the third part of the report. A new study of computer requirements for the MFE program was conducted during the spring of 1979 and the results of this analysis are presented in the forth part of this report

  7. Preliminary analysis of patent trends for magnetic fusion technology

    International Nuclear Information System (INIS)

    Levine, L.O.; Ashton, W.B.; Campbell, R.S.

    1984-02-01

    This study presents a preliminary analysis of development trends in magnetic fusion technology based on data from US patents. The research is limited to identification and description of general patent activity and ownership characteristics for 373 patents. The results suggest that more detailed studies of fusion patents could provide useful R and D planning information

  8. Axial magnetic field injection in magnetized liner inertial fusion

    Science.gov (United States)

    Gourdain, P.-A.; Adams, M. B.; Davies, J. R.; Seyler, C. E.

    2017-10-01

    MagLIF is a fusion concept using a Z-pinch implosion to reach thermonuclear fusion. In current experiments, the implosion is driven by the Z-machine using 19 MA of electrical current with a rise time of 100 ns. MagLIF requires an initial axial magnetic field of 30 T to reduce heat losses to the liner wall during compression and to confine alpha particles during fusion burn. This field is generated well before the current ramp starts and needs to penetrate the transmission lines of the pulsed-power generator, as well as the liner itself. Consequently, the axial field rise time must exceed hundreds of microseconds. Any coil capable of being submitted to such a field for that length of time is inevitably bulky. The space required to fit the coil near the liner, increases the inductance of the load. In turn, the total current delivered to the load decreases since the voltage is limited by driver design. Yet, the large amount of current provided by the Z-machine can be used to produce the required 30 T field by tilting the return current posts surrounding the liner, eliminating the need for a separate coil. However, the problem now is the field penetration time, across the liner wall. This paper discusses why skin effect arguments do not hold in the presence of resistivity gradients. Numerical simulations show that fields larger than 30 T can diffuse across the liner wall in less than 60 ns, demonstrating that external coils can be replaced by return current posts with optimal helicity.

  9. Superconducting magnets for toroidal fusion reactors

    International Nuclear Information System (INIS)

    Haubenreich, P.N.

    1980-01-01

    Fusion reactors will soon be employing superconducting magnets to confine plasma in which deuterium and tritium (D-T) are fused to produce usable energy. At present there is one small confinement experiment with superconducting toroidal field (TF) coils: Tokamak 7 (T-7), in the USSR, which operates at 4 T. By 1983, six different 2.5 x 3.5-m D-shaped coils from six manufacturers in four countries will be assembled in a toroidal array in the Large Coil Test Facility (LCTF) at Oak Ridge National Laboratory (ORNL) for testing at fields up to 8 T. Soon afterwards ELMO Bumpy Torus (EBT-P) will begin operation at Oak Ridge with superconducting TF coils. At the same time there will be tokamaks with superconducting TF coils 2 to 3 m in diameter in the USSR and France. Toroidal field strength in these machines will range from 6 to 9 T. NbTi and Nb 3 Sn, bath cooling and forced flow, cryostable and metastable - various designs are being tried in this period when this new application of superconductivity is growing and maturing

  10. Fusion energy in an inertial electrostatic confinement device using a magnetically shielded grid

    Energy Technology Data Exchange (ETDEWEB)

    Hedditch, John, E-mail: john.hedditch@sydney.edu.au; Bowden-Reid, Richard, E-mail: rbow3948@physics.usyd.edu.au; Khachan, Joe, E-mail: joe.khachan@sydney.edu.au [School of Physics, The University of Sydney, Sydney, New South Whales 2006 (Australia)

    2015-10-15

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented, which shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales. The proposed device has the unusual property that it can avoid both the cusp losses of traditional magnetic fusion systems and the grid losses of traditional IEC configurations.

  11. Cable-in-conduit conductor optimization for fusion magnet applications

    International Nuclear Information System (INIS)

    Miller, J.R.; Kerns, J.A.

    1987-01-01

    Careful design of the toroidal-field (TF) and poloidal-field (PF) coils in a tokamak machine using cable-in-conduit conductors (CICC) can result in quite high overall winding-pack current densities - even with the high nuclear heat loads that may be imposed in operating a fusion reactor - and thereby help reduce the overall machine size. In our design process, we systematically examined the operational environment of a magnet, e.g., mechanical stresses, current, field, heat load, coolant temperature, and cooldown stresses, to determine the optimum amounts of copper, superconductor, helium, and sheath material for the CICC. This process is being used to design the superconducting magnet systems that comprise the Tokamak Ignition/Burn Experimental Reactor (TIBER II). 13 refs., 2 figs

  12. Trends and developments in magnetic confinement fusion reactor concepts

    International Nuclear Information System (INIS)

    Baker, C.C.; Carlson, G.A.; Krakowski, R.A.

    1981-01-01

    An overview is presented of recent design trends and developments in reactor concepts for magnetic confinement fusion. The paper emphasizes the engineering and technology considerations of commercial fusion reactor concepts. Emphasis is placed on reactors that operate on the deuterium/tritium/lithium fuel cycle. Recent developments in tokamak, mirror, and Elmo Bumpy Torus reactor concepts are described, as well as a survey of recent developments on a wide variety of alternate magnetic fusion reactor concepts. The paper emphasizes recent developments of these concepts within the last two to three years

  13. Safety of magnetic fusion facilities: Volume 2, Guidance

    International Nuclear Information System (INIS)

    1995-01-01

    This document provides guidance for the implementation of the requirements identified in Vol. 1 of this Standard. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While Vol. 1 is generally applicable in that requirements there apply to a wide range of fusion facilities, this volume is concerned mainly with large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This volume is oriented toward regulation in the Department of Energy (DOE) environment

  14. Radio frequency system for nuclear fusion

    International Nuclear Information System (INIS)

    Kozeki, Shoichiro; Sagawa, Norimoto; Takizawa, Teruhiro

    1987-01-01

    The importance of radio frequency waves has been increasing in the area of nuclear fusion since they are indispensable for heating of plasma, etc. This report outlines radio frequency techniques used for nuclear fusion and describes the development of radio frequency systems (radio frequency plasma heating system and current drive system). Presently, in-depth studies are underway at various research institutes to achieve plasma heating by injection of radio frequency electric power. Three ranges of frequencies, ICRF (ion cyclotron range of frequency), LHRF (lower hybrid range of frequency) and ECRF (electron cyclotron range of frequency), are considered promissing for radio frequency heating. Candidate waves for plasma current driving include ECW (electron cyclotron wave), LHW (lower hybrid wave), MSW (magnetic sound wave), ICW (ion cyclotron wave) with minority component, and FW (fast wave). FW is the greatest in terms of current drive efficiency. In general, a radio frequency system for nuclear fusion consists of a radio frequency power source, transmission/matching circuit component and plasma connection component. (Nogami, K.)

  15. Environmental and economic assessments of magnetic and inertial fusion energy reactors

    Science.gov (United States)

    Yamazaki, K.; Oishi, T.; Mori, K.

    2011-10-01

    Global warming due to rapid greenhouse gas (GHG) emissions is one of the present-day crucial problems, and fusion reactors are expected to be abundant electric power generation systems to reduce human GHG emission amounts. To search for an environmental-friendly and economical fusion reactor system, comparative system studies have been done for several magnetic fusion energy reactors, and have been extended to include inertial fusion energy reactors. We clarify new scaling formulae for the cost of electricity and GHG emission rate with respect to key design parameters, which might be helpful in making a strategy for fusion research development. Comparisons with other conventional electric power generation systems are carried out taking into account the introduction of GHG taxes and the application of the carbon dioxide capture and storage system to fossil power generators.

  16. Control of Internal Transport Barriers in Magnetically Confined Fusion Plasmas

    Science.gov (United States)

    Panta, Soma; Newman, David; Sanchez, Raul; Terry, Paul

    2016-10-01

    In magnetic confinement fusion devices the best performance often involves some sort of transport barriers to reduce the energy and particle flow from core to edge. Those barriers create gradients in the temperature and density profiles. If gradients in the profiles are too steep that can lead to instabilities and the system collapses. Control of these barriers is therefore an important challenge for fusion devices (burning plasmas). In this work we focus on the dynamics of internal transport barriers. Using a simple 7 field transport model, extensively used for barrier dynamics and control studies, we explore the use of RF heating to control the local gradients and therefore the growth rates and shearing rates for barrier initiation and control in self-heated fusion plasmas. Ion channel barriers can be formed in self-heated plasmas with some NBI heating but electron channel barriers are very sensitive. They can be formed in self-heated plasmas with additional auxiliary heating i.e. NBI and radio-frequency(RF). Using RF heating on both electrons and ions at proper locations, electron channel barriers along with ion channel barriers can be formed and removed demonstrating a control technique. Investigating the role of pellet injection in controlling the barriers is our next goal. Work supported by DOE Grant DE-FG02-04ER54741.

  17. Space propulsion by fusion in a magnetic dipole

    International Nuclear Information System (INIS)

    Teller, E.; Glass, A.J.; Fowler, T.K.; Hasegawa, A.; Santarius, J.F.

    1991-01-01

    The unique advantages of fusion rocket propulsion systems for distant missions are explored using the magnetic dipole configurations as an example. The dipole is found to have features well suited to space applications. Parameters are presented for a system producing a specific power of kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power performance than nuclear electric fission systems. Possibilities to further increase the specific power toward 10 kW/kg are discussed, as is an approach to implementing the concept through proof-testing on the moon. 20 refs., 14 figs., 2 tabs

  18. Magnetic fusion energy technology fellowship: Report on survey of institutional coordinators

    International Nuclear Information System (INIS)

    1993-02-01

    In 1980, the Magnetic Fusion Energy Technology (MFET) Fellowship program was established by the US Department of Energy, Office of Fusion Energy, to encourage outstanding students interested in fusion energy technology to continue their education at a qualified graduate school. The basic objective of the MFET Fellowship program is to ensure an adequate supply of scientists in this field by supporting graduate study, training, and research in magnetic fusion energy technology. The program also supports the broader objective of advancing fusion toward the realization of commercially viable energy systems through the research by MFET fellows. The MFET Fellowship program is administered by the Science/Engineering Education Division of Oak Ridge Institute for Science and Education. Guidance for program administration is provided by an academic advisory committee

  19. Comparative assessment of world research efforts on magnetic confinement fusion

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Rutherford, P.H.

    1990-02-01

    This report presents a comparative assessment of the world's four major research efforts on magnetic confinement fusion, including a comparison of the capabilities in the Soviet Union, the European Community (Western Europe), Japan, and the United States. A comparative evaluation is provided in six areas: tokamak confinement; alternate confinement approaches; plasma technology and engineering; and fusion computations. The panel members are involved actively in fusion-related research, and have extensive experience in previous assessments and reviews of the world's four major fusion programs. Although the world's four major fusion efforts are roughly comparable in overall capabilities, two conclusions of this report are inescapable. First, the Soviet fusion effort is presently the weakest of the four programs in most areas of the assessment. Second, if present trends continue, the United States, once unambiguously the world leader in fusion research, will soon lose its position of leadership to the West European and Japanese fusion programs. Indeed, before the middle 1990s, the upgraded large-tokamak facilities, JT-60U (Japan) and JET (Western Europe), are likely to explore plasma conditions and operating regimes well beyond the capabilities of the TFTR tokamak (United States). In addition, if present trends continue in the areas of fusion nuclear technology and materials, and plasma technology and materials, and plasma technology development, the capabilities of Japan and Western Europe in these areas (both with regard to test facilities and fusion-specific industrial capabilities) will surpass those of the United States by a substantial margin before the middle 1990s

  20. Experimental demonstration of ion extraction from magnetic thrust chamber for laser fusion rocket

    Science.gov (United States)

    Saito, Naoya; Yamamoto, Naoji; Morita, Taichi; Edamoto, Masafumi; Nakashima, Hideki; Fujioka, Shinsuke; Yogo, Akifumi; Nishimura, Hiroaki; Sunahara, Atsushi; Mori, Yoshitaka; Johzaki, Tomoyuki

    2018-05-01

    A magnetic thrust chamber is an important system of a laser fusion rocket, in which the plasma kinetic energy is converted into vehicle thrust by a magnetic field. To investigate the plasma extraction from the system, the ions in a plasma are diagnosed outside the system by charge collectors. The results clearly show that the ion extraction does not strongly depend on the magnetic field strength when the energy ratio of magnetic field to plasma is greater than 4.3, and the magnetic field pushes back the plasma to generate a thrust, as previously suggested by numerical simulation and experiments.

  1. Fusion Plasma Theory: Task 1, Magnetic confinement Fusion Plasma Theory

    International Nuclear Information System (INIS)

    Callen, J.D.

    1993-01-01

    The research performed under this grant during the current year has concentrated on few tokamak plasma confinement issues: applications of our new Chapman-Enskog-like approach for developing hybrid fluid/kinetic descriptions of tokamak plasmas; multi-faceted studies as part of our development of a new interacting island paradigm for the tokamak equilibrium'' and transport; investigations of the resolution power of BES and ECE diagnostics for measuring core plasma fluctuations; and studies of net transport in the presence of fluctuating surfaces. Recent progress and publications in these areas, and in the management of the NERSC node and the fusion theory workstations are summarized briefly in this report

  2. Microwave generation for magnetic fusion energy applications, Task A

    International Nuclear Information System (INIS)

    Antonsen, T.M. Jr.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Mayergoyz, I.D.; Singh, A.

    1990-05-01

    This report details progress over the past year in the research program ''Free Electron Lasers with Short Period Wigglers.'' The work is performed jointly by the laboratory for Plasma Research and the Electrical Engineering Department of the University of Maryland and is funded by the US Department of Energy Office of Fusion Energy. The goal of the work is the development of an electron cyclotron resonance heating (ECRH) scheme for magnetic fusion plasmas such as the Compact Ignition Tokamak (CIT). Our approach is the development of a free electron laser using a sheet electron beam and a short period wiggler magnet. The specific requirements for the heating method include 10 to 30 MW of average power with pulse durations of several seconds to CW at a frequency near 300 GHz (∼600 GHz) in the case of second harmonic (ECRH). Compatible with the experimental nature of the program, radiation frequency flexibility of 30% total bandwidth and 5% rapid dynamic (approx-lt 10 ms) bandwidth is desirable. As the source will eventually be applied to a reactor, priority is placed upon high system efficiency and reliability. Use of established technologies is encouraged where possible

  3. Space propulsion by fusion in a magnetic dipole

    International Nuclear Information System (INIS)

    Teller, E.; Glass, A.J.; Fowler, T.K.; Hasegawa, A.; Santarius, J.F.

    1991-01-01

    A conceptual design is discussed for a fusion rocket propulsion system based on the magnetic dipole configuration. The dipole is found to have features well suited to space applications. Example parameters are presented for a system producing a specific power of 1 kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power toward 10 kW/kg are discussed, as in an approach to implementing the concept through proof-testing on the moon. 21 refs., 14 figs., 2 tabs

  4. Fusion Yield Enhancement in Magnetized Laser-Driven Implosions

    International Nuclear Information System (INIS)

    Chang, P. Y.; Fiksel, G.; Hohenberger, M.; Knauer, J. P.; Marshall, F. J.; Betti, R.; Meyerhofer, D. D.; Seguin, F. H.; Petrasso, R. D.

    2011-01-01

    Enhancement of the ion temperature and fusion yield has been observed in magnetized laser-driven inertial confinement fusion implosions on the OMEGA Laser Facility. A spherical CH target with a 10 atm D 2 gas fill was imploded in a polar-drive configuration. A magnetic field of 80 kG was embedded in the target and was subsequently trapped and compressed by the imploding conductive plasma. As a result of the hot-spot magnetization, the electron radial heat losses were suppressed and the observed ion temperature and neutron yield were enhanced by 15% and 30%, respectively.

  5. Magnetic fusion development for global warming suppression

    International Nuclear Information System (INIS)

    Li Jiangang; Zhang Jie; Duan Xuru

    2010-01-01

    Energy shortage and environmental pollution are two critical issues for human beings in the 21st century. There is an urgent need for new sustainable energy to meet the fast growing demand for clean energy. Fusion is one of the few options which may be able to satisfy the requirement for large scale sustainable energy generation and global warming suppression and therefore must be developed as quickly as possible. Fusion research has been carried out for the past 50 years. It is too long to wait for another 50 years to generate electricity by fusion. A much more aggressive approach should be taken with international collaboration towards the early use of fusion energy to meet the urgent needs for energy and global warming suppression.

  6. On fusion driven systems (FDS) for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))

    2008-10-15

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  7. On fusion driven systems (FDS) for transmutation

    International Nuclear Information System (INIS)

    Aagren, O; Moiseenko, V.E.; Noack, K.

    2008-10-01

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  8. Magnet Systems

    Data.gov (United States)

    Federal Laboratory Consortium — Over the decades, Fermilab has been responsible for the design, construction, test and analysis of hundreds of conventional and superconducting accelerator magnets...

  9. Data acquisition systems for fusion devices

    International Nuclear Information System (INIS)

    Van Haren, P.C.; Oomens, N.A.

    1993-01-01

    During the last two decades, computerized data acquisition systems (DASs) have been applied at magnetic confinement fusion devices. Present-day data acquisition is done by means of distributed computer systems and transient recorders in CAMAC systems. The development of DASs has been technology driven; the emphasis has been on the development of computer hardware and system software. For future DASs, challenging problems are to be solved: The DASs have to be better optimized with respect to the needs of the users. Existing bottlenecks, such as CAMAC-computer coupling or pulse file merging, need to be eliminated. Continuous or long-pulse operation will require the introduction of event abstraction in DAS design. 59 refs., 4 figs., 1 tab

  10. Survey of particle codes in the Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    1977-12-01

    In the spring of 1976, the Fusion Plasma Theory Branch of the Division of Magnetic Fusion Energy conducted a survey of all the physics computer codes being supported at that time. The purpose of that survey was to allow DMFE to prepare a description of the codes for distribution to the plasma physics community. This document is the first of several planned and covers those types of codes which treat the plasma as a group of particles

  11. The status of the federal magnetic fusion program, or fusion in transition: from science to technology

    International Nuclear Information System (INIS)

    Kane, J.S.

    1983-01-01

    The current status of magnetic fusion is summarized. The science is in place; the application must be made. Government will have to underwrite the risk of the program, but the private sector must manage it. Government officials must be convinced fusion is in the interest of the taxpayer, private sector decision makers that it is commercial. Questions concerning reliability, availability, first cost, safety, environment, and sociology must be asked. Fusion energy is essentially inexhaustible, appears environmentally acceptable, and is one of a very short list of alternatives

  12. FIRE, A Next Step Option for Magnetic Fusion

    International Nuclear Information System (INIS)

    Meade, D.M.

    2002-01-01

    The next major frontier in magnetic fusion physics is to explore and understand the strong nonlinear coupling among confinement, MHD stability, self-heating, edge physics, and wave-particle interactions that is fundamental to fusion plasma behavior. The Fusion Ignition Research Experiment (FIRE) Design Study has been undertaken to define the lowest cost facility to attain, explore, understand, and optimize magnetically confined fusion-dominated plasmas. The FIRE is envisioned as an extension of the existing Advanced Tokamak Program that could lead to an attractive magnetic fusion reactor. The FIRE activities have focused on the physics and engineering assessment of a compact, high-field tokamak with the capability of achieving Q approximately equal to 10 in the ELMy H-mode for a duration of about 1.5 plasma current redistribution times (skin times) during an initial burning-plasma science phase, and the flexibility to add Advanced Tokamak hardware (e.g., lower-hybrid current drive) later. The configuration chosen for FIRE is similar to that of ARIES-RS, the U.S. Fusion Power Plant study utilizing an Advanced Tokamak reactor. The key ''Advanced Tokamak'' features are: strong plasma shaping, double-null pumping divertors, low toroidal field ripple ( 5) for a duration of 1 to 3 current redistribution times

  13. Magnetic and inertial fusion status and development plans

    International Nuclear Information System (INIS)

    Correll, D.; Storm, E.

    1987-01-01

    Controlled fusion, pursued by investigators in both the magnetic and inertial confinement research programs, continues to be a strong candidate as an intrinsically safe and virtually inexhaustible long-term energy source. We describe the status of magnetic and inertial confinement fusion in terms of the accomplishments made by the research programs for each concept. The improvement in plasma parameters (most frequently discussed in terms of the Tn tau product of ion temperature, T, density, n, and confinement time, tau) can be linked with the construction and operation of experimental facilities. The scientific progress exhibited by larger scale fusion experiments within the US, such as Princeton Plasma Physics Laboratory's Fusion Test Reactor for magnetic studies and Lawrence Livermore National Laboratory's Nova laser for inertial studies, has been optimized by the theoretical advances in plasma and computational physics. Both TFTR and Nova have exhibited ion temperatures in excess of 10 keV at confinement parameters of n tau near 10 13 cm -3 . sec. At slightly lower temperatures (near a few keV), the value of n tau has exceeded 10 14 cm -3 . sec in both devices. Near-term development plans in fusion research include experiments within the US, Europe, and Japan to improve the plasma performance to reach conditions where the rate of fusion energy production equals or exceeds the heating power incident upon the plasma. 9 refs., 7 figs

  14. Progress In Magnetized Target Fusion Driven by Plasma Liners

    Science.gov (United States)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; hide

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  15. Structural aspects of superconducting fusion magnets

    International Nuclear Information System (INIS)

    Reich, M.; Lehner, J.; Powell, J.

    1977-01-01

    Some methods for studying various static, dynamic, elastic-plastic, and fracture mechanics problems of superconducting magnets are described. Sample solutions are given for the UWMAK-I magnet. Finite element calculations were used

  16. Engineering computations at the national magnetic fusion energy computer center

    International Nuclear Information System (INIS)

    Murty, S.

    1983-01-01

    The National Magnetic Fusion Energy Computer Center (NMFECC) was established by the U.S. Department of Energy's Division of Magnetic Fusion Energy (MFE). The NMFECC headquarters is located at Lawrence Livermore National Laboratory. Its purpose is to apply large-scale computational technology and computing techniques to the problems of controlled thermonuclear research. In addition to providing cost effective computing services, the NMFECC also maintains a large collection of computer codes in mathematics, physics, and engineering that is shared by the entire MFE research community. This review provides a broad perspective of the NMFECC, and a list of available codes at the NMFECC for engineering computations is given

  17. Safety of superconducting fusion magnets: twelve problem areas

    International Nuclear Information System (INIS)

    Turner, L.R.

    1979-05-01

    Twelve problem areas of superconducting magnets for fusion reaction are described. These are: Quench Detection and Energy Dump, Stationary Normal Region of Conductor, Current Leads, Electrical Arcing, Electrical Shorts, Conductor Joints, Forces from Unequal Currents, Eddy Current Effects, Cryostat Rupture, Vacuum Failure, Fringing Field and Instrumentation for Safety. Each is described under the five categories: Identification and Definition, Possible Safety Effects, Current Practice, Adequacy of Current Practice for Fusion Magnets and Areas Requiring Further Analytical and Experimental Study. Priorities among these areas are suggested; application is made to the Large Coil Project at Oak Ridge National Laboratory

  18. Influence of Reinforcement Anisotropy on the Stress Distribution in Tension and Shear of a Fusion Magnet Insulation System

    Science.gov (United States)

    Humer, K.; Raff, S.; Prokopec, R.; Weber, H. W.

    2008-03-01

    A glass fiber reinforced plastic laminate, which consists of half-overlapped wrapped Kapton/R-glass-fiber reinforcing tapes vacuum-pressure impregnated in a cyanate ester/epoxy blend, is proposed as the insulation system for the ITER Toroidal Field coils. In order to assess its mechanical performance under the actual operating conditions, cryogenic (77 K) tensile and interlaminar shear tests were done after irradiation to the ITER design fluence of 1×1022 m-2 (E>0.1 MeV). The data were then used for a Finite Element Method (FEM) stress analysis. We find that the mechanical strength and the fracture behavior as well as the stress distribution and the failure criteria are strongly influenced by the winding direction and the wrapping technique of the reinforcing tapes.

  19. Feasibility study of a magnetic fusion production reactor

    Science.gov (United States)

    Moir, R. W.

    1986-12-01

    A magnetic fusion reactor can produce 10.8 kg of tritium at a fusion power of only 400 MW —an order of magnitude lower power than that of a fission production reactor. Alternatively, the same fusion reactor can produce 995 kg of plutonium. Either a tokamak or a tandem mirror production plant can be used for this purpose; the cost is estimated at about 1.4 billion (1982 dollars) in either case. (The direct costs are estimated at 1.1 billion.) The production cost is calculated to be 22,000/g for tritium and 260/g for plutonium of quite high purity (1%240Pu). Because of the lack of demonstrated technology, such a plant could not be constructed today without significant risk. However, good progress is being made in fusion technology and, although success in magnetic fusion science and engineering is hard to predict with assurance, it seems possible that the physics basis and much of the needed technology could be demonstrated in facilities now under construction. Most of the remaining technology could be demonstrated in the early 1990s in a fusion test reactor of a few tens of megawatts. If the Magnetic Fusion Energy Program constructs a fusion test reactor of approximately 400 MW of fusion power as a next step in fusion power development, such a facility could be used later as a production reactor in a spinoff application. A construction decision in the late 1980s could result in an operating production reactor in the late 1990s. A magnetic fusion production reactor (MFPR) has four potential advantages over a fission production reactor: (1) no fissile material input is needed; (2) no fissioning exists in the tritium mode and very low fissioning exists in the plutonium mode thus avoiding the meltdown hazard; (3) the cost will probably be lower because of the smaller thermal power required; (4) and no reprocessing plant is needed in the tritium mode. The MFPR also has two disadvantages: (1) it will be more costly to operate because it consumes rather than sells

  20. Magnetic and inertial confinement fusion - an overview

    International Nuclear Information System (INIS)

    Murtaza, G.

    1993-01-01

    This paper describes the status of ICF which output is given in terms of number of emitted neutrons and fusion energy as a function of the estimated input energy from the implosion driver. Results from the highest energy laser experiments are summarised. The theoretical targets and the proposed upgrades of NOVA, GEKKO and OMEGA are also shown. The promised ICF paradise will therefore be approached through a process of interpolation between two known extremes. The objectives of this experiment was to produce more than one MW of fusion power in a controlled way, to demonstrate the technology related to tritium usage tritium injection, its tracking, monitoring/recovery and to establish safe procedures for handling tritium in compliance with the regulatory requirements. (A.B)

  1. Assessment of contemporary mathematical methods for magnetic fusion research

    International Nuclear Information System (INIS)

    Treve, Y.M.

    1978-03-01

    The mathematical techniques reviewed have been selected on the basis of their relevance to at least four outstanding theoretical problems of magnetic fusion research, namely: (a) ion heating; (b) particle-wave interactions; (c) stability of magnetic surfaces in real tokamaks; and (d) strong plasma turbulence. These problems have a common feature: they all involve chaotic motions in spite of the perfectly deterministic nature of the mathematical models used for their description. In the first section devoted to Hamiltonian systems we briefly review the essentials of the Hamilton-Jacobi theory and discuss the Kolmogorov-Arnold-Moser theorem and its implications. In section 2 we review the difficulties of the problem of turbulence and present the Ruelle-Takens picture. An example of a dynamical system with a strange attractor is constructed and the Hopf bifurcation theory is discussed. Finally we review the properties of the Lorenz model for the convective instability of an atmospheric layer which is known to have a strange attractor for sufficiently high Rayleigh numbers

  2. Superconducting (radiation hardened) magnets for mirror fusion devices

    International Nuclear Information System (INIS)

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-01-01

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10 10 to 10 11 rads, while magnet stability must be retained after the copper has been exposed to fluence above 10 19 neutrons/cm 2

  3. Compression of magnetized target in the magneto-inertial fusion

    Science.gov (United States)

    Kuzenov, V. V.

    2017-12-01

    This paper presents a mathematical model, numerical method and results of the computer analysis of the compression process and the energy transfer in the target plasma, used in magneto-inertial fusion. The computer simulation of the compression process of magnetized cylindrical target by high-power laser pulse is presented.

  4. Safety of superconducting fusion magnets: twelve problem areas

    International Nuclear Information System (INIS)

    Turner, L.R.

    1979-01-01

    Twelve problem areas of superconducting magnets for fusion reaction are described. These are: quench detection and energy dump, stationary normal region of conductor, current leads, electrical arcing, electrical shorts, conductor joints, forces from unequal currents, eddy current effects, cryostat rupture, vacuum failure, fringing field and instrumentation for safety. Priorities among these areas are suggested

  5. Safety of superconducting fusion magnets: twelve problem areas

    International Nuclear Information System (INIS)

    Turner, L.R.

    1979-01-01

    Twelve problem areas of superconducting magnets for fusion reaction are described. These are: Quench Detection and Energy Dump, Stationary Normal Region of Conductor, Current Leads, Electrical Arcing, Electrical Shorts, Conductor Joints, Forces from Unequal Currents, Eddy Current Effects, Cryostat Rupture, Vacuum Failure, Fringing Field and Instrumentation for Safety. Priorities among these areas are suggested

  6. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    International Nuclear Information System (INIS)

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Hahn, K. D.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Ruiz, C. L.; Sinars, D. B.; Harding, E. C.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Smith, I. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Hess, M. H.

    2015-01-01

    The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 10 12 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm 3 . In these experiments, up to 5 × 10 10 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm 2 , this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 10 10 . An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source

  7. Tritium Aspects of Fueling and Exhaust Pumping in Magnetic Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, Larry R. [ORNL; Meitner, Steven J. [ORNL

    2017-04-01

    Magnetically confined fusion plasmas generate energy from deuterium-tritium (DT) fusion reactions that produce energetic 3.5 MeV alpha particles and 14 MeV neutrons. Since the DT fusion reaction rate is a strong function of plasma density, an efficient fueling source is needed to maintain high plasma density in such systems. Energetic ions in fusion plasmas are able to escape the confining magnetic fields at a much higher rate than the fusion reactions occur, thus dictating the fueling rate needed. These lost ions become neutralized and need to be pumped away as exhaust gas to be reinjected into the plasma as fuel atoms.The technology to fuel and pump fusion plasmas has to be inherently compatible with the tritium fuel. An ideal holistic solution would couple the pumping and fueling such that the pump exhaust is directly fed back into pellet formation without including impurity gases. This would greatly reduce the processing needs for the exhaust. Concepts to accomplish this are discussed along with the fueling and pumping needs for a DT fusion reactor.

  8. Development of innovative fuelling systems for fusion energy science

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.

    1996-01-01

    The development of innovative fueling systems in support of magnetic fusion energy, particularly the International Thermonuclear Experimental Reactor (ITER), is described. The ITER fuelling system will use a combination of deuterium-tritium (D-T) gas puffing and pellet injection to achieve and maintain ignited plasmas. This combination will provide a flexible fuelling source with D-T pellets penetrating beyond the separatrix to sustain the ignited fusion plasma and with deuterium-rich gas fuelling the edge region to meet divertor requirements in a process called isotopic fuelling. More advanced systems with potential for deeper penetration, such as multistage pellet guns and compact toroid injection, are also described

  9. Review of compact, alternate concepts for magnetic confinement fusion

    International Nuclear Information System (INIS)

    Nickerson, S.B.; Shmayda, W.T.; Dinner, P.J.; Gierszewski, P.

    1984-06-01

    This report documents a study of compact alternate magnetic confinement fusion experiments and conceptual reactor designs. The purpose of this study is to identify those devices with a potential to burn tritium in the near future. The bulk of the report is made up of a review of the following compact alternates: compact toroids, high power density tokamaks, linear magnetic systems, compact mirrors, reversed field pinches and some miscellaneous concepts. Bumpy toruses and stellarators were initially reviewed but were not pursued since no compact variations were found. Several of the concepts show promise of either burning tritium or evolving into tritium burning devices by the early 1990's: RIGGATRON, Ignitor, OHTE, Frascati Tokamak upgrade, several driven (low or negative net power) mirror experiments and several Reversed Field Pinch experiments that may begin operation around 1990. Of the above only the Frascati Tokamak Upgrade has had funds allocated. Also identified in this report are groups who may have tritium burning experiments in the mid to late 1990's. There is a discussion of the differences between the reviewed devices and the mainline tokamak experiments. This discussion forms the basis of recommendations for R and D aimed at the compact alternates and the applicability of the present CFFTP program to the needs of the compact alternates. These recommendations will be presented in a subsequent report

  10. Computational challenges in magnetic-confinement fusion physics

    Science.gov (United States)

    Fasoli, A.; Brunner, S.; Cooper, W. A.; Graves, J. P.; Ricci, P.; Sauter, O.; Villard, L.

    2016-05-01

    Magnetic-fusion plasmas are complex self-organized systems with an extremely wide range of spatial and temporal scales, from the electron-orbit scales (~10-11 s, ~ 10-5 m) to the diffusion time of electrical current through the plasma (~102 s) and the distance along the magnetic field between two solid surfaces in the region that determines the plasma-wall interactions (~100 m). The description of the individual phenomena and of the nonlinear coupling between them involves a hierarchy of models, which, when applied to realistic configurations, require the most advanced numerical techniques and algorithms and the use of state-of-the-art high-performance computers. The common thread of such models resides in the fact that the plasma components are at the same time sources of electromagnetic fields, via the charge and current densities that they generate, and subject to the action of electromagnetic fields. This leads to a wide variety of plasma modes of oscillations that resonate with the particle or fluid motion and makes the plasma dynamics much richer than that of conventional, neutral fluids.

  11. Microfabricated Ion Beam Drivers for Magnetized Target Fusion

    Science.gov (United States)

    Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas

    2015-11-01

    Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  12. The role of Z-pinches and related configurations in magnetized target fusion

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1997-01-01

    The use of a magnetic field within a fusion target is now known as Magnetized Target Fusion in the US and as MAGO (Magnitnoye Obzhatiye, or magnetic compression) in Russia. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (e.g., ICF), MTF involves two steps: (a) formation of a warm, magnetized, wall-confined plasma of intermediate density within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression and heating of the plasma by imploding the confining wall, or pusher. In many ways, MTF can be considered a marriage between the more mature MFE and ICF approaches, and this marriage potentially eliminates some of the hurdles encountered in the other approaches. When compared to ICF, MTF requires lower implosion velocity, lower initial density, significantly lower radial convergence, and larger targets, all of which lead to substantially reduced driver intensity, power, and symmetry requirements. When compared to MFE, MTF does not require a vacuum separating the plasma from the wall, and, in fact, complete magnetic confinement, even if possible, may not be desirable. The higher density of MTF and much shorter confinement times should make magnetized plasma formation a much less difficult step than in MFE. The substantially lower driver requirements and implosion velocity of MTF make z-pinch magnetically driven liners, magnetically imploded by existing modern pulsed power electrical current sources, a leading candidate for the target pusher of an MTF system

  13. Centralized supercomputer support for magnetic fusion energy research

    International Nuclear Information System (INIS)

    Fuss, D.; Tull, G.G.

    1984-01-01

    High-speed computers with large memories are vital to magnetic fusion energy research. Magnetohydrodynamic (MHD), transport, equilibrium, Vlasov, particle, and Fokker-Planck codes that model plasma behavior play an important role in designing experimental hardware and interpreting the resulting data, as well as in advancing plasma theory itself. The size, architecture, and software of supercomputers to run these codes are often the crucial constraints on the benefits such computational modeling can provide. Hence, vector computers such as the CRAY-1 offer a valuable research resource. To meet the computational needs of the fusion program, the National Magnetic Fusion Energy Computer Center (NMFECC) was established in 1974 at the Lawrence Livermore National Laboratory. Supercomputers at the central computing facility are linked to smaller computer centers at each of the major fusion laboratories by a satellite communication network. In addition to providing large-scale computing, the NMFECC environment stimulates collaboration and the sharing of computer codes and data among the many fusion researchers in a cost-effective manner

  14. Role of magnetic resonance urography in pediatric renal fusion anomalies

    International Nuclear Information System (INIS)

    Chan, Sherwin S.; Ntoulia, Aikaterini; Khrichenko, Dmitry; Back, Susan J.; Darge, Kassa; Tasian, Gregory E.; Dillman, Jonathan R.

    2017-01-01

    Renal fusion is on a spectrum of congenital abnormalities that occur due to disruption of the migration process of the embryonic kidneys from the pelvis to the retroperitoneal renal fossae. Clinically, renal fusion anomalies are often found incidentally and associated with increased risk for complications, such as urinary tract obstruction, infection and urolithiasis. These anomalies are most commonly imaged using ultrasound for anatomical definition and less frequently using renal scintigraphy to quantify differential renal function and assess urinary tract drainage. Functional magnetic resonance urography (fMRU) is an advanced imaging technique that combines the excellent soft-tissue contrast of conventional magnetic resonance (MR) images with the quantitative assessment based on contrast medium uptake and excretion kinetics to provide information on renal function and drainage. fMRU has been shown to be clinically useful in evaluating a number of urological conditions. A highly sensitive and radiation-free imaging modality, fMRU can provide detailed morphological and functional information that can facilitate conservative and/or surgical management of children with renal fusion anomalies. This paper reviews the embryological basis of the different types of renal fusion anomalies, their imaging appearances at fMRU, complications associated with fusion anomalies, and the important role of fMRU in diagnosing and managing children with these anomalies. (orig.)

  15. Role of magnetic resonance urography in pediatric renal fusion anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Sherwin S. [Children' s Mercy Hospital, Department of Radiology, Kansas City, MO (United States); Ntoulia, Aikaterini; Khrichenko, Dmitry [The Children' s Hospital of Philadelphia, Division of Body Imaging, Department of Radiology, Philadelphia, PA (United States); Back, Susan J.; Darge, Kassa [The Children' s Hospital of Philadelphia, Division of Body Imaging, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); Tasian, Gregory E. [University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); The Children' s Hospital of Philadelphia, Division of Urology, Department of Surgery, Philadelphia, PA (United States); Dillman, Jonathan R. [Cincinnati Children' s Hospital Medical Center, Division of Thoracoabdominal Imaging, Department of Radiology, Cincinnati, OH (United States)

    2017-12-15

    Renal fusion is on a spectrum of congenital abnormalities that occur due to disruption of the migration process of the embryonic kidneys from the pelvis to the retroperitoneal renal fossae. Clinically, renal fusion anomalies are often found incidentally and associated with increased risk for complications, such as urinary tract obstruction, infection and urolithiasis. These anomalies are most commonly imaged using ultrasound for anatomical definition and less frequently using renal scintigraphy to quantify differential renal function and assess urinary tract drainage. Functional magnetic resonance urography (fMRU) is an advanced imaging technique that combines the excellent soft-tissue contrast of conventional magnetic resonance (MR) images with the quantitative assessment based on contrast medium uptake and excretion kinetics to provide information on renal function and drainage. fMRU has been shown to be clinically useful in evaluating a number of urological conditions. A highly sensitive and radiation-free imaging modality, fMRU can provide detailed morphological and functional information that can facilitate conservative and/or surgical management of children with renal fusion anomalies. This paper reviews the embryological basis of the different types of renal fusion anomalies, their imaging appearances at fMRU, complications associated with fusion anomalies, and the important role of fMRU in diagnosing and managing children with these anomalies. (orig.)

  16. Overview of FAR-TECH's magnetic fusion energy research

    Science.gov (United States)

    Kim, Jin-Soo; Bogatu, I. N.; Galkin, S. A.; Spencer, J. Andrew; Svidzinski, V. A.; Zhao, L.

    2017-10-01

    FAR-TECH, Inc. has been working on magnetic fusion energy research over two-decades. During the years, we have developed unique approaches to help understanding the physics, and resolving issues in magnetic fusion energy. The specific areas of work have been in modeling RF waves in plasmas, MHD modeling and mode-identification, and nano-particle plasma jet and its application to disruption mitigation. Our research highlights in recent years will be presented with examples, specifically, developments of FullWave (Full Wave RF code), PMARS (Parallelized MARS code), and HEM (Hybrid ElectroMagnetic code). In addition, nano-particle plasma-jet (NPPJ) and its application for disruption mitigation will be presented. Work is supported by the U.S. DOE SBIR program.

  17. Vent rate of superconducting magnets during quench in the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.

    1979-01-01

    When a superconducting magnet goes normal, resistive heating in the conductor evaporates surrounding LHe, which must be vented. The nature and speed at which the magnet goes normal and He is vented are not subject to rigorous analysis. This paper presents vent data from an existing magnet. An approximate mathematical model is derived and fitted to the data to permit scaling of vent requirements to larger size magnets. The worst case models of the vent employed in Mirror Fusion Test Facility (MFTF) cryogenic system design are also presented

  18. Colliding beam fusion reactor space propulsion system

    International Nuclear Information System (INIS)

    Wessel, Frank J.; Binderbauer, Michl W.; Rostoker, Norman; Rahman, Hafiz Ur; O'Toole, Joseph

    2000-01-01

    We describe a space propulsion system based on the Colliding Beam Fusion Reactor (CBFR). The CBFR is a high-beta, field-reversed, magnetic configuration with ion energies in the range of hundreds of keV. Repetitively-pulsed ion beams sustain the plasma distribution and provide current drive. The confinement physics is based on the Vlasov-Maxwell equation, including a Fokker Planck collision operator and all sources and sinks for energy and particle flow. The mean azimuthal velocities and temperatures of the fuel ion species are equal and the plasma current is unneutralized by the electrons. The resulting distribution functions are thermal in a moving frame of reference. The ion gyro-orbit radius is comparable to the dimensions of the confinement system, hence classical transport of the particles and energy is expected and the device is scaleable. We have analyzed the design over a range of 10 6 -10 9 Watts of output power (0.15-150 Newtons thrust) with a specific impulse of, I sp ∼10 6 sec. A 50 MW propulsion system might involve the following parameters: 4-meters diameterx10-meters length, magnetic field ∼7 Tesla, ion beam current ∼10 A, and fuels of either D-He 3 ,P-B 11 ,P-Li 6 ,D-Li 6 , etc

  19. First-wall and blanket engineering development for magnetic-fusion reactors

    International Nuclear Information System (INIS)

    Baker, C.; Herman, H.; Maroni, V.; Turner, L.; Clemmer, R.; Finn, P.; Johnson, C.; Abdou, M.

    1981-01-01

    A number of programs in the USA concerned with materials and engineering development of the first wall and breeder blanket systems for magnetic-fusion power reactors are described. Argonne National Laboratory has the lead or coordinating role, with many major elements of the research and engineering tests carried out by a number of organizations including industry and other national laboratories

  20. Large magnetic coils for fusion technology

    International Nuclear Information System (INIS)

    Komarek, P.; Ulbricht, A.

    1989-01-01

    This paper reviews the current status of research in this field and outlines future tasks and experiments for the Next European Torus (NET). Research and development work accomplished so far permits generation and safe operation of magnetic fields up to 9 T by means of NbTi coils. Fields up to 11 T are feasible if the coils are cooled with superfluid helium at 1.8 K. The potential of the Nb 3 Sn coils promise achievement of magnetic fields between 12 and 13 T. (MM) [de

  1. High temperature superconductors for fusion magnets -influence of neutron irradiation

    International Nuclear Information System (INIS)

    Chudy, M.; Eisterer, M.; Weber, H. W.

    2010-01-01

    In this work authors present the results of study of influence of neutron irradiation of high temperature superconductors for fusion magnets. High temperature superconductors (type of YBCO (Yttrium-Barium-Copper-Oxygen)) are strong candidates to be applied in the next step of fusion devices. Defects induced by fast neutrons are effective pinning centres, which can significantly improve critical current densities and reduce J c anisotropy. Due to induced lattice disorder, T c is reduced. Requirements for ITER (DEMO) are partially achieved at 64 K.

  2. Evaluation of alternate magnetic fusion concepts, 1977

    International Nuclear Information System (INIS)

    1978-05-01

    The objective of this exercise was to evaluate all of the alternate concepts supported by DMFE with regard to: (1) confidence in the physics assumptions; (2) confidence in the development of the requisite technologies; and (3) the desirability of its pure fusion reactor configuration. A primary concern in developing the evaluation technique described in this section was the need to obtain a uniform, critical evaluation. Motivated by this concern, it was decided to have all of the concepts evaluated on the same basis or criteria and to have all concepts evaluated by the same group of experts. The evaluation criteria and procedures which were developed for this purpose are described. The concepts evaluated were the EBT, RFP, TORMAC, field reversing ion rings, linear theta pinch, laser heated solenoid, e-beam heated solenoid, multiple mirrors, fast linear reactor, LINUS, and SURMAC

  3. Ceramics for applications in fusion systems

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1979-01-01

    Six critical applications for ceramics in fusion systems are reviewed, and structural and electrical problem areas discussed. Fusion neutron radiation effects in ceramics are considered in relation to fission neutron studies. A number of candidate materials are proposed for further evaluation

  4. Magnetic stochasticity in magnetically confined fusion plasmas chaos of field lines and charged particle dynamics

    CERN Document Server

    Abdullaev, Sadrilla

    2014-01-01

    This is the first book to systematically consider the modern aspects of chaotic dynamics of magnetic field lines and charged particles in magnetically confined fusion plasmas.  The analytical models describing the generic features of equilibrium magnetic fields and  magnetic perturbations in modern fusion devices are presented. It describes mathematical and physical aspects of onset of chaos, generic properties of the structure of stochastic magnetic fields, transport of charged particles in tokamaks induced by magnetic perturbations, new aspects of particle turbulent transport, etc. The presentation is based on the classical and new unique mathematical tools of Hamiltonian dynamics, like the action--angle formalism, classical perturbation theory, canonical transformations of variables, symplectic mappings, the Poincaré-Melnikov integrals. They are extensively used for analytical studies as well as for numerical simulations of magnetic field lines, particle dynamics, their spatial structures and  statisti...

  5. History and status of magnetic fusion research; Evolution et statut des recherches sur la fusion controlee

    Energy Technology Data Exchange (ETDEWEB)

    Jacquinot, J. [CEA Saclay, Cabinet du Haut Commissaire, 91 - Gif-sur-Yvette (France)

    2008-02-15

    Ever since the understanding of the basic process which powers the stars has been elucidated, humanity has been dreaming to master controlled fusion for peaceful purposes. Controlled fusion in a steady state regime must use magnetic confinement of a gas (plasma) heated up to 150 millions degrees. Physics and technology involved in such a state are extremely complex and went through many up and down phases. Nevertheless, the overall progress has been spectacular and a significant amount of energy could be produced in a well controlled manner. On this basis, an international organisation of unprecedented magnitude involving 34 countries has started working in Cadarache for the construction of the ITER project. It aims at the scientific demonstration of controlled fusion at the level of 500 MW and a power gain of 10. (author)

  6. Superconducting magnet radiation limit considerations for fusion reactors

    International Nuclear Information System (INIS)

    Sawan, M.E.; Walstrom, P.L.

    1986-01-01

    The radiation limits for fusion reactor magnets have a direct impact on the cost of electricity. For example, reducing the inboard shield by 1 cm saves up to $3 million in the Tokamak Fusion Core Experiment cost. The magnet components most sensitive to radiation damage are the superconductor, stabilizer, and insulators. Nuclear heating in the magnet affects the design and also impacts the economic performance of the reactor through increased refrigeration costs. The radiation effects in the different components of the magnet are related, as all of them are determined by the flux level in the magnet. Hence, in efforts to push radiation limits, these effects should be considered simultaneously. Furthermore, the levels of radiation effects that correspond to the optimum nuclear heating determined from economic trade-off analysis will be useful in specifying the fluence, dose, and stabilization limit goals for the magnet development program. In this paper, we review the available irradiation data and assess the need for achieving higher irradiation levels

  7. Implications of NSTX lithium results for magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M., E-mail: mono@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Bell, M.G.; Bell, R.E.; Kaita, R.; Kugel, H.W.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Canik, J.M.; Diem, S. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Gerhardt, S.P.; Hosea, J.; Kaye, S.; Mansfield, D. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Menard, J.; Paul, S.F. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Raman, R. [University of Washington at Seattle, Seattle, WA (United States); Sabbagh, S.A. [Columbia University, New York, NY (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Soukhanovskii, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Taylor, G. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)

    2010-11-15

    Lithium wall coating techniques have been experimentally explored on National Spherical Torus Experiment (NSTX) for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to {approx}100 g of lithium onto the lower divertor plates between lithium re-loadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, edge localized mode (ELM) control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  8. Implications of NSTX Lithium Results for Magnetic Fusion Research

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Kaita, R.; Kugel, H.W.; LeBlanc, B.P.; Canik, J.M.; Diem, S.; Gerhardt, S.P.; Hosea, J.; Kaye, S.; Mansfield, D.; Maingi, R.; Menard, J.; Paul, S.F.; Raman, R.; Sabbagh, S.A.; Skinner, C.H.; Soukhanovskii, V.; Taylor, G.

    2010-01-01

    Lithium wall coating techniques have been experimentally explored on NSTX for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ∼ 100 g of lithium onto the lower divertor plates between lithium reloadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, ELM control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  9. Implications of NSTX lithium results for magnetic fusion research

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Kaita, R.; Kugel, H.W.; LeBlanc, B.P.; Canik, J.M.; Diem, S.; Gerhardt, S.P.; Hosea, J.; Kaye, S.; Mansfield, D.; Maingi, R.; Menard, J.; Paul, S.F.; Raman, R.; Sabbagh, S.A.; Skinner, C.H.; Soukhanovskii, V.; Taylor, G.

    2010-01-01

    Lithium wall coating techniques have been experimentally explored on National Spherical Torus Experiment (NSTX) for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ∼100 g of lithium onto the lower divertor plates between lithium re-loadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, edge localized mode (ELM) control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  10. Opimization of fusion-driven fissioning systems

    International Nuclear Information System (INIS)

    Chapin, D.L.; Mills, R.G.

    1976-01-01

    Potential advantages of hybrid or fusion/fission systems can be exploited in different ways. With selection of the 238 U-- 239 Pu fuel cycle, we show that the system has greatest value as a power producer. Numerical examples of relative revenue from power production vs. 239 Pu production are discussed, and possible plant characteristics described. The analysis tends to show that the hybrid may be more economically attractive than pure fusion systems

  11. Image fusion for dynamic contrast enhanced magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Leach Martin O

    2004-10-01

    Full Text Available Abstract Background Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. Methods In this paper, image fusion based on Kernel Principal Component Analysis (KPCA is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. Results The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. Conclusion Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation.

  12. The Swedish fusion research programme on magnetic confinement 1978

    International Nuclear Information System (INIS)

    Lehnert, B.

    1978-02-01

    A review is given on the activities and plans for research on plasma physics and controlled fusion at the Royal Institute of Technology in Stockholm, with descriptions and motivations of the research lines being conducted. These activities include investigations on plasma-neutral gas interaction, development of special principles for plasma stabilization, magnetic confinement schemes being based mainly on poloidal fields, as well as the generation, heating, and diagnostics of plasmas being ''impermeable'' to neutral gas. (author)

  13. Dynamic identification of plasma magnetic contour in fusion machines

    International Nuclear Information System (INIS)

    Bettini, P.; Trevisan, F.; Cavinato, M.

    2005-01-01

    The paper presents a method to identify the plasma magnetic contour in fusion machines, when eddy currents are present in the conducting structures surrounding the plasma. The approach presented is based on the integration of an electromagnetic model of the plasma with a lumped parameters model of the conducting structures around the plasma. This approach has been validated against experimental data from RFX, a reversed field pinch machine. (author)

  14. A semi-analytic model of magnetized liner inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Ryan D.; Slutz, Stephen A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2015-05-15

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.

  15. Fusion of Images from Dissimilar Sensor Systems

    National Research Council Canada - National Science Library

    Chow, Khin

    2004-01-01

    Different sensors exploit different regions of the electromagnetic spectrum; therefore a multi-sensor image fusion system can take full advantage of the complementary capabilities of individual sensors in the suit...

  16. Costs of magnets for large fusion power reactors: Phase I, cost of superconductors for dc magnets

    International Nuclear Information System (INIS)

    Powell, J.R.

    1972-01-01

    Projections are made for dc magnet conductor costs for large fusion power reactors. A mature fusion economy is assumed sometime after 2000 A. D. in which approximately 90,000 MW(e) of fusion reactors are constructed/year. State of the art critical current vs. field characteristics for superconductors are used in these projections. Present processing techniques are used as a basis for the design of large plants sized to produce approximately one-half of the conductor needed for the fusion magnets. Multifilamentary Nb-Ti, Pb-Bi in glass fiber, GE Nb 3 Sn tape, Linde plasma sprayed Nb 3 Sn tape, and V 3 Ga tape superconductors are investigated, together with high purity aluminum cryoconductor. Conductor costs include processing costs [capital (equipment plus buildings), labor, and operating] and materials costs. Conductor costs are compared for two sets of material costs: current (1971 A. D.) costs, and projected (after 2000 A. D.) costs. (U.S.)

  17. Design and cost evaluation of generic magnetic fusion reactor using the D-D fuel cycle

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1988-01-01

    A fusion reactor systems code has been developed to evaluate the economic potential of power generation from a toroidal magnetic fusion reactor using deuterium-deuterium (D-D) fuel. A method similar to that developed by J. Sheffield, of the Oak Ridge National Laboratory, for deuterium-tritium (D-T) fuel was used to model the generic aspects of magnetic fusion reactors. The results of the systems study and cost evaluation show that the cost of electricity produced by a D-D reactor is two times higher than that produced by an equivalent D-T reactor design. The significant finding of the study is that the cost ratio between the D-D and D-T systems can potentially be reduced to 1.5 by improved engineering design and even lower by better physics performance. The absolute costs for both systems at this level are close to the costs for nuclear fission and fossil fuel plants. A design for a magnet reinforced with advanced composite materials is presented as an example of an engineering improvement that could reduce the cost of electricity produced by both reactors. However, since the magnets in the D-D reactor are much larger than in the K-T reactor, the cost ratio of the two systems is significantly reduced

  18. Design of magnetic analysis system for magnetic proton recoil spectrometer

    International Nuclear Information System (INIS)

    Qi Jianmin; Jiang Shilun; Zhou Lin; Peng Taiping

    2010-01-01

    Magnetic proton recoil (MPR) spectrometer is a novel diagnostic instrument with high performance for measurements of the neutron spectra from inertial confinement fusion (ICF) experiments and high power fusion devices. The design of the magnetic analysis system, which is a key part of the compact MPR-type spectrometer, has been completed through two-dimensional beam transport simulations and three-dimensional particle transport simulation. The analysis of the system's parameters and performances was performed, as well as system designs based on preferential principles of energy resolution, detection efficiency, and count rate, respectively. The results indicate that the magnetic analysis system can achieve a detection efficiency of 10 -5 ∼ 10 -4 level at the resolution range of 1.5% to 3.0% and fulfill the design goals of the compact MPR spectrometer. (authors)

  19. Ventilation Systems Operating Experience Review for Fusion Applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1999-01-01

    This report is a collection and review of system operation and failure experiences for air ventilation systems in nuclear facilities. These experiences are applicable for magnetic and inertial fusion facilities since air ventilation systems are support systems that can be considered generic to nuclear facilities. The report contains descriptions of ventilation system components, operating experiences with these systems, component failure rates, and component repair times. Since ventilation systems have a role in mitigating accident releases in nuclear facilities, these data are useful in safety analysis and risk assessment of public safety. An effort has also been given to identifying any safety issues with personnel operating or maintaining ventilation systems. Finally, the recommended failure data were compared to an independent data set to determine the accuracy of individual values. This comparison is useful for the International Energy Agency task on fusion component failure rate data collection

  20. Parameter study toward economical magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Yoshida, Tomoaki; Okano, Kunihiko; Nanahara, Toshiya; Hatayama, Akiyoshi; Yamaji, Kenji; Takuma, Tadashi.

    1996-01-01

    Although the R and D of nuclear fusion reactors has made a steady progress as seen in ITER project, it has become of little doubt that fusion power reactors require hugeness and enormous amount of construction cost as well as surmounting the physics and engineering difficulties. Therefore, it is one of the essential issues to investigate the prospect of realizing fusion power reactors. In this report we investigated the effects of physics and engineering improvements on the economics of ITER-like steady state tokamak fusion reactors using our tokamak system and costing analysis code. With the results of this study, we considered what is the most significant factor for realizing economical competitive fusion reactors. The results show that with the conventional TF coil maximum field (12T), physics progress in β-value (or Troyon coefficient) has the most considerable effect on the reduction of fusion plant COE (Cost of Electricity) while the achievement of H factor = 2-3 and neutron wall load =∼5MW/m 2 is necessary. The results also show that with the improvement of TF coil maximum field, reactors with a high aspect ratio are economically advantageous because of low plasma current driving power while the improvement of current density in the conductors and yield strength of support structures is indispensable. (author)

  1. Summary of the report of the Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy

    International Nuclear Information System (INIS)

    Holdren, J.P.; Berwald, D.H.; Budnitz, R.J.

    1987-01-01

    The Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM) has assessed magnetic fusion energy's prospects for providing energy with economic, environmental, and safety characteristics that would be attractive compared with other energy sources (mainly fission) available in the year 2015 and beyond. ESECOM gives particular attention to the interaction of environmental, safety, and economic characteristics of a variety of magnetic fusion reactors, and compares them with a variety of fission cases. Eight fusion cases, two fusion-fission hybrid cases, and four fission cases are examined, using consistent economic and safety models. These models permit exploration of the environmental, safety, and economic potential of fusion concepts using a wide range of possible materials choices, power densities, power conversion schemes, and fuel cycles. The ESECOM analysis indicates that magnetic fusion energy systems have the potential to achieve costs-of-electricity comparable to those of present and future fission systems, coupled with significant safety and environmental advantages. 75 refs., 2 figs., 24 tabs

  2. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  3. Applications of high-speed dust injection to magnetic fusion

    International Nuclear Information System (INIS)

    Wang, Zhehui; Li, Yangfang

    2012-01-01

    It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance (∼ 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located ∼1mm above the hole has been used to set the magnitude of the flux achieved for a given voltage

  4. Computing for magnetic fusion energy research: An updated vision

    International Nuclear Information System (INIS)

    Henline, P.; Giarrusso, J.; Davis, S.; Casper, T.

    1993-01-01

    This Fusion Computing Council perspective is written to present the primary of the fusion computing community at the time of publication of the report necessarily as a summary of the information contained in the individual sections. These concerns reflect FCC discussions during final review of contributions from the various working groups and portray our latest information. This report itself should be considered as dynamic, requiring periodic updating in an attempt to track rapid evolution of the computer industry relevant to requirements for magnetic fusion research. The most significant common concern among the Fusion Computing Council working groups is networking capability. All groups see an increasing need for network services due to the use of workstations, distributed computing environments, increased use of graphic services, X-window usage, remote experimental collaborations, remote data access for specific projects and other collaborations. Other areas of concern include support for workstations, enhanced infrastructure to support collaborations, the User Service Centers, NERSC and future massively parallel computers, and FCC sponsored workshops

  5. Assessment of liquid hydrogen cooled MgB2 conductors for magnetically confined fusion

    International Nuclear Information System (INIS)

    Glowacki, B A; Nuttall, W J

    2008-01-01

    Importantly environmental factors are not the only policy-driver for the hydrogen economy. Over the timescale of the development of fusion energy systems, energy security issues are likely to motivate a shift towards both hydrogen production and fusion as an energy source. These technologies combine local control of the system with the collaborative research interests of the major energy users in the global economy. A concept Fusion Island Reactor that might be used to generate H 2 (rather than electricity) is presented. Exploitation of produced hydrogen as a coolant and as a fuel is proposed in conjunction with MgB 2 conductors for the tokomak magnets windings, and electrotechnical devices for Fusion Island's infrastructure. The benefits of using MgB 2 over the Nb-based conductors during construction, operation and decommissioning of the Fusion Island Reactor are presented. The comparison of Nb 3 Sn strands for ITER fusion magnet with newly developed high field composite MgB 2 PIT conductors has shown that at 14 Tesla MgB 2 possesses better properties than any of the Nb 3 Sn conductors produced. In this paper the potential of MgB 2 conductors is examined for tokamaks of both the conventional ITER type and a Spherical Tokamak geometry. In each case MgB 2 is considered as a conductor for a range of field coil applications and the potential for operation at both liquid helium and liquid hydrogen temperatures is considered. Further research plans concerning the application of MgB 2 conductors for Fusion Island are also considered

  6. Fusion performance analysis of plasmas with reversed magnetic shear in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Ruskov, E.; Bell, M.; Budny, R.V.; McCune, D.C.; Medley, S.S.; Nazikian, R.; Synakowski, E.J.; Goeler, S. von; White, R.B.; Zweben, S.J.

    1999-01-01

    A case for substantial loss of fast ions degrading the performance of tokamak fusion test reactor plasmas [Phys. Plasmas 2, 2176 (1995)] with reversed magnetic shear (RS) is presented. The principal evidence is obtained from an experiment with short (40 - 70 ms) tritium beam pulses injected into deuterium beam heated RS plasmas [Phys. Rev. Lett. 82, 924 (1999)]. Modeling of this experiment indicates that up to 40% beam power is lost on a time scale much shorter than the beam - ion slowing down time. Critical parameters which connect modeling and experiment are: The total 14 MeV neutron emission, its radial profile, and the transverse stored energy. The fusion performance of some plasmas with internal transport barriers is further deteriorated by impurity accumulation in the plasma core. copyright 1999 American Institute of Physics

  7. Final report on the Magnetized Target Fusion Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    John Slough

    2009-09-08

    Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking to be described in this proposal is to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The timescale for testing and development can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T&ion ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than

  8. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Schissel, David P. [Princeton Plasma Physics Lab., NJ (United States); Abla, G. [Princeton Plasma Physics Lab., NJ (United States); Burruss, J. R. [Princeton Plasma Physics Lab., NJ (United States); Feibush, E. [Princeton Plasma Physics Lab., NJ (United States); Fredian, T. W. [Massachusetts Institute of Technology, Cambridge, MA (United States); Goode, M. M. [Lawrence Berkeley National Lab., CA (United States); Greenwald, M. J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Keahey, K. [Argonne National Lab., IL (United States); Leggett, T. [Argonne National Lab., IL (United States); Li, K. [Princeton Univ., NJ (United States); McCune, D. C. [Princeton Plasma Physics Lab., NJ (United States); Papka, M. E. [Argonne National Lab., IL (United States); Randerson, L. [Princeton Plasma Physics Lab., NJ (United States); Sanderson, A. [Univ. of Utah, Salt Lake City, UT (United States); Stillerman, J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Thompson, M. R. [Lawrence Berkeley National Lab., CA (United States); Uram, T. [Argonne National Lab., IL (United States); Wallace, G. [Princeton Univ., NJ (United States)

    2012-12-20

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES Grid (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  9. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    International Nuclear Information System (INIS)

    Schissel, David P.; Abla, G.; Burruss, J. R.; Feibush, E.; Fredian, T. W.; Goode, M. M.; Greenwald, M. J.; Keahey, K.; Leggett, T.; Li, K.; McCune, D. C.; Papka, M. E.; Randerson, L.; Sanderson, A.; Stillerman, J.; Thompson, M. R.; Uram, T.; Wallace, G.

    2012-01-01

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES Grid(FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP) provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  10. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas.

    Science.gov (United States)

    Lynn, Alan G; Gilmore, Mark

    2014-11-01

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10(4) T (100 Megagauss) over small volumes (∼10(-10)m(3)) at high plasma densities (∼10(28)m(-3)) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  11. Multi-terawatt fusion laser systems

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1993-01-01

    The evolution of laser fusion systems started with a description of the basic principles of the laser in 1959, then a physical demonstration showing 1000 Watts of peak optical power in 1961 to the present systems that deliver 10 14 watts of peak optical power, are presented. Physical limits to large systems are reviewed: thermal limits, material stress limits, structural limits and stability, parasitic coupling, measurement precision and diagnostics. The various steps of the fusion laser-system development process are then discussed through an historical presentation. 3 figs., 8 refs

  12. The fusion-hydrogen energy system

    International Nuclear Information System (INIS)

    Williams, L.O.

    1994-01-01

    This paper will describe the structure of the system, from energy generation and hydrogen production through distribution to the end users. It will show how stationary energy users will convert to hydrogen and will outline ancillary uses of hydrogen to aid in reducing other forms of pollution. It will show that the adoption of the fusion hydrogen energy system will facilitate the use of renewable energy such as wind and solar. The development of highly efficient fuel cells for production of electricity near the user and for transportation will be outlined. The safety of the hydrogen fusion energy system is addressed. This paper will show that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. In addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. (Author)

  13. Program for development of toroidal superconducting magnets for fusion research, May 1975

    International Nuclear Information System (INIS)

    Long, H.M.; Lubell, M.S.

    1975-11-01

    The objective of this program is a tested magnet design which demonstrates the suitability and reliability needed to qualify toroidal superconducting magnets for fusion research devices in a time compatible with the D-T burning experiments time frame. The overall applied development program including tasks, manpower, and cost estimates is detailed here, but for the full toroidal system only the cost and time frame are outlined to show compatibility with the present program. The details of the full toroidal system fall under major device fabrication and will be included in a subsequent document

  14. Technology spinoffs from the Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    1984-02-01

    This document briefly describes eight new spin-offs from the fusion program: (1) cray timesharing system, (2) CRT touch panel, (3) magneform, (4) plasma separation process, (5) homopolar resistance welding, (6) plasma diagnostic development, (7) electrodeless microwave lamp, and (8) superconducting energy storage

  15. Investigation of nonplanar modular coil systems for stellarator fusion reactors

    International Nuclear Information System (INIS)

    Harmeyer, E.

    1988-12-01

    Steady-state stellarators constitute an important option for a future fusion reactor. The helical magnetic field required for plasma confinement can be produced by means of a set of modular nonplanar coils. In order to achieve optimum power density of the plasma, the magnetic flux density inside the torus is made as high as possible. State-of-the-art estimates allow values of the magnetic flux density on axis of B 0 = 4-7 T. The present report is concerned with investigations on modular nonplanar stellarator coil systems. Coil systems with poloidal periodicity l=2 and a coil system of the W VII-AS type with superposed l=0, 1, 2, 3 terms are treated. Furthermore, the parameters are simultaneously varied while keeping constant the ratios of certain magnitudes. In the parameter space of the geometric values and coil number the following quantities are evaluated: maximum magnetic flux density in the coil domain, stored magnetic energy of the coil system, magnetic force density distribution or magnetic forces, and mechanical stress distribution in the coils. Numerical methods are applied in the programme systems used for these calculations. The aim of the study is to determine an optimum regime for the above parameters. The numerical results are compared with those of analytical approximation solutions. (orig.)

  16. Antimatter Driven P-B11 Fusion Propulsion System

    Science.gov (United States)

    Kammash, Terry; Martin, James; Godfroy, Thomas

    2002-01-01

    One of the major advantages of using P-B11 fusion fuel is that the reaction produces only charged particles in the form of three alpha particles and no neutrons. A fusion concept that lends itself to this fuel cycle is the Magnetically Insulated Inertial Confinement Fusion (MICF) reactor whose distinct advantage lies in the very strong magnetic field that is created when an incident particle (or laser) beam strikes the inner wall of the target pellet. This field serves to thermally insulate the hot plasma from the metal wall thereby allowing thc plasma to burn for a long time and produce a large energy magnification. If used as a propulsion device, we propose using antiprotons to drive the system which we show to be capable of producing very large specific impulse and thrust. By way of validating the confinement propenies of MICF we will address a proposed experiment in which pellets coated with P-B11 fuel at the appropriate ratio will be zapped by a beam of antiprotons that enter the target through a hole. Calculations showing the density and temperature of the generated plasma along with the strength of the magnetic field and other properties of the system will be presented and discussed.

  17. Transport and Dynamics in Toroidal Fusion Systems

    International Nuclear Information System (INIS)

    Sovinec, Carl

    2016-01-01

    The study entitled, 'Transport and Dynamics in Toroidal Fusion Systems,' (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the 'sawtooth' collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to 'monster' or 'giant' sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposed electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two

  18. Transport and Dynamics in Toroidal Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sovinec, Carl [Univ. of Wisconsin, Madison, WI (United States)

    2016-09-07

    The study entitled, "Transport and Dynamics in Toroidal Fusion Systems," (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the "sawtooth" collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to "monster" or "giant" sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposed electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two-fluid effects on interchange dynamics, where

  19. Ultrasound/Magnetic Resonance Image Fusion Guided Lumbosacral Plexus Block – A Clinical Study

    DEFF Research Database (Denmark)

    Strid, JM; Pedersen, Erik Morre; Søballe, Kjeld

    2014-01-01

    in a double-blinded randomized controlled trial with crossover design. MR datasets will be acquired and uploaded in an advanced US system (Epiq7, Phillips, Amsterdam, Netherlands). All volunteers will receive SSPS blocks with lidocaine added gadolinium contrast guided by US/MR image fusion and by US one week......Background and aims Ultrasound (US) guided lumbosacral plexus block (Supra Sacral Parallel Shift [SSPS]) offers an alternative to general anaesthesia and perioperative analgesia for hip surgery.1 The complex anatomy of the lumbosacral region hampers the accuracy of the block, but it may be improved...... by guidance of US and magnetic resonance (MR) image fusion and real-time 3D electronic needle tip tracking.2 We aim to estimate the effect and the distribution of lidocaine after SSPS guided by US/MR image fusion compared to SSPS guided by ultrasound. Methods Twenty-four healthy volunteers will be included...

  20. Review of heat transfer problems associated with magnetically-confined fusion reactor concepts

    International Nuclear Information System (INIS)

    Hoffman, M.A.; Werner, R.W.; Carlson, G.A.; Cornish, D.N.

    1976-01-01

    Conceptual design studies of possible fusion reactor configurations have revealed a host of interesting and sometimes extremely difficult heat transfer problems. The general requirements imposed on the coolant system for heat removal of the thermonuclear power from the reactor are discussed. In particular, the constraints imposed by the fusion plasma, neutronics, structure and magnetic field environment are described with emphasis on those aspects which are unusual or unique to fusion reactors. Then the particular heat transfer characteristics of various possible coolants including lithium, flibe, boiling alkali metals, and helium are discussed in the context of these general fusion reactor requirements. Some specific areas where further experimental and/or theoretical work is necessary are listed for each coolant along with references to the pertinent research already accomplished. Specialized heat transfer problems of the plasma injection and removal systems are also described. Finally, the challenging heat transfer problems associated with the superconducting magnets are reviewed, and once again some of the key unsolved heat transfer problems are enumerated

  1. Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

    Directory of Open Access Journals (Sweden)

    Hyeon K. Park

    2017-10-01

    Full Text Available The role of electromagnetic (EM waves in magnetic fusion plasma—ranging from radio frequency (RF to microwaves—has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV = 10000 K that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

  2. Magnetic fusion energy. Progress report, January--June 1976

    International Nuclear Information System (INIS)

    Doran, D.G.; Yoshikawa, H.H.

    1976-01-01

    Brief descriptions are given of progress in the Irradiation Effects Analysis and Mechanical Performance of Magnetic Fusion Energy (MFE) Materials programs and in related programs. The objective of the Irradiation Effects Analysis program is the correlation of effects produced in neutron and charged particle irradiations in order to apply them to fusion reactor environments. Low energy displacement cascades--of intrinsic interest and the least understood component of high energy cascades--are being simulated by computer codes of the dynamical (D), quasi-dynamical (Q-D), and binary collision (BC) types. Fair agreement has been found between D and Q-D for low index focused replacement sequences; substantial differences appeared for a 250 eV high index event. The objective of the Mechanical Performance of MFE Materials program is to establish the effects of fusion reactor irradiation environments on the mechanical properties of candidate first wall materials. A Precision Torsional Creep Apparatus is being developed to permit accelerator studies of irradiation creep and behavior under cyclic conditions. This apparatus has demonstrated the required strain sensitivity, stress control, and thermal stability for long term thermal testing, and that it can be used for cyclic testing

  3. Fission--fusion systems: classification and critique

    International Nuclear Information System (INIS)

    Lidsky, L.M.

    1974-01-01

    A useful classification scheme for hybrid systems is described and some common features that the scheme makes apparent are pointed out. The early history of fusion-fission systems is reviewed. Some designs are described along with advantages and disadvantages of each. The extension to low and moderate Q devices is noted. (U.S.)

  4. Decision Fusion System for Bolted Joint Monitoring

    Directory of Open Access Journals (Sweden)

    Dong Liang

    2015-01-01

    Full Text Available Bolted joint is widely used in mechanical and architectural structures, such as machine tools, industrial robots, transport machines, power plants, aviation stiffened plate, bridges, and steel towers. The bolt loosening induced by flight load and environment factor can cause joint failure leading to a disastrous accident. Hence, structural health monitoring is critical for the bolted joint detection. In order to realize a real-time and convenient monitoring and satisfy the requirement of advanced maintenance of the structure, this paper proposes an intelligent bolted joint failure monitoring approach using a developed decision fusion system integrated with Lamb wave propagation based actuator-sensor monitoring method. Firstly, the basic knowledge of decision fusion and classifier selection techniques is briefly introduced. Then, a developed decision fusion system is presented. Finally, three fusion algorithms, which consist of majority voting, Bayesian belief, and multiagent method, are adopted for comparison in a real-world monitoring experiment for the large aviation aluminum plate. Based on the results shown in the experiment, a big potential in real-time application is presented that the method can accurately and rapidly identify the bolt loosening by analyzing the acquired strain signal using proposed decision fusion system.

  5. Fatigue effects in insulation materials for fusion magnets

    International Nuclear Information System (INIS)

    Rosenkranz, P.

    2000-12-01

    The mechanical properties of insulation materials for the superconducting magnets of ITER (International Thermonuclear Experimental Reactor) and future fusion plants, i.e. woven fiber reinforced composites, have been identified as an area of concern for the long-term operation of such magnets. The magnets will be subjected to fast neutron and γ-radiation over their lifetime, which influence the mechanical properties of the insulation materials. The ultimate tensile strength and, above all, the interlaminar shear strength and their performance under dynamic load, corresponding to the pulsed operation of a TOKAMAK-confinement system, are sensitive indicators of material failure in fiber-reinforced laminates especially at cryogenic temperatures. To simulate these conditions, low frequency fatigue measurements at 10 Hz were made at 77 K up to one million cycles. Tension-tension fatigue tests were performed according to ASTM D3479. However, due to the space limitations in all irradiation facilities, the tests have to be done on samples, which are considerably smaller than those required for standard test conditions. The influence of the specimen geometry on the ultimate tensile strength under static and dynamic load conditions was, therefore, investigated on fiber-reinforced plastics. They did not show any systematic trends as long as the sample thickness does not exceed the thickness recommended in ASTM D3479. The double lap shear test method was chosen for the shear experiments because of the symmetry of the specimen geometry under tensile load and the suitability for fatigue tests. Like almost every existing test procedure for the interlaminar shear strength, this test method does not provide for a completely uniform interlaminar shear stress distribution over a sizable region in the test section of the specimen. A scaling program combined with FE-simulations was, therefore, initiated to assess the influence of the length of the test section and of the sample

  6. Magnetic Fusion Energy Technology Fellowship Program: Summary of program activities for calendar year 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This report summarizes the activities of the US Department of Energy (DOE) Magnetic Fusion Energy Technology Fellowship program (MFETF) for the 1985 calendar year. The MFETF program has continued to support the mission of the Office of Fusion Energy (OFE) and its Division of Development and Technology (DDT) by ensuring the availability of appropriately trained engineering manpower needed to implement the OFE/DDT magnetic fusion energy agenda. This program provides training and research opportunities to highly qualified students at DOE-designated academic, private sector, and government magnetic fusion energy institutions. The objectives of the Magnetic Fusion Energy Technology Fellowship program are: (1) to provide support for graduate study, training, and research in magnetic fusion energy technology; (2) to ensure an adequate supply of appropriately trained manpower to implement the nation's magnetic fusion energy agenda; (3) to raise the visibility of careers in magnetic fusion energy technology and to encourage students to pursue such careers; and (4) to make national magnetic fusion energy facilities available for manpower training

  7. Structural materials challenges for fusion power systems

    International Nuclear Information System (INIS)

    Kurtz, Richard J.

    2009-01-01

    Full text: Structural materials in a fusion power system must function in an extraordinarily demanding environment that includes various combinations of high temperatures, reactive chemicals, time-dependent thermal and mechanical stresses, and intense damaging radiation. The fusion neutron environment produces displacement damage equivalent to displacing every atom in the material about 150 times during its expected service life, and changes in chemical composition by transmutation reactions, which includes creation of reactive and insoluble gases. Fundamental materials challenges that must be resolved to effectively harness fusion power include (1) understanding the relationships between material strength, ductility and resistance to cracking, (2) development of materials with extraordinary phase stability, high-temperature strength and resistance to radiation damage, (3) establishment of the means to control corrosion of materials exposed to aggressive environments, (4) development of technologies for large-scale fabrication and joining, and (5) design of structural materials that provide for an economically attractive fusion power system while simultaneously achieving safety and environmental acceptability goals. The most effective approach to solve these challenges is a science-based effort that couples development of physics-based, predictive models of materials behavior with key experiments to validate the models. The U.S. Fusion Materials Sciences program is engaged in an integrated effort of theory, modeling and experiments to develop structural materials that will enable fusion to reach its safety, environmental and economic competitiveness goals. In this presentation, an overview of recent progress on reduced activation ferritic/martensitic steels, nanocomposited ferritic alloys, and silicon carbide fiber reinforced composites for fusion applications will be given

  8. Design study of an indirect cooling superconducting magnet for a fusion device

    International Nuclear Information System (INIS)

    Mito, Toshiyuki; Hemmi, Tsutomu

    2009-01-01

    The design study of superconducting magnets adapting a new coil winding scheme of an indirect cooling method is reported. The superconducting magnet system for the spherical tokamak (ST), which is proposed to study the steady state plasma experiment with Q - equiv-1, requires high performances with a high current density compared to the ordinal magnet design because of its tight spatial restriction. The superconducting magnet system for the fusion device has been used in the condition of high magnetic field, high electromagnetic force, and high heat load. The pool boiling liquid helium cooling outside of the conductor or the forced flow of supercritical helium cooling inside of the conductor, such as cable-in-conduit conductors, were used so far for the cooling method of the superconducting magnet for a fusion application. The pool cooling magnet has the disadvantages of low mechanical rigidities and low withstand voltages of the coil windings. The forced flow cooling magnet with cable-in-conduit conductors has the disadvantages of the restriction of the coil design because of the path of the electric current must be the same as that of the cooling channel for refrigerant. The path of the electric current and that of the cooling channel for refrigerant can be independently designed by adopting the indirect cooling method that inserts the independent cooling panel in the coil windings and cools the conductor from the outside. Therefore the optimization of the coil windings structure can be attempted. It was shown that the superconducting magnet design of the high current density became possible by the indirect cooling method compared with those of the conventional cooling scheme. (author)

  9. Panel discussion: Future directions in magnetic fusion--comments of John Sheffield, Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Sheffield, J.

    1992-01-01

    I will discuss two important issues for the US magnetic fusion program: the role of alternate magnetic configurations to the tokamak, and factors which need to be considered in planning the evolution of the US program

  10. Randomized Symmetric Crypto Spatial Fusion Steganographic System

    Directory of Open Access Journals (Sweden)

    Viswanathan Perumal

    2016-06-01

    Full Text Available The image fusion steganographic system embeds encrypted messages in decomposed multimedia carriers using a pseudorandom generator but it fails to evaluate the contents of the cover image. This results in the secret data being embedded in smooth regions, which leads to visible distortion that affects the imperceptibility and confidentiality. To solve this issue, as well as to improve the quality and robustness of the system, the Randomized Symmetric Crypto Spatial Fusion Steganography System is proposed in this study. It comprises three-subsystem bitwise encryption, spatial fusion, and bitwise embedding. First, bitwise encryption encrypts the message using bitwise operation to improve the confidentiality. Then, spatial fusion decomposes and evaluates the region of embedding on the basis of sharp intensity and capacity. This restricts the visibility of distortion and provides a high embedding capacity. Finally, the bitwise embedding system embeds the encrypted message through differencing the pixels in the region by 1, checking even or odd options and not equal to zero constraints. This reduces the modification rate to avoid distortion. The proposed heuristic algorithm is implemented in the blue channel, to which the human visual system is less sensitive. It was tested using standard IST natural images with steganalysis algorithms and resulted in better quality, imperceptibility, embedding capacity and invulnerability to various attacks compared to other steganographic systems.

  11. Modular tokamak magnetic system

    International Nuclear Information System (INIS)

    Yang, T.F.

    1988-01-01

    This patent describes a tokamak reactor including a vacuum vessel, toroidal confining magnetic field coils disposed concentrically around the minor radius of the vacuum vessel, and poloidal confining magnetic field coils, an ohmic heating coil system comprising at least one magnetic coil disposed concentrically around a toroidal field coil, wherein the magnetic coil is wound around the toroidal field coil such that the ohmic heating coil enclosed the toroidal field coil

  12. Research on economics and CO2 emission of magnetic and inertial fusion reactors

    International Nuclear Information System (INIS)

    Mori, Kenjiro; Yamazaki, Kozo; Oishi, Tetsutarou; Arimoto, Hideki; Shoji, Tatsuo

    2011-01-01

    An economical and environment-friendly fusion reactor system is needed for the realization of attractive power plants. Comparative system studies have been done for magnetic fusion energy (MFE) reactors, and been extended to include inertial fusion energy (IFE) reactors by Physics Engineering Cost (PEC) system code. In this study, we have evaluated both tokamak reactor (TR) and IFE reactor (IR). We clarify new scaling formulas for cost of electricity (COE) and CO 2 emission rate with respect to key design parameters. By the scaling formulas, it is clarified that the plant availability and operation year dependences are especially dominant for COE. On the other hand, the parameter dependences of CO 2 emission rate is rather weak than that of COE. This is because CO 2 emission percentage from manufacturing the fusion island is lower than COE percentage from that. Furthermore, the parameters dependences for IR are rather weak than those for TR. Because the CO 2 emission rate from manufacturing the laser system to be exchanged is very large in comparison with CO 2 emission rate from TR blanket exchanges. (author)

  13. Background information and technical basis for assessment of environmental implications of magnetic fusion energy

    International Nuclear Information System (INIS)

    Cannon, J.B.

    1983-08-01

    This report contains background information for assessing the potential environmental implications of fusion-based central electric power stations. It was developed as part of an environmental review of the Magnetic Fusion Energy Program. Transition of the program from demonstration of purely scientific feasibility (breakeven conditions) to exploration of engineering feasibility suggests that formal program environmental review under the National Environmental Policy Act is timely. This report is the principal reference upon which an environmental impact statement on magnetic fusion will be based

  14. Superconductors for fusion magnets tested under pulsed field in SULTAN

    International Nuclear Information System (INIS)

    Bruzzone, P.; Bottura, L.; Katheder, H.; Blau, B.; Rohleder, I.; Vecsey, G.

    1995-01-01

    The SULTAN III test facility has been upgraded with a pair of pulsed field coils to carry out AC losses and stability experiments under full operating loads on large size, fusion conductors for ITER. A fast data aquisition system records the conductor behaviour under fast field transient. The commissioning results of the pulsed coils and instrumentation are critically discussed and the test capability of the set up is assessed. (orig.)

  15. The Gasdynamic Mirror Fusion Propulsion System -- Revisited

    International Nuclear Information System (INIS)

    Kammash, Terry; Tang, Ricky

    2005-01-01

    Many of the previous studies assessing the capability of the gasdynamic mirror (GDM) fusion propulsion system employed analyses that ignored the 'ambipolar' potential. This electrostatic potential arises as a result of the rapid escape of the electrons due to their small mass. As they escape, they leave behind an excess positive charge which manifests itself in an electric field that slows down the electrons while speeding up the ions until their respective axial diffusions are equalized. The indirect effect on the ions is that their confinement time is reduced relative to that of zero potential, and hence the plasma length must be increased to accommodate that change. But as they emerge from the thruster mirror - which serves as a magnetic nozzle - the ions acquire an added energy equal to that of the potential energy, and that in turn manifests itself in increased specific impulse and thrust. We assess the propulsive performance of the GDM thruster, based on the more rigorous theory, by applying it to a round trip Mars mission employing a continuous burn acceleration/deceleration type of trajectory. We find that the length of the device and travel time decrease with increasing plasma density, while the total vehicle mass reaches a minimum at a plasma density of 3 x 1016 cm-3. At such a density, and an initial DT ion temperature of 10 keV, a travel time of 60 days is found to be achievable at GDM propulsion parameters of about 200,000 seconds of specific impulse and approximately 47 kN of thrust

  16. Benefits and drawbacks of low magnetic shears on the confinement in magnetic fusion toroidal devices

    Science.gov (United States)

    Firpo, Marie-Christine; Constantinescu, Dana

    2012-10-01

    The issue of confinement in magnetic fusion devices is addressed within a purely magnetic approach. As it is well known, the magnetic field being divergence-free, the equations of its field lines can be cast in Hamiltonian form. Using then some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is demonstrated. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and turbulence reduction. However, when low-shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be much lower than the ones obtained for strong shear profiles. The approach can be applied to assess the robustness versus magnetic perturbations of general almost-integrable magnetic steady states, including non-axisymmetric ones such as the important single helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possible explanation of diverse experimental and numerical signatures of their collapses.

  17. Performance test of personal RF monitor for area monitoring at magnetic confinement fusion facility

    International Nuclear Information System (INIS)

    Tanaka, M.; Uda, T.; Wang, J.; Fujiwara, O.

    2012-01-01

    For safety management at a magnetic confinement fusion-test facility, protection from not only ionising radiation, but also non-ionising radiation such as the leakage of static magnetic and electromagnetic fields is an important issue. Accordingly, the use of a commercially available personal RF monitor for multipoint area monitoring is proposed. In this study, the performance of both fast- and slow-type personal RF monitors was investigated by using a transverse electromagnetic cell system. The range of target frequencies was between 10 and 300 MHz, corresponding to the ion cyclotron range of frequency in a fusion device. The personal RF monitor was found to have good linearity, frequency dependence and isotropic response. However, the time constant for the electric field sensor of the slow-type monitor was much longer than that for the fast-type monitor. Considering the time-varying field at the facility, it is found that the fast-type monitor is suitable for multipoint monitoring at magnetic confinement fusion test facilities. (authors)

  18. Integration of element technology and system supporting thermonuclear fusion

    International Nuclear Information System (INIS)

    2003-01-01

    A special committee for integrated system technology survey on thermonuclear fusion (TNF) was begun on June, 1999, under an aim to generally summarize whole of shapes on technology to realize TNF reactor to summarize present state of every technologies and their positioning in whole of their TNF technology. On a base of survey of these recent informations, this report is comprehensively summarized for an integrated system technology on TNF. It has outlines on magnetic field enclosing method, outlines on inertia enclosing method, element technology supporting TNF, new power generation techniques, and ripple effects on TNF technology. (G.K.)

  19. Symposium: new trends in unconventional approaches to magnetic fusion

    International Nuclear Information System (INIS)

    Post, R.F.

    1983-01-01

    An extensive review of the meeting is given. The concepts discussed included reverse-field pinches, compact tori, advanced stellarators, multipoles, surface magnetic confinement systems, the bumpy torus, and a collection of mirror-based approaches

  20. TPC magnet cryogenic system

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system

  1. Magnet design with 100-kA HTS STARS conductors for the helical fusion reactor

    Science.gov (United States)

    Yanagi, N.; Terazaki, Y.; Ito, S.; Tamura, H.; Hamaguchi, S.; Mito, T.; Hashizume, H.; Sagara, A.

    2016-12-01

    The high-temperature superconducting (HTS) option is employed for the conceptual design of the LHD-type helical fusion reactor FFHR-d1. The 100-kA-class STARS (Stacked Tapes Assembled in Rigid Structure) conductor is used for the magnet system including the continuously wound helical coils. Protection of the magnet system in case of a quench is a crucial issue and the hot-spot temperature during an emergency discharge is estimated based on the zero-dimensional and one-dimensional analyses. The number of division of the coil winding package is examined to limit the voltage generation. For cooling the HTS magnet, helium gas flow is considered and its feasibility is examined by simple analysis as a first step.

  2. Theoretical and numerical studies in magnetic mirror fusion

    International Nuclear Information System (INIS)

    1990-01-01

    It is proposed to investigate the dependence of neo-classical transport on aspect ratio and on the structure of the magnetic surfaces for general collisionality by use of relaxation models for collisions for a general mixture of electrons and ions. An optimum relaxation frequency will be determined for each transport coefficient by fitting those limiting results available. Simple models of turbulent transport will be added. A general purpose code will be developed, including the resulting transport equations, and made accessible to the fusion community. The results of this code his will be compared with known results. The solutions using the simple relaxation model will be compared with the counterpart results to be obtained by using a Lorentz model for collisions

  3. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    International Nuclear Information System (INIS)

    Stratton, B.C.; Bitter, M.; Hill, K.W.; Hillis, D.L.; Hogan, J.T.

    2007-01-01

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  4. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  5. Vibration of fusion reactor components with magnetic damping

    Energy Technology Data Exchange (ETDEWEB)

    D’Amico, Gabriele; Portone, Alfredo [Fusion for Energy – Torres Diagonal Litoral B3 – c/Josep Plá n.2, Barcelona (Spain); Rubinacci, Guglielmo [Department of Electrical Eng. and Information Technologies, Università di Napoli Federico II, Via Claudio, 21, 80125 Napoli (Italy); Testoni, Pietro, E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy – Torres Diagonal Litoral B3 – c/Josep Plá n.2, Barcelona (Spain)

    2016-11-01

    The aim of this paper is to assess the importance of the magnetic damping in the dynamic response of the main plasma facing components of fusion machines, under the strong Lorentz forces due to Vertical Displacement Events. The additional eddy currents due to the vibration of the conducting structures give rise to volume loads acting as damping forces, a kind of viscous damping, being these additional loads proportional to the vibration speed. This effect could play an important role when assessing, for instance, the inertial loads associated to VV movements in case of VDEs. In this paper, we present the results of a novel numerical formulation, in which the field equations are solved by adopting a very effective fully 3D integral formulation, not limited to the analysis of thin shell structures, as already successfully done in several approaches previously published.

  6. High-density-plasma diagnostics in magnetic-confinement fusion

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1982-01-01

    The lectures will begin by defining high density in the context of magnetic confinement fusion research and listing some alternative reactor concepts, ranging from n/sub e/ approx. 2 x 10 14 cm -3 to several orders of magnitude greater, that offer potential advantages over the main-line, n/sub e/ approx. 1 x 10 14 cm -3 , Tokamak reactor designs. The high density scalings of several major diagnostic techniques, some favorable and some disadvantageous, will be discussed. Special emphasis will be given to interferometric methods, both electronic and photographic, for which integral n/sub e/dl measurements and associated techniques are accessible with low wavelength lasers. Reactor relevant experience from higher density, smaller dimension devices exists. High density implies high β, which implies economies of scale. The specialized features of high β diagnostics will be discussed

  7. Metrology/viewing system for next generation fusion reactors

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.

    1997-01-01

    Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system

  8. The magnet database system

    International Nuclear Information System (INIS)

    Ball, M.J.; Delagi, N.; Horton, B.; Ivey, J.C.; Leedy, R.; Li, X.; Marshall, B.; Robinson, S.L.; Tompkins, J.C.

    1992-01-01

    The Test Department of the Magnet Systems Division of the Superconducting Super Collider Laboratory (SSCL) is developing a central database of SSC magnet information that will be available to all magnet scientists at the SSCL or elsewhere, via network connections. The database contains information on the magnets' major components, configuration information (specifying which individual items were used in each cable, coil, and magnet), measurements made at major fabrication stages, and the test results on completed magnets. These data will facilitate the correlation of magnet performance with the properties of its constituents. Recent efforts have focused on the development of procedures for user-friendly access to the data, including displays in the format of the production open-quotes travelerclose quotes data sheets, standard summary reports, and a graphical interface for ad hoc queues and plots

  9. Assessing the Performance of Sensor Fusion Methods: Application to Magnetic-Inertial-Based Human Body Tracking.

    Science.gov (United States)

    Ligorio, Gabriele; Bergamini, Elena; Pasciuto, Ilaria; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria

    2016-01-26

    Information from complementary and redundant sensors are often combined within sensor fusion algorithms to obtain a single accurate observation of the system at hand. However, measurements from each sensor are characterized by uncertainties. When multiple data are fused, it is often unclear how all these uncertainties interact and influence the overall performance of the sensor fusion algorithm. To address this issue, a benchmarking procedure is presented, where simulated and real data are combined in different scenarios in order to quantify how each sensor's uncertainties influence the accuracy of the final result. The proposed procedure was applied to the estimation of the pelvis orientation using a waist-worn magnetic-inertial measurement unit. Ground-truth data were obtained from a stereophotogrammetric system and used to obtain simulated data. Two Kalman-based sensor fusion algorithms were submitted to the proposed benchmarking procedure. For the considered application, gyroscope uncertainties proved to be the main error source in orientation estimation accuracy for both tested algorithms. Moreover, although different performances were obtained using simulated data, these differences became negligible when real data were considered. The outcome of this evaluation may be useful both to improve the design of new sensor fusion methods and to drive the algorithm tuning process.

  10. Passive magnetic bearing system

    Science.gov (United States)

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  11. Dust removal system for fusion experimental reactors

    International Nuclear Information System (INIS)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y.; Seki, Y.; Ueda, S.; Aoki, I.

    1995-01-01

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors

  12. Dust removal system for fusion experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y. [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Seki, Y.; Ueda, S.; Aoki, I. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)

    1995-12-31

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors.

  13. Optical fibres for fusion plasma diagnostics systems

    International Nuclear Information System (INIS)

    Brichard, B.

    2005-01-01

    The condition to achieve and maintain the ignition of a thermonuclear fusion plasma ignition calls for the construction of a large scale fusion reactor, namely ITER. This reactor is designed to deliver an average fusion power of 500 MW. The burning of fusion plasma at such high power level will release a tremendous amount of energy in the form of particle fluxes and ionising radiation. This energy release, primarily absorbed by the plasma facing components, can significantly degrade the performances of the plasma diagnostic equipment surrounding the machine. To ensure a correct operation of the Tokamak we need to develop highly radiation-resistance devices. In plasma diagnostic systems, optical fibre is viewed as a convenient tool to transport light from the plasma edge to the diagnostic area. Radiation affects the optical performances of the fibre mainly by the occurrence of radiation-induced absorption and luminescence. Both effects degrade the light signal used for plasma diagnostic. SCK-CEN is currently assessing radiation-resistant glasses for optical fibres and is developing the associated qualification procedure. The main objectives of this study were to increase the lifetime of optical components in high radiation background and to develop a radiation resistance optical fibre capable to operate in the radiation background of ITER

  14. Activation of structural alloys in fusion reactor magnets

    International Nuclear Information System (INIS)

    Mann, F.M.; Doran, D.G.

    1986-01-01

    Using the REAC2 code system, both short-term and long-term activation were calculated for possible structural and magnet materials at the shield-magnet interface. The flux was taken from the STARFIRE conceptual design and a 30-year lifetime was assumed. Short-term activation does not seem to be a problem. Only materials with large amounts of niobium appear to be a potential problem for long-term activation. 2 tabs

  15. Superconducting magnets in the world of energy, especially in fusion power

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Industrial applications of superconducting magnets are only feasible in the near future for superconducting monopolar machines and possible MHD generators. For superconducting synchronous machines, after the successful operation of machines in the MVA range, a new phase of basic investigations has started. Fundamental problems which could not be studied in the MVA machines, but which influence the design of large turbo-alternators, must now be investigated. Fusion power by magnetic confinement will probably be the largest field of application for superconducting magnets in the long run. The present research programmes require large superconducting magnets by the mid-1980s for the experimental reactors envisaged at that time. In addition to dc windings, pulse-operated superconducting windings are required in some systems, such as Tokamak. The high sensitivity of the overall plant efficiency and the active power demand of the pulsed windings require great efficiency from energy storage and transfer systems. Superconducting energy storage systems would be suitable for this, if transfer between inductances could be provided with sufficient efficiency. Basic experiments gave encouraging results. In power plant systems and electric machines an extremely high level of reliability and availability has been achieved. Less reliability will not be accepted for systems with superconducting magnets. This requires great efforts during the development work. (author)

  16. Fusion energy division computer systems network

    International Nuclear Information System (INIS)

    Hammons, C.E.

    1980-12-01

    The Fusion Energy Division of the Oak Ridge National Laboratory (ORNL) operated by Union Carbide Corporation Nuclear Division (UCC-ND) is primarily involved in the investigation of problems related to the use of controlled thermonuclear fusion as an energy source. The Fusion Energy Division supports investigations of experimental fusion devices and related fusion theory. This memo provides a brief overview of the computing environment in the Fusion Energy Division and the computing support provided to the experimental effort and theory research

  17. Fusion Performance of High Magnetic Field Expe-riments

    Science.gov (United States)

    Airoldi, A.; Cenacchi, G.; Coppi, B.

    1997-11-01

    High magnetic field machines have the characteristic of operating well within the usual limitations known as density and beta limits. This feature is highlighted in the Ignitor concept thanks to its reference field of up to 13 T on the magnetic axis and its high current densities. The two reference scenarios with plasma currents of 12 MA and 11 MA respectively, are discussed. The ramp time is 4 sec for both scenarios, whereas the following programmed time dependence of the current is different. The results of an extensive series of numerical simulations using an appropriate version of the 1+1/2D JETTO transport code show that in any case optimal fusion performances are reacheable without needing enhancement over the values of the energy replacement time predicted by the most pessimistic scalings (for the so-called L-mode regime). The density is the crucial parameter involved on the path to ignition that can be achieved provided the density rise is carefully programmed. The density profiles can be controlled by the proper use of the pellet injector that is included in the machine design.

  18. Stagnation morphology in Magnetized Liner Inertial Fusion experiments

    Science.gov (United States)

    Gomez, M. R.; Harding, E. C.; Ampleford, D. J.; Jennings, C. A.; Awe, T. J.; Chandler, G. A.; Glinsky, M. E.; Hahn, K. D.; Hansen, S. B.; Jones, B.; Knapp, P. F.; Martin, M. R.; Peterson, K. J.; Rochau, G. A.; Ruiz, C. L.; Schmit, P. F.; Sinars, D. B.; Slutz, S. A.; Weis, M. R.; Yu, E. P.

    2017-10-01

    In Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z facility, an axial current of 15-20 MA is driven through a thick metal cylinder containing axially-magnetized, laser-heated deuterium fuel. The cylinder implodes, further heating the fuel and amplifying the axial B-field. Instabilities, such as magneto-Rayleigh-Taylor, develop on the exterior of the liner and may feed through to the inner surface during the implosion. Monochromatic x-ray emission at stagnation shows the stagnation column is quasi-helical with axial variations in intensity. Recent experiments demonstrated that the stagnation emission structure changed with modifications to the target wall thickness. Additionally, applying a thick dielectric coating to the exterior of the target modified the stagnation column. A new version of the x-ray self-emission diagnostic has been developed to investigate stagnation with higher resolution. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  19. Magnetic Compression Experiment at General Fusion with Simulation Results

    Science.gov (United States)

    Dunlea, Carl; Khalzov, Ivan; Hirose, Akira; Xiao, Chijin; Fusion Team, General

    2017-10-01

    The magnetic compression experiment at GF was a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. External coil currents keep the CT off the outer wall (levitation) and then rapidly compress it inwards. The optimal external coil configuration greatly improved both the levitated CT lifetime and the rate of shots with good compressional flux conservation. As confirmed by spectrometer data, the improved levitation field profile reduced plasma impurity levels by suppressing the interaction between plasma and the insulating outer wall during the formation process. We developed an energy and toroidal flux conserving finite element axisymmetric MHD code to study CT formation and compression. The Braginskii MHD equations with anisotropic heat conduction were implemented. To simulate plasma / insulating wall interaction, we couple the vacuum field solution in the insulating region to the full MHD solution in the remainder of the domain. We see good agreement between simulation and experiment results. Partly funded by NSERC and MITACS Accelerate.

  20. Laser fusion systems for industrial process heat. Third semiannual report

    International Nuclear Information System (INIS)

    Bates, F.J.; Denning, R.S.; Dykhuizen, R.C.; Goldthwaite, W.H.; Kok, K.D.; Skelton, J.C.

    1979-01-01

    This report concentrates not only on the design of the laser fusion system but also on the cost of this system and the costs of alternative sources of energy that are expected to be in competition with the laser fusion system. The absolute values of the cost of the laser fusion system are limited by the estimates of the cost of the components and subsystems making up the laser fusion energy station. The method used in calculating costs of the laser fusion and alternative systems are laid out in detail

  1. Web-Enabled ATR/Fusion Development System

    National Research Council Canada - National Science Library

    Ruda, Harald

    2001-01-01

    .... We have designed a Web-Enabled ATR/Fusion Development System (WEADS) that will allow distributed development and execution of AIR and fusion algorithms using currently available infrastructures...

  2. Materials handbook for fusion energy systems

    Science.gov (United States)

    Davis, J. W.; Marchbanks, M. F.

    A materials data book for use in the design and analysis of components and systems in near term experimental and commercial reactor concepts has been created by the Office of Fusion Energy. The handbook is known as the Materials Handbook for Fusion Energy Systems (MHFES) and is available to all organizations actively involved in fusion related research or system designs. Distribution of the MHFES and its data pages is handled by the Hanford Engineering Development Laboratory (HEDL), while its direction and content is handled by McDonnell Douglas Astronautics Company — St. Louis (MDAC-STL). The MHFES differs from other handbooks in that its format is geared more to the designer and structural analyst than to the materials scientist or materials engineer. The format that is used organizes the handbook by subsystems or components rather than material. Within each subsystem is information pertaining to material selection, specific material properties, and comments or recommendations on treatment of data. Since its inception a little more than a year ago, over 80 copies have been distributed to over 28 organizations consisting of national laboratories, universities, and private industries.

  3. Power source system for nuclear fusion

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: When using an external system power source and an exclusive power source in a power source circuit for supplying power to the coils of a nuclear fusion apparatus, to minimize the capacity of the exclusive power source and provide an economical power source circuit construction. Structure: In the initial stage of the power supply, rectifying means provided in individual blocks are connected in parallel on the AC side, and power is supplied to the coils of the nuclear fusion apparatus from an external system power source with the exclusive power source held in the disconnected state. Further, at an instant when the limit of permissible input is reached, the afore-mentioned parallel circuit consisting of rectifying means is disconnected, while at the same time the exclusive power source is connected to the input side of the rectifying means provided in a block corresponding to the exclusive power source side, thereby supplying power to the coils of the nuclear fusion apparatus from both the external system power source and exclusive power source. (Kamimura, M.)

  4. Fusion-supported decentralized nuclear energy system

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1979-04-01

    A decentralized nuclear energy system is proposed comprising mass-produced pressurized water reactors in the size range 10 to 300 MW (thermal), to be used for the production of process heat, space heat, and electricity in applications where petroleum and natural gas are presently used. Special attention is given to maximizing the refueling interval with no interim batch shuffling in order to minimize fuel transport, reactor downtime, and opportunity for fissile diversion. These objectives demand a substantial fissile enrichment (7 to 15%). The preferred fissile fuel is U-233, which offers an order of magnitude savings in ore requirements (compared with U-235 fuel), and whose higher conversion ratio in thermal reactors serves to extend the period of useful reactivity and relieve demand on the fissile breeding plants (compared with Pu-239 fuel). Application of the neutral-beam-driven tokamak fusion-neutron source to a U-233 breeding pilot plant is examined. This scheme can be extended in part to a decentralized fusion energy system, wherein remotely located large fusion reactors supply excess tritium to a distributed system of relatively small nonbreeding D-T reactors

  5. Mechanical design of a magnetic fusion production reactor

    International Nuclear Information System (INIS)

    Neef, W.S.; Jassby, D.L.

    1986-01-01

    The mechanical aspects of a tandem mirror and tokamak concepts for the tritium production mission are compared, and a proposed breeding blanket configuration for each type of reactor is presented in detail, along with a design outline of the complete fusion reaction system. In both cases, the reactor design is developed sufficiently to permit preliminary cost estimates of all components. A qualitative comparison is drawn between both concepts from the view of mechanical design and serviceability, and suggestions are made for technology proof tests on unique mechanical features. Detailed cost breakdowns indicate less than 10% difference in the overall costs of the two reactors

  6. Magnetic Coordinate Systems

    Science.gov (United States)

    Laundal, K. M.; Richmond, A. D.

    2017-03-01

    Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly.

  7. Stabilized imploding liner fusion systems

    International Nuclear Information System (INIS)

    Book, D.L.; Cooper, A.L.; Ford, R.; Gerber, K.A.; Hammer, D.A.; Jenkins, D.J.; Robson, A.E.; Turchi, P.J.

    1977-01-01

    A new concept in imploding liner plasma compression is described in which a liquid metal liner is imploded by pistons driven by high-pressure gas, and stability of the inner surface against Rayleigh-Taylor modes is achieved by rotation. The principle has been demonstrated by using a water liner to compress air. This 'captive liner' offers the possibility of stable, reversible implosion-expansion cycles in which the plasma energy is recovered into the driving system, leading to reactor cycles with low Q and, hence, small size. A new method of setting up closed-field confinement geometries inside a liner using a rotating electron beam is described. Plasma currents induced by the beam provide initial plasma heating and generate the containment geometry. Persistence of plasma currents 100 times longer than the beam duration has been observed. Development of these methods could lead to a very compact thermonuclear reactor operating in the manner of a reciprocating engine. (author)

  8. Adaptability of optimization concept in the context of cryogenic distribution for superconducting magnets of fusion machine

    Science.gov (United States)

    Sarkar, Biswanath; Bhattacharya, Ritendra Nath; Vaghela, Hitensinh; Shah, Nitin Dineshkumar; Choukekar, Ketan; Badgujar, Satish

    2012-06-01

    Cryogenic distribution system (CDS) plays a vital role for reliable operation of largescale fusion machines in a Tokamak configuration. Managing dynamic heat loads from the superconducting magnets, namely, toroidal field, poloidal field, central solenoid and supporting structure is the most important function of the CDS along with the static heat loads. Two concepts are foreseen for the configuration of the CDS: singular distribution and collective distribution. In the first concept, each magnet is assigned with one distribution box having its own sub-cooler bath. In the collective concept, it is possible to share one common bath for more than one magnet system. The case study has been performed with an identical dynamic heat load profile applied to both concepts in the same time domain. The choices of a combined system from the magnets are also part of the study without compromising the system functionality. Process modeling and detailed simulations have been performed for both the options using Aspen HYSYS®. Multiple plasma pulses per day have been considered to verify the residual energy deposited in the superconducting magnets at the end of the plasma pulse. Preliminary 3D modeling using CATIA® has been performed along with the first level of component sizing.

  9. TMX magnet control system

    International Nuclear Information System (INIS)

    Goerz, D.A.

    1978-01-01

    A control system utilizing a microcomputer has been developed that controls the power supplies driving the Tandem Mirror Experiment (TMX) magnet set and monitors magnet coil operation. The magnet set consists of 18 magnet coils that are driven by 26 dc power supplies. There are two possible modes of operation with this system: a pulse mode where the coils are pulsed on for several seconds with a dc power consumption of 16 MW; and a continuous mode where the coils can run steady state at 10 percent of maximum current ratings. The processor has been given an active control role and serves as an interface between the operator and electronic circuitry that controls the magnet power supplies. This microcomputer also collects and processes data from many analog singal monitors in the coil circuits and numerous status signals from the supplies. Placing the microcomputer in an active control role has yielded a compact, cost effective system that simplifies the magnet system operation and has proven to be very reliable. This paper will describe the TMX magnet control sytem and discuss its development

  10. Materials handbook for fusion energy systems

    International Nuclear Information System (INIS)

    Davis, J.W.

    1988-01-01

    The objective of this work is to provide a consistent and authoritative source of material property data for use by the fusion community in concept evaluation, design, and performance/verification studies of the various fusion energy systems. A second objective is the early identification of areas in the materials data base where insufficient information or voids exist. The effort during this reporting period has focused on two areas: (1) publication of data pages, and (2) automation of the data pages. The data pages contained new engineering information on lithium and stainless steel along with additional Supporting Documentation pages on annealed and cold worked stainless steel. These pages were distributed in May. In the area of automation, work is proceeding on schedule toward the formation of an electronic materials data base for the MFE computer network

  11. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Design and analysis summary. Volume 1

    International Nuclear Information System (INIS)

    Heathman, J.H.; Wohlwend, J.W.

    1985-05-01

    This report summarizes the designs and analyses produced by General Dynamics Convair for the four Axicell magnets (A1 and A20, east and west), the four Transition magnets (T1 and T2, east and west), and the twelve Solenoid magnets (S1 through S6, east and west). Over four million drawings and specifications, in addition to detailed stress analysis, thermal analysis, electrical, instrumentation, and verification test reports were produced as part of the MFTF-B design effort. Significant aspects of the designs, as well as key analysis results, are summarized in this report. In addition, drawing trees and lists off detailed analysis and test reports included in this report define the locations of the detailed design and analysis data

  12. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Design and analysis summary. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Heathman, J.H.; Wohlwend, J.W.

    1985-05-01

    This report summarizes the designs and analyses produced by General Dynamics Convair for the four Axicell magnets (A1 and A20, east and west), the four Transition magnets (T1 and T2, east and west), and the twelve Solenoid magnets (S1 through S6, east and west). Over four million drawings and specifications, in addition to detailed stress analysis, thermal analysis, electrical, instrumentation, and verification test reports were produced as part of the MFTF-B design effort. Significant aspects of the designs, as well as key analysis results, are summarized in this report. In addition, drawing trees and lists off detailed analysis and test reports included in this report define the locations of the detailed design and analysis data.

  13. Non-superconducting magnet structures for near-term, large fusion experimental devices

    International Nuclear Information System (INIS)

    File, J.; Knutson, D.S.; Marino, R.E.; Rappe, G.H.

    1980-10-01

    This paper describes the magnet and structural design in the following American tokamak devices: the Princeton Large Torus (PLT), the Princeton Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The Joint European Torus (JET), also presented herein, has a magnet structure evolved from several European programs and, like TFTR, represents state of the art magnet and structure design

  14. Magnetic fusion program in the United States: an overview and perspective

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1978-01-01

    Continuing technical progress in magnetic fusion energy research and a coherent national program involving national laboratories, industry and universities has won strong support from the new Department of Energy. This review presents recent technical progress and examines fusion in relation to other long term energy supply options. Fusion is seen as a technology which, because of its apparently minimal environmental impacts and promise of reasonable cost, has a good chance of competing successfully with the other inexhaustible energy sources

  15. Irradiation capsule for testing magnetic fusion reactor first-wall materials at 60 and 2000C

    International Nuclear Information System (INIS)

    Conlin, J.A.

    1985-08-01

    A new type of irradiation capsule has been designed, and a prototype has been tested in the Oak Ridge Research Reactor (ORR) for low-temperature irradiation of Magnetic Fusion Reactor first-wall materials. The capsule meets the requirements of the joint US/Japanese collaborative fusion reactor materials irradiation program for the irradiation of first-wall fusion reactor materials at 60 and 200 0 C. The design description and results of the prototype capsule performance are presented

  16. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  17. Radiolytic production of chemical fuels in fusion reactor systems

    International Nuclear Information System (INIS)

    Fish, J.D.

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered

  18. Exploring liquid metal plasma facing component (PFC) concepts-Liquid metal film flow behavior under fusion relevant magnetic fields

    International Nuclear Information System (INIS)

    Narula, M.; Abdou, M.A.; Ying, A.; Morley, N.B.; Ni, M.; Miraghaie, R.; Burris, J.

    2006-01-01

    The use of fast moving liquid metal streams or 'liquid walls' as a plasma contact surface is a very attractive option and has been looked upon with considerable interest over the past several years, both by the plasma physics and fusion engineering programs. Flowing liquid walls provide an ever replenishing contact surface to the plasma, leading to very effective particle pumping and surface heat flux removal. A key feasibility issue for flowing liquid metal plasma facing component (PFC) systems, pertains to their magnetohydrodynamic (MHD) behavior under the spatially varying magnetic field environment, typical of a fusion device. MHD forces hinder the development of a smooth and controllable liquid metal flow needed for PFC applications. The present study builds up on the ongoing research effort at UCLA, directed towards providing qualitative and quantitative data on liquid metal free surface flow behavior under fusion relevant magnetic fields

  19. A new approach to the solution of the vacuum magnetic problem in fusion machines

    International Nuclear Information System (INIS)

    Zabeo, L.; Artaserse, G.; Cenedese, A.; Piccolo, F.; Sartori, F.

    2007-01-01

    The magnetic vacuum topology reconstruction using magnetic measurements is essential in controlling and understanding plasmas produced in magnetic confinement fusion devices. In a wide range of cases, the instruments used to approach the problem have been designed for a specific machine and to solve a specific plasma model. Recently, a new approach has been used for developing new magnetic software called FELIX. The adopted solution in the design allows the use of the software not only at JET but also at other machines. In order to reduce the analysis and debugging time the software has been designed with modularity and platform independence in mind. This results in a large portability and in particular it allows using the same code both offline and in real-time. One of the main aspects of the tool is its capability to solve different plasma models of current distribution. Thanks to this feature, in order to improve the plasma magnetic reconstruction in real-time, a set of different models has been run using FELIX. FELIX is presently running at JET in different real-time analysis and control systems that need vacuum magnetic topology

  20. Effect of liner non-uniformity on plasma instabilities in an inverse Z-pinch magnetized target fusion system: liner-on-plasma simulations and comparison with linear stability analysis

    International Nuclear Information System (INIS)

    Subhash, P V; Madhavan, S; Chaturvedi, S

    2008-01-01

    Two-dimensional (2D) magneto-hydrodynamic (MHD) liner-on-plasma computations have been performed to study the growth of instabilities in a magnetized target fusion system involving the cylindrical compression of an inverse Z-pinch target plasma by a metallic liner. The growth of modes in the plasma can be divided into two phases. During the first phase, the plasma continues to be Kadomtsev stable. The dominant mode in the liner instability is imposed upon the plasma in the form of a growing perturbation. This mode further transfers part of its energy to its harmonics. During the second phase, however, non-uniform implosion of the liner leads to axial variations in plasma quantities near the liner-plasma interface, such that certain regions of the plasma locally violate the Kadomtsev criteria. Further growth ofthe plasma modes is then due to plasma instability. The above numerical study has been complemented with a linear stability analysis for the plasma, the boundary conditions for this analysis being obtained from the liner-on-plasma simulation. The stability of axisymmetric modes in the first phase is found to satisfy the Kadomtsev condition Q 0 1 modes, using equilibrium profiles from the 2D MHD study, shows that their growth rates can exceed those for m=0 by as much as an order of magnitude

  1. A study of hydrogen isotopes fuel control by wall effect in magnetic fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Motevalli, S.M., E-mail: motavali@umz.ac.ir; Safari, M.

    2016-11-15

    Highlights: • A particle balance model for the main plasma and wall inventory in magnetic fusion device has been represented. • The dependence of incident particles energy on the wall has been considered in 10–300 eV for the sputtering yield and recycling coefficient. • The effect of fueling methods on plasma density behavior has been studied. - Abstract: Determination of plasma density behavior in magnetic confinement system needs to study the plasma materials interaction in the facing components such as first wall, limiter and divertor. Recycling of hydrogen isotope is an effective parameter in plasma density rate and plasma fueling. Recycling coefficient over the long pulse operation, gets to the unity, so it has a significant effect on steady state in magnetic fusion devices. Typically, sputtered carbon atoms from the plasma facing components form hydrocarbons and they redeposit on the wall. In this case little rate of hydrogen loss occurs. In present work a zero dimensional particle equilibrium model has been represented to determine particles density rate in main plasma and wall inventory under recycling effect and codeposition of hydrogen in case of continues and discontinues fueling methods and effective parameters on the main plasma decay has been studied.

  2. Magnetic fusion energy annual report, July 1975--September 1976

    International Nuclear Information System (INIS)

    Harrison, M.A.; McGregor, C.K.; Gottlieb, L.

    1976-01-01

    Supporting research activities continued to provide the technical basis for future mirror-confinement experiments. The industrial development of a high-current, high-field, high-current-density Nb 3 Sn conductor was the main goal of the superconducting magnet program. Beam direct conversion was being developed as a means of raising the efficiency of neutral-beam production, and plasma direct conversion was shown to work as predicted. Conceptual designs were completed for various types of power reactors. The neutral-beam program progressed in three areas: experimental work, facility construction, and conceptual design. Experiments on the 14-MeV Rotating Target Neutron Source (RTNS-II) included participation by experimenters from many different institutions. Methods for processing tritium-contaminated wastes were pursued, as were studies of tritiated methane in stainless-steel vessels, the control of tritium in mirror fusion reactors, and the development of titanium tritide targets for the RTNS. The report period witnessed a rapid maturation in ability to describe theoretically the behavior of ion-cyclotron noise in the 2XIIB and the influence of that noise on the confined plasma. The high beta values achieved in 2XIIB prompted much theoretical analysis of the properties of high-beta equilibria and stability, including those of a field-reversed state. Excellent progress was made on the development of computer codes applicable to magnetic-mirror problems, with emphasis on three-dimensional, finite-beta, guiding-center equilibria, field-reversal, and Fokker-Planck codes

  3. Assessment of some of the problems in the USA of superconducting magnets for fusion research

    International Nuclear Information System (INIS)

    Cornish, D.N.

    1981-01-01

    This paper discusses some of the general difficulties and problems encountered during the development of the technology of superconductors and superconducting magnets for fusion and expresses some personal concerns

  4. Steady State Turbulent Transport in Magnetic Fusion Plasmas

    International Nuclear Information System (INIS)

    Lee, W.W.; Ethier, S.; Kolesnikov, R.; Wang, W.X.; Tang, W.M.

    2007-01-01

    For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers

  5. Next-Step scientific objectives, targets, and parameters for reversed-field-pinch (RFP) magnetic fusion energy (MFE) systems: Preliminary thoughts

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Bathke, C.G.; DiMarco, J.N.; Miller, R.L.; Werley, K.A.

    1993-01-01

    The purpose of this document is the quantitative definition of objectives, targets, and parameters of the Next-Step device to follow the present RFX experiment; this device is given the name RFXNS. Although developed over five years ago, much of the material distilled into the 1988 RFP tactical plan is useful in establishing the goals and parameters of RFXNS. This earlier plan established tentative parameters of an RFP next step based on: predictions of RFP ignition and commercial-reactor devices; and the assumed successful operation of highly complementary RFP experiments RFX and ZTH/CPRF. Programmatic changes and evolution that have occurred since 1988 strongly impact the role and characteristics of an RFXNS: the Los Alamos ZTH/CPRF project and fusion program was terminated in mid-construction for reasons of MFE cost savings and concept focusing; great progress has been made in launching ITER; and reactor projections for the tokamak have increased in detail and variety, but not in commercial promise and competitiveness. A brief status of and perspective from each of the above three points is necessary before the key issues and their implementation to form the basis of the RFXNS definition are given

  6. Fusion Ignition Research Experiment System Integration

    International Nuclear Information System (INIS)

    Brown, T.

    1999-01-01

    The FIRE (Fusion Ignition Research Experiment) configuration has been designed to meet the physics objectives and subsystem requirements in an arrangement that allows remote maintenance of in-vessel components and hands-on maintenance of components outside the TF (toroidal-field) boundary. The general arrangement consists of sixteen wedged-shaped TF coils that surround a free-standing central solenoid (CS), a double-wall vacuum vessel and internal plasma-facing components. A center tie rod is used to help support the vertical magnetic loads and a compression ring is used to maintain wedge pressure in the inboard corners of the TF coils. The magnets are liquid nitrogen cooled and the entire device is surrounded by a thermal enclosure. The double-wall vacuum vessel integrates cooling and shielding in a shape that maximizes shielding of ex-vessel components. The FIRE configuration development and integration process has evolved from an early stage of concept selection to a higher level of machine definition and component details. This paper describes the status of the configuration development and the integration of the major subsystem components

  7. Change in properties of superconducting magnet materials by fusion neutron irradiation

    International Nuclear Information System (INIS)

    Nishimura, Arata; Nishijima, Shigehiro; Takeuchi, Takao; Nishitani, Takeo

    2007-01-01

    A fusion reactor will generate a lot of high energy neutron and much energy will be taken out of the neutrons by a blanket system. Since some neutrons will stream out of a plasma vacuum vessel through neutral beam injection ports and penetrate a blanket system, a superconducting magnet system, which provides high magnetic field to confirm high energy particles, will be irradiated by a certain amount of neutrons. By developing the new NBI system or by reducing the penetration, the neutron fluence to the superconducting magnet will be able to be reduced. However, it is not easy to achieve the lower streaming and penetration at the present. Therefore, investigations on irradiation behavior of superconducting magnet materials are desired and some novel researches have been performed from 1970s. In general, the critical current of the superconducting wire increases under fast neutron environment comparing with that of the non-irradiated wire, and then decreased to almost zero as an increase of neutron fluence. On the other hand, the critical temperature of the wire starts to get down around 10 22 n/m 2 of neutron fluence and the temperature margin will be decreased during the operation by the neutron irradiation. In this paper, some aspects of irradiated materials will be overviewed and general tendency will be discussed focussing on knock-on effect of fast neutron and long range ordering of A15 compounds

  8. Structural materials for fusion reactor blanket systems

    International Nuclear Information System (INIS)

    Bloom, E.E.; Smith, D.L.

    1984-01-01

    Consideration of the required functions of the blanket and the general chemical, mechanical, and physical properties of candidate tritium breeding materials, coolants, structural materials, etc., leads to acceptable or compatible combinations of materials. The presently favored candidate structural materials are the austenitic stainless steels, martensitic steels, and vanadium alloys. The characteristics of these alloy systems which limit their application and potential performance as well as approaches to alloy development aimed at improving performance (temperature capability and lifetime) will be described. Progress towards understanding and improving the performance of structural materials has been substantial. It is possible to develop materials with acceptable properties for fusion applications

  9. Opportunistic replacement of fusion power system parts

    International Nuclear Information System (INIS)

    Day, J.A.; George, L.L.

    1981-01-01

    This paper describes a maintenance problem in a fusion power plant. The problem is to specify which life limited parts should be replaced when there is an opportunity. The objective is to minimize the cost rate of replacement parts and of maintenance actions while satisfying a power plant availability constraint. The maintenance policy is to look ahead and replace all parts that will reach their life limits within a time called a screen. Longer screens yield greater system availabilities because more parts are replaced prior to their life limits

  10. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    International Nuclear Information System (INIS)

    Parvazian, A.; Javani, A.

    2010-01-01

    Fast ignition is a new method for inertial confinement fusion in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel. More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0.25 and 0.5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. Magnetized target fusion in dual hot spot can be considered as an appropriate substitution for the current inertial confinement fusion techniques.

  11. Fusion of magnetic resonance angiography and magnetic resonance imaging for surgical planning for meningioma. Technical note

    International Nuclear Information System (INIS)

    Kashimura, Hiroshi; Ogasawara, Kuniaki; Arai, Hiroshi

    2008-01-01

    A fusion technique for magnetic resonance (MR) angiography and MR imaging was developed to help assess the peritumoral angioarchitecture during surgical planning for meningioma. Three-dimensional time-of-flight (3D-TOF) and 3D-spoiled gradient recalled (SPGR) datasets were obtained from 10 patients with intracranial meningioma, and fused using newly developed volume registration and visualization software. Maximum intensity projection (MIP) images from 3D-TOF MR angiography and axial SPGR MR imaging were displayed at the same time on the monitor. Selecting a vessel on the real-time MIP image indicated the corresponding points on the axial image automatically. Fusion images showed displacement of the anterior cerebral or middle cerebral artery in 7 patients and encasement of the anterior cerebral arteries in I patient, with no relationship between the main arterial trunk and tumor in 2 patients. Fusion of MR angiography and MR imaging can clarify relationships between the intracranial vasculature and meningioma, and may be helpful for surgical planning for meningioma. (author)

  12. Magnetic fusion with high energy self-colliding ion beams

    International Nuclear Information System (INIS)

    Rostoker, N.; Wessel, F.; Maglich, B.; Fisher, A.

    1992-06-01

    Field-reversed configurations of energetic large orbit ions with neutralizing electrons have been proposed as the basis of a fusion reactor. Vlasov equilibria consisting of a ring or an annulus have been investigated. A stability analysis has been carried out for a long thin layer of energetic ions in a low density background plasma. There is a growing body of experimental evidence from tokamaks that energetic ions slow down and diffuse in accordance with classical theory in the presence of large non-thermal fluctuations and anomalous transport of low energy (10 keV) ions. Provided that major instabilities are under control, it seems likely that the design of a reactor featuring energetic self-colliding ion beams can be based on classical theory. In this case a confinement system that is much better than a tokamak is possible. Several methods are described for creating field reversed configurations with intense neutralized ion beams

  13. Magnetic fusion with high energy self-colliding ion beams

    International Nuclear Information System (INIS)

    Restoker, N.; Wessel, F.; Maglich, B.; Fisher, A.

    1993-01-01

    Field-reversed configurations of energetic large orbit ions with neutralizing electrons have been proposed as the basis of a fusion reactor. Vlasov equilibria consisting of a ring or an annulus have been investigated. A stability analysis has been carried out for a long thin layer of energetic ions in a low density background plasma. There is a growing body of experimental evidence from tokamaks that energetic ions slow down and diffuse in accordance with classical theory in the presence of large non-thermal fluctuations and anomalous transport of low energy (10 keV) ions. Provided that major instabilities are under control, it seems likely that the design of a reactor featuring energetic self-colliding ion beams can be based on classical theory. In this case a confinement system that is much better than a tokamak is possible. Several methods are described for creating field reversed configurations with intense neutralized ion beams

  14. Radiation control in fusion plasmas by magnetic confinement

    International Nuclear Information System (INIS)

    Dachicourt, R.

    2012-10-01

    The present work addresses two important issues for the industrial use of fusion: plasma radiation control, as a part of the more general power handling issue, and high density tokamak operation. These two issues will be most critical in the demonstration reactor, called DEMO, intermediate step between ITER and a future commercial reactor. For DEMO, the need to radiate a large fraction of the power so as to limit the peak power load on the divertor will be a key constraint. High confinement will have to be combined with high radiated power fraction, and the required level of plasma purity. The main achievement of this thesis is to have shown experimental evidence of the existence of a stable plasma regime meeting the most critical requirements of a DEMO scenario: an electron density up to 40% above the Greenwald value, together with a fraction of radiated power close to 80%, with a good energy confinement and limited dilution. The plasma is additionally heated with ion cyclotron waves in a central electron heating scenario, featuring alpha particle heating. The original observations reported in this work bring highly valuable new pieces of information both to the physics of the tokamak edge layer and to the construction of an 'integrated operational scenario' required to successfully operate fusion devices. In the way for getting high density plasmas, the new observations involve the following topics. First, the formation of a poloidal asymmetry in the edge electron density profile, with a maximum density located close to toroidal pumped limiter. This asymmetry occurs inside the separatrix, with a constant plasma pressure on magnetic surfaces. Secondly, a correlative decrease of the electron temperature in the same edge region. Thirdly, the excellent coupling capabilities of the ICRH waves, up to a central line averaged electron density of 1.4 times the Greenwald density. Fourthly, a poloidally asymmetric edge radiation region, providing the dissipation of 80% of

  15. Perspectives on the development of fusion power by magnetic confinement, 1977

    International Nuclear Information System (INIS)

    1977-01-01

    The Committee concludes: that recent progress of the magnetic fusion energy program provides a tangible basis for the belief that the development of fusion power will prove feasible; that the primary near-term objective of the program should now be to demonstrate actual reactor-level conditions; and that the potential long-term benefits of fusion power are sufficiently great to warrant a sustained national effort to advance the fusion power option to the stage of commercial availability at an early time

  16. Initiative taken by India in magnetically confined fusion reactor

    International Nuclear Information System (INIS)

    Bora, Dhiraj

    2017-01-01

    There is a growing gap between demand and supply of energy in the world. Any attempt to develop new and cleaner sources of energy to meet the future global requirement is welcome. Therefore, it is attractive to think of having fusion as an alternate clean source of energy to contribute in the energy mix towards the second half of the century, with a virtually inexhaustible fuel supply. The environmental impact of fusion would be acceptable and relatively safe. These advantages have driven the world fusion research programme since its inception. Indian progress in fusion science and technology and participation in ITER will be discussed during the talk

  17. Block Fusion Systems and the Center of the Group Ring

    DEFF Research Database (Denmark)

    Jacobsen, Martin Wedel

    This thesis develops some aspects of the theory of block fusion systems. Chapter 1 contains a brief introduction to the group algebra and some simple results about algebras over a field of positive characteristic. In chapter 2 we define the concept of a fusion system and the fundamental property...... of saturation. We also define block fusion systems and prove that they are saturated. Chapter 3 develops some tools for relating block fusion systems to the structure of the center of the group algebra. In particular, it is proven that a block has trivial defect group if and only if the center of the block...... algebra is one-dimensional. Chapter 4 consists of a proof that block fusion systems of symmetric groups are always group fusion systems of symmetric groups, and an analogous result holds for the alternating groups....

  18. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  19. Motional Stark Effect measurements of the local magnetic field in high temperature fusion plasmas

    Science.gov (United States)

    Wolf, R. C.; Bock, A.; Ford, O. P.; Reimer, R.; Burckhart, A.; Dinklage, A.; Hobirk, J.; Howard, J.; Reich, M.; Stober, J.

    2015-10-01

    The utilization of the Motional Stark Effect (MSE) experienced by the neutral hydrogen or deuterium injected into magnetically confined high temperature plasmas is a well established technique to infer the internal magnetic field distribution of fusion experiments. In their rest frame, the neutral atoms experience a Lorentz electric field, EL = v × B, which results in a characteristic line splitting and polarized line emission. The different properties of the Stark multiplet allow inferring, both the magnetic field strength and the orientation of the magnetic field vector. Besides recording the full MSE spectrum, several types of polarimeters have been developed to measure the polarization direction of the Stark line emission. To test physics models of the magnetic field distribution and dynamics, the accuracy requirements are quite demanding. In view of these requirements, the capabilities and issues of the different techniques are discussed, including the influence of the Zeeman Effect and the sensitivity to radial electric fields. A newly developed Imaging MSE system, which has been tested on the ASDEX Upgrade tokamak, is presented. The sensitivity allows to resolve sawtooth oscillations. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  20. Magnets for the Mirror Fusion Test Facility: testing of the first Yin-Yang and the design and development of other magnets

    International Nuclear Information System (INIS)

    Kozman, T.A.; Wang, S.T.; Chang, Y.

    1983-01-01

    Completed in May 1981, the first Yin-Yang magnet for the tandem Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) was successfully tested in February 1982 to its full design field (7.68 T) and current (5775 A). Since that time, the entire magnet array has been reconfigured - from the original A-cell to an axicell design. The MFTF-B magnet array now contains a total of 26 large superconducting coils: 2 sets of yin-yang pairs, 2 sets of transition magnets (each containing two coils), 2 sets of axicell magnets (each containing three coils), and 12 central-cell solenoids. This paper chronicles recent magnet history - from te testing of the initial yin-yang set, through the design of the axicell configuration, to the planned development of the system

  1. Exploitation of a Breakthrough in Magnetic Confinement Fusion to Improve Transuranic Incineration

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Erich [Nuclear and Radiation Engineering Program, The University of Texas at Austin, Austin, TX 78712 (United States); Kotschenreuther, Mike; Mahajan, Swadesh; Valanju, Prashant [Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States)

    2009-06-15

    A fusion-assisted transmutation system for the destruction of transuranic nuclear waste is developed by combining a subcritical fusion-fission hybrid assembly uniquely equipped to burn the worst thermal non-fissile transuranic isotopes with a new fuel cycle that uses cheaper light water reactors for most of the transmutation. The centerpiece of this fuel cycle, the high power density compact fusion neutron source (CFNS, 100 MW, outer radius <3 m), is made possible by a new divertor with a heat-handling capacity five times that of the standard alternative. The number of hybrids needed to destroy a given amount of waste is about an order of magnitude below the corresponding number of critical fast spectrum reactors (FR) as the latter cannot fully exploit the new fuel cycle. Also, the time needed for 99% transuranic waste destruction reduces from centuries (with FR) to decades. The generic Hybrid, combining neutron-rich fusion with energy-rich fission, was first conceptualized several decades ago. However, it is only now that accumulated advances in fusion science and technology allow designing a neutron source like CFNS that is simultaneously compact and high power density, offering a neutron source an order of magnitude stronger than that obtained from accelerator driven systems. The former is essential for efficient coupling to the fission blanket, and the latter is key to efficient neutron production necessary to yield high neutron fluxes needed for effective transmutation. The recent invention of the SuperX-Divertor (SXD)1, a new magnetic configuration that allows the system to safely exhaust large heat and particle fluxes peculiar to CFNS-like devices, is a crucial addition to the underlying knowledge base. The subcritical FFTS acquires a definite advantage over the critical FR approach because of its ability to support an innovative fuel cycle that makes the cheaper LWR do the bulk (75%) of the transuranic transmutation via deep burn in an inert matrix fuel

  2. Multimodal Biometric System- Fusion Of Face And Fingerprint Biometrics At Match Score Fusion Level

    OpenAIRE

    Grace Wangari Mwaura; Prof. Waweru Mwangi; Dr. Calvins Otieno

    2017-01-01

    Biometrics has developed to be one of the most relevant technologies used in Information Technology IT security. Unimodal biometric systems have a variety of problems which decreases the performance and accuracy of these system. One way to overcome the limitations of the unimodal biometric systems is through fusion to form a multimodal biometric system. Generally biometric fusion is defined as the use of multiple types of biometric data or ways of processing the data to improve the performanc...

  3. Magnetic spectrometer control system

    International Nuclear Information System (INIS)

    Lecca, L.A.; Di Paolo, Hugo; Fernandez Niello, Jorge O.; Marti, Guillermo V; Pacheco, Alberto J.; Ramirez, Marcelo

    2003-01-01

    The design and implementation of a new computerized control system for the several devices of the magnetic spectrometer at TANDAR Laboratory is described. This system, as a main difference from the preexisting one, is compatible with almost any operating systems of wide spread use available in PC. This allows on-line measurement and control of all signals from any terminal of a computer network. (author)

  4. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    International Nuclear Information System (INIS)

    Schissel, D.P.; Abla, G.; Burruss, J.R.; Feibush, E.; Fredian, T.W.; Goode, M.M.; Greenwald, M.J.; Keahey, K.; Leggett, T.; Li, K.; McCune, D.C.; Papka, M.E.; Randerson, L.; Sanderson, A.; Stillerman, J.; Thompson, M.R.; Uram, T.; Wallace, G.

    2006-01-01

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large

  5. Magnetized target fusion: An ultra high energy approach in an unexplored parameter space

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1994-01-01

    Magnetized target fusion is a concept that may lead to practical fusion applications in a variety of settings. However, the crucial first step is to demonstrate that it works as advertised. Among the possibilities for doing this is an ultrahigh energy approach to magnetized target fusion, one powered by explosive pulsed power generators that have become available for application to thermonuclear fusion research. In a collaborative effort between Los Alamos and the All-Russian Scientific Institute for Experimental Physics (VNIIEF) a very powerful helical generator with explosive power switching has been used to produce an energetic magnetized plasma. Several diagnostics have been fielded to ascertain the properties of this plasma. We are intensively studying the results of the experiments and calculationally analyzing the performance of this experiment

  6. An Approach to Automated Fusion System Design and Adaptation

    Directory of Open Access Journals (Sweden)

    Alexander Fritze

    2017-03-01

    Full Text Available Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum.

  7. An Approach to Automated Fusion System Design and Adaptation.

    Science.gov (United States)

    Fritze, Alexander; Mönks, Uwe; Holst, Christoph-Alexander; Lohweg, Volker

    2017-03-16

    Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum.

  8. Issues in the commercialization of magnetic fusion power

    International Nuclear Information System (INIS)

    Rockwood, A.D.; Willke, T.L.

    1979-12-01

    This study identifies and outlines the issues that must be considered if fusion is to be put into commercial practice. The issues are put into perspective around a consistent framework and a program of study and research is recommended to anticipate and handle the issues for a successful fusion commercialization program

  9. Issues in the commercialization of magnetic fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, A.D.; Willke, T.L.

    1979-12-01

    This study identifies and outlines the issues that must be considered if fusion is to be put into commercial practice. The issues are put into perspective around a consistent framework and a program of study and research is recommended to anticipate and handle the issues for a successful fusion commercialization program. (MOW)

  10. Fusion-fission energy systems evaluation

    International Nuclear Information System (INIS)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept

  11. Fusion-fission energy systems evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  12. HYFIRE: fusion-high temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Dang, V.D.; Horn, F.; Isaacs, H.; Lazareth, O.; Makowitz, H.; Usher, J.

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H 2 and O 2 , electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  13. Economics of fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    The economic analysis of symbiotic energy systems in which U233 (to fuel advanced converters burning U233 fuel) is generated in blankets surrounding fusioning D-T plasma's depends on factors such as the plasma performance parameters, ore costs, and the relative costs of Fusion Breeders (CTR) to Advanced Fission Converters. The analysis also depends on detailed information such as initial, final makeup fuel requirements, fuel isotopics, reprocessing and fabrication costs, reprocessing losses (1%) and delays (2 years), the cost of money, and the effect of the underutilization of the factory thermal installation at the beginning of cycle. In this paper we present the results of calculations of overall fuel cycle and power costs, ore requirements, proliferation resistance and possibilities for grid expansion, based on detailed mass and energy flow diagrams and standard US INFCE cost data and introduction constraints, for realistic symbiotic scenarios involving CTR's (used as drivers) and denatured CANDU's (used as U233 burners). We compare the results with those obtained for other strategies involving heterogeneous LMFBR's which burn Pu to produce U233 for U233-burners such as the advanced CANDU converters

  14. ESCAR superconducting magnet system

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Meuser, R.B.; Pope, W.L.; Green, M.A.

    1975-01-01

    Twenty-four superconducting dipoles, each about 1 meter long, provide the guide field for the Experimental Superconducting Accelerator Ring proton accelerator--storage ring. Injection of 50 MeV protons corresponds to a 3 kG central dipole field, and a peak proton energy of 4.2 GeV corresponds to a 46 kG central field. Thirty-two quadrupoles provide focusing. The 56 superconducting magnets are contained in 40 cryostats that are cryogenically connected in a novel series ''weir'' arrangement. A single 1500 W refrigeration plant is required. Design and testing of the magnet and cryostat system are described. (U.S.)

  15. A new approach to the solution of the vacuum magnetic problem in fusion machines

    International Nuclear Information System (INIS)

    Zabeo, L.; Piccolo, F.; Sartori, F.; Albanese, R.; Cenedese, A.

    2006-01-01

    The magnetic vacuum topology reconstruction using the magnetic measurements is essential in controlling and understanding plasmas produced by fusion machines. In a wide range of the cases, the instruments to approach the problem have been designed for a specific machine and to solve a specific plasma model. Recently a new approach has been used by developing new magnetic software called Felix. The adopted solution in the design allows the use of the software not only at JET but also at different machines by simply changing a configuration file. A database describing the tokamak in the magnetic point of view is used to provide different vacuum magnetic models (polynomial, moments, filamentary) that can be solved by Felix without any recompiling or testing. In order to reduce the analysis and debugging time the software has been designed with modularity and platform independence in mind. That results in a large portability and in particular it allows use of the same code both offline and in real-time. One of the main aspects of the tool is its capability to solve different plasma models of current distribution by changing its configuration file. In order to improve the plasma magnetic reconstruction in real time a set of models has been run using Felix. An improved polynomial based model compared with the one presently used and two models using current filaments have been tested and compared. The new system has also been improved the calculation of plasma magnetic parameters. Double null configurations smooth transitions, more accurate gap and strike-point calculations, detailed boundary reconstruction are now systematically available. Felix is presently running at JET in different real-time analysis and control systems that need vacuum magnetic topology such as control of the plasma shape, the wall protection system [F.Piccolo et al.'Upgrade of the protection system for the first wall at JET in the ITER Be and W tiles prespective' this conference], the magnetic

  16. New Burnup Calculation System for Fusion-Fission Hybrid System

    International Nuclear Information System (INIS)

    Isao Murata; Shoichi Shido; Masayuki Matsunaka; Keitaro Kondo; Hiroyuki Miyamaru

    2006-01-01

    Investigation of nuclear waste incineration has positively been carried out worldwide from the standpoint of environmental issues. Some candidates such as ADS, FBR are under discussion for possible incineration technology. Fusion reactor is one of such technologies, because it supplies a neutron-rich and volumetric irradiation field, and in addition the energy is higher than nuclear reactor. However, it is still hard to realize fusion reactor right now, as well known. An idea of combination of fusion and fission concepts, so-called fusion-fission hybrid system, was thus proposed for the nuclear waste incineration. Even for a relatively lower plasma condition, neutrons can be well multiplied by fission in the nuclear fuel, tritium is thus bred so as to attain its self-sufficiency, enough energy multiplication is then expected and moreover nuclear waste incineration is possible. In the present study, to realize it as soon as possible with the presently proven technology, i.e., using ITER model with the achieved plasma condition of JT60 in JAEA, Japan, a new calculation system for fusion-fission hybrid reactor including transport by MCNP and burnup by ORIGEN has been developed for the precise prediction of the neutronics performance. The author's group already has such a calculation system developed by them. But it had a problem that the cross section libraries in ORIGEN did not have a cross section library, which is suitable specifically for fusion-fission hybrid reactors. So far, those for FBR were approximately used instead in the analysis. In the present study, exact derivation of the collapsed cross section for ORIGEN has been investigated, which means it is directly evaluated from calculated track length by MCNP and point-wise nuclear data in the evaluated nuclear data file like JENDL-3.3. The system realizes several-cycle calculation one time, each of which consists of MCNP criticality calculation, MCNP fixed source calculation with a 3-dimensional precise

  17. Magnetic separation in microfluidic systems

    DEFF Research Database (Denmark)

    Smistrup, Kristian

    2007-01-01

    to facilitate real-time monitoring of the experiments. The set-up and experimental protocol are described in detail. Results are presented for ’active’ magnetic bead separators, where on-chip microfabricated electromagnets supply the magnetic field and field gradients necessary for magnetic bead separation....... It is shown conceptually how such a system can be applied for parallel biochemical processing in a microfluidic system. ’Passive’ magnetic separators are presented, where on-chip soft magnetic elements are magnetized by an external magnetic field and create strong magnetic fields and gradients inside...

  18. Canada's Fusion Program

    International Nuclear Information System (INIS)

    Jackson, D. P.

    1990-01-01

    Canada's fusion strategy is based on developing specialized technologies in well-defined areas and supplying these technologies to international fusion projects. Two areas are specially emphasized in Canada: engineered fusion system technologies, and specific magnetic confinement and materials studies. The Canadian Fusion Fuels Technology Project focuses on the first of these areas. It tritium and fusion reactor fuel systems, remote maintenance and related safety studies. In the second area, the Centre Canadian de fusion magnetique operates the Tokamak de Varennes, the main magnetic fusion device in Canada. Both projects are partnerships linking the Government of Canada, represented by Atomic Energy of Canada Limited, and provincial governments, electrical utilities, universities and industry. Canada's program has extensive international links, through which it collaborates with the major world fusion programs, including participation in the International Thermonuclear Experimental Reactor project

  19. Heavy ion fusion systems assessment - An overview

    International Nuclear Information System (INIS)

    Waganer, L.M.; Driemeyer, D.E.; Zuckerman, D.S.; Billman, K.W.

    1986-01-01

    A study is underway to evaluate the technical performance and economic attractiveness of linear induction-driven Heavy Ion Fusion (HIF) as an energy source for electrical power generation. This study is a cooperative effort of several national laboratories, universities, industrial contractors and the Electric Power Research Institute (EPRI) under the leadership of Los Alamos National Laboratory. McDonnell Douglas Astronautics Company, assisted by Titan Systems, Inc, has the responsibility to integrate the cost and performance models of the driver, reactor and balance of plant systems, evaluate different system options and assess the overall technical and economic performance of an HIF power plant. Individual system options have been designed and analyzed by the other participants in the DOE-sponsored parent study and are provided for system integration and evaluation. This paper describes the integration and evaluation effort for the HIF Systems Assessment. Specific areas discussed include, the definition of Systems Requirements, the development of Assessment Methodology, the characterization of System Options, the description of Systems Assessment Code, the assessment of Code Results, the ranking of System Options, the selection of Attractive System Options, and the determination of Preferred Operating Parameter Space. The initial study effort was to define the system requirements from the standpoint of the overall power plant. This was accomplished by establishing overall power plant performance goals and specifications. The plant was assumed to be dedicated only to electrical power production in the 2020 time frame enabling the study to look beyond developmental and startup difficulties. The net plant output was defined to be between 400 and 1500 MWe which would allow investigating the effect of plant size

  20. Magnetic Induction Machines Embedded in Fusion-Bonded Silicon

    National Research Council Canada - National Science Library

    Arnold, David P; Cros, Florent; Zana, Iulica; Allen, Mark G; Das, Sauparna; Lang, Jeffrey H

    2004-01-01

    ...) within etched and fusion-bonded silicon to form the machine structure. The induction machines were characterized in motoring mode using tethered rotors, and exhibited a maximum measured torque...

  1. Controlled Nuclear Fusion by Magnetic Confinement and ITER

    CERN Document Server

    CERN. Geneva. Audiovisual Unit; Alvarez-Gaumé, Luís

    2005-01-01

    For may years harnessing fusion energy was considered the final solution to the world's energy crisis. ITER is the last step in the elusive quest. This presentation will provide in its various acientific, technological and political aspects.

  2. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  3. Some not such wonderful magnetic fusion facts; and their solution

    Science.gov (United States)

    Manheimer, Wallace

    2017-10-01

    The first not such wonderful fusion fact (NSWFF) is that if ITER is successful, it is nowhere near ready to develop into a DEMO. The design Q=10, along with electricity generating efficiency of 1/3 prevents this. Making it smaller and cheaper, increasing the gain by 3 or 4, and the wall loading by an order of magnitude is not a minor detail, it is not at all clear the success with ITER will lead to a similar, pure fusion DEMO. The second NSWFF is that tokamaks are unlikely to improve to the point where they can be effective fusion reactors because their performance is limited by conservative design rules. The third NSWFF is that developing large fusion devices like ITER takes an enormous amount of time and dollars, there are no second chances. The fourth NSWFF is that it is unlikely that alternative confinement configurations will succeed either, at least in this century; they are simply too far behind. There is only a single solution for fusion to become a sustainable, carbon free power source by midcentury or shortly thereafter. This is to develop ITER (assuming it is successful) into a fusion breeder. This work was not supported by any organization, private or public.

  4. Applications of intelligent-measurement systems in controlled-fusion research

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.; Lindquist, W.B.; Peterson, R.L.; Wyman, R.H.

    1981-01-01

    The paper describes the control and instrumentation for the Mirror Fusion Test Facility at the Lawrence Livermore National Laboratory, California, USA. This large-scale scientific experiment in controlled thermonuclear fusion, which is currently being expanded, originally had 3000 devices to control and 7000 sensors to monitor. A hierarchical computer control system, is used with nine minicomputers forming the supervisory system. There are approximately 55 local control and instrumentation microcomputers. In addition, each device has its own monitoring equipment, which in some cases consists of a small computer. After describing the overall system a more detailed account is given of the control and instrumentation for two large superconducting magnets

  5. Fusion--fission energy systems, some utility perspectives

    International Nuclear Information System (INIS)

    Huse, R.A.; Burger, J.M.; Lotker, M.

    1974-01-01

    Some of the issues that are important in assessing fusion-- fission energy systems from a utility perspective are discussed. A number of qualitative systems-oriented observations are given along with some economic quantification of the benefits from fusion--fission hybrids and their allowed capital cost. (U.S.)

  6. Superconducting magnets for model ship propulsion and for material tests of a nuclear fusion reactor

    International Nuclear Information System (INIS)

    Horiuchi, T.; Matsumoto, K.; Monju, Y.; Tatara, I.; Hamada, M.

    1982-01-01

    Nuclear fusion reactors, magnetically levitated trains, and MHD generators, etc., all need a very high magnetic field; which in order to be attained a means the application of superconductors is inevitable. This paper describes the development of ''CRYOZITT'', a superconductor featuring high current density and high mechanical strength. CRYOZITT has already been used in the manufacture of two race-track shaped superconducting magnets, and delivered to highly satisfied customers. (author)

  7. 'Optical' soft x-ray arrays for fluctuation diagnostics in magnetic fusion energy experiments

    International Nuclear Information System (INIS)

    Delgado-Aparicio, L.F.; Stutman, D.; Tritz, K.; Finkenthal, M.; Kaita, R.; Roquemore, L.; Johnson, D.; Majeski, R.

    2004-01-01

    We are developing large pixel count, fast (≥100 kHz) and continuously sampling soft x-ray (SXR) array for the diagnosis of magnetohydrodynamics (MHD) and turbulent fluctuations in magnetic fusion energy plasmas. The arrays are based on efficient scintillators, high thoughput multiclad fiber optics, and multichannel light amplification and integration. Compared to conventional x-ray diode arrays, such systems can provide vastly increased spatial coverage, and access to difficult locations with small neutron noise and damage. An eight-channel array has been built using columnar CsI:Tl as an SXR converter and a multianode photomultiplier tube as photoamplifier. The overall system efficiency is measured using laboratory SXR sources, while the time response and signal-to-noise performance have been evaluated by recording MHD activity from the spherical tori (ST) Current Drive Experiment-Upgrade and National Spherical Torus Experiment, both at Princeton Plasma Physics Laboratory

  8. Wave heating and the U.S. magnetic fusion energy program

    International Nuclear Information System (INIS)

    Staten, H.S.

    1985-01-01

    The U.S. Government's support of the fusion program is predicated upon the long-term need for the fusion option in our energy future, as well as the near-term benefits associated with developments on the frontier of science and high technology. As a long-term energy option, magnetic fusion energy has the potential to provide an inexpensive, vast, and secure fuel reserve, to be environmentally clean and safe. It has many potential uses, which include production of central station electricity, fuel for fission reactors, synthetic fuels, and process heat for such applications as desalination of sea water. This paper presents an overview of the U.S. Government program for magnetic fusion energy. The goal and objectives of the U.S. program are reviewed followed by a summary of plasma experiments presently under way and the application of wave heating to these experiments

  9. Proposed design criteria for a fusion facility electrical ground system

    International Nuclear Information System (INIS)

    Armellino, C.A.

    1983-01-01

    Ground grid design considerations for a nuclear fusion reactor facility are no different than any other facility in that the basis for design must be safety first and foremost. Unlike a conventional industrial facility the available fault energy comes not only from the utility source and in-house rotating machinery, but also from energy storage capacitor banks, collapsing magnetic fields and D.C. transmission lines. It is not inconceivable for a fault condition occurrence where all available energy can be discharged. The ground grid must adequately shunt this sudden energy discharge in a way that personnel will not be exposed by step and/or touch to hazardous energy levels that are in excess of maximum tolerable levels for humans. Fault energy discharge rate is a function of the ground grid surge impedance characteristic. Closed loop paths must be avoided in the ground grid design so that during energy discharge no stray magnetic fields or large voltage potentials between remote points can be created by circulating currents. Single point connection of equipment to the ground grid will afford protection to personnel and sensitive equipment by reducing the probability of circulating currents. The overall ground grid system design is best illustrated as a wagon wheel concept with the fusion machine at the center. Radial branches or spokes reach out to the perimeter limits designated by step-and-touch high risk areas based on soil resistivity criteria considerations. Conventional methods for the design of a ground grid with all of its radial branches are still pertinent. The center of the grid could include a deep well single ground rod element the length of which is at least equivalent to the radius of an imaginary sphere that enshrouds the immediate machine area. Special facilities such as screen rooms or other shielded areas are part of the ground grid system by way of connection to radial branches

  10. Parametric system studies of candidate TF coil system options for the Tokamak Fusion Core Experiment (TFCX)

    International Nuclear Information System (INIS)

    Reiersen, W.T.; Flanagan, C.A.; Miller, J.B.

    1983-01-01

    System studies were performed to determine the sensitivity of hybrid and superconducting toroidal field (TF) coil system options to maximum field at the TF coil and to field enhancement due to resistive insert coils. The studies were performed using Tokamak Fusion Core Experiment (TFCX) design assumptions, guidelines, and criteria and involved iterative execution of the Fusion Engineering Design Center (FEDC) systems code, magnetohydrodynamics (MHD) equilibrium code, and EFFI (a code to evaluate magnetic field strength). The results indicate that for TFCX with no minimum wall loading specified, a design point chosen solely on the basis of cost would likely be in the low-field region of design space where the cost advantage of hybrids is least apparent. However, as the desired neutron wall loading increases, the hybrid option suggests an increasing cost advantage over the all-superconducting option; this cost advantage is countered by increased complexity in design -- particularly in assembly and maintenance

  11. Parametric system studies of candidate TF coil system options for the Tokamak Fusion Core Experiment (TFCX)

    International Nuclear Information System (INIS)

    Reiersen, W.T.; Flanagan, C.A.; Miller, J.B.

    1983-01-01

    System studies were performed to determine the sensitivity of hybrid and superconducting toroidal field (TF) coil system options to maximum field at the TF coil and to field enhancement due to resistive insert coils. The studies were performed using Tokamak Fusion Core Experiment (TFCX) design assumptions, guidelines, and criteria and involved iterative execution of the Fusion Engineering Design Center (FEDC) systems code, magnetohydrodynamics (MHD) equilibrium code, and EFFI (a code to evaluate magnetic field strength). The results indicate that for TFCX with no minimum wall loading specified, a design point chosen solely on the basis of cost would likely be in the low-field region of design space where the cost advantage of hybrids is least apparent. However, as the desired neutron wall loading increases, the hybrid option suggests an increasing cost advantage over the all-superconducting option; this cost advantage is countered by increased complexity in design - particularly in assembly and maintenance

  12. Construction of a large laser fusion system

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1977-01-01

    Construction of a large laser fusion machine is nearing completion at the Lawrence Livermore Laboratory (LLL). Shiva, a 20-terawatt neodymium doped glass system, will be complete in early 1978. This system will have the high power needed to demonstrate significant thermonuclear burn. Shiva will irradiate a microscopic D-T pellet with 20 separate laser beams arriving simultaneously at the target. This requires precise alignment, and stability to maintain alignment. Hardware for the 20 laser chains is composed of 140 amplifiers, 100 spatial filters, 80 isolation stages, 40 large turning mirrors, and a front-end splitter system of over 100 parts. These are mounted on a high stability, three dimensional spaceframe which serves as an optical bench. The mechanical design effort, spanning approximately 3 years, followed a classic engineering evolution. The conceptual design phase led directly to system optimization through cost and technical tradeoffs. Additional manpower was then required for detailed design and specification of hardware and fabrication. Design of long-lead items was started early in order to initiate fabrication and assembly while the rest of the design was completed. All components were ready for assembly and construction as fiscal priorities and schedules permitted

  13. Ion rings for magnetic fusion. Technical progress report, August 1, 1993--June 1, 1994

    International Nuclear Information System (INIS)

    Sudan, R.N.

    1994-01-01

    In Our Proposal ''Ion Rings for Magnetic Fusion'' of January 6, 1993, Stage I of our Proposed Program plan (the 12 months) consisted of the following tasks: Experiments on the existing ion ring experimental system IREX to test a new magnetically-controlled anode plasma source (MAP) for the ion beam diode injector; numerical simulations of ion ring formation to optimize design parameters for the field reversed ion ring experiment (FIREX) to be built and operated in Stage II; and designing the power supply for the FIREX injector and the magnetic field system using results for A and B. During the past 7 1/2 months our work has progressed according to the above plan. In addition to testing the MAP diode on IREX we have tested the EMFAPS (evaporating metal film anode plasma source) anode on the Sandia National Laboratories funded LION pulsed power generator. As a result of these experiments, described this paper, we have arrived at the conclusion that EMFAPS anode for the ion at present because the MAP diode beam diode injector is our preferred choice for is still in an early stage of development

  14. High magnetic field MRI system

    International Nuclear Information System (INIS)

    Maeda, Hideaki; Urata, Masami; Satoh, Kozo

    1990-01-01

    A high field superconducting magnet, 4-5 T in central magnetic field, is required for magnetic resonance spectroscopic imaging (MRSI) on 31 P, essential nuclei for energy metabolism of human body. This paper reviews superconducting magnets for high field MRSI systems. Examples of the cross-sectional image and the spectrum of living animals are shown in the paper. (author)

  15. Inertial confinement fusion with direct electric generation by magnetic flux comparession

    International Nuclear Information System (INIS)

    Lasche, G.P.

    1983-01-01

    A high-power-density laser-fusion-reactor concept in investigated in which directed kinetic enery imparted to a large mass of liquid lithium--in which the fusion target is centrally located--is maximized. In turn, this kinetic energy is converted directly to electricity with, potentially, very high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the concept maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall can be many orders of magnitude less than is typical of D-T fusion reactor concepts

  16. Magnetic linear accelerator (MAGLAC) for hypervelocity acceleration in impact fusion (IF)

    International Nuclear Information System (INIS)

    Chen, K.W.

    1980-01-01

    This paper presents considerations on the design of a magnetic linear accelerator suitable as driver for impact fusion. We argue that the proposed approach offers an attractive option to accelerate macroscopic matter to centiluminal velocity suitable for fusion applications. The design goal is to attain a velocity approaching 200 km/sec. Recent results in suitable target design suggest that a velocity in the range of 40-100 km/sec might be sufficient to include fusion. An accelerator in this velocity range can be constructed with current-day technology. We present both design and practical engineering considerations. Future work are outlined and recommended. (orig.)

  17. Assessment of the critical engineering data needs for the commercialization of magnetic confinement fusion

    International Nuclear Information System (INIS)

    Waganer, L.M.; Zuckerman, D.S.

    1983-01-01

    A survey of twenty-two recent conceptual fusion reactor designs was conducted to ascertain both generic and specific engineering data needs critical for the commercialization of magnetic confinement fusion (MCF). Design experts or advocates for each concept were queried as to the more critical engineering issues and data needs affecting the achievement of commercialization. For each concept, the technical issues were identified and the data needs quantified. Issues and data needs were then ranked based upon the experts' perceptions of the relative importance of each to the concept. The issues encompassed all aspects of the fusion reactor plant design including materials, performance, maintainability, operability, cost, safety and resources

  18. Conceptual design of SC magnet system for ITER, (5)

    International Nuclear Information System (INIS)

    Nakajima, Hideo; Nishi, Masataka; Yoshida, Kiyoshi; Tsuji, Hiroshi; Egusa, Shigenori; Seguchi, Tadao; Hagiwara, Miyuki; Kirk, M.A.; Birtcher, R.C.

    1991-08-01

    Japan Atomic Energy Research Institute (JAERI) has been developing a superconducting magnet system for a fusion reactor. One of the key items in developing the superconducting magnets is material development and evaluation. The data of superconducting materials, structural alloys, and non-metallic materials are generated to establish a material data base at JAERI. This report is prepared to provide available data generated by JAERI to designers of superconducting magnets throughout the world. The following review papers written for the International Thermonuclear Experimental Reactor (ITER) report on conceptual design of magnet system are combined here. I. Superconducting Material Data II. Mechanical Properties of the Japanese Cryogenic Steels (JCS) at Cryogenic Temperature III. Review of Radiation Degradation Studies at JAERI on Composite Organic Insulators Used in Fusion Magnets (author)

  19. Physics, systems analysis and economics of fusion power plants

    International Nuclear Information System (INIS)

    Ward, D.J.

    2006-01-01

    Fusion power is being developed because of its large resource base, low environmental impact and high levels of intrinsic safety. It is important, however, to investigate the economics of a future fusion power plant to check that the electricity produced can, in fact, have a market. Using systems code analysis, including costing algorithms, this paper gives the cost of electricity expected from a range of fusion power plants, assuming that they are brought into successful operation. Although this paper does not purport to show that a first generation of fusion plants is likely to be the cheapest option for a future energy source, such plants look likely to have a market in some countries even without taking account of fusion's environmental advantages. With improved technological maturity fusion looks likely to have a widespread potential market particularly if the value of its environmental advantages are captured, for instance through avoiding a carbon tax. (author)

  20. Cryogenic systems for inertial fusion energy

    International Nuclear Information System (INIS)

    Chatain, D.; Perin, J.P.; Bonnay, P.; Bouleau, E.; Chichoux, M.; Communal, D.; Manzagol, J.; Viargues, F.; Brisset, D.; Lamaison, V.; Paquignon, G.

    2008-01-01

    The Low Temperatures Laboratory of CEA/Grenoble (France) is involved in the development of cryogenic systems for inertial fusion since a ten of years. A conceptual design for the cryogenic infrastructure of the Laser MegaJoule (LMJ) facility has been proposed. Several prototypes have been designed, built and tested like for example the 1500 bars cryo-compressor for the targets filling, the target positioner and the thermal shroud remover. The HIPER project will necessitate the development of such equipments. The main difference is that this time, the cryogenic targets are direct drive targets. The first phase of HIPER experiments is a single shot period. Based oil the experience gained the last years, not only by our laboratory but also by Omega and G.A teams, we could design the new HIPER equipments for this phase. Some experimental results obtained with the prototypes of the LMJ cryogenic system are given and a first conceptual design for the HIPER single shot cryogenic system is shown. (authors)

  1. Database for fusion devices and associated fuel systems

    International Nuclear Information System (INIS)

    Woolgar, P.W.

    1983-03-01

    A computerized database storage and retrieval system has been set up for fusion devices and the associated fusion fuel systems which should be a useful tool for the CFFTP program and other users. The features of the Wang 'Alliance' system are discussed for this application, as well as some of the limitations of the system. Recommendations are made on the operation, upkeep and further development that should take place to implement and maintain the system

  2. Magnetic fusion energy materials technology program annual progress report for period ending June 30, 1977

    International Nuclear Information System (INIS)

    Scott, J.L.

    1977-09-01

    The objectives of the Magnetic Fusion Energy (MFE) Materials Technology Program, which is described in this report, are to continue to solve the materials problems of the Fusion Energy Division of ORNL and to meet needs of the national MFE program, directed by the ERDA Division of Magnetic Fusion Energy (DMFE). This work is a continuation of the program described in previous annual progress reports. The principal areas of work include radiation effects, compatibility studies, materials studies related to the plasma-materials interaction, materials engineering, radiation behavior of superconducting magnet insulation, and mechanical properties of superconducting composites. The level of effort and schedules are consistent with Logic II of the DMFE Program Plan

  3. LDRD final report on confinement of cluster fusion plasmas with magnetic fields.

    Energy Technology Data Exchange (ETDEWEB)

    Argo, Jeffrey W.; Kellogg, Jeffrey W.; Headley, Daniel Ignacio; Stoltzfus, Brian Scott; Waugh, Caleb J.; Lewis, Sean M.; Porter, John Larry, Jr.; Wisher, Matthew; Struve, Kenneth William; Savage, Mark Edward; Quevedo, Hernan J.; Bengtson, Roger

    2011-11-01

    Two versions of a current driver for single-turn, single-use 1-cm diameter magnetic field coils have been built and tested at the Sandia National Laboratories for use with cluster fusion experiments at the University of Texas in Austin. These coils are used to provide axial magnetic fields to slow radial loss of electrons from laser-produced deuterium plasmas. Typical peak field strength achievable for the two-capacitor system is 50 T, and 200 T for the ten-capacitor system. Current rise time for both systems is about 1.7 {mu}s, with peak current of 500 kA and 2 MA, respectively. Because the coil must be brought to the laser, the driver needs to be portable and drive currents in vacuum. The drivers are complete but laser-plasma experiments are still in progress. Therefore, in this report, we focus on system design, initial tests, and performance characteristics of the two-capacitor and ten-capacitors systems. The questions of whether a 200 T magnetic field can retard the breakup of a cluster-fusion plasma, and whether this field can enhance neutron production have not yet been answered. However, tools have been developed that will enable producing the magnetic fields needed to answer these questions. These are a two-capacitor, 400-kA system that was delivered to the University of Texas in 2010, and a 2-MA ten-capacitor system delivered this year. The first system allowed initial testing, and the second system will be able to produce the 200 T magnetic fields needed for cluster fusion experiments with a petawatt laser. The prototype 400-kA magnetic field driver system was designed and built to test the design concept for the system, and to verify that a portable driver system could be built that delivers current to a magnetic field coil in vacuum. This system was built copying a design from a fixed-facility, high-field machine at LANL, but made to be portable and to use a Z-machine-like vacuum insulator and vacuum transmission line. This system was sent to the

  4. Reactor structure and superconducting magnet system of ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Yoshida, Kiyoshi; Shibanuma, Kiyoshi; Okuno, Kiyoshi; Tsuji, Hiroshi; Shimamoto, Susumu

    1993-01-01

    Fusion Experimental Reactors are one of the major steps toward realization of the fusion energy and the key objective are to demonstrate the scientific and technological feasibility prior to the Demo Fusion Reactor. ITER (International Thermonuclear Experimental Reactor) is one of experimental reactors and the conceptual design has been completed by the united efforts of USA, USSR, EC and Japan. In parallel with the conceptual design, key technology development in various areas has being conducted. This paper describes the overall design concepts and the latest technological achievements of the ITER reactor structure and superconducting magnet system. (author)

  5. Fusion power plant simulations: a progress report

    International Nuclear Information System (INIS)

    Cook, J.M.; Pattern, J.S.; Amend, W.E.

    1976-01-01

    The objective of the fusion systems analysis at ANL is to develop simulations to compare alternative conceptual designs of magnetically confined fusion power plants. The power plant computer simulation progress is described. Some system studies are also discussed

  6. Development of high yield strength non-magnetic steels for the equipments of nuclear fusion research

    International Nuclear Information System (INIS)

    Matsuoka, Hidenori; Mukai, Tetsuya; Ohtani, Hiroo; Tsuruki, Takanori; Okada, Yasutaka

    1979-01-01

    Recently, activity of nuclear fusion research and so forth increase the demand of non-magnetic materials for various equipments and structures. For these usage, very low magnetic permeability as well as high strength are required under high magnetic field. Based on fundamental research, middle C-17% Cr-7% Ni-N non-magnetic steel has been developed. The developed steel shows more stable austenite phase and possesses higher yield strength and endurance limit of more than 10 kg/mm 2 , compared with 18% Cr-8% Ni austenitic steel. Also the developed steel has good ductility and toughness in spite of the high yield strength and shows better machinability than usual high Mn non- magnetic steels. The large forgings of this newly developed steel are manufactured in the works for the equipments of nuclear fusion research and confirmed good mechanical properties, high fatigue strength and low permeability. (author)

  7. Cryogenic hydrogen data pertinent to magnetic fusion energy

    International Nuclear Information System (INIS)

    Souers, P.C.

    1979-01-01

    To aid future hydrogen fusion researchers, I have correlated the measured physical and chemical properties of the hydrogens below 30 0 K. I have further estimated these properties for deuterium--deuterium tritide--tritium (D 2 --DT--T 2 ) fusion fuel. My resulting synthesis offers a timely view and review of cryogenic hydrogen properties, plus some hydrogen data to room temperature. My general thrust is for workers new to the field, although my discussion of the scientific background of the material would suit specialists

  8. Influence of the pressure of Fe fundamental amorphous metallic fusions to magnet description

    International Nuclear Information System (INIS)

    Panakhov, T.M; Ahmadov, V.I; Musayev, Z.S

    2011-01-01

    Full tex: Obtaining, exploration and application of amorphous fusions on the basis of iron group magnet metals including amorphous phase non-magnetic additions as silisium and boric playing the role of stabilizer of the amorphous phase is widely used last years. Scientific and technical interest to these objects is connected with their physical property - high mechanical, electric, uncial agreement of corrosion and magnet characteristics. Amorphous alloy Fe58Ni20Si9B13 was selected as the object of research. To set the built-in hysteresis characteristics of magnetic fusion mesh, then the maximum magnetic induction (saturation induction) was appointed to the BS and the residual induction Br. The average distance between the borders as a result of pressure and magnetic characteristics of nano parosities in comparison of the relative change that is to say they are close to each other, with the magnetic characteristics of amorphous fusions nano parosity characteristics indicate that the corellation is between magnetic characteristics and nano parosity characteristics.

  9. Prospects of High Temperature Superconductors for fusion magnets and power applications

    International Nuclear Information System (INIS)

    Fietz, Walter H.; Barth, Christian; Drotziger, Sandra; Goldacker, Wilfried; Heller, Reinhard; Schlachter, Sonja I.; Weiss, Klaus-Peter

    2013-01-01

    Highlights: • An overview of HTS application in fusion is given. • BSCCO application for current leads is discussed. • Several approaches to come to a high current HTS cable are shown. • Open issues and benefits of REBCO high current HTS cables are discussed. -- Abstract: During the last few years, progress in the field of second-generation High Temperature Superconductors (HTS) was breathtaking. Industry has taken up production of long length coated REBCO conductors with reduced angular dependency on external magnetic field and excellent critical current density jc. Consequently these REBCO tapes are used more and more in power application. For fusion magnets, high current conductors in the kA range are needed to limit the voltage during fast discharge. Several designs for high current cables using High Temperature Superconductors have been proposed. With the REBCO tape performance at hand, the prospects of fusion magnets based on such high current cables are promising. An operation at 4.5 K offers a comfortable temperature margin, more mechanical stability and the possibility to reach even higher fields compared to existing solutions with Nb 3 Sn which could be interesting with respect to DEMO. After a brief overview of HTS use in power application the paper will give an overview of possible use of HTS material for fusion application. Present high current HTS cable designs are reviewed and the potential using such concepts for future fusion magnets is discussed

  10. Fusion an introduction to the physics and technology of magnetic confinement fusion

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    This second edition of a popular textbook is thoroughly revised with around 25% new and updated content.It provides an introduction to both plasma physics and fusion technology at a level that can be understood by advanced undergraduates and graduate students in the physical sciences and related engineering disciplines.As such, the contents cover various plasma confinement concepts, the support technologies needed to confine the plasma, and the designs of ITER as well as future fusion reactors.With end of chapter problems for use in courses.

  11. Nuclear fusion experimental study on 16 O + 60 Ni system

    International Nuclear Information System (INIS)

    Silva, C.P. da.

    1990-01-01

    Nuclear fusion cross section measurements were performed in the energy range near The Coulomb Barrier (E Lab -> 40-72 MeV), for the system 16 O + 60 Ni, aiming the study of Fusion Process involving heavy ions. (L.C.J.A.)

  12. The sensitivity theory for inertial confinement pellet fusion system

    International Nuclear Information System (INIS)

    Cai, Shaohui; Zhang, Yuquan.

    1986-01-01

    A sensitivity theory for inertial confinement pellet fusion system is developed based on a physical model similar to that embodied in the laser fusion code MEDUSA. The theory presented here can be an efficient tool for estimating the effects of many alternations in the data field. Our result is different from Greenspan's work in 1980. (author)

  13. Mechanical technology unique to laser fusion experimental systems

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1980-01-01

    Hardware design for laser fusion experimental machines has led to a combination of engineering technologies that are critical to the successful operation of these machines. These large opto-mechanical systems are dependent on extreme cleanliness, accommodation to efficient maintenance, and high stability. These three technologies are the primary mechanical engineering criteria for laser fusion devices

  14. Identification of future engineering-development needs of alternative concepts for magnetic-fusion energy

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1982-01-01

    A qualitative identification of future engineering needs of alternative fusion concepts (AFCs) is presented. These needs are assessed relative to the similar needs of the tokamak in order to emphasize differences in required technology with respect to the well documented mainline approach. Although nearly thirty AFCs can be identified as being associated with some level of reactor projection, redirection, refocusing, and general similarities can be used to generate a reduced AFC list that includes only the bumpy tori, stellarators, reversed-field pinches, and compact toroids. Furthermore, each AFC has the potential of operating as a conventional (low power density, superconducting magnets) or a compact, high-power-density (HPD) system. Hence, in order to make tractable an otherwise difficult task, the future engineering needs for the AFCs are addressed here for conventional versus compact approaches, with the latter being treated as a generic class and the former being composed of bumpy tori, stellarators, reversed-field pinches, and compact toroids

  15. Tritium problems in fusion reactor systems

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1975-01-01

    A brief introduction is given to the role tritium will play in the development of fusion power. The biological and worldwide environmental behavior of tritium is reviewed. The tritium problems expected in fusion power reactors are outlined. A few thoughts on tritium permeation and recent results for tritium cleanup and CT 4 accumulation are presented. Problems involving the recovery of tritium from the breeding blanket in fusion power reactors are also considered, including the possible effect of impurities in lithium blankets and the use of lithium as a regenerable getter pump. (auth)

  16. Path E alloys: ferritic material development for magnetic fusion energy applications

    International Nuclear Information System (INIS)

    Holmes, J.J.

    1980-09-01

    The application of ferritic materials in irradiation environments has received greatly expanded attention in the last few years, both internationally and in the United States. Ferritic materials are found to be resistant to irradiation damage and have in many cases superior properties to those of AISI 316. It has been shown that for magnetic fusion energy applications the low thermal expansion behavior of the ferritic alloy class will result in lower thermal stresses during reactor operation, leading to significantly longer ETF operating lifetimes. The Magnetic Fusion Energy Program therefore now includes a ferritic alloy option for alloy selection and this option has been designated Path E

  17. Consideration on nuclear fusion in plasma by the magnetic confinement as a heat engine

    International Nuclear Information System (INIS)

    Tsuji, Yoshio

    1990-01-01

    In comparing nuclear fusion in plasma by the magnetic confinement with nuclear fission and chemical reactions, the power density and the function of a heat engine are discussed using a new parameter G introduced as an eigenvalue of a reaction and the value of q introduced to estimate the thermal efficiency of a heat engine. It is shown that the fusion reactor by the magnetic confinement is very difficult to be a modern heat engine because of the lack of some indispensable functions as a modern heat engine. The value of G and q have the important role in the consideration. (author)

  18. Recent progress of NSTX lithium program and opportunities for magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M., E-mail: mono@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Bell, M.G.; Kaita, R.; Kugel, H.W. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Ahn, J.-W. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Allain, J.P.; Battaglia, D. [Purdue University, West Lafayette, IN 47907 (United States); Bell, R.E. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Canik, J.M. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Ding, S. [Academy of Science Institute of Plasma Physics, Hefei (China); Gerhardt, S. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Gray, T.K. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Guttenfelder, W.; Hosea, J.; Jaworski, M.A.; Kallman, J.; Kaye, S.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Mansfield, D.K. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); and others

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer In this paper, we review the recent progress on the NSTX lithium research. Black-Right-Pointing-Pointer We summarize positive features of lithium effects on plasma. Black-Right-Pointing-Pointer We also point out unresolved issues and unanswered questions on the lithium research. Black-Right-Pointing-Pointer We describe a possible closed liquid lithium divertor tray concept. Black-Right-Pointing-Pointer We note opportunities and challenges of lithium applications for magnetic fusion. - Abstract: Lithium wall coating techniques have been experimentally explored on National Spherical Torus Experiment (NSTX) for the last six years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a dual lithium evaporation system which can evaporate up to {approx}160 g of lithium onto the lower divertor plates between re-loadings. The unique feature of the NSTX lithium research program is that it can investigate the effects of lithium coated plasma-facing components in H-mode divertor plasmas. This lithium evaporation system has produced many intriguing and potentially important results. In 2010, the NSTX lithium program has focused on the effects of liquid lithium divertor (LLD) surfaces including the divertor heat load, deuterium pumping, impurity control, electron thermal confinement, H-mode pedestal physics, and enhanced plasma performance. To fill the LLD with lithium, 1300 g of lithium was evaporated into the NSTX vacuum vessel during the 2010 operations. The routine use of lithium in 2010 has significantly improved the plasma shot availability resulting in a record number of plasma shots in any given year. In this paper, as a follow-on paper from the 1st lithium symposium [1], we review the recent progress toward developing fundamental understanding of the NSTX lithium experimental observations as well as the opportunities and associated R and D required

  19. Safety analysis and evaluation methodology for fusion systems

    International Nuclear Information System (INIS)

    Fujii-e, Y.; Kozawa, Y.; Namba, C.

    1987-03-01

    Fusion systems which are under development as future energy systems have reached a stage that the break even is expected to be realized in the near future. It is desirable to demonstrate that fusion systems are well acceptable to the societal environment. There are three crucial viewpoints to measure the acceptability, that is, technological feasibility, economy and safety. These three points have close interrelation. The safety problem is more important since three large scale tokamaks, JET, TFTR and JT-60, start experiment, and tritium will be introduced into some of them as the fusion fuel. It is desirable to establish a methodology to resolve the safety-related issues in harmony with the technological evolution. The promising fusion system toward reactors is not yet settled. This study has the objective to develop and adequate methodology which promotes the safety design of general fusion systems and to present a basis for proposing the R and D themes and establishing the data base. A framework of the methodology, the understanding and modeling of fusion systems, the principle of ensuring safety, the safety analysis based on the function and the application of the methodology are discussed. As the result of this study, the methodology for the safety analysis and evaluation of fusion systems was developed. New idea and approach were presented in the course of the methodology development. (Kako, I.)

  20. The plasma formation stage in magnetic compression/magnetized target fusion (MAGO/MTF)

    International Nuclear Information System (INIS)

    Lindemuth, I.R.; Reinovsky, R.E.; Chrien, R.E.

    1996-01-01

    In early 1992, emerging governmental policy in the US and Russia began to encourage ''lab-to-lab'' interactions between the All- Russian Scientific Research Institute of Experimental Physics (VNIIEF) and the Los Alamos National Laboratory (LANL). As nuclear weapons stockpiles and design activities were being reduced, highly qualified scientists become for fundamental scientific research of interest to both nations. VNIIEF and LANL found a common interest in the technology and applications of magnetic flux compression, the technique for converting the chemical energy released by high-explosives into intense electrical pulses and intensely concentrated magnetic energy. Motivated originally to evaluate any possible defense applications of flux compression technology, the two teams worked independently for many years, essentially unaware of the others' accomplishments. But, an early US publication stimulated Soviet work, and the Soviets followed with a report of the achievement of 25 MG. During the cold war, a series of conferences on Megagauss Magnetic Field Generation and Related Topics became a forum for scientific exchange of ideas and accomplishments. Because of relationships established at the Megagauss conferences, VNIIEF and LANL were able to respond quickly to the initiatives of their respective governments. In late 1992, following the Megagauss VI conference, the two institutions agreed to combine resources to perform a series of experiments that essentially could not be performed by each institution independently. Beginning in September, 1993, the two institutions have performed eleven joint experimental campaigns, either at VNIIEF or at LANL. Megagauss- VII has become the first of the series to include papers with joint US and Russian authorship. In this paper, we review the joint LANL/VNIIEF experimental work that has relevance to a relatively unexplored approach to controlled thermonuclear fusion

  1. Fusion power system: technology and engineering considerations

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1976-01-01

    Engineering concepts are discussed for the following topics: (1) blanket environment, (2) blanket materials, (3) tritium breeding, (4) heat removal problems, (5) materials selection for radiation shields, (6) afterheat, and (7) fusion blanket design

  2. TOKMINA, Toroidal Magnetic Field Minimization for Tokamak Fusion Reactor. TOKMINA-2, Total Power for Tokamak Fusion Reactor

    International Nuclear Information System (INIS)

    Hatch, A.J.

    1975-01-01

    1 - Description of problem or function: TOKMINA finds the minimum magnetic field, Bm, required at the toroidal coil of a Tokamak type fusion reactor when the input is beta(ratio of plasma pressure to magnetic pressure), q(Kruskal-Shafranov plasma stability factor), and y(ratio of plasma radius to vacuum wall radius: rp/rw) and arrays of PT (total thermal power from both d-t and tritium breeding reactions), Pw (wall loading or power flux) and TB (thickness of blanket), following the method of Golovin, et al. TOKMINA2 finds the total power, PT, of such a fusion reactor, given a specified magnetic field, Bm, at the toroidal coil. 2 - Method of solution: TOKMINA: the aspect ratio(a) is minimized, giving a minimum value for Bm. TOKMINA2: a search is made for PT; the value of PT which minimizes Bm to the required value within 50 Gauss is chosen. 3 - Restrictions on the complexity of the problem: Input arrays presently are dimensioned at 20. This restriction can be overcome by changing a dimension card

  3. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2010-12-01

    Full Text Available Fast ignition is a new method for inertial confinement fusion (ICF in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel . More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion (MTF. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0. 25 and 0. 5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. MTF in dual hot spot can be considered as an appropriate substitution for the current ICF techniques.

  4. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion.

    Science.gov (United States)

    Schmit, P F; Knapp, P F; Hansen, S B; Gomez, M R; Hahn, K D; Sinars, D B; Peterson, K J; Slutz, S A; Sefkow, A B; Awe, T J; Harding, E; Jennings, C A; Chandler, G A; Cooper, G W; Cuneo, M E; Geissel, M; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Porter, J L; Robertson, G K; Rochau, G A; Rovang, D C; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A

    2014-10-10

    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

  5. Magnetic Signature Analysis & Validation System

    National Research Council Canada - National Science Library

    Vliet, Scott

    2001-01-01

    The Magnetic Signature Analysis and Validation (MAGSAV) System is a mobile platform that is used to measure, record, and analyze the perturbations to the earth's ambient magnetic field caused by object such as armored vehicles...

  6. Magnetic fusion energy and computers. The role of computing in magnetic fusion energy research and development (second edition)

    International Nuclear Information System (INIS)

    1983-01-01

    This report documents the structure and uses of the MFE Network and presents a compilation of future computing requirements. Its primary emphasis is on the role of supercomputers in fusion research. One of its key findings is that with the introduction of each successive class of supercomputer, qualitatively improved understanding of fusion processes has been gained. At the same time, even the current Class VI machines severely limit the attainable realism of computer models. Many important problems will require the introduction of Class VII or even larger machines before they can be successfully attacked

  7. Properties of plasma sheath with ion temperature in magnetic fusion devices

    International Nuclear Information System (INIS)

    Liu Jinyuan; Wang Feng; Sun Jizhong

    2011-01-01

    The plasma sheath properties in a strong magnetic field are investigated in this work using a steady state two-fluid model. The motion of ions is affected heavily by the strong magnetic field in fusion devices; meanwhile, the effect of ion temperature cannot be neglected for the plasma in such devices. A criterion for the plasma sheath in a strong magnetic field, which differs from the well-known Bohm criterion for low temperature plasma sheath, is established theoretically with a fluid model. The fluid model is then solved numerically to obtain detailed sheath information under different ion temperatures, plasma densities, and magnetic field strengths.

  8. Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Daniel [Los Alamos National Laboratory; Hsu, Scott C. [Los Alamos National Laboratory

    2012-08-16

    A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

  9. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    International Nuclear Information System (INIS)

    Lasche, G.P.

    1988-01-01

    A method for recovering energy in an inertial confinement fusion reactor having a reactor chamber and a sphere forming means positioned above an opening in the reactor chamber is described, comprising: embedding a fusion target fuel capsule having a predetermined yield in the center of a hollow solid lithium tube and subsequently embedding the hollow solid lithium tube in a liquid lithium medium; using the sphere forming means for forming the liquid lithium into a spherical shaped liquid lithium mass having a diameter smaller than the length of the hollow solid lithium tube with the hollow solid lithium tube being positioned along a diameter of the spherical shaped mass, providing the spherical shaped liquid lithium mass with the fusion fuel target capsule and hollow solid lithium tube therein as a freestanding liquid lithium shaped spherical shaped mass without any external means for maintaining the spherical shape by dropping the liquid lithium spherical shaped mass from the sphere forming means into the reactor chamber; producing a magnetic field in the reactor chamber; imploding the target capsule in the reactor chamber to produce fusion energy; absorbing fusion energy in the liquid lithium spherical shaped mass to convert substantially all the fusion energy to shock induced kinetic energy of the liquid lithium spherical shaped mass which expands the liquid lithium spherical shaped mass; and compressing the magnetic field by expansion of the liquid lithium spherical shaped mass and recovering useful energy

  10. Overview of US heavy-ion fusion commercial electric power systems assessment project. Revision

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Pendergrass, J.H.; Saylor, W.W.

    1986-01-01

    The US heavy-ion fusion (HIF) research program is oriented toward development of multiple-beam induction linacs. Over the last two years an assessment has been performed of the potential of HIF as a competitive commercial electric power source. This assessment involved several technology performance and cost issues (e.g., final beam transport system, target manufacturing, beam stability in reactor cavity environments, and reactor cavity clearing), as well as overall power plant systems integration and tradeoff studies. Results from parametric analyses using a systems code developed in the project show cost of electricity (COE) values comparable with COEs from other magnetic fusion and inertial confinement fusion (ICF) plant studies; viz, 50-60 mills/kWh (1985 dollars) for 1-GWe plants. Also, significant COE insensitivity to major accelerator, target, and reactor parameters was demonstrated

  11. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    International Nuclear Information System (INIS)

    Deveny, M.; Carpenter, S.; O'connell, T.; Schulze, N.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons. 50 refs

  12. Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging and Fusion Guided Targeted Biopsy Evaluated by Transperineal Template Saturation Prostate Biopsy for the Detection and Characterization of Prostate Cancer.

    Science.gov (United States)

    Mortezavi, Ashkan; Märzendorfer, Olivia; Donati, Olivio F; Rizzi, Gianluca; Rupp, Niels J; Wettstein, Marian S; Gross, Oliver; Sulser, Tullio; Hermanns, Thomas; Eberli, Daniel

    2018-02-21

    We evaluated the diagnostic accuracy of multiparametric magnetic resonance imaging and multiparametric magnetic resonance imaging/transrectal ultrasound fusion guided targeted biopsy against that of transperineal template saturation prostate biopsy to detect prostate cancer. We retrospectively analyzed the records of 415 men who consecutively presented for prostate biopsy between November 2014 and September 2016 at our tertiary care center. Multiparametric magnetic resonance imaging was performed using a 3 Tesla device without an endorectal coil, followed by transperineal template saturation prostate biopsy with the BiopSee® fusion system. Additional fusion guided targeted biopsy was done in men with a suspicious lesion on multiparametric magnetic resonance imaging, defined as Likert score 3 to 5. Any Gleason pattern 4 was defined as clinically significant prostate cancer. The detection rates of multiparametric magnetic resonance imaging and fusion guided targeted biopsy were compared with the detection rate of transperineal template saturation prostate biopsy using the McNemar test. We obtained a median of 40 (range 30 to 55) and 3 (range 2 to 4) transperineal template saturation prostate biopsy and fusion guided targeted biopsy cores, respectively. Of the 124 patients (29.9%) without a suspicious lesion on multiparametric magnetic resonance imaging 32 (25.8%) were found to have clinically significant prostate cancer on transperineal template saturation prostate biopsy. Of the 291 patients (70.1%) with a Likert score of 3 to 5 clinically significant prostate cancer was detected in 129 (44.3%) by multiparametric magnetic resonance imaging fusion guided targeted biopsy, in 176 (60.5%) by transperineal template saturation prostate biopsy and in 187 (64.3%) by the combined approach. Overall 58 cases (19.9%) of clinically significant prostate cancer would have been missed if fusion guided targeted biopsy had been performed exclusively. The sensitivity of

  13. Fusion ignition via a magnetically-assisted fast ignition approach

    OpenAIRE

    Wang, W. -M.; Gibbon, P.; Sheng, Z. -M.; Li, Y. T.; Zhang, J.

    2016-01-01

    Significant progress has been made towards laser-driven fusion ignition via different schemes, including direct and indirect central ignition, fast ignition, shock ignition, and impact ignition schemes. However, to reach ignition conditions, there are still various technical and physical challenges to be solved for all these schemes. Here, our multi-dimensional integrated simulation shows that the fast-ignition conditions could be achieved when two 2.8 petawatt heating laser pulses counter-pr...

  14. Multimodal Biometric System- Fusion Of Face And Fingerprint Biometrics At Match Score Fusion Level

    Directory of Open Access Journals (Sweden)

    Grace Wangari Mwaura

    2017-04-01

    Full Text Available Biometrics has developed to be one of the most relevant technologies used in Information Technology IT security. Unimodal biometric systems have a variety of problems which decreases the performance and accuracy of these system. One way to overcome the limitations of the unimodal biometric systems is through fusion to form a multimodal biometric system. Generally biometric fusion is defined as the use of multiple types of biometric data or ways of processing the data to improve the performance of biometric systems. This paper proposes to develop a model for fusion of the face and fingerprint biometric at the match score fusion level. The face and fingerprint unimodal in the proposed model are built using scale invariant feature transform SIFT algorithm and the hamming distance to measure the distance between key points. To evaluate the performance of the multimodal system the FAR and FRR of the multimodal are compared along those of the individual unimodal systems. It has been established that the multimodal has a higher accuracy of 92.5 compared to the face unimodal system at 90 while the fingerprint unimodal system is at 82.5.

  15. Generation and compression of a target plasma for magnetized target fusion

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.; Lindemuth, I.R.; Sheehey, P.T.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Magnetized target fusion (MTF) is intermediate between the two very different approaches to fusion: inertial and magnetic confinement fusion (ICF and MCF). Results from collaboration with a Russian MTF team on their MAGO experiments suggest they have a target plasma suitable for compression to provide an MTF proof of principle. This LDRD project had tow main objectives: first, to provide a computational basis for experimental investigation of an alternative MTF plasma, and second to explore the physics and computational needs for a continuing program. Secondary objectives included analytic and computational support for MTF experiments. The first objective was fulfilled. The second main objective has several facets to be described in the body of this report. Finally, the authors have developed tools for analyzing data collected on the MAGO and LDRD experiments, and have tested them on limited MAGO data

  16. The magnet database system

    International Nuclear Information System (INIS)

    Baggett, P.; Delagi, N.; Leedy, R.; Marshall, W.; Robinson, S.L.; Tompkins, J.C.

    1991-01-01

    This paper describes the current status of MagCom, a central database of SSC magnet information that is available to all magnet scientists via network connections. The database has been designed to contain the specifications and measured values of important properties for major materials, plus configuration information (specifying which individual items were used in each cable, coil, and magnet) and the test results on completed magnets. These data will help magnet scientists to track and control the production process and to correlate the performance of magnets with the properties of their constituents

  17. A Decision Fusion Framework for Treatment Recommendation Systems.

    Science.gov (United States)

    Mei, Jing; Liu, Haifeng; Li, Xiang; Xie, Guotong; Yu, Yiqin

    2015-01-01

    Treatment recommendation is a nontrivial task--it requires not only domain knowledge from evidence-based medicine, but also data insights from descriptive, predictive and prescriptive analysis. A single treatment recommendation system is usually trained or modeled with a limited (size or quality) source. This paper proposes a decision fusion framework, combining both knowledge-driven and data-driven decision engines for treatment recommendation. End users (e.g. using the clinician workstation or mobile apps) could have a comprehensive view of various engines' opinions, as well as the final decision after fusion. For implementation, we leverage several well-known fusion algorithms, such as decision templates and meta classifiers (of logistic and SVM, etc.). Using an outcome-driven evaluation metric, we compare the fusion engine with base engines, and our experimental results show that decision fusion is a promising way towards a more valuable treatment recommendation.

  18. An FPGA-based heterogeneous image fusion system design method

    Science.gov (United States)

    Song, Le; Lin, Yu-chi; Chen, Yan-hua; Zhao, Mei-rong

    2011-08-01

    Taking the advantages of FPGA's low cost and compact structure, an FPGA-based heterogeneous image fusion platform is established in this study. Altera's Cyclone IV series FPGA is adopted as the core processor of the platform, and the visible light CCD camera and infrared thermal imager are used as the image-capturing device in order to obtain dualchannel heterogeneous video images. Tailor-made image fusion algorithms such as gray-scale weighted averaging, maximum selection and minimum selection methods are analyzed and compared. VHDL language and the synchronous design method are utilized to perform a reliable RTL-level description. Altera's Quartus II 9.0 software is applied to simulate and implement the algorithm modules. The contrast experiments of various fusion algorithms show that, preferably image quality of the heterogeneous image fusion can be obtained on top of the proposed system. The applied range of the different fusion algorithms is also discussed.

  19. Liquid metal liner implosion systems with blade lattice for fusion

    International Nuclear Information System (INIS)

    Itoh, Yasuyuki; Fujiie, Yoichi

    1980-01-01

    In this paper, the liquid liner implosion systems with the blade lattice is proposed for the rotational stabilization of the liner inner surface which is facing a plasma in a fusion reactor. The blades are electrically conducting and inclined to the radial direction. Its major function is either acceleration or deceleration of the liner in the azimuthal direction. This system enables us to exclude the rotary mechanism for the liner rotation. In this system, the liner is formed as an annular flow of a liquid metal (the waterfall concept). Results show that there is no significant difference of the energy cost for the stabilization compared with the earlier proposed system where a liner is rotated rigidly before implosion. Furthermore, the application of the rotating blade lattice makes it possible to reduce the rotational kinetic energy required for the stabilization at turnaround, where the lattice acts as an impeller in the initial liner rotation. There is an optimum blade angle to maximize the compressed magnetic field energy inside the liner for a given driving energy. (author)

  20. Performance of Hall sensor-based devices for magnetic field diagnosis at fusion reactors

    Czech Academy of Sciences Publication Activity Database

    Bolshakova, I.; Ďuran, Ivan; Holyaka, R.; Hristoforou, E.; Marusenkov, A.

    2007-01-01

    Roč. 5, č. 1 (2007), s. 283-288 ISSN 1546-198X R&D Projects: GA AV ČR KJB100430504 Institutional research plan: CEZ:AV0Z20430508 Keywords : Galvanomagnetic * Sensor * Fusion Reactor * Magnetic Diagnostics * Radiation Hardness Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.587, year: 2007

  1. Classical impurity ion confinement in a toroidal magnetized fusion plasma.

    Science.gov (United States)

    Kumar, S T A; Den Hartog, D J; Caspary, K J; Magee, R M; Mirnov, V V; Chapman, B E; Craig, D; Fiksel, G; Sarff, J S

    2012-03-23

    High-resolution measurements of impurity ion dynamics provide first-time evidence of classical ion confinement in a toroidal, magnetically confined plasma. The density profile evolution of fully stripped carbon is measured in MST reversed-field pinch plasmas with reduced magnetic turbulence to assess Coulomb-collisional transport without the neoclassical enhancement from particle drift effects. The impurity density profile evolves to a hollow shape, consistent with the temperature screening mechanism of classical transport. Corroborating methane pellet injection experiments expose the sensitivity of the impurity particle confinement time to the residual magnetic fluctuation amplitude.

  2. Managing the fusion burn to improve symbiotic system performance

    International Nuclear Information System (INIS)

    Renier, J.P.; Martin, J.G.

    1979-01-01

    Symbiotic power systems, in which fissile fuel is produced in fusion-powered factories and burned in thermal reactors characterized by high conversion ratios, constitute an interesting near-term fusion application. It is shown that the economic feasibility of such systems depend on adroit management of the fusion burn. The economics of symbiotes is complex: reprocessing and fabrication of the fusion reactor blankets are important components of the production cost of fissile fuel, but burning fissile material in the breeder blanket raises overall costs and lowers the support ratio. Analyses of factories which assume that the fusion power is constant during an irradiation cycle underestimate their potential. To illustrate the effect of adroit engineering of the fusion burn, this paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U-233 breeders. To make the D-T symbiote self-sufficient, tritium is bred in separate lithium blankets designed so as to minimize overall costs. All blankets are assumed to have spherical geometry, with 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries

  3. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated

  4. Engineering aspects of particle beam fusion systems

    International Nuclear Information System (INIS)

    Cook, D.L.

    1982-01-01

    The Department of Energy is supporting research directed toward demonstration of DT fuel ignition in an Inertial Confinement Fusion (ICF) capsule. As part of the ICF effort, two major Particle Beam Fusion Accelerators (PBFA I and II) are being developed at Sandia National Laboratories with the objective of providing energetic light ion beams of sufficient power density for target implosion. Supporting light ion beam research is being performed at the Naval Research Laboratory and at Cornell University. If the answers to several key physics and engineering questions are favorable, pulsed power accelerators will be able to provide an efficient and inexpensive approach to high target gain and eventual power production applications

  5. Heat transfer and mechanical interactions in fusion nuclear systems

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1984-01-01

    This general review of design issues in heat transfer and mechanical interactions of the first wall, blanket and shield systems of tokamak and mirror fusion reactors begins with a brief introduction to fusion nuclear systems. The design issues are summarized in tables and the following examples are described to illustrate these concerns: the surface heating of limiters, heat transfer from solid breeders, MHD effects in liquid metal blankets, mechanical loads from electromagnetic transients and remote maintenance

  6. Transport and Dynamics in Toroidal Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schnack, Dalton D

    2006-05-16

    This document reports the successful completion of the OFES Theory Milestone for FY2005, namely, Perform parametric studies to better understand the edge physics regimes of laboratory experiments. Simulate at increased resolution (up to 20 toroidal modes), with density evolution, late into the nonlinear phase and compare results from different types of edge modes. Simulate a single case including a study of heat deposition on nearby material walls. The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in tokamak plasmas are investigated through numerical computation. Data from the DIII-D device at General Atomics (http://fusion.gat.com/diii-d/) is used for the magnetohydrodynamic (MHD) equilibria, but edge parameters are varied to reveal important physical effects. The equilibrium with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to dissipation coefficient values. Here, linear growth rates from the non-ideal NIMROD code (http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the GATO global linear stability code at low toroidal mode number (n) and with ideal results from the ELITE edge linear stability code at moderate to high toroidal mode number. Linear studies with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more significant discrepancies between the ideal and non-ideal calculations. The maximum growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the non-ideal computations continue to increase with n unless strong anisotropic thermal conduction is included. Recent modeling advances allow drift effects associated with the Hall electric field and gyroviscosity to be considered. A stabilizing effect can be observed in the preliminary results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is only 13% less than the non-ideal MHD

  7. Neutronics of Laser Fission-Fusion Systems

    International Nuclear Information System (INIS)

    Velarde, G.

    1976-01-01

    Neutronics of Fission-Fusion microsystems inertially confined by Lasers are analysed by transport calculation, both stationary (DTF, TIHOC) and time dependent (TDA, TIHEX), discussing the results obtained for the basic parameters of the fission process (multiplication factor, neutron generation time and Rossi-∞). (Author) 14 refs

  8. Nonlinear propagation in fusion laser systems

    International Nuclear Information System (INIS)

    Bliss, E.S.; Glass, A.J.; Glaze, J.A.

    1977-11-01

    This report was assembled to provide a brief review of the historical development of the study of self-focusing and nonlinear light propagation and its impact on the design of large, Nd-glass lasers for fusion research. No claim to completeness is made, but we feel that the enclosed summary does not miss many of the major developments in the field

  9. Neutronics of Laser Fission-Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, G

    1976-07-01

    Neutronics of Fission-Fusion microsystems inertially confined by Lasers are analysed by transport calculation, both stationary (DTF, TIHOC) and time dependent (TDA, TIHEX), discussing the results obtained for the basic parameters of the fission process (multiplication factor, neutron generation time and Rossi-{infinity}). (Author) 14 refs.

  10. Analysis of plasma behavior in a magnetic nozzle of laser fusion rocket

    International Nuclear Information System (INIS)

    Nagamine, Yoshihiko; Yoshimi, Naofumi; Nakama, Yuji; Muranaka, Takanobu; Mayumi, Takao; Nakashima, Hideki

    1997-01-01

    A magnetic nozzle concept in a laser fusion rocket is suitable for controlling the fusion plasma flow and it has an advantage that thermalization with wall structures in a thrust chamber can be avoided. Rayleigh-Taylor instability would occur at the surface of expanding plasma and it would lead to the degradation of thrust efficiency, due to diffusion of the plasma through ambient decelerating magnetic field. A 3D hybrid particle-in-cell code has been developed to analyze the plasma instability in the magnetic nozzle. The resultant linear growth rate γ of the instability is found to be 2.96 x 10 6 and it is in good agreement with the theoretical value from conventional Rayleigh Taylor instability. (author)

  11. Mechanical behavior of the mirror fusion test Facility superconducting magnet coils

    International Nuclear Information System (INIS)

    Horvath, J.A.

    1980-01-01

    The mechanical response to winding and electromagnetic loads of the Mirror Fusion Test Facility (MFTF) superconducting coil pack is presented. The 375-ton (3300 N) MFTF Yin-Yang magnet, presently the world's largest superconducting magnet, is scheduled for acceptance cold-testing in May of 1981. The assembly is made up of two identical coils which together contain over 15 miles (24 km) of superconductor wound in 58 consecutive layers of 24 turns each. Topics associated with mechanical behavior include physical properties of the coil pack and its components, winding pre-load effects, finite element analysis, magnetic load redistribution, and the design impact of predicted conductor motion

  12. First-wall design limitations for linear magnetic fusion (LMF) reactors

    International Nuclear Information System (INIS)

    Gryczkowski, G.E.; Krakowski, R.A.; Steinhauer, L.C.; Zumdieck, J.

    1978-01-01

    One approach to the endloss problem in linear magnetic fusion (LMF) uses high magnetic field to reduce the required confinement time. This approach is limited by magnet stresses and bremsstrahlung heating of the first wall; the first-wall thermal-pulsing issue is addressed. Pertinent thermophysical parameters are developed in the context of high-field LMF to identify promising first-wall materials, and thermal fatigue experiments relevant to LMF first walls are reviewed. High-flux first-wall concepts are described which include both solid and evaporating first-wall configurations

  13. Direct energy conversion system for D-3He fusion

    International Nuclear Information System (INIS)

    Tomita, Y.; Shu, L.Y.; Momota, H.

    1993-11-01

    A novel and highly efficient direct energy conversion system is proposed for utilizing D- 3 He fueled fusion. In order to convert kinetic energy of ions, we applied a pair of direct energy conversion systems each of which has a cusp-type DEC and a traveling wave DEC (TWDEC). In a cusp-type DEC, electrons are separated from the escaping ions at the first line-cusp and the energy of thermal ion components is converted at the second cusp DEC. The fusion protons go through the cusp-type DEC and arrive at the TWDEC, which principle is similar to 'LINAC.' The energy of fusion protons is recovered to electricity with an efficiency of more than 70%. These DECs bring about the high efficient fusion plant. (author)

  14. Magnet and conductor developments for the Mirror Fusion Program

    International Nuclear Information System (INIS)

    Cornish, D.N.

    1981-01-01

    The conductor development and the magnet design and construction for the MFTF are described. Future plans for the Mirror Program and their influence on the associated superconductor development program are discussed. Included is a summary of the progress being made to develop large, high-field, multifilamentary Nb 3 Sn superconductors and the feasibility of building a 12-T yin-yang set of coils for the machine to follow MFTF. In a further look into the future, possible magnetic configurations and requirements for mirror reactors are surveyed

  15. Low-energy nuclear fusion data and their relation to magnetic and laser fusion

    International Nuclear Information System (INIS)

    Jarmie, N.

    1980-04-01

    The accuracy of the basic fusion data for the T(d,n) 4 He, 3 He(d,p) 4 He, T(t,2n) 4 He, D(d,n) 3 He, and D(d,p)T reactions was investigated in the 10- to 100-keV bombarding energy region, and the effects of inaccuracies on the design of fusion reactors were assessed. The data base for these reactions [particularly, the most critical T(d,n) 4 He reaction] rests on 25-year-old experiments the accuracy (often assumed to be +- 5%) of which has rarely been questioned: yet, in all except the d + d reactions, there are significant differences among data sets. The errors in the basic data sets may be considerably larger than previously expected, and the effect on design calculations should be significant. Much of the trouble apparently lies in the accuracy of the energy measurements, which are difficult at low energies. Systematic errors of up to 50% are possible in the reactivity values of the present T(d,n) 4 He data base. The errors in the reactivity will propagate proportionately into the errors in fusion probabilities in reactor calculations. 3 He(d,p) 4 He reaction cross sections could be in error by as much as 50% in the low-energy region. The D(d,n) 3 He and D(d,p)T cross sections appear to be well known and consistent. The T(t,2n) 4 He cross section is poorly known and may be subject to large systematic errors. Improved absolute measurements for all the reactions in the low bombarding energy region (10 to 100 keV) are needed, but until they are done, the data sets should be left as they are [except for T(t,2n) 4 He data, which could be lowered by about 50%]. The apparent uncertainties of these data sets should be kept in mind. 14 figures

  16. Fusion technology (FT)

    International Nuclear Information System (INIS)

    1978-01-01

    The annual report of tha fusion technology (FT) working group discusses the projects carried out by the participating institutes in the fields of 1) fuel injection and plasma heating, 2) magnetic field technology, and 3) systems investigations. (HK) [de

  17. Processing and waste disposal representative for fusion breeder blanket systems

    International Nuclear Information System (INIS)

    Finn, P.A.; Vogler, S.

    1987-01-01

    This study is an evaluation of the waste handling concepts applicable to fusion breeder systems. Its goal is to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under US Nuclear Regulatory regulations. The radionuclides expected in the materials used in fusion reactor blankets are described, as are plans for reprocessing and disposal of the components of different breeder blankets. An estimate of the operating costs involved in waste disposal is made

  18. Classification of Magnetic Nanoparticle Systems

    DEFF Research Database (Denmark)

    Bogren, Sara; Fornara, Andrea; Ludwig, Frank

    2015-01-01

    and the size parameters are determined from electron microscopy and dynamic light scattering. Using these methods, we also show that the nanocrystal size and particle morphology determines the dynamic magnetic properties for both single- and multi-core particles. The presented results are obtained from...... the four year EU NMP FP7 project, NanoMag, which is focused on standardization of analysis methods for magnetic nanoparticles.......This study presents classification of different magnetic single- and multi-core particle systems using their measured dynamic magnetic properties together with their nanocrystal and particle sizes. The dynamic magnetic properties are measured with AC (dynamical) susceptometry and magnetorelaxometry...

  19. Conceptual design of laser fusion reactor, SENRI-I - 1. concept and system design

    International Nuclear Information System (INIS)

    Ido, S.; Naki, S.; Norimatsu, T.

    1981-01-01

    Design features of a laser fusion reactor concept SENRI-I and new concepts are reviewed and discussed. The unique feature is the utilization of a magnetic field to guide and control the inner liquid Li flow. Basic requirements and typical parameters used in the design are presented. Items to be discussed are constitution of the system, performance of liquid Li flow, neutronics, thermo-electric cycle, fuel cycle and new concepts

  20. Study of the application of advanced control systems to fusion experiments and reactors. Final report

    International Nuclear Information System (INIS)

    1974-05-01

    The work accomplished to date toward the formulation of an advanced control system concept for large-scale magnetically confined thermonuclear fusion devices is summarized. The work was concentrated in three major areas: (1) general control studies and identification of control issues, (2) exploration of possible direct interactions with AEC National Laboratories, and (3) identification of simulation requirements to support control studies. (U.S.)

  1. Magnetic-gun igniter for controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Garwin, R.L.; Muller, R.A.; Richter, B.

    1979-01-01

    A conceptual design for the magnetic gun is given in order to show that the various parameters required turn out to be reasonable (in an engineering sense). An engineering design will necessarily turn out to be far more complex; the purpose of the following calculations is merely to show that the basic idea looks sufficiently good to warrant further work

  2. Pulsed power systems for inertial confinement fusion

    International Nuclear Information System (INIS)

    VanDevender, J.P.

    1979-01-01

    Sandis's Particle Beam Fusion Program is investigating pulsed electron and light ion beam accelerators with the goal of demonstrating the practical application of such drivers as igniters in inertial confinement fusion (ICF) reactors. The power and energy requirements for net energy gain are 10 14 to 10 15 W and 1 to 10 MJ. Recent advances in pulsed power and power flow technologies permit suitable accelerators to be built. The first accelerator of this new generation is PBFA I. It operates at 2 MV, 15 MA, 30 TW for 35 ns and is scheduled for completion in June 1980. The principles of this new accelerator technology and their application to ICF will be presented

  3. Design of power control system using SMES and SVC for fusion power plant

    International Nuclear Information System (INIS)

    Niiyama, K; Yagai, T; Tsuda, M; Hamajima, T

    2008-01-01

    A SMES (Superconducting Magnetic Energy Storage System) system with converter composed of self-commutated valve devices such as GTO and IGBT is available to control active and reactive power simultaneously. A SVC (Static Var Compensators) or STATCOM (Static Synchronous Compensator) is widely employed to reduce reactive power in power plants and substations. Owing to progress of power electronics technology using GTO and IGBT devices, power converters in the SMES system and the SVC can easily control power flow in few milliseconds. Moreover, since the valve devices for the SMES are equivalent to those for the SVC, the device cost must be reduced. In this paper the basic control system combined with the SMES and SVC is designed for large pulsed loads of a nuclear fusion power plant. This combined system largely expands the reactive power control region as well as the active one. The simulation results show that the combined system is effective and prospective for the nuclear fusion power plant

  4. Utilization of a Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research. Report of a Coordinated Research Project 2011–2016

    International Nuclear Information System (INIS)

    2016-12-01

    The IAEA actively promotes the development of controlled fusion as a source of energy. Through its coordinated research activities, the IAEA helps Member States to exchange and establish scientific and technical knowledge required for the design, construction and operation of a fusion reactor. Due to their compactness, flexibility and low operation costs, small fusion devices are a great resource for supporting and accelerating the development of mainstream fusion research on large fusion devices such as the International Thermonuclear Experimental Reactor. They play an important role in investigating the physics of controlled fusion, developing innovative technologies and diagnostics, testing new materials, training highly qualified personnel for larger fusion facilities, and supporting educational programmes for young scientists. This publication reports on the research work accomplished within the framework of the Coordinated Research Project (CRP) on Utilization of the Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research, organized and conducted by the IAEA in 2011–2016. The CRP has contributed to the coordination of a network of research institutions, thereby enhancing international collaboration through scientific visits, joint experiments and the exchange of information and equipment. A total of 16 institutions and 14 devices from 13 Member States participated in this CRP (Belgium, Bulgaria, Canada, China, Costa Rica, the Czech Republic, the Islamic Republic of Iran, Kazakhstan, Pakistan, Portugal, the Russian Federation, Ukraine and the United Kingdom).

  5. Fusion development and technology

    International Nuclear Information System (INIS)

    Montgomery, D.B.

    1991-01-01

    This report discusses the following topics: superconducting magnet technology high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies -- Aries; ITER physics; ITER superconducting PF scenario and magnet analysis; and safety, environmental and economic factors in fusion development

  6. Premises for use of fusion systems for actinide waste incineration

    International Nuclear Information System (INIS)

    Taczanowski, S.

    2007-01-01

    The motivation for the present study is induction of a change in the attitude of fusion community and first of all of the respective decision makers with regard to the fission power. The aim is to convince them that admittance of any kinship of fusion to fission energy is not the greatest threat for its deployment. The true problems of fusion power lie in the physical and technological difficulties that are hindering the achievement of reliable operation and economical competitiveness of fusion reactors. It seems that the strong objections against any symbiosis of fusion with fission, which one could observe for over two decades, are based upon the ignorance of the public unaware of the common nuclear roots of both processes. They manifest themselves, among others, in the non-negligible activity to be induced in fusion devices, as a result of the exposition of construction materials to very strong fluxes of fusion (14 MeV) neutrons. The latter ones in addition, are the source of a very serious material damage in these materials. Meanwhile, most of the real difficulties fusion power is still facing can be effectively relaxed while shifting the heavy burden of sufficient production of energy to energy rich fission process. Seeing all this, first are reminded some important problems of existing fission power that stem from the unavoidable production of Minor Actinides, distinct by undesirable physical properties (intense radioactivity, heat release, positive reactivity coefficients). Thus, in search for solutions Fusion-Driven Incineration (FDI) subcritical systems (well remote from super prompt criticality) are proposed. Next, the problems of nuclear fusion are addressed and the use of fission energy contained in actinides of spent nuclear fuel is suggested. The main advantage of that option of fusion power, /thanks to energy release from fissions/, is the prospect of a radical reduction of necessary plasma energy gain Q to levels achievable in much smaller i.e. much

  7. Long-term ETR/INTOR magnet testing in support of the demonstration fusion reactor

    International Nuclear Information System (INIS)

    Herring, J.S.; Shah, V.N.; Rouhani, S.Z.

    1983-01-01

    This study considers ways that the proposed Engineering Test Reactor (ETR), or the proposed International Tokamak Reactor (INTOR), can be used for magnet performance tests that would be useful for the design and operation of the Demonstration Tokamak Power Plant (DEMO). Such testing must not interfere with the main function of the ETR/INTOR as an integrated fusion reactor. A performance test plan for the ETR/INTOR magnets is proposed and appropriate tests on the magnets is proposed and appropriate tests on the magnets for each phase of the ETR/INTOR operation are described. The suggested tests would verify design requirements and monitor long-term changes due to radiation. This paper also summarizes the design and operational performance of existing superconducting magnets and identifies the known failures and their predominant causes

  8. Production of muons for fusion catalysis in a magnetic mirror configuration. Revision 1

    International Nuclear Information System (INIS)

    Moir, R.W.; Chapline, G.F. Jr.

    1986-01-01

    For muon-catalyzed fusion to be of practical interest, a very efficient means of producing muons must be found. We describe a scheme for producing muons that may be more energy efficient than any heretofore proposed. There are, in particular, some potential advantages of creating muons from collisions of high energy tritons confined in a magnetic mirror configuration. If one could catalyze 200 fusions per muon and employ a uranium blanket that would multiply the neutron energy by a factor of 10, one might produce electricity with an overall plant efficiency (ratio of electric energy produced to nuclear energy released) approaching 30%. One possible near term application of a muon-producing magnetic-mirror scheme would be to build a high-flux neutron source for radiation damage studies. The careful arrangement of triton orbits will result in many of the π - 's being produced near the axis of the magnetic mirror. The pions quickly decay into muons, which are transported into a small (few-cm-diameter) reactor chamber producing approximately 1-MW/m 2 neutron flux on the chamber walls, using a laboratory accelerator and magnetic mirror. The costs of construction and operation of the triton injection accelerator probably introduces most of the uncertainty in the viability of this scheme. If a 10-μA, 600 MeV neutral triton accelerator could be built for less than $100 million and operated cheaply enough, one might well bring muon-catalyzed fusion into practical use

  9. Fire protection system operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor

  10. Fire protection system operating experience review for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  11. Fast magnetic field computation in fusion technology using GPU technology

    Energy Technology Data Exchange (ETDEWEB)

    Chiariello, Andrea Gaetano [Ass. EURATOM/ENEA/CREATE, Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy); Formisano, Alessandro, E-mail: Alessandro.Formisano@unina2.it [Ass. EURATOM/ENEA/CREATE, Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy); Martone, Raffaele [Ass. EURATOM/ENEA/CREATE, Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy)

    2013-10-15

    Highlights: ► The paper deals with high accuracy numerical simulations of high field magnets. ► The porting of existing codes of High Performance Computing architectures allowed to obtain a relevant speedup while not reducing computational accuracy. ► Some examples of applications, referred to ITER-like magnets, are reported. -- Abstract: One of the main issues in the simulation of Tokamaks functioning is the reliable and accurate computation of actual field maps in the plasma chamber. In this paper a tool able to accurately compute magnetic field maps produced by active coils of any 3D shape, wound with high number of conductors, is presented. Under linearity assumption, the coil winding is modeled by means of “sticks”, following each conductor's shape, and the contribution of each stick is computed using high speed Graphic Computing Units (GPU's). Relevant speed enhancements with respect to standard parallel computing environment are achieved in this way.

  12. Fusion plasma theory grant: Task 1, Magnetic confinement fusion plasma theory

    International Nuclear Information System (INIS)

    Callen, J.D.

    1989-07-01

    The research performed under this grant during the current year has concentrated on key tokamak plasma confinement and heating theory issues: further development of neoclassical MHD; development of a new fluid/kinetic hybrid model; energy confinement degradation due to macroscopic phenomena in tokamaks; and some other topics (magnetics analysis, coherent structures, presheath structure). Progress and publications in these areas are briefly summarized in this report. 20 refs

  13. LHC magnet quench protection system

    Science.gov (United States)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-07-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called 'cold diode' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements - so called 'cold diodes'. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a 'natural' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages.

  14. LHC magnet quench protection system

    International Nuclear Information System (INIS)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-01-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called ''cold diode'' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements--so called ''cold diodes''. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a ''natural'' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages

  15. The perspectives of fusion energy: The roadmap towards energy production and fusion energy in a distributed energy system

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Korsholm, Søren Bang

    2014-01-01

    at very high temperature where all matter is in the plasma state as the involved energies are orders of magnitude higher than typical chemical binding energies. It is one of the great science and engineering challenges to construct a viable power plant based on fusion energy. Fusion research is a world...... The presentation will discuss the present status of the fusion energy research and review the EU Roadmap towards a fusion power plant. Further the cost of fusion energy is assessed as well as how it can be integrated in the distributed energy system......Controlled thermonuclear fusion has the potential of providing an environmentally friendly and inexhaustible energy source for mankind. Fusion energy, which powers our sun and the stars, is released when light elements, such as the hydrogen isotopes deuterium and tritium, fuse together. This occurs...

  16. Summary of the US Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM)

    International Nuclear Information System (INIS)

    Logan, B.G.; Holdren, J.P.; Berwald, D.H.

    1988-01-01

    ESECOM has completed a recent assessment of the competitive potential of magnetic fusion energy (MFE) compared to present and future fission energy sources giving particular emphasis to the interaction of environmental, safety, and economic characteristics. By consistently applying a set of economic and safety models to a set of MFE concepts using a wide range of possible material choices, power densities, power conversion methods, and fuel cycles, ESECOM finds that several different MFE concepts have the potential to achieve costs of electricity comparable to those of fission systems, coupled with significant safety and environmental advantages. 13 refs., 7 tabs

  17. The fusion reactor

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1974-01-01

    Basic principles of the fusion reactor are outlined. Plasma heating and confinement schemes are described. These confinement systems include the linear Z pinch, magnetic mirrors and Tokamaks. A fusion reactor is described and a discussion is given of its environmental impact and its fuel situation. (R.L.)

  18. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  19. Multimodal biometric system using rank-level fusion approach.

    Science.gov (United States)

    Monwar, Md Maruf; Gavrilova, Marina L

    2009-08-01

    In many real-world applications, unimodal biometric systems often face significant limitations due to sensitivity to noise, intraclass variability, data quality, nonuniversality, and other factors. Attempting to improve the performance of individual matchers in such situations may not prove to be highly effective. Multibiometric systems seek to alleviate some of these problems by providing multiple pieces of evidence of the same identity. These systems help achieve an increase in performance that may not be possible using a single-biometric indicator. This paper presents an effective fusion scheme that combines information presented by multiple domain experts based on the rank-level fusion integration method. The developed multimodal biometric system possesses a number of unique qualities, starting from utilizing principal component analysis and Fisher's linear discriminant methods for individual matchers (face, ear, and signature) identity authentication and utilizing the novel rank-level fusion method in order to consolidate the results obtained from different biometric matchers. The ranks of individual matchers are combined using the highest rank, Borda count, and logistic regression approaches. The results indicate that fusion of individual modalities can improve the overall performance of the biometric system, even in the presence of low quality data. Insights on multibiometric design using rank-level fusion and its performance on a variety of biometric databases are discussed in the concluding section.

  20. The magnet system of the Tokamak T-15 upgrade

    International Nuclear Information System (INIS)

    Khvostenko, P.P.; Azizov, E.A.; Alfimov, D.E.; Belyakov, V.A.; Bondarchuk, E.N.; Chudnovsky, A.N.; Dokuka, V.N.; Kavin, A.A.; Khayrutdinov, R.R.; Khokhlov, M.V.; Kitaev, B.A.; Krasnov, S.V.; Maximova, I.I.; Labusov, A.N.; Lukash, V.E.; Mineev, A.B.; Muratov, V.P.

    2015-01-01

    Highlights: • T-15U project is the initial technical base for creating fusion neutron sources. • Magnet system of T-15U will confine the hot plasma in the divertor configuration. • Toroidal magnetic field at the plasma axis is 2 T. • T-15U should begin operations in 2016. - Abstract: Presently, the Tokamak T-15 is being upgraded. The magnet system of the Tokamak T-15 upgrade will obtain and confine the hot plasma in the divertor configuration. Plasma parameters are a major radius of 1.48 m, a minor radius of 0.67 m, an elongation of 1.7–1.9 and a triangularity of 0.3–0.4. The magnet system includes the toroidal winding and the poloidal magnet system. The poloidal magnet system generates the divertor with single null and double null magnetic configurations. The power supply system provides the necessary current scenarios in the windings of the magnet system. All elements of the magnet system will be manufactured by the end of 2015. The Tokamak T-15 upgrade should begin operations in 2016.

  1. The magnet system of the Tokamak T-15 upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, P.P., E-mail: ppkhvost@rambler.ru [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Azizov, E.A.; Alfimov, D.E. [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Belyakov, V.A.; Bondarchuk, E.N. [Joint Stock Company “D.V. Efremov Institute of Electrophysical Apparatus”, Metallostroy, 196641 St. Petersburg (Russian Federation); Chudnovsky, A.N.; Dokuka, V.N. [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Kavin, A.A. [Joint Stock Company “D.V. Efremov Institute of Electrophysical Apparatus”, Metallostroy, 196641 St. Petersburg (Russian Federation); Khayrutdinov, R.R. [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Khokhlov, M.V.; Kitaev, B.A.; Krasnov, S.V.; Maximova, I.I.; Labusov, A.N. [Joint Stock Company “D.V. Efremov Institute of Electrophysical Apparatus”, Metallostroy, 196641 St. Petersburg (Russian Federation); Lukash, V.E. [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Mineev, A.B.; Muratov, V.P. [Joint Stock Company “D.V. Efremov Institute of Electrophysical Apparatus”, Metallostroy, 196641 St. Petersburg (Russian Federation); and others

    2015-10-15

    Highlights: • T-15U project is the initial technical base for creating fusion neutron sources. • Magnet system of T-15U will confine the hot plasma in the divertor configuration. • Toroidal magnetic field at the plasma axis is 2 T. • T-15U should begin operations in 2016. - Abstract: Presently, the Tokamak T-15 is being upgraded. The magnet system of the Tokamak T-15 upgrade will obtain and confine the hot plasma in the divertor configuration. Plasma parameters are a major radius of 1.48 m, a minor radius of 0.67 m, an elongation of 1.7–1.9 and a triangularity of 0.3–0.4. The magnet system includes the toroidal winding and the poloidal magnet system. The poloidal magnet system generates the divertor with single null and double null magnetic configurations. The power supply system provides the necessary current scenarios in the windings of the magnet system. All elements of the magnet system will be manufactured by the end of 2015. The Tokamak T-15 upgrade should begin operations in 2016.

  2. A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION

    Energy Technology Data Exchange (ETDEWEB)

    Allen R. Sanderson; Christopher R. Johnson

    2006-08-01

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  3. A National Collaboratory To Advance The Science Of High Temperature Plasma Physics For Magnetic Fusion

    International Nuclear Information System (INIS)

    Sanderson, Allen R.; Johnson, Christopher R.

    2006-01-01

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  4. High density linear systems for fusion power

    International Nuclear Information System (INIS)

    Ellis, W.R.; Krakowski, R.A.

    1975-01-01

    The physics and technological limitations and uncertainties associated with the linear theta pinch are discussed in terms of a generalized energy balance, which has as its basis the ratio (Q/sub E/) of total electrical energy generated to net electrical energy consumed. Included in this total is the virtual energy of bred fissile fuel, if a hybrid blanket is used, as well as the actual of real energy deposited in the blanket by the fusion neutron. The advantages and disadvantages of the pulsed operation demanded by the linear theta pinch are also discussed

  5. Cryogenic system operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1992-01-01

    This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design

  6. Neutron irradiation effects on superconducting and stabilizing materials for fusion magnets

    International Nuclear Information System (INIS)

    Maurer, W.

    1984-05-01

    Available low-temperature neutron irradiation data for the superconductors NbTi and Nb 3 Sn and the stabilization materials Cu and Al are collected and maximum tolerable doses for these materials are defined. A neutron flux in a reactor of about 10 9 n/cm 2 s at the magnet position is expected. However, in fusion experiments the flux can be higher by an order of magnitude or more. The energy spectrum is similar to a fission reactor. A fluence of about 10 18 n/cm 2 results during the lifetime of a fusion magnet (about 20 full power years). At this fluence and energy spectrum no severe degradation of the superconducting properties of NbTi and Nb 3 Sn will occur. But the radiation-induced resistivity is for Cu about a twentieth of the room temperature resistivity and a tenth for Al. (orig.) [de

  7. Technology requirements for fusion--fission reactors based on magnetic-mirror confinement

    International Nuclear Information System (INIS)

    Moir, R.W.

    1978-01-01

    Technology requirements for mirror hybrid reactors are discussed. The required 120-keV neutral beams can use positive ions. The magnetic fields are 8 T or under and can use NbTi superconductors. The value of Q (where Q is the ratio of fusion power to injection power) should be in the range of 1 to 2 for economic reasons relating to the cost of recirculating power. The wall loading of 14-MeV neutrons should be in the range of 1 to 2 MW/m 2 for economic reasons. Five-times higher wall loading will likely be needed if fusion reactors are to be economical. The magnetic mirror experiments 2XIIB, TMX, and MFTF are described

  8. Fourth annual progress report on special-purpose materials for magnetically confined fusion reactors

    International Nuclear Information System (INIS)

    1982-08-01

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (>10-T) superconducting magnets. The Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits

  9. Determination of the Jet Neutron Rate and Fusion Power using the Magnetic Proton Recoil Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Sjoestrand, Henrik

    2003-01-01

    In this thesis a new independent method has been developed to enable precise measurements of neutron yields and rates from fusion plasmas and thereby determining the fusion power and fusion energy. The new method, together with the associated diagnostics, can provide information of great importance to present and future high fusion yield experiments, such as the Joint European Torus (JET) tokamak and the International Thermonuclear Experiment Reactor (ITER). The method has been applied to data from high fusion rate experiments from the tritium campaign at JET. By using the count-rate from the Magnetic Proton Recoil (MPR) neutron spectrometer the number of neutrons in the spectrometer's line of sight has been calculated. To be able to do this, all relevant factors between the plasma and the instrument have been evaluated. The number of neutrons in the MPR line of sight has been related to the total number of produced neutrons in the plasma by using information on the neutron emission profile. The achieved results have been compared with other JET neutron diagnostic data and the agreement is shown to be very good.

  10. Design of a magnetic field alignment diagnostic for the MFTF-B magnet system

    International Nuclear Information System (INIS)

    Deadrick, F.J.; House, P.A.; Frye, R.W.

    1985-01-01

    Magnet alignment in tandem mirror fusion machines plays a crucial role in achieving and maintaining plasma confinement. Various visual alignment tools have been described by Post et al. to align the Tara magnet system. We have designed and installed a remotely operated magnetic field alignment (MFA) diagnostic system as a part of the Mirror Fusion Test Facility (MFTF-B). It measures critical magnetic field alignment parameters of the MFTF-B coil set while under full-field operating conditions. The MFA diagnostic employs a pair of low-energy, electron beam guns on a remotely positionable probe to trace and map selected magnetic field lines. An array of precision electrical detector paddles locates the position of the electron beam, and thus the magnetic field line, at several critical points. The measurements provide a means to compute proper compensating currents to correct for mechanical misalignments of the magnets with auxiliary trim coils if necessary. This paper describes both the mechanical and electrical design of the MFA diagnostic hardware

  11. Concept evaluation of nuclear fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    This paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders. Two different blanket types were used: metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing. All fusion-driven blankets are assumed to have spherical geometries, with a 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries. These neutronics calculations are coupled with a scenario optimization and cost analysis code. Also, the fusion burn was shaped so as to keep the blanket maximum power density below a preset value, and to improve the performance of the fusion-driven systems. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The nuclear fission breeders that were used as drivers have parameters characteristic of heterogeneous, oxide LMFBRs. They are net plutonium users - the plutonium is obtained from the discharges of LWRs - and U233 is bred in the fission breeder thorium blankets. The analyses of the symbiotic energy systems were performed at equilibrium, at maximum rate of grid expansion, and for a given nuclear power demand

  12. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  13. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Science.gov (United States)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  14. Neutron-irradiation facilities at the Intense Pulsed Neutron Source-I for fusion magnet materials studies

    International Nuclear Information System (INIS)

    Brown, B.S.; Blewitt, T.H.

    1982-01-01

    The decommissioning of reactor-based neutron sources in the USA has led to the development of a new generation of neutron sources that employ high-energy accelerators. Among the accelerator-based neutron sources presently in operation, the highest-flux source is the Intense Pulsed Neutron Source (IPNS), a user facility at Argonne National Laboratory. Neutrons in this source are produced by the interaction of 400 to 500 MeV protons with either of two 238 U target systems. In the Radiation Effects Facility (REF), the 238 U target is surrounded by Pb for neutron generatjion and reflection. The REF has three separate irradiation thimbles. Two thimbles provide irradiation temperatures between that of liquid He and several hundred degrees centigrade. The third thimble operates at ambient temperature. The large irradiation volume, the neutron spectrum and flux, the ability to transfer samples without warm up, and the dedication of the facilities during the irradiation make this ideally suited for radiation damage studies on components for superconducting fusion magnets. Possible experiments for fusion magnet materials are discussed on cyclic irradiation and annealing of stabilizers in a high magnetic field, mechanical tests on organic insulation irradiated at 4 K, and superconductors measured in high fields after irradiation

  15. Finite element analysis of structural response of superconducting magnet for a fusion reactor

    International Nuclear Information System (INIS)

    Reich, M.; Powell, J.; Bezler, P.; Chang, T.Y.; Prachuktam, S.

    1975-01-01

    In the proposal Tokamak fusion reactor, the superconducting unit consists of an assembly of D-shaped magnets standing vertically and arranged in a toroidal configuration. Each magnet is a composite structure comprised of Nb-22%Ti and Nb-48%Ti, and stabilizing metals such as copper and aluminum or stainless steel held together by reinforced epoxies which also serve as insulators and spacers. The magnets are quite large, typically 15-20 meters in diameter with rectangular cross sections around 0.93x2m. Under static loading condition, the magnet is subjected to dead weight and large magnetic field forces, which may induce high stresses in the structure. Furthermore, additional stresses due to earthquake must also be considered for the design of the component. Both static and dynamic analyses of a typical field magnet have been performed by use of the finite element method. The magnet was assumed to be linearly elastic with equivalent homogeneous material properties. Various finite element models have been considered in order to better represent the structure for a particular loading case. For earthquake analysis, the magnet was assumed to be subjected to 50% of the El Centro 1940 earthquake and the dynamic response was obtained by the displacement spectrum analysis procedure. In the paper, numerical results are presented and the structure behavior of the magnet under static and dynamic loading conditions is discussed

  16. Benefit-analysis of accomplishments from the magnetic fusion energy (MFE) research program

    International Nuclear Information System (INIS)

    Lago, A.M.; Weinblatt, H.; Hamilton, E.E.

    1987-01-01

    This report presents the results of a study commissioned by the US Department of Energy's (DOE) Office of Program Analysis to examine benefits from selected accomplishments of DOE's Magnetic Fusion Energy (MFE) Research Program. The study objectives are presented. The MFE-induced innovation and accomplishments which were studied are listed. Finally, the benefit estimation methodology used is described in detail. The next seven chapters document the results of benefit estimation for the MFE accomplishments studied

  17. Analyzing large data sets from XGC1 magnetic fusion simulations using apache spark

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, R. Michael [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-11-21

    Apache Spark is explored as a tool for analyzing large data sets from the magnetic fusion simulation code XGCI. Implementation details of Apache Spark on the NERSC Edison supercomputer are discussed, including binary file reading, and parameter setup. Here, an unsupervised machine learning algorithm, k-means clustering, is applied to XGCI particle distribution function data, showing that highly turbulent spatial regions do not have common coherent structures, but rather broad, ring-like structures in velocity space.

  18. Tribology of magnetic storage systems

    Science.gov (United States)

    Bhushan, Bharat

    1992-01-01

    The construction and the materials used in different magnetic storage devices are defined. The theories of friction and adhesion, interface temperatures, wear, and solid-liquid lubrication relevant to magnetic storage systems are presented. Experimental data are presented wherever possible to support the relevant theories advanced.

  19. Topology optimized permanent magnet systems

    Science.gov (United States)

    Bjørk, R.; Bahl, C. R. H.; Insinga, A. R.

    2017-09-01

    Topology optimization of permanent magnet systems consisting of permanent magnets, high permeability iron and air is presented. An implementation of topology optimization for magnetostatics is discussed and three examples are considered. The Halbach cylinder is topology optimized with iron and an increase of 15% in magnetic efficiency is shown. A topology optimized structure to concentrate a homogeneous field is shown to increase the magnitude of the field by 111%. Finally, a permanent magnet with alternating high and low field regions is topology optimized and a Λcool figure of merit of 0.472 is reached, which is an increase of 100% compared to a previous optimized design.

  20. Topology optimized permanent magnet systems

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian; Insinga, Andrea Roberto

    2017-01-01

    Topology optimization of permanent magnet systems consisting of permanent magnets, high permeability iron and air is presented. An implementation of topology optimization for magnetostatics is discussed and three examples are considered. The Halbach cylinder is topology optimized with iron...... and an increase of 15% in magnetic efficiency is shown. A topology optimized structure to concentrate a homogeneous field is shown to increase the magnitude of the field by 111%. Finally, a permanent magnet with alternating high and low field regions is topology optimized and a ΛcoolΛcool figure of merit of 0...