WorldWideScience

Sample records for fusion experiment operations

  1. Magnet operating experience review for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1991-11-01

    This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries.

  2. Magnet operating experience review for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1991-11-01

    This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries.

  3. Fire protection system operating experience review for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  4. Cryogenic system operating experience review for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1992-01-01

    This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design.

  5. Ventilation Systems Operating Experience Review for Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader

    1999-12-01

    This report is a collection and review of system operation and failure experiences for air ventilation systems in nuclear facilities. These experiences are applicable for magnetic and inertial fusion facilities since air ventilation systems are support systems that can be considered generic to nuclear facilities. The report contains descriptions of ventilation system components, operating experiences with these systems, component failure rates, and component repair times. Since ventilation systems have a role in mitigating accident releases in nuclear facilities, these data are useful in safety analysis and risk assessment of public safety. An effort has also been given to identifying any safety issues with personnel operating or maintaining ventilation systems. Finally, the recommended failure data were compared to an independent data set to determine the accuracy of individual values. This comparison is useful for the International Energy Agency task on fusion component failure rate data collection.

  6. Elements of Successful and Safe Fusion Experiment Operations

    Energy Technology Data Exchange (ETDEWEB)

    K. Rule, L. Cadwallader, Y. Takase, T. Norimatsu, O. Kaneko, M. Sato, and R. Savercool

    2009-02-03

    A group of fusion safety professionals contribute to a Joint Working Group (JWG) that performs occupational safety walkthroughs of US and Japanese fusion experiments on a routine basis to enhance the safety of visiting researchers. The most recent walkthrough was completed in Japan in March 2008 by the US Safety Monitor team. This paper gives the general conclusions on fusion facility personnel safety that can be drawn from the series of walkthroughs.

  7. Fusion ignition research experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dale Meade

    2000-07-18

    Understanding the properties of high gain (alpha-dominated) fusion plasmas in an advanced toroidal configuration is the largest remaining open issue that must be addressed to provide the scientific foundation for an attractive magnetic fusion reactor. The critical parts of this science can be obtained in a compact high field tokamak which is also likely to provide the fastest and least expensive path to understanding alpha-dominated plasmas in advanced toroidal systems.

  8. Gasdynamic Mirror (GDM) Fusion Propulsion Engine Experiment

    Science.gov (United States)

    1999-01-01

    The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.

  9. Virtual experiment of pyroelectric fusion

    Energy Technology Data Exchange (ETDEWEB)

    Nasseri, Mohammad Mehdi, E-mail: mnasseri@aeoi.org.ir

    2015-11-01

    The virtual experiment of pyroelectric fusion was conducted by Geant4 simulator. Despite the limitations of the code for simulating the pyroelectric fusion experiment precisely, the following interesting results were obtained. Two crystals were separated by a certain distance. A constant electric field with varying intensities was applied between the crystals. As initial particles, deuterium ions were emitted to deuterated polypropylene (CD{sub 2}). This virtual experiment showed that the number of ions that hit the target, for different distances between the crystals, increases with the increase of the intensity of the electric field; however, further increase of the electric field results in the reduction of the number of hit ions, which attains a constant value of about 57% of the initial number of ions. For a (D, D) fusion reaction to occur, the distance between the two crystals should be <1.5 cm and for a (D, T) fusion reaction to occur, this distance could be up to 2 cm. The energy spectra of ions for low and high electric fields were narrow and long and wide and short, respectively.

  10. Intelligence Fusion for Combined Operations

    Science.gov (United States)

    1994-06-03

    doctrine on intelligence in combined operations, the lessons learned from the most recent combined operations, the current state of intelligence fision ...control of nuclear weapons and arms proliferation in the former Soviet Union.’ In Asia, the United States maintains a military presence in support of...emanating from other than nuclear or radioactive sources. Individual Reports Database - The portion of the LOCE database consisting of entity data records

  11. Modeling decisions information fusion and aggregation operators

    CERN Document Server

    Torra, Vicenc

    2007-01-01

    Information fusion techniques and aggregation operators produce the most comprehensive, specific datum about an entity using data supplied from different sources, thus enabling us to reduce noise, increase accuracy, summarize and extract information, and make decisions. These techniques are applied in fields such as economics, biology and education, while in computer science they are particularly used in fields such as knowledge-based systems, robotics, and data mining. This book covers the underlying science and application issues related to aggregation operators, focusing on tools used in practical applications that involve numerical information. Starting with detailed introductions to information fusion and integration, measurement and probability theory, fuzzy sets, and functional equations, the authors then cover the following topics in detail: synthesis of judgements, fuzzy measures, weighted means and fuzzy integrals, indices and evaluation methods, model selection, and parameter extraction. The method...

  12. Laser fusion experiments at LLL

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, H.G.

    1980-06-16

    These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

  13. Fire hazard analysis for fusion energy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Alvares, N.J.; Hasegawa, H.K.

    1979-01-01

    The 2XIIB mirror fusion facility at Lawrence Livermore Laboratory (LLL) was used to evaluate the fire safety of state-of-the-art fusion energy experiments. The primary objective of this evaluation was to ensure the parallel development of fire safety and fusion energy technology. Through fault-tree analysis, we obtained a detailed engineering description of the 2XIIB fire protection system. This information helped us establish an optimum level of fire protection for experimental fusion energy facilities as well as evaluate the level of protection provided by various systems. Concurrently, we analyzed the fire hazard inherent to the facility using techniques that relate the probability of ignition to the flame spread and heat-release potential of construction materials, electrical and thermal insulations, and dielectric fluids. A comparison of the results of both analyses revealed that the existing fire protection system should be modified to accommodate the range of fire hazards inherent to the 2XIIB facility.

  14. Lower Hybrid antennas for nuclear fusion experiments

    CERN Document Server

    Hillairet, Julien; Bae, Young-Soon; Bai, X; Balorin, C; Baranov, Y; Basiuk, V; Bécoulet, A; Belo, J; Berger-By, G; Brémond, S; Castaldo, C; Ceccuzzi, S; Cesario, R; Corbel, E; Courtois, X; Decker, J; Delmas, E; Delpech, L; Ding, X; Douai, D; Ekedahl, A; Goletto, C; Goniche, M; Guilhem, D; Hertout, P; Imbeaux, F; Litaudon, X; Magne, R; Mailloux, J; Mazon, D; Mirizzi, F; Mollard, P; Moreau, P; Oosako, T; Petrzilka, V; Peysson, Y; Poli, S; Preynas, M; Prou, M; Saint-Laurent, F; Samaille, F; Saoutic, B

    2015-01-01

    The nuclear fusion research goal is to demonstrate the feasibility of fusion power for peaceful purposes. In order to achieve the conditions similar to those expected in an electricity-generating fusion power plant, plasmas with a temperature of several hundreds of millions of degrees must be generated and sustained for long periods. For this purpose, RF antennas delivering multi-megawatts of power to magnetized confined plasma are commonly used in experimental tokamaks. In the gigahertz range of frequencies, high power phased arrays known as "Lower Hybrid" (LH) antennas are used to extend the plasma duration. This paper reviews some of the technological aspects of the LH antennas used in the Tore Supra tokamak and presents the current design of a proposed 20 MW LH system for the international experiment ITER.

  15. Diagnosing Magnetized Liner Inertial Fusion experiments on Z

    Science.gov (United States)

    Hansen, Stephanie

    2014-10-01

    Recent Magnetized Liner Inertial Fusion (MagLIF) experiments performed at Sandia's Z facility have demonstrated DD fusion neutron yields above 1012 and effective confinement of charged fusion products by the flux-compressed magnetic field signaled by >1010 secondary DT neutrons. The neutron diagnostics are complemented by an extensive suite of visible and x-ray diagnostics providing power, imaging, and spectroscopic data. This talk will present analyses of emission and absorption features from the imploding and stagnating plasma that provide a consistent picture of the magnetic drive and the temperatures, densities, mix, and gradients in the fuel and liner at stagnation. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  16. Stirling machine operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Ross, B. [Stirling Technology Co., Richland, WA (United States); Dudenhoefer, J.E. [Lewis Research Center, Cleveland, OH (United States)

    1994-09-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that stirling machines are capable of reliable and lengthy operating lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and are not expected to operate for lengthy periods of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered. The record in this paper is not complete, due to the reluctance of some organizations to release operational data and because several organizations were not contacted. The authors intend to repeat this assessment in three years, hoping for even greater participation.

  17. ATLAS IBL operational experience

    CERN Document Server

    Takubo, Yosuke; The ATLAS collaboration

    2016-01-01

    The Insertable B-Layer (IBL) is the inner most pixel layer in the ATLAS experiment, which was installed at 3.3 cm radius from the beam axis in 2014 to improve the tracking performance. To cope with the high radiation and hit occupancy due to proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed for the IBL. After the long shut-down period over 2013 and 2014, the ATLAS experiment started data-taking in May 2015 for Run-2 of the Large Hadron Collider (LHC). The IBL has been operated successfully since the beginning of Run-2 and shows excellent performance with the low dead module fraction, high data-taking efficiency and improved tracking capability. The experience and challenges in the operation of the IBL is described as well as its performance.

  18. Magnetic Compression Experiment at General Fusion

    Science.gov (United States)

    Dunlea, Carl; Howard, Stephen; Epp, Kelly; Zawalski, Wade; Kim, Charlson; Fusion Team, General

    2016-10-01

    The magnetic compression experiment at General Fusion was designed as a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. The experiment has external coils to keep the CT off the outer wall (levitation) and then rapidly compress it inwards. Experiments used a variety of levitation/compression field profiles. The optimal configuration was seen to improve levitated CT lifetime by around 50% over that with the original design field. Suppression of impurity influx to the plasma is thought to be a significant factor in the improvement, as supported by spectrometer data. Improved levitation field may reduce the amount of edge plasma and current that intersects the insulating outer wall during the formation process. Higher formation current and stuffing field, and correspondingly higher CT flux, was possible with the improved configuration. Significant field and density compression factors were routinely observed. The level of MHD activity was reduced, and lifetime was increased further by matching the decay rate of the levitation field to that of the CT fields. Details of experimental results and comparisons to equilibrium models and MHD simulations will be presented.

  19. Operational experience at ELBE

    Science.gov (United States)

    Michel, P.; Lehnert, U.; Seidel, W.

    2015-05-01

    The ELBE center for high power radiation sources is the largest user facility in the Helmholtz-Zentrum Dresden- Rossendorf. The facility is based on a 36 MeV superconducting RF Linac which can be operated up to 1.6 mA in cw mode. The electron beam is used to generate secondary radiation, such as infrared light (Free Electron Lasers), coherent THz radiation, MeV-Bremsstrahlung, fast neutrons and positrons for a wide range of basic research like semiconductor physics, nuclear astrophysics and radio biological investigations. Two high power laser systems (500 TW Ti:Sa laser, 2 PW diode pumped laser) are under construction for laser acceleration experiments and X-ray generation by Thomson scattering. The FELs are in operation since 2004 (mid-IR FEL, 4-22μm) and 2006 (far-IF FEL, 20-250μm). The fundamental features of the ELBE IR FELs, the FEL instrumentation and advanced beam diagnostics for the photon beam are described. During ten years of user operation experiences and statistical data were collected.

  20. Inertial Fusion Power Plant Concept of Operations and Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Anklam, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knutson, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunne, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kasper, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sheehan, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lang, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mau, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  1. Inertial fusion power plant concept of operations and maintenance

    Science.gov (United States)

    Knutson, Brad; Dunne, Mike; Kasper, Jack; Sheehan, Timothy; Lang, Dwight; Anklam, Tom; Roberts, Valerie; Mau, Derek

    2015-02-01

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  2. CMS Tracker operational experience

    CERN Document Server

    Fiori, Francesco

    2016-01-01

    The CMS Tracker was repaired, recalibrated and commissioned successfully for the second run of Large Hadron Collider. In 2015 the Tracker performed well with improved hit efficiency and spatial resolution compared to Run I. Operations successfully transitioned to lower temperatures after commissioning environmental control and monitoring. This year the detector is expected to withstand luminosities that are beyond its design limits and will need a combined effort of both online and offline team to yield the high quality data that is required to reach our physics goals. We present the experience gained during the second run of the LHC and show the latest performance results of the CMS Tracker.

  3. String loop corrections from fusion of handles and vertex operators

    Science.gov (United States)

    Ooguri, H.; Sakai, N.

    1987-10-01

    Handle operators are introduced to describe nonlinear sigma models on higher genus surfaces by an operator formalism. Operator product expansions (fusions) among handle and vertex operators provide new sources of conformal symmetry breakings. Through the renormalization group equations, string-loop corrected equations of motion without one-particle reducible parts are derived to one-loop order. Work supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture (No. 61540200).

  4. Heavy ion fusion experiments at LBNL and LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Ahle, L

    1998-08-19

    The long-range goal of the US Heavy Ion Fusion (HIF) program is to develop heavy ion accelerators capable of igniting inertial fusion targets to generate fusion energy for electrical power production. Accelerators for heavy ion fusion consist of several subsystems: ion sources, injectors, matching sections, combiners, induction acceleration sections with electric and magnetic focusing, beam compression and bending sections, and a final-focus system to focus the beams onto the target. We are currently assembling or performing experiments to address the physics of all these subsystems. This paper will discuss some of these experiments.

  5. Concept of Operations for Data Fusion Visualization

    Energy Technology Data Exchange (ETDEWEB)

    T.R. McJunkin; R.L. Boring; M.A. McQueen; L.P. Shunn; J.L. Wright; D.I. Gertman; O. Linda; K. McCarty; M. Manic

    2011-09-01

    Situational awareness in the operations and supervision of a industrial system means that decision making entity, whether machine or human, have the important data presented in a timely manner. An optimal presentation of information such that the operator has the best opportunity accurately interpret and react to anomalies due to system degradation, failures or adversaries. Anticipated problems are a matter for system design; however, the paper will focus on concepts for situational awareness enhancement for a human operator when the unanticipated or unaddressed event types occur. Methodology for human machine interface development and refinement strategy is described for a synthetic fuels plant model. A novel concept for adaptively highlighting the most interesting information in the system and a plan for testing the methodology is described.

  6. Demonstration of thermonuclear conditions in Magnetized Liner Inertial Fusion experiments

    Science.gov (United States)

    Gomez, Matthew

    2014-10-01

    The Magnetized Liner Inertial Fusion concept utilizes a magnetic field and laser heating to relax the implosion requirements to achieve inertial confinement fusion. The first experiments to test the concept were recently conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z coils. Despite the relatively slow implosion velocity (70 km/s) in these experiments, electron and ion temperatures at stagnation were approximately 3 keV, and thermonuclear DD neutron yields up to 2e12 have been produced. X-ray emission from the fuel at stagnation had a width ranging from 60-120 microns over a roughly 6 mm height and lasted approximately 2 ns. X-ray spectra from these experiments are consistent with a stagnation density of the hot fuel equal to 0.4 g/cm3 . In these experiments 1-5e10 secondary DT neutrons were produced. Given that the areal density of the plasma was approximately 2 mg/cm2, this indicates the stagnation plasma was significantly magnetized. This is consistent with the anisotropy observed in the DT neutron time of flight spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and DD yields greater than 1e10. An additional control experiment where the fuel contained a sufficient dopant fraction to radiate away the laser energy deposited in the fuel also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  7. Development of 2D/3D equilibrium codes for magnetically confined fusion experiments

    OpenAIRE

    2013-01-01

    The present work is the result of a three-year Ph.D. research project carried out at Consorzio RFX on magnetically confined plasmas. Research on controlled thermonuclear fusion is currently being pursued by many countries throughout the world, thanks to its promise of a relatively clean and abundant energy source. The next steps for the international community are the construction and operation of a large device, ITER, considered as the last fusion physics experiment with respect to the tokam...

  8. Three-dimensional antenna models for fusion experiments

    Science.gov (United States)

    Carter, M. D.; Wang, C. Y.; Hogan, J. T.; Harris, J. H.; Hoffman, D. J.; Rasmussen, D. A.; Ryan, P. M.; Stallings, D. S.; Batchelor, D. B.; Beaumont, B.; Hutter, T.; Saoutic, B.

    1996-02-01

    The development of the RANT3D code has permitted the systematic study of the effect of three-dimensional structures on the launched power spectrum for antennas in the ion cyclotron range of frequencies. The code allows the septa between current straps to be modeled with arbitrary heights and permits the antenna to interact with other structures in the tokamak. In this paper we present comparisons of calculated loading with the Tokamak Fusion Test Reactor and Tore Supra experiments, demonstrate the effects on loading caused by positioning uncertainties for an antenna in Tore Supra, and show electric field patterns near the Tore Supra antenna. A poloidal component in the static magnetic field for the plasma response is included in the near-field calculations using the warm plasma code, GLOSI. Preliminary estimates for the heat flux on the bumper limiters during typical operation in Tore Supra are also presented.

  9. Three-dimensional antenna models for fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.D.; Wang, C.Y.; Hogan, J.T.; Harris, J.H.; Hoffman, D.J.; Rasmussen, D.A.; Ryan, P.M.; Stallings, D.S.; Batchelor, D.B. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071, (United States); Beaumont, B.; Hutter, T.; Saoutic, B. [Association Euratom-CEA, Department de Recherche sur la Fusion Controlee, Centre d`Etudes de Cadarache, 13108 Saint Paul Lez Durance, Cedex (France)

    1996-02-01

    The development of the RANT3D code has permitted the systematic study of the effect of three-dimensional structures on the launched power spectrum for antennas in the ion cyclotron range of frequencies. The code allows the septa between current straps to be modeled with arbitrary heights and permits the antenna to interact with other structures in the tokamak. In this paper we present comparisons of calculated loading with the Tokamak Fusion Test Reactor and Tore Supra experiments, demonstrate the effects on loading caused by positioning uncertainties for an antenna in Tore Supra, and show electric field patterns near the Tore Supra antenna. A poloidal component in the static magnetic field for the plasma response is included in the near-field calculations using the warm plasma code, GLOSI. Preliminary estimates for the heat flux on the bumper limiters during typical operation in Tore Supra are also presented. {copyright} {ital 1996 American Institute of Physics.}

  10. Superconducting focusing quadrupoles for heavy ion fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.

    2003-05-01

    The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.

  11. Fusion Core Imaging Experiment Based on the Shenguang Ⅱ Facility

    Institute of Scientific and Technical Information of China (English)

    郑志坚; 曹磊峰; 滕浩; 成金秀

    2002-01-01

    A laser fusion experiment was performed based on the Shenguang Ⅱ facility. An image of thermonuclear burning region was obtained with a Fresnel zone plate-coded imaging technique, where the laser-driven target was served as an α-particle source, and the coded image obtained in the experiment was reconstructed by a numerical way.

  12. RGB-NIR color image fusion: metric and psychophysical experiments

    Science.gov (United States)

    Hayes, Alex E.; Finlayson, Graham D.; Montagna, Roberto

    2015-01-01

    In this paper, we compare four methods of fusing visible RGB and near-infrared (NIR) images to produce a color output image, using a psychophysical experiment and image fusion quality metrics. The results of the psychophysical experiment show that two methods are significantly preferred to the original RGB image, and therefore RGB-NIR image fusion may be useful for photographic enhancement in those cases. The Spectral Edge method is the most preferred method, followed by the dehazing method of Schaul et al. We then investigate image fusion metrics which give results correlated with the psychophysical experiment results. We extend several existing metrics from 2 to 1 to M to N channel image fusion, as well as introducing new metrics based on output image colorfulness and contrast, and test them on our experimental data. While none of the individual metrics gives a ranking of the algorithms which exactly matches that of the psychophysical experiment, through a combination of two metrics we accurately rank the two leading fusion methods.

  13. MIT January Operational Internship Experience

    Science.gov (United States)

    Bosanac, Natasha; DeVivero, Charlie; James, Jillian; Perez-Martinez, Carla; Pino, Wendy; Wang, Andrew; Willett, Ezekiel; Williams, Kwami

    2010-01-01

    This viewgraph presentation describes the MIT January Operational Internship Experience (JOIE) program. The topics include: 1) Landing and Recovery; 2) Transportation; 3) Shuttle Processing; 4) Constellation Processing; 5) External Tank; 6) Launch Pad; 7) Ground Operations; 8) Hypergolic Propellants; 9) Environmental; 10) Logistics; 11) Six Sigma; 12) Systems Engineering; and 13) Human Factors.

  14. High power microwave diagnostic for the fusion energy experiment ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Leipold, Frank; Goncalves, B.

    2016-01-01

    Microwave diagnostics will play an increasingly important role in burning plasma fusion energy experiments like ITER and beyond. The Collective Thomson Scattering (CTS) diagnostic to be installed at ITER is an example of such a diagnostic with great potential in present and future experiments....... The ITER CTS diagnostic will inject a 1 MW 60 GHz gyrotron beam into the ITER plasma and observe the scattering off fluctuations in the plasma — to monitor the dynamics of the fast ions generated in the fusion reactions....

  15. Shared Negative Experiences Lead to Identity Fusion via Personal Reflection.

    Directory of Open Access Journals (Sweden)

    Jonathan Jong

    Full Text Available Across three studies, we examined the role of shared negative experiences in the formation of strong social bonds--identity fusion--previously associated with individuals' willingness to self-sacrifice for the sake of their groups. Studies 1 and 2 were correlational studies conducted on two different populations. In Study 1, we found that the extent to which Northern Irish Republicans and Unionists experienced shared negative experiences was associated with levels of identity fusion, and that this relationship was mediated by their reflection on these experiences. In Study 2, we replicated this finding among Bostonians, looking at their experiences of the 2013 Boston Marathon Bombings. These correlational studies provide initial evidence for the plausibility of our causal model; however, an experiment was required for a more direct test. Thus, in Study 3, we experimentally manipulated the salience of the Boston Marathon Bombings, and found that this increased state levels of identity fusion among those who experienced it negatively. Taken together, these three studies provide evidence that shared negative experience leads to identity fusion, and that this process involves personal reflection.

  16. Efficient Quadrature Operator Using Dual-Perspectives-Fusion Probabilistic Weights

    Directory of Open Access Journals (Sweden)

    Ashok Sahai

    2009-08-01

    Full Text Available A new quadrature formula has been proposed which uses weight functions derived using a probabilistic approach, and a rather-ingenious 'Fusion' of two dual perspectives. Unlike the complicatedly structured quadrature formulae of Gauss,Hermite and others of similar type, the proposed quadrature formula only needs the values of integrand at user-defined equidistant points in the interval of integration. The weights are functions of the impugned variable in the integrand, and are not mere constants. The quadrature formula has been compared empirically with the simple classical method of numerical integration using the well-known "Bernstein Operator". The percentage absolute relative errors for the proposed quadrature formula and that with the "Bernstein Operator" have been computed for certain selected functions and with different number of node points in the interval of integration. It has been observed that the proposed quadrature formula produces significantly better results.

  17. Measurements of fusion neutrons from Magnetized Liner Inertial Fusion Experiments on the Z accelerator

    Science.gov (United States)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E. C.; Awe, T. J.; Torres, J. A.; Jones, B.; Bur, J. A.; Cooper, G. W.; Styron, J. D.; Glebov, V. Yu.

    2015-11-01

    Strong evidence of thermonuclear neutron production has been observed during Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z accelerator. So far, these experiments have utilized deuterium fuel and produced primary DD fusion neutron yields up to 2e12 with electron and ion stagnation temperatures in the 2-3 keV range. We present MagLIF neutron measurements and compare to other data and implosion simulations. In addition to primary DD and secondary DT yields and ion temperatures, other complex physics regarding the degree of fuel magnetization and liner density are elucidated by the neutron measurements. Neutron diagnostic development for deuterium and future deuterium-tritium fuel experiments are also discussed. Sandia is sponsored by the U.S. DOE's NNSA under contract DE-AC04-94AL85000.

  18. Diagnosing magnetized liner inertial fusion experiments on Z

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, S. B., E-mail: sbhanse@sandia.gov; Gomez, M. R.; Sefkow, A. B.; Slutz, S. A.; Sinars, D. B.; Hahn, K. D.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; McBride, R. D.; Jennings, C. A.; Geissel, M.; Harvey-Thompson, A. J.; Peterson, K. J.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Hess, M. H. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States); and others

    2015-05-15

    Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼10{sup 12} DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10{sup 10}. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm{sup 3} densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  19. Comparing PRAs with operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Picard, R.R.; Martz, H.F.

    1998-12-01

    Probabilistic Risk Assessment is widely used to estimate the frequencies of rare events, such as nuclear power plant accidents. An obvious question concerns the extent to which PRAs conform to operating experience--that is, do PRAs agree with reality? The authors discuss a formal methodology to address this issue and examine its performance using plant-specific data.

  20. TSTA Piping and Flame Arrestor Operating Experience Data

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee C.; Willms, R. Scott

    2014-10-01

    The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium handling technology and experiment research at the Los Alamos National Laboratory. The facility operated from 1984 to 2001, running a prototype fusion fuel processing loop with ~100 grams of tritium as well as small experiments. There have been several operating experience reports written on this facility’s operation and maintenance experience. This paper describes analysis of two additional components from TSTA, small diameter gas piping that handled small amounts of tritium in a nitrogen carrier gas, and the flame arrestor used in this piping system. The operating experiences and the component failure rates for these components are discussed in this paper. Comparison data from other applications are also presented.

  1. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Silver, E.H.; Clauser, J.F.; Carter, M.R.; Failor, B.H.; Foote, J.H.; Hornady, R.S.; James, R.A.; Lasnier, C.J.; Perkins, D.E.

    1986-08-29

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented.

  2. The SILEX experiment system operations

    Science.gov (United States)

    Demelenne, B.

    1994-11-01

    The European Space Agency is going to conduct an inter orbit link experiment which will connect a low Earth orbiting satellite and a Geostationary satellite via optical terminals. This experiment has been called SILEX (Semiconductor Inter satellite Link EXperiment). Two payloads will be built. One called PASTEL (PASsager de TELecommunication) will be embarked on the French Earth observation satellite SPOT4. The future European experimental data relay satellite ARTEMIS (Advanced Relay and TEchnology MISsion) will carry the OPALE terminal (Optical PAyload Experiment). The principal characteristic of the mission is a 50 Megabits flow of data transmitted via the optical satellite link. The relay satellite will route the data via its feeder link thus permitting a real time reception in the European region of images taken by the observation satellite. The PASTEL terminal has been designed to cover up to 9 communication sessions per day with an average of 5. The number of daily contact opportunities with the low earth orbiting satellite will be increased and the duration will be much longer than the traditional passes over a ground station. The terminals have an autonomy of 24 hours with respect to ground control. Each terminal will contain its own orbit model and that of its counter terminal for orbit prediction and for precise computation of pointing direction. Due to the very narrow field of view of the communication laser beam, the orbit propagation calculation needs to be done with a very high accuracy. The European Space Agency is responsible for the operation of both terminals. A PASTEL Mission Control System (PMCS) is being developed to control the PASTEL terminal on board SPOT4. The PMCS will interface with the SPOT4 Control Centre for the execution of the PASTEL operations. The PMCS will also interface with the ARTEMIS Mission Control System for the planning and the coordination of the operation. It is the first time that laser technology will be used to support

  3. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  4. Fermilab SRF cryomodule operational experience

    CERN Document Server

    Martinez, A; Theilacker, J C; DeGraff, B D; White, M; Johnson, G S; 10.1063/1.4707033

    2012-01-01

    Fermi National Accelerator Laboratory is constructing an Advanced Accelerator Research and Development facility at New Muon Lab. The cryogenic infrastructure in support of the initial phase of the facility consists of two Tevatron style standalone refrigerators, cryogenic distribution system as well as an ambient temperature pumping system to achieve 2 K operations with supporting purification systems. During this phase of the project a single Type III plus 1.3 GHz cryomodule was installed, cooled and tested. Design constraints of the cryomodule required that the cryomodule individual circuits be cooled at predetermined rates. These constraints required special design solutions to achieve. This paper describes the initial cooldown and operational experience of a 1.3 GHz cryomodule using the New Muon Lab cryogenic system.

  5. Fermilab SRF cryomodule operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, A.; Klebaner, A.L.; Theilacker, J.C.; DeGraff, B.D.; White, M.; Johnson, G.S.; /Fermilab

    2011-06-01

    Fermi National Accelerator Laboratory is constructing an Advanced Accelerator Research and Development facility at New Muon Lab. The cryogenic infrastructure in support of the initial phase of the facility consists of two Tevatron style standalone refrigerators, cryogenic distribution system as well as an ambient temperature pumping system to achieve 2K operations with supporting purification systems. During this phase of the project a single Type III plus 1.3 GHz cryomodule was installed, cooled and tested. Design constraints of the cryomodule required that the cryomodule individual circuits be cooled at predetermined rates. These constraints required special design solutions to achieve. This paper describes the initial cooldown and operational experience of a 1.3 GHz cryomodule using the New Muon Lab cryogenic system.

  6. Numerical Experiments Providing New Insights into Plasma Focus Fusion Devices

    Directory of Open Access Journals (Sweden)

    Sing Lee

    2010-04-01

    Full Text Available Recent extensive and systematic numerical experiments have uncovered new insights into plasma focus fusion devices including the following: (1 a plasma current limitation effect, as device static inductance is reduced towards very small values; (2 scaling laws of neutron yield and soft x-ray yield as functions of storage energies and currents; (3 a global scaling law for neutron yield as a function of storage energy combining experimental and numerical data showing that scaling deterioration has probably been interpreted as neutron ‘saturation’; and (4 a fundamental cause of neutron ‘saturation’. The ground-breaking insights thus gained may completely change the directions of plasma focus fusion research.

  7. Experiences with a Barista Robot, FusionBot

    Science.gov (United States)

    Limbu, Dilip Kumar; Tan, Yeow Kee; Wong, Chern Yuen; Jiang, Ridong; Wu, Hengxin; Li, Liyuan; Kah, Eng Hoe; Yu, Xinguo; Li, Dong; Li, Haizhou

    In this paper, we describe the implemented service robot, called FusionBot. The goal of this research is to explore and demonstrate the utility of an interactive service robot in a smart home environment, thereby improving the quality of human life. The robot has four main features: 1) speech recognition, 2) object recognition, 3) object grabbing and fetching and 4) communication with a smart coffee machine. Its software architecture employs a multimodal dialogue system that integrates different components, including spoken dialog system, vision understanding, navigation and smart device gateway. In the experiments conducted during the TechFest 2008 event, the FusionBot successfully demonstrated that it could autonomously serve coffee to visitors on their request. Preliminary survey results indicate that the robot has potential to not only aid in the general robotics but also contribute towards the long term goal of intelligent service robotics in smart home environment.

  8. Scaled beam merging experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    P. A. Seidl

    2003-09-01

    Full Text Available Transverse beam combining is a cost-saving option employed in many designs for heavy ion fusion drivers. However, the resultant transverse phase space dilution must be minimized so as not to sacrifice focusability at the target. A prototype combining experiment has been completed employing four 3-mA Cs^{+} beams injected at 160 keV. The focusing elements upstream of the merge consist of four quadrupoles and a final combined-function element (quadrupole and dipole. Following the merge, the resultant single beam is transported in a single alternating gradient channel where the subsequent evolution of the distribution function is diagnosed. The results are in fair agreement with particle-in-cell simulations. They indicate that for some heavy ion fusion driver designs, the phase space dilution from merging is acceptable.

  9. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  10. Comparison between initial Magnetized Liner Inertial Fusion experiments and integrated simulations

    Science.gov (United States)

    Sefkow, A. B.; Gomez, M. R.; Geissel, M.; Hahn, K. D.; Hansen, S. B.; Harding, E. C.; Peterson, K. J.; Slutz, S. A.; Koning, J. M.; Marinak, M. M.

    2014-10-01

    The Magnetized Liner Inertial Fusion (MagLIF) approach to ICF has obtained thermonuclear fusion yields using the Z facility. Integrated magnetohydrodynamic simulations provided the design for the first neutron-producing experiments using capabilities that presently exist, and the initial experiments measured stagnation radii rstag < 75 μm, temperatures around 3 keV, and isotropic neutron yields up to YnDD = 2 ×1012 from imploded liners reaching peak velocities around 70 km/s over an implosion time of about 60 ns. We present comparisons between the experimental observables and post-shot degraded integrated simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  11. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    Science.gov (United States)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Torres, J. A.; Bur, J. A.; Cuneo, M. E.; Glebov, V. Yu; Harvey-Thompson, A. J.; Herrman, M. C.; Hess, M. H.; Johns, O.; Jones, B.; Lamppa, D. C.; Lash, J. S.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Reneker, J.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Smith, I. C.; Styron, J. D.; Vesey, R. A.

    2016-05-01

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

  12. Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators

    Science.gov (United States)

    Bai, Xiangzhi

    2015-01-01

    The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion. PMID:26184229

  13. Towards an operational sensor-fusion system for anti-personnel landmine detection

    NARCIS (Netherlands)

    Cremer, F.; Schutte, K.; Schavemaker, J.G.M.; Breejen, E. den

    2000-01-01

    To acquire detection performance required for an operational system for the detection of anti-personnel landmines, it is necessary to use multiple sensors and sensor-fusion techniques. This paper describes five decision-level sensor-fusion techniques and their common optimisation method. The perform

  14. Fusion plasma experiments on TFTR: A 20 year retrospective*

    Energy Technology Data Exchange (ETDEWEB)

    Hawryluk, R. J.; Batha, S.; Blanchard, W.; Beer, M.; Bell, M. G.; Bell, R. E.; Berk, H.; Bernabei, S.; Bitter, M.; Breizman, B.; Bretz, N. L; Budny, R.; Bush, C. E.; Callen, J.; Camp, R.; Cauffman, S.; Chang, Z.; Cheng, C. Z.; Darrow, D. S.; Dendy, R. O.; Dorland, W.; Duong, H.; Efthimion, P. C.; Ernst, D.; Fisch, N. J.; Fisher, R.; Fonck, R. J.; Fredrickson, E. D.; Fu, G. Y.; Furth, H. P.; Gorelenkov, N. N.; Grek, B.; Grisham, L. R.; Hammett, G. W.; Hanson, G. R.; Herrmann, H. W.; Herrmann, M. C.; Hill, K. W.; Hogan, J.; Hosea, J. C.; Houlberg, W. A.; Hughes, M.; Hulse, R. A.; Jassby, D. L.; Jobes, F. C.; Johnson, D. W.; Kaita, R.; Kaye, S.; Kim, J. S.; Kissick, M.; Krasilnikov, A. V.; Kugel, H.; Kumar, A.; Leblanc, B.; Levinton, F. M.; Ludescher, C.; Majeski, R. P.; Manickam, J.; Mansfield, D. K.; Mazzucato, E.; McChesney, J.; McCune, D. C.; McGuire, K. M.; Meade, D. M.; Medley, S. S.; Mika, R.; Mikkelsen, D. R.; Mirnov, S. V.; Mueller, D.; Nagy, A.; Navratil, G. A.; Nazikian, R.; Okabayashi, M.; Park, H. K.; Park, W.; Paul, S. F.; Pearson, G.; Petrov, M. P.; Phillips, C. K.; Phillips, M.; Ramsey, A. T.; Redi, M. H.; Rewoldt, G.; Reznik, S.; Roquemore, A. L.; Rogers, J.; Ruskov, E.; Sabbagh, S. A.; Sasao, M.; Schilling, G.; Schivell, J.; Schmidt, G. L.; Scott, S. D.; Semenov, I.; Skinner, C. H.; Stevenson, T.; Stratton, B. C.; Strachan, J. D.; Stodiek, W.; Synakowski, E.; Takahashi, H.; Tang, W.; Taylor, G.; Thompson, M. E.; Von Goeler, S.; Von Halle, A.; Walters, R. T.; White, R.; Wieland, R. M.; Williams, M.; Wilson, J. R.; Wong, K. L.; Wurden, G. A.; Yamada, M.; Yavorski, V.; Young, K. M.; Zakharov, L.; Zarnstorff, M. C.; Zweben, S. J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    1998-01-01

    The Tokamak Fusion Test Reactor (TFTR) (R. J. Hawryluk, to be published in Rev. Mod. Phys.) experiments on high-temperature plasmas, that culminated in the study of deuterium–tritium D–T plasmas containing significant populations of energetic alpha particles, spanned over two decades from conception to completion. During the design of TFTR, the key physics issues were magnetohydrodynamic (MHD) equilibrium and stability, plasma energy transport, impurity effects, and plasma reactivity. Energetic particle physics was given less attention during this phase because, in part, of the necessity to address the issues that would create the conditions for the study of energetic particles and also the lack of diagnostics to study the energetic particles in detail. The worldwide tokamak program including the contributions from TFTR made substantial progress during the past two decades in addressing the fundamental issues affecting the performance of high-temperature plasmas and the behavior of energetic particles. The progress has been the result of the construction of new facilities, which enabled the production of high-temperature well-confined plasmas, development of sophisticated diagnostic techniques to study both the background plasma and the resulting energetic fusion products, and computational techniques to both interpret the experimental results and to predict the outcome of experiments. © 1998 American Institute of Physics.

  15. Theoretical z -pinch scaling relations for thermonuclear-fusion experiments.

    Science.gov (United States)

    Stygar, W A; Cuneo, M E; Vesey, R A; Ives, H C; Mazarakis, M G; Chandler, G A; Fehl, D L; Leeper, R J; Matzen, M K; McDaniel, D H; McGurn, J S; McKenney, J L; Muron, D J; Olson, C L; Porter, J L; Ramirez, J J; Seamen, J F; Speas, C S; Spielman, R B; Struve, K W; Torres, J A; Waisman, E M; Wagoner, T C; Gilliland, T L

    2005-08-01

    We have developed wire-array z -pinch scaling relations for plasma-physics and inertial-confinement-fusion (ICF) experiments. The relations can be applied to the design of z -pinch accelerators for high-fusion-yield (approximately 0.4 GJ/shot) and inertial-fusion-energy (approximately 3 GJ/shot) research. We find that (delta(a)/delta(RT)) proportional (m/l)1/4 (Rgamma)(-1/2), where delta(a) is the imploding-sheath thickness of a wire-ablation-dominated pinch, delta(RT) is the sheath thickness of a Rayleigh-Taylor-dominated pinch, m is the total wire-array mass, l is the axial length of the array, R is the initial array radius, and gamma is a dimensionless functional of the shape of the current pulse that drives the pinch implosion. When the product Rgamma is held constant the sheath thickness is, at sufficiently large values of m/l, determined primarily by wire ablation. For an ablation-dominated pinch, we estimate that the peak radiated x-ray power P(r) proportional (I/tau(i))(3/2)Rlphigamma, where I is the peak pinch current, tau(i) is the pinch implosion time, and phi is a dimensionless functional of the current-pulse shape. This scaling relation is consistent with experiment when 13 MA tau(i) tau(i)P(r)(7/9 ))(-1), where P(a) is the peak accelerator power. The pinch current and accelerator power required to achieve a given value of P(r) are proportional to tau(i), and the requisite accelerator energy E(a) is proportional to tau2(i). These results suggest that the performance of an ablation-dominated pinch, and the efficiency of a coupled pinch-accelerator system, can be improved substantially by decreasing the implosion time tau(i). For an accelerator coupled to a double-pinch-driven hohlraum that drives the implosion of an ICF fuel capsule, we find that the accelerator power and energy required to achieve high-yield fusion scale as tau(i)0.36 and tau(i)1.36, respectively. Thus the accelerator requirements decrease as the implosion time is decreased. However

  16. 14 CFR 135.244 - Operating experience.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Operating experience. 135.244 Section 135... Crewmember Requirements § 135.244 Operating experience. (a) No certificate holder may use any person, nor may... that make and basic model aircraft and in that crewmember position, the following operating experience...

  17. Multi-focus image fusion based on spatial frequency and morphological operators

    Institute of Scientific and Technical Information of China (English)

    Bin Yang; Shutao Li

    2007-01-01

    A new multi-focus image fusion method using spatial frequency (SF) and morphological operators is proposed. Firstly, the focus regions are detected using SF criteria. Then the morphological operators are used to smooth the regions. Finally the fused image is constructed by cutting and pasting the focused regions of the source images. Experimental results show that the proposed algorithm performs well for multi-focus image fusion.

  18. Operational Amplifier Experiments for the Chemistry Laboratory.

    Science.gov (United States)

    Braun, Robert D.

    1996-01-01

    Provides details of experiments that deal with the use of operational amplifiers and are part of a course in instrumental analysis. These experiments are performed after the completion of a set of electricity and electronics experiments. (DDR)

  19. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Hahn, K. D.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Ruiz, C. L.; Sinars, D. B.; Harding, E. C.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Smith, I. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Hess, M. H. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States); and others

    2015-05-15

    The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 10{sup 12} have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm{sup 3}. In these experiments, up to 5 × 10{sup 10} secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm{sup 2}, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 10{sup 10}. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

  20. Measurement of limiter heating due to fusion product losses during high fusion power deuterium-tritium operation of TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Janos, A.; Owens, D.K.; Darrow, D.; Redi, M.; Zarnstorff, M.; Zweben, S.

    1995-03-01

    Preliminary analysis has been completed on measurements of limiter heating during high fusion power deuterium-tritium (D-T) operation of TFTR, in an attempt to identify heating from alpha particle losses. Recent operation of TFTR with a 50-50 mix of D-T has resulted in fusion power output ({approx} 6.2 MW) orders of magnitude above what was previously achieved on TFTR. A significantly larger absolute number of particles and energy from fusion products compared to D-D operation is expected to be lost to the limiters. Measurements were made in the vicinity of the midplane ({plus_minus} 30{degree}) with thermocouples mounted on the tiles of an outboard limiter. Comparisons were made -between discharges which were similar except for the mix of deuterium and tritium beam sources. Power and energy estimates of predicted alpha losses were as high as 0.13 MW and 64 kJ. Depending on what portion of the limiters absorbed this energy, temperature rises of up to 42 {degrees}C could be expected, corresponding to a heat load of 0.69 MJ/m{sup 2} over a 0.5 sec period, or a power load of 1.4 MW/m{sup 2}. There was a measurable increase in the limiter tile temperature as the fusion power yield increased with a more reactive mixture of D and T at constant beam power during high power D-T operation. Analysis of the data is being conducted to see if the alpha heating component can be extracted. Measured temperature increases were no greater than 1 {degree}C, indicating that there was probably neither an unexpectedly large fraction of lost particles nor unexpected localization of the losses. Limits on the stochastic ripple loss contribution from alphas can be deduced.

  1. A Scaled Final Focus Experiment for Heavy Ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    MacLaren, Stephan Alexander [Univ. of California, Berkeley, CA (United States)

    2000-09-19

    A one-tenth dimensionally scaled version of a final focus sub-system design for a heavy ion fusion driver is built and tested. By properly scaling the physics parameters that relate particle energy and mass, beam current, beam emittance, and focusing field, the transverse dynamics of a driver scale final focus are replicated in a small laboratory beam. The experiment uses a 95 μA beam of 160 keV Cs+ ions to study the dynamics as the beam is brought to a ballistic focus in a lattice of six quadrupole magnets. Diagnostic stations along the experiment track the evolution of the transverse phase space of the beam. The measured focal spot size is consistent with calculations and the report of the design on which the experiment is based. By uniformly varying the strengths of the focusing fields in the lattice, the chromatic effect of a small energy deviation on the spot size can be reproduced. This is done for ±1% and ±2% shifts and the changes in the focus are measured. Additionally, a 400 μA beam is propagated through the experiment and partially neutralized after the last magnet using electrons released from a hot tungsten filament. The increase in beam current allows for the observation of significant effects on both the size and shape of the focal spot when the electrons are added.

  2. A Scaled Final Focus Experiment for Heavy Ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    MacLaren, Stephan, Alexander

    2000-09-19

    A one-tenth dimensionally scaled version of a final focus sub-system design for a heavy ion fusion driver is built and tested. By properly scaling the physics parameters that relate particle energy and mass, beam current, beam emittance, and focusing field, the transverse dynamics of a driver scale final focus are replicated in a small laboratory beam. The experiment uses a 95 {micro}A beam of 160 keV Cs{sup +} ions to study the dynamics as the beam is brought to a ballistic focus in a lattice of six quadrupole magnets. Diagnostic stations along the experiment track the evolution of the transverse phase space of the beam. The measured focal spot size is consistent with calculations and the report of the design on which the experiment is based. By uniformly varying the strengths of the focusing fields in the lattice, the chromatic effect of a small energy deviation on the spot size can be reproduced. This is done for {+-}1% and {+-}2% shifts and the changes in the focus are measured. Additionally, a 400 {micro}A beam is propagated through the experiment and partially neutralized after the last magnet using electrons released from a hot tungsten filament. The increase in beam current allows for the observation of significant effects on both the size and shape of the focal spot when the electrons are added.

  3. Optimal Liner Material for Near Term Magnetized Liner Fusion Experiments

    Science.gov (United States)

    Slutz, Stephen

    2012-10-01

    Substantial fusion yields are predicted with existing pulsed power machines driving cylindrical liner implosions with preheated and magnetized deuterium-tritium [S.A. Slutz et al Phys. Plasmas 17, 056303 (2010)]. Experiments are planned using the Z accelerator to drive these implosions. However, the peak current, the laser heating energy, and the applied magnetic field will be less than optimal. We present simulations which show, that under these conditions, the yield can be improved significantly by decreasing the density of the liner material, e.g. Lithium substituted for Beryllium. Furthermore, the simulations show that decreasing the liner density allows the use of very low aspect ratio (R/δR) liners, while still obtaining interesting yields. Low aspect ratio liners should be more robust to the Rayleigh-Taylor instability.

  4. The Antares facility for inertial-fusion experiments: Status and plans

    Science.gov (United States)

    Goldstone, P. D.; Allen, G. R.; Jansen, H.; Saxman, A.; Singer, S.; Thuot, M.

    Antares is a large, 30 to 40 kJ CO2 laser system which will provide a base for experiments to determine the efficiency with which 10 micrometers of light can be used to drive target implosions while maintaining an acceptable level of preheat. Construction of the facility is in the final stages and diagnostics for initial experiments are being designed and constructed with operations scheduled to begin early in FY-84. After an initial shakedown period, a series of measurements will be performed to determine the energy scaling of hot electron temperature and target coupling efficiency in selected sets of targets including simple spheres. Experiments, now planned for Helios, will be continued to determine whether CO2-produced ions are appropriate for driving inertial fusion targets with acceptable efficiency (Helios experiments have demonstrated that as much as 40% of the incident light can be converted to fast ions).

  5. Fusion

    Science.gov (United States)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  6. Designing Image Operators for MRI-PET Image Fusion of the Brain

    Science.gov (United States)

    Márquez, Jorge; Gastélum, Alfonso; Padilla, Miguel A.

    2006-09-01

    Our goal is to obtain images combining in a useful and precise way the information from 3D volumes of medical imaging sets. We address two modalities combining anatomy (Magnetic Resonance Imaging or MRI) and functional information (Positron Emission Tomography or PET). Commercial imaging software offers image fusion tools based on fixed blending or color-channel combination of two modalities, and color Look-Up Tables (LUTs), without considering the anatomical and functional character of the image features. We used a sensible approach for image fusion taking advantage mainly from the HSL (Hue, Saturation and Luminosity) color space, in order to enhance the fusion results. We further tested operators for gradient and contour extraction to enhance anatomical details, plus other spatial-domain filters for functional features corresponding to wide point-spread-function responses in PET images. A set of image-fusion operators was formulated and tested on PET and MRI acquisitions.

  7. Implementing agreement on a co-operative program on inertial fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J; Hogan, W; Meier, W

    2000-01-04

    The Programme to be carried out by the Contracting Parties within the framework of this Agreement shall consist of co-operative research, development, demonstrations and exchanges of information regarding inertial fusion energy (IFE). This shall include: (1) Nuclear Technology, (2) Fusion Materials, (3) Environment, Safety and Economics, (4) Laser Drivers, (5) Ion Beam Drivers and Beam/Plasma Interactions, (6) Target Production, Injection and Tracking, (7) Fusion Diagnostics, (8) Driver/Plasma Interactions, (9) Fast Ignition and (10) Power Plant Design Studies. Annexes to this agreement will describe specific tasks in each area.

  8. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.

    1984-10-01

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios. (MOW)

  9. Fusion reactor handling operations with cable-driven parallel robots

    Energy Technology Data Exchange (ETDEWEB)

    Izard, Jean-Baptiste, E-mail: jeanbaptiste.izard@tecnalia.com; Michelin, Micael; Baradat, Cédric

    2015-10-15

    Highlights: • CDPR allow 6DOF positioning of loads using cable as links without payload swag. • Conceptual design of a CDPR for carrying and positioning tokamak sectors is given. • A CDPR for threading stellarator coils (6D trajectory following) is provided. • Both designs are capable of fullfilling the required precision without tooling. - Abstract: Cable-driven parallel robots (CDPR) are in their concept cranes with inclined cables which allow control of all the degrees of freedom of its payload, and therefore stability of all the degrees of freedom, including rotations. The workspace of a CDPR is only limited by the length of the cables, and the payload capacity related to the mass of the whole robot is very important. Besides, the control being based on kinematic models, the behavior of a CDPR is really that of a robot capable of automated trajectories or remote handling. The present paper gives a presentation of two use case studies based on some of the assembly phases and remote handling actions as designed for the recent fusion machines. Based on the use cases already in place in fusion reactor baselines, the opportunity of using CDPR for assembly of structural elements and coils is discussed. Finally, prospects for remote handling equipment from the reactor in hot cells are envisioned based on current CDPR research.

  10. The Wonderland of Operating the ALICE Experiment

    CERN Document Server

    Augustinus, A; Pinazza, O; Rosinský, P; Lechman, M; Jirdén, L; Chochula, P

    2011-01-01

    ALICE is one of the experiments at the Large Hadron Collider (LHC), CERN, Geneva, Switzerland. Composed of 18 sub-detectors each with numerous subsystems that need to be controlled and operated in a safe and efficient way. The Detector Control System (DCS) is the key to this and has been used by detector experts with success during the commissioning of the individual detectors. During the transition from commissioning to operation, more and more tasks were transferred from detector experts to central operators. By the end of the 2010 datataking campaign, the ALICE experiment was run by a small crew of central operators, with only a single controls operator. The transition from expert to non-expert operation constituted a real challenge in terms of tools, documentation and training. A relatively high turnover and diversity in the operator crew that is specific to the HEP experiment environment (as opposed to the more stable operation crews for accelerators) made this challenge even bigger. Thi...

  11. High current transport experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    L. R. Prost

    2005-02-01

    Full Text Available The High Current Experiment at Lawrence Berkeley National Laboratory is part of the U.S. program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2  μC/m over long pulse durations (4  μs in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo, and electron and gas cloud effects. We present the results for a coasting 1 MeV K^{+} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius for which the transverse phase space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (≈80% is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  12. The high current transport experiment for heavy ion inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  13. Five years operating experience at the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baumhardt, R. J.; Bechtold, R. A.

    1987-04-01

    The Fast Flux Test Facility (FFTF) is a 400 Mw(t), loop-type, sodium-cooled, fast neutron reactor. It is operated by the Westinghouse Hanford Company for the United States Department of Energy at Richland, Washington. The FFTF is a multipurpose test reactor used to irradiate fuels and materials for programs such as Liquid Metal Reactor (LMR) research, fusion research, space power systems, isotope production and international research. FFTF is also used for testing concepts to be used in Advanced Reactors which will be designed to maximize passive safety features and not require complex shutdown systems to assure safe shutdown and heat removal. The FFTF also provides experience in the operation and maintenance of a reactor having prototypic components and systems typical of large LMR (LMFBR) power plants. The 5 year operational performance of the FFTF reactor is discussed in this report. 6 refs., 10 figs., 2 tabs.

  14. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kai [Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Shandong Province (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Song, Yong [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Department of Stomatology, Liu Zhou People' s Hospital, Guangxi (China); Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Liu, Ke, E-mail: liuke.1999@aliyun.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Shang, Zheng-jun, E-mail: shangzhengjun@hotmail.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China)

    2014-10-15

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo.

  15. Operation of Fusion Reactors in One Atmosphere of Air Instead of Vacuum Systems

    Science.gov (United States)

    Roth, J. Reece

    2009-07-01

    Engineering design studies of both magnetic and inertial fusion power plants have assumed that the plasma will undergo fusion reactions in a vacuum environment. Operation under vacuum requires an expensive additional major system for the reactor-a vacuum vessel with vacuum pumping, and raises the possibility of sudden unplanned outages if the vacuum containment is breached. It would be desirable in many respects if fusion reactors could be made to operate at one atmosphere with air surrounding the plasma, thus eliminating the requirement of a pressure vessel and vacuum pumping. This would have obvious economic, reliability, and engineering advantages for currently envisaged power plant reactors; it would make possible forms of reactor control not possible under vacuum conditions (i.e. adiabatic compression of the fusion plasma by increasing the pressure of surrounding gas); it would allow reactors used as aircraft engines to operate as turbojets or ramjets in the atmosphere, and it would allow reactors used as fusion rockets to take off from the surface of the earth instead of low earth orbit.

  16. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential.

    Science.gov (United States)

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-Lin; Liu, Ke; Shang, Zheng-Jun

    2014-10-15

    Most previous studies have linked cancer-macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression.

  17. Highlights from e-EPS: Fusion experiment nears completion, nominations open for prize, and technology transfer group launched

    CERN Multimedia

    e-EPS News

    2012-01-01

    e-EPS News is a monthly addition to the CERN Bulletin line-up, showcasing articles from e-EPS – the European Physical Society newsletter – as part of a collaboration between the two publications.   Core of fusion experiment completed The last major part of the Wendelstein 7-X fusion experiment was installed on 21 December last year. The addition of the 14 tonne final part of the device – the lid of the thermally insulating outer shell – sees the completion of the ring-like base machine at the Greifswald branch of the Max Planck Institute of Plasma Physics, which will begin operation in 2014. Fusion research aims to draw energy from the fusion of atomic nuclei. To achieve this, hydrogen plasma must be superheated to temperatures above 100 million degrees, within the confines of a restricting magnetic field. The Wendelstein 7-X – which will be the largest fusion device of its type – will investigate the feasibility of such a power pl...

  18. DOE Handbook: Supplementary guidance and design experience for the fusion safety standards DOE-STD-6002-96 and DOE-STD-6003-96

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-01-01

    Two standards have been developed that pertain to the safety of fusion facilities. These are DOE- STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements, and DOE-STD-6003-96, Safety of Magnetic Fusion Facilities: Guidance. The first of these standards identifies requirements that subscribers to that standard must meet to achieve safety in fusion facilities. The second standard contains guidance to assist in meeting the requirements identified in the first This handbook provides additional documentation on good operations and design practices as well as lessons learned from the experiences of designers and operators of previous fusion facilities and related systems. It is intended to capture the experience gained in the various fields and pass it on to designers of future fusion facilities as a means of enhancing success and safety. The sections of this document are presented according to the physical location of the major systems of a fusion facility, beginning with the vacuum vessel and proceeding to those systems and components outside the vacuum vessel (the "Ex-vessel Systems"). The last section describes administrative procedures that cannot be localized to specific components. It has been tacitly assumed that the general structure of the fusion facilities addressed is that of a tokamak though the same principles would apply to other magnetic confinement options.

  19. The integrated beam experiment - A next step experiment for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Celata, C.M.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, D.P. Grote; Molvik, A.W.; Sharp, W.M.; Rose, D.V.; Welch, D.R.; Davidson, R.C.; Kaganovich, Igor D.; Qin, H.; Startsev, Edward A.

    2003-09-01

    The U.S. Heavy Ion Fusion Virtual National Laboratory is proposing as its next experiment the Integrated Beam Experiment (IBX). All experiments in the U.S. Heavy Ion Fusion (HIF) program up to this time have been of modest scale and have studied the physics of selected parts of a heavy ion driver. The mission of the IBX, a proof-of-principle experiment, is to demonstrate in one integrated experiment the transport from source to focus of a single heavy ion beam with driver-relevant parameters--i.e., the production, acceleration, compression, neutralization, and final focus of such a beam. Present preconceptual designs for the IBX envision a 5-10 MeV induction linac accelerating one K{sup +} beam. At injection (1.7 MeV) the beam current is approximately 500 mA, with pulse length of 300 ns. Design flexibility allows for several different acceleration and compression schedules, including the possibility of longitudinal (unneutralized) drift compression by a factor of up to ten in pulse length after acceleration, and neutralized drift compression. Physics requirements for the IBX, and preliminary physics and engineering design work are discussed in this paper.

  20. European dry cooling tower operating experience

    Energy Technology Data Exchange (ETDEWEB)

    DeSteese, J.G.; Simhan, K.

    1976-03-01

    Interviews were held with representatives of major plants and equipment manufacturers to obtain current information on operating experience with dry cooling towers in Europe. The report documents the objectives, background, and organizational details of the study, and presents an itemized account of contacts made to obtain information. Plant selection was based on a merit index involving thermal capacity and length of service. A questionnaire was used to organize operational data, when available, into nine major categories of experience. Information was also solicited concerning the use of codes and standards to ensure the achievement of cooling tower performance. Several plant operators provided finned-tube samples for metallographic analysis. Additionally, information on both operating experience and developing technology was supplied by European technical societies and research establishments. Information obtained from these contacts provides an updated and representative sample of European experience with dry cooling towers, which supplements some of the detailed reviews already available in the literature. In addition, the study presents categorized operating experience with installations which have not been reviewed so extensively, but nevertheless, have significant operational histories when ranked by the merit index. The contacts and interviews reported in the survey occurred between late March and October 1975. The study was motivated by the expressed interest of U.S. utility industry representatives who expect European experience to provide a basis of confidence that dry cooling is a reliable technology, applicable when necessary, to U.S. operating requirements.

  1. Sensory fusion for planetary surface robotic navigation, rendezvous, and manipulation operations

    Science.gov (United States)

    Huntsberger, T.; Cheng, Y.; Baumgartner, E. T.; Robinson, M.; Schenker, P. S.

    2003-01-01

    This paper reports some of the ongoing work at JPL in the areas of autonomous sensory fusion of both raw and derived inputs for better localization during long traverses, precision rendezvous operations with both labeled and unlabeled targets, and precision manipulation of targets.

  2. Danish heathland manipulation experiment data in Model-Data-Fusion

    Science.gov (United States)

    Thum, Tea; Peylin, Philippe; Ibrom, Andreas; Van Der Linden, Leon; Beier, Claus; Bacour, Cédric; Santaren, Diego; Ciais, Philippe

    2013-04-01

    In ecosystem manipulation experiments (EMEs) the ecosystem is artificially exposed to different environmental conditions that aim to simulate circumstances in future climate. At Danish EME site Brandbjerg the responses of a heathland to drought, warming and increased atmospheric CO2 concentration are studied. The warming manipulation is realized by passive nighttime warming. The measurements include control plots as well as replicates for each three treatment separately and in combination. The Brandbjerg heathland ecosystem is dominated by heather and wavy hairgrass. These experiments provide excellent data for validation and development of ecosystem models. In this work we used a generic vegetation model ORCHIDEE with Model-Data-Fusion (MDF) approach. ORCHIDEE model is a process-based model that describes the exchanges of carbon, water and energy between the atmosphere and the vegetation. It can be run at different spatial scales from global to site level. Different vegetation types are described in ORCHIDEE as plant functional types. In MDF we are using observations from the site to optimize the model parameters. This enables us to assess the modelling errors and the performance of the model for different manipulation treatments. This insight will inform us whether the different processes are adequately modelled or if the model is missing some important processes. We used a genetic algorithm in the MDF. The data available from the site included measurements of aboveground biomass, heterotrophic soil respiration and total ecosystem respiration from years 2006-2008. The biomass was measured six times doing this period. The respiration measurements were done with manual chamber measurements. For the soil respiration we used results from an empirical model that has been developed for the site. This enabled us to have more data for the MDF. Before the MDF we performed a sensitivity analysis of the model parameters to different data streams. Fifteen most influential

  3. MIT January Operational Internship Experience 2011

    Science.gov (United States)

    DeLatte, Danielle; Furhmann, Adam; Habib, Manal; Joujon-Roche, Cecily; Opara, Nnaemeka; Pasterski, Sabrina Gonzalez; Powell, Christina; Wimmer, Andrew

    2011-01-01

    This slide presentation reviews the 2011 January Operational Internship experience (JOIE) program which allows students to study operational aspects of spaceflight, how design affects operations and systems engineering in practice for 3 weeks. Topics include: (1) Systems Engineering (2) NASA Organization (3) Workforce Core Values (4) Human Factors (5) Safety (6) Lean Engineering (7) NASA Now (8) Press, Media, and Outreach and (9) Future of Spaceflight.

  4. Tritium operating experience at the tritium laboratory Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, L.; Bekris, N.; Besserer, U.; Glugla, M.; Hellriegel, W.; Penzhorn, R.D.; Rohrig, H.D.; Schubert, K.; Vollmer, T.; Wendel, J. [Karlsruhe Research Centre, Tritium Laboratory (Germany)

    1998-07-01

    The Tritium Laboratory Karlsruhe began operations with gram amounts of tritium in March 1995. Since then, the experimental facilities CAPRICE and PETRA have been routinely in operation. New experimental activities include the analysis of tritium in first wall materials of fusion devices and the development of methods for the detritiation of graphite and carbon fibre composite tiles. The experience gained with Tritium Retention Systems, with the Tritium Transfer System, with portable uranium getter beds and in this context with tritium accountancy is reported. The incorporation of a new Pd packed column into the Isotope Separation System, the increase in storage capacity of the Tritium Storage System, the improvements of the analytical instrumentation and some repair activities are also described. (authors)

  5. Accelerator/Experiment operations - FY 2004

    Energy Technology Data Exchange (ETDEWEB)

    Bromberg, C.; Conrad, J.; Denisov, D.; Holmes, S.; Louis, W.; Meyer, A.; Moore, Craig D.; Raja, R.; Ramberg, E.; Roser, R.; /Fermilab

    2004-12-01

    This Technical Memorandum (TM) summarizes the accelerator and experiment operations for FY 2004. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2004 Run II at the Tevatron Collider, the MiniBooNE neutrino experiment, and SY 120 activities.

  6. Operating and maintenance experience in tritium environments

    Energy Technology Data Exchange (ETDEWEB)

    Tuer, G.L.

    1987-01-01

    This presentation is a summary of practical experience gained over more than twenty years from analyzing failures of process equipment operated in tritium and deuterium environments. Significant improvements have been achieved in design and procurement of new equipment, testing and selection of materials, and gradually more favorable maintenance experience. Preferred materials and inspection methods are described. 6 tabs.

  7. Preliminary results from the first integrated Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z accelerator

    Science.gov (United States)

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Harvey-Thompson, A. J.; Awe, T. J.; Cuneo, M. E.; Geissel, M.; Herrmann, M.; Jennings, C.; Lamppa, D.; Martin, M.; McBride, R. D.; Rovang, D. C.; Sinars, D.; Smith, I. C.

    2013-10-01

    Sandia National Laboratories' Z Machine provides a drive current of up to 27 MA with 100 ns risetime to a magnetically-driven load. Magnetized Liner Inertial Fusion (MagLIF) is the main focus of the inertial confinement fusion program on Z. The MagLIF concept uses an imploding metallic cylindrical liner to compress magnetized, pre-heated fusion fuel. Simulations indicate that fusion yields on the order of 100 kJ (5e16 DT neutrons) are achievable with a drive current of 27 MA in 100 ns, a laser preheat of 8 kJ in 8 ns, an applied axial B-field of 30 T, and deuterium-tritium fusion fuel. The first fully integrated MagLIF experiments are scheduled to be conducted on Z late summer 2013. These tests will utilize a drive current of 16 MA, a laser preheat of 2 kJ in 2 ns, an applied B-field of 10 T, and deuterium fuel. With these reduced parameters, simulations predict yields greater than 1e10 DD neutrons. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Predicting operative blood loss during spinal fusion for adolescent idiopathic scoliosis.

    Science.gov (United States)

    Ialenti, Marc N; Lonner, Baron S; Verma, Kushagra; Dean, Laura; Valdevit, Antonio; Errico, Thomas

    2013-06-01

    Patient and surgical factors are known to influence operative blood loss in spinal fusion for adolescent idiopathic scoliosis (AIS), but have only been loosely identified. To date, there are no established recommendations to guide decisions to predonate autologous blood, and the current practice is based primarily on surgeon preference. This study is designed to determine which patient and surgical factors are correlated with, and predictive of, blood loss during spinal fusion for AIS. Retrospective analysis of 340 (81 males, 259 females; mean age, 15.2 y) consecutive AIS patients treated by a single surgeon from 2000 to 2008. Demographic (sex, age, height, weight, and associated comorbidities), laboratory (hematocrit, platelet, PT/PTT/INR), standard radiographic, and perioperative data including complications were analyzed with a linear stepwise regression to develop a predictive model of blood loss. Estimated blood loss was 907±775 mL for posterior spinal fusion (PSF, n=188), 323±171 mL for anterior spinal fusion (ASF, n=124), and 1277±821 mL for combined procedures (n=28). For patients undergoing PSF, stepwise analysis identified sex, preoperative kyphosis, and operative time to be the most important predictors of increased blood loss (Ploss in PSF: blood loss (mL)=C+Op-time (min)×(6.4)-pre-op T2-T12 kyphosis (degrees)×(8.7), C=233 if male and -270 if female. We find sex, operative time, and preoperative kyphosis to be the most important predictors of increased blood loss in PSF for AIS. Mean arterial pressure and operative time were predictive of estimated blood loss in ASF. For posterior fusions, we also present a model that estimates blood loss preoperatively and can be used to guide decisions regarding predonation of blood and the use of antifibrinolytic agents. Retrospective study: Level II.

  9. Bearing fault identification by higher order energy operator fusion: A non-resonance based approach

    Science.gov (United States)

    Faghidi, H.; Liang, M.

    2016-10-01

    We report a non-resonance based approach to bearing fault detection. This is achieved by a higher order energy operator fusion (HOEO_F) method. In this method, multiple higher order energy operators are fused to form a single simple transform to process the bearing signal obscured by noise and vibration interferences. The fusion is guided by entropy minimization. Unlike the popular high frequency resonance technique, this method does not require the information of resonance excited by the bearing fault. The effects of the HOEO_F method on signal-to-noise ratio (SNR) and signal-to-interference ratio (SIR) are illustrated in this paper. The performance of the proposed method in handling noise and interferences has been examined using both simulated and experimental data. The results indicate that the HOEO_F method outperforms both the envelope method and the original energy operator method.

  10. Design and Implementation of Multi Agentbased Information Fusion System for Decision Making Support (A Case Study on Military Operation

    Directory of Open Access Journals (Sweden)

    Arwin Datunaya Wahyudi Sumari

    2013-09-01

    Full Text Available Quick, accurate, and complete information is highly required for supporting strategically impact decision making in a Military Operation (MO in order to reduce the decision cycle and to minimize the loss. For that purpose, we propose, design and implement a hierarchical Multi Agentbased Information Fusion System for Decision Making Support (MAIFSDMS. The information fusion is implemented by applying Maximum Score of the Total Sum of Joint Probabilities (MSJP fusion method and is done by a collection of Information Fusion Agents (IFA that forms a multiagent system. MAIFS uses a combination of generalization of Dasarathy and Joint Director’s Laboratory (JDL process models for information fusion mechanism. Information fusion products that are displayed in graphical forms provide comprehensive information regarding the MO’s area dynamics. By observing the graphics resulted from the information fusion, the commandant will have situational awareness and knowledge in order to make the most accurate strategic de cision as fast as possible.

  11. Developing diagnostic systems for ITER – the next step fusion energy experiment

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Leipold, Frank; Gutierrez Espinoza, Heidi Estibaliz

    to be a viable energy source. Fusion energy power plants will be safe and can be operated to supply the baseload of an energy system. The fuel resources are inexhaustible, and can be derived from sea water. Fusion energy is based on the nuclear reaction fusing hydrogen isotopes into helium – like in the Sun......Fusion energy research is moving to the next stage with the well progressed construction of one of the largest research infrastructures ever – ITER. The goal of ITER is to produce 500 MW of fusion power while heating the fuel –deuterium/tritium plasma – by 50 MW. This will confirm fusion energy...... is the ultimate goal of fusion energy, the path towards this is challenging. A fusion plasma has a temperature of 200 mio. degrees (15 times that of the core of the Sun), and this is confined by a magnetic field generated by powerful superconducting magnets in a vacuum chamber of 1000 m3. Operating diagnostic...

  12. Accelerator/Experiment Operations - FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Czarapata, P. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Geer, S. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Geesaman, D. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Harris, D. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Lang, K. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); McFarland, K. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Moore, C. D. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Nagaitsev, S. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Plunkett, R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Reimer, P. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Schmidt, J. J. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Soha, A. K. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Tayloe, R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Thomas, J. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Torretta, D. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Van de Water, R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2014-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2014. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2014 MINOS and MINERvA experiments using the Main Injector Neutrino Beam (NuMI), the MiniBooNE experiment running in the Booster Neutrino Beam (BNB), and the SeaQuest experiment and Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  13. Fusion Experiments of HSI and High Resolution Panchromatic Imagery

    Science.gov (United States)

    2007-11-02

    map derived from the unsharpened HSI. The classification is performed with an unsupervised feature extraction using principal component analysis (PCA... Classification of Hyperspectral Data in Urban Area", P. 169-172, SPIE Vol.3502 8. R. C. Gonzalez, P. Wintz, Digital Image Processing, Addison-Wesley...MA 02420-9185 Abstract In this paper, the fusion of hyperspectral imaging (HSI) sensor data and high-resolution panchromatic imagery (HPI) is

  14. Installation and first operation of the negative ion optimization experiment

    Energy Technology Data Exchange (ETDEWEB)

    De Muri, Michela, E-mail: michela.demuri@igi.cnr.it [INFN-LNL, v.le dell’Università 2, I-35020 Legnaro, PD (Italy); Consorzio RFX, CNR, ENEA, INFN, Università di Padova, A cciaierie Venete SpA – Corso Stati Uniti 4, 35127 Padova (Italy); Cavenago, Marco [INFN-LNL, v.le dell’Università 2, I-35020 Legnaro, PD (Italy); Serianni, Gianluigi; Veltri, Pierluigi; Bigi, Marco; Pasqualotto, Roberto; Barbisan, Marco; Recchia, Mauro; Zaniol, Barbara [Consorzio RFX, CNR, ENEA, INFN, Università di Padova, A cciaierie Venete SpA – Corso Stati Uniti 4, 35127 Padova (Italy); Kulevoy, Timour; Petrenko, Sergey [ITEP, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Baseggio, Lucio; Cervaro, Vannino; Agostini, Fabio Degli; Franchin, Luca; Laterza, Bruno [Consorzio RFX, CNR, ENEA, INFN, Università di Padova, A cciaierie Venete SpA – Corso Stati Uniti 4, 35127 Padova (Italy); Minarello, Alessandro [INFN-LNL, v.le dell’Università 2, I-35020 Legnaro, PD (Italy); Rossetto, Federico [Consorzio RFX, CNR, ENEA, INFN, Università di Padova, A cciaierie Venete SpA – Corso Stati Uniti 4, 35127 Padova (Italy); Sattin, Manuele [INFN-LNL, v.le dell’Università 2, I-35020 Legnaro, PD (Italy); Zucchetti, Simone [Consorzio RFX, CNR, ENEA, INFN, Università di Padova, A cciaierie Venete SpA – Corso Stati Uniti 4, 35127 Padova (Italy)

    2015-10-15

    Highlights: • Negative ion sources are key components of the neutral beam injectors. • The NIO1 experiment is a RF ion source, 60 kV–135 mA hydrogen negative ion beam. • NIO1 can contribute to beam extraction and optics thanks to quick replacement and upgrading of parts. • This work presents installation, status and first experiments results of NIO1. - Abstract: Negative ion sources are key components of the neutral beam injectors for thermonuclear fusion experiments. The NIO1 experiment is a radio frequency ion source generating a 60 kV–135 mA hydrogen negative ion beam. The beam is composed of nine beamlets over an area of about 40 × 40 mm{sup 2}. This experiment is jointly developed by Consorzio RFX and INFN-LNL, with the purpose of providing and optimizing a test ion source, capable of working in continuous mode and in conditions similar to those foreseen for the larger ion sources of the ITER neutral beam injectors. At present research and development activities on these ion sources still address several important issues related to beam extraction and optics optimization, to which the NIO1 test facility can contribute thanks to its modular design, which allows for quick replacement and upgrading of components. This contribution presents the installation phases, the status of the test facility and the results of the first experiments, which have demonstrated that the source can operate in continuous mode.

  15. Some Experiences on BEPCII SRF System Operation

    CERN Document Server

    Tong-ming, Huang; Peng, Sha; Yi, Sun; Wei-min, Pan; Guang-wei, Wang; Jian-ping, Dai; Zhong-quan, Li; Qiang, Ma; Qun-yao, Wang; Guang-yuan, Zhao; Zheng-hui, Mi

    2014-01-01

    The Superconducting Radio Frequency (SRF) system of the upgrade project of Beijing Electron Positron Collider (BEPCII) has been in operation for almost 8 years. The SRF system has accelerated both electron and positron at the design beam current of 910 mA successfully, and a high beam intensity colliding of 860 mA (electron)*910 mA (positron) has been achieved in April 2014. Many problems were encountered during the operation, among which some were solved and some remain unsolved. This paper will describe some experiences on BEPCII SRF system operation, including the symptoms, causes and solutions.

  16. Accelerator/Experiment operations - FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Brice, S.; Conrad, J.; Denisov, D.; Ginther, G.; Holmes, S.; James, C.; Lee, W.; Louis, W.; Moore, C.; Plunkett, R.; Raja, R.; /Fermilab

    2006-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and experiment operations for FY 2006. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2006 Run II at the Tevatron Collider, the MiniBooNE experiments running in the Booster Neutrino Beam in neutrino and antineutrino modes, MINOS using the Main Injector Neutrino Beam (NuMI), and SY 120 activities.

  17. Operational experience with forced cooled superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, D.P., E-mail: denis.ivanov30@mail.ru [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Kolbasov, B.N., E-mail: kolbasov@nfi.kiae.ru [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Anashkin, I.O.; Khvostenko, P.P. [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Pan, W.J. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China); Pradhan, S.; Sharma, A.N. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Song, Y.T.; Weng, P.D. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)

    2013-10-15

    Highlights: ► Seventeen breakdowns happened in the fusion facilities with forced cooled superconducting magnets (FCSMs). ► The breakdowns always began on the electric, cryogenic and diagnostic communications (ECDCs) and never on the coils. ► In all the FCSMs the ECDCs were always insulated worse than the coils. ► For reliable operation of ITER organization team should essentially improve the ECDC insulation. ► Use of stainless steel grounded casings filled up with solid insulation over all the ECDCs is the best way to get reliable insulation. -- Abstract: Force-cooled concept has been chosen for ITER superconducting magnet to get reliable coil insulation using vacuum-pressure impregnation (VPI) technology. However 17 breakdowns occurred during operation of six magnets of this type or their single coil tests at operating voltage < 3 kV, while ITER needs 12 kV. All the breakdowns started on electric, cryogenic and diagnostic communications (ECDCs) by the high voltage induced at fast current variations in magnets concurrently with vacuum deterioration, but never on the coils, though sometimes the latter were damaged too. It suggests that simple wrap insulation currently employed on ECDCs and planned to be used in ITER is unacceptable. Upgrade of the ECDC insulation to the same level as on the coils is evidently needed. This could be done by covering each one from ECDCs with vacuum-tight grounded stainless steel casings filled up with solid insulator using VPI-technology. Such an insulation will be insensitive to in-cryostat conditions, excluding helium leaks and considerably simplifying the tests thus allowing saving time and cost. However it is not accepted in ITER design yet. So guarantee of breakdown prevention is not available.

  18. Accelerator/Experiment Operations - FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M.; Appel, J.A.; Casarsa, M.; Coleman, R.; Denisov, D.; Dixon, R.; Escobar, C.; Ginther, G.; Gruenendahl, S.; Harris, D.; Henderson, S.; /Fermilab

    2010-11-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2010. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2010 Run II at the Tevatron Collider, the MINOS and MINER?A experiments using the Main Injector Neutrino Beam (NuMI), the MiniBooNE experiment running in the Booster Neutrino Beam (BNB), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  19. Accelerator/Experiment Operations - FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P.; Bernardi, G.; Casarsa, M.; Coleman, R.; Denisov, D.; Dixon, R.; Ginther, G.; Gruenendahl, S.; Hahn, S.; Harris, D.; Henderson, S.

    2011-11-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2011. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2011 Run II at the Tevatron Collider, the MINOS and MINERvA experiments using the Main Injector Neutrino Beam (NuMI), the MiniBooNE experiment running in the Booster Neutrino Beam (BNB), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120).

  20. Accelerator/Experiment Operations - FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    Czarapata, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); et al.

    2015-10-01

    This Technical Memorandum summarizes the Fermilab accelerator and experiment operations for FY 2015. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2015 NOvA, MINOS+ and MINERvA experiments using the Main Injector Neutrino Beam (NuMI), the activities in the SciBooNE Hall using the Booster Neutrino Beam (BNB), and the SeaQuest experiment and Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120).

  1. Operation experience with the LHC RF system

    CERN Document Server

    Arnaudon, L; Brunner, O; Butterworth, A

    2010-01-01

    The LHC ACS RF system is composed of 16 superconducting cavities, eight per ring, housed in a total of four cryomodules each containing four cavities. Each cavity is powered by a 300 kW klystron. The ACS RF power control system is based on industrial Programmable Logic Controllers (PLCs), with additional fast RF interlock protection systems. The Low Level RF (LLRF) is implemented in VME crates. Operational performance and reliability are described. A full set of user interfaces, both for experts and operators has been developed, with user feedback and maintenance issues as key points. Operational experience with the full RF chain, including the low level system, the beam control, the synchronization system and optical fibers distribution is presented. Last but not least overall performance and reliability based on experience with first beam are reviewed and perspectives for future improvement outlined.

  2. Accelerator/Experiment Operations - FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Blake, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Convery, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Geer, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Geesaman, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Harris, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Johnson, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lang, K. [Argonne National Lab. (ANL), Argonne, IL (United States); McFarland, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Messier, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Moore, C. D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Newhart, D. [Fermilab; Reimer, P. E. [Argonne; Plunkett, R. [Fermilab; Rominsky, M. [Fermilab; Sanchez, M. [Iowa State U.; Schmidt, J. J. [Fermilab; Shanahan, P. [Fermilab; Tate, C. [Fermilab; Thomas, J. [University Coll. London; Donatella Torretta, Donatella Torretta [Fermilab; Matthew Wetstein, Matthew Wetstein [Iowa State University

    2016-10-01

    This Technical Memorandum summarizes the Fermilab accelerator and experiment operations for FY 2016. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2016 NOvA, MINOS+ and MINERvA experiments using the Main Injector Neutrino Beam (NuMI), the MicroBooNE experiment and the activities in the SciBooNE Hall using the Booster Neutrino Beam (BNB), and the SeaQuest experiment, LArIAT experiment and Meson Test Beam activities in the 120 GeV external switchyard beam (SY120). Each section was prepared by the relevant authors, and was then edited for inclusion in this summary.

  3. Overview of the Lockheed Martin Compact Fusion Reactor (CFR) T4B Experiment

    Science.gov (United States)

    McGuire, Thomas

    2016-10-01

    The Lockheed Martin Compact Fusion Reactor (CFR) Program endeavors to quickly develop a compact fusion power plant with favorable commercial economics and military utility. The CFR uses a diamagnetic, high beta, magnetically encapsulated, linear ring cusp plasma confinement scheme. The goal of the T4B experiment is to demonstrate a suitable plasma target for heating experiments and to characterize the behavior of plasma sources in the CFR configuration. The design of the T4B experiment will be presented, including discussion of predicted behavior, plasma sources, heating mechanisms, diagnostics suite and relevant numerical modeling. ©2016 Lockheed Martin Corporation. All Rights Reserved.

  4. The Deep Impact Network Experiment Operations Center

    Science.gov (United States)

    Torgerson, J. Leigh; Clare, Loren; Wang, Shin-Ywan

    2009-01-01

    Delay/Disruption Tolerant Networking (DTN) promises solutions in solving space communications challenges arising from disconnections as orbiters lose line-of-sight with landers, long propagation delays over interplanetary links, and other phenomena. DTN has been identified as the basis for the future NASA space communications network backbone, and international standardization is progressing through both the Consultative Committee for Space Data Systems (CCSDS) and the Internet Engineering Task Force (IETF). JPL has developed an implementation of the DTN architecture, called the Interplanetary Overlay Network (ION). ION is specifically implemented for space use, including design for use in a real-time operating system environment and high processing efficiency. In order to raise the Technology Readiness Level of ION, the first deep space flight demonstration of DTN is underway, using the Deep Impact (DI) spacecraft. Called the Deep Impact Network (DINET), operations are planned for Fall 2008. An essential component of the DINET project is the Experiment Operations Center (EOC), which will generate and receive the test communications traffic as well as "out-of-DTN band" command and control of the DTN experiment, store DTN flight test information in a database, provide display systems for monitoring DTN operations status and statistics (e.g., bundle throughput), and support query and analyses of the data collected. This paper describes the DINET EOC and its value in the DTN flight experiment and potential for further DTN testing.

  5. Operational experience of extreme wind penetrations

    Energy Technology Data Exchange (ETDEWEB)

    Estanqueiro, Ana [INETI/LNEG - National Laboratory for Energy and Geology, Lisbon (Portugal); Mateus, Carlos B. [Instituto de Meteorologia, Lisboa (Portugal); Pestana, Rui [Redes Energeticas Nacionais (REN), Lisboa (Portugal)

    2010-07-01

    This paper reports the operational experience from the Portuguese Power System during the 2009/2010 winter months when record wind penerations were observed: the instantaneous wind power penetration peaked at 70% of consumption during no-load periods and the wind energy accounted for more than 50% of the energy consumed for a large period. The regulation measures taken by the TSO are presented in the paper, together with the additional reserves operated for added system security. Information on the overall power system behavior under such extreme long-term wind power penetrations will also be addressed. (org.)

  6. Fusion of ranging data from robot teams operating in confined areas

    Science.gov (United States)

    Lyons, Damian M.; Shrestha, Karma; Liu, Tsung-Ming

    2013-05-01

    We address the problem of fusing laser ranging data from multiple mobile robots that are surveying an area as part of a robot search and rescue or area surveillance mission. We are specifically interested in the case where members of the robot team are working in close proximity to each other. The advantage of this teamwork is that it greatly speeds up the surveying process; the area can be quickly covered even when the robots use a random motion exploration approach. However, the disadvantage of the close proximity is that it is possible, and even likely, that the laser ranging data from one robot include many depth readings caused by another robot. We refer to this as mutual interference. Using a team of two Pioneer 3-AT robots with tilted SICK LMS-200 laser sensors, we evaluate several techniques for fusing the laser ranging information so as to eliminate the mutual interference. There is an extensive literature on the mapping and localization aspect of this problem. Recent work on mapping has begun to address dynamic or transient objects. Our problem differs from the dynamic map problem in that we look at one kind of transient map feature, other robots, and we know that we wish to completely eliminate the feature. We present and evaluate three different approaches to the map fusion problem: a robot-centric approach, based on estimating team member locations; a map-centric approach, based on inspecting local regions of the map, and a combination of both approaches. We show results for these approaches for several experiments for a two robot team operating in a confined indoor environment .

  7. Progress report on the design of a varying temperature irradiation experiment for operation in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A.L. [Oak Ridge National Lab., TN (United States); Muroga, T.

    1997-04-01

    The purpose of this experiment is to determine effects of temperature variation during irradiation on microstructure and mechanical properties of potential fusion reactor structural materials. A varying temperature irradiation experiment is being performed under the framework of the Japan-USA Program of Irradiation Tests for fusion Research (JUPITER) to study the effects of temperature variation on the microstructure and mechanical properties of candidate fusion reactor structural materials. An irradiation capsule has been designed for operation in the High Flux Isotope Reactor at Oak Ridge National Laboratory that will allow four sets of metallurgical test specimens to be irradiated to exposure levels ranging from 5 to 10 dpa. Two sets of specimens will be irradiated at constant temperature of 500{degrees}C and 350{degrees}C. Matching specimen sets will be irradiated to similar exposure levels, with 10% of the exposure to occur at reduced temperatures of 300{degrees}C and 200{degrees}C.

  8. Overview of the Fusion Z-Pinch Experiment FuZE

    Science.gov (United States)

    Weber, T. R.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; UW/LLNL Team

    2016-10-01

    Previously, the ZaP device, at the University of Washington, demonstrated sheared flow stabilized (SFS) Z-pinch plasmas. Instabilities that have historically plagued Z-pinch plasma confinement were mitigated using sheared flows generated from a coaxial plasma gun of the Marshall type. Based on these results, a new SFS Z-pinch experiment, the Fusion Z-pinch Experiment (FuZE), has been constructed. FuZE is designed to investigate the scaling of SFS Z-pinch plasmas towards fusion conditions. The experiment will be supported by high fidelity physics modeling using kinetic and fluid simulations. Initial plans are in place for a pulsed fusion reactor following the results of FuZE. Notably, the design relies on proven commercial technologies, including a modest discharge current (1.5 MA) and voltage (40 kV), and liquid metal electrodes. Supported by DoE FES, NNSA, and ARPA-E ALPHA.

  9. Accelerator/Experiment Operations - FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Brice, Stephen J.; Buehler, M.; Casarsa, M.; Coleman, R.; Denisov, D.; Ginther, G.; Grinstein, S.; Habig, A.; Holmes, S.; Hylen, J.; Kissel, W.; /Fermilab

    2008-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2008. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2008 Run II at the Tevatron Collider, MINOS using the Main Injector Neutrino Beam (NuMI), the MiniBooNE and SciBooNE experiments running in the Booster Neutrino Beam (BNB), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120).

  10. Accelerator/Experiment Operations - FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Brice, S.; Buchanan, N.; Coleman, R.; Convery, M.; Denisov, D.; Ginther, G.; Habig, A.; Holmes, S.; Kissel, W.; Lee, W.; Nakaya, T.; /Fermilab

    2007-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2007. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2007 Run II at the Tevatron Collider, the MiniBooNE and SciBooNE experiments running in the Booster Neutrino Beam (BNB), MINOS using the Main Injector Neutrino Beam (NuMI), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  11. TAPS condensers - 12 years of operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, V.S. (Tarapur Atomic Power Station (India))

    This paper describes briefly the 12 years of operating experience of TAPS condensers, which have aluminium brass tubes and use sea water from Arabian sea for cooling. The abnormal tube failure rates led to a thorough investigation of the causes. The remedial measures adopted to arrest and bring down the failure rate are elaborated. In addition to improved preventive maintenance practices, additional measures like ferrous ion addition, partial zonal retubing are also brought out.

  12. Design and operation experience of TRACY

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, Isao; Ohno, Akio; Sakuraba, Koichi; Ogawa, Kazuhiko; Morita, Toshio; Aizawa, Eiju; Sugawara, Susumu [Department of NUCEF Project, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    1999-08-01

    To realize the dynamic behaviors at a criticality accident is an essential issue for not only rational design of fissile material handing facilities but also safety management of the facilities. The Transient Experiment Critical Facility (TRACY) had been constructed at the Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) in JAERI. The purpose of TRACY is to obtain experimental data necessary to evaluate potential hazard of a criticality accident postulated in safety assessments of a reprocessing plant. TRACY's first transient operation using low enriched (10%) uranium nitrate solution fuel went on July 30 1996 and 118 operations including 51 transient operations are recorded since the first critical achievement. TRACY carries out intensive experimental researches on nuclear-thermal-hydraulic dynamic behavior and on investigation of migration amount of radioactive nuclei in solution fuel to gas phase. (author)

  13. Operational Experience with the ALICE Pixel detector

    CERN Document Server

    Mastroserio, A.

    2017-01-01

    The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the Inner Tracking System of the ALICE experiment and it is the closest detector to the interaction point. As a vertex detector, it has the unique feature of generating a trigger signal that contributes to the L0 trigger of the ALICE experiment. The SPD started collecting data since the very first pp collisions at LHC in 2009 and since then it has taken part in all pp, Pb-Pb and p-Pb data taking campaigns. This contribution will present the main features of the SPD, the detector performance and the operational experience, including calibration and optimization activities from Run 1 to Run 2.

  14. Neutron irradiation of V-Cr-Ti alloys in the BOR-60 fast reactor: Description of the fusion-1 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliffe, A.F. [Oak Ridge National Laboratory, TN (United States); Tsai, H.C.; Smith, D.L. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    The FUSION-1 irradiation capsule was inserted in Row 5 of the BOR-60 fast reactor in June 1995. The capsule contains a collaborative RF/U.S. experiment to investigate the irradiation performance of V-Cr-Ti alloys in the temperature range 310 to 350{degrees}C. This report describes the capsule layout, specimen fabrication history, and the detailed test matrix for the U.S. specimens. A description of the operating history and neutronics will be presented in the next semiannual report.

  15. SNS Target Systems initial operating experience

    Science.gov (United States)

    McManamy, T.; Forester, J.

    2009-02-01

    The SNS mercury target started operation with low beam power when commissioned on April 28, 2006. The beam power has been following a planned ramp up since then and has reached 340 kW as of February 2008. The target systems supporting neutron production include the target and mercury loop, the cryogenic and ambient moderator systems, reflector and vessel systems, bulk shielding and shutters systems, utility systems, remote handling systems and the associated instrumentation and controls. Availability for these systems has improved with time and reached 100% for the first 2000 hour neutron production run in fiscal year 2008. An overview of the operating experience and the planning to support continued power increases to 1.4 MW for these systems will be given in this paper.

  16. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Lantzsch, Kerstin; The ATLAS collaboration

    2016-01-01

    Run 2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). In addition the Pixel detector was refurbished with new service quarter panels to recover about 3% of defective modules lost during run 1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning, operation and performance of the 4-layer Pixel Detector will be presented.

  17. ATLAS Tracker and Pixel Operational Experience

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00222525; The ATLAS collaboration

    2016-01-01

    The tracking performance of the ATLAS detector relies critically on the silicon and gaseous tracking subsystems that form the ATLAS Inner Detector. Those subsystems have undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the LHC during Run2. The key status and performance metrics of the Pixel Detector and the Semi Conductor Tracker, are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described.

  18. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    DEFF Research Database (Denmark)

    Schneider, M.; Johnson, T.; Dumont, R.

    2016-01-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail...

  19. Design and Characterization of a Neutralized-Transport Experiment for Heavy-Ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, E; Eylon, S; Roy, P; Yu, S S; Anders, A; Bieniosek, F M; Greenway, W G; Logan, B G; MacGill, R A; Shuman, D B; Vanecek, D L; Waldron, W L; Sharp, W M; Houck, T L; Davidson, R C; Efthimion, P C; Gilson, E P; Sefkow, A B; Welch, D R; Rose, D V; Olson, C L

    2004-05-24

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, a converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present the first results from the experiment.

  20. Design and characterization of a neutralized-transport experiment for heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Eylon, S.; Roy, P.K.; Yu, S.S.; Anders, A.; Bieniosek, F.M.; Greenway, W.G.; Logan, B.G.; MacGill, R.A.; Shuman, D.B.; Vanecek, D.L.; Waldron, W.L.; Sharp, W.M.; Houck, T.L.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Sefkow, A.B.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2004-03-14

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, the converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present initial results from the experiment.

  1. D0 data handling operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Lee Lueking et al.

    2003-08-11

    We report on the production experience of the D0 experiment at the Fermilab Tevatron, using the SAM data handling system with a variety of computing hardware configurations, batch systems, and mass storage strategies. We have stored more than 300 TB of data in the Fermilab Enstore mass storage system. We deliver data through this system at an average rate of more than 2 TB/day to analysis programs, with a substantial multiplication factor in the consumed data through intelligent cache management. We handle more than 1.7 Million files in this system and provide data delivery to user jobs at Fermilab on four types of systems: a reconstruction farm, a large SMP system, a Linux batch cluster, and a Linux desktop cluster. In addition, we import simulation data generated at 6 sites worldwide, and deliver data to jobs at many more sites. We describe the scope of the data handling deployment worldwide, the operational experience with this system, and the feedback of that experience.

  2. Target debris collection studies for inertial confinement fusion (ICF) experiments

    Science.gov (United States)

    Grim, G. P.; Archuleta, T. N.; Bradley, P. A.; Fowler, M. M.; Hayes, A. C.; Jungman, G.; Obst, A. W.; Rundberg, R. S.; Vieira, D. J.; Wang, Y. Q.; Wilhelmy, J. B.

    2010-08-01

    At the recently completed National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, the initial set of diagnostics to be deployed are focused on measuring neutrons and γ's generated by d(t,n)α reactions in the imploded capsule. Although valuable for understanding pre-ignition experiments, this abbreviated diagnostic suite provides an incomplete picture of the plasma conditions obtained. Prompt radiochemical techniques, based on induced neutron and charged particle reactions within the imploded target, provide a novel and interesting new perspective. To enable these techniques requires the collection and assay of activated target material. In Nov. 2008, experiments were performed using the Omega Laser at the University of Rochester to study the efficiency of collecting debris from directly driven targets. Results from these experiments indicate that target debris was successfully collected, and the debris thermalization and transport scheme enhanced the debris collection up to 347% over direct collection.

  3. Target debris collection studies for inertial confinement fusion (ICF) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Grim, G P; Archuleta, T N; Bradley, P A; Fowler, M M; Hayes, A C; Jungman, G; Obst, A W; Rundberg, R S; Vieira, D J; Wang, Y Q; Wilhelmy, J B, E-mail: gpgrim@lanl.go [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)

    2010-08-01

    At the recently completed National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, the initial set of diagnostics to be deployed are focused on measuring neutrons and {gamma}'s generated by d(t,n){alpha} reactions in the imploded capsule. Although valuable for understanding pre-ignition experiments, this abbreviated diagnostic suite provides an incomplete picture of the plasma conditions obtained. Prompt radiochemical techniques, based on induced neutron and charged particle reactions within the imploded target, provide a novel and interesting new perspective. To enable these techniques requires the collection and assay of activated target material. In Nov. 2008, experiments were performed using the Omega Laser at the University of Rochester to study the efficiency of collecting debris from directly driven targets. Results from these experiments indicate that target debris was successfully collected, and the debris thermalization and transport scheme enhanced the debris collection up to 347% over direct collection.

  4. Data collection of fusion neutronics benchmark experiment conducted at FNS/JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Konno, Chikara; Kasugai, Yoshimi; Oyama, Yukio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-08-01

    Fusion neutronics benchmark experimental data have been continued at the Fusion Neutronics Source (FNS) facility in JAERI. This report compiles unpublished results of the in-situ measurement experiments conducted by the end of 1996. Experimental data of neutron spectra in entire energy range, dosimetry reaction rates, gamma-ray spectrum and gamma-ray heating rates are acquired for five materials of beryllium, vanadium, iron, copper and tungsten. These experimental data along with data previously reported are effective for validating cross section data stored in evaluated nuclear data files such as JENDL. (author)

  5. Top-up operation experience at APS.

    Energy Technology Data Exchange (ETDEWEB)

    Emery, L.

    1999-03-31

    The Advanced Photon Source (APS) is a 7-OeV, third-generation synchrotrons radiation source. To provide more stable beam for users, in September 1998 we began commissioning a new operating mode called ''top-up.'' In this mode, the beam current does not decay but is maintained at a high level using frequent injection, while photon shutters are open and photon beams are delivered to users. The hardware, software, and safety requirements for top-up will be reported. Safety issues related to injection with open photon shutters are covered in companion papers in this conference. Recent operational experience includes testing aspects of top-up injection and delivering beam to X-ray users for a few hours with fractional current stability of 10{sup {minus}3}. We expect to run several top-up operation shifts in Spring 1999. Issues of importance are orbit and emittance transients during the injection and scheduling of injection pulses for the convenience of users.

  6. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Guler Nevzat

    2013-11-01

    Full Text Available Inertial Confinement Fusion experiments at the National Ignition Facility (NIF are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT filled cryogenic plastic (CH capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13–15 MeV and downscattered (10–12 MeV neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  7. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, Nikolai N [PPPL

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  8. Opto-Acoustic Data Fusion for Supporting the Guidance of Remotely Operated Underwater Vehicles (ROVs)

    Science.gov (United States)

    Bruno, F.; Lagudi, A.; Ritacco, G.; Muzzupappa, M.; Guida, R.

    2015-04-01

    Remotely Operated underwater Vehicles (ROVs) play an important role in a number of operations conducted in shallow and deep water (e.g.: exploration, survey, intervention, etc.), in several application fields like marine science, offshore construction, and underwater archeology. ROVs are usually equipped with different imaging devices, both optical and acoustic. Optical sensors are able to generate better images in close range and clear water conditions, while acoustic systems are usually employed in long range acquisitions and do not suffer from the presence of turbidity, a well-known cause of coarser resolution and harder data extraction. In this work we describe the preliminary steps in the development of an opto-acoustic camera able to provide an on-line 3D reconstruction of the acquired scene. Taking full advantage of the benefits arising from the opto-acoustic data fusion techniques, the system was conceived as a support tool for ROV operators during the navigation in turbid waters, or in operations conducted by means of mechanical manipulators. The paper presents an overview of the device, an ad-hoc methodology for the extrinsic calibration of the system and a custom software developed to control the opto-acoustic camera and supply the operator with visual information.

  9. The General Surgery Chief Resident Operative Experience

    Science.gov (United States)

    Drake, Frederick Thurston; Horvath, Karen D.; Goldin, Adam B.; Gow, Kenneth W.

    2014-01-01

    IMPORTANCE The chief resident (CR) year is a pivotal experience in surgical training. Changes in case volume and diversity may impact the educational quality of this important year. OBJECTIVE To evaluate changes in operative experience for general surgery CRs. DESIGN, SETTING, AND PARTICIPANTS Review of Accreditation Council for Graduate Medical Education case logs from 1989–1990 through 2011–2012 divided into 5 periods. Graduates in period 3 were the last to train with unrestricted work hours; those in period 4 were part of a transition period and trained under both systems; and those in period 5 trained fully under the 80-hour work week. Diversity of cases was assessed based on Accreditation Council for Graduate Medical Education defined categories. MAIN OUTCOMES AND MEASURES Total cases and defined categories were evaluated for changes over time. RESULTS The average total CR case numbers have fallen (271 in period 1 vs 242 in period 5, P surgery training may be jeopardized by reduced case diversity. Chief resident cases are crucial in surgical training and educators should consider these findings as surgical training evolves. PMID:23864049

  10. Medical supply on contingency military operations: experience from Operation GRITROCK.

    Science.gov (United States)

    Robinson, J P; Reeves, P

    2015-01-01

    Medical supply during military operations has the ability to affect the efficacy of the operation being undertaken, either negatively or positively. An appropriately-managed maritime platform with a robust medical supply chain during transit and on arrival in theatre is the main aim. A secure supply chain will reduce any implications that logistics may have with regard to capability, and negate the effects of deficiencies of short shelf life items occurring over time and during use in high tempo operations.

  11. Operation and commissioning of IFMIF (International Fusion Materials Irradiation Facility) LIPAc injector

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Y., E-mail: okumura.yoshikazu@jaea.go.jp, E-mail: rjgobin@cea.fr; Knaster, J.; Ayala, J.-M.; Marqueta, A.; Perez, M.; Pruneri, G.; Scantamburlo, F. [IFMIF/EVEDA Project Team, Obuchi-Omotedate, 039-3212 Rokkasho, Aomori (Japan); Gobin, R., E-mail: okumura.yoshikazu@jaea.go.jp, E-mail: rjgobin@cea.fr; Bolzon, B.; Chauvin, N.; Chel, S.; Harrault, F.; Senée, F.; Valette, M. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191 Gif/Yvette (France); Heidinger, R.; Cara, P.; Gex, D.; Phillips, G. [F4E, Fusion for Energy, BFD Department, D-85748 Garching (Germany); Ichimiya, R.; Ihara, A. [JAEA, Division of Rokkasho BA Project, Obuchi-Omotedate, 039-3212 Rokkasho, Aomori (Japan); and others

    2016-02-15

    The objective of linear IFMIF prototype accelerator is to demonstrate 125 mA/CW deuterium ion beam acceleration up to 9 MeV. The injector has been developed in CEA Saclay and already demonstrated 140 mA/100 keV deuterium beam [R. Gobin et al., Rev. Sci. Instrum. 85, 02A918 (2014)]. The injector was disassembled and delivered to the International Fusion Energy Research Center in Rokkasho, Japan. After reassembling the injector, commissioning has started in 2014. Up to now, 100 keV/120 mA/CW hydrogen and 100 keV/90 mA/CW deuterium ion beams have been produced stably from a 10 mm diameter extraction aperture with a low beam emittance of 0.21 π mm mrad (rms, normalized). Neutron production by D-D reaction up to 2.4 × 10{sup 9} n/s has been observed in the deuterium operation.

  12. Installation and first operation of the International Fusion Materials Irradiation Facility injector at the Rokkasho site

    Energy Technology Data Exchange (ETDEWEB)

    Gobin, Raphael, E-mail: rjgobin@cea.fr; Bogard, Daniel; Bolzon, Benoit; Bourdelle, Gilles; Chauvin, Nicolas; Chel, Stéphane; Girardot, Patrick; Gomes, Adelino; Guiho, Patrice; Harrault, Francis; Loiseau, Denis; Lussignol, Yves; Misiara, Nicolas; Roger, Arnaud; Senée, Franck; Valette, Matthieu [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191 Gif/Yvette (France); Cara, Philippe; Duglué, Daniel; Gex, Dominique [Fusion for Energy, BFD Department, Garching (Germany); Okumura, Yoshikazu [IFMIF/EVEDA Project Team, Obuchi-Omotedate, 2-166, Rokkasho, Aomori (Japan); and others

    2016-02-15

    The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H{sup +} and D{sup +} 100 keV beams) are reported in a second article.

  13. Development of dynamic simulation code for fuel cycle of fusion reactor. 1. Single pulse operation simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1997-11-01

    A dynamic simulation code for the fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during a single pulse operation. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the function of fuel burn, exhaust, purification, and supply. The processing constants of subsystem for the steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using the code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  14. Integrated simulation and modeling capability for alternate magnetic fusion concepts

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B. I.; Hooper, E.B.; Jarboe, T. R.; LoDestro, L. L.; Pearlstein, L. D.; Prager, S. C.; Sarff, J. S.

    1998-11-03

    This document summarizes a strategic study addressing the development of a comprehensive modeling and simulation capability for magnetic fusion experiments with particular emphasis on devices that are alternatives to the mainline tokamak device. A code development project in this area supports two defined strategic thrust areas in the Magnetic Fusion Energy Program: (1) comprehensive simulation and modeling of magnetic fusion experiments and (2) development, operation, and modeling of magnetic fusion alternate- concept experiment

  15. 14 CFR 121.434 - Operating experience, operating cycles, and consolidation of knowledge and skills.

    Science.gov (United States)

    2010-01-01

    ... consolidation of knowledge and skills. 121.434 Section 121.434 Aeronautics and Space FEDERAL AVIATION... Qualifications § 121.434 Operating experience, operating cycles, and consolidation of knowledge and skills. (a... operating experience, operating cycles, and line operating flight time for consolidation of knowledge and...

  16. Evaluation of the operational parameters for NBI-driven fusion in low-gain tokamaks with two-component plasma

    Science.gov (United States)

    Chirkov, A. Yu.

    2015-09-01

    Low gain (Q ~ 1) fusion plasma systems are of interest for concepts of fusion-fission hybrid reactors. Operational regimes of large modern tokamaks are close to Q  ≈  1. Therefore, they can be considered as prototypes of neutron sources for fusion-fission hybrids. Powerful neutral beam injection (NBI) can support the essential population of fast particles compared with the Maxwellial population. In such two-component plasma, fusion reaction rate is higher than for Maxwellian plasma. Increased reaction rate allows the development of relatively small-size and relatively inexpensive neutron sources. Possible operating regimes of the NBI-heated tokamak neutron source are discussed. In a relatively compact device, the predictions of physics of two-component fusion plasma have some volatility that causes taking into account variations of the operational parameters. Consequent parameter ranges are studied. The feasibility of regimes with Q  ≈  1 is shown for the relatively small and low-power system. The effect of NBI fraction in total heating power is analyzed.

  17. Muon-catalyzed fusion experiment target and detector system. Preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.E.; Watts, K.D.; Caffrey, A.J.; Walter, J.B.

    1982-03-01

    We present detailed plans for the target and particle detector systems for the muon-catalyzed fusion experiment. Requirements imposed on the target vessel by experimental conditions and safety considerations are delineated. Preliminary designs for the target vessel capsule and secondary containment vessel have been developed which meet these requirements. In addition, the particle detection system is outlined, including associated fast electronics and on-line data acquisition. Computer programs developed to study the target and detector system designs are described.

  18. Calibration of the neutron detectors for the cluster fusion experiment on the Texas Petawatt Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bang, W.; Quevedo, H. J.; Dyer, G.; Rougk, J.; Kim, I.; McCormick, M.; Bernstein, A. C.; Ditmire, T. [Center for High Energy Density Science, Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2012-06-15

    Three types of neutron detectors (plastic scintillation detectors, indium activation detectors, and CR-39 track detectors) were calibrated for the measurement of 2.45 MeV DD fusion neutron yields from the deuterium cluster fusion experiment on the Texas Petawatt Laser. A Cf-252 neutron source and 2.45 MeV fusion neutrons generated from laser-cluster interaction were used as neutron sources. The scintillation detectors were calibrated such that they can detect up to 10{sup 8} DD fusion neutrons per shot in current mode under high electromagnetic pulse environments. Indium activation detectors successfully measured neutron yields as low as 10{sup 4} per shot and up to 10{sup 11} neutrons. The use of a Cf-252 neutron source allowed cross calibration of CR-39 and indium activation detectors at high neutron yields ({approx}10{sup 11}). The CR-39 detectors provided consistent measurements of the total neutron yield of Cf-252 when a modified detection efficiency of 4.6 Multiplication-Sign 10{sup -4} was used. The combined use of all three detectors allowed for a detection range of 10{sup 4} to 10{sup 11} neutrons per shot.

  19. Operational System-Impact Products for the Space Situational Awareness Environmental Effects Fusion System (SEEFS)

    Science.gov (United States)

    Quigley, S.; Scro, K.

    2006-12-01

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/VSBX) and the Technology Applications Division of the Space and Missile Systems Center (SMC/WXT) have combined efforts under the Rapid Prototyping Center (RPC) to design, develop, test, implement, and validate numerical and graphical products for the Air Force Space Command (AFSPC) Space Situational Awareness Environmental Effects Fusion System (SEEFS). These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense weapons, navigation, communications, and surveillance systems. Jointly developed projects that have been completed as prototypes and are undergoing development for real-time operations include a SEEFS architecture and database, five system-impact products, and a high-level decision aid product. This first round of SEEFS products includes Solar Radio Burst Effects (SoRBE) on radar and satellite communications, Radar Auroral Clutter (RAC), Scintillation Effects on radar and satellite communications (RadScint and SatScint), and Satellite Surface and Deep Charge/Discharge (Char/D). The SEEFS architecture and database enable modular use and execution of SEEFS products, and the high-level Decision Aid shows the combined effects of all SEEFS product output on a given asset and on multi-asset missions. This presentation provides a general overview of the SEEFS program, along with details of the first round of products expected to be operational for use in exercises and/or real-time operations in 2007-2008.

  20. Fusion virtual laboratory: The experiments' collaboration platform in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, H., E-mail: nakanisi@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Kojima, M.; Takahashi, C.; Ohsuna, M.; Imazu, S.; Nonomura, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Hasegawa, M. [RIAM, Kyushu University, Kasuga, Fukuoka 816-8560 (Japan); Yoshikawa, M. [PRC, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nagayama, Y.; Kawahata, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2012-12-15

    'Fusion virtual laboratory (FVL)' is the experiments' collaboration platform covering multiple fusion projects in Japan. Major Japanese fusion laboratories and universities are mutually connected through the dedicated virtual private network, named SNET, on SINET4. It has 3 different categories; (i) LHD remote participation, (ii) bilateral experiments' collaboration, and (iii) remote use of supercomputer. By extending the LABCOM data system developed at LHD, FVL supports (i) and (ii) so that it can deal with not only LHD data but also the data of two remote experiments: QUEST at Kyushu University and GAMMA10 at University of Tsukuba. FVL has applied the latest 'cloud' technology for both data acquisition and storage architecture. It can provide us high availability and performance scalability of the whole system. With a well optimized TCP data transferring method, the unified data access platform for both experimental data and numerical computation results could become realistic on FVL. The FVL project will continue demonstrating the ITER-era international collaboration schemes and the necessary technology.

  1. Simultaneous Lateral Interbody Fusion and Posterior Percutaneous Instrumentation: Early Experience and Technical Considerations

    Directory of Open Access Journals (Sweden)

    Doniel Drazin

    2015-01-01

    Full Text Available Lumbar fusion surgery involving lateral lumbar interbody graft insertion with posterior instrumentation is traditionally performed in two stages requiring repositioning. We describe a novel technique to complete the circumferential procedure simultaneously without patient repositioning. Twenty patients diagnosed with worsening back pain with/without radiculopathy who failed exhaustive conservative management were retrospectively reviewed. Ten patients with both procedures simultaneously from a single lateral approach and 10 control patients with lateral lumbar interbody fusion followed by repositioning and posterior percutaneous instrumentation were analyzed. Pars fractures, mobile grade 2 spondylolisthesis, and severe one-level degenerative disk disease were matched between the two groups. In the simultaneous group, avoiding repositioning leads to lower mean operative times: 130 minutes (versus control 190 minutes; p=0.009 and lower intraoperative blood loss: 108 mL (versus 93 mL; NS. Nonrepositioned patients were hospitalized for an average of 4.1 days (versus 3.8 days; NS. There was one complication in the control group requiring screw revision. Lateral interbody fusion and percutaneous posterior instrumentation are both readily accomplished in a single lateral decubitus position. In select patients with adequately sized pedicles, performing simultaneous procedures decreases operative time over sequential repositioning. Patient outcomes were excellent in the simultaneous group and comparable to procedures done sequentially.

  2. Beryllium liner implosion experiments on the Z accelerator in preparation for Magnetized Liner Inertial Fusion (MagLIF)*

    Science.gov (United States)

    McBride, Ryan D.

    2012-10-01

    Magnetized Liner Inertial Fusion (MagLIF) [1] is a concept that involves using a pulsed electrical current to implode an initially-solid, cylindrical metal tube (liner) filled with preheated and magnetized fusion fuel. One- and two-dimensional simulations predict that if sufficient liner integrity can be maintained throughout the implosion, then significant fusion yield (>100 kJ) is possible on the 25-MA, 100-ns Z accelerator. The greatest threat to the liner integrity is the Magneto-Rayleigh-Taylor (MRT) instability, which first develops on the outer liner surface, and then works its way inward toward the inner surface throughout the implosion. Two-dimensional simulations predict that a thick liner, with Router/δR=6, should be robust enough to keep the MRT instability from overly disrupting the fusion burn at stagnation. This talk will present the first experiments designed to study a thick, MagLIF-relevant liner implosion through to stagnation on Z [2]. The use of beryllium for the liner material enabled us to obtain penetrating monochromatic (6151±0.5 eV) radiographs that reveal information about the entire volume of the imploding liner. This talk will also discuss experiments that investigated Z's pulse-shaping capabilities to either shock- or shocklessly-compress the imploding liners [3], as well as our most recent experiments that used 2-micron-thick aluminum sleeves to provide high-contrast tracers for the positions and states of the inner surfaces of the imploding beryllium liners. The radiography data to be presented provide stringent constraints on the simulation tools used by the broader high energy density physics and inertial confinement fusion communities, where quantitative areal density measurements, particularly of convergent fusion targets, are relatively scarce. We will also present power-flow tests of the MagLIF load hardware as well as new micro-B-dot measurements of the azimuthal drive magnetic field that penetrates the initially vacuum

  3. Numerical simulations of in-situ neutron detector calibration experiments on the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ku, L.P.; Hendel, H.W.; Liew, S.L.; Strachan, J.D.

    1990-02-01

    Accurate determinations of fusion neutron yields on the TFTR require that the neutron detectors be absolutely calibrated in-situ, using neutron sources of known strengths. For such calibrations, numerical simulations of neutron transport can be powerful tools in the design of experiments and the study of measurement results. On the TFTR, numerical calibration experiments' have been frequently used to complement actual detector calibrations. We present calculational approaches and transport models used in these numerical simulations, and summarize the results from simulating the calibration of {sup 235}U fission detectors carried out in December 1988. 12 refs., 9 figs., 6 tabs.

  4. Several atomic-physics issues connected with the use of neutral beams in fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Post, D.E.; Grisham, L.R.; Fonck, R.J.

    1982-08-01

    Energetic neutral beams are used for heating and diagnostics in present magnetic fusion experiments. They are also being considered for use in future large experiments. Atomic physics issues are important for both the production of the neutral beams and the interaction of the beams and the plasma. Interest in neutral beams based on negative hydrogen ions is growing, largely based on advances in producing high current ion sources. An extension of the negative ion approach has been the suggestion to use negative ions of Z > 1 elements, such as carbon and oxygen, to form high power neutral beams for plasma heating.

  5. Fast neutron spectrometry with organic scintillators applied to magnetic fusion experiments

    CERN Document Server

    Kaschuck, Y A; Trykov, L A; Semenov, V P

    2002-01-01

    Neutron spectrometry with NE213 liquid scintillators is commonly used in thermonuclear fusion experiments to measure the 2.45 and 14.1 MeV neutron flux. We present the unfolded neutron spectrum, which was accumulated during several ohmic deuterium plasma discharges in the Frascati Tokamak Upgrade using a 2''x2'' NE213 scintillator. In this paper, we review the application of organic scintillator neutron spectrometers to tokamaks, focusing in particular on the comparison between NE213 and stilbene scintillators. Various aspects of the calibration technique and neutron spectra unfolding procedure are considered in the context of their application for fusion neutron spectrometry. Testing and calibration measurements have been carried out using D-D and D-T neutron generator facilities with both NE213 and stilbene scintillators. The main result from these measurements is that stilbene scintillator has better neutron energy resolution than NE213. Our stilbene detector could be used for the determination of the ion ...

  6. New Revelation of Lightning Ball Observation and Proposal for a Nuclear Reactor Fusion Experiment

    CERN Document Server

    Tar, Domokos

    2009-01-01

    In this paper, the author brings further details regarding his Lightning Ball observation that were not mentioned in the first one (Ref.1-2). Additionally, he goes more into detail as the three forces that are necessary to allow the residual crescent form the hydrodynamic vortex ring to shrink into a sphere.Further topics are the similarities and analogies between the Lightning Ball formation's theory and the presently undertaken Tokamak-Stellarator-Spheromak fusion reactor experiments. A new theory and its experimental realisation are proposed as to make the shrinking of the hot plasma of reactors into a ball possible by means of the so called long range electromagnetic forces. In this way,the fusion ignition temperature could possibly atteined.

  7. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    Science.gov (United States)

    Garrison, L. M.; Zenobia, S. J.; Egle, B. J.; Kulcinski, G. L.; Santarius, J. F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  8. A unified modeling approach for physical experiment design and optimization in laser driven inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haiyan [Mechatronics Engineering School of Guangdong University of Technology, Guangzhou 510006 (China); Huang, Yunbao, E-mail: Huangyblhy@gmail.com [Mechatronics Engineering School of Guangdong University of Technology, Guangzhou 510006 (China); Jiang, Shaoen, E-mail: Jiangshn@vip.sina.com [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Jing, Longfei, E-mail: scmyking_2008@163.com [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Tianxuan, Huang; Ding, Yongkun [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-11-15

    Highlights: • A unified modeling approach for physical experiment design is presented. • Any laser facility can be flexibly defined and included with two scripts. • Complex targets and laser beams can be parametrically modeled for optimization. • Automatically mapping of laser beam energy facilitates targets shape optimization. - Abstract: Physical experiment design and optimization is very essential for laser driven inertial confinement fusion due to the high cost of each shot. However, only limited experiments with simple structure or shape on several laser facilities can be designed and evaluated in available codes, and targets are usually defined by programming, which may lead to it difficult for complex shape target design and optimization on arbitrary laser facilities. A unified modeling approach for physical experiment design and optimization on any laser facilities is presented in this paper. Its core idea includes: (1) any laser facility can be flexibly defined and included with two scripts, (2) complex shape targets and laser beams can be parametrically modeled based on features, (3) an automatically mapping scheme of laser beam energy onto discrete mesh elements of targets enable targets or laser beams be optimized without any additional interactive modeling or programming, and (4) significant computation algorithms are additionally presented to efficiently evaluate radiation symmetry on the target. Finally, examples are demonstrated to validate the significance of such unified modeling approach for physical experiments design and optimization in laser driven inertial confinement fusion.

  9. Mod-2 wind turbine field operations experience

    Science.gov (United States)

    Gordon, L. H.

    1984-01-01

    The Mod-2 wind turbine is now in a 2-year research/experimental operations phase which offers a unique opportunity to study the effects of single and multiple wind turbines interacting with each other, the power grid, and the environment. This paper addresses the field operations and research testing experienced at the Mod-2 Cluster Goodnoe Hills Research Test Site near Goldendale, WA. Field operation, both routine and nonroutine, are discussed as well as the role of the participating utility. Technical areas discussed pertain to system performance and loads. Specific research tests relating to acoustics, TV interference, and wake effects are also discussed.

  10. Axial lumbar interbody fusion: a 6-year single-center experience

    Directory of Open Access Journals (Sweden)

    Zeilstra DJ

    2013-08-01

    Full Text Available Dick J Zeilstra,1 Larry E Miller,2,3 Jon E Block3 1Bergman Clinics, Naarden and NedSpine, Ede, The Netherlands; 2Miller Scientific Consulting, Inc, Arden, NC, USA; 3The Jon Block Group, San Francisco, CA, USA Introduction: The aim of this study is to report our 6-year single-center experience with L5–S1 axial lumbar interbody fusion (AxiaLIF. Methods: A total of 131 patients with symptomatic degenerative disc disease refractory to nonsurgical treatment were treated with AxiaLIF at L5–S1, and were followed for a minimum of 1 year (mean: 21 months. Main outcomes included back and leg pain severity, Oswestry Disability Index score, working status, analgesic medication use, patient satisfaction, and complications. Computed tomography was used to determine postoperative fusion status. Results: No intraoperative complications, including vascular, neural, urologic, or bowel injuries, were reported. Back and leg pain severity decreased by 51% and 42%, respectively, during the follow-up period (both P < 0.001. Back function scores improved 50% compared to baseline. Clinical success, defined as improvement ≥30%, was 67% for back pain severity, 65% for leg pain severity, and 71% for back function. The employment rate increased from 47% before surgery to 64% at final follow-up (P < 0.001. Less than one in four patients regularly used analgesic medications postsurgery. Patient satisfaction with the AxiaLIF procedure was 83%. The fusion rate was 87.8% at final follow-up. During follow-up, 17 (13.0% patients underwent 18 reoperations on the lumbar spine, including pedicle screw fixation (n = 10, total disc replacement of an uninvolved level (n = 3, facet screw fixation (n = 3, facet screw removal (n = 1, and interbody fusion at L4–L5 (n = 1. Eight (6.1% reoperations were at the index level. Conclusion: Single-level AxiaLIF is a safe and effective means to achieve lumbosacral fusion in patients with symptomatic degenerative disc disease. Keywords: Axia

  11. Process characterization for metal-affinity chromatography of an Fc fusion protein: a design-of-experiments approach.

    Science.gov (United States)

    Shukla, A A; Sorge, L; Boldman, J; Waugh, S

    2001-10-01

    The utility of a design-of-experiments approach was investigated for process characterization of a metal-affinity chromatographic purification process for an Fc fusion protein. This approach gave a better understanding of some of the key process variables as well as robustness for this step in the purification process. Single-variable experiments were employed to screen some of the potentially important variables in this step. Ranges for these variables were set based on prior experience in clinical manufacturing with similar processes. Following these experiments, a fractional factorial study was employed to further investigate the most important variables and their interactions. Key operational variables that had an impact on step yield and eluate purity were identified. In addition, the study helped identify a worst-case scenario for the step purity and helped assure that the rest of the process would successfully purify the product. This paper demonstrates the utility of a design-of-experiments approach for the characterization and validation of process chromatography steps in downstream processing. In addition, this study emphasizes the utility of robustness studies early in process development and establishes a strategy for future robustness studies.

  12. Plasma-Jet-Driven Magneto-Inertial Fusion (PJMIF): Physics and Design for a Plasma Liner Formation Experiment

    Science.gov (United States)

    Hsu, Scott; Cassibry, Jason; Witherspoon, F. Douglas

    2014-10-01

    Spherically imploding plasma liners are a potential standoff compression driver for magneto-inertial fusion, which is a hybrid of and operates in an intermediate density between those of magnetic and inertial fusion. We propose to use an array of merging supersonic plasma jets to form a spherically imploding plasma liner. The jets are to be formed by pulsed coaxial guns with contoured electrodes that are placed sufficiently far from the location of target compression such that no hardware is repetitively destroyed. As such, the repetition rate can be higher (e.g., 1 Hz) and ultimately the power-plant economics can be more attractive than most other MIF approaches. During the R&D phase, a high experimental shot rate at reasonably low cost (e.g., gun plasma-liner-formation experiment, which will provide experimental data on: (i) scaling of peak liner ram pressure versus initial jet parameters, (ii) liner non-uniformity characterization and control, and (iii) control of liner profiles for eventual gain optimization.

  13. Mod-2 wind turbine field operations experiment

    Science.gov (United States)

    Gordon, L. H.

    1985-01-01

    The three-machine, 7.5 MW Goodnoe Hills located near Goldendale, Washington and is now in a research/experimental operations phase that offers a unique opportunity to study the effects of single and multiple wind turbines interacting with each other, the power grid; and the environment. Following a brief description of the turbine and project history, this paper addresses major problem areas and research and development test results. Field operations, both routine and nonroutine, are discussed. Routine operation to date has produced over 13,379,000 KWh of electrical energy during 11,064 hr of rotation. Nonroutine operation includes suspended activities caused by a crack in the low speed shaft that necessitated a redesign and reinstallation of this assembly on all three turbines. With the world's largest cluster back in full operation, two of the turbines will be operated over the next years to determine their value as energy producer. The third unit will be used primarily for conducting research tests requiring configuration changes to better understand the wind turbine technology. Technical areas summarized pertain to system performance and enhancements. Specific research tests relating to acoustics, TV interference, and wake effects conclude the paper.

  14. Adjoint Monte Carlo Simulation of Fusion Product Activation Probe Experiment in ASDEX Upgrade tokamak

    CERN Document Server

    Äkäslompolo, Simppa; Tardini, Giovanni; Kurki-Suonio, Taina

    2015-01-01

    The activation probe is a robust tool to measure flux of fusion products from a magnetically confined plasma. A carefully chosen solid sample is exposed to the flux, and the impinging ions transmute the material makig it radioactive. Ultra-low level gamma-ray spectroscopy is used post mortem to measure the activity and, thus, the number of fusion products. This contribution presents the numerical analysis of the first measurement in the ASDEX Upgrade tokamak, which was also the first experiment to measure a single discharge. The ASCOT suite of codes was used to perform adjoint/reverse Monte-Carlo calculations of the fusion products. The analysis facilitated, for the first time, a comparison of numerical and experimental values for absolutely calibrated flux. The results agree to within 40%, which can be considered remarkable considering the fact that all features of the plasma cannot be accounted in the simulations. Also an alternative probe orientation was studied. The results suggest that a better optimized...

  15. Adjoint Monte Carlo simulation of fusion product activation probe experiment in ASDEX Upgrade tokamak

    Science.gov (United States)

    Äkäslompolo, S.; Bonheure, G.; Tardini, G.; Kurki-Suonio, T.; The ASDEX Upgrade Team

    2015-10-01

    The activation probe is a robust tool to measure flux of fusion products from a magnetically confined plasma. A carefully chosen solid sample is exposed to the flux, and the impinging ions transmute the material making it radioactive. Ultra-low level gamma-ray spectroscopy is used post mortem to measure the activity and, thus, the number of fusion products. This contribution presents the numerical analysis of the first measurement in the ASDEX Upgrade tokamak, which was also the first experiment to measure a single discharge. The ASCOT suite of codes was used to perform adjoint/reverse Monte Carlo calculations of the fusion products. The analysis facilitates, for the first time, a comparison of numerical and experimental values for absolutely calibrated flux. The results agree to within a factor of about two, which can be considered a quite good result considering the fact that all features of the plasma cannot be accounted in the simulations.Also an alternative to the present probe orientation was studied. The results suggest that a better optimized orientation could measure the flux from a significantly larger part of the plasma. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  16. Transperineal prostate biopsy with ECHO-MRI fusion. Biopsee system. Initial experience.

    Science.gov (United States)

    Romero-Selas, E; Cuadros, V; Montáns, J; Sánchez, E; López-Alcorocho, J M; Gómez-Sancha, F

    2016-06-01

    The aim of this study is to present our initial experience with the stereotactic echo-MRI fusion system for diagnosing prostate cancer. Between September 2014 and January 2015, we performed 50 prostate biopsies using the stereotactic echo-MRI fusion system. The 3-Tesla multiparameter MR images were superimposed using this image fusion system on 3D echo images obtained with the Biopsee system for the exact locating of areas suspected of prostate cancer. The lesions were classified using the Prostate Imaging Report and Date System. We assessed a total of 50 patients, with a mean age of 63 years (range, 45-79), a mean prostate-specific antigen level of 8 ng/mL (range, 1.9-20) and a mean prostate volume of 52mL (range, 12-118). Prostate cancer was diagnosed in 69% of the patients and intraepithelial neoplasia in 6%. The results of the biopsy were negative for 24% of the patients. The results of the biopsy and MRI were in agreement for 62% of the patients; however, 46% also had a tumour outside of the suspicious lesion. We diagnosed 46% anterior tumours and 33% apical tumours. One patient had a haematuria, another had a haematoma and a third had acute urine retention. Multiparametric prostatic MRI helps identify prostate lesions suggestive of cancer. The Biopsee echo-MRI fusion system provides for guided biopsy and increases the diagnostic performance, reducing the false negatives of classical biopsies and increasing the diagnosis of anterior tumours. Transperineal access minimises the risk of prostatic infection and sepsis. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Design and Implementation of Multi Agent-based Information Fusion System for Supporting Decision Making (A Case Study on Military Operation

    Directory of Open Access Journals (Sweden)

    Arwin Datumaya Wahyudi Sumari

    2008-05-01

    Full Text Available Quick, accurate, and complete information is highly required for supporting strategically impact decision making in a Military Operation (MO in order to reduce the decision cycle and to minimize the loss. For that purpose, we propose, design and implement a hierarchical Multi Agent-based Information Fusion System for Decision Making Support (MAIFS-DMS. The information fusion is implemented by applying Maximum Score of the Total Sum of Joint Probabilities (MSJP fusion method and is done by a collection of Information Fusion Agents (IFA that forms a multiagent system. MAIFS uses a combination of generalization of Dasarathy and Joint Director’s Laboratory (JDL process models for information fusion mechanism. Information fusion products that are displayed in graphical forms provide comprehensive information regarding the MO area dynamics. By observing the graphics resulted from the information fusion, the commandant will have situational awareness and knowledge in order to make the most accurate strategic decision as fast as possible

  18. Multiple DSP system for real time parallel processing and feedback control on fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, A.P.; Correia, C.M.B.; Varandas, C.A.F. [Associacao EURATOM, Lisboa (Portugal). Nucl. Inst. Superior Tecnico; Schneider, F. [Association EURATOM/IPP, Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany)

    1999-01-01

    This paper describes a specially designed system for real time parallel processing and feedback control on fusion experiments. The system is being implemented in PCI and VME modules, based on an array of four synchronizable DSPs, with 1 Mbyte of global RAM, 12 bits resolution, four analog inputs with sampling frequency up to 40 MSPS, two analog or waveform generator outputs with an update rate up to 100 MSPS, eight digital opto-coupled inputs/outputs and one external global trigger optical input. The user interface appears as a virtual instrument from LabView for Windows. (orig.) 7 refs.

  19. Conceptual design of a generic pulse schedule and event handling editor for improved fusion device operation

    Energy Technology Data Exchange (ETDEWEB)

    Barana, Oliviero, E-mail: oliviero.barana@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France); Nouailletas, Rémy; Brémond, Sylvain; Moreau, Philippe; Allegretti, Ludovic; Balme, Stéphane; Ravenel, Nathalie [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France); Mannori, Simone [ENEA C.R. Brasimone, 40032 Camugnano (Italy); Guillerminet, Bernard; Leroux, Fabrice; Douai, David; Nardon, Eric; Hertout, Patrick; Saint-Laurent, François [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France)

    2013-10-15

    Highlights: ► Real-time event handling requires extended functionalities of pulse schedule editors and plasma control systems ► A new pulse schedule editor, conceived for parameterization of systematic off-normal event handling, is described ► A global, generic approach on off-normal event handling is highlighted ► The functional architecture of an off-normal event handling oriented plasma control system is discussed ► The main objects of the pulse schedule editor are the segment-descriptor object and the scenario-descriptor object. -- Abstract: Coping with unexpected events is an important issue of nuclear fusion experiments. The future machines, characterized by very long plasma discharges and actively cooled metallic plasma-facing components, will require a systematic intervention in real time, in order to maximize the performance and protect the investment. The real-time management of events will require extending the functionalities of the current pulse schedule editors with the possibility of using reference waveforms provided with acceptability margins and setting up advanced mitigation strategies and event countermeasures. With this purpose, a new pulse schedule editor, based on a time-segment approach for the preparation of experimental scenarios, is being conceived on Tore Supra, together with a new plasma control system. This paper will report on their conceptual design and give account of the preliminary results of a feasibility study currently under way in order to prepare a possible implementation on Tore Supra.

  20. A highly efficient neutron time-of-flight detector for inertial confinement fusion experiments

    Science.gov (United States)

    Izumi, N.; Yamaguchi, K.; Yamagajo, T.; Nakano, T.; Kasai, T.; Urano, T.; Azechi, H.; Nakai, S.; Iida, T.

    1999-01-01

    We have developed the highly efficient neutron detector system MANDALA for the inertial-confinement-fusion experiment. The MANDALA system consists of 842 elements plastic scintillation detectors and data acquisition electronics. The detection level is the yield of 1.2×105 for 2.5 MeV and 1×105 for 14.1 MeV neutrons (with 100 detected hits). We have calibrated the intrinsic detection efficiencies of the detector elements using a neutron generator facility. Timing calibration and integrity test of the system were also carried out with a 60Co γ ray source. MANDALA system was applied to the implosion experiments at the GEKKO XII laser facility. The integrity test was carried out by implosion experiments.

  1. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  2. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-27

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  3. Operating experience from Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    During 1997 the PWRs in Ringhals performed extremely well (capability factors 85-90%), the unit Ringhals 2 reached the best capability factor since commercial operation started in 1976. The BWRs made an average 76% capability, which is somewhat less than in 1996. The slightly reduced capability derives from ongoing modernization projects at several units. At the youngest plants, Forsmark 3 and Oskarshamn 3, capability and utilization were very high. Events and data for 1997 are given for each reactor, together with operational statistics for the years 1990-1997. A number of safety-related events are reported, which occurred st the Swedish plants during 1997. These events are classified as level 1 or higher on the international nuclear event scale (INES).

  4. Weapons Experiments Division Explosives Operations Overview

    Energy Technology Data Exchange (ETDEWEB)

    Laintz, Kenneth E. [Los Alamos National Laboratory

    2012-06-19

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  5. Weapons Experiments Division Explosives Operations Overview

    Energy Technology Data Exchange (ETDEWEB)

    Laintz, Kenneth E. [Los Alamos National Laboratory

    2012-06-19

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  6. Operational experience with the CEBAF control system

    Energy Technology Data Exchange (ETDEWEB)

    Hovater, C.; Chowdhary, M.; Karn, J.; Tiefenback, M.; Zeijts, J. van; Watson, W.

    1996-10-01

    The CEBAF accelerator at Thomas Jefferson National Accelerator Facility (Jefferson Lab) successfully began its experimental nuclear physics program in November of 1995 and has since surpassed predicted machine availability. Part of this success can be attributed to using the EPICS (Experimental Physics and Industrial Control System) control system toolkit. The CEBAF control system is one of the largest accelerator control system now operating. It controls approximately 338 SRF cavities, 2,300 magnets, 500 beam position monitors and other accelerator devices, such as gun hardware and other beam monitoring devices. All told, the system must be able to access over 125,000 database records. The system has been well received by both operators and the hardware designers. The EPICS utilities have made the task of troubleshooting systems easier. The graphical and test-based creation tools have allowed operators to custom build control screens. In addition, the ability to integrate EPICS with other software packages, such as Tcl/Tk, has allowed physicists to quickly prototype high-level application programs, and to provide GUI front ends for command line driven tools. Specific examples of the control system applications are presented in the areas of energy and orbit control, cavity tuning and accelerator tune up diagnostics.

  7. Decay heat experiment and validation of calculation code systems for fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Wada, Masayuki

    1999-10-01

    Although accurate estimation of decay heat value is essential for safety analyses of fusion reactors against loss of coolant accidents and so on, no experimental work has been devoted to validating the estimation. Hence, a decay heat measurement experiment was performed as a task (T-339) of ITER/EDA. A new detector, the Whole Energy Absorption Spectrometer (WEAS), was developed for accurate and efficient measurements of decay heat. Decay heat produced in the thirty-two sample materials which were irradiated by 14-MeV neutrons at FNS/JAERI were measured with WEAS for a wide cooling time period from 1 min to 400 days. The data presently obtained were the first experimental decay heat data in the field of fusion. Validity of decay heat calculation codes of ACT4 and CINAC-V4, activation cross section libraries of FENDL/A-2.0 and JENDL Activation File, and decay data was investigated through analyses of the experiment. As a result, several points that should be modified were found in the codes and data. After solving the problems, it was demonstrated that decay heat valued calculated for most of samples were in good agreement with the experimental data. Especially for stainless steel 316 and copper, which were important materials for ITER, decay heat could be predicted with accuracy of {+-}10%. (author)

  8. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  9. First Operational Experience Of The CNGS Facility

    Science.gov (United States)

    Gschwendtner, E.; Pardons, A.; Bruno, L.; Clement, M.; Efthymiopoulos, I.; Elsener, K.; Meddahi, M.; Rangod, S.; Vincke, H.

    2008-02-01

    The CNGS project (CERN Neutrinos to Gran Sasso) aims at directly detecting νμ-ντ oscillation. An intense muon-neutrino beam (1017νμ/day) is generated at CERN and directed towards the Gran Sasso National Laboratory, LNGS, in Italy, where the ντ will be detected in large and complex detectors. An overview of the CNGS beam facility is given. The performance of the primary and secondary beam line during beam commissioning and physics operation is discussed. Modifications on the magnetic focusing lenses (horn and reflector) are described.

  10. Computational modeling of joint U.S.-Russian experiments relevant to magnetic compression/magnetized target fusion (MAGO/MTF)

    Energy Technology Data Exchange (ETDEWEB)

    Sheehey, P.T.; Faehl, R.J.; Kirkpatrick, R.C.; Lindemuth, I.R. [Los Alamos National Lab., NM (United States)

    1997-12-31

    Magnetized Target Fusion (MTF) experiments, in which a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions, present some challenging computational modeling problems. Recently, joint experiments relevant to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic compression) have been performed by Los Alamos National Laboratory and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). Modeling of target plasmas must accurately predict plasma densities, temperatures, fields, and lifetime; dense plasma interactions with wall materials must be characterized. Modeling of magnetically driven imploding solid liners, for compression of target plasmas, must address issues such as Rayleigh-Taylor instability growth in the presence of material strength, and glide plane-liner interactions. Proposed experiments involving liner-on-plasma compressions to fusion conditions will require integrated target plasma and liner calculations. Detailed comparison of the modeling results with experiment will be presented.

  11. Development of a Bayesian method for the analysis of inertial confinement fusion experiments on the NIF

    CERN Document Server

    Gaffney, Jim A; Sonnad, Vijay; Libby, Stephen B

    2013-01-01

    The complex nature of inertial confinement fusion (ICF) experiments results in a very large number of experimental parameters that are only known with limited reliability. These parameters, combined with the myriad physical models that govern target evolution, make the reliable extraction of physics from experimental campaigns very difficult. We develop an inference method that allows all important experimental parameters, and previous knowledge, to be taken into account when investigating underlying microphysics models. The result is framed as a modified $\\chi^{2}$ analysis which is easy to implement in existing analyses, and quite portable. We present a first application to a recent convergent ablator experiment performed at the NIF, and investigate the effect of variations in all physical dimensions of the target (very difficult to do using other methods). We show that for well characterised targets in which dimensions vary at the 0.5% level there is little effect, but 3% variations change the results of i...

  12. Fusion Reactor and Break-Even Experiment Based on Stabilized Liner Compression of Plasma

    Science.gov (United States)

    Turchi, Peter; Frese, Sherry; Frese, Michael

    2016-10-01

    An optimum regime, known as magnetized-target or magneto-inertial fusion (MTF/MIF), requires magnetic fields at megagauss levels, which are attainable by use of dynamic conductors called liners. The stabilized liner compressor (SLC) provides the basis for controlled implosion and re-capture of the liner for reversible energy exchange between liner kinetic energy and the internal energy of a magnetized-plasma target. This exchange requires rotational stabilization of Rayleigh-Taylor modes on the inner surface of the liner and pneumatically driven free-pistons that eliminate such modes at the outer surface. We discuss the implications of the SLC approach for the power reactor, a breakeven experiment, and intermediate experiments to develop the plasma target. Features include the importance of pneumatic drive and the liner-blanket for economic feasibility of MTF/MIF. Supported by ARPA-E ALPHA Program.

  13. First results and operating experience of GALLEX. Erste Ergebnisse und Betriebserfahrungen bei GALLEX

    Energy Technology Data Exchange (ETDEWEB)

    Henrich, E. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Heisse Chemie); Ammon, R. v. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Heisse Chemie); Ebert, K. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Heisse Chemie); Fritsch, T. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Heisse Chemie); Habicht, W. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Heisse Chemie); Hellriegel, K. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Heisse Chemie); Kluth, M. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Heisse Chemie); Roesch, W. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Heisse Chemie); Stieglitz, L. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Heisse Chemie); Weirich, F. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Heisse Chemie); Will, R. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Heisse Chemie); Balata, M. (INFN/LNGS,

    1992-01-01

    In GALLEX low-energy neutrinos of the main reaction during proton fusion in the sun's interior are measured by a radiochemical GaCl[sub 3] detector. The aim is to verify theories of the structure and development of stars and of the possible existence of a neutrino rest mass. The experiment is performed by international collaboration at the Gran Sasso Underground Laboratory (LNGS) in Italy. Under that collaboration, the KfK/Institute of Hot Chemistry, is responsible, for planning, construction and operation of the detector and technical equipment necessary to isolate some few [sup 71]Ge atoms from 101 t of GaCl[sub 3] solution in 1 l of water. The paper centers on the chemical aspects of the experimental and preliminary operating experiences with relevant process engineering equipment. (orig.)

  14. Service-oriented architecture of adaptive, intelligent data acquisition and processing systems for long-pulse fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada. Universidad Politecnica de Madrid, Crta. Valencia Km-7 Madrid 28031 (Spain); Ruiz, M., E-mail: mariano.ruiz@upm.e [Grupo de Investigacion en Instrumentacion y Acustica Aplicada. Universidad Politecnica de Madrid, Crta. Valencia Km-7 Madrid 28031 (Spain); Barrera, E.; Lopez, J.M.; Arcas, G. de [Grupo de Investigacion en Instrumentacion y Acustica Aplicada. Universidad Politecnica de Madrid, Crta. Valencia Km-7 Madrid 28031 (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain)

    2010-07-15

    The data acquisition systems used in long-pulse fusion experiments need to implement data reduction and pattern recognition algorithms in real time. In order to accomplish these operations, it is essential to employ software tools that allow for hot swap capabilities throughout the temporal evolution of the experiments. This is very important because processing needs are not equal during different phases of the experiment. The intelligent test and measurement system (ITMS) developed by UPM and CIEMAT is an example of a technology for implementing scalable data acquisition and processing systems based on PXI and CompactPCI hardware. In the ITMS platform, a set of software tools allows the user to define the processing algorithms associated with the different experimental phases using state machines driven by software events. These state machines are specified using the State Chart XML (SCXML) language. The software tools are developed using JAVA, JINI, an SCXML engine and several LabVIEW applications. Within this schema, it is possible to execute data acquisition and processing applications in an adaptive way. The power of SCXML semantics and the ability to work with XML user-defined data types allow for very easy programming of the ITMS platform. With this approach, the ITMS platform is a suitable solution for implementing scalable data acquisition and processing systems based on a service-oriented model with the ability to easily implement remote participation applications.

  15. Demountable, High field High-Temperature Superconductor TF coils for flexible steady-state fusion experiments

    Science.gov (United States)

    Michael, Phillip; Bromberg, Leslie; Vieira, Rui; Minervini, Joseph; Galea, Christopher; Hensley, Sarah; Whyte, Dennis

    2014-10-01

    The excellent properties of HTS materials (e.g., YBCO) at high fields and elevated temperatures (>20 K), offer operational advantages for fusion machines, but results in challenges. For fusion devices, the ability to disassemble the TF coil is very attractive as it provides direct access to maintain the vacuum vessel, first wall and other components in a timely manner. High current conductors, made from multiple thin tapes, are not available but are being developed. Quench protection is a serious issue with HTS magnets, and novel means are needed to detect normal zones and to quickly discharge the magnet. Potential cables designs, demountable magnets and solutions to quench and protection issues for an HTS TF magnet for the Vulcan device (long term PMI studies) will be described. We also describe means for making continuous, persistent loops with HTS tapes. These loops offer an alternative to expensive monoliths for field control for complex geometries, such as stellarator-like fields. Partially supported by US DOE DE-FC02-93ER54186.

  16. Operation and Experiments on LECR3

    Institute of Scientific and Technical Information of China (English)

    LiJinyu; FengYucheng; WangHui; MaBaohua; SunLiangting; CaoYun; HeWei; LiXixia; ZhangZimin; ZhaoHongwei

    2003-01-01

    LECR3 (Lanzhou Electron Cyclotron Resonance ion source No.3) which aims to produce intense highly charged ion beams for atomic physics research, was designed and constructed based on LECR2 (Lanzhou Electron Cyclotron Resonance ion source No.2) with high B mode. In year 2003, according to the arrangements of atomic physics research experiments and the ECR ion source research activities, ion beams of 14 elements were produced on LECR3. The elements include 16O, 40At, 129Xe, 63Cu, 65Zn, 56Fe, 58Ni, 26Mg, 208Pb, 35C1, 37C1, 28Si, 84Kr and 181Ta. Many of them were tested for the first time on LECR3 ion source.

  17. Operational Significance of Discord: Theory and Experiment

    CERN Document Server

    Gu, Mile; Assad, Syed M; Symul, Thomas; Modi, Kavan; Ralph, Timothy C; Vedral, Vlatko; Lam, Ping Koy

    2012-01-01

    Observations that coherent interactions between non-entangled systems can still exhibit unique quantum behaviour challenged the traditional view that quantum correlations are synonymous with entanglement. In response, quantum discord was proposed to complete the description of all quantum correlations. Nevertheless, explicit protocols that directly exploit discord as a quantum resource have remained elusive. Here, we demonstrate that under certain measurement constraints, discord between bipartite systems directly quantifies a quantum resource that coherent interactions can harness. The inability to access this resource by any other means allows us to use discord to directly quantify this `quantum advantage'. We experimentally encode information within the discordant correlations of two separable Gaussian states. The amount of extra information recovered by coherent interaction is quantified and directly linked with the discord between the states. No entanglement exists at any point of this experiment. Thus w...

  18. Operating experience with nuclear power plants 2015. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2016-07-01

    The VGB Technical Committee ''Nuclear Plant Operation'' has been exchanging operating experience about nuclear power plants for more than 30 years. Plant operators from several European countries are participating in the exchange. A report is given on the operating results achieved in 2015, events important to plant safety, special and relevant repair, and retrofit measures from Germany. The second part of this report will focus on nuclear power plant in Belgium, Finland, the Netherlands, Switzerland, and Spain.

  19. Flyer-Plate-Based Current Diagnostic for Magnetized Liner Inertial Fusion Experiments

    Science.gov (United States)

    Reneker, Joseph; Gomez, Matthew; Hess, Mark; Jennings, Christopher

    2015-11-01

    Accurate measurements of the current delivered to Magnetized Liner Inertial Fusion (MagLIF) loads on the Z machine are important for understanding the dynamics of liner implosions. Difficulty acquiring a reliable load current measurement with the standard Z load B-dots has spurred the development of alternative load current diagnostics. Velocimetry of an electromagnetically-accelerated flyer plate can be used to infer the drive current on a flyer surface. A load current diagnostic design is proposed using a cylindrical flyer plate in series with the MagLIF target. Aspects of the flyer plate design were optimized using magnetohydrodynamic simulations. Design and preliminary results will be presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Laser-plasma interaction in the context of inertial fusion: experiments and modeling

    Science.gov (United States)

    Labaune, C.; Lewis, K.; Bandulet, H.; Depierreux, S.; Hüller, S.; Masson-Laborde, P. E.; Pesme, D.; Loiseau, P.

    2007-08-01

    Many nonlinear processes may affect the laser beam propagation and the laser energy deposition in the underdense plasma surrounding the pellet. These processes, associated with anomalous and nonlinear absorption mechanisms, are fundamental issues in the context of Inertial Confinement Fusion. The work presented in this article refers to laser-plasma interaction experiments which were conducted under well-controlled conditions, and to their theoretical and numerical modeling. Thanks to important diagnostics improvements, the plasma and laser parameters were sufficiently characterized in these experiments to make it possible to carry out numerical simulations modeling the laser plasma interaction in which the hydrodynamics conditions were very close to the experimental ones. Two sets of experiments were carried out with the LULI 2000 and the six beam LULI laser facilities. In the first series of experiments, the interaction between two single hot spots was studied as a function of their distance, intensity and light polarization. In the second series, the intensity distribution of stimulated Brillouin scattering (SBS) inside the plasma was studied by means of a new temporally resolved imaging system. Two-dimensional (2D) simulations were carried out with our code Harmony2D in order to model these experiments. For both series of experiments, the numerical results show a very good agreement with the experimental ones for what concerns the main SBS features, namely the spatial and temporal behavior of the SBS-driven acoustic waves, as well as the average SBS reflectivities. Thus, these well diagnosed experiments, carried out with well defined conditions, make it possible to benchmark our theoretical and numerical modelings and, hence, to improve our predictive capabilities for future experiments.

  1. Development of aerogel-lined targets for inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Tom [Technical Univ. Munchen (Germany)

    2013-03-28

    This thesis explores the formation of ICF compatible foam layers inside of an ablator shell used for inertial confinement fusion experiments at the National Ignition Facility. In particular, the capability of p- DCPD polymer aerogels to serve as a scaffold for the deuterium-tritium mix was analyzed. Four different factors were evaluated: the dependency of different factors such as thickness or composition of a precursor solution on the uniformity of the aerogel layer, how to bring the optimal composition inside of the ablator shell, the mechanical stability of ultra-low density p-DCPD aerogel bulk pieces during wetting and freezing with hydrogen, and the wetting behavior of thin polymer foam layers in HDC carbon ablator shells with liquid deuterium. The research for thesis was done at Lawrence Livermore National Laboratory in cooperation with the Technical University Munich.

  2. Tokamak Fusion Core Experiment: design studies based on superconducting and hybrid toroidal field coils. Design overview

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A. (ed.)

    1984-10-01

    This document is a design overview that describes the scoping studies and preconceptual design effort performed in FY 1983 on the Tokamak Fusion Core Experiment (TFCX) class of device. These studies focussed on devices with all-superconducting toroidal field (TF) coils and on devices with superconducting TF coils supplemented with copper TF coil inserts located in the bore of the TF coils in the shield region. Each class of device is designed to satisfy the mission of ignition and long pulse equilibrium burn. Typical design parameters are: major radius = 3.75 m, minor radius = 1.0 m, field on axis = 4.5 T, plasma current = 7.0 MA. These designs relay on lower hybrid (LHRH) current rampup and heating to ignition using ion cyclotron range of frequency (ICRF). A pumped limiter has been assumed for impurity control. The present document is a design overview; a more detailed design description is contained in a companion document.

  3. Electron Trapping in the Penning Fusion Experiment - Ions (PFX-I)

    Science.gov (United States)

    Barnes, D. C.

    1999-11-01

    PFX-I is a table-top, magneto-electrostatic confinement device. Nonneutral confinement and spherical focussing combine to achieve fusion conditions. PFX-I began operation in late '98 as a follow-on to PFX.(T.B. Mitchell, M.M. Schauer, and D.C. Barnes, Phys. Rev. Lett. 78, 58 (1997).) (D.C. Barnes, T.B. Mitchell, and M.M. Schauer, Phys. Plasmas 4, 1745 (1997).) (M.M. Schauer, T.B. Mitchell, M.H. Holzscheiter, and D.C. Barnes, Rev. Sci. Instr. 68, 3340 (1997).) A Penning-type trap confines electrons. Electron space-charge field E confines and spherically focuses high-energy deuterium ions to produce neutrons. Design parameters are: 1 cm spherical radius, applied DC voltage V to 100 kV, steady (superconducting) magnetic field B to over 2 T. The spherical confinement region is axially separated from two end cathodes at -HV, one supplying electrons. We have applied voltages up to 75 kV to the trap, operated the electron gun to 40 kV, and the instrument rack to the full 100 kV. The physical basis and arrangement are briefly described. Initial operation is described. Electron inventory and lifetime t vs. V and B are measured by dumping the electron inventory to a MCP. Up to 3 x 10^8 electrons have been trapped, with t greater than 100 ms. Mechanical alignment may limit t. Results using an improved alignment design are contrasted with the earlier design. E is inferred from electron inventory. Also, an optical diagnostic directly measures E by Stark splitting at low neutral hydrogen pressure (10-5 to 10-8Torr). Light produced by impact excitation is brought out by a fiber to the entrance slit of a spectrometer. Expected splitting of the atomic hydrogen lines of 1 to several Angstroms is compared to initial observations. POPS, a high Q operating mode, has been proposed[4] and an electron configuration for supporting POPS in PFX-I has been described.[5] Plans for future testing of these theoretical predictions are described briefly. An RF system to provide the required 10

  4. Demonstration of low-loss electron beam transport and mm-wave experiments of the fusion-FEM

    NARCIS (Netherlands)

    Urbanus, W. H.; Bongers, W. A.; van Dijk, G.; van der Geer, C. A. J.; de Kruif, R.; Manintveld, P.; Pluygers, J.; Poelman, A. J.; Schüller, F. C.; Smeets, P. H. M.; Sterk, A. B.; Verhoeven, A. G. A.; Valentini, M.; van der Wiel, M. J.

    1998-01-01

    In the Fusion-FEM electrostatic Free Electron Maser, an electron beam loss current of less than 0.2% is essential for long-pulse operation. At reduced beam current, 3 A instead of the nominal 12 A, we have demonstrated electron beam acceleration and transport through the undulator at current losses

  5. FENDL-3 benchmark test with neutronics experiments related to fusion in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Konno, Chikara, E-mail: konno.chikara@jaea.go.jp; Ohta, Masayuki; Takakura, Kosuke; Ochiai, Kentaro; Sato, Satoshi

    2014-10-15

    Highlights: •We have benchmarked FENDL-3.0 with integral experiments with DT neutron sources in Japan. •The FENDL-3.0 is as accurate as FENDL-2.1 and JENDL-4.0 or more. •Some data in FENDL-3.0 may have some problems. -- Abstract: The IAEA supports and promotes the gathering of the best data from evaluated nuclear data libraries for each nucleus involved in fusion reactor applications and compiles these data as FENDL. In 2012, the IAEA released a major update to FENDL, FENDL-3.0, which extends the neutron energy range from 20 MeV to greater than 60 MeV for 180 nuclei. We have benchmarked FENDL-3.0 versus in situ and TOF experiments using the DT neutron source at FNS at the JAEA and TOF experiments using the DT neutron source at OKTAVIAN at Osaka University in Japan. The Monte Carlo code MCNP-5 and the ACE file of FENDL-3.0 supplied from the IAEA were used for the calculations. The results were compared with measured ones and those obtained using the previous version, FENDL-2.1, and the latest version, JENDL-4.0. It is concluded that FENDL-3.0 is as accurate as or more so than FENDL-2.1 and JENDL-4.0, although some data in FENDL-3.0 may be problematic.

  6. Customizable scientific web-portal for DIII-D nuclear fusion experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abla, G; Kim, E N; Schissel, D P, E-mail: abla@fusion.gat.co [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States)

    2010-04-01

    Increasing utilization of the Internet and convenient web technologies has made the web-portal a major application interface for remote participation and control of scientific instruments. While web-portals have provided a centralized gateway for multiple computational services, the amount of visual output often is overwhelming due to the high volume of data generated by complex scientific instruments and experiments. Since each scientist may have different priorities and areas of interest in the experiment, filtering and organizing information based on the individual user's need can increase the usability and efficiency of a web-portal. DIII-D is the largest magnetic nuclear fusion device in the US. A web-portal has been designed to support the experimental activities of DIII-D researchers worldwide. It offers a customizable interface with personalized page layouts and list of services for users to select. Each individual user can create a unique working environment to fit his own needs and interests. Customizable services are: real-time experiment status monitoring, diagnostic data access, interactive data analysis and visualization. The web-portal also supports interactive collaborations by providing collaborative logbook, and online instant announcement services. The DIII-D web-portal development utilizes multi-tier software architecture, and Web 2.0 technologies and tools, such as AJAX and Django, to develop a highly-interactive and customizable user interface.

  7. Customizable scientific web-portal for DIII-D nuclear fusion experiment

    Science.gov (United States)

    Abla, G.; Kim, E. N.; Schissel, D. P.

    2010-04-01

    Increasing utilization of the Internet and convenient web technologies has made the web-portal a major application interface for remote participation and control of scientific instruments. While web-portals have provided a centralized gateway for multiple computational services, the amount of visual output often is overwhelming due to the high volume of data generated by complex scientific instruments and experiments. Since each scientist may have different priorities and areas of interest in the experiment, filtering and organizing information based on the individual user's need can increase the usability and efficiency of a web-portal. DIII-D is the largest magnetic nuclear fusion device in the US. A web-portal has been designed to support the experimental activities of DIII-D researchers worldwide. It offers a customizable interface with personalized page layouts and list of services for users to select. Each individual user can create a unique working environment to fit his own needs and interests. Customizable services are: real-time experiment status monitoring, diagnostic data access, interactive data analysis and visualization. The web-portal also supports interactive collaborations by providing collaborative logbook, and online instant announcement services. The DIII-D web-portal development utilizes multi-tier software architecture, and Web 2.0 technologies and tools, such as AJAX and Django, to develop a highly-interactive and customizable user interface.

  8. Unit Operation Experiment Linking Classroom with Industrial Processing

    Science.gov (United States)

    Benson, Tracy J.; Richmond, Peyton C.; LeBlanc, Weldon

    2013-01-01

    An industrial-type distillation column, including appropriate pumps, heat exchangers, and automation, was used as a unit operations experiment to provide a link between classroom teaching and real-world applications. Students were presented with an open-ended experiment where they defined the testing parameters to solve a generalized problem. The…

  9. Operating experience review of an INL gas monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeWall, K. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Herring, J. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-12

    This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. In addition, some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  10. Shifting from Production to Service to Experience-Based Operations

    Science.gov (United States)

    Angelis, Jannis; de Lima, Edson Pinheiro

    This chapter covers the shift in focus of value added business operations from ­production to services, and in turn, to experience-based operations where customer involvement itself becomes part of the offering. The shift has significant implications for how businesses are managed. The greater service focus affects the firm's unique value proposition, which necessitates considerations on strategy, supplier relations, post-sale offerings and so on. Meanwhile, the inclusion of customer ­experiences affect the way operations are designed and employed so that these are structurally systematically captured and capitalised.

  11. Multisensor Data Fusion for Automotive Engine Fault Diagnosis

    Institute of Scientific and Technical Information of China (English)

    王赟松; 褚福磊; 何永勇; 郭丹

    2004-01-01

    This paper describes mainly a decision-level data fusion technique for fault diagnosis for electronically controlled engines.Experiments on a SANTANA AJR engine show that the data fusion method provides good engine fault diagnosis.In data fusion methods, the data level fusion has small data preprocessing loads and high accuracy, but requires commensurate sensor data and has poor operational performance.The decision-level fusion based on Dempster-Shafer evidence theory can process noncommensurate data and has robust operational performance, reduces ambiguity, increases confidence, and improves system reliability, but has low fusion accuracy and high data preprocessing cost.The feature-level fusion provides good compromise between the above two methods, which becomes gradually mature.In addition, acquiring raw data is a precondition to perform data fusion, so the system for signal acquisition and processing for an automotive engine test is also designed by the virtual instrument technology.

  12. Recent operating experiences and programs at EBR-II

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, G.L.

    1984-01-01

    Experimental Breeder Reactor No. II (EBR-II) is a pool-type, unmoderated, sodium-cooled reactor with a design power of 62.5 MWt and an electrical generation capability of 20 MW. It has been operated by Argonne National Laboratory for the US government for almost 20 years. During that time, it has operated safely and has demonstrated stable operating characteristics, high availability, and excellent performance of its sodium components. The 20 years of operating experience of EBR-II is a valuable resource to the nuclear community for the development and design of future LMFBR's. Since past operating experience has been extensively reported, this report will focus on recent programs and events.

  13. Paediatric surgery: trends in UK surgical trainees' operative experience.

    Science.gov (United States)

    Youngson, G G; Adams, S; Winton, E

    2006-02-01

    This study assesses the effects of the reconfiguration of postgraduate surgical training and changes to work patterns through legislation within UK on the operative experience of trainees completing specialty training in paediatric surgery. Data were collected from the consolidation record of operative experience submitted by every candidate sitting the Intercollegiate Specialty Board Examination in Paediatric Surgery in UK from 1996 through 2004. A number of index procedures were chosen as surrogates of the overall operative experience and underwent detailed analysis. These comprised operations performed in the following categories: Neonatal Surgery, General Paediatric Surgery, Paediatric Urology, Paediatric Oncology, and Emergency Paediatric Surgery. Sixty-three sets of data comprising 12,866 operations were ultimately identified as being suitable for analysis. The average number of operations performed annually by trainees increased over the study period as did the number in each of the operative categories. The number of operations performed with senior assistance or supervision increased over this period by an average of 12.5%. This trend was also evident in emergency surgery where the average number of sample procedures performed by trainees increased by 28% over the study period. In 1995, reforms to the training grade within UK reduced the time spent in specialist training from a previously unregulated period to 72 months of higher surgical training. Subsequent directives in response to health and safety legislation have further abbreviated the length of time spent at the workplace, initially to 72 hours and more recently to 58 hours per week. This combination has been generally perceived throughout the surgical community as prejudicial to acquisition of clinical and operative competence. This study, however, fails to endorse this perception and suggests to the contrary that perhaps through increased delegation, the volume of training operations is being

  14. Synchronous Databus Network in ITER: Open source real-time network for the next nuclear fusion experiment

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, L.; Centioli, C. [Associazione EURATOM-ENEA sulla Fusione, C.R.ENEA Frascati, Rome (Italy); Iannone, F. [Associazione EURATOM-ENEA sulla Fusione, C.R.ENEA Frascati, Rome (Italy)], E-mail: francesco.iannone@frascati.enea.it; Neri, C.; Panella, M.; Pangione, L.; Riva, M. [Associazione EURATOM-ENEA sulla Fusione, C.R.ENEA Frascati, Rome (Italy); Scappaticci, M. [Dipartimento di Informatica, Sistemi e Produzione, Universita di Tor Vergata, Rome (Italy); Vitale, V. [Associazione EURATOM-ENEA sulla Fusione, C.R.ENEA Frascati, Rome (Italy); Zaccarian, L. [Dipartimento di Informatica, Sistemi e Produzione, Universita di Tor Vergata, Rome (Italy)

    2008-04-15

    The next nuclear fusion experiment, ITER, is providing the infrastructure for the optimal operation of a burning plasma, requiring feedback control of discharge parameters and on-line evaluation of computationally intensive models running in a cluster of controller nodes. Thus, the synchronization of the available information on the plasma and plant state variables among the controller nodes is a key issue for ITER. The ITER conceptual design aims to perform feedback control on a cluster of distributed controllers connected by a Synchronous Databus Network (SDN). Therefore it is mandatory to achieve a deterministic data exchange among the controller nodes with a refresh rate of at least 1 kHz and a jitter of at least 50 {mu}s. Thus, a conservative estimate of the data flow within the controller network can be 3 kSample/ms. In this paper the open source RTnet project is evaluated to meet the requirements of the SDN of ITER. A testbed involving a cluster of eight nodes connected over a standard ethernet network has been set up to simulate a distributed real-time control system. The main goal of the test is to verify the compliance of the performance with the ITER SDN requirements.

  15. US nuclear power plant operating cost and experience summaries

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  16. Detailed high-resolution three-dimensional simulations of OMEGA separated reactants inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Haines, Brian M.; Grim, Gary P.; Fincke, James R.; Shah, Rahul C.; Forrest, Chad J.; Silverstein, Kevin; Marshall, Frederic J.; Boswell, Melissa; Fowler, Malcolm M.; Gore, Robert A.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Klein, Andreas; Rundberg, Robert S.; Steinkamp, Michael J.; Wilhelmy, Jerry B.

    2016-07-01

    We present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employ any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long

  17. Detailed high-resolution three-dimensional simulations of OMEGA separated reactants inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Haines, Brian M., E-mail: bmhaines@lanl.gov; Fincke, James R.; Shah, Rahul C.; Boswell, Melissa; Fowler, Malcolm M.; Gore, Robert A.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Klein, Andreas; Rundberg, Robert S.; Steinkamp, Michael J.; Wilhelmy, Jerry B. [Los Alamos National Laboratory, MS T087, Los Alamos, New Mexico 87545 (United States); Grim, Gary P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Forrest, Chad J.; Silverstein, Kevin; Marshall, Frederic J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2016-07-15

    We present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employ any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long

  18. Detailed high-resolution three-dimensional simulations of OMEGA separated reactants inertial confinement fusion experiments

    Science.gov (United States)

    Haines, Brian M.; Grim, Gary P.; Fincke, James R.; Shah, Rahul C.; Forrest, Chad J.; Silverstein, Kevin; Marshall, Frederic J.; Boswell, Melissa; Fowler, Malcolm M.; Gore, Robert A.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Klein, Andreas; Rundberg, Robert S.; Steinkamp, Michael J.; Wilhelmy, Jerry B.

    2016-07-01

    We present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a "CD Mixcap," is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employ any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long

  19. CTS (Hermes): United States experiments and operations summary

    Science.gov (United States)

    Donoughe, P. L.; Hunczak, H. R.

    1977-01-01

    The Communications Technology Satellite, launched in January 1976 and embodying the highest power transmitter in a communications satellite, was considered. As a joint program between the U.S. and Canada, close coordination of the two countries was necessitated since the management and control of experiments were done in real time. Criteria used by NASA for acceptance of the United States experiments are noted and acceptance procedures are discussed. The category for each accepted experiment is given. The modus operandi employed for the U.S. experiments in the areas of management, coordination, liaison, and real time operation are described. Some of the highlights associated with satellite utilization are given.

  20. Experience in Perioperative Management of Patients Undergoing Posterior Spine Fusion for Neuromuscular Scoliosis

    Directory of Open Access Journals (Sweden)

    Sébastien Pesenti

    2016-01-01

    Full Text Available The objective of this investigation was to determine the outcome of spine fusion for neuromuscular (NM scoliosis, using Unit Rod technique, with emphasis on complications related to preoperative general health. Between 1997 and 2007, 96 consecutive patients with neuromuscular scoliosis operated on with Unit Rod instrumentation were retrospectively reviewed. The inclusion criteria were diagnosis of NM scoliosis due to cerebral palsy (CP and muscular dystrophy (DMD. Patient’s preoperative general health, weight, and nutrition were collected. Different radiographic and clinical parameters were evaluated. There were 66 CP patients (59 nonwalking and 30 DMD patients (24 nonwalking. Mean age at surgery was 16.5 years and 13.9 years, respectively. All radiographic measurements improved significantly. Wound infection rate was 16.7% (11% of reoperation rate in CP; 10% in DMD; 3 hardware removal cases. No pelvic fracture due to rod irritation was observed. Unit Rod technique provides good radiographic and clinical outcomes even if this surgery is associated with a high complication rate. It is a quick, simple, and reliable technique. Perioperative management strategy should decrease postoperative complications and increases outcome. A standardized preoperative patient evaluation and preparation including respiratory capacity and nutritional, digestive, and musculoskeletal status are mandatory prior to surgery.

  1. Experience in Perioperative Management of Patients Undergoing Posterior Spine Fusion for Neuromuscular Scoliosis

    Science.gov (United States)

    Peltier, Emilie; Launay, Franck; Fuentes, Stéphane; Bollini, Gérard; Viehweger, Elke; Jouve, Jean-Luc

    2016-01-01

    The objective of this investigation was to determine the outcome of spine fusion for neuromuscular (NM) scoliosis, using Unit Rod technique, with emphasis on complications related to preoperative general health. Between 1997 and 2007, 96 consecutive patients with neuromuscular scoliosis operated on with Unit Rod instrumentation were retrospectively reviewed. The inclusion criteria were diagnosis of NM scoliosis due to cerebral palsy (CP) and muscular dystrophy (DMD). Patient's preoperative general health, weight, and nutrition were collected. Different radiographic and clinical parameters were evaluated. There were 66 CP patients (59 nonwalking) and 30 DMD patients (24 nonwalking). Mean age at surgery was 16.5 years and 13.9 years, respectively. All radiographic measurements improved significantly. Wound infection rate was 16.7% (11% of reoperation rate in CP; 10% in DMD; 3 hardware removal cases). No pelvic fracture due to rod irritation was observed. Unit Rod technique provides good radiographic and clinical outcomes even if this surgery is associated with a high complication rate. It is a quick, simple, and reliable technique. Perioperative management strategy should decrease postoperative complications and increases outcome. A standardized preoperative patient evaluation and preparation including respiratory capacity and nutritional, digestive, and musculoskeletal status are mandatory prior to surgery. PMID:28058256

  2. Operating Experiences with an Advanced Fabric Energy Storage System

    Directory of Open Access Journals (Sweden)

    R.J Fuller

    2012-11-01

    Full Text Available Despite their proven track record in the cold climate countries of northern Europe, there are no reports in the research literature of experiences using advanced fabric energy storage (FES systems in countries where cooling rather than heating is the main priority. This paper reports some of the experiences with the first known advanced FES system in Australia made over the first full calendar year of operation. It is located in a three-storey building on a university campus in Victoria and has been in operation since mid-2002. Temperature, energy use and operational mode data were recorded during 2003. Airflow measurements through the FES system have been made in five areas of the building. On-going operating problems still exist with the system and this has prevented a conclusive evaluation of its suitability for the southern Australian climate.

  3. Insertion device operating experience at the Advanced Photon Source

    Science.gov (United States)

    Grimmer, John; Ramanathan, Mohan; Smith, Martin; Merritt, Michael

    2002-03-01

    The Advanced Photon Source has 29 insertion devices (IDs) installed in the 7 GeV electron storage ring; 28 of these devices, most of which are 3.3 cm period undulators, use two horizontal permanent magnet structures positioned over a straight vacuum chamber. A support and drive mechanism allows the vertical gap between the magnet structures to be varied, thus changing the x-ray energy produced by the ID [J. Viccaro, Proc. SPIE 1345, 28 (1990); E. Gluskin, J. Synchrotron Radiat. 5, 189 (1998)]. Most of these IDs use a drive scheme with two stepper motors, one driving each end through a mechanism synchronizing the upper and lower magnet structures. Our experience in almost 5 yr of operating this system will be discussed. All of the IDs are in continuous operation for approximately 10 weeks at a time. Reliability of operation is of paramount importance, as access to the storage ring for servicing of a single ID inhibits operation for all users. Our experience in achieving highly reliable ID operation is reviewed. Accuracy of operation and repeatability over time are also vital. To this end, these devices use absolute optical linear encoders with submicron resolution for primary position feedback. Absolute rotary encoders are used as a backup to the linear encoders. The benefits and limitations of each type of encoder, and our experience dealing with radiation and electrical noise are reviewed. The insertion devices operate down to gaps as small as 8.5 mm, with clearance over the vacuum chamber as small as 200 μm. The vacuum chamber has a minimum wall thickness of only 1 mm. A number of levels of safeguards are used to prevent contact between the magnet structure and the vacuum chamber. These safeguards and their evolution after gaining operational experience are presented.

  4. Decisive factor in increase of loading at adjacent segments after lumbar fusion: operative technique, pedicle screws, or fusion itself: biomechanical analysis using finite element

    Science.gov (United States)

    Park, Joon-Hee; Kim, Ho-Joong; Kang, Kyoung-Tak; Kim, Ka-yeon; Chun, Heoung-Jae; Moon, Seong-Hwan; Lee, Hwan-Mo

    2010-03-01

    The aim of this study is to investigate the change in biomechanical milieu following removal of pedicle screws or removal of spinous process with posterior ligament complex in instrumented single level lumbar arthrodesis. We developed and validated a finite element model (FEM) of the intact lumbar spine (L2-4). Four scenarios of L3-4 lumbar fusion were simulated: posterolateral fusion (PLF) at L3-4 using pedicle screw system with preservation of PLC (Pp WiP), L3-4 lumbar posterolateral fusion state after removal of pedicle screw system with preservation of PLC (Pp WoP), L3-4 using pedicle screw system without preservation PLC (Sp WiP), L3-4 lumbar posterolateral fusion state after removal of pedicle screw system without preservation of PLC (Sp WoP). For these models, we investigated the range of motion and maximal Von mises stress of disc in all segments under various moments. All fusion models demonstrated increase in range of motion at adjacent segments compared to the intact model.For the four fusion models, the WiP model s P had the largest increase in range of motion at each adjacent segment. This study demonstrated that removal of pedicle screw system and preservation of PLC after complete lumbar spinal fusion could reduce the stress of adjacent segments synergistically and might have beneficial effects in preventing ASD.

  5. Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments [Simulating the MagLIF plasma confinement with smaller-scale experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cuneo, M. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herrmann, M. C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sinars, D. B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Slutz, S. A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-06-20

    The recently proposed magnetized liner inertial fusion approach to a Z-pinch driven fusion [Slutz et al., Phys. Plasmas17, 056303 (2010)] is based on the use of an axial magnetic field to provide plasma thermal insulation from the walls of the imploding liner. The characteristic plasma transport regimes in the proposed approach cover parameter domains that have not been studied yet in either magnetic confinement or inertial confinement experiments. In this article, an analysis is presented of the scalability of the key physical processes that determine the plasma confinement. The dimensionless scaling parameters are identified and conclusion is drawn that the plasma behavior in scaled-down experiments can correctly represent the full-scale plasma, provided these parameters are approximately the same in two systems. Furthermore, this observation is important in that smaller-scale experiments typically have better diagnostic access and more experiments per year are possible.

  6. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hatarik, R., E-mail: hatarik1@llnl.gov; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Mcnaney, J. M.; Munro, D. H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Knauer, J. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-11-14

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + {sup 3}He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (T{sub ion}) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent T{sub ion}, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT T{sub ion} of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for T{sub ion} and 10% for the neutron yield.

  7. Preliminary results from recent experiments and future roadmap to Shock Ignition of Fusion Targets

    Science.gov (United States)

    Batani, D.; Malka, G.; Schurtz, G.; Ribeyre, X.; Lebel, E.; Giuffrida, L.; Tikhonchuk, V.; Volpe, L.; Patria, A.; Koester, P.; Labate, L.; Gizzi, L. A.; Antonelli, L.; Richetta, M.; Nejdl, J.; Sawicka, M.; Margarone, D.; Krus, M.; Krousky, E.; Skala, J.; Dudzak, R.; Velyhan, A.; Ullshmied, J.; Renner, O.; Smid, M.; Klimo, O.; Atzeni, S.; Marocchino, A.; Schiavi, A.; Spindloe, C.; O'Dell, T.; Vinci, T.; Wolowski, J.; Badziak, J.; Pysarcizck, T.; Rosinski, M.; Kalinowska, Z.; Chodukowski, T.

    2012-11-01

    Shock ignition (SI) is a new approach to Inertial Confinement Fusion (ICF) based on decoupling the compression and ignition phase. The last one relies on launching a strong shock through a high intensity laser spike (<= 1016 W/cm2) at the end of compression. In this paper, first we described an experiment performed using the PALS iodine laser to study laser-target coupling and laser-plasma interaction in an intensity regime relevant for SI. A first beam with wavelength λ = 1.33 μm and low intensity was used to create an extended preformed plasma, and a second one with λ = 0.44 μm to create a strong shock. Several diagnostics characterized the preformed plasma and the interaction of the main pulse. Pressure up to 90 Mbar was inferred. In the last paper of the paper, we discuss the relevant steps, which can be followed in order to approach the demonstration of SI on laser facilities like LMJ.

  8. Development of the large neutron imaging system for inertial confinement fusion experiments.

    Science.gov (United States)

    Caillaud, T; Landoas, O; Briat, M; Kime, S; Rossé, B; Thfoin, I; Bourgade, J L; Disdier, L; Glebov, V Yu; Marshall, F J; Sangster, T C

    2012-03-01

    Inertial confinement fusion (ICF) requires a high resolution (~10 μm) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MégaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a (60)Co γ-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 μm were obtained and are compared to x-ray images of comparable resolution.

  9. Development of the large neutron imaging system for inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Caillaud, T.; Landoas, O.; Briat, M.; Kime, S.; Rosse, B.; Thfoin, I.; Bourgade, J. L.; Disdier, L. [CEA, DAM, DIF, F-91297 Arpajon (France); Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2012-03-15

    Inertial confinement fusion (ICF) requires a high resolution ({approx}10 {mu}m) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MegaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 {mu}m were obtained and are compared to x-ray images of comparable resolution.

  10. Full wave computation of electromagnetic wave excitation, propagation, and absorption at the ion cyclotron frequency in fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, D.B.; Jaeger, E.F.

    1990-01-01

    High-power electromagnetic waves at frequencies ranging from a few megahertz to a few hundred gigahertz serve many important functions in modern fusion experiments. Probably the most important application is plasma heating. Ignition of a fusion reactor will require a plasma to be heated until the average particle energy is {approximately}10 keV (temperature > 10{sup 8} K). This is routinely accomplished in existing large devices. Waves at the ion cyclotron frequency (typically f = 30 to 100 MHz) are very important for fusion devices because of low cost/unit power compared to other frequency regimes and because of their ability to directly heat fusile ions. These waves are also useful for modifying the velocity distribution for improved stability and to drive currents which affect plasma equilibrium. Study of this frequency range is, however, greatly complicated by long wavelengths compared to device size, nonsymmetric device geometry, and the tendency of the waves to linearly transform to shorter wavelength modes. Geometrical optics is generally inapplicable. Thus, codes have been developed to solve the vector wave equation in toroidal geometry for hot plasmas having anisotropic, spatially nonuniform, dispersive constitutive relations. In this paper we describe the code ORION developed at Oak Ridge National Laboratory and present illustrative applications to a range of fusion experiments. Specific applications of the code include detailed modeling of the antennas used to launch the waves, calculation of wave propagation throughout the plasma, and modeling of the absorption of the waves by the plasma. 11 refs., 3 figs.

  11. Accelerator/Experiment Operations - FY 2001 Through FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey A. Appel et al.

    2004-02-05

    This Technical Memorandum (TM) summarizes the accelerator and experiment operations for the period FY 2001 through FY 2003. The plan is to have an annual TM to gather such information in one place. In this case, the information concerns the startup of Run II at the Tevatron Collider and the beginning of the MiniBooNE neutrino experiment. While the focus is on the FY 2003 efforts, this document includes summaries of the earlier years where available for completeness.

  12. ATCA/AXIe compatible board for fast control and data acquisition in nuclear fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Batista, A.J.N., E-mail: toquim@ipfn.ist.utl.pt [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico - Universidade Tecnica de Lisboa, Lisboa (Portugal); Leong, C.; Bexiga, V. [INESC-ID, Lisboa (Portugal); Rodrigues, A.P.; Combo, A.; Carvalho, B.B.; Fortunato, J.; Correia, M. [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico - Universidade Tecnica de Lisboa, Lisboa (Portugal); Teixeira, J.P.; Teixeira, I.C. [INESC-ID, Lisboa (Portugal); Sousa, J.; Goncalves, B.; Varandas, C.A.F. [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico - Universidade Tecnica de Lisboa, Lisboa (Portugal)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer High performance board for fast control and data acquisition. Black-Right-Pointing-Pointer Large IO channel number per board with galvanic isolation. Black-Right-Pointing-Pointer Optimized for high reliability and availability. Black-Right-Pointing-Pointer Targeted for nuclear fusion experiments with long duration discharges. Black-Right-Pointing-Pointer To be used on the ITER Fast Plant System Controller prototype. - Abstract: An in-house development of an Advanced Telecommunications Computing Architecture (ATCA) board for fast control and data acquisition, with Input/Output (IO) processing capability, is presented. The architecture, compatible with the ATCA (PICMG 3.4) and ATCA eXtensions for Instrumentation (AXIe) specifications, comprises a passive Rear Transition Module (RTM) for IO connectivity to ease hot-swap maintenance and simultaneously to increase cabling life cycle. The board complies with ITER Fast Plant System Controller (FPSC) guidelines for rear IO connectivity and redundancy, in order to provide high levels of reliability and availability to the control and data acquisition systems of nuclear fusion devices with long duration plasma discharges. Simultaneously digitized data from all Analog to Digital Converters (ADC) of the board can be filtered/decimated in a Field Programmable Gate Array (FPGA), decreasing data throughput, increasing resolution, and sent through Peripheral Component Interconnect (PCI) Express to multi-core processors in the ATCA shelf hub slots. Concurrently the multi-core processors can update the board Digital to Analog Converters (DAC) in real-time. Full-duplex point-to-point communication links between all FPGAs, of peer boards inside the shelf, allow the implementation of distributed algorithms and Multi-Input Multi-Output (MIMO) systems. Support for several timing and synchronization solutions is also provided. Some key features are onboard ADC or DAC modules with galvanic isolation

  13. Operational experience with the JET impurity processing system during and after DTE1

    Energy Technology Data Exchange (ETDEWEB)

    Perevezentsev, A.; Bell, A.; Hemmerich, J.L.; Bainbridge, N.; Brennan, D.; Grieveson, B.; Lasser, R.; Lupo, J.; Knipe, S.; Stagg, R.; Yorkshades, J. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1999-12-01

    The hydrogen-containing gases generated during operation and maintenance of a fusion machine need to be detritiated prior their discharge to the environment. The amounts of gaseous impurities with their chemical and isotopic compositions which were decontaminated in the JET impurity processing system during and after deuterium-tritium experiment, DTE1, are presented. Two different techniques for impurities detritiation were tested. The first technique is based on catalytic oxidation of hydrogen-containing species followed by water decomposition in reaction with uranium at elevated temperature. The second technique is based on direct decomposition of impurities with molecular hydrogen liberation in reactions with uranium at elevated temperatures. The results of the impurity detritiation using both techniques are given. (orig.)

  14. Operational experience with room temperature continuous wave accelerator structures

    Science.gov (United States)

    Alimov, A. S.; Ishkhanov, B. S.; Piskarev, I. M.; Shvedunov, V. I.; Tiunov, A. V.

    1993-05-01

    The paper reports the results of the computer simulation of parameters of the on-axis coupled accelerator structure for the continuous wave racetrack microtron. The operational experience with the accelerating sections on the basis of the on-axis coupled structure is described.

  15. EBO feed water distribution system, experience gained from operation

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O. [Energovyzkum, Brno (Switzerland); Schmidt, S.; Mihalik, M. [Atomove Elektrarne Bohunice, Jaslovske Bohunice (Switzerland)

    1997-12-31

    Advanced feed water distribution systems of the EBO design have been installed into steam generators at Units 3 and 4 of the NPP Jaslovske Bohunice (VVER 440). Experiences gained from the operation of steam generators with the advanced feed water distribution systems are discussed in the paper. (orig.). 4 refs.

  16. Measurements of fusion-protons anisotropy around the pinch axis within high-current PF-1000 experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, M.J. [The Andrzej Soltan Institute for Nuclear Studies - IPJ, 05-400 Otwock-Swierk (Poland)] [Institute of Plasma Physics and Laser Microfusion - IPPLM, 01-497 Warsaw (Poland); Malinowska, A.; Malinowski, K.; Czaus, K.; Kwiatkowski, R.; Skladnik-Sadowska, E.; Zebrowski, J. [The Andrzej Soltan Institute for Nuclear Studies - IPJ, 05-400 Otwock-Swierk (Poland); Karpinski, L.; Paduch, M.; Scholz, M.; Stepniewski, W. [Institute of Plasma Physics and Laser Microfusion - IPPLM, 01-497 Warsaw (Poland)

    2011-07-01

    The paper describes measurements of fast protons produced by D-D fusion reactions during high-current discharges within the PF-1000 facility operated with the deuterium filling at 27 kV, 480 kJ. The measurements were performed by means of a set of pinhole-cameras equipped with PM-355 track detectors shielded by 80-{mu}m-thick Al-filters, which eliminated fast primary deuterons and protons of lower energy (< 3 MeV). Those cameras were placed at different angles around the pinch axis. The obtained proton images showed a distinct angular anisotropy, which was explained by an influence of local magnetic fields connected with a filamentary structure of the plasma column during the fast proton (and neutron) emission. The paper shows that in addition to measurements of a fusion neutron anisotropy it is reasonable to study also an anisotropy of fusion protons (originated from the second branch of the D-D reactions), as well as other charged fusion products. This document is composed of a paper followed by a poster

  17. Laser-induced mobilization of dust produced during fusion reactors operation; Mise en suspension par laser de poussieres generees lors du fonctionnement des reacteurs de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Vatry, A.

    2010-11-16

    During tokamak operation, plasma-wall interactions lead to material erosion process and dusts production. These dusts are mainly composed by carbon and tungsten, with sizes ranging from 10 nm to 100 {mu}m. For safety reasons and to guarantee an optimum reactor functioning, the dusts have to be kept in reasonable quantity. The dusts mobilization is a first step to collect them, and the laser is a promising technique for this application. To optimize the cleaning, physical mechanisms responsible for dust ejection induced by laser have been identified. Some particles, such as aggregates, are directly ablated by the laser. The metal droplets are ejected intact by an electrostatic force, induced by the photoelectrons. We also characterized the particles ejection to choose an appropriate collection device. (author) [French] Lors du fonctionnement d'une machine de fusion, les interactions plasma-parois conduisent a des processus d'erosion des materiaux et a la production de particules. Ces poussieres sont principalement composees de carbone et de tungstene. Pour des raisons de surete et afin de garantir un fonctionnement optimum du reacteur, il est important de garder en quantite raisonnable les poussieres dont la taille varie entre 10 nm et 100 {mu}m. La mise en suspension de ces poussieres est une etape preliminaire a leur recuperation, et le laser est une technique prometteuse pour cette application. Afin d'optimiser le nettoyage, les mecanismes physiques a l'origine de l'ejection induite par laser de ces poussieres ont ete identifies. Les agregats sont directement ablates par le laser et les gouttelettes metalliques sont ejectees intactes par une force electrostatique induite par les photoelectrons. Nous avons egalement caracterise l'ejection des particules pour choisir un systeme de recuperation adapte

  18. Recent operating experiences with steam generators in Japanese NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Yashima, Seiji [Japan Power Engineering and Inspection Corp., Tokyo (Japan)

    1997-02-01

    In 1994, the Genkai-3 of Kyushu Electric Power Co., Inc. and the Ikata-3 of Shikoku Electric Power Co., Inc. started commercial operation, and now 22 PWR plants are being operated in Japan. Since the first PWR plant now 22 PWR plants are being operated in was started to operate, Japanese PWR plants have had an operating experience of approx. 280 reactor-years. During that period, many tube degradations have been experienced in steam generators (SGs). And, in 1991, the steam generator tube rupture (SGTR) occurred in the Mihama-2 of Kansai Electric Power Co., Inc. However, the occurrence of tube degradation of SGs has been decreased by the instructions of the MITI as regulatory authorities, efforts of Electric Utilities, and technical support from the SG manufacturers. Here the author describes the recent SGs in Japan about the following points. (1) Recent Operating Experiences (2) Lessons learned from Mihama-2 SGTR (3) SG replacement (4) Safety Regulations on SG (5) Research and development on SG.

  19. EDITORIAL: The Nuclear Fusion Award The Nuclear Fusion Award

    Science.gov (United States)

    Kikuchi, M.

    2011-01-01

    The Nuclear Fusion Award ceremony for 2009 and 2010 award winners was held during the 23rd IAEA Fusion Energy Conference in Daejeon. This time, both 2009 and 2010 award winners were celebrated by the IAEA and the participants of the 23rd IAEA Fusion Energy Conference. The Nuclear Fusion Award is a paper prize to acknowledge the best distinguished paper among the published papers in a particular volume of the Nuclear Fusion journal. Among the top-cited and highly-recommended papers chosen by the Editorial Board, excluding overview and review papers, and by analyzing self-citation and non-self-citation with an emphasis on non-self-citation, the Editorial Board confidentially selects ten distinguished papers as nominees for the Nuclear Fusion Award. Certificates are given to the leading authors of the Nuclear Fusion Award nominees. The final winner is selected among the ten nominees by the Nuclear Fusion Editorial Board voting confidentially. 2009 Nuclear Fusion Award nominees For the 2009 award, the papers published in the 2006 volume were assessed and the following papers were nominated, most of which are magnetic confinement experiments, theory and modeling, while one addresses inertial confinement. Sabbagh S.A. et al 2006 Resistive wall stabilized operation in rotating high beta NSTX plasmas Nucl. Fusion 46 635-44 La Haye R.J. et al 2006 Cross-machine benchmarking for ITER of neoclassical tearing mode stabilization by electron cyclotron current drive Nucl. Fusion 46 451-61 Honrubia J.J. et al 2006 Three-dimensional fast electron transport for ignition-scale inertial fusion capsules Nucl. Fusion 46 L25-8 Ido T. et al 2006 Observation of the interaction between the geodesic acoustic mode and ambient fluctuation in the JFT-2M tokamak Nucl. Fusion 46 512-20 Plyusnin V.V. et al 2006 Study of runaway electron generation during major disruptions in JET Nucl. Fusion 46 277-84 Pitts R.A. et al 2006 Far SOL ELM ion energies in JET Nucl. Fusion 46 82-98 Berk H.L. et al 2006

  20. Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations

    NARCIS (Netherlands)

    Jutte, PC

    2002-01-01

    Pedicle screw fixation is technically demanding and associated with high complication rates. The aim of this study was to identify and quantify the pedicle screw-related complications in 105 consecutive operations. We retrospectively analysed 105 consecutive primary operations. We found complication

  1. Data discrepancies in and new experiments for D+D, D+T, and T+T fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jarmie, N.; Hardekopf, R.A.; Brown, R.E.; Correll, F.D.; Ohlsen, G.G.

    1979-01-01

    The purpose of this work is to investigate the accuracy of the basic fusion reaction data for the reactions T(d,n)/sup 4/He, T(t,2n)/sup 4/He, D(d,n)/sup 3/He, and D(d,p)T, and to describe an elaborate experiment in progress at the Los Alamos Scientific Laboratory to remeasure the cross sections with improved accuracy.

  2. Development and operational experience of magnetic horn system for T2K experiment

    CERN Document Server

    Sekiguchi, T; Fujii, Y; Hagiwara, M; Hasegawa, T; Hayashi, K; Ishida, T; Ishii, T; Kobayashi, H; Kobayashi, T; Koike, S; Koseki, K; Maruyama, T; Matsumoto, H; Nakadaira, T; Nakamura, K; Nakayoshi, K; Nishikawa, K; Oyama, Y; Sakashita, K; Shibata, M; Suzuki, Y; Tada, M; Takahashi, K; Tsukamoto, T; Yamada, Y; Yamanoi, Y; Yamaoka, H; Ichikawa, A K; Kubo, H; Butcher, Z; Coleman, S; Missert, A; Spitz, J; Zimmerman, E D; Tzanov, M; Bartoszek, L

    2015-01-01

    A magnetic horn system to be operated at a pulsed current of 320 kA and to survive high-power proton beam operation at 750 kW was developed for the T2K experiment. The first set of T2K magnetic horns was operated for over 12 million pulses during the four years of operation from 2010 to 2013, under a maximum beam power of 230 kW, and $6.63\\times10^{20}$ protons were exposed to the production target. No significant damage was observed throughout this period. This successful operation of the T2K magnetic horns led to the discovery of the $\

  3. Experience with the operation of the European ALMA antennas

    Science.gov (United States)

    Stanghellini, Stefano; Laing, Robert; Rossi, Silvio; Wild, Wolfgang

    2016-07-01

    The 25 European antennas of ALMA were delivered by ESO to the ALMA project in Chile between April 2011 and September 2013. Their combined time of operation is already significant and allows us to draw conclusions regarding their ability to fulfil the original specification, in terms of both scientific performance and operational availability. In this paper, we will summarize the experience gained during the past five years of operation. We will characterize the performance of the antennas in routine operation and compare with the data obtained during acceptance testing. We will also describe the few technical issues experienced while operating at 5000m and the way in which these were treated during these first years of operation. We will evaluate the effective reliability obtained in service based on field data and draw some conclusions as to the way in which reliability and maintainability aspects were covered during the process which led to the final design of the antenna. We will discuss the smart use of software to handle redundancy in a flexible way and to exclude failed components without affecting overall antenna operability. The use of low-level diagnostics enabled by remote access allows us to shorten the trouble-shooting cycle and to optimise physical interventions on the antennas. Finally, the paper will cover Antenna maintenance manuals edited using an industrial interactive standard. It will be explained why this advanced and innovative concept has not achieved the success that was expected, and why the traditional form is preferred at the ALMA Observatory.

  4. Microsurgical excision without fusion as a safe option for resection of synovial cyst of the lumbar spine: long-term follow-up in mono-institutional experience.

    Science.gov (United States)

    Landi, A; Marotta, N; Tarantino, R; Ruggeri, A G; Cappelletti, M; Ramieri, A; Domenicucci, M; Delfini, R

    2012-04-01

    Spinal synovial cysts are cystic dilatations of the synovial membrane that may arise at all levels of the spine. We describe our experience, paying attention to diagnosis, surgical treatment, and long-term follow-up. Between 1995 and 2007, 18 patients were surgically treated. Of these, three patients were excluded from the study because they presented spinal instability at pre-operative assessment. All patients were evaluated pre-operatively with CT, MRI, and dynamic X-rays, and underwent surgery for removal of the cyst by hemilaminectomy and partial arthrectomy. All patients were evaluated with early MRI and had a minimum 2-year follow-up by dynamic X-rays. None of the patients required instrumented fusion due to the absence of radiological signs of instability on the pre-operative dynamic tests. In all patients, there was an immediate resolution of the symptoms, with evidence of complete removal of the cysts on post-operative MRI. At 2-year follow-up, all patients underwent dynamic X-rays and responded to a questionnaire for evaluation of outcome. None of them showed signs of relapse. The gold standard for treatment is surgery, even though other conservative treatment regimens have been proposed. Correct surgical strategy relies on pre-operative assessment of biomechanical stability for deciding whether patients need instrumented fusion during cyst removal. Patients with no instability signs are suitable for hemilaminectomy with partial arthrectomy, preserving 2/3 of the medial portion of the articular facet, because this represents a valid option of treatment with a low risk of complications and a low rate of relapse.

  5. Scaling of the Sheared-Flow Stabilized Z-Pinch: The Fusion Z-Pinch Experiment ``FuZE''

    Science.gov (United States)

    Nelson, B. A.; Shumlak, U.; Claveau, E. L.; Golingo, R. P.; Weber, T. R.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; UW/LLNL Collaboration

    2016-10-01

    The sheared flow stabilized (SFS) Z-pinch ZaP experiment was constructed based on calculations [1] showing stabilization of kink and sausage instabilities. ZaP experimentally demonstrated production and sustainment of an SFS Z-pinch for a wide range of plasma parameters, with densities up to n =1023 m-3 and a pinch radius of a = 1 cm. [2-4] The SFS Z-pinch is resistant to the instabilities of conventional Z-pinches, yet maintains the same favorable radial scaling, making it an energy-efficient way to achieve fusion-relevant conditions. The ZaP-HD (high density) experiment has demonstrated scaling of the SFS Z-pinch to 2-3 × smaller a and 10 × higher n. [5] Supported by ZaP and ZaP-HD, the Fusion Z-pinch Experiment (FuZE) project investigates scaling plasma parameters toward fusion conditions by decreasing a 2-3 × to 1 mm, and increasing n 10 × to 1025 m-3. The approach combines improved gas injection and flexible power supplies with the successful ZaP SFS Z-pinch formation. Detailed fluid and kinetic simulations complement the experimental studies to gain scientific insight into the plasma behavior and predict scaling to higher performance. Supported by DoE FES, NNSA, and ARPA-E ALPHA.

  6. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, Ahmed [Purdue Univ., West Lafayette, IN (United States)

    2015-03-31

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  7. Italian experience in distribution transformers optimisation and operation

    Energy Technology Data Exchange (ETDEWEB)

    Cannavale, G. [ENEL (Italy)

    1995-05-01

    The suitable optimization and the correct operation of a large MV (medium voltage)/LV (low valtage) distribution fleet requires the knowledge of several elements, such as: transformers fleet composition and the trend of growth of the same; no-load and on-load losses of the several transformer classes belonging to the concerned fleet; service procedures in order to evaluate the amount of loss of the whole fleet either by using mathematical models and/or through service experiences, whether the adopted improvements have been useful in limiting the amount of power lost and in upgrading the transformer operation.

  8. Operational experience of ATLAS SCT and Pixel Detector

    CERN Document Server

    Kocian, Martin; The ATLAS collaboration

    2017-01-01

    The ATLAS Inner Detector based on silicon sensors is consisting of a strip detector (SCT) and a pixel detector. It is the crucial component for vertexing and tracking in the ATLAS experiment. With the excellent performance of the LHC well beyond the original specification the silicon tracking detectors are facing substantial challenges in terms of data acquisition, radiation damage to the sensors, and SEUs in the readout ASICs. The approaches on how the detector systems cope with the demands of high luminosity operation while maintaining excellent performance through hardware upgrades, software and firmware algorithms, and operational settings, are presented.

  9. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  10. Radioactivity computation of steady-state and pulsed fusion reactors operation

    Energy Technology Data Exchange (ETDEWEB)

    Attaya, H.

    1994-11-01

    The International Thermonuclear Report (ITER) is expected to operate in a pulsed operational mode. Accurate radioactivity calculations, that take into account this mode of operation, are required in order to determine precisely the different safety aspects of ITER. The authors previous examined analytically the effect of pulsed operation in ITER and showed how it depends on the burn time, the dwell time, and the half-lives. That analysis showed also that for ITER`s low duty factor, using the continuous operation assumption would considerably overestimate the radioactivities, for a wide range of half-lives. At the same time, the large improvements in the quality and the quantity of the decay and the cross-section data libraries has considerably increased the computation times of the radioactivity calculations. For both reasons it is imperative to seek different methods of solution that reduce the computational time and can be easily adopted to the treatment of the pulsed operation. In this work, they have developed algorithms based on several mathematical methods that were chosen based on their generality, reliability, stability, accuracy, and efficiency. These methods are the matrix Schuer decomposition, the eigenvector decomposition, and the Pade approximation for the matrix exponential functions.

  11. SAM Overview and Operation at the D0 Experiment

    Institute of Scientific and Technical Information of China (English)

    LauriLoebel-Carpenter; LeeLueking; 等

    2001-01-01

    SAM is a network-distributed data management system developed at Fermilab for use with Run II data,It is being Employed by the D0 Experiment to store,manage,deliver,and track processing of all data.We describe the design and features of the system including resource management and data transfer mechanisms,We show the operational experience D0 has accumulated to date including data acquisition processing,and all levels of access and delivery.We present various configurations of the system and describe their use in the collaboration.

  12. Operating Experiences of a Loss of Voltage Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Chan [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-10-15

    Loss of voltage (LOV) events continue to occur due to inadequate work management and random human errors. On February 26, 2015, regulators analyzed the root causes of LOV events and presented the results for the nuclear industry. Currently, KHNP uses a risk monitoring program, which is named 'LOV Monitor', for LOV prevention during pilot plant outages. This review introduces the operation experiences of LOV Monitor based on the evaluation results of a real event. The operation experiences of LOV Monitor in the pilot plants confirmed that this program could detect and reduce LOV possibilities from scheduling errors such as the simultaneous maintenance of energized trains and de-energized trains considering the physical conditions of the power circuit breakers. However, a maintenance culture that heeds the risk monitoring result must be strengthened in order to obtain substantial effects through applying LOV Monitor to the outage.

  13. The National Flood Interoperability Experiment: Bridging Resesarch and Operations

    Science.gov (United States)

    Salas, F. R.

    2015-12-01

    The National Weather Service's new National Water Center, located on the University of Alabama campus in Tuscaloosa, will become the nation's hub for comprehensive water resources forecasting. In conjunction with its federal partners the US Geological Survey, Army Corps of Engineers and Federal Emergency Management Agency, the National Weather Service will operationally support both short term flood prediction and long term seasonal forecasting of water resource conditions. By summer 2016, the National Water Center will begin evaluating four streamflow data products at the scale of the NHDPlus river reaches (approximately 2.67 million). In preparation for the release of these products, from September 2014 to August 2015, the National Weather Service partnered with the Consortium of Universities for the Advancement of Hydrologic Science, Inc. to support the National Flood Interoperability Experiment which included a seven week in-residence Summer Institute in Tuscaloosa for university students interested in learning about operational hydrology and flood forecasting. As part of the experiment, 15 hour forecasts from the operational High Resolution Rapid Refresh atmospheric model were used to drive a three kilometer Noah-MP land surface model loosely coupled to a RAPID river routing model operating on the NHDPlus dataset. This workflow was run every three hours during the Summer Institute and the results were made available to those engaged to pursue a range of research topics focused on flood forecasting (e.g. reservoir operations, ensemble forecasting, probabilistic flood inundation mapping, rainfall product evaluation etc.) Although the National Flood Interoperability Experiment was finite in length, it provided a platform through which the academic community could engage federal agencies and vice versa to narrow the gap between research and operations and demonstrate how state of the art research infrastructure, models, services, datasets etc. could be utilized

  14. SMART-1 Technology and Science Experiments and their Operations

    Science.gov (United States)

    Marini, A.; Lumb, R.; Dias-Almeida, M.; Foing, B. H.

    2002-01-01

    SMART-1, the first European mission to the Moon, hosts 10 Technology and science experiments run by 7 on-board instruments. The primary objective of the mission is the demonstration of the solar electric propulsion. Therefore the monitoring of the spacecraft plasma environment and the contamination produced by the Stationary Plasma thruster is a key-task, which will be carried out by two experiments (SPEDE - Spacecraft Potential, Electron and Dust Experiment - and EPDP - Electric propulsion diagnostic Package). SPEDE and EPDP will contribute also to the characterisation of the near-Earth and interplanetary plasma environment and to study the solar wind. A package of three spectroscopy and imaging instruments has been selected to run technology demonstration of miniaturised compact instrument for planetary remote sensing and for carrying out valuable science at the Moon. AMIE (Asteroid-Moon micro-Imager Experiment) is a miniature medium-resolution (30 m at 300 km height) camera, equipped with a fixed panchromatic and 3-colour filter, for Moon topography and imaging support to other experiments. D-CIXS (Demonstration of a Compact Imaging X-ray Spectrometer) is based on novel detector and filter/collimator technologies, and will perform the first global mapping of the lunar elemental composition, by looking at X-ray fluorescence in the 0.5-10 keV range. It is supported in its operation by XSM (X-ray Solar Monitor) that also monitors long-term coronal X-ray emission and solar flares. SIR is a miniature near-infrared spectrometer operating in the 0.9-2.6 μm wavelength range and will carry out mineralogical survey of the lunar crust in a previously uncovered bandwidth. Technology experiments for deep space communications are: The SMART-1 Instruments have been integrated in the Spacecraft in the current year and have undergone functional verification following environmental tests. The Experiments will be performed during two distinct phases of the SMART-1 mission

  15. Fusion of Landsat TM and ground spectrometry data in monitoring of non-operating mine

    Science.gov (United States)

    Borisova, Denitsa; Nikolov, Hristo N.

    2009-09-01

    Surface mining activities in Europe are estimated to cover an area of 5-10 000 km2. In this paper we suggest that the availability of Landsat Thematic Mapper (TM) for Earth observation allows the collection of environmental and minerelated data for use in the planning and undertaking of mine restoration work on cost-effective basis. The advantage is that these data are acquired digitally and can be easily processed and utilized in various information formats. Important step in the data processing is the verification of airborne data. For this purpose ground spectrometry measurements of samples taken from test sites have been performed. In the last decade several mining areas and corresponding dumps are subject to reclamation process in Bulgaria. We focused our research on one of the most important in the copper production for 20 year period for our country - Asarel-Medet deposit. This mining complex consists of an open mine, the dumps and a processing plant. After ceasing the exploitation of Medet deposit in 1994 a rehabilitation program for soil cover and hydrographic network was established and launched. A continuous task is the monitoring of these activities from the beginning for at least 15 years period, which is to end this year. To process the data, which characterize the progress of the land cover restoration, several techniques, both standard, such as basic and advanced statistics, image enhancement and data fusion, and novel methods for supervised classification were used. The results obtained show that used data and the implemented approach are useful in environmental monitoring and are economically attractive for the company responsible for the ecological state of the region.

  16. Operational experience with CW high gradient and high QL cryomodules

    Energy Technology Data Exchange (ETDEWEB)

    Hovater, J. Curt [JLAB; Allison, Trent L. [JLAB; Bachimanchi, Ramakrishna [JLAB; Daly, Edward F. [JLAB; Drury, Michael A. [JLAB; Lahti, George E. [JLAB; Mounts, Clyde I. [JLAB; Nelson, Richard M. [JLAB; Plawski, Tomasz E. [JLAB

    2014-12-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of ten new 100 MV cryomodules (80 cavities). The superconducting RF cavities are designed to operate CW at an accelerating gradient of 19.3 MV/m with a QL of 3×107. The RF system employs single cavity control using new digital LLRF controls and 13 kW klystrons. Recently, all of the new cryomodules and associated RF hardware and software have been commissioned and operated in the CEBAF accelerator. Electrons at linac currents up to 10 ?A have been successfully accelerated and used for nuclear physics experiments. This paper reports on the commissioning and operation of the cryomodules and RF system.

  17. Wabash River coal gasification repowering project -- first year operation experience

    Energy Technology Data Exchange (ETDEWEB)

    Troxclair, E.J. [Destec Energy, Inc., Houston, TX (United States); Stultz, J. [PSI Energy, Inc., West Terre Haute, IN (United States)

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined high sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.

  18. Operating Experience at the Aagesta Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, S. (ed.)

    1966-09-15

    Sweden's first nuclear power reactor Agesta, achieved criticality on July 17, 1963. Full power (65 MW{sub t}) was attained on March 20, 1964. Aagesta is a heavy water cooled and moderated pressure vessel reactor used for production of electricity as well as for district heating. The design, assembly and construction etc, of the reactor was described in detail in a staff report by AB Atomenergi, 'The Aagesta Nuclear Power Station' edited by B McHugh, which was published in September, 1964. In the book experiences from the commissioning and the first operation of the reactor were reported as well as findings from the extensive reactor physics studies made during this period. The report now presented is written by members of the operating team at Aagesta since its start. It reflects in general the experiences up to the end of 1965. The Aagesta Log, however, covers the period up to the normal summer stop 1966. The reactor has hitherto produced 506,000 MWh power of which 48,700 MWh have been electric power. In July 1965 the responsibility for the reactor operation was taken over by the Swedish State Power Board from AB Atomenergi, which company had started the reactor and operated it until the summer break 1965.

  19. Overview of recent operating experience regarding plant aging

    Energy Technology Data Exchange (ETDEWEB)

    Holahan, G.M.; Caruso, M.A.

    1988-06-01

    Recent, as well as past, studies of reactor trip frequencies and other types of operating experience have shown that relatively high frequencies are likely in new plants with little accumulated operating time. In order to better understand all the factors which contribute to high frequencies in new plants, the authors have made a comparison of reactor trip frequencies between plants which went into operation in the 1960's and the early 1970's and those which have gone into operation more recently. Trip frequency versus accumulated operating time for two plant groups are compared to see the extent to which design differences (e.g., capacity, thermal margin) affect trip frequency. This paper also presents a review of some recent events in which plant age has played a major role. The events which are reviewed have been identified through the normal systematic event analysis program conducted by the NRC. Information regarding these events was obtained through followup by reviews conducted by NRC Resident Inspectors as well as event reports submitted by licenses.

  20. Overview of recent AWE fusion-related studies, experiments and facilities

    Directory of Open Access Journals (Sweden)

    Roberts P.D.

    2013-11-01

    Full Text Available The presentation will describe the current status of modelling short and long pulse laser irradiation and its application to inertial fusion designs. Recent results will be described which give confidence in the modelling in specific regimes. An update will be given of the AWE ORION laser facility and the availability planned for academic access.

  1. Research-to-operations (R2O) for the Space Environmental Effects Fusion System (SEEFS) system-impact products

    Science.gov (United States)

    Quigley, Stephen

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/RVBX) and the Space Environment Branch of the Space and Missile Systems Center (SMC SLG/WMLE) have combined efforts to design, develop, test, implement, and validate numerical and graphical products for Air Force Space Command's (AFSPC) Space Environmental Effects Fusion System (SEEFS). These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense weapons, navigation, communications, and surveillance systems. Jointly developed projects that have been completed as prototypes and are undergoing development for real-time operations include a SEEFS architecture and database, five system-impact products, and a high-level decision aid product. This first round of SEEFS products includes the Solar Radio Burst Effects (SoRBE) on radar and satellite communications, Radar Auroral Clutter (RAC), Scintillation Effects on radar and satellite communications (RadScint and SatScint), and Satellite Surface and Deep Charge/Discharge (Char/D) products. This presentation will provide overviews of the current system impact products, along with plans and potentials for future products expected for the SEEFS program. The overviews will include information on applicable research-to-operations (R2O) issues, to include input data coverage and quality control, output confidence levels, modeling standards, and validation efforts.

  2. New Characterizations of Fusion Bases and Riesz Fusion Bases in Hilbert Spaces

    OpenAIRE

    Asgari, Mohammad Sadegh

    2012-01-01

    In this paper we investigate a new notion of bases in Hilbert spaces and similar to fusion frame theory we introduce fusion bases theory in Hilbert spaces. We also introduce a new definition of fusion dual sequence associated with a fusion basis and show that the operators of a fusion dual sequence are continuous projections. Next we define the fusion biorthogonal sequence, Bessel fusion basis, Hilbert fusion basis and obtain some characterizations of them. we study orthonormal fusion systems...

  3. Overview of recent tritium target filling, layering, and material testing at Los Alamos national laboratory in support of inertial fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ebey, P. S.; Dole, J. M.; Geller, D. A.; Hoffer, J. K.; Morris, J.; Nobile, A.; Schoonover, J. R.; Wilson, D. [MS-C927, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Bonino, M.; Harding, D.; Sangster, C.; Shmayda, W. [Laboratory for Laser Energetics LLE, Univ. of Rochester, 250 East River Road, Rochester, NY 14623 (United States); Nikroo, A.; Sheliak, J. D. [General Atomics GA (United States); Burmann, J.; Cook, B.; Letts, S.; Sanchez, J. [Lawrence Livermore National Laboratory LLNL (United States)

    2008-07-15

    The Tritium Science and Engineering (AET-3) Group at Los Alamos National Laboratory (LANL) performs a variety of activities to support Inertial Fusion (IF) research - both to further fundamental fusion science and to develop technologies in support of Inertial Fusion Energy (IFE) power generation. Inertial fusion ignition target designs have a smooth spherical shell of cryogenic Deuterium-Tritium (DT) solid contained within a metal or plastic shell that is a few mm in diameter. Fusion is attained by imploding these shells under the symmetric application of energy beams. For IFE targets the DT solid must also survive the process of injecting it into the power plant reactor. Non-ignition IF targets often require a non-cryogenic DT gas fill of a glass or polymeric shell. In this paper an overview will be given of recent LANL activities to study cryogenic DT layering, observe tritium exposure effects on IF relevant materials, and fill targets in support of IF implosion experiments. (authors)

  4. Operational Experience with a Cryogenic Axial-Centrifugal Compressor

    CERN Document Server

    Decker, L; Löhlein, K; Purtschert, W; Ziegler, B L; Lebrun, P; Tavian, L; Brunovsky, I; Tucek, L

    1998-01-01

    The Large Hadron Collider (LHC), presently under construction at CERN, requires large refrigeration capacity at 1.8 K. Compression of gaseous helium at cryogenic temperatures is therefore inevitable. Together with subcontractors, Linde Kryotechnik has developed a prototype machine. This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating at ambient temperature. Integrated in a test facility for superconducting magnets the machine has been commissioned without major problems and successfully gone through the acceptance test in autumn 1995. Subsequent steps were initiated to improve efficiency of this prototype. This paper describes operating experience gained so far and reports on measured performance prior to and after constructional modifications.

  5. Nevada Experiments and Operations Program (N Program) Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Nattrass, L.; Anastasio, M.R.

    2000-02-01

    This plan briefly describes the Lawrence Livermore National Laboratory (LLNL) institutional structure and how Nevada Experiments and Operations Program (N Program's) organization fits within this structure, roles and responsibilities, and management processes that govern N Program activities. This plan also serves as the Integrated Safety Management (ISM) Implementation Plan for N Program work. This plan applies to all work performed by and for LLNL that falls under the oversight of DOE/NV except LLNL activities in support of the Yucca Mountain Project Office (YMPO).

  6. Experiments in hand-operated, hypersonic shock tunnel facility

    Science.gov (United States)

    Sudhiesh Kumar, Chintoo; Reddy, K. P. J.

    2016-11-01

    Experiments were conducted using the newly developed table-top, hand-operated hypersonic shock tunnel, otherwise known as the Reddy hypersonic shock tunnel. This novel instrument uses only manual force to generate the shock wave in the shock tube, and is designed to generate a freestream flow of Mach 6.5 in the test section. The flow was characterized using stagnation point pressure measurements made using fast-acting piezoelectric transducers. Schlieren visualization was also carried out to capture the bow shock in front of a hemispherical body placed in the flow. Freestream Mach numbers estimated at various points in the test section showed that for a minimum diameter of 46 mm within the test section, the value did not vary by more than 3 % along any cross-sectional plane. The results of the experiments presented here indicate that the device may be successfully employed for basic hypersonic research activities at the university level.

  7. UW MCNP source patch for the EPFL Haefely source. EPFL (Swiss) fusion-fission hybrid experiment

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, G; Woodruff, G L

    1986-06-01

    The development of a source patch which describes the Haefely neutron source for use in the MCNP Monte Carlo code has been described in progress reports of the EPFL (Swiss) Fusion Blanket Project at the University of Washington. The most recent of these reports dealing with the source patch was Progress Report No. 14. This report reviews some of the physical description included in the report, and also includes additional details of the patch as well as a listing of the patch itself.

  8. Design and operation of a cryogenic charge-integrating preamplifier for the MuSun experiment

    Science.gov (United States)

    Ryan, R. A.; Wauters, F.; Gray, F. E.; Kammel, P.; Nadtochy, A.; Peterson, D.; van Wechel, T.; Gross, E.; Gubanich, M.; Kochenda, L.; Kravtsov, P.; Orozco, D.; Osofsky, R.; Murray, M. H.; Petrov, G. E.; Phillips, J. D.; Stroud, J.; Trofimov, V.; Vasilyev, A.; Vznuzdaev, M.

    2014-07-01

    The central detector in the MuSun experiment is a pad-plane time projection ionization chamber that operates without gas amplification in deuterium at 31 K; it is used to measure the rate of the muon capture process μ-+d→n+n+νμ. A new charge-sensitive preamplifier, operated at 140 K, has been developed for this detector. It achieved a resolution of 4.5 keV(D2) or 120 e- RMS with zero detector capacitance at 1.1 μ s integration time in laboratory tests. In the experimental environment, the electronic resolution is 10 keV(D2) or 250 e- RMS at a 0.5 μ s integration time. The excellent energy resolution of this amplifier has enabled discrimination between signals from muon-catalyzed fusion and muon capture on chemical impurities, which will precisely determine systematic corrections due to these processes. It is also expected to improve the muon tracking and determination of the stopping location.

  9. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.

    1984-10-01

    The Nuclear Fusion Issues chapter contains a comprehensive list of engineering issues for fusion reactor nuclear components. The list explicitly defines the uncertainties associated with the engineering option of a fusion reactor and addresses the potential consequences resulting from each issue. The next chapter identifies the fusion nuclear technology testing needs up to the engineering demonstration stage. (MOW)

  10. Higher-level fusion for military operations based on abductive inference: proof of principle

    Science.gov (United States)

    Pantaleev, Aleksandar V.; Josephson, John

    2006-04-01

    The ability of contemporary military commanders to estimate and understand complicated situations already suffers from information overload, and the situation can only grow worse. We describe a prototype application that uses abductive inferencing to fuse information from multiple sensors to evaluate the evidence for higher-level hypotheses that are close to the levels of abstraction needed for decision making (approximately JDL levels 2 and 3). Abductive inference (abduction, inference to the best explanation) is a pattern of reasoning that occurs naturally in diverse settings such as medical diagnosis, criminal investigations, scientific theory formation, and military intelligence analysis. Because abduction is part of common-sense reasoning, implementations of it can produce reasoning traces that are very human understandable. Automated abductive inferencing can be deployed to augment human reasoning, taking advantage of computation to process large amounts of information, and to bypass limits to human attention and short-term memory. We illustrate the workings of the prototype system by describing an example of its use for small-unit military operations in an urban setting. Knowledge was encoded as it might be captured prior to engagement from a standard military decision making process (MDMP) and analysis of commander's priority intelligence requirements (PIR). The system is able to reasonably estimate the evidence for higher-level hypotheses based on information from multiple sensors. Its inference processes can be examined closely to verify correctness. Decision makers can override conclusions at any level and changes will propagate appropriately.

  11. Experience Building and Operating the CMS Tier-1 Computing Centres

    CERN Document Server

    Albert, M; Bonacorsi, D; Brew, C; Charlot, C; Huang, Chih-Hao; Colling, D; Dumitrescu, C; Fagan, D; Fassi, F; Fisk, I; Flix, J; Giacchetti, L; Gomez-Ceballos, G; Gowdy, S; Grandi, C; Gutsche, O; Hahn, K; Holzman, B; Jackson, J; Kreuzer, P; Kuo, C M; Mason, D; Pukhaeva, N; Qin, G; Quast, G; Rossman, P; Sartirana, A; Scheurer, A; Schott, G; Shih, J; Tader, P; Thompson, R; Tiradani, A; Trunov, A

    2010-01-01

    The CMS Collaboration relies on 7 globally distributed Tier-1 computing centres located at large universities and national laboratories for a second custodial copy of the CMS RAW data and primary copy of the simulated data, data serving capacity to Tier-2 centres for analysis, and the bulk of the reprocessing and event selection capacity in the experiment. The Tier-1 sites have a challenging role in CMS because they are expected to ingest and archive data from both CERN and regional Tier-2 centres, while they export data to a global mesh of Tier-2s at rates comparable to the raw export data rate from CERN. The combined capacity of the Tier-1 centres is more than twice the resources located at CERN and efficiently utilizing this large distributed resources represents a challenge. In this article we will discuss the experience building, operating, and utilizing the CMS Tier-1 computing centres. We will summarize the facility challenges at the Tier-1s including the stable operations of CMS services, the ability ...

  12. Operating Experience of MACSTOR Modules at CANDU 6 Stations

    Energy Technology Data Exchange (ETDEWEB)

    Beaudoin, Robert R. [Atomic Energy Canada Ltd., Chalk River (Canada)

    2005-11-15

    Over the last three decades, Atomic Energy of Canada Limited (AECL) has contributed to the technology development and implementation of dry spent fuel management facilities in Canada, Korea and Romania During that period, AECL has developed a number of concrete canister models and the MACSTOR200 module, a medium size air-cooled vault with a 228 MgU (Mega grams of Uranium) capacity. AECL's dry storage technologies were used for the construction of eight large-scale above ground dry storage facilities for CANDU spent fuel. As of 2005, those facilities have an installed capacity in excess of 5,000 MgU. Since 1995, the two newest dry storage installations built for CANDU 6 reactors at Gentilly 2 (Canada) and Cernavoda (Romania) used the MACSTOR 200 module. Seven such modules have been built at Gentilly 2 during the 1995 to 2004 period and one at Cernavoda in 2003. The construction and operating experience of those modules is reviewed in this paper. The MACSTOR 200 modules were initially designed for a 50-year service life, with recent units at Gentilly 2 licensed for a 100-year service life in a rural (non-maritime) climate. During the 1995-2005 period, six of the eight modules were loaded with fuel. Their operation has brought a significant amount of experience on loading operations, performance of fuel handling equipment, radiation shielding, heat transfer, monitoring of the two confinement boundaries and radiation dose to personnel. Heat dissipation performance of the MACSTOR 200 was initially licensed using values derived from full scale tests made at AECL's Whiteshell Research Laboratories, that were backed-up by temperature measurements made on the first two modules. Results and computer models developed for the MACSTOR 200 module are described. Korea Hydro and Nuclear Power (KHNP) and its subsidiary Nuclear Environment Technology Institute (NETEC), in collaboration with Hyundai Engineering Company Ltd. (HEC) and AECL, are developing a new dry storage

  13. Geostationary Operational Environmental Satellite (GOES)-8 mission flight experience

    Science.gov (United States)

    Noonan, C. H.; McIntosh, R. J.; Rowe, J. N.; Defazio, R. L.; Galal, K. F.

    1995-05-01

    The Geostationary Operational Environmental Satellite (GOES)-8 spacecraft was launched on April 13, 1994, at 06:04:02 coordinated universal time (UTC), with separation from the Atlas-Centaur launch vehicle occurring at 06:33:05 UTC. The launch was followed by a series of complex, intense operations to maneuver the spacecraft into its geosynchronous mission orbit. The Flight Dynamics Facility (FDF) of the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) was responsible for GOES-8 attitude, orbit maneuver, orbit determination, and station acquisition support during the ascent phase. This paper summarizes the efforts of the FDF support teams and highlights some of the unique challenges the launch team faced during critical GOES-8 mission support. FDF operations experience discussed includes: (1) The abort of apogee maneuver firing-1 (AMF-1), cancellation of AMF-3, and the subsequent replans of the maneuver profile; (2) The unexpectedly large temperature dependence of the digital integrating rate assembly (DIRA) and its effect on GOES-8 attitude targeting in support of perigee raising maneuvers; (3) The significant effect of attitude control thrusting on GOES-8 orbit determination solutions; (4) Adjustment of the trim tab to minimize torque due to solar radiation pressure; and (5) Postlaunch analysis performed to estimate the GOES-8 separation attitude. The paper also discusses some key FDF GOES-8 lessons learned to be considered for the GOES-J launch which is currently scheduled for May 19, 1995.

  14. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  15. Design and operation of the pellet charge exchange diagnostic for measurement of energetic confined α particles and tritons on the Tokamak Fusion Test Reactor

    Science.gov (United States)

    Medley, S. S.; Mansfield, D. K.; Roquemore, A. L.; Fisher, R. K.; Duong, H. H.; McChesney, J. M.; Parks, P. B.; Petrov, M. P.; Khudoleev, A. V.; Gorelenkov, N. N.

    1996-09-01

    Radially resolved energy and density distributions of the confined α particles in D-T experiments on the Tokamak Fusion Test Reactor (TFTR) are being measured with the pellet charge exchange (PCX) diagnostic. Other energetic ion species can be detected as well, such as tritons produced in D-D plasmas and H, He3, or tritium rf-driven minority ion tails. The ablation cloud formed by injected low-Z impurity pellets provides the neutralization target for this active charge exchange technique. Because the cloud neutralization efficiency is uncertain, the PCX diagnostic is not absolutely calibrated so only relative density profiles are obtained. A mass and energy resolving E∥B neutral particle analyzer (NPA) is used which has eight energy channels covering the energy range of 0.3-3.7 MeV for α particles with energy resolution ranging from 5.8% to 11.3% and a spatial resolution of ˜5 cm. The PCX diagnostic views deeply trapped ions in a narrow pitch angle range around a mean value of v∥/v=-0.048±10-3. For D-T operation, the NPA was shielded by a polyethylene-lead enclosure providing 100× attenuation of ambient γ radiation and 14 MeV neutrons. The PCX diagnostic technique and its application on TFTR are described in detail.

  16. Integrating Renewable Generation into Grid Operations: Four International Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mylrea, Michael E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Botterud, Audun [Argonne National Lab. (ANL), Argonne, IL (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-22

    International experiences with power sector restructuring and the resultant impacts on bulk power grid operations and planning may provide insight into policy questions for the evolving United States power grid as resource mixes are changing in response to fuel prices, an aging generation fleet and to meet climate goals. Australia, Germany, Japan and the UK were selected to represent a range in the level and attributes of electricity industry liberalization in order to draw comparisons across a variety of regions in the United States such as California, ERCOT, the Southwest Power Pool and the Southeast Reliability Region. The study draws conclusions through a literature review of the four case study countries with regards to the changing resource mix and the electricity industry sector structure and their impact on grid operations and planning. This paper derives lessons learned and synthesizes implications for the United States based on answers to the above questions and the challenges faced by the four selected countries. Each country was examined to determine the challenges to their bulk power sector based on their changing resource mix, market structure, policies driving the changing resource mix, and policies driving restructuring. Each countries’ approach to solving those changes was examined, as well as how each country’s market structure either exacerbated or mitigated the approaches to solving the challenges to their bulk power grid operations and planning. All countries’ policies encourage renewable energy generation. One significant finding included the low- to zero-marginal cost of intermittent renewables and its potential negative impact on long-term resource adequacy. No dominant solution has emerged although a capacity market was introduced in the UK and is being contemplated in Japan. Germany has proposed the Energy Market 2.0 to encourage flexible generation investment. The grid operator in Australia proposed several approaches to maintaining

  17. LANL OPERATING EXPERIENCE WITH THE WAND AND HERCULES PROTOTYPE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    K. M. GRUETZMACHER; C. L. FOXX; S. C. MYERS

    2000-09-01

    The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) prototype systems have been operating at Los Alamos National Laboratory's (LANL's) Solid Waste Operation's (SWO'S) non-destructive assay (NDA) building since 1997 and 1998, respectively. These systems are the cornerstone of the verification program for low-density Green is Clean (GIC) waste at the Laboratory. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAS) that has been actively segregated as clean (i.e., nonradioactive) through the use of waste generator acceptable knowledge (AK). The use of this methodology alters LANL's past practice of disposing of all room trash generated in nuclear facilities in radioactive waste landfills. Waste that is verified clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from radioactive material handling areas at Los Alamos might be free of contamination. This approach avoids the high cost of disposal of clean waste at a radioactive waste landfill. It also reduces consumption of precious space in the radioactive waste landfill where disposal of this waste provides no benefit to the public or the environment. Preserving low level waste (LLW) disposal capacity for truly radioactive waste is critical in this era when expanding existing radioactive waste landfills or permitting new ones is resisted by regulators and stakeholders. This paper describes the operating experience with the WAND and HERCULES since they began operation at SWO. Waste for verification by the WAND system has been limited so far to waste from the Plutonium Facility and the Solid Waste Operations Facility. A total of461 ft3 (13.1 m3) of low-density shredded waste and paper have been verified clean by the WAND system. The HERCULES system has been used to verify waste from four Laboratory

  18. Besoins operationnels en fusion en matiere d’information et de renseignement (Operational Requirements for Fusion in the Fields of Information and Intelligence)

    Science.gov (United States)

    2004-03-01

    défriché en finesse, et l’apport d’automatismes et de fusion, incontournable, demande une analyse très pointue des contraintes et limites...lorsqu’elle répond à une demande et fournit une information à tendance documentaire , comme les cadres d’ordres et les images de référence. Elle est...Champs immatériels. Même si les champs immatériels et l’environnement semblent difficiles à analyser directement, les comptes-rendus textuels ou

  19. Thermionic plasma injection for the Lockheed Martin T4 Compact Fusion Reactor experiment

    Science.gov (United States)

    Heinrich, Jonathon

    2015-11-01

    Lockheed Martin's Compact Fusion Reactor (CFR) concept relies on diamagnetic confinement in a magnetically encapsulated linear ring cusp geometry. Plasma injection into cusp field configurations requires careful deliberation. Previous work has shown that axial injection via a plasma gun is capable of achieving high-beta conditions in cusp configurations. We present a pulsed, high power thermionic plasma source and the associated magnetic field topology for plasma injection into the caulked-cusp magnetic field. The resulting plasma fueling and cross-field diffusion is discussed.

  20. Operational experience running Hadoop XRootD Fallback

    Science.gov (United States)

    Dost, J. M.; Tadel, A.; Tadel, M.; Würthwein, F.

    2015-12-01

    In April of 2014, the UCSD T2 Center deployed hdfs-xrootd-fallback, a UCSD- developed software system that interfaces Hadoop with XRootD to increase reliability of the Hadoop file system. The hdfs-xrootd-fallback system allows a site to depend less on local file replication and more on global replication provided by the XRootD federation to ensure data redundancy. Deploying the software has allowed us to reduce Hadoop replication on a significant subset of files in our cluster, freeing hundreds of terabytes in our local storage, and to recover HDFS blocks lost due to storage degradation. An overview of the architecture of the hdfs-xrootd-fallback system will be presented, as well as details of our experience operating the service over the past year.

  1. Operational Experience with the ATLAS Pixel Detector at LHC

    CERN Document Server

    Keil, M

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus crucial for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via front-end chips bump-bonded to 1744 n-on-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including calibration procedures, detector performance and measurements of radiation damage. The detector performance is excellent: more than 95% of the pixels are operational, noise occupancy and hit efficiency exceed the des...

  2. Avoiding Human Error in Mission Operations: Cassini Flight Experience

    Science.gov (United States)

    Burk, Thomas A.

    2012-01-01

    Operating spacecraft is a never-ending challenge and the risk of human error is ever- present. Many missions have been significantly affected by human error on the part of ground controllers. The Cassini mission at Saturn has not been immune to human error, but Cassini operations engineers use tools and follow processes that find and correct most human errors before they reach the spacecraft. What is needed are skilled engineers with good technical knowledge, good interpersonal communications, quality ground software, regular peer reviews, up-to-date procedures, as well as careful attention to detail and the discipline to test and verify all commands that will be sent to the spacecraft. Two areas of special concern are changes to flight software and response to in-flight anomalies. The Cassini team has a lot of practical experience in all these areas and they have found that well-trained engineers with good tools who follow clear procedures can catch most errors before they get into command sequences to be sent to the spacecraft. Finally, having a robust and fault-tolerant spacecraft that allows ground controllers excellent visibility of its condition is the most important way to ensure human error does not compromise the mission.

  3. Industrial operating experience of the GTE ceramic recuperator

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.M.; Ferri, J.L. (GTE Products Corp., Towanda, PA (USA)); Rebello, W.J. (PAR Enterprises, Inc., Fairfax, VA (USA))

    1990-06-01

    GTE Products Corporation, under a jointly funded program with the US Department of Energy (DOE), developed a compact ceramic high temperature recuperator that could recover heat from a relatively clean exhaust gases at temperatures up to of 2500{degree}F. The DOE program was very successful in that it allowed GTE to improve the technical and economic characteristics of the recuperator and stimulate industrial acceptance of the recuperator as an energy- saving technology. The success of the DOE Program was measured by the fact that from January 1981 to December 1984, 561 recuperators were installed by GTE on new or retrofitted furnaces. One objective of this contract was to conduct a telephone survey of the industrial plants that use the recuperator to determine their operating experience, present status, and common problems, and thus to complete the historical picture. Additionally, recuperators were returned to GTE after operating on industrial furnaces, and a post mortem'' analysis was undertaken with a goal of identifying the potential reason(s) for premature failure of the ceramic matrix. When contamination of the matrix was evident, historical data and spectrographic analysis were used to identify the type of contaminant, and its source. This effort has shown the type of degradation that occurs and has identified system design techniques that can be used to maximize the ceramic recuperator life cycle. 12 refs., 14 figs., 13 tabs.

  4. Applications of solid-state nuclear track detectors (SSNTDs) for fast ion and fusion reaction product measurements in TEXTOR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, A.; Malinowski, K.; Malinowska, A. [Association EURTOM-IPPLM Warsaw, The Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Wassenhove, G. Van [EURATOM-Belgium State Association, LPP, ERM/KMS, Trilateral Euregio Cluster, B-1000 Brussels (Belgium); Schweer, B. [Association EURATOM-FZJ, Institutte of Plasma Physicx, Juelich (Germany)

    2011-07-01

    Full text of publication follows: The paper reports on measurements of fusion reaction protons which were performed on TEXTOR facility in January 2009. The basic experimental scheme was similar to that applied in the previous measurements [1, 2]. The main experimental tool equipment was a small ion pinhole camera which was equipped with a PM-355 detector sample and was attached to a water cooled manipulator. The camera was placed below the plasma ring in the direction of ion drifts, at a distance of 4.4 cm from LCFS. However, in the described experiment it was aligned at an angle to the mayor TEXTOR radius (contrary to previous experiments), so that the input pinhole was oriented first at {gamma} = 45 degrees (shots 108799 - 108818) and then {gamma} = 600 (shots 108832 - 108847). The discharges were executed with one neutral beam of the total power 0.6 - 1.0 MW. In the first series (Nos 108799 - 108818) the plasma was additionally heated by ICRH of frequency 38 MHz. The irradiated detector samples were subjected to the same interrupted etching procedure as the samples used in the CR-39/PM-355 detector calibration measurements [1, 2]. After that, track density distributions and track diameter histograms were measured under an optical microscope. By the use of the calibration curves, it was possible to distinguish craters produced by protons from other craters and to convert the obtained histograms into proton energy spectra. The craters induced by lower energy ions appeared to be concentrated in narrower areas, whereas higher energy ions were registered in a more diffused detector fields. The paper shows again that the CR-39/PM-355 detector is an useful diagnostic tool for tokamak experiments, for measurement of charged ions. References: [1] A. Szydlowski, A. Malinowska, M. Jaskola, A. Korman, M.J. Sadowski, G. Van Wassenhove, B. Schweer and the TEXTOR team, A. Galkowski, 'Application of Solid State Nuclear Track Detectors in TEXTOR Experiment for Measurements

  5. Emergency Operations Intelligence Fusion

    Science.gov (United States)

    2010-06-01

    first responder with an internet access to become a sensor and provide additional intelligence to enhance relief efforts. The result is better resource management, faster decision cycles, and more importantly a reduction in loss of life due to delay or

  6. Hyperspectral remote sensing image classification based on decision level fusion

    Institute of Scientific and Technical Information of China (English)

    Peijun Du; Wei Zhang; Junshi Xia

    2011-01-01

    @@ To apply decision level fusion to hyperspectral remote sensing (HRS) image classification, three decision level fusion strategies are experimented on and compared, namely, linear consensus algorithm, improved evidence theory, and the proposed support vector machine (SVM) combiner.To evaluate the effects of the input features on classification performance, four schemes are used to organize input features for member classifiers.In the experiment, by using the operational modular imaging spectrometer (OMIS) II HRS image, the decision level fusion is shown as an effective way for improving the classification accuracy of the HRS image, and the proposed SVM combiner is especially suitable for decision level fusion.The results also indicate that the optimization of input features can improve the classification performance.%To apply decision level fusion to hyperspectral remote sensing (HRS) image classification, three decision level fusion strategies are experimented on and compared, namely, linear consensus algorithm, improved evidence theory, and the proposed support vector machine (SVM) combiner. To evaluate the effects of the input features on classification performance, four schemes are used to organize input features for member classifiers. In the experiment, by using the operational modular imaging spectrometer (OMIS) Ⅱ HRS image, the decision level fusion is shown as an effective way for improving the classification accuracy of the HRS image, and the proposed SVM combiner is especially suitable for decision level fusion. The results also indicate that the optimization of input features can improve the classification performance.

  7. The status of Fast Ignition Realization Experiment (FIREX) and prospects for inertial fusion energy

    Science.gov (United States)

    Azechi, H.; FIREX Project Team

    2016-05-01

    Here we report recent progress for the fast ignition inertial confinement fusion demonstration. The fraction of low energy (heats the fuel core, increases by a factor of 4 by enhancing pulse contrast of heating laser and removing preformed plasma sources. Kilo-tesla magnetic field is studied to guide the diverging REB to the fuel core. The transport simulation of the REB accelerated by the heating laser in the externally applied and compressed magnetic field indicates that the REB can be guided efficiently to the fuel core. The integrated simulation shows > 4% of the heating efficiency and > 4 keV of ion temperature are achievable by using GEKKO-XII and LFEX, properly designed cone-fuel and an external magnetic field.

  8. Inertial electrostatic confinement and DD fusion at interelectrode media of nanosecond vacuum discharge. PIC simulations and experiment

    Science.gov (United States)

    Kurilenkov, Yu K.; Tarakanov, V. P.; Skowronek, M.; Guskov, S. Yu; Dufty, J.

    2009-05-01

    The generation of energetic ions and DD neutrons from microfusion at the interelectrode space of a low-energy nanosecond vacuum discharge has been demonstrated recently [1, 2]. However, the physics of fusion processes and some results regarding the neutron yield from the database accumulated were poorly understood. The present work presents a detailed particle-in-cell (PIC) simulation of the discharge experimental conditions using a fully electrodynamic code. The dynamics of all charge particles was reconstructed in time and anode-cathode (AC) space. The principal role of a virtual cathode (VC) and the corresponding single and double potential wells formed in the interelectrode space are recognized. The calculated depth of the quasistationary potential well (PW) of the VC is about 50-60 keV, and the D+ ions being trapped by this well accelerate up to energy values needed to provide collisional DD nuclear synthesis. The correlation between the calculated potential well structures (and dynamics) and the neutron yield observed is discussed. In particular, ions in the potential well undergo high-frequency (~80 MHz) harmonic oscillations accompanied by a corresponding regime of oscillatory neutron yield. Both experiment and PIC simulations illustrate favorable scaling of the fusion power density for the chosen IECF scheme based on nanosecond vacuum discharge.

  9. Materials research for fusion

    Science.gov (United States)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  10. "Smart" Magnetic Fluids Experiment Operated on the International Space Station

    Science.gov (United States)

    Agui, Juan H.; Lekan, Jack F.

    2004-01-01

    InSPACE is a microgravity fluid physics experiment that was operated on the International Space Station (ISS) in the Microgravity Science Glovebox from late March 2003 through early July 2003. (InSPACE is an acronym for Investigating the Structure of Paramagnetic Aggregates From Colloidal Emulsions.) The purpose of the experiment is to obtain fundamental data of the complex properties of an exciting class of smart materials termed magnetorheological (MR) fluids. MR fluids are suspensions, or colloids, comprised of small (micrometer-sized) superparamagnetic particles in a nonmagnetic medium. Colloids are suspensions of very small particles suspended in a liquid. (Examples of other colloids are blood, milk, and paint.) These controllable fluids can quickly transition into a nearly solid state when exposed to a magnetic field and return to their original liquid state when the magnetic field is removed. Controlling the strength of the magnetic field can control the relative stiffness of these fluids. MR fluids can be used to improve or develop new seat suspensions, robotics, clutches, airplane landing gear, and vibration damping systems. The principal investigator for InSPACE is Professor Alice P. Gast of the Massachusetts Institute of Technology (MIT). The InSPACE hardware was developed at the NASA Glenn Research Center. The InSPACE samples were delivered to the ISS in November 2002, on the Space Shuttle Endeavour, on Space Station Utilization Flight UF-2/STS113. Operations began on March 31, 2003, with the processing of three different particle size samples at multiple test parameters. This investigation focused on determining the structural organization of MR colloidal aggregates when exposed to a pulsing magnetic field. On Earth, the aggregates take the shape of footballs with spiky tips. This characteristic shape may be influenced by the pull of gravity, which causes most particles initially suspended in the fluid to sediment, (i.e., settle and collect at the

  11. Investigation of gamma-ray time shifts caused by capsule areal density variations in inertial confinement fusion experiments at the national ignition facility and the omega facility

    Science.gov (United States)

    Grafil, Elliot M.

    This thesis describes work on Cherenkov based gamma detectors used as diag- nostics at Inertial Confinement Fusion (ICF) facilities. The first part describes the calibration and commissioning of the Gamma Reaction History diagnostic which is a four cell Cherenkov detector array used to characterize the ICF implosion at the National Ignition Facility (NIF) by measuring the gamma rays generated during the fusion event. Two of the key metrics which the GRH measures are Gamma Bang Time (GBT) generated from the D(T,α)n thermonuclear burn and Ablator Peak Time (APT) caused by (n,n‧)gamma reactions in the surrounding capsule ablator. Simulations of ignition capsules predict that GBT and APT should be time synchronized. After GRH commissioning, the array was used during first year of NIF operation in the National Ignition Campaign. Contrary to expectations, time shifts between GBT and APT of order 10s of picoseconds were observed. In order to further investigate the possibility of these time shifts in view of testing both instrument and code credibility an ICF shot campaign at the smaller OMEGA facility in Rochester was devised. It was performed during two full shot days in April of 2013 and 2014 and confirmed in principle the viability of the Cherenkov detector approach but raised additional questions regarding the credibility of the simulation codes used to describe ICF experiments. Specifically the measurements show that the understanding of temporal behavior of GBT vs APT may not be properly modeled in the DRACO code used at OMEGA. In view of the OMEGA results which showed no time shifts between GBT and APT, the readout and timing synchronization system of the GRH setup at the NIF was reevaluated in the framework of this thesis. Motivated by the results, which highlighted the use of wrong optical fiber diameters and possible problems with the installed variable optical attenuators, the NIF equipment has been updated over the recent months and new timing tests will

  12. AH-64 IHADSS aviator vision experiences in Operation Iraqi Freedom

    Science.gov (United States)

    Hiatt, Keith L.; Rash, Clarence E.; Harris, Eric S.; McGilberry, William H.

    2004-09-01

    Forty AH-64 Apache aviators representing a total of 8564 flight hours and 2260 combat hours during Operation Iraqi Freedom and its aftermath were surveyed for their visual experiences with the AH-64's monocular Integrated Helmet and Display Sighting System (IHADSS) helmet-mounted display in a combat environment. A major objective of this study was to determine if the frequencies of reports of visual complaints and illusions reported in the previous studies, addressing mostly benign training environments, differ in the more stressful combat environments. The most frequently reported visual complaints, both while and after flying, were visual discomfort and headache, which is consistent with previous studies. Frequencies of complaints after flying in the current study were numerically lower for all complaint types, but differences from previous studies are statistically significant only for visual discomfort and disorientation (vertigo). With the exception of "brownout/whiteout," reports of degraded visual cues in the current study were numerically lower for all types, but statistically significant only for impaired depth perception, decreased field of view, and inadvertent instrumental meteorological conditions. This study also found statistically lower reports of all static and dynamic illusions (with one exception, disorientation). This important finding is attributed to the generally flat and featureless geography present in a large portion of the Iraqi theater and to the shift in the way that the aviators use the two disparate visual inputs presented by the IHADSS monocular design (i.e., greater use of both eyes as opposed to concentrating primarily on display imagery).

  13. Experience with one-stage operations for bilateral nephroblastoma

    Directory of Open Access Journals (Sweden)

    A. P. Kazantsev

    2015-01-01

    Full Text Available The paper describes the personal experience with one-stage operations for bilateral nephroblastoma (BN in children. In 2000 to 2012, the Research Institute of Pediatric Oncology and Hematology, N.N. Blokhin Russian Cancer Research Institute, performed one-stage surgical interventions in 21 (26.2 % children with BN. Their age ranged from 10 months to 5 years. The one-stage surgery as bilateral nephrectomy was made in 9 children. Nephrectomy with one-stage resection of the contralateral kidney was carried out in 4 children; 4 patients underwent one-stage surgery as resection of one kidney and biopsy of the other and 4 patients had nephrectomy and biopsy of the second kidney. BN is a rare disease as suggested by the data available in the world literature; each new report on patients with BN is of great scientific and practical interest. The rate of BN is 4 to 10 % of all kidney cancers in children. Synchronous and metachronous kidney injuries are encountered in 5–7 and 2–3 % of cases, respectively. Bilateral renal involvement is more commonly diagnosed in younger children. The major peak incidence of BN occurs from ages 3 to 5 years. The disease is rarely diagnosed in children above 10 years. Boys and girls are equally frequently ill. 

  14. Experience with one-stage operations for bilateral nephroblastoma

    Directory of Open Access Journals (Sweden)

    A. P. Kazantsev

    2015-03-01

    Full Text Available The paper describes the personal experience with one-stage operations for bilateral nephroblastoma (BN in children. In 2000 to 2012, the Research Institute of Pediatric Oncology and Hematology, N.N. Blokhin Russian Cancer Research Institute, performed one-stage surgical interventions in 21 (26.2 % children with BN. Their age ranged from 10 months to 5 years. The one-stage surgery as bilateral nephrectomy was made in 9 children. Nephrectomy with one-stage resection of the contralateral kidney was carried out in 4 children; 4 patients underwent one-stage surgery as resection of one kidney and biopsy of the other and 4 patients had nephrectomy and biopsy of the second kidney. BN is a rare disease as suggested by the data available in the world literature; each new report on patients with BN is of great scientific and practical interest. The rate of BN is 4 to 10 % of all kidney cancers in children. Synchronous and metachronous kidney injuries are encountered in 5–7 and 2–3 % of cases, respectively. Bilateral renal involvement is more commonly diagnosed in younger children. The major peak incidence of BN occurs from ages 3 to 5 years. The disease is rarely diagnosed in children above 10 years. Boys and girls are equally frequently ill. 

  15. The experience of building and operating COMPASS RICH-1

    CERN Document Server

    Birsa, R; Rocco, E; Schiavon, P; Kramer, D; Schroder, W; Dafni, T; Tessarotto, F; Bressan, A; Schill, C; Deschamps, H; Mann, A; Sozzi, F; Colantoni, M; Dibiase, N; Abbon, P; Svec, M; Delagnes, E; Ketzer, B; Joosten, R; Steiger, L; Ciliberti, P; Konigsmann, K; Maggiora, A; Kolosov, V N; Giorgi, M; Sbrizzai, G; Nahle, O; Kunne, F; Sulc, M; Teufel, A; Paul, S; Neyret, D; Rebourgeard, P; Menon, G; Dalla Torre, S; Hagemann, R; Slunecka, M; Martin, A; Magnon, A; Takekawa, S; Finger, M; Bradamante, F; Heinsius, F H; Nerling, F; Gerassimov, S; Polak, J; Alexeev, M; Pizzolotto, C; Chiosso, M; Gobbo, B; Angerer, H; Denisov, O; Ferrero, A; Baum, G; Franco, C; Lehmann, A; Bordalo, P; Duic, V; Konorov, I; Mutter, A; Levorato, S; Robinet, F; von Harrach, D; Fischer, H; Schoenmeier, P; Pesaro, G; Wollny, H; Panzieri, D

    2011-01-01

    COMPASS RICH-1 is a large size gaseous Imaging Cherenkov Detector providing hadron identification in the range from 3 to 55 GeV/c, in the wide acceptance spectrometer of the COMPASS Experiment at CERN SPS. It uses a 3 m long C(4)F(10) radiator, a 21 m(2) large VUV mirror surface and two kinds of photon detectors: MAPMTs and MWPCs with CsI photocathodes, covering a total of 5.5 m(2). It is in operation since 2002 and its performance has increased in time thanks to progressive optimization and mostly to a major upgrade which was implemented in 2006. The main characteristics of COMPASS RICH-1 components are described and some specific aspects related to the radiator gas system, the mirror alignment, the MWPC electrical stability and the readout electronics are discussed. Some key features of the event reconstruction and the PID analysis are presented together with results from the COMPASS RICH-1 performance characterization study. (C) 2010 Elsevier B.V. All rights reserved.

  16. The safety experience of New Zealand adventure tourism operators.

    Science.gov (United States)

    Bentley, Tim A; Page, Stephen; Walker, Linda

    2004-01-01

    This survey examined parameters of the New Zealand adventure tourism industry client injury risk. The research also sought to establish priorities for intervention to reduce adventure tourism risk, and identify client injury control measures currently in place (or absent) in the New Zealand adventure tourism industry, with a view to establishing guidelines for the development of effective adventure tourism safety management systems. This 2003 survey builds upon an exploratory study of New Zealand adventure tourism safety conducted by us during 1999. A postal questionnaire was used to survey all identifiable New Zealand adventure tourism operators. The questionnaire asked respondents about their recorded client injury experience, perceptions of client injury risk factors, safety management practices, and barriers to safety. Some 27 adventure tourism activities were represented among the responding sample (n=96). The highest client injury risk was reported in the snow sports, bungee jumping and horse riding sectors, although serious underreporting of minor injuries was evident across the industry. Slips, trips and falls (STF) were the major client injury mechanisms, and a range of risk factors for client injuries were identified. Safety management measures were inconsistently applied across the industry. The industry should consider the implications of poor injury reporting standards and safety management practices generally. Specifically, the industry should consider risk management that focuses on minor (e.g., STF) as well as catastrophic events.

  17. Charge-injection-device performance in the high-energy-neutron environment of laser-fusion experiments.

    Science.gov (United States)

    Marshall, F J; DeHaas, T; Glebov, V Yu

    2010-10-01

    Charge-injection devices (CIDs) are being used to image x rays in laser-fusion experiments on the University of Rochester's OMEGA Laser System. The CID cameras are routinely used up to the maximum neutron yields generated (∼10(14) DT). The detectors are deployed in x-ray pinhole cameras and Kirkpatrick-Baez microscopes. The neutron fluences ranged from ∼10(7) to ∼10(9) neutrons/cm(2) and useful x-ray images were obtained even at the highest fluences. It is intended to use CID cameras at the National Ignition Facility (NIF) as a supporting means of recording x-ray images. The results of this work predict that x-ray images should be obtainable on the NIF at yields up to ∼10(15), depending on distance and shielding.

  18. Short-term scheduling of crude oil operations in refinery with high-fusion-point oil and two transportation pipelines

    Science.gov (United States)

    Wu, NaiQi; Zhu, MengChu; Bai, LiPing; Li, ZhiWu

    2016-07-01

    In some refineries, storage tanks are located at two different sites, one for low-fusion-point crude oil and the other for high one. Two pipelines are used to transport different oil types. Due to the constraints resulting from the high-fusion-point oil transportation, it is challenging to schedule such a system. This work studies the scheduling problem from a control-theoretic perspective. It proposes to use a hybrid Petri net method to model the system. It then finds the schedulability conditions by analysing the dynamic behaviour of the net model. Next, it proposes an efficient scheduling method to minimize the cost of high-fusion-point oil transportation. Finally, it gives a complex industrial case study to show its application.

  19. Additive manufacture (3d printing) of plasma diagnostic components and assemblies for fusion experiments

    Science.gov (United States)

    Sieck, Paul; Woodruff, Simon; Stuber, James; Romero-Talamas, Carlos; Rivera, William; You, Setthivoine; Card, Alexander

    2015-11-01

    Additive manufacturing (or 3D printing) is now becoming sufficiently accurate with a large range of materials for use in printing sensors needed universally in fusion energy research. Decreasing production cost and significantly lowering design time of energy subsystems would realize significant cost reduction for standard diagnostics commonly obtained through research grants. There is now a well-established set of plasma diagnostics, but these expensive since they are often highly complex and require customization, sometimes pace the project. Additive manufacturing (3D printing) is developing rapidly, including open source designs. Basic components can be printed for (in some cases) less than 1/100th costs of conventional manufacturing. We have examined the impact that AM can have on plasma diagnostic cost by taking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) techniques to determine costs of components and labor costs associated with getting the diagnostic to work as intended. With that information in hand, we set about optimizing the design to exploit the benefits of AM. Work performed under DOE Contract DE-SC0011858.

  20. Perform experiments on LINUS-O and LTX imploding liquid liner fusion systems

    Science.gov (United States)

    Scannell, E. P.

    1982-08-01

    The Plasma Physics Division of the Naval Research Laboratory (NRL) has been conducting investigations of imploding liquid liner fusion systems for several years (Reference 1). This effort attained a significant milestone in 1978 with the construction of two machines: HELIUS and LINUS-O is a 60 MJ rotor system where a cylindrical liquid sodium - potassium (NaK) metal liner is radially compressed from a 30 cm to 1 cm diameter by gas pressure from multiple high explosive charges. These charges act on an annular piston in contact with the liquid NaK liner material. HELIUS is a half-scale vertical axis version of LINUS-O using high pressure helium to drive the annular piston. HELIUS is designed to be a test bed for new concepts and to permit testing of new modifications to LINUS-O. The principal virtue of HELIUS is its capability for ten to twenty shots per day as compared to two or three shots per day for LINUS-O. In addition, HELIUS is designed to provide higher drive pressures than were previously obtainable with water models for liner hydrodynamic studies and a magnetic flux compression capability up to approx. 100 kG.

  1. Neutron-induced reactions relevant for Inertial-Cofinement Fusion Experiments

    Science.gov (United States)

    Boswell, Melissa; Merrill, Frank; Rundberg, R.; Grim, Gary; Wilde, Carl; Hayes, Anna; Fowler, Malcom; Wilhelmy, Jerry

    2012-10-01

    Measuring the fluencies of both the low- & high-energy neutrons is a powerful mechanism for studying the implosion process, and the various parameters that drive inertial confinement fusion. We have developed a number of tools to measure the spectral characteristics of the NIF neutron spectrum. Most of these methods rely on exploiting the energy dependence of (n,γ), (n,2n), (n,3n) and (n,p) reactions on a variety of materials either implicitly present in the NIF implosion or through doping the target capsule or holraum. I will be discussing both prompt activation measurements, and debris activation measurements of these materials currently under development at LANL. Focusing specifically on the development of an in-situ detector to measure short-lived activation products, as well as a low-background counting facility we are developing at the Waste Isolation Pilot Plant (WIPP) to study longer-lived activation products. Furthermore, I will also be discussing several cross section measurements that are important for the interpretation of the data collected from these activation products.

  2. Simulation of plume dispersion from single release in Fusion Field Trial-07 experiment

    Science.gov (United States)

    Singh, Sarvesh Kumar; Sharan, Maithili

    2013-12-01

    Accurate description of source-receptor relationship is required for an efficient source reconstruction. This is examined by simulating the dispersion of plumes resulted from the available ten trials of single releases conducted at Fusion Field Trials, Dugway Proving Ground, Utah. The simulation is addressed with an earlier developed IIT (Indian Institute of Technology) dispersion model using the dispersion parameters in terms of measurements of turbulent velocity fluctuations. Simulation is described separately in both stable and unstable conditions, characterizing the peak as well as overall observed concentration distribution. Simulated results are compared with those obtained using AERMOD. With IIT model, peak concentrations are predicted within a factor of two in all the trials. The higher concentrations (>5 × 10-4 g m-3) are well predicted in stable condition and under-predicted (within a factor of two) in unstable condition whereas relatively smaller concentrations (factor of six. The statistical measures for both the models are found well in agreement with the observations.

  3. A Head Operated Joystick--Experience with Use.

    Science.gov (United States)

    Evans, Gareth; Blenkhorn, Paul

    This paper describes the development and evaluation of a low-cost head-operated joystick for computer users with disabilities that prevent them from using a conventional hand-operated computer mouse and/or keyboard. The paper focuses on three issues: first, the style of head movement required by the device; second, whether a head-operated device…

  4. J-TEXT WebScope: An efficient data access and visualization system for long pulse fusion experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wei, E-mail: zhenghaku@gmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology in Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering in Huazhong University of Science and Technology, Wuhan 430074 (China); Wan, Kuanhong; Chen, Zhi; Hu, Feiran; Liu, Qiang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology in Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering in Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-11-15

    Highlights: • No matter how large the data is, the response time is always less than 500 milliseconds. • It is intelligent and just gives you the data you want. • It can be accessed directly over the Internet without installing special client software if you already have a browser. • Adopt scale and segment technology to organize data. • To support a new database for the WebScope is quite easy. • With the configuration stored in user’s profile, you have your own portable WebScope. - Abstract: Fusion research is an international collaboration work. To enable researchers across the world to visualize and analyze the experiment data, a web based data access and visualization tool is quite important [1]. Now, a new WebScope based on RIA (Rich Internet Application) is designed and implemented to meet these requirements. On the browser side, a fluent and intuitive interface is provided for researchers at J-TEXT laboratory and collaborators from all over the world to view experiment data and related metadata. The fusion experiments will feature long pulse and high sampling rate in the future. The data access and visualization system in this work has adopted segment and scale concept. Large data samples are re-sampled in different scales and then split into segments for instant response. It allows users to view extremely large data on the web browser efficiently, without worrying about the limitation on the size of the data. The HTML5 and JavaScript based web front-end can provide intuitive and fluent user experience. On the server side, a RESTful (Representational State Transfer) web API, which is based on ASP.NET MVC (Model View Controller), allows users to access the data and its metadata through HTTP (HyperText Transfer Protocol). An interface to the database has been designed to decouple the data access and visualization system from the data storage. It can be applied upon any data storage system like MDSplus or JTEXTDB, and this system is very easy to

  5. [Evoked potentials in intracranial operations: current status and our experiences].

    Science.gov (United States)

    Nau, H E; Hess, W; Pohlen, G; Marggraf, G; Rimpel, J

    1987-03-01

    Intraoperative neuromonitoring, especially evoked potential monitoring, has gained interest in recent years for both the anesthesiologist evaluating cerebral function and the neurosurgeon wishing to avoid neuronal lesions during intracranial operations. Before evoked potential monitoring can be introduced as a routine method of intraoperative management, experience with this method particularly in intensive care units, is imperative. We recorded evoked potentials with the Compact Four (Nicolet) and Basis 8000 (Schwarzer Picker International) computer systems. Preoperative derivations should be done with the same apparatus used intraoperatively and parameters of peri- and intraoperative derivations should not be changed. The patient's head must be fixed in a Mayfield clamp in order to avoid artefacts during trepanation. The possible artefacts due to apparatus, patient, or anesthesia are summarized in the tables. The derivations of evoked potentials should be supervised by a person who is not involved in the anesthesia or the surgical procedure; this condition may change in the future with full automatization of the recording technique and alarms. Good communication between surgeon, anesthesiologist, and neurophysiological assistant is a prerequisite. The modality is chosen in accordance with the affected neuronal system: visual-evoked potential (VEP) monitoring in the management of processes affecting the visual pathway, brain stem auditory-(BAER) and somatosensory-evoked potential (SSEP) monitoring in lesions affecting these pathways, in particular space-occupying lesions of the posterior fossa. VEP monitoring may be useful, but we observed alterations of the responses without changes in the level of anesthesia or manipulation of the visual pathways. In space-occupying processes of the cerebellopontine angle, BAER could not be developed in nearly all cases because the large underlying tumor had caused the disappearance of waves II-V. In these cases SSEP monitoring

  6. Simulation of plume dispersion of multiple releases in Fusion Field Trial-07 experiment

    Science.gov (United States)

    Pandey, Gavendra; Sharan, Maithili

    2015-12-01

    For an efficient source term estimation, it is important to use an accurate dispersion model with appropriate dispersion parameters. This is examined by simulating the dispersion of plumes resulted from the available multiple releases conducted at Fusion Field Trials, Dugway Proving Ground, Utah. The simulation is carried out with an earlier developed IIT (Indian Institute of Technology) dispersion model using the dispersion parameters in terms of measurements of turbulent velocity fluctuations. Simulation is discussed separately in both stable and unstable conditions in light of (i) plume behavior of observed and predicted concentrations in the form of isopleths, (ii) peak/maximum concentrations and (iii) overall concentration distribution. Simulated results from IIT model are compared with those obtained using AERMOD. Both, IIT model and AERMOD, predicted peak concentrations within a factor of two in all the releases and tracer transport is mostly along the mean wind direction. With IIT model, the higher concentrations are predicted close to observations in all the trials of stable conditions and with in a factor of two in the trials of unstable conditions. However, the relatively smaller concentrations are under-predicted severely in stable conditions and over-predicted in unstable conditions. The AERMOD exhibits the similar prediction of concentrations as in IIT model except slightly over-prediction in stable conditions and under-prediction in unstable conditions. The statistical measures for both the models are found good in agreement with the observations and a quantitative analysis based on F-test shows that the performance from both the models are found to be similar at 5% significance level.

  7. Effect of the drift gap between the undulator sections on the operation of the Fusion-FEM

    NARCIS (Netherlands)

    van der Geer, C. A. J.; Militsyn, B. L.; Bongers, W. A.; Bratman, V. L.; Denisov, G. G.; Manintveld, P.; Savilov, A. V.; Varfolomeev, A. A.; Verhoeven, A. G. A.; Urbanus, W. H.

    2000-01-01

    The 'Fusion-FEM' is a free electron MASER based on an electrostatic accelerator. An electron beam of 12 A, 1.35-2 MeV is injected into a step-tapered undulator to generate 1 MW of radiation in the range 130-250 GHz. The undulator is built from two sections with different field strength

  8. Predictive capabilities, analysis and experiments for Fusion Nuclear Technology, and ITER R D

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This report discusses the following topics on ITER research and development: trituim modeling; liquid metal blanket modeling; free surface liquid metal studies; and thermal conductance and thermal control experiments and modeling. (LIP)

  9. Viral membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen C., E-mail: harrison@crystal.harvard.edu

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  10. New Characterizations of Fusion Frames (Frames of Subspaces)

    Indian Academy of Sciences (India)

    Mohammad Sadegh Asgari

    2009-06-01

    In this article, we give new characterizations of fusion frames, on the properties of their synthesis operators, on the behavior of fusion frames under bounded operators with closed range, and on erasures of subspaces of fusion frames. Furthermore we show that every fusion frame is the image of an orthonormal fusion basis under a bounded surjective operator.

  11. Bayesian Analysis of Inertial Confinement Fusion Experiments at the National Ignition Facility

    CERN Document Server

    Gaffney, J A; Sonnad, V; Libby, S B

    2012-01-01

    We develop a Bayesian inference method that allows the efficient determination of several interesting parameters from complicated high-energy-density experiments performed on the National Ignition Facility (NIF). The model is based on an exploration of phase space using the hydrodynamic code HYDRA. A linear model is used to describe the effect of nuisance parameters on the analysis, allowing an analytic likelihood to be derived that can be determined from a small number of HYDRA runs and then used in existing advanced statistical analysis methods. This approach is applied to a recent experiment in order to determine the carbon opacity and X-ray drive; it is found that the inclusion of prior expert knowledge and fluctuations in capsule dimensions and chemical composition significantly improve the agreement between experiment and theoretical opacity calculations. A parameterisation of HYDRA results is used to test the application of both Markov chain Monte Carlo (MCMC) and genetic algorithm (GA) techniques to e...

  12. Remotely Operated Vehicles under sea ice - Experiences and results from five years of polar operations

    Science.gov (United States)

    Katlein, Christian; Arndt, Stefanie; Lange, Benjamin; Belter, Hans Jakob; Schiller, Martin; Nicolaus, Marcel

    2016-04-01

    The availability of advanced robotic technologies to the Earth Science community has largely increased in the last decade. Remotely operated vehicles (ROV) enable spatially extensive scientific investigations underneath the sea ice of the polar oceans, covering a larger range and longer diving times than divers with significantly lower risks. Here we present our experiences and scientific results acquired from ROV operations during the last five years in the Arctic and Antarctic sea ice region. Working under the sea ice means to have all obstacles and investigated objects above the vehicle, and thus changes several paradigms of ROV operations as compared to blue water applications. Observations of downwelling spectral irradiance and radiance allow a characterization of the optical properties of sea ice and the spatial variability of the energy partitioning across the atmosphere-ice-ocean boundary. Our results show that the decreasing thickness and age of the sea ice have led to a significant increase in light transmission during summer over the last three decades. Spatially extensive measurements from ROV surveys generally provide more information on the light field variability than single spot measurements. The large number of sampled ice conditions during five cruises with the German research icebreaker RV Polarstern allows for the investigations of the seasonal evolution of light transmittance. Both, measurements of hyperspectral light transmittance through sea ice, as well as classification of upward-looking camera images were used to investigate the spatial distribution of ice-algal biomass. Buoyant ice-algal aggregates were found to be positioned in the stretches of level ice, rather than pressure ridges due to a physical interaction of aggregate-buoyancy and under-ice currents. Synchronous measurements of sea ice thickness by upward looking sonar provides crucial additional information to put light-transmittance and biological observations into context

  13. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Day, T. H.; Herrmann, H.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N.; Izumi, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-04-15

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  14. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  15. CERN's LEIR Digital LLRF : system overview and operational experience

    CERN Document Server

    Angoletta, ME; Blas, A; Bracke, E; Butterworth, A; Dubouchet, F; Findlay, A; Pedersen, F; Sanchez-Quesada, J

    2010-01-01

    The Low Energy Ion Ring (LEIR) is an accumulation and acceleration ring in the Large Hadron Collider (LHC) ion injector chain. After its successful start in 2005, it has been running in three operational campaigns. The LEIR low-level RF (LLRF) system is the first all-digital system to operate in a CERN circular machine. Its capabilities include beam control tasks as well as dual-harmonic cavity voltage/phase servoing. All the system’s control parameters are fully configurable, remotely and in-between cycles; extensive built-in observation capabilities and diagnostics are available. The system is flexible, powerful and extremely reliable. This paper outlines the main building blocks and operational features, along with results obtained during the first years of operation.

  16. Integrated Simulation Studies of Plasma Performances and Fusion Reactions in the Deuterium Experiment of LHD

    Science.gov (United States)

    Murakami, S.; Yamaguchi, H.; Homma, M.; Maeta, S.; Saito, Y.; Fukuyama, A.; Nagaoka, K.; Takahashi, H.; Nakano, H.; Osakabe, M.; Yokoyama, M.; Tanaka, K.; Ida, K.; Yoshinuma, M.; Isobe, M.; Tomita, H.; Ogawa, K.; LHD Exp Group Team

    2016-10-01

    The deuterium experiment project from 2017 is planned in LHD, where the deuterium NBI heating beams with the power more than 30MW are injected into the deuterium plasma. Principal objects of this project are to clarify the isotope effect on the heat and particle transport in the helical plasma and to study energetic particle confinement in a helical magnetic configuration measuring triton burn-up neutrons. We study the deuterium experiment plasma of LHD applying the integrated simulation code, TASK3D [Murakami, PPCF2015], and the 5-D drift kinetic equation solver, GNET [Murakami, NF2006]. (i) More than 20% of ion temperature increment is obtained in the deuterium plasma (nD /nH +nD = 0.8) due to the isotope effect assuming the turbulent transport model based on the H/He plasma experiment of LHD. (ii) The triton burn-up simulation shows the triton slowing down distribution and the strong magnetic configuration dependency of the triton burn-up ratio in LHD. This work was supported by JSPS KAKENHI Grant Number 26420851.

  17. Evidence of nuclear fusion neutrons in an extremely small plasma focus device operating at 0.1 Joules

    Science.gov (United States)

    Soto, Leopoldo; Pavéz, Cristián; Moreno, José; Altamirano, Luis; Huerta, Luis; Barbaglia, Mario; Clausse, Alejandro; Mayer, Roberto E.

    2017-08-01

    We report on D-D fusion neutron emission in a plasma device with an energy input of only 0.1 J, within a range where fusion events have been considered very improbable. The results presented here are the consequence of scaling rules we have derived, thus being the key point to assure the same energy density plasma in smaller devices than in large machines. The Nanofocus (NF)—our device—was designed and constructed at the P4 Lab of the Chilean Nuclear Energy Commission. Two sets of independent measurements, with different instrumentation, were made at two laboratories, in Chile and Argentina. The neutron events observed are 20σ greater than the background. The NF plasma is produced from a pulsed electrical discharge using a submillimetric anode, in a deuterium atmosphere, showing empirically that it is, in fact, possible to heat and compress the plasma. The strong evidence presented here stretches the limits beyond what was expected. A thorough understanding of this could possibly tell us where the theoretical limits actually lie, beyond conjectures. Notwithstanding, a window is thus open for low cost endeavours for basic fusion research. In addition, the development of small, portable, safe nonradioactive neutron sources becomes a feasible issue.

  18. An Experiment on the Impact of Communication Problems in the Multi-cultural Operation of NPPs' Emergency Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seongkeun; Lee, Chanyoung; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of); Ha, Jun Su [KUSTAR, Abu Dhabi (United Arab Emirates)

    2015-10-15

    Korean government won a contract of nuclear power plants to UAE government in 2010 and nuclear power plants are now under construction in Barakah, UAE. However, with technology transfer and international cooperation, there needs to consider several potential problems due to the differences between two culture of the countries such as language, technical culture and expectation. It is unknown how potential problems can lead to an unsafe plant operation as well. We got to know language problem is the main issue from analyzing the OERs. Korean nuclear power plant operators will work in UAE and they will operate the NPPs with other countries' operators and managers. Therefore they will have to use English when they communicate each other. The purpose of this paper is to confirm how much operators get stress and how much accuracy is declined when operators communicate together in English. Reducing human error is quite important to make nuclear power plants safety. As mental workload of human operator is increased, operators get more stress, then the probability of occurring human error may be increased. It will affect bad influence to nuclear power plants safety. There are many factors to make mental workload increased. We focused on communication problem which is a key factor of the increasing mental workload because many Korean operators will work in UAE nuclear power plants and they may work together with UAE operators. We designed experimental methods to be able to check this problem qualitatively and quantitatively. We analyzed four factors to find the communication problems from the experiments which are accuracy, efficiency, NASA-TLX, and brain wave. Accuracy, efficiency, brain wave are quantitative factors, and NASA-TLX is qualitative factor. To find the impact of how much English affects the operators' workload, we did two cases of experiments; one is experiment for diagnosis and the other is experiment for execution.

  19. Ganges Valley Aerosol Experiment: Science and Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, VR

    2010-06-21

    The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile

  20. Special Operations of CERES for Radiation Experiment Tests (SOCRATES)

    Science.gov (United States)

    Szewczyk, Z. Peter

    The Clouds and Earth Radiant Energy System project flew a scanning radiometer (PFM) aboard the Tropical Rainfall Measuring Mission TRMM satellite, and two each aboard the Terra (FM1 FM2) and Aqua spacecraft (FM3 FM4). The primary objectives of the pairs of in-struments were for one to scan cross-track to map the geographical distribution of reflected solar radiation and Earth-emitted radiation and for the other to scan in azimuth as well as in elevation angle to provide data from which to develop models to describe the directionally-dependent dis-tribution of reflected solar radiance and Earth-emitted radiance. The Programmable Azimuth Plane Scan (PAPS) feature of the CERES instrument is a variant of the latter, and enables a scanner to target ground stations, or to match other satellite instruments viewing geometry to generate data sets for various scientific investigations. This paper presents special operations of CERES using the PAPS mode with the objective to collect data for comparison at the radiance level with other Earth Radiation Budget (ERB) instruments, and also shows numerical results of such comparisons. The following campaigns are covered in the paper: (i) In 1998, the CERES instrument (PFM) was rotated in azimuth so its scan plane coincided with the cross-track scan plane of the ScaRAB-2 instrument when the orbits of their spacecraft intersected. In this data set, both instruments viewed the same scenes from the same directions within a few minutes of each other, so the radiance measured by both instruments could be compared. (ii) In March of 2000, the scan plane of CERES Terra (FM1 and FM2) was rotated to coincide with the cross-track scan of the PFM aboard TRMM satellite. Data collected over up to 10 orbital crossings per day are used to compare radiance measurements of PFM and FM1 or FM2. (iii) In July of 2002, radiance measurements of scanners on Terra and Aqua satellites are compared. Since both satellites are in a polar orbit, the scan planes

  1. 23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC

    Energy Technology Data Exchange (ETDEWEB)

    Hawryluk, R J [PPPL

    2011-01-05

    An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

  2. Controlled Nuclear Fusion.

    Science.gov (United States)

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  3. Design and experiment of high-temperature tubular heat accumulator using the latent fusion heat of ''Zamak 3'' alloy

    Energy Technology Data Exchange (ETDEWEB)

    Marsault, L.

    1982-07-01

    The general design of the prototype heat accumulator using the aluminium and zinc alloy Zamak 3 encapsulated, operating between 300/sup 0/C and 500/sup 0/C is presented. The energy is stored in the form of latent heat of fusion in one tonne of Zamak contained in a vertical tube array. The heat carrier fluid is air. A numerical approximation of its operation by means of a simplified simulation model is studied. The presentation and the analysis of actual performance figures, for the prototype under different operating conditions are given. Modifications to improve the performance are proposed.

  4. Fusion alpha-particle diagnostics for DT experiments on the joint European torus

    Energy Technology Data Exchange (ETDEWEB)

    Kiptily, V. G.; Beaumont, P.; Syme, D. B. [Euratom / CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom); Belli, F. [Associazione Euratom -ENEA sulla Fusione, C.R. Frascati, C.P. 65, Frascati (Italy); Cecil, F. E.; Riva, M. [Colorado School of Mines, Golden, CO (United States); Conroy, S.; Ericsson, G. [Department of Physics and Astronomy, Uppsala University, BOX 516, Uppsala (Sweden); Craciunescu, T. [Association Euratom -MEdC, National Institute for Laser, Plasma and Radiation Physics (Romania); Garcia-Munoz, M. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association IPP, Garching, D-85748 (Germany); Curuia, M.; Soare, S. [Association Euratom -MEdC, National Institute for Cryogenics and Isotopic Technology (Romania); Darrow, D. [Princeton Plasma Physics Lab, Princeton, NJ (United States); Fernandes, A. M.; Pereira, R. C.; Sousa, J. [Euratom/IST Fusion Association, Centro de Fusão Nuclear, 1049-001 Lisboa (Portugal); Giacomelli, L.; Voitsekhovitch, I. [CNISM, Dipartimento di Fisica, Universita Milano-Bicocca, Milano (Italy); Gorini,; Nocente, M. [CNISM, Dipartimento di Fisica, Universita Milano-Bicocca, Milano, Italy and Associazione Euratom -ENEA sulla Fusione, IFP Milano (Italy); and others

    2014-08-21

    JET equipped with ITER-like wall (a beryllium wall and a tungsten divertor) can provide auxiliary heating with power up to 35MW, producing a significant population of α-particles in DT operation. The direct measurements of alphas are very difficult and α-particle studies require a significant development of dedicated diagnostics. JET now has an excellent set of confined and lost fast particle diagnostics for measuring the α-particle source and its evolution in space and time, α-particle energy distribution, and α-particle losses. This paper describes how the above mentioned JET diagnostic systems could be used for α-particle measurements, and what options exist for keeping the essential α-particle diagnostics functioning well in the presence of intense DT neutron flux. Also, α-particle diagnostics for ITER are discussed.

  5. First experience in operating the population of the condition database for the CMS experiment

    CERN Document Server

    De Gruttola, M; Futyan, David; Glege, Frank; Govi, Giacomo; Innocente, Vincenzo; Paolucci, Pierluigi; Pierro, Antonio; Schlatter, Dieter

    2010-01-01

    Reliable population of the condition database is critical for the correct operation of the online selection as well as of the offline reconstruction and analysis of data. We will describe here the system put in place in the CMS experiment to populate the database and make condition data promptly available both online for the high-level trigger and offline for reconstruction. The system, designed for high flexibility to cope with very different data sources, uses POOL-ORA technology in order to store data in an object format that best matches the object oriented paradigm for C++ programming language used in the CMS offline software. In order to ensure consistency among the various subdetectors, a dedicated package, PopCon (Populator of Condition Objects), is used to store data online. The data are then automatically streamed to the offline database hence immediately accessible offline worldwide. This mechanism was intensively used during 2008 in the test-runs with cosmic rays. The experience of this first mont...

  6. Laguna Verde BWRs operational experience: steady-state fuel performance

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas V, G. F.; Bravo S, J. M. [Global Nuclear Fuel - Americas, 3901 Castle Hayne Road, Wilmington, 28401 North Carolina (United States); Casillas, J. L., E-mail: gabriel.cuevas-vivas@gnf.co [General Electric Hitachi Nuclear Energy, 1989 Little Orchard St. Romm 239, San Jose, 95125 California (United States)

    2010-10-15

    The two BWR at Laguna Verde nuclear power station are finishing 21 and 15 years of continuous successful operation as of 2010. During Unit 1 and 2 commercial operations only Ge/GNF fuel designs have been employed; fuel lattice designs 8 x 8 and 10 x 10 were used at the reactor, with an original licensed thermal power (OLTP: 1931 MWt) and the reactor's first power up-rates of 5%. GNF fuel will be also used for the second EPU to reach 120% of OLTP in the near future. Thermal and gamma traversing in-core probes (Tip) are used for power monitoring purposes along with the Ge (now GNF-A) core monitoring system, 3-dimensional Monicore{sup TM}. GNF-A has also participated by preparing the core management plan that is regularly fine-tuned in collaboration with Comision Federal de Electricidad (CFE owner of the Laguna Verde reactors). For determination of thermal margins and eigenvalue prediction, GNF-A employs the NRC-licensed steady-state core simulator PANAC11. Tip comparisons are routinely used to adapt power distributions for a better thermal margin calculation. Over the years, several challenges have appeared in the near and long term fuel management planning such as increasing cycle length, optimization of the thermal margins, rated power increase, etc. Each challenge has been successfully overcome via operational strategy, code improvements and better fuel designs. This paper summarizes Laguna Verde Unit 1 and 2 steady-state performance from initial commercial operation, with a discussion of the nuclear and thermal-hydraulic design features, as well as of the operational strategies that set and interesting benchmark for future fuel applications, code development and operation of the BWRs. (Author)

  7. Fusion engineering device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  8. Fusion Engineering Device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  9. Intra-operative parathyroid hormone measurements – experience of ...

    African Journals Online (AJOL)

    In experienced hands, parathyroidectomy by conventional neck ... Minimally invasive surgery is currently the standard of care in patients ... the pre-operative sample and the sample drawn 10 minutes after ... The mean postoperative PTH level for the suc- ... Baseline patient characteristics (gender, age, medical history) and.

  10. Mountain Plains Learning Experience Guide: Marketing. Course: Marketing Operations.

    Science.gov (United States)

    Preston, T.; Egan, B.

    One of thirteen individualized courses included in a marketing curriculum, this course covers the fundamental concepts of the marketing and distribution field, including the operations of wholesale and retail businesses. The course is comprised of three units: (1) The Marketing Process, (2) Wholesaling, and (3) Retailing. Each unit begins with a…

  11. IHEP Experience on Creation and Operation of RFQS

    CERN Document Server

    Belyaev, O K; Maltsev, I G; Stepanov, V B; Strekalovskikh, S A; Teplyakov, V A; Zherebtsov, A V

    2000-01-01

    The new 1.8 MeV proton RFQ was completed and started operation in the IHEP in 1997. It was built according to the plan of modernization of the injection system to the booster of the IHEP proton synchrotron.

  12. Performance and Operation Experience of the ATLAS Semiconductor Tracker

    CERN Document Server

    Gallop, B J

    2014-01-01

    We report on the operation and performance of the ATLAS Semi-Conductor Tracker (SCT), which has been functioning for 3 years in a high luminosity, high radiation environment. The SCT is constructed of 4088 silicon detector modules, for a total of 6.3 million strips. Each module operates as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel, made of 4 cylinders, and two end-cap systems made of 9 disks. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals are processed in the front-end ABCD3TA ASICs, which use a binary readout architecture. Data is transferred to the off-detector readout electronics via optical fibres. We find $99.3\\%$ of the SCT modules are operational, the noise occupancy and hit efficiency exceed the design specifications; the alignment is very close to the ideal to allow on-line track reconstruction and invariant mass determination. We will report on the operation...

  13. Performance and Operation Experience of the ATLAS Semiconductor Tracker

    CERN Document Server

    Gallop, B J; The ATLAS collaboration

    2013-01-01

    We report on the operation and performance of the ATLAS Semi-Conductor Tracker (SCT), which has been functioning for 3 years in a high luminosity, high radiation environment. The SCT is constructed of 4088 silicon detector modules, for a total of 6.3 million strips. Each module operates as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel, made of 4 cylinders, and two end-cap systems made of 9 disks. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals are processed in the front-end ABCD3TA ASICs, which use a binary readout architecture. Data is transferred to the off-detector readout electronics via optical fibres. We find 99.3% of the SCT modules are operational, the noise occupancy and hit efficiency exceed the design specifications; the alignment is very close to the ideal to allow on-line track reconstruction and invariant mass determination. We will report on the operation an...

  14. Summary of operating experience in Swiss nuclear power plants 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    In 1994 the Swiss nuclear power plants produced their highest-ever combined annual output. Their contribution to total electricity generation in the country was 36%. At Muehleberg the power uprate, undertaken in 1993, was effective for the first time for an entire year. The larger capacity of the new steam generators installed in 1993 in unit 1 of the Beznau NPP allows for an electric output of 103% of nominal power. The plant efficiency of the Goesgen and Leibstadt units was increased by replacing the low pressure turbines by the new ones with a modern design. The application for a power uprate of the Leibstadt reactor is still pending. For the first time in Switzerland, one of the reactor units, Beznau 2, operated on an extended cycle of one and a half years, with no refuelling outage in 1994. In spite of the replacements of two of its three low pressure turbines, Goesgen had the shortest refuelling shutdown since the start of commercial operation. The average number of reactor scrams at the Swiss plants remained stable, at less than one scram per reactor year. Re-inspection of crack indications detected in 1990 in the core shroud of the Muehleberg reactor revealed no significant changes. A crack indication was found in one of the other welds inspected. The Swiss government issued a limited operating licence for Beznau 2 for the next ten years, i.e. until the end of 2004. The only other unit with a limited operating licence (until 2003) is Muehleberg. The remaining three reactor units, have no time limits on their operating licences, in accordance with the Atomic Law. Goesgen is the first Swiss nuclear power plant having now produced more than 100 billion kWh. As from January 1, 1995, the nominal net power of the largest Swiss reactor unit, Leibstadt, has been fixed at 1030 MW; that of the Goesgen NPP has been increased by 25 MW to 965 MW. (author) figs., tabs.

  15. Efficacy of post-operative analgesia after posterior lumbar instrumented fusion for degenerative disc disease: a prospective randomized comparison of epidural catheter and intravenous administration of analgesics

    Directory of Open Access Journals (Sweden)

    Torsten Kluba

    2010-04-01

    Full Text Available This prospective study aimed to compare the efficacy of epidural (EDA versus intravenous (PCA application of analgesics after lumbar fusion. Fifty-two patients scheduled for elective posterior instrumented lumbar fusion were randomized into two groups. EDA patients received an epidural catheter intraoperatively, and administration of ropivacain and sulfentanil was started after a normal post-operative wake-up test in the recovery room area. PCA patients received intravenous opioids in the post-operative period. Differences between EDA and PCA groups in terms of patient satisfaction with respect to pain relief were not significant. Nevertheless, EDA patients reported less pain on the third day after surgery. There were significantly more side effects in the EDA group, including complete reversible loss of sensory function and motor weakness. There were no major side effects, such as infection or persisting neurological deficits, in either group. The routine use of epidural anesthesia for lumbar spine surgery has too many risks and offers very little advantage over PCA.

  16. Experiments on data presentation to process operators in diagnostic tasks

    DEFF Research Database (Denmark)

    Rasmussen, Jens; Goodstein, L. P.

    1972-01-01

    Safety and reliability considerations in modern power plants have prompted our interest in man as an information receiver - especially in diagnostic tasks where the growing complexity of process plants and hence the amount of data involved make it imperative to give the staff proper support....... The great flexibility and capacity of the process computer for data reduction and presentation and for storing information on plant structure and functions give the system designer great freedom in the layout of information display for the staff, but the problem for the designer is how to make proper use...... of this freedom to support the operators efficiently. This is especially important in connection with unique, high-risk, and generally improbable abnormalities in plant functioning. Operator tasks and mental models and the need for matching the encoded information about the plant to these models are treated...

  17. The CERN Beam Interlock System: Principle and Operational Experience

    CERN Document Server

    Puccio, B; Kwiatkowski, M; Romera Ramirez, I; Todd, B

    2010-01-01

    A complex Machine Protection System has been designed to protect the LHC machine from an accidental release of the beam energy, with about 20 subsystems providing status information to the Beam Interlock System that is the backbone of machine protection. Only if the subsystems are in the correct state for beam operation, the Beam Interlock System receives a status flag and beam can be injected into LHC (Large Hadron Collider). The Beam Interlock System also relays commands from the connected subsystems in case of failure for triggering the LHC Beam Dumping System. To maintain the required level of safety of the Beam Interlock System, the performance of the key components is verified before every fill of the machine and validated after every emergency beam dump before beam operation is allowed to continue. This includes all critical paths, starting from the inputs from connected systems triggering a beam dump request, followed by the correct interruption and propagation sequence of the two redundant beam permi...

  18. The superconducting magnet system for the WENDELSTEIN 7-X fusion experiment; Das supraleitende Magnetsystem fuer das Fusionsexperiment WENDELSTEIN 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Sapper, J.

    1995-05-01

    In devices of the TOKAMAK type (JET/Culham, GB, and TFTR/Princeton Laboratory, U.S.A.), successful plasma ignition was achieved, and fusion-induced generation of electricity of some megawatts, for a period of seconds. Experiments of the next generation will tackle the problems of electricity generation sustained over longer periods, for which the STELLARATOR machines are the device of choice, as these, other than the TOKAMAKS, do not require generation of plasma ring currents between 10 and 20 MA. The magnet system in the STELLARATOR devices has to be a superconducting magnet system. At present, bench-scale LT superconductors are available made of materials on the basis of NbTi or Nb{sub 3}Sn, which are applied according to system configuration ( induction at the conductor, current density, temperature, alternating magnetic field load). The paper explains the magnet system intended for use in the planned STELLARATOR WENDELSTEIN 7-X experiments at IPP, Garching. (orig./MM) [Deutsch] In Maschinen des Typs TOKAMAK (JET/Culham, GB und TFTR/Princeton Laboratory, USA) wurde bei den genannten technischen Gegebenheiten die Zuendbedingung erreicht und Fusionsleistung im Megawattbereich fuer einige Sekunden erzeugt. Experimente der naechsten Generation muessen den Dauerbetrieb anstreben, wobei hierfuer Maschinen des Typs STELLARATOR besonders geeignet sind, weil Massnahmen zur Erzeugung eines Plasmaringstromes von 10 bis 20 MA - wie sie fuer TOKAMAKS noetig werden - entfallen koennen. Das Magnetsystem muss - wegen des andernfalls hohen Dauerleistungsbedarfs - supraleitend ausgefuehrt werden. Hierfuer stehen heute im technischen Massstab Niedertemperatursupraleiter auf der Basis von NbTi oder Nb{sub 3}Sn zur Verfuegung, die abhaengig von den geforderten Einsatzbedingungen (Induktion am Leiter, Stromdichte, Temperatur und Wechselfeldbelastung) zum Einsatz gelangen. Im folgenden ist das fuer den geplanten STELLARATOR WENDELSTEIN 7-X (IPP, Garching) vorgesehene Magnetsystem

  19. High power operational experience with the LANSCE Linac

    Energy Technology Data Exchange (ETDEWEB)

    Rybarcyk, Lawrence J [Los Alamos National Laboratory

    2008-01-01

    The heart of the Los Alamos Neutron Science Center (LANSCE) is a pulsed linear accelerator that is used to simultaneously provide H+ and H- beams to several user facilities. This accelerator contains two Cockcroft-Walton style injectors, a 100-MeV drift tube linac and an 800-MeV coupled cavity linac. This presentation will touch on various aspects of the high power operation including performance, tune-up strategy, beam losses and machine protection.

  20. Performance and operation experience of the Atlas Semiconductor Tracker

    CERN Document Server

    Liang, Z; The ATLAS collaboration

    2013-01-01

    We report on the operation and performance of the ATLAS Semi-Conductor Tracker (SCT), which has been functioning for 3 years in the high luminosity, high radiation environment of the Large Hadron Collider at CERN. We’ll also report on the few improvements of the SCT foreseen for the high energy run of the LHC. The SCT is constructed of 4088 silicon detector modules, for a total of 6.3 million strips. Each module operates as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel, made of 4 cylinders, and two end-cap systems made of 9 disks. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals are processed in the front-end ABCD3TA ASICs, which use a binary readout architecture. Data is transferred to the off-detector readout electronics via optical fibres. We find 99.3% of the SCT modules are operational, the noise occupancy and hit efficiency exceed the design specifications; the alig...

  1. The HRMT27 (Rodtarg) Experiment: Design, Operation and First Results

    CERN Document Server

    Torregrosa Martin, Claudio Leopoldo; Calviani, Marco; Butcher, Mark; Horvath, David; Fornasiere, Elvis; Gentini, Luca

    2016-01-01

    The HRMT27-Rodtarg- experiment used the HiRadMat facility at CERN to impact intense 440 GeV proton beams onto thin rods - 8 mm diameter, 140 length - made of high-density materials such as Ir, W, Ta, Mo among others. The purpose of the experiment was to reduce uncertainties on the CERN antiproton target material response and assess the material selection for its future redesign. The experiment was designed to recreate the extreme conditions reached in the target, estimated as an increase of temperature above 2000 ºC in less than 0.5 µs and a subsequent compressive-to-tensile pressure wave of several GPa. This document includes a detailed summary of the experimental setup and online recorded data. Results suggest that all the irradiated materials except tantalum suffered internal damage from conditions 5-7 lower than those reached in the AD-Target, while tantalum targets clearly showed the best dynamic response, remaining un-cracked during the experiment. Foreseen post irradiation examinations will complete ...

  2. Successful Experiences with Making Partnering an Operational Strategy.

    Science.gov (United States)

    Buettner, David L.; Morrison, Michael, C.; Wasicek, Margery

    2002-01-01

    Provides a concise overview of the key components of sound partnerships developed at North Iowa Area Community College. Offers a conceptual foundation for practitioners, as well as a narrative of the college's successful experiences that illustrates the transformational benefits of partnerships. (AUTH/CB)

  3. High heat flux components in fusion devices: from nowadays experience in Tore Supra towards the ITER challenge

    Energy Technology Data Exchange (ETDEWEB)

    Grosman, A.; Bayetti, P.; Chappuis, P.; Cordier, J.J.; Durocher, A.; Escourbiac, F.; Guilhem, D.; Lipa, M.; Marbach, G.; Mitteau, R.; Schlosser, J

    2003-07-01

    A pioneering activity has been developed by CEA and the European industry in the field of actively cooled high heat flux plasma facing components in Tore Supra operation, which is today culminating with the routine operation of an actively cooled toroidal pumped limiter (TPL) capable to sustain up to 10 MW.m{sup -2} of nominal convected heat flux. This success is the result of a long lead development and industrialization program (about 10 years) marked out with a number of technical and managerial challenges that were taken up and has allowed us to build up an unique experience feedback database. This is illustrated in this paper with the specific example of the development of high heat flux CFC-on-CuCrZr (carbon-carbon fibre composite on hardened copper alloy CuCrZr) component from design phase to tokamak operation. (authors)

  4. High Temperature Electrolysis Pressurized Experiment Design, Operation, and Results

    Energy Technology Data Exchange (ETDEWEB)

    J.E. O' Brien; X. Zhang; G.K. Housley; K. DeWall; L. Moore-McAteer

    2012-09-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate planar cells with dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. It is also suitable for testing other cell and stack geometries including tubular cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. Pressurized operation of a ten-cell internally manifolded solid oxide electrolysis stack has been successfully demonstrated up 1.5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this

  5. Evaluation of Matrix Square Root Operations for UKF within a UAV GPS/INS Sensor Fusion Application

    Directory of Open Access Journals (Sweden)

    Matthew Rhudy

    2011-01-01

    Full Text Available Using an Unscented Kalman Filter (UKF as the nonlinear estimator within a Global Positioning System/Inertial Navigation System (GPS/INS sensor fusion algorithm for attitude estimation, various methods of calculating the matrix square root were discussed and compared. Specifically, the diagonalization method, Schur method, Cholesky method, and five different iterative methods were compared. Additionally, a different method of handling the matrix square root requirement, the square-root UKF (SR-UKF, was evaluated. The different matrix square root calculations were compared based on computational requirements and the sensor fusion attitude estimation performance, which was evaluated using flight data from an Unmanned Aerial Vehicle (UAV. The roll and pitch angle estimates were compared with independently measured values from a high quality mechanical vertical gyroscope. This manuscript represents the first comprehensive analysis of the matrix square root calculations in the context of UKF. From this analysis, it was determined that the best overall matrix square root calculation for UKF applications in terms of performance and execution time is the Cholesky method.

  6. Droplets Fusion in a Microchannel on a Piezoelectric Substrate

    Directory of Open Access Journals (Sweden)

    Fu Xiang-ting

    2013-07-01

    Full Text Available Fusion droplets is a key operation in a microfluidic device for microfluidic analysis. A new fusion method for droplets was presented. An interditigal transducer and a reflector were fabricated on 1280-yx LiNbO3 piezoelectric substrate using microelectric technology. A poly-dimethyl silicone micro-channel was made by soft lithography technology and mounted on the piezoelectric substrate. Droplets in the microchannel were actuated by surface acoustic wave and fussed each other. Coloured dye solution droplets were used to fusion experiments. Results show that the two droplets in the microchannel can be fused by help of surface acoustic wave, and size of droplets, distance of droplets and RF signal power can affect successful fusion of the droplets. The fusion method is valuable for microlfuidic biological and chemical analysis in a microfluidic device.

  7. Compressed Gas Safety for Experimental Fusion Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  8. Compressed Gas Safety for Experimental Fusion Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  9. Contributing to operations of community agencies through integrated fieldwork experiences.

    Science.gov (United States)

    Klinger, Lisa; Bossers, Ann

    2009-06-01

    Occupational therapists are change agents who are well equipped to participate in community development. Community development projects can help agencies in many ways, including determining needs, educating stakeholders, developing novel programs, finding and creating resources, marketing the agency, and creating or implementing policy. In order for service agencies to profit, they need an understanding of the skills occupational therapists can offer. The best way to gain that knowledge may be through direct experience. This paper describes the benefits that flow to community agency partners and to occupational therapy students from an innovative, integrated fieldwork model that links students with service agencies. This approach has demonstrated many benefits to community partners, while allowing all students in an occupational therapy program to have community development experience. This is a cost-effective way to demonstrate the value of occupational therapy and to deliver multiple community development projects.

  10. Operational Experience and Performance of the Present ALICE ITS

    CERN Document Server

    Senyukov, Serhiy

    2015-01-01

    ALICE (A Large Ion Collider Experiment) is one of four major experiments at the CERN LHC. ALICE studies strongly interacting matter under extreme conditions created in heavy ion colli- sions. The Inner Tracking System (ITS) is an essential part of the ALICE detector. It is used for tracking, reconstruction of primary and secondary vertices and particle identification. ITS is composed of six cylindrical layers of silicon detectors. Three different techologies are used: hybrid pixel, drift and strip detectors. The ITS was fully commisioned in 2009 at the start of LHC Run 1. The detectors showed good performance during this period contributing to several important measurements. During the LHC Long Shutdown 1 (LS1) the ITS underwent general consolidation and is now ready for the next LHC run

  11. [Experience with Poly Ether Ether Ketone (PEEK) cages and locking plate for anterior cervical fusion in the treatment of spine trauma without cord injury].

    Science.gov (United States)

    Delépine, F; Jund, S; Schlatterer, B; de Peretti, F

    2007-12-01

    cases, at mean 78 days. The mean intersomatic angle increased from 12 degrees kyposis preoperatively to 13 degrees lordosis postoperatively at last follow-up. Anterior displacement of the fractured vertebral body was 3 mm preoperatively and 0.3 mm postoperatively. Height in the middle of the intersomatic space was 5.3 mm preoperatively and 8.2 mm postoperatively. There were no cases of secondary displacement. This study demonstrated that fusion with an intersomatic cage associated with anterior plating can be used in spine trauma victims, providing an outcome as good as in patients with degenerative disease. This method enables nearly anatomic reduction without secondary displacement and fusion in a short delay (which can be explained by the mechanical properties of the assembly and by the use of pure cancellous graft from the iliac crest). There is very little morbidity in our experience. For us, this technique is more reliable than fusion using a tri-cortical iliac crest graft. The use of an intersomatic cage is a simple, reliable technique for intersomatic spinal fusion with little morbidity for unstable traumatic injury of the spine without spinal cord injury.

  12. Education : Lessons from Economic Theory and Operational Experience

    OpenAIRE

    Nicholas Barr

    2008-01-01

    This paper talks about how to pay for teaching at universities. It does not talk about financing research, nor about any particular country. Instead, its purpose is to offer a toolkit for policy makers thinking about reform. The paper sets out lessons for policy design from economic theory (section 2) and the experience of developed countries (section 3). Economic theory, however, is not enough. Policy design that outstrips a countrys capacity to implement it effectively is bad policy design....

  13. Initial operation with sodium in the Madison Dynamo Experiment.

    Science.gov (United States)

    Kendrick, R.; Spence, Ej; Forest, C. B.; O'Connell, R.; Nornberg, Md; Canary, Hw; Wright, A.; Robinson, K.

    1999-11-01

    A new liquid metal MHD experiment has been constructed at the University of Wisconsin to test several key predictions of dynamo theory: magnetic instabilities driven by sheared flow, the effects of turbulence on current generation, and the back-reaction of the self-generated magnetic field on the fluid motion which brings saturation. This presentation describes the engineering design of the experiment, which is a 0.5 m radius spherical vessel, filled with liquid sodium at 150 ^circC. The experiment is designed to achieve a magnetic Reynolds number in excess of 100, which requires approximately 80 Hp of mechanical drive, producing flow velocities in sodium of 15 m/s through impellers. Handling liquid sodium offers a number of technical challenges, but routine techniques have been developed over the past several decades for safely handling large quantities for the fast breeder reactor. The handling strategy is discussed, technical details concerning seals and pressurization are presented, and safety elements are highlighted.

  14. Efeito do tempo de experiência de operadores de Harvester no rendimento operacional Effect of time experience of Harvester operators in operating yield

    Directory of Open Access Journals (Sweden)

    Elaine Cristina Leonello

    2012-12-01

    Full Text Available A mecanização da colheita de madeira permite maior controle dos custos e pode proporcionar reduções em prazos relativamente curtos. Além disso, tem um lugar de destaque na humanização do trabalho florestal e no aumento do rendimento operacional. O presente trabalho teve por objetivo avaliar o desempenho de operadores de harvester em função do tempo de experiência na atividade. Foram avaliados oito operadores do sexo masculino, com idade entre 23 e 46 anos. O estudo consistiu na análise do volume de madeira colhida pelo harvester. O tempo de experiência afeta significativamente o rendimento operacional dos operadores de harvester. Tal rendimento aumenta expressivamente nos primeiros 18 meses de experiência, mantendo-se em ascensão nos próximos 26 meses. Após os 44 meses de experiência, o rendimento dos operadores tende a reduzir, revelando as possíveis acomodações do cotidiano. Tais resultados permitem concluir que por volta dos 50 meses de experiência na atividade de operação de harvester, se faz necessária a adoção de medidas de reciclagem, motivação, entre outras, a fim de proporcionar aos operadores melhores condições de trabalho que os possibilitem continuar exercendo a atividade de forma eficiente e rentável à empresa.The mechanization of timber harvesting allows greater control of costs and can provide reductions in relatively short intervals. Moreover, it has a place in the humanization of the working forest and the increase in performance. This work provides comparisons of operating performance of different operator harvester according to the time of experience in the activity. The operators evaluated were eight males, aged between 23 and 46 years old. The study consisted of analysis of the volume of timber harvested by the harvester. The experience significantly affects the performance of harvesters operators. The performance increases significantly in the first 18 months of experience, and it remained on

  15. Thirty year operational experience of the JET flywheel generators

    Energy Technology Data Exchange (ETDEWEB)

    Rendell, Daniel, E-mail: dan.rendell@ccfe.ac.uk; Shaw, Stephen R.; Pool, Peter J.; Oberlin-Harris, Colin

    2015-10-15

    Highlights: • The pony-motor rotor circuit's liquid resistor requires frequent maintenance. • A crowned profile on the thrust pads is desirable. • Both plug braking transformers have been replaced after flashovers occurred. • Two-plane balancing of one of the flywheel generators has improved vibration levels but also provided information to lead further investigations. • A half-life inspection on the flywheel generators has shown no major issues after 30 year of operating. - Abstract: The JET flywheel generator converters have operated since 1983 and for over 85,000 pulses. Problems with this plant are discussed, including corrosion, unbalanced flow and arcing within the liquid resistors; starting difficulties on both machines; and failure of the plug-braking transformers at energisiation. In 2012/13 two sets of thrust bearing pads have required refurbishment, a process which highlighted the importance of their profile. Extensive half-life inspections have shown that there are no serious problems with either generator.

  16. Operating experience from Swedish nuclear power plants, 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The total generation of electricity from Swedish nuclear power plants was 70.1 TWh during 1999, which is slightly more than the mean value for the last five years. The total electricity consumption decreased by one percent, compared with 1998, to a total of 142.3 TWh, due to an unusually warm summer and autumn. The abundant supply of hydroelectric power resulted in comparatively extensive load-following operation by the nuclear plants during the year. Production losses due to low demand totalled 3.0 TWh. The closure of Barsebaeck 1 will result in a capacity reduction exceeding 4 TWh per year. The hydroelectric power production was 70 TWh, which was 6 TWh more than during a normal year, i.e. a year with average rainfall. The remaining production sources, mainly from solid fuel plants combined with district heating contributed 9 TWh. Electricity generation by means of wind power is still increasing. There are now about 470 wind power stations, which produced 0.3 TWh during the year. The total electricity generation totalled 149.8 TWh, a three percent decrease compared with 1998. The preliminary figures for export were 15.9 TWh and for import 8.4 TWh. The figures above are calculated from the preliminary production result. A comprehensive report on electric power supply and consumption in Sweden is provided in the 1999 Annual Report from the Swedish Power Association. The unit capability factor for the PWRs at Ringhals averaged 91%, while the BWRs averaged 82% mainly due to the extended outages. The BWR reactors at Forsmark averaged as much as 93%. Forsmark 1 experienced the shortest refuelling outage ever in Sweden, only 9 days and 20 hours. In May, Oskarshamn 2 passed a historical milestone - the unit produced 100 TWh since connection to the grid in 1974. The final production day for Barsebaeck 1, which had been in commercial operation since 1975, was on November 30 when a decision by the Swedish Government revoked the operating licence. Three safety-related events

  17. Operational experience during initial beam commissioning of the LHC

    CERN Document Server

    Fuchsberger, K; Arduini, G; Assmann, R; Bailey, R; Bruning, O; Goddard, B; Kain, V; Lamont, M; MacPherson, A; Meddahi, M; Papotti, G; Pojer, M; Ponce, L; Redaelli, S; Solfaroli Camillocci, M; Venturini Delsolaro, W; Wenninger, J

    2010-01-01

    After the incident on the 19th September 2008 and more than one year without beam the commissioning of the LHC started again on November 20, 2009. Progress was rapid and collisions under stable beam conditions were established at 1.2 TeV within 3 weeks. In 2010 after qualification of the new quench protection system the way to 3.5 TeV was open and collision were delivered at this energy after a month of additional commissioning. This paper describes the experiences and issues encountered during these first periods of commissioning with beam.

  18. MagLev Cobra: Test Facilities and Operational Experiments

    Science.gov (United States)

    Sotelo, G. G.; Dias, D. H. J. N.; de Oliveira, R. A. H.; Ferreira, A. C.; De Andrade, R., Jr.; Stephan, R. M.

    2014-05-01

    The superconducting MagLev technology for transportation systems is becoming mature due to the research and developing effort of recent years. The Brazilian project, named MagLev-Cobra, started in 1998. It has the goal of developing a superconducting levitation vehicle for urban areas. The adopted levitation technology is based on the diamagnetic and the flux pinning properties of YBa2Cu3O7-δ (YBCO) bulk blocks in the interaction with Nd-Fe-B permanent magnets. A laboratory test facility with permanent magnet guideway, linear induction motor and one vehicle module is been built to investigate its operation. The MagLev-Cobra project state of the art is presented in the present paper, describing some construction details of the new test line with 200 m.

  19. LEDA beam diagnostics instrumentation: Measurement comparisons and operational experience

    Science.gov (United States)

    Gilpatrick, J. D.; Barr, D.; Bruhn, D.; Day, L. A.; Kasemir, K. U.; Kamperschroer, J. H.; Ledford, J.; Lysenko, W.; Madsen, D. W.; Martinez, D. G.; O'Hara, J. F.; Pieck, M.; Power, J. F.; Sellyey, W.; Shurter, R. B.; Stettler, M. W.

    2000-11-01

    The Low Energy Demonstration Accelerator (LEDA) facility has been used to characterize the pulsed- and cw-beam performance of a 6.7 MeV, 100 mA radio frequency quadrupole (RFQ). Diagnostic instrumentation, primarily located in a short beam transport downstream of the RFQ, allow facility commissioners and operators to measure and monitor the RFQ's accelerated and total beam transmission, beam loss, bunched beam current, beam energy and output phase, and beam position. Transverse beam profile measurements are acquired under both low and high duty-factor pulsed beam conditions using a slow wire scanner and a camera that images beam-induced fluorescence. The wire scanner is also used to acquire transverse beam emittance information using a technique known as a "quad scan". This paper reviews the measurement performance and discusses the resulting data.

  20. Operation experience of Suralaya coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Saragi, M. [PT Indonesia Power (Indonesia). Suralaya Generation Business Unit

    2004-07-01

    Coal utilization for generating electricity at Suralaya coal-fired power plant has been increased from time to time. It has been driven by the growth of electricity demand from industry as well as consumption from the household sector. Generally, boilers for power plant were designed to burn the locally available coals with a limited specification range. Suralaya coal-fired power plant was built based on coal specifications from Bukit Asam (Sumatera Island), which categorized as sub-bituminous coal rank. Nowadays, supply of coal for Suralaya coal-fired power plant not only comes from Bukit Asam coal mine but also from Kalimantan coal mines. The utilization of coal from the other mines has brought other consequences on operating and equipment of the plant. It needs some effort to deal with the effect from different specifications of coal from the originated design of coal. 4 tabs.

  1. Operation experience of p-Carbon polarimeter in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alekseev, I. G. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Aschenauer, E. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Atoian, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bazilevsky, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Eyser, O. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kalinkin, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kewisch, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Makdisi, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nemesure, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Poblaguev, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schmidke, W. B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Svirida, D. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Steski, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Webb, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zelenski, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tip, K. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The spin physics program in Relativistic Heavy Ion Collider (RHIC) requires fast polarimeter to monitor the polarization evolution on the ramp and during stores. Over past decade, the polarimeter has evolved greatly to improve its performance. These include dual chamber design, monitoring camera, Si detector selection (and orientation), target quality control, and target frame modification. The preamp boards have been modified to deal with the high rate problem, too. The ultra thin carbon target lifetime is a concern. Simulations have been carried out on the target interaction with beam. Modification has also been done on the frame design. Extra caution has been put on RF shielding to deal with the pickup noises from the nearby stochastic cooling kickers. This paper summarizes the recent operation performance of this delicate device.

  2. Operating experience from Swedish nuclear power plants 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The total production of electricity from Swedish nuclear power plants was 65.6 TWh during 2002, which is a decrease compared to 2001. The energy capability factor for the 11 Swedish reactors averaged 80.8%. The PWRs at Ringhals averaged 87.6%, while the BWRs, not counting Oskarshamn 1, reached 89.2%. No events, which in accordance to conventions should be reported to IAEA, have occurred during 2002. Operational statistics are presented for each Swedish reactor. The hydroelectric power was 66 TWh, 16% lower than 2000. Wind power contributed 0.5 TWh, and remaining production sources, mainly from solid fuel plants combined with district heating, contributed 10.9 TWh. The electricity generation totalled 143 TWh, considerably less than the record high 2001 figure of 158.7 TWh. The preliminary figures for export were 14.8 TWh and and for import 20.1 TWh.

  3. Wind-To-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, K. W.; Martin, G. D.; Ramsden, T. G.; Kramer, W. E.; Novachek, F. J.

    2009-03-01

    The Wind2H2 system is fully functional and continues to gather performance data. In this report, specifications of the Wind2H2 equipment (electrolyzers, compressor, hydrogen storage tanks, and the hydrogen fueled generator) are summarized. System operational experience and lessons learned are discussed. Valuable operational experience is shared through running, testing, daily operations, and troubleshooting the Wind2H2 system and equipment errors are being logged to help evaluate the reliability of the system.

  4. Operating experience 1993 in Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    For many years, the Swedish nuclear power plants had a very good track record, compared with the international average. This trend was broken in 1993. During the year, six power plants were shut down for extended periods of time, for different safety-related reasons. During the autumn, a reactor containment leak was detected during scheduled containment leak rate testing at Barsebaeck 2. The unit was shut down for extensive investigation and corrective action for the rest of the year. Ringhals 2 was shut down last six months of the year as crack indications were found in a weld next to a control rod penetration in the reactor vessel head. Extensive tests and analyses revealed that the crack originated from the manufacturing of the vessel head and was of minor importance to safety. Oskarshamn 1 was shut down the whole year. Cracks in cold bent pipes in the residual heat removal system and cracks in the feedwater riser pipes lead to extensive replacement of piping, including pipes inside the reactor vessel. Decontamination of the reactor vessel was successful and attracted world wide interest. A programme for plant status verification was started in order to establish long-term operating conditions. Replacement of the pipe insulation and the inlet strainers in the core and containment spray systems solved the problems with clogging at certain failures in Barsebaeck, Ringhals 1 and Oskarshamn 1 and 2. Six of the reactors had an extremely high availability, of about 90 per cent and more. By year end, eleven of the twelve reactors were in full power operation.

  5. Estimating the cost of operating cancer registries: Experience in Colombia.

    Science.gov (United States)

    de Vries, Esther; Pardo, Constanza; Arias, Nelson; Bravo, Luis Eduardo; Navarro, Edgar; Uribe, Claudia; Yepez, María Clara; Jurado, Daniel; Garci, Luz Stella; Piñeros, Marion; Edwards, Patrick; Beebe, Maggie Cole; Tangka, Florence; Subramanian, Sujha

    2016-12-01

    Maintaining population-based registries requires adequate and sustained resources; however, to date there has been no systematic evaluation to identify the resource needs for cancer registration in most countries, including Colombia. A systematic assessment of the costs can quantify the funding required and identify processes to improve efficiency of cancer registries. The Centers for Disease Control and Prevention's (CDC's) International Registry Costing Tool (IntRegCosting Tool) was tailored specifically for the Colombian registries and was used to collect resource use data from five regional population-based cancer registries: Barranquilla, Bucaramanga, Cali, Manizales, and Pasto. The registries provided cost data for the year 2013 and cancer cases corresponding to the year 2010. We identified an almost threefold variation in the average cost per case (77,932 to 214,082 Colombian pesos or US $41 to US $113 in 2013) across the registries, but there were also substantial differences in data collection approaches, types of data collected, and activities performed. Cost per inhabitant varied between 95 and 415 Colombian pesos (US $0.05 to US $0.22). Between 20% and 45% of the total cost was due to fixed cost activities. The detailed economic information presented in this study constitutes a valuable source of activity-based cost data that registries can use to compare operations, assess key factors that lead to differences in cost per case, and identify potential approaches to improve efficiencies. Furthermore, the knowledge gained from studying the Colombian registries can help inform the planning and operations of other registries in the region. Published by Elsevier Ltd.

  6. Operational experience with nanocoulomb bunch charges in the Cornell photoinjector

    Directory of Open Access Journals (Sweden)

    Adam Bartnik

    2015-08-01

    Full Text Available Characterization of 9–9.5 MeV electron beams produced in the dc-gun based Cornell photoinjector is given for bunch charges ranging from 20 pC to 2 nC. Comparison of the measured emittances and longitudinal current profiles to optimized 3D space charge simulations yields excellent agreement for bunch charges up to 1 nC when the measured laser distribution is used to generate initial particle distributions in simulation. Analysis of the scaling of the measured emittance with bunch charge shows that the emittance scales roughly as the square root of the bunch charge up to 300 pC, above which the trend becomes linear. These measurements demonstrate that the Cornell photoinjector can produce cathode emittance dominated beams meeting the emittance and peak current specifications for next generation free electron lasers operating at high repetition rate. In addition, the 1 and 2 nC results are relevant to the electron ion collider community.

  7. Offshore wind farm Bockstigen - installation and operation experience

    Energy Technology Data Exchange (ETDEWEB)

    Lange, B. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Aagaard, E.; Andersen, P.E.; Moeller, A. [Wind World af 1997 A/S, Noerresundby (Denmark); Niklasson, S.; Wickman, A. [Vindkompaniet, Degerhamn (Sweden)

    1999-03-01

    The first Swedish offshore wind farm Bockstigen is operating since March 1998 near the coast of Gotland. It was built as a demonstration project by the Swedish wind farm developer Vindkompaniet, the Danish wind turbine manufacturer Wind World and the British offshore construction company Seacore and partly funded under the EU-THERMIE program. Bockstigen is the fourth offshore wind farm world-wide. While at previous wind farms the main emphasis laid on the demonstration of the technical feasibility of offshore wind energy utilisation, Bockstigen was aimed at demonstrating its economic viability. A number of innovative concepts have been employed: Drilled monopile foundations were used to save costs. A new construction method has been applied making use of a jack-up barge. A new control system for the turbines and the whole wind farm was developed, which controls the maximum power output, the flicker and the reactive power consumption depending on online measurements of the actual grid state. These new developments have been implemented successfully. A substantial cost reduction compared to previous offshore projects could be achieved. (au)

  8. Operating experiences and test results of six cold helium compressors

    Science.gov (United States)

    Brown, D. P.; Gibbs, R. J.; Schlafke, A. P.; Sondericker, J. H.; Wu, K. C.

    Three small and three large cold helium centrifugal compressors have been operated at Brookhaven National Laboratory between 1981 and 1986. The three small cold compressors have been installed on a 1000 W refrigerator for testing a string of superconducting magnets and for R and D purposes. The three large units are components of the BNL 24.8 KW refrigerator to be used to provide cooling for the RHIC project. These compressors are used either to circulate a large amount of supercritical helium through a group of magnets or to pump on the helium bath to reduce temperature in the system. One small circulating compressor tested employs tilting-pad gas bearings and is driven by a DC motor. The two small cold vacuum pumps tested use oil bearings and are driven by oil turbines. The three large oil-bearing cold compressors are driven by DC motors through a gear box. A unique feature of the large vacuum pump is the combination of two pumps with a total of four stages on the same shaft. The adiabatic efficiencies are found to be 57% for the large vacuum pumps and close to 50% for the large circulating compressor. Good overall reliability has been experienced.

  9. Operating experience from Swedish nuclear power plants, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    From a safety point of view, 2000 was - as were previous years - satisfactory. Total electricity production from the Swedish nuclear power stations amounted to 54.2 TWh, which was over 20% less than the 70.2 TWh produced in 1999. The two main reasons for the reduction were the closure of Barsebaeck 1 on 1st December 1999, and the cutback in output from all reactors due to the particularly good availability of hydro power in 2000. Some reactors were even shut down completely as a result of the low power demand, which has not happened previously. The quantity of unutilised production capacity as a result of these reductions amounted to 11.6 TWh. Costdown operation prior to the annual overhaul shutdowns, which makes better use of the fuel, represented a further 2.1 TWh of unutilised capacity. The average energy availability of the three PWRs at Ringhals was 82.0%, while that of the eight BWRs was 84.2%. Forsmark 3, Ringhals 3 and Oskarshamn 3 all had average availabilities of over 90%. Of five events with safety implications that occurred in the plants during the year, three are described under Special Reporting. One of them relates to the crack indications in welds that were found in an American PWR in the autumn, and which were subsequently also found in Ringhals 4.

  10. The NASA Robotic Conjunction Assessment Process: Overview and Operational Experiences

    Science.gov (United States)

    Newman, Lauri Kraft

    2008-01-01

    Orbital debris poses a significant threat to spacecraft health and safety. Recent events such as China's anti-satellite test and the Breeze-M rocket explosion have led to an even greater awareness and concern in the satellite community. Therefore, the National Aeronautics and Space Administration (NASA) has established requirements that routine conjunction assessment screening shall be performed for all maneuverable spacecraft having perigees less than 2000 km or within 200 km of geosynchronous altitude. NASA s Goddard Space Flight Center (GSFC) has developed an operational collision risk assessment process to protect NASA s high-value unmanned (robotic) assets that has been in use since January 2005. This paper provides an overview of the NASA robotic conjunction assessment process, including descriptions of the new tools developed to analyze close approach data and of the risk mitigation strategies employed. In addition, statistical data describing the number of conjunctions experienced are presented. A debris avoidance maneuver performed by Aura in June of 2008 is described in detail to illustrate the process.

  11. The LHC RF System - Experience with beam operation

    CERN Document Server

    Baudrenghien, P; Argyropoulos, T; Arnaudon, L; Bohl, T; Brunner, O; Butterworth, A; Ciapala, E; Dubouchet, F; Esteban-Muller, J; Ferreira-Bento, J; Glenat, D; Hagmann, G; Hofle, W; Jacquet, D; Jaussi, M; Kouzue, S; Landre, D; Lollierou, J; Maesen, P; Martinez Yanez, P; Mastoridis, T; Molendijk, J; Nicou, C; Noirjean, J; Papotti, G; Pashnin, A; Pechaud, G; Pradier, J; Sanchez-Quesada, J; Shaposhnikova, E; Schokker, M; Stellfeld, D; Tuckmantel, J; Valuch, D; Wehrle, U; Weierud, F

    2011-01-01

    The LHC RF system commissioning with beam and physics operation for 2010 and 2011 are presented. It became clear in early 2010 that RF noise was not a lifetime limiting factor: the crossing of the much feared 50 Hz line for the synchrotron frequency did not affect the beam. The broadband LHC RF noise is reduced to a level that makes its contribution to beam diffusion in physics well below that of Intra Beam Scattering. Capture losses are also under control, at well below 0.5%. Longitudinal emittance blow-up, needed for ramping of the nominal intensity single bunch, was rapidly commissioned. In 2011, 3.5 TeV/beam physics has been conducted with 1380 bunches at 50 ns spacing, corresponding to 55% of the nominal current. The intensity per bunch (1.3 1011 p) is significantly above the nominal 1.15 1011. By August 2011 the LHC has accumulated more than 2 fb-1 integrated luminosity, well in excess of the 1 fb-1 target for 2011.

  12. Operating experience review - Ventilation systems at Department of Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Office of Special Projects (DP-35), formerly Office of Self-Assessment (DP-9), analyzed occurrences caused by problems with equipment and material and recommended the following systems for an in-depth study: (1) Selective Alpha Air Monitor (SAAM), (2) Emergency Diesel Generator, (3) Ventilation System, (4) Fire Alarm System. Further, DP-35 conducted an in-depth review of the problems associated with SAAM and with diesel generators, and made several recommendations. This study focusses on ventilation system. The intent was to determine the causes for the events related to these system that were reported in the Occurrence Reporting and Processing System (ORPS), to identify components that failed, and to provide technical information from the commercial and nuclear industries on the design, operation, maintenance, and surveillance related to the system and its components. From these data, sites can develop a comprehensive program of maintenance management, including surveillance, to avoid similar occurrences, and to be in compliance with the following DOE orders.

  13. DIII-D Research Operations annual report to the US Department of Energy, October 1, 1990--September 30, 1991. Magnetic Fusion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T.C.; Evans, T.E. [eds.

    1992-03-01

    This report discusses the following topics on Doublet-3 research operations: DIII-D Program Overview; Boundary Plasma Research Program/Scientific Progress; Radio Frequency Heating and Current Drive; Core Physics; DIII-D Operations; Program Development; Support Services; ITER Contributions; Burning Plasma Experiment Contributions; and Collaborative Efforts.

  14. Experiments on the Impact of language Problems in the Multi-cultural Operation of NPPs' Emergency Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seongkeun; Kim, Taehoon; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of); Ha, Jun Su [KUSTAR, Abu Dhabi (United Arab Emirates)

    2016-10-15

    In 2010, The Korea Electric Power Corporation (KEPCO) was awarded a multi-billion dollar bid to construct the first nuclear power plant in Barakah, UAE. One must keep in mind however, that with technology transfer and international cooperation comes a host of potential problems arising from cultural differences such as language, everyday habitudes and workplace expectation. As of now, how problematic these potential issues may become is unknown. Of the aforementioned factors, communication is perhaps of foremost importance. We investigated UAE culture-related issues through analysis of operating experience reviews (OERs) and came to the conclusion that the language barrier needed utmost attention. Korean nuclear power plant operators will work in UAE and will operate the NPPs with operators and managers of other nationalities as well. The purpose of this paper is firstly to confirm that operators are put under mental stress, and secondly to demonstrate the decline in accuracy when they must work in English. Reducing human error is quite important to make nuclear power plants safer. As the mental workload of human operator is increased, the probability of a human error occurring also increases. It will have a negative influence on the plant’s safety. There are many factors which can potentially increase mental workload. We focused on communication problem which is a key factor of increasing mental workload because many Korean operators will work in UAE nuclear power plants and may work together with UAE operators. From these experiments we compared how performance of both Korean and UAE subjects were decreased when they use English. We designed experimental methods to be able to check this problem qualitatively and quantitatively. We analyzed four factors to find the communication problems from the experiments which are accuracy, efficiency, NASA-TLX, and brain wave. Accuracy, efficiency, brain wave are quantitative factors, and NASA-TLX is qualitative factor. To

  15. Osteoclast Fusion

    DEFF Research Database (Denmark)

    Marie Julie Møller, Anaïs; Delaissé, Jean-Marie; Søe, Kent

    2017-01-01

    suggesting that fusion partners may specifically select each other and that heterogeneity between the partners seems to play a role. Therefore, we set out to directly test the hypothesis that fusion factors have a heterogenic involvement at different stages of nuclearity. Therefore, we have analyzed...... on the nuclearity of fusion partners. While CD47 promotes cell fusions involving mono-nucleated pre-osteoclasts, syncytin-1 promotes fusion of two multi-nucleated osteoclasts, but also reduces the number of fusions between mono-nucleated pre-osteoclasts. Furthermore, CD47 seems to mediate fusion mostly through......Investigations addressing the molecular keys of osteoclast fusion are primarily based on end-point analyses. No matter if investigations are performed in vivo or in vitro the impact of a given factor is predominantly analyzed by counting the number of multi-nucleated cells, the number of nuclei per...

  16. The Ricor K508 cryocooler operational experience on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dean L.; Lysek, Mark J.; Morookian, John Michael [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-01-29

    The Mars Science Laboratory (Curiosity) landed successfully on Mars on August 5, 2012, eight months after launch. The chosen landing site of Gale Crater, located at 4.5 degrees south latitude, 137.4 degrees east longitude, has provided a much more benign environment than was originally planned for during the critical design and integration phases of the MSL Project when all possible landing sites were still being considered. The expected near-surface atmospheric temperatures at the Gale Crater landing site during Curiosity's primary mission (1 Martian year or 687 Earth days) are from −90°C to 0°C. However, enclosed within Curiosity's thermal control fluid loops the Chemistry and Mineralogy (CheMin) instrument is maintained at approximately +20°C. The CheMin instrument uses X-ray diffraction spectroscopy to make precise measurements of mineral constituents of Mars rocks and soil. The instrument incorporated the commercially available Ricor K508 Stirling cycle cryocooler to cool the CCD detector. After several months of brushing itself off, stretching and testing out its subsystems, Curiosity began the exploration of the Mars surface in October 2012. The CheMin instrument on the Mars Science Laboratory (MSL) received its first soil sample from Curiosity on October 24, and successfully analyzed its first soil sample. After a brief review of the rigorous Ricor K508 cooler qualification tests and life tests based on the original MSL environmental requirements this paper presents final pre-launch instrument integration and testing results, and details the operational data of the CheMin cryocooler, providing a snapshot of the resulting CheMin instrument analytical data.

  17. Operating Experience from two new Biomass Fired FBC-Plants

    Energy Technology Data Exchange (ETDEWEB)

    Bolhar-Nordenkampf, M.; Tschanun, I.; Kaiser, S. [Austrian Energy and Environment AG, Vienna (Austria)

    2006-07-15

    The use of renewable fuels in industrial power plants is rising continuously. The driving forces are the Kyoto protocol for CO{sub 2} reduction resulting in government support for green power electricity, substitution of imported primary energy and multi-fuel concepts together with RDF. Biomass fuel exists in various forms, traditionally as wood, bark, harvesting residues sewage sludge and organic waste. A favourable combustion technology is Austrian Energy's 'ECOFLUID' bubbling fluidized bed. Advantageous is the principle of a substoichiometric bed operation which allows bed temperature control in the range between 650 deg C - 850 deg C. Therefore, also fuel with low ash melting temperature can be burned. The applied staged combustion concept results in a homogenous temperature profile in the furnace and first pass of the boiler and thus low NO{sub x} emission. One new plant, owned by Energie AG in Timelkam/Austria has been commissioned in winter 2005. The main fuel of this 57 t/h boiler is bark, wood residues and waste wood up to 30% of the total thermal capacity. Grinding dust and saw dust can be co-fired, too. Optionally, sludge and animal wastes can be fired. The boiler is designed for 42 barg at live steam temperature of 440 deg C. The other new 30 MW{sub th} plant, owned by M-real Hallein AG in Hallein/Austria has been commissioned in winter 2005, too. The boiler is fired with wood chips, bark, rejects and other paper mill residues and furthermore it is able to burn the sludge of the mills own waste water treatment plant. Beside the boiler works as a post combustion system for exhaust gases from a 1 MW Biogas Otto-Engine, or alternatively it is able to burn the biogas directly. The boiler is designed for 61 barg at live steam temperature of 450 deg C.

  18. Status of Safety and Environmental Activities in the US Fusion Program

    Energy Technology Data Exchange (ETDEWEB)

    Petti, D A; Reyes, S; Cadwallader, L C; Latkowski, J F

    2004-09-02

    This paper presents an overview of recent safety efforts in both magnetic and inertial fusion energy. Safety has been a part of fusion design and operations since the inception of fusion research. Safety research and safety design support have been provided for a variety of experiments in both the magnetic and inertial fusion programs. The main safety issues are reviewed, some recent safety highlights are discussed and the programmatic impacts that safety research has had are presented. Future directions in the safety and environmental area are proposed.

  19. Status of Safety and Environmental Activities in the US Fusion Program

    Energy Technology Data Exchange (ETDEWEB)

    David A. Petti; Susana Reyes; Lee C. Cadwallader; Jeffery F. Latkowski

    2004-09-01

    This paper presents an overview of recent safety efforts in both magnetic and inertial fusion energy. Safety has been a part of fusion design and operations since the inception of fusion research. Safety research and safety design support have been provided for a variety of experiments in both the magnetic and inertial fusion programs. The main safety issues are reviewed, some recent safety highlights are discussed and the programmatic impacts that safety research has had are presented. Future directions in the safety and environmental area are proposed.

  20. Lesson Learned from the Recent Operating Experience of Domestic Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Ju; Kim, Min-Chull; Koo, Bon-Hyun; Kim, Sang-Jae; Lee, Kyung-Won; Kim, Ji-Tae; Lee, Durk-Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-10-15

    According to the public concerns, it seems that one of the main missions of a nuclear regulatory body is to collect operational experiences from various nuclear facilities, and to analyze their follow-up information. The extensive use of lessons learned from operating experiences to back fit safety systems, improve operator training and emergency procedures, and to focus more attention on human factors, safety culture and quality management systems are also desired. Collecting operational experiences has been mainly done regarding the incidents and major failures of components (so called 'event'), which usually demands lots of regulatory resources. This paper concentrates on new information, i.e. lesson learned from recent investigation results of domestic events which contain 5 years' experience. This information can induce many insights for improving operational safety of nuclear power plants (NPPs)

  1. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  2. Undergraduate surgical nursing preparation and guided operating room experience: A quantitative analysis.

    Science.gov (United States)

    Foran, Paula

    2016-01-01

    The aim of this research was to determine if guided operating theatre experience in the undergraduate nursing curricula enhanced surgical knowledge and understanding of nursing care provided outside this specialist area in the pre- and post-operative surgical wards. Using quantitative analyses, undergraduate nurses were knowledge tested on areas of pre- and post-operative surgical nursing in their final semester of study. As much learning occurs in nurses' first year of practice, participants were re-tested again after their Graduate Nurse Program/Preceptorship year. Participants' results were compared to the model of operating room education they had participated in to determine if there was a relationship between the type of theatre education they experienced (if any) and their knowledge of surgical ward nursing. Findings revealed undergraduates nurses receiving guided operating theatre experience had a 76% pass rate compared to 56% with non-guided or no experience (p < 0.001). Graduates with guided operating theatre experience as undergraduates or graduate nurses achieved a 100% pass rate compared to 53% with non-guided or no experience (p < 0.001). The research informs us that undergraduate nurses achieve greater learning about surgical ward nursing via guided operating room experience as opposed to surgical ward nursing experience alone.

  3. Routing Algorithm Based on Triangle Module Fusion Operator in WSN%WSN中基于三角模融合算子的路由算法

    Institute of Scientific and Technical Information of China (English)

    唐良瑞; 冯森

    2012-01-01

    EEPB算法建链时引入的距离门限值具有不确定性,取值不当会导致相邻节点间产生长链,并且没有最优化链首选择等问题.为此,提出基于三角模融合算子的EETMO算法.以节点剩余能量与节点到基站的距离2个特征参量为依据建立隶属度函数,利用三角模融合算子进行融合判决,根据判决结果选取链首.实验结果表明,该算法在平衡节点能耗和延长网络最大生命周期方面,性能优于EEPB算法.%EEPB is a chain-based protocol which has certain deficiencies including the uncertainty of threshold adopted when building chain, the inevitability of long link when valuing threshold inappropriately and the non-optimal election of leader node. Aiming at these problems, an Energy-efficient algorithm based on Triangle Module fusion Operator(EETMO) is proposed. EETMO adopts new method to build chain, and establishes membership functions of nodes residual energy and distance between a node and base station respectively, uses the fusion method of triangle module operator to determine the leader node selection. Experimental results show that EETMO has a better performance than EEPB on balancing energy consumption and prolonging lifetime of Wireless Sensor Network(WSN).

  4. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum...

  5. Leak tightness tests on actively cooled plasma facing components: Lessons learned from Tore Supra experience and perspectives for the new fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chantant, M., E-mail: michel.chantant@cea.fr; Lambert, R.; Gargiulo, L.; Hatchressian, J.-C.; Guilhem, D.; Samaille, F.; Soler, B.

    2015-10-15

    Highlights: • Test procedures for the qualification of the tightness of actively cooled plasma facing components were defined. • The test is performed after the component manufacturing and before its set-up in the vacuum vessel. • It allows improving the fusion machine availability. • The lessons of tests over 20 years at Tore Supra are presented. - Abstract: The fusion machines under development or construction (ITER, W7X) use several hundreds of actively cooled plasma facing components (ACPFC). They are submitted to leak tightness requirements in order to get an appropriate vacuum level in the vessel to create the plasma. During the ACPFC manufacturing and before their installation in the machine, their leak tightness performance must be measured to check that they fulfill the vacuum requirements. A relevant procedure is needed which allows to segregate potential defects. It must also be optimized in terms of test duration and costs. Tore Supra, as an actively cooled Tokamak, experienced several leaks on ACPFCs during the commissioning and during the operation of the machine. A test procedure was then defined and several test facilities were set-up. Since 1990 the tightness of all the new ACPFCs is systematically tested before their installation in Tore Supra. During the qualification test, the component is set up in a vacuum test tank, and its cooling circuits are pressurized with helium. It is submitted to 3 temperature cycles from room temperature up to the baking temperature level in Tore Supra (200 °C) and two pressurization tests are performed (6 MPa at room temperature and 4 MPa at 200 °C) at each stage. At the end of the last cycle when the ACPFC is at room temperature and pressurized with helium at 6 MPa, the measured leak rate must be lower than 5 × 10{sup −11} Pa m{sup 3} s{sup −1}, the pressure in the test tank being <5 × 10{sup −5} Pa. A large experience has been gained on ACPFCs with carbon parts on stainless steel and Cu

  6. (Cd,Mn)Te detectors for characterization of x-ray emissions generated during laser-driven fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cross,A.S.; Knauer, J. P.; Mycielski, A.; Kochanowska, D.; Wiktowska-Baran, M.; Jakiela, R.; Domagala, J.; Cui, Y.; James, R.; Sobolewski, R.

    2008-10-19

    We present our measurements of (Cd,Mn)Te photoconductive detectors (PCDs), fabricated for the goal of measuring both the temporal and spectral dependences of X-ray emissions generated from laser-illuminated targets during the inertial confinement fusion experiments. Our Cd{sub 1-x}Mn{sub x}Te (x = 0.05) single crystals, doped with V, were grown using a vertical Bridgman method and, subsequently, annealed in Cd for the highest resistivity ({approx}10{sup 10} {Omega}cm) and a good mobility-lifetime product ({approx}10{sup -3} cm{sup 2}/V). The 1-mm- and 2.3-mm-thick detectors were placed in the same housing as two 1-mm-thick diamond PCDs. All devices were pre-screened by a 7.6-mm-thick Be X-ray filter with a frequency cutoff of 1 keV. The incident shots from the OMEGA laser were 1-ns-long square pulses with energies ranging from 2.3 kJ to 22.6 kJ, and the PCDs were biased with 5000 V/cm. The response amplitudes and rise times of our (Cd,Mn)Te PCDs were comparable with the diamond detector performance, while the decay times were 4 to 10 times longer and in the 2-5 ns range. We observed two X-ray emission events separated by 1.24 ns. The first was identified as caused by heating of the target and creating a hot corona, while the second one was from the resulting compressed core. For comparison purposes, our testing was performed using {approx}1 keV X-ray photons, optimal for the diamond PCD. According to the presented simulations, however, at X-ray energies >10 keV diamond absorption efficiency drops to <50%, whereas for (Cd,Mn)Te the drop occurs at {approx}100 keV with near perfect, 100% absorption, up to 50 keV.

  7. Storage-ring ionization and recombination experiments with multiply charged ions relevant to astrophysical and fusion plasmas

    CERN Document Server

    Schippers, Stefan

    2011-01-01

    Past and ongoing research activities at the Heidelberg heavy-ion storage-ring TSR are reviewed which aim at providing accurate absolute rate coefficients and cross sections of atomic collision processes for applications in astrophysics and magnetically confined fusion. In particular, dielectronic recombination and electron impact ionization of iron ions are discussed as well as dielectronic recombination of tungsten ions.

  8. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  9. EDITORIAL: Safety aspects of fusion power plants

    Science.gov (United States)

    Kolbasov, B. N.

    2007-07-01

    &E potential of fusion can be attained by prudent materials selection, judicious design choices, and integration of safety requirements into the design of the facility. To achieve this goal, S&E research is focused on understanding the behaviour of the largest sources of radioactive and hazardous materials in a fusion facility, understanding how energy sources in a fusion facility could mobilize those materials, developing integrated state-of-the-art S&E computer codes and risk tools for safety assessment, and evaluating and improving fusion facility design in terms of accident safety, worker safety, and waste disposal. There are three papers considering safety issues of the test blanket modules (TBM) producing tritium to be installed in ITER. These modules represent different concepts of demonstration fusion power facilities (DEMO). L. Boccaccini et al (Germany) analyses the possibility of jeopardizing the ITER safety under specific accidents in the European helium-cooled pebble-bed TBM, e.g. pressurization of the vacuum vessel (VV), hydrogen production from the Be-steam reaction, the possible interconnection between the port cell and VV causing air ingress. Safety analysis is also presented for Chinese TBM with a helium-cooled solid breeder to be tested in ITER by Z. Chen et al (China). Radiological inventories, afterheat, waste disposal ratings, electromagnetic characteristics, LOCA and tritium safety management are considered. An overview of a preliminary safety analysis performed for a US proposed TBM is presented by B. Merrill et al (USA). This DEMO relevant dual coolant liquid lead-lithium TBM has been explored both in the USA and EU. T. Pinna et al (Italy) summarize the six-year development of a failure rate database for fusion specific components on the basis of data coming from operating experience gained in various fusion laboratories. The activity began in 2001 with the study of the Joint European Torus vacuum and active gas handling systems. Two years later the

  10. Prevalence of adjacent segment disc degeneration in patients undergoing anterior cervical discectomy and fusion based on pre-operative MRI findings.

    Science.gov (United States)

    Lundine, Kristopher M; Davis, Gavin; Rogers, Myron; Staples, Margaret; Quan, Gerald

    2014-01-01

    Anterior cervical discectomy and fusion (ACDF) is a widely accepted surgical treatment for symptomatic cervical spondylosis. Some patients develop symptomatic adjacent segment degeneration, occasionally requiring further treatment. The cause and prevalence of adjacent segment degeneration and disease is unclear at present. Proponents for motion preserving surgery such as disc arthroplasty argue that this technique may decrease the "strain" on adjacent discs and thus decrease the incidence of symptomatic adjacent segment degeneration. The purpose of this study was to assess the pre-operative prevalence of adjacent segment degeneration in patients undergoing ACDF. A database review of three surgeons' practice was carried out to identify patients who had undergone a one- or two-level ACDF for degenerative disc disease. Patients were excluded if they were operated on for recent trauma, had an inflammatory arthropathy (for example, rheumatoid arthritis), or had previous spine surgery. The pre-operative MRI of each patient was reviewed and graded using a standardised methodology. One hundred and six patient MRI studies were reviewed. All patients showed some evidence of intervertebral disc degeneration adjacent to the planned operative segment(s). Increased severity of disc degeneration was associated with increased age and operative level, but was not associated with sagittal alignment. Disc degeneration was more common at levels adjacent to the surgical level than at non-adjacent segments, and was more severe at the superior adjacent level compared with the inferior adjacent level. These findings support the theory that adjacent segment degeneration following ACDF is due in part to the natural history of cervical spondylosis.

  11. Operation experience of the Indonesian multipurpose research reactor RSG-GAS

    Energy Technology Data Exchange (ETDEWEB)

    Hastowo, Hudi; Tarigan, Alim [Multipurpose Reactor Center, National Nuclear Energy Agency of the Republic of Indonesia (PRSG-BATAN), Kawasan PUSPIPTEK Serpong, Tangerang (Indonesia)

    1999-08-01

    RSG-GAS is a multipurpose research reactor with nominal power of 30 MW, operated by BATAN since 1987. The reactor is an open pool type, cooled and moderated with light water, using the LEU-MTR fuel element in the form of U{sub 3}O{sub 8}-Al dispersion. Up to know, the reactor have been operated around 30,000 hours to serve the user. The reactor have been utilized to produce radioisotope, neutron beam experiments, irradiation of fuel element and its structural material, and reactor physics experiments. This report will explain in further detail concerning operational experience of this reactor, i.e. reactor operation data, reactor utilization, research program, technical problems and it solutions, plant modification and improvement, and development plan to enhance better reactor operation performance and its utilization. (author)

  12. Onboard Autonomy and Ground Operations Automation for the Intelligent Payload Experiment (IPEX) CubeSat Mission

    Science.gov (United States)

    Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Tran, Daniel; Bellardo, John; Williams, Austin; Piug-Suari, Jordi; Crum, Gary; Flatley, Thomas

    2012-01-01

    The Intelligent Payload Experiment (IPEX) is a cubesat manifested for launch in October 2013 that will flight validate autonomous operations for onboard instrument processing and product generation for the Intelligent Payload Module (IPM) of the Hyperspectral Infra-red Imager (HyspIRI) mission concept. We first describe the ground and flight operations concept for HyspIRI IPM operations. We then describe the ground and flight operations concept for the IPEX mission and how that will validate HyspIRI IPM operations. We then detail the current status of the mission and outline the schedule for future development.

  13. Short-radius horizontal well re-entry learning curve: prize, cost and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Boote, K. [Ocelot Energy Inc., Calgary, AB (Canada); MacDonald, R. [Lauron Engineering Ltd, Calgary, AB (Canada)

    1997-12-01

    Six mature vertical wells in Alberta belonging to Ocelot Energy Inc., were reentered and drilled horizontally. Experiences gained, the modifications made to the drilling program and the rewards in the form of incremental oil, were discussed. Details of pre- and post-performance, operational experiences with exiting the casing, building the curve, overbalance versus underbalanced drilling, motors, directional equipment, setting liners, remedial workovers and the cost of the operation were part of the discussion.

  14. Assessment of LWR piping design loading based on plant operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, P. O.

    1980-08-01

    The objective of this study has been to: (1) identify current Light Water Reactor (LWR) piping design load parameters, (2) identify significant actual LWR piping loads from plant operating experience, (3) perform a comparison of these two sets of data and determine the significance of any differences, and (4) make an evaluation of the load representation in current LWR piping design practice, in view of plant operating experience with respect to piping behavior and response to loading.

  15. Calibration of new batches and a study of applications of nuclear track detectors under the harsh conditions of nuclear fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Malinowska, A., E-mail: a.malinowska@ncbj.gov.pl [National Centre for Nuclear Research, Andrzeja Soltana 7 Str., 05-400 Otwock (Poland); Szydlowski, A.; Jaskola, M.; Korman, A.; Malinowski, K.; Kuk, M. [National Centre for Nuclear Research, Andrzeja Soltana 7 Str., 05-400 Otwock (Poland)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Each new batch of PM-355 material should be carefully calibrated. Black-Right-Pointing-Pointer The detectors heated at a temperature higher than 100 Degree-Sign C demonstrate v nearly equal to 1. Black-Right-Pointing-Pointer The dependence of V{sub B} on the temperature is similar to the dependence of V{sub B} on the dose of electron and gamma radiation. Black-Right-Pointing-Pointer The aging effect of these materials also has a significant influence on the track diameter. - Abstract: This paper describes calibration studies of PM-355 detectors manufactured at different times in order to compare their sensitivity to the investigated ions. These studies were motivated by the application of solid-state nuclear track detectors (SSNTDs) in fusion experiments to measure energetic ions escaping from high-temperature plasmas. The CR-39 detector and its new versions such as PM-355, PM-500, PM-600 have been examined for several years at our institute. The PM-355 plastic appeared to be the best, especially for the detection of light ions. However, to use these detectors optimally, especially in spectroscopic measurements, each new batch of PM-355 material should be carefully calibrated. In high temperature plasma experiments the detectors operate under harsh conditions of high temperature, heat impact, intense X-ray, neutron and fast electron radiation. In order to evaluate the effect of these conditions on the crater formation process, some of the {alpha} particle- and proton-irradiated PM-355 detector samples were heated in an oven and then etched and scanned. Other alpha- and proton-irradiated samples were exposed to {gamma} and electron radiation of doses varying from 100 to 2000 kGy. The irradiated samples were then etched in steps and the bulk etching rate v{sub B} of the PM-355 material was determined. The craters induced by the projectiles in both heated and {gamma} and electron irradiated samples differ considerably from the

  16. Flight Technical Error Analysis of the SATS Higher Volume Operations Simulation and Flight Experiments

    Science.gov (United States)

    Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.

  17. Improvement in performance and operational experience of 14 UD Pelletron Accelerator Facility, BARC–TIFR

    Indian Academy of Sciences (India)

    P V Bhagwat

    2002-11-01

    14 UD Pelletron Accelerator Facility at Mumbai has been operational since 1989. The project MEHIA (medium energy heavy ion accelerator) started in 1982 and was formally inaugurated on 30th December 1988. Since then the accelerator has been working round the clock. Improvement in accelerator performance and operational experience are described.

  18. Function Transfer in Human Operant Experiments: The Role of Stimulus Pairings

    Science.gov (United States)

    Tonneau, Francois; Gonzalez, Carmen

    2004-01-01

    Although function transfer often has been studied in complex operant procedures (such as matching to sample), whether operant reinforcement actually produces function transfer in such settings has not been established. The present experiments, with high school students as subjects, suggest that stimulus pairings can promote function transfer in…

  19. Experience, training and confidence among small, non-community drinking water system operators in Ontario, Canada.

    Science.gov (United States)

    Pons, Wendy; McEwen, Scott A; Pintar, Katarina; Jones-Bitton, Andria; Young, Ian; Papadopoulos, Andrew

    2014-12-01

    The water operator plays an important role in water safety; however, little published research exists that has examined this role. The purpose of this study was to develop a greater understanding of the experience, existing knowledge, confidence and future training needs of the small, non-community drinking water operator in Ontario in order to help guide future outreach and training opportunities. A cross-sectional telephone survey of 332 small, non-community drinking water operators in Ontario was conducted in July and August 2011. Survey questions pertained to respondents' experience as operators, formal training, perceived importance of water safety issues, confidence in handling water safety issues, and future training needs. Approximately 16% (54/330) of respondents had one year or less experience as a water operator, and 60% (199/332) reported that being a water operator was not a chosen profession. Only 37% (124/332) of operators reported completing operator training. Respondents reported a preference for online training courses or on-site training (compared with a classroom setting). Low training rates, inexperience, and in certain situations, low confidence, among many small water system operators highlight a need to provide continued support to the development of ongoing training opportunities in this population.

  20. Operation experiences with a 30 kV/100 MVA high temperature superconducting cable system

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Däumling, Manfred; Jensen, Kim Høj;

    2004-01-01

    of 1157 A. The operation experiences include over-currents of 6 kA due to faults on peripheral lines, commissioning, servicing and failure responses on the cooling system, continuous 24 h, 7 day per week monitoring and performance of the alarm system. The implications of these experiences for the future...

  1. Development and operation of the prototype photovoltaic residential systems at the Southeast Residential Experiment station

    Energy Technology Data Exchange (ETDEWEB)

    Atmaram, G.H.; Kilfoyle, D.; Ventre, G.G.; Wedekind, D.

    1984-05-01

    The Photovoltaic Southeast Residential Experiment station (SE RES) project, sponsored by the U.S. Department of Energy, began operation in September 1982. As a major part of this project, three prototype utility-interactive photovoltaic residential systems were constructed at the Florida Solar Energy Center (FSEC) in Cape Canaveral, Florida. They became operational in November 1983. Primary consideration was given to investigating a variety of state-of-the-art subsystems (arrays and power conditioners), simplifying array installation and reducing cost. This paper will delineate the development and operational experience gained to date.

  2. Conclusions from 12 Years Operational Experience of the Cryoplants for the Superconducting Magnets of the LEP Experiments

    CERN Document Server

    Barth, K; Delikaris, D; Passardi, Giorgio

    2002-01-01

    The Large Electron Positron Collider (LEP) has ended its last physics run in November 2000, and it is at present being dismantled to liberate the tunnel for the Large Hadron Collider (LHC) project to be completed by end of 2005. The cryogenic systems for the superconducting solenoid and focusing quadrupoles for the two LEP experiments, ALEPH and DELPHI, each supplying a cooling power of 800 W/4.5 K entropy equivalent, have accumulated more then 100'000 hours of running time. The paper summarises the 12 years cryogenic experience in the various operating modes: cool-down, steady state, recovery after energy fast dump, utilities failures and warm-up of the superconducting magnets. The detailed operation statistics is presented and compared to the other CERN cryogenic systems. Emphasis is given to the technical analysis of the fault conditions and of their consequences on the helium refrigeration production time in view of the future operation of the LHC cryogenics.

  3. Operational plans for life science payloads - From experiment selection through postflight reporting

    Science.gov (United States)

    Mccollum, G. W.; Nelson, W. G.; Wells, G. W.

    1976-01-01

    Key features of operational plans developed in a study of the Space Shuttle era life science payloads program are presented. The data describes the overall acquisition, staging, and integration of payload elements, as well as program implementation methods and mission support requirements. Five configurations were selected as representative payloads: (a) carry-on laboratories - medical emphasis experiments, (b) mini-laboratories - medical/biology experiments, (c) seven-day dedicated laboratories - medical/biology experiments, (d) 30-day dedicated laboratories - Regenerative Life Support Evaluation (RLSE) with selected life science experiments, and (e) Biomedical Experiments Scientific Satellite (BESS) - extended duration primate (Type I) and small vertebrate (Type II) missions. The recommended operational methods described in the paper are compared to the fundamental data which has been developed in the life science Spacelab Mission Simulation (SMS) test series. Areas assessed include crew training, experiment development and integration, testing, data-dissemination, organization interfaces, and principal investigator working relationships.

  4. Operational plans for life science payloads - From experiment selection through postflight reporting

    Science.gov (United States)

    Mccollum, G. W.; Nelson, W. G.; Wells, G. W.

    1976-01-01

    Key features of operational plans developed in a study of the Space Shuttle era life science payloads program are presented. The data describes the overall acquisition, staging, and integration of payload elements, as well as program implementation methods and mission support requirements. Five configurations were selected as representative payloads: (a) carry-on laboratories - medical emphasis experiments, (b) mini-laboratories - medical/biology experiments, (c) seven-day dedicated laboratories - medical/biology experiments, (d) 30-day dedicated laboratories - Regenerative Life Support Evaluation (RLSE) with selected life science experiments, and (e) Biomedical Experiments Scientific Satellite (BESS) - extended duration primate (Type I) and small vertebrate (Type II) missions. The recommended operational methods described in the paper are compared to the fundamental data which has been developed in the life science Spacelab Mission Simulation (SMS) test series. Areas assessed include crew training, experiment development and integration, testing, data-dissemination, organization interfaces, and principal investigator working relationships.

  5. 3D Image Fusion to Localise Intercostal Arteries During TEVAR.

    Science.gov (United States)

    Koutouzi, G; Sandström, C; Skoog, P; Roos, H; Falkenberg, M

    2017-01-01

    Preservation of intercostal arteries during thoracic aortic procedures reduces the risk of post-operative paraparesis. The origins of the intercostal arteries are visible on pre-operative computed tomography angiography (CTA), but rarely on intra-operative angiography. The purpose of this report is to suggest an image fusion technique for intra-operative localisation of the intercostal arteries during thoracic endovascular repair (TEVAR). The ostia of the intercostal arteries are identified and manually marked with rings on the pre-operative CTA. The optimal distal landing site in the descending aorta is determined and marked, allowing enough length for an adequate seal and attachment without covering more intercostal arteries than necessary. After 3D/3D fusion of the pre-operative CTA with an intra-operative cone-beam CT (CBCT), the markings are overlaid on the live fluoroscopy screen for guidance. The accuracy of the overlay is confirmed with digital subtraction angiography (DSA) and the overlay is adjusted when needed. Stent graft deployment is guided by the markings. The initial experience of this technique in seven patients is presented. 3D image fusion was feasible in all cases. Follow-up CTA after 1 month revealed that all intercostal arteries planned for preservation, were patent. None of the patients developed signs of spinal cord ischaemia. 3D image fusion can be used to localise the intercostal arteries during TEVAR. This may preserve some intercostal arteries and reduce the risk of post-operative spinal cord ischaemia.

  6. Fusion Studies in Japan

    Science.gov (United States)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  7. Perioperative Surgical Complications and Learning Curve Associated with Minimally Invasive Transforaminal Lumbar Interbody Fusion: A Single-Institute Experience

    OpenAIRE

    Park, Yung; Lee, Soo Bin; Seok, Sang Ok; Jo, Byung Woo; Ha, Joong Won

    2015-01-01

    Background As surgical complications tend to occur more frequently in the beginning stages of a surgeon's career, knowledge of perioperative complications is important to perform a safe procedure, especially if the surgeon is a novice. We sought to identify and describe perioperative complications and their management in connection with minimally invasive transforaminal lumbar interbody fusion (TLIF). Methods We performed a retrospective chart review of our first 124 patients who underwent mi...

  8. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume III

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.

    1984-10-01

    This chapter deals with the analysis and engineering scaling of solid breeded blankets. The limits under which full component behavior can be achieved under changed test conditions are explored. The characterization of these test requirements for integrated testing contributes to the overall test matrix and test plan for the understanding and development of fusion nuclear technology. The second chapter covers the analysis and engineering scaling of liquid metal blankets. The testing goals for a complete blanket program are described. (MOW)

  9. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume III

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.

    1984-10-01

    This chapter deals with the analysis and engineering scaling of solid breeded blankets. The limits under which full component behavior can be achieved under changed test conditions are explored. The characterization of these test requirements for integrated testing contributes to the overall test matrix and test plan for the understanding and development of fusion nuclear technology. The second chapter covers the analysis and engineering scaling of liquid metal blankets. The testing goals for a complete blanket program are described. (MOW)

  10. THE FIRST EXPERIENCE IN USING THE ULTRASOUND AND MAGNETIC RESONANCE IMAGE FUSION TECHNOLOGY IN THE DIAGNOSIS OF PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    V. V. Kapustin

    2014-07-01

    Full Text Available Objective: to study the feasibility of the image fusion technology to choose a target portion for needle biopsy in prostate cancer (PC. Subjects and methods. Ultrasound (US-magnetic resonance imaging (MRI-guided needle biopsies were made in 12 patients. All the patients underwent intravenous bolus-enhanced MRI, then MRI and US images were fused during transrectal ultrasound studies (TRUS and targets were determined to make a needle biopsy. Results. The image fusion technology allows one to concurrently assess MRI and US images in the primary diagnosis of prostate cancer and after radical prostatectomy (RPE. The MRI and transrectal images are compared with a high degree of accuracy, providing the clear positioning of the portions substantially accumulating the MRI contrast agent during real-time TRUS. Conclusion. The MRI-US image fusion procedure enables the choice of the targets to be biopsied both in the primary diagnosis of PC and in its suspected recurrence in patients after RPE. The increased accumulation of a MRI contrast agent is a major criterion for choosing a target portion.

  11. THE FIRST EXPERIENCE IN USING THE ULTRASOUND AND MAGNETIC RESONANCE IMAGE FUSION TECHNOLOGY IN THE DIAGNOSIS OF PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    V. V. Kapustin

    2010-01-01

    Full Text Available Objective: to study the feasibility of the image fusion technology to choose a target portion for needle biopsy in prostate cancer (PC. Subjects and methods. Ultrasound (US-magnetic resonance imaging (MRI-guided needle biopsies were made in 12 patients. All the patients underwent intravenous bolus-enhanced MRI, then MRI and US images were fused during transrectal ultrasound studies (TRUS and targets were determined to make a needle biopsy. Results. The image fusion technology allows one to concurrently assess MRI and US images in the primary diagnosis of prostate cancer and after radical prostatectomy (RPE. The MRI and transrectal images are compared with a high degree of accuracy, providing the clear positioning of the portions substantially accumulating the MRI contrast agent during real-time TRUS. Conclusion. The MRI-US image fusion procedure enables the choice of the targets to be biopsied both in the primary diagnosis of PC and in its suspected recurrence in patients after RPE. The increased accumulation of a MRI contrast agent is a major criterion for choosing a target portion.

  12. Measurements of ion micro-beams in RPI-type discharges and fusion protons in PF-1000 experiments

    Science.gov (United States)

    Malinowska, A.; Malinowski, K.; Skladnik-Sadowska, E.; Sadowski, M. J.; Scholz, M.; Szydlowski, A.; Czaus, K.; Jaskola, M.; Korman, A.; Schmidt, H.

    2006-04-01

    The paper reports on experimental investigation of micro-beams of fast ions emitted from high-current pulse discharges within the RPI-IBIS (Rod Plasma Injector) device in Swierk and the PF-1000 (Plasma-Focus) facility in Warsaw. Time-integrated ion measurements were performed with pinhole cameras equipped with solid-state nuclear track detectors (SSNTDs). Before expositions the SSNTDs were calibrated by means of mono-energetic ion beams and/or Thomson-type parabolas recorded on the detector samples. The ion-pinhole cameras were placed at different angles to the symmetry axes of the investigated facilities. In order to record fast (>3 MeV) protons, which originated from D D nuclear fusion reactions in the PF-1000 facility, the SSNTDs were covered with appropriate Al filters. Time-integrated measurements of the fusion protons were performed for chosen series of PF discharges. The paper presents for the first time detailed maps of the fast proton fluxes, which makes it possible to draw conclusions regarding the spatial distribution of the fusion-proton sources.

  13. Early experience with X-ray magnetic resonance fusion for low-flow vascular malformations in the pediatric interventional radiology suite

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tiffany J. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Keck School of Medicine of the University of Southern California, Los Angeles, CA (United States); Girard, Erin [Siemens Corporation, Corporate Technology, Princeton, NJ (United States); Shellikeri, Sphoorti; Vossough, Arastoo; Ho-Fung, Victor; Cahill, Anne Marie [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Setser, Randolph [Siemens Medical Solutions USA, Inc., Hoffman Estates, IL (United States)

    2016-03-15

    This technical innovation describes our experience using an X-ray magnetic resonance fusion (XMRF) software program to overlay 3-D MR images on real-time fluoroscopic images during sclerotherapy procedures for vascular malformations at a large pediatric institution. Five cases have been selected to illustrate the application and various clinical utilities of XMRF during sclerotherapy procedures as well as the technical limitations of this technique. The cases demonstrate how to use XMRF in the interventional suite to derive additional information to improve therapeutic confidence with regards to the extent of lesion filling and to guide clinical management in terms of intraprocedural interventional measures. (orig.)

  14. Operational Experience with a LHC Collimator Prototype in the CERN SPS

    CERN Document Server

    Redaelli, S; Assmann, R; Dehning, B; Bracco, C; Jonker, M; Masi, A; Losito, R; Sapinski, M; Weiler, T; Zamantzas, C

    2010-01-01

    A full-scale prototype of the Large Hadron Collider (LHC) collimator was installed in 2004 in the CERN Super Proton Synchrotron (SPS) and has been extensively used for beam tests, for control tests and also LHC simulation benchmarking during four years of operation. This operational experience has been extremely valuable in view of the final LHC implementation as well as for estimating the LHC operational scenarios, most notably to establish procedures for the beam-based alignment of the collimators with respect to the circulating beam. These studies were made possible by installing in the SPS a first prototype of the LHC beam loss monitoring system. The operational experience gained at the SPS and the lessons learnt for the LHC operation are presented.

  15. OPERATIONAL EXPERIENCE WITH A LHC COLLIMATOR PROTOTYPE IN THE CERN SPS

    CERN Document Server

    Redaelli, S; Assmann, R; Dehning, B; Bracco, C; Jonker, M; Masi, A; Losito, R; Sapinski, M; Weiler, T; Zamantzas, C

    2009-01-01

    A full-scale prototype of the Large Hadron Collider (LHC) collimator was installed in 2004 in the CERN Super Proton Synchrotron (SPS) and has been extensively used for beam tests, for control tests and also LHC simulation benchmarking during four years of operation. This operational experience has been extremely valuable in view of the final LHC implementation as well as for estimating the LHC operational scenarios, most notably to establish procedures for the beam-based alignment of the collimators with respect to the circulating beam. These studies were made possible by installing in the SPS a first prototype of the LHC beam loss monitoring system. The operational experience gained at the SPS and the lessons learnt for the LHC operation are presented.

  16. Design and optimization of Artificial Neural Networks for the modelling of superconducting magnets operation in tokamak fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Froio, A.; Bonifetto, R.; Carli, S.; Quartararo, A.; Savoldi, L., E-mail: laura.savoldi@polito.it; Zanino, R.

    2016-09-15

    In superconducting tokamaks, the cryoplant provides the helium needed to cool different clients, among which by far the most important one is the superconducting magnet system. The evaluation of the transient heat load from the magnets to the cryoplant is fundamental for the design of the latter and the assessment of suitable strategies to smooth the heat load pulses, induced by the intrinsically pulsed plasma scenarios characteristic of today's tokamaks, is crucial for both suitable sizing and stable operation of the cryoplant. For that evaluation, accurate but expensive system-level models, as implemented in e.g. the validated state-of-the-art 4C code, were developed in the past, including both the magnets and the respective external cryogenic cooling circuits. Here we show how these models can be successfully substituted with cheaper ones, where the magnets are described by suitably trained Artificial Neural Networks (ANNs) for the evaluation of the heat load to the cryoplant. First, two simplified thermal-hydraulic models for an ITER Toroidal Field (TF) magnet and for the ITER Central Solenoid (CS) are developed, based on ANNs, and a detailed analysis of the chosen networks' topology and parameters is presented and discussed. The ANNs are then inserted into the 4C model of the ITER TF and CS cooling circuits, which also includes active controls to achieve a smoothing of the variation of the heat load to the cryoplant. The training of the ANNs is achieved using the results of full 4C simulations (including detailed models of the magnets) for conventional sigmoid-like waveforms of the drivers and the predictive capabilities of the ANN-based models in the case of actual ITER operating scenarios are demonstrated by comparison with the results of full 4C runs, both with and without active smoothing, in terms of both accuracy and computational time. Exploiting the low computational effort requested by the ANN-based models, a demonstrative optimization study

  17. Design and optimization of Artificial Neural Networks for the modelling of superconducting magnets operation in tokamak fusion reactors

    Science.gov (United States)

    Froio, A.; Bonifetto, R.; Carli, S.; Quartararo, A.; Savoldi, L.; Zanino, R.

    2016-09-01

    In superconducting tokamaks, the cryoplant provides the helium needed to cool different clients, among which by far the most important one is the superconducting magnet system. The evaluation of the transient heat load from the magnets to the cryoplant is fundamental for the design of the latter and the assessment of suitable strategies to smooth the heat load pulses, induced by the intrinsically pulsed plasma scenarios characteristic of today's tokamaks, is crucial for both suitable sizing and stable operation of the cryoplant. For that evaluation, accurate but expensive system-level models, as implemented in e.g. the validated state-of-the-art 4C code, were developed in the past, including both the magnets and the respective external cryogenic cooling circuits. Here we show how these models can be successfully substituted with cheaper ones, where the magnets are described by suitably trained Artificial Neural Networks (ANNs) for the evaluation of the heat load to the cryoplant. First, two simplified thermal-hydraulic models for an ITER Toroidal Field (TF) magnet and for the ITER Central Solenoid (CS) are developed, based on ANNs, and a detailed analysis of the chosen networks' topology and parameters is presented and discussed. The ANNs are then inserted into the 4C model of the ITER TF and CS cooling circuits, which also includes active controls to achieve a smoothing of the variation of the heat load to the cryoplant. The training of the ANNs is achieved using the results of full 4C simulations (including detailed models of the magnets) for conventional sigmoid-like waveforms of the drivers and the predictive capabilities of the ANN-based models in the case of actual ITER operating scenarios are demonstrated by comparison with the results of full 4C runs, both with and without active smoothing, in terms of both accuracy and computational time. Exploiting the low computational effort requested by the ANN-based models, a demonstrative optimization study has been

  18. Construction and operation of parallel electric and magnetic field spectrometers for mass/energy resolved multi-ion charge exchange diagnostics on the Tokamak Fusion Test Reactor

    Science.gov (United States)

    Medley, S. S.; Roquemore, A. L.

    1998-07-01

    A novel charge exchange spectrometer using a dee-shaped region of parallel electric and magnetic fields was developed at the Princeton Plasma Physics Laboratory for neutral particle diagnostics on the Tokamak Fusion Test Reactor (TFTR). The E∥B spectrometer has an energy range of 0.5⩽A (amu)E (keV)⩽600 and provides mass-resolved energy spectra of H+, D+, and T+ (or 3He+) ion species simultaneously during a single discharge. The detector plane exhibits parallel rows of analyzed ions, each row containing the energy dispersed ions of a given mass-to-charge ratio. The detector consists of a large area microchannel plate (MCP) which is provided with three rectangular, semicontinuous active area strips, one coinciding with each of the mass rows for detection of H+, D+, and T+ (or 3He+) and each mass row has 75 energy channels. To suppress spurious signals attending operation of the plate in the magnetic fringe field of the spectrometer, the MCP was housed in a double-walled iron shield with a wire mesh ion entrance window. Using an accelerator neutron generator, the MCP neutron detection efficiency was measured to be 1.7×10-3 and 6.4×10-3 counts/neutron/cm2 for 2.5 MeV-DD and 14 MeV-DT neutrons, respectively. The design and calibration of the spectrometer are described in detail, including the effect of MCP exposure to tritium, and results obtained during high performance D-D operation on TFTR are presented to illustrate the performance of the E∥B spectrometer. The spectrometers were not used during D-T plasma operation due to the cost of providing the required radiation shielding.

  19. Optical multiple-image encryption in diffractive-imaging-based scheme using spectral fusion and nonlinear operation.

    Science.gov (United States)

    Qin, Yi; Gong, Qiong; Wang, Zhipeng; Wang, Hongjuan

    2016-11-14

    We report a new method for multiple-image encryption in diffractive-imaging-based encryption (DIBE) scheme. The discrete cosine transformation (DCT) spectra of the primary images are extracted, compacted and then nonlinear-transformed before being sent to the DIBE, where they are encoded into a single intensity pattern. With the help of a suggested phase retrieval algorithm, the original images can be recovered with high quality. Furthermore, due to the introduction of the nonlinear operation, the proposal is demonstrated to be robust to the currently available cryptographic attacks. The proposal probes a new way for multiple-image encryption in DIBE, and its effectiveness and feasibility have been supported by numerical simulations.

  20. Engineering development of a digital replacement protection system at an operating US PWR nuclear power plant: Installation and operational experiences

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.H. [Duke Power Co., Seneca, SC (United States)

    1995-04-01

    The existing Reactor Protection Systems (RPSs) at most US PWRs are systems which reflect 25 to 30 year-old designs, components and manufacturing techniques. Technological improvements, especially in relation to modern digital systems, offer improvements in functionality, performance, and reliability, as well as reductions in maintenance and operational burden. The Nuclear power industry and the US nuclear regulators are poised to move forward with the issues that have slowed the transition to modern digital replacements for nuclear power plant safety systems. The electric utility industry is now more than ever being driven by cost versus benefit decisions. Properly designed, engineered, and installed digital systems can provide adequate cost-benefit and allow continued nuclear generated electricity. This paper describes various issues and areas related to an ongoing RPS replacement demonstration project which are pertinant for a typical US nuclear plant to consider cost-effective replacement of an aging analog RPS with a modern digital RPS. The following subject areas relative to the Oconee Nuclear Station ISAT{trademark} Demonstrator project are discussed: Operator Interface Development; Equipment Qualification; Validation and Verification of Software; Factory Testing; Field Changes and Verification Testing; Utility Operational, Engineering and Maintenance; Experiences with Demonstration System; and Ability to operate in parallel with the existing Analog RPS.

  1. Analysing the operative experience of basic surgical trainees in Ireland using a web-based logbook

    LENUS (Irish Health Repository)

    Lonergan, Peter E

    2011-09-25

    Abstract Background There is concern about the adequacy of operative exposure in surgical training programmes, in the context of changing work practices. We aimed to quantify the operative exposure of all trainees on the National Basic Surgical Training (BST) programme in Ireland and compare the results with arbitrary training targets. Methods Retrospective analysis of data obtained from a web-based logbook (http:\\/\\/www.elogbook.org) for all general surgery and orthopaedic training posts between July 2007 and June 2009. Results 104 trainees recorded 23,918 operations between two 6-month general surgery posts. The most common general surgery operation performed was simple skin excision with trainees performing an average of 19.7 (± 9.9) over the 2-year training programme. Trainees most frequently assisted with cholecystectomy with an average of 16.0 (± 11.0) per trainee. Comparison of trainee operative experience to arbitrary training targets found that 2-38% of trainees achieved the targets for 9 emergency index operations and 24-90% of trainees achieved the targets for 8 index elective operations. 72 trainees also completed a 6-month post in orthopaedics and recorded 7,551 operations. The most common orthopaedic operation that trainees performed was removal of metal, with an average of 2.90 (± 3.27) per trainee. The most common orthopaedic operation that trainees assisted with was total hip replacement, with an average of 10.46 (± 6.21) per trainee. Conclusions A centralised web-based logbook provides valuable data to analyse training programme performance. Analysis of logbooks raises concerns about operative experience at junior trainee level. The provision of adequate operative exposure for trainees should be a key performance indicator for training programmes.

  2. JET: Preparing the future in fusion

    Science.gov (United States)

    Mlynár, J.; Ongena, J.; Duran, I.; Hron, M.; Pánek, R.; Petržílka, V.; Žáček, F.

    2004-03-01

    JET (Joint European Torus) is the largest tokamak in the world and the only fusion facility able to operate with Tritium, the fusion fuel, and Beryllium, the ITER first wall material. JET also features the most complete remote handling equipment for invessel maintenance. As a multinational research center, JET provides logistic experience in preparing for operation of the global facility, tokamak ITER. Experiments on JET are focused on ITER-relevant studies, in particular on detailing the operational scenarios (EL My H-modes and advanced regimes), on enhancing the heating systems, on developing diagnostics for burning plasmas etc. Pioneering real-time control techniques have been implemented that maximize performance and minimize internal disturbances of JET plasmas. In helium plasmas, ion cyclotron heating (ICRH) created fast α-particles, mimicking their populations in future burning plasmas. The recent successful Trace Tritium campaign provided important new data on fuel transport. Current enhancements on JET include a new ITER-like ELM-resilient high power ICRH antenna (7 MW) and over twenty new diagnostics that will further extend the JET scientific capabilities and push the facility even closer to the ITER parameters. A special mention is given to the involvement of the fusion experts from Association EURATOM-IPP.CR, who have been actively participating in the collective use of JET facility for more than three years.

  3. Occupational safety in the fusion design process

    Energy Technology Data Exchange (ETDEWEB)

    Moshonas, K. E-mail: kmoshonas@sympatico.ca; Langman, V.J

    2001-04-01

    The radiological hazards associated with the operation and maintenance of fusion machines are cause for safety and regulatory concerns. Current experience in the nuclear industry, and at operating tokamaks confirm that a high level of occupational safety can be achieved through an effective planning process. For fusion facilities with increased hazard levels resulting from the introduction of large quantities of tritium, and higher neutron flux and fluence, a process must be implemented during the design phase to address both the worker safety and the regulatory requirements. Such a process has been developed and was used for the radiological occupational safety assessment of the International Thermonuclear Experimental Reactor (ITER). The purpose of this paper is to describe the approach used, including, the implementation of the as low as reasonably achievable (ALARA) principle for individual and collective doses in an evolving design, and the demonstration of adequate radiological occupational safety during the design process.

  4. {sup 18}F-FDOPA PET/MRI fusion in patients with primary/recurrent gliomas: Initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Ledezma, Carlos J. [Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States)], E-mail: ledezmacjl@gmail.com; Chen, Wei [Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States)], E-mail: weichen@mednet.ucla.edu; Sai, Victor [School of Medicine, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States)], E-mail: vsai@ucla.edu; Freitas, Bonnie [Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States)], E-mail: bfreitas@mednet.ucla.edu; Cloughesy, Tim [Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States)], E-mail: tcloughe@ucla.edu; Czernin, Johannes [Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States)], E-mail: jczernin@mednet.ucla.edu; Pope, Whitney [Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States)], E-mail: wpope@mednet.ucla.edu

    2009-08-15

    Background and purpose: {sup 18}F-FDOPA PET demonstrates higher sensitivity and specificity for gliomas than traditional [{sup 18}F] FDG PET imaging. However, PET provides limited anatomic localization. The purpose of this study was to determine whether {sup 18}F-FDOPA PET/MRI fusion can provide precise anatomic localization of abnormal tracer uptake and how this activity corresponds to MR signal abnormality. Methods: Two groups of patients were analyzed. Group I consisted of 21 patients who underwent {sup 18}F-FDOPA PET and MRI followed by craniotomy for tumor resection. Group II consisted of 70 patients with a pathological diagnosis of glioma that had {sup 18}F-FDOPA PET and MRI but lacked additional pathologic follow-up. Fused {sup 18}F-FDOPA PET and MRI images were analyzed for concordance and correlated with histopathologic data. Results: Fusion technology facilitated precise anatomical localization of {sup 18}F-FDOPA activity. In group I, all 21 cases showed pathology-confirmed tumor. Of these, {sup 18}F-FDOPA scans were positive in 9/10 (90%) previously unresected tumors, and 11/11 (100%) of recurrent tumors. Of the 70 patients in group II, concordance between MRI and {sup 18}F-FDOPA was found in 49/54 (90.1%) of patients with sufficient follow-up; in the remaining 16 patients concordance could not be determined due to lack of follow-up. {sup 18}F-FDOPA labeling was comparable in both high- and low-grade gliomas and identified both enhancing and non-enhancing tumor equally well. In some cases, {sup 18}F-FDOPA activity preceded tumor detection on MRI. Conclusion: {sup 18}F-FDOPA PET/MRI fusion provides precise anatomic localization of tracer uptake and labels enhancing and non-enhancing tumor well. In a small minority of cases, {sup 18}F-FDOPA activity may identify tumor not visible on MRI.

  5. JET-ISX-B beryllium limiter experiment safety analysis report and operational safety requirements

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, P.H.

    1985-09-01

    An experiment to evaluate the suitability of beryllium as a limiter material has been completed on the ISX-B tokamak. The experiment consisted of two phases: (1) the initial operation and characterization in the ISX experiment, and a period of continued operation to the specified surface fluence (10/sup 22/ atoms/cm/sup 2/) of hydrogen ions; and (2) the disassembly, decontamination, or disposal of the ISX facility. During these two phases of the project, the possibility existed for beryllium and/or beryllium oxide powder to be produced inside the vacuum vessel. Beryllium dust is a highly toxic material, and extensive precautions are required to prevent the release of the beryllium into the experimental work area and to prevent the contamination of personnel working on the device. Details of the health hazards associated with beryllium and the appropriate precautions are presented. Also described in appendixes to this report are the various operational safety requirements for the project.

  6. Fusion of raft-like lipid bilayers operated by a membranotropic domain of the HSV-type I glycoprotein gH occurs through a cholesterol-dependent mechanism.

    Science.gov (United States)

    Vitiello, Giuseppe; Falanga, Annarita; Petruk, Ariel Alcides; Merlino, Antonello; Fragneto, Giovanna; Paduano, Luigi; Galdiero, Stefania; D'Errico, Gerardino

    2015-04-21

    A wealth of evidence indicates that lipid rafts are involved in the fusion of the viral lipid envelope with the target cell membrane. However, the interplay between these sterol- and sphingolipid-enriched ordered domains and viral fusion glycoproteins has not yet been clarified. In this work we investigate the molecular mechanism by which a membranotropic fragment of the glycoprotein gH of the Herpes Simplex Virus (HSV) type I (gH625) drives fusion of lipid bilayers formed by palmitoyl oleoyl phosphatidylcholine (POPC)-sphingomyelin (SM)-cholesterol (CHOL) (1 : 1 : 1 wt/wt/wt), focusing on the role played by each component. The comparative analysis of the liposome fusion assays, Dynamic Light Scattering (DLS), spectrofluorimetry, Neutron Reflectivity (NR) and Electron Spin Resonance (ESR) experiments, and Molecular Dynamics (MD) simulations shows that CHOL is fundamental for liposome fusion to occur. In detail, CHOL stabilizes the gH625-bilayer association by specific interactions with the peptide Trp residue. The interaction with gH625 causes an increased order of the lipid acyl chains, whose local rotational motion is significantly hampered. SM plays only a minor role in the process, favoring the propagation of lipid perturbation to the bilayer inner core. The stiffening of the peptide-interacting bilayer leaflet results in an asymmetric perturbation of the membrane, which is locally destabilized thus favoring fusion events. Our results show that viral fusion glycoproteins are optimally suited to exert a high fusogenic activity on lipid rafts and support the relevance of cholesterol as a key player of membrane-related processes.

  7. Power-Cooling-Mismatch Test Series Test PCM-7. Experiment operating specifications. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, D.T.; Smith, R.H.; Stanley, C.J.

    1979-02-01

    The experiment operating specifications for the Power-Cooling-Mismatch (PCM) Test PCM-7 to be conducted in the Power Burst Facility are described. The PCM Test Series was designed on the basis of a parametric evaluation of fuel behavior response with cladding temperature, rod internal pressure, time in film boiling, and test rod power being the variable parameters. The test matrix, defined in the PCM Experiment Requirements Document (ERD), encompasses a wide range of situations extending from pre-CHF (critical heat flux) PCMs to long duration operation in stable film boiling leading to rod failure.

  8. Results of the new icetools inquiry on operator's experience with turbine icing

    Energy Technology Data Exchange (ETDEWEB)

    Durstewitz, M.

    2005-07-01

    One task within the FP5 project New Icetools has been the development and evaluation of a questionnaire regarding operators experience with iced wind turbines. This questionnaire was sent to turbine operators in European countries by mail, per download from the New Icetools web site and as well as an online form on the Internet. The questionnaire has been available in several languages (English, German, Swedish, Spanish) so that many operators at cold climate sites in Europe can be reached. The questionnaire shall collect specific information about e.g. cold climate sites, icing conditions, turbine equipment and consequences of icing events. Nearly 100 replies from operators were collected and evaluated with respect to icing cases, amount of ice upon blades, duration of icing, downtimes, observed losses etc. The presentation will include an introduction to the questionnaire as well as an analysis of operators replies. (orig.)

  9. Fusion - 2050 perspective (in Polish)

    CERN Document Server

    Romaniuk, R S

    2013-01-01

    The results of strongly exothermic reaction of thermonuclear fusion between nuclei of deuterium and tritium are: helium nuclei and neutrons, plus considerable kinetic energy of neutrons of over 14 MeV. DT nuclides synthesis reaction is probably not the most favorable one for energy production, but is the most advanced technologically. More efficient would be possibly aneutronic fusion. The EU by its EURATOM agenda prepared a Road Map for research and implementation of Fusion as a commercial method of thermonuclear energy generation in the time horizon of 2050.The milestones on this road are tokomak experiments JET, ITER and DEMO, and neutron experiment IFMIF. There is a hope, that by engagement of the national government, and all research and technical fusion communities, part of this Road Map may be realized in Poland. The infrastructure build for fusion experiments may be also used for material engineering research, chemistry, biomedical, associated with environment protection, power engineering, security, ...

  10. U.S. Nuclear Power Plant Operating Cost and Experience Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Reid, RL

    2003-09-18

    The ''U.S. Nuclear Power Plant Operating Cost and Experience Summaries'' (NUREG/CR-6577, Supp. 2) report has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants during 2000-2001. Costs incurred after initial construction are characterized as annual production costs, which represent fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications, which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operations summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from operating reports submitted by the licensees, the Nuclear Regulatory Commission (NRC) database for enforcement actions, and outage reports.

  11. (Fusion energy research)

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  12. Sensor fusion for social robotics

    OpenAIRE

    Duffy, Brian R.; Garcia, C; Rooney, Colm, (Thesis); O'Hare, G.M.P.

    2000-01-01

    This paper advocates the application of sensor fusion for the visualisation of social robotic behaviour. Experiments with the Virtual Reality Workbench integrate the key elements of Virtual Reality and robotics in a coherent and systematic manner. The deliberative focusing of attention and sensor fusion between vision systems and sonar sensors is implemented on autonomous mobile robots functioning in standard office environments

  13. Degenerate Bogdanov-Takens bifurcations in a one-dimensional transport model of a fusion plasma

    NARCIS (Netherlands)

    de Blank, H. J.; Kuznetsov, Y. A.; Pekker, M. J.; Veldman, D. W. M.

    2016-01-01

    Experiments in tokamaks (nuclear fusion reactors) have shown two modes of operation: L-mode and H-mode. Transitions between these two modes have been observed in three types: sharp, smooth and oscillatory. The same modes of operation and transitions between them have been observed in simplified

  14. Application of Solid State Nuclear Track Detectors in TEXTOR Experiment for Measurements of Fusion-Reaction Protons

    Science.gov (United States)

    Szydlowski, A.; Malinowska, A.; Jaskola, M.; Korman, A.; Sadowski, M. J.; Van Wassenhove, G.; Schweer, B.; Galkowski, A.

    2008-03-01

    The paper reports on measurements of the space distribution of fusion protons of energy equal to about 3-MeV, originating from the D(d, p)T reactions. The measurements were carried out on the TEXTOR facility by means of a small ion pinhole camera, which was equipped with a solid-state nuclear track detector of the PM-355 type. The results obtained in two series of successive discharges are compared. The first series was performed with an additional heating of TEXTOR plasmas with NBI of fast deuterons, whereas in the second series plasma was heated by ICRF and NBI of hydrogen neutrals. Computer simulations of different trajectories of charged particles have been performed with the Gourdon code and the detection efficiency has been calculated for various orientations of the measuring assembly.

  15. Limitations of the inspection and testing concepts for pressurised components from the viewpoint of operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Garching (Germany)

    2001-07-01

    The role of in-service inspection and testing is to contribute to a safe and reliable operation of systems, structures and components. It is therefore the objective of inspections and tests to identify malfunctions and degradations at a stage early enough to avoid detrimental impacts on safety as well as on the reliability of the plant. Taking mostly the pressure boundary of German light-water reactors as an example, it is the intention of this paper to analyse how successful present inspection and testing requirements are and to discuss limitations. Based on a review of the world-wide operating experience the following questions of a more generic nature are addressed: - Are the relevant damage mechanisms being addressed in our codes and standards? - What are the criteria to develop a representative scope of inspection? - How to maintain a sufficient level of information for a decreasing number of nuclear power plants in operation? It can be concluded that the revision of codes and standards according to lessons learned from operating experience remains as an ongoing process. Furthermore, the criteria applied to derive a representative scope of inspection need to be addressed in more detail, specifically with respect to corrosion. The continuous evaluation of operating experience of a large number of plants is the most valuable source to identify beginning degradations. (author)

  16. Strategies for reducing the environmental impact of gaseous detector operation at the CERN LHC experiments

    Science.gov (United States)

    Capeans, M.; Guida, R.; Mandelli, B.

    2017-02-01

    A wide range of gas mixtures is used for the operation of different gaseous detectors at the Large Hadron Collider (LHC) experiments. Nowadays some of these gases, as C2H2F4, CF4 and SF6, are indicated as greenhouse gases (GHG) and dominate the overall GHG emission from particle detectors at the LHC experiments. The release of GHG is an important subject for the design of future particle detectors as well as for the operation of the current experiments. Different strategies have been adopted at CERN for reducing the GHG emissions. The standard approach is the recirculation of the gas mixture with complex gas systems where system stability and the possible accumulation of impurities need to be attentively evaluated for the good operation and safety of the detectors. A second approach is based on the recuperation of the gas mixture exiting the detectors and the separation of its gas components for re-use. At long-term, the use of less invasive gases is being investigated, especially for the Resistive Plate Chamber (RPC) systems. Operation of RPC with environmentally friendly gas mixtures is demonstrated for streamer mode while avalanche mode operation needs more complex gas mixtures.

  17. Optimization of identity operation in NMR spectroscopy via genetic algorithm: Application to the TEDOR experiment

    Science.gov (United States)

    Manu, V. S.; Veglia, Gianluigi

    2016-12-01

    Identity operation in the form of π pulses is widely used in NMR spectroscopy. For an isolated single spin system, a sequence of even number of π pulses performs an identity operation, leaving the spin state essentially unaltered. For multi-spin systems, trains of π pulses with appropriate phases and time delays modulate the spin Hamiltonian to perform operations such as decoupling and recoupling. However, experimental imperfections often jeopardize the outcome, leading to severe losses in sensitivity. Here, we demonstrate that a newly designed Genetic Algorithm (GA) is able to optimize a train of π pulses, resulting in a robust identity operation. As proof-of-concept, we optimized the recoupling sequence in the transferred-echo double-resonance (TEDOR) pulse sequence, a key experiment in biological magic angle spinning (MAS) solid-state NMR for measuring multiple carbon-nitrogen distances. The GA modified TEDOR (GMO-TEDOR) experiment with improved recoupling efficiency results in a net gain of sensitivity up to 28% as tested on a uniformly 13C, 15N labeled microcrystalline ubiquitin sample. The robust identity operation achieved via GA paves the way for the optimization of several other pulse sequences used for both solid- and liquid-state NMR used for decoupling, recoupling, and relaxation experiments.

  18. A New Density Operator Formalism for Describing Nuclear Magnetic Resonance Experiments

    Institute of Scientific and Technical Information of China (English)

    林东海; 吴钦义

    1994-01-01

    A density operator formalism has been proposed to describe the evolution of two-spin-1/2 systems in nuclear magnetic resonance experiments:The formalism is particularly convenient and has distinct physical meaning for describing the evolution of spin systems under the Hamiltonian containing non-commutable terms. Some examples are presented to demonstrate the new formalism.

  19. Design and operation of a cryogenic charge-integrating preamplifier for the MuSun experiment

    CERN Document Server

    Ryan, R A; Gray, F E; Kammel, P; Nadtochy, A; Peterson, D; van Wechel, T; Gross, E; Gubanich, M; Kochenda, L; Kravtsov, P; Orozco, D; Osofsky, R; Petrov, G E; Stroud, J; Trofimov, V; Vasilyev, A; Vznuzdaev, M

    2014-01-01

    The central detector in the MuSun experiment is a pad-plane time projection ionization chamber that operates without gas amplification in deuterium at 31 K; it is used to measure the rate of the muon capture process $\\mu^- + d \\rightarrow n + n + \

  20. 42 CFR 417.413 - Qualifying condition: Operating experience and enrollment.

    Science.gov (United States)

    2010-10-01

    ... city whose population exceeds 50,000 individuals. (4) A subdivision or subsidiary of an HMO or CMP that... that it has operating experience and an enrolled population sufficient to provide a reasonable basis... the population. (CMS does not grant a waiver that would permit the percentage of Medicare and...

  1. MSFC Doppler Lidar Science experiments and operations plans for 1981 airborne test flight

    Science.gov (United States)

    Fichtl, G. H.; Bilbro, J. W.; Kaufman, J. W.

    1981-01-01

    The flight experiment and operations plans for the Doppler Lidar System (DLS) are provided. Application of DLS to the study of severe storms and local weather penomena is addressed. Test plans involve 66 hours of flight time. Plans also include ground based severe storm and local weather data acquisition.

  2. Medical Support for Aircraft Disaster Search and Recovery Operations at Sea: the RSN Experience.

    Science.gov (United States)

    Teo, Kok Ann Colin; Chong, Tse Feng Gabriel; Liow, Min Han Lincoln; Tang, Kong Choong

    2016-06-01

    The maritime environment presents a unique set of challenges to search and recovery (SAR) operations. There is a paucity of information available to guide provision of medical support for SAR operations for aircraft disasters at sea. The Republic of Singapore Navy (RSN) took part in two such SAR operations in 2014 which showcased the value of a military organization in these operations. Key considerations in medical support for similar operations include the resultant casualty profile and challenges specific to the maritime environment, such as large distances of area of operations from land, variable sea states, and space limitations. Medical support planning can be approached using well-established disaster management life cycle phases of preparedness, mitigation, response, and recovery, which all are described in detail. This includes key areas of dedicated training and exercises, force protection, availability of air assets and chamber support, psychological care, and the forensic handling of human remains. Relevant lessons learned by RSN from the Air Asia QZ8501 search operation are also included in the description of these key areas. Teo KAC , Chong TFG , Liow MHL , Tang KC . Medical support for aircraft disaster search and recovery operations at sea: the RSN experience. Prehosp Disaster Med. 2016; 31(3):294-299.

  3. Spinal Fusion

    Science.gov (United States)

    ... results in predictable healing. Autograft is currently the “gold standard” source of bone for a fusion. The ... pump. With this technique, the patient presses a button that delivers a predetermined amount of narcotic pain ...

  4. X-ray imaging and imaging spectroscopy of fusion plasmas and light-source experiments with spherical optics and pixel array detectors

    Science.gov (United States)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Pablant, N. A.; Beiersdorfer, P.; Sanchez del Rio, M.; Zhang, L.

    2012-10-01

    High resolution (λ/Δλ ~10,000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixelarray detector (PAD) is used world wide for Doppler measurements of ion-temperature (Ti) and plasma flow-velocityprofiles in magnetic confinement fusion (MCF) plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion (ICF) plasmas and targets on x-ray light source beam lines, with spatial resolution of microns. A new concept of using matched pairs of spherically bent crystals for monochromatic stigmatic 2D x-ray imaging of mm sized sources offers the possibility of spatial resolution of microns and large solid angle, relative to that achieved with pinhole imaging. Other potential applications of the 2D imaging schemes include x-ray lithography and x-ray microscopy for biological and materials science research. Measurements from MFE plasmas, as well as laboratory experiments and ray tracing computations validating the 1D imaging spectroscopy and 2D x-ray imaging techniques will be presented.

  5. Integration and Operational Experience in CMS Monte Carlo Production in LCG

    CERN Document Server

    Caballero, J; Hernández, Jose M

    2007-01-01

    This note describes integration and operational aspects of the CMS Monte Carlo production in the LHC Computing Grid (LCG). In 2005 the McRunjob MC production system was ported to LCG-2 in order to make use of the distributed computing and storage resources available in LCG for CMS. The full production chain (generation, simulation, digitization with pile-up, reconstruction, injection in the data transfer system and publication for analysis) was implemented. Experience gained during the implementation and operation of the production system in LCG has been used to build ProdAgent, the new MC production system. ProdAgent takes also advantage of the new CMS event data model, event processing framework and data management services. Integration and operational experience with ProdAgent is also described in this note.

  6. Operating experience feedback report -- turbine-generator overspeed protection systems: Commercial power reactors. Volume 11

    Energy Technology Data Exchange (ETDEWEB)

    Ornstein, H.L.

    1995-04-01

    This report presents the results of the US Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) review of operating experience of main turbine-generator overspeed and overspeed protection systems. It includes an indepth examination of the turbine overspeed event which occurred on November 9, 1991, at the Salem Unit 2 Nuclear Power Plant. It also provides information concerning actions taken by other utilities and the turbine manufacturers as a result of the Salem overspeed event. AEOD`s study reviewed operating procedures and plant practices. It noted differences between turbine manufacturer designs and recommendations for operations, maintenance, and testing, and also identified significant variations in the manner that individual plants maintain and test their turbine overspeed protection systems. AEOD`s study provides insight into the shortcomings in the design, operation, maintenance, testing, and human factors associated with turbine overspeed protection systems. Operating experience indicates that the frequency of turbine overspeed events is higher than previously thought and that the bases for demonstrating compliance with NRC`s General Design Criterion (GDC) 4, Environmental and dynamic effects design bases, may be nonconservative with respect to the assumed frequency.

  7. Analysis of Operators Comments on the PSF Questionnaire of the Task Complexity Experiment 2003/2004

    Energy Technology Data Exchange (ETDEWEB)

    Torralba, B.; Martinez-Arias, R.

    2007-07-01

    Human Reliability Analysis (HRA) methods usually take into account the effect of Performance Shaping Factors (PSF). Therefore, the adequate treatment of PSFs in HRA of Probabilistic Safety Assessment (PSA) models has a crucial importance. There is an important need for collecting PSF data based on simulator experiments. During the task complexity experiment 2003-2004, carried out in the BWR simulator of Halden Man-Machine Laboratory (HAMMLAB), there was a data collection on PSF by means of a PSF Questionnaire. Seven crews (composed of shift supervisor, reactor operator and turbine operator) from Swedish Nuclear Power Plants participated in the experiment. The PSF Questionnaire collected data on the factors: procedures, training and experience, indications, controls, team management, team communication, individual work practice, available time for the tasks, number of tasks or information load, masking and seriousness. The main statistical significant results are presented on Performance Shaping Factors data collection and analysis of the task complexity experiment 2003/2004 (HWR-810). The analysis of the comments about PSFs, which were provided by operators on the PSF Questionnaire, is described. It has been summarised the comments provided for each PSF on the scenarios, using a content analysis technique. (Author)

  8. Human Factors Engineering (HFE) insights for advanced reactors based upon operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, J.; Nasta, K.

    1997-01-01

    The NRC Human Factors Engineering Program Review Model (HFE PRM, NUREG-0711) was developed to support a design process review for advanced reactor design certification under 10CFR52. The HFE PRM defines ten fundamental elements of a human factors engineering program. An Operating Experience Review (OER) is one of these elements. The main purpose of an OER is to identify potential safety issues from operating plant experience and ensure that they are addressed in a new design. Broad-based experience reviews have typically been performed in the past by reactor designers. For the HFE PRM the intent is to have a more focussed OER that concentrates on HFE issues or experience that would be relevant to the human-system interface (HSI) design process for new advanced reactors. This document provides a detailed list of HFE-relevant operating experience pertinent to the HSI design process for advanced nuclear power plants. This document is intended to be used by NRC reviewers as part of the HFE PRM review process in determining the completeness of an OER performed by an applicant for advanced reactor design certification. 49 refs.

  9. CMS distributed analysis infrastructure and operations: experience with the first LHC data

    CERN Document Server

    Vaandering, Eric Wayne

    2010-01-01

    The CMS distributed analysis infrastructure represents a heterogeneous pool of resources distributed across several continents. The resources are harnessed using glite and glidein-based work load management systems (WMS). We provide the operational experience of the analysis workflows using CRAB- based servers interfaced with the underlying WMS. The automatized interaction of the server with the WMS provides a successful analysis workflow. We present the operational experience as well as methods used in CMS to analyze the LHC data. The interaction with CMS Run-registry for Run and luminosity block selections via CRAB is discussed. The variations of different workflows during the LHC data-taking period and the lessons drawn from this experience are also outlined.

  10. Evaluation of MRI-TRUS fusion versus cognitive registration accuracy for MRI-targeted, TRUS-guided prostate biopsy.

    Science.gov (United States)

    Cool, Derek W; Zhang, Xuli; Romagnoli, Cesare; Izawa, Jonathan I; Romano, Walter M; Fenster, Aaron

    2015-01-01

    The purpose of this article is to compare transrectal ultrasound (TRUS) biopsy accuracies of operators with different levels of prostate MRI experience using cognitive registration versus MRI-TRUS fusion to assess the preferred method of TRUS prostate biopsy for MRI-identified lesions. SUBJECTS AND METHODS; One hundred patients from a prospective prostate MRI-TRUS fusion biopsy study were reviewed to identify all patients with clinically significant prostate adenocarcinoma (PCA) detected on MRI-targeted biopsy. Twenty-five PCA tumors were incorporated into a validated TRUS prostate biopsy simulator. Three prostate biopsy experts, each with different levels of experience in prostate MRI and MRI-TRUS fusion biopsy, performed a total of 225 simulated targeted biopsies on the MRI lesions as well as regional biopsy targets. Simulated biopsies performed using cognitive registration with 2D TRUS and 3D TRUS were compared with biopsies performed under MRI-TRUS fusion. Two-dimensional and 3D TRUS sampled only 48% and 45% of clinically significant PCA MRI lesions, respectively, compared with 100% with MRI-TRUS fusion. Lesion sampling accuracy did not statistically significantly vary according to operator experience or tumor volume. MRI-TRUS fusion-naïve operators showed consistent errors in targeting of the apex, midgland, and anterior targets, suggesting that there is biased error in cognitive registration. The MRI-TRUS fusion expert correctly targeted the prostate apex; however, his midgland and anterior mistargeting was similar to that of the less-experienced operators. MRI-targeted TRUS-guided prostate biopsy using cognitive registration appears to be inferior to MRI-TRUS fusion, with fewer than 50% of clinically significant PCA lesions successfully sampled. No statistically significant difference in biopsy accuracy was seen according to operator experience with prostate MRI or MRI-TRUS fusion.

  11. A status of installation and operational experience of safeguards equipment for DFDF safeguards implementation

    Energy Technology Data Exchange (ETDEWEB)

    Cha, H. Y.; Ko, W. I.; Song, D. Y.; Kang, H. Y.; Lee, S. Y.; Kim, H. D. [KAERI, Taejon (Korea, Republic of)

    2001-05-01

    DUPIC Fuel Fabrication Facility (DFDF) fabricates CANDU-type fuel directly out of spent PWR fuel material with no alternation of composition of spent fuel throughout the whole process. DFDF belong to 'Other Facilities' among the 13 facilities types under IAEA safeguards criteria and is a unique facility type in the world because the DUPIC process has no separation activity of fission products from process materials. For the IAEA safeguards implementation of DFDF, facility was developed the DUPIC Safeguards Neutron Counter (DSNC) and DUPIC Safeguards Neutron Monitor(DSNM) for accountancy of SNM in DUPIC fuel and a monitoring of DUPIC fuel, respectively. These instruments were used jointly between IAEA and facility operator authorized by IAEA and installed at DFDF. And facility operator and IAEA also installed and operated the surveillance systems for DFDF surveillance each other. This paper describes the status of installation and operational experience of safeguards equipment for DFDF safeguards implementation.

  12. Influence of surgeon's experience and supervision on re-operation rate after hip fracture surgery

    DEFF Research Database (Denmark)

    Palm, Henrik; Jacobsen, Steffen; Krasheninnikoff, Michael

    2006-01-01

    Society of Anaesthesiologists score, New Mobility Score, time to surgery and type of implant, surgery by unsupervised junior registrars was still a significant independent risk factor for re-operation in technically demanding proximal femoral fractures. CONCLUSION: Unsupervised junior registrars should......OBJECTIVE: To investigate the influence of the performing surgeon's experience and degree of supervision on re-operation rate among patients admitted with a proximal femoral fracture (PFF). METHODS: Prospective study of 600 consecutive patients with proximal femoral fracture in our multimodal...... rehabilitation programme, between 2002 and 2004. Re-operation rate was assessed 6 months postoperatively. Surgeons were grouped as unsupervised junior registrars versus experienced surgeons operating or supervising. Fractures were stratified as technically undemanding or demanding. RESULTS: Unsupervised junior...

  13. Influence of surgeon's experience and supervision on re-operation rate after hip fracture surgery

    DEFF Research Database (Denmark)

    Palm, Henrik; Jacobsen, Steffen; Krasheninnikoff, Michael

    2006-01-01

    Society of Anaesthesiologists score, New Mobility Score, time to surgery and type of implant, surgery by unsupervised junior registrars was still a significant independent risk factor for re-operation in technically demanding proximal femoral fractures. CONCLUSION: Unsupervised junior registrars should......OBJECTIVE: To investigate the influence of the performing surgeon's experience and degree of supervision on re-operation rate among patients admitted with a proximal femoral fracture (PFF). METHODS: Prospective study of 600 consecutive patients with proximal femoral fracture in our multimodal...... rehabilitation programme, between 2002 and 2004. Re-operation rate was assessed 6 months postoperatively. Surgeons were grouped as unsupervised junior registrars versus experienced surgeons operating or supervising. Fractures were stratified as technically undemanding or demanding. RESULTS: Unsupervised junior...

  14. Fusion Ship II- A Fast Manned Interplanetary Space Vehicle Using Inertial Electrostatic Fusion

    Science.gov (United States)

    Burton, R. L.; Momota, H.; Richardson, N.; Shaban, Y.; Miley, G. H.

    2003-01-01

    A preliminary system design, Fusion Ship II, is presented for a high performance 750 MWthrust manned space vehicle in the 500 metric ton class. Fusion Ship II is based on Inertial Electrostatic Fusion (IEC), giving round trip times to the outer planets of 1-2 years. An IEC is chosen because it simplifies structure results in a very high power to weight ratio. The fusion reactor uses D-3He fuel that generates 14.7-MeV protons as the primary reaction product. The propulsion system uses direct conversion of proton energy to electricity, avoiding the thermalization of the working fluid to maximize efficiency. Design calculations are described for the principle system components (crew compartment, crew shielding, avionics, fusion reactor modules, traveling wave direct energy converter, step-down transformer, rectifier, ion thruster, heat rejection radiators) along with vehicle trajectory calculations. Since unburned fusion fuels are recycled rather than exhausted with the propellant, problems of fuel weight and preservation of 3He are minimized. The 750-MWthrust propulsion system is based on NSTAR-extrapolated Argon ion thrusters operating at a specific impulse of 35,000 seconds and a total thrust of 4,370 N. Round trip travel time for a Jupiter mission ΔV of 202,000 m/s is then 363 days. This design requires that an IEC reactor with a proton energy gain (power in 14.7-MeV protons/input electric power) of 9 or better is achieved. Extrapolation of present laboratory-scale IEC experiments to such conditions is possible theoretically, but faces several open issues including stability under high-density plasma operation.

  15. Indicator of the effectiveness of Operational Experience of Others; Indicador de la efectividad de la Experiencia Operativa Ajena

    Energy Technology Data Exchange (ETDEWEB)

    Quintana Prieto, M.; Jorda Alcovem, M.

    2013-07-01

    How can I measure the effectiveness of the operational experience of others? If it is considered that the greatest achievement of the effectiveness of the operational experience of others they are incidents that have been avoided thanks to the analysis and subsequent implementation of the lessons learned from these experiences, how can measure this?.

  16. [Choice of surgical procedure in operations for chronic pancreatitis--personal experience].

    Science.gov (United States)

    Sváb, J; Pesková, M; Fried, M; Gürlich, R; Krska, Z; Bortlík, M; Lukás, M; Horejs, J

    2002-01-01

    The First Surgical Clinic of the First Medical Faculty of Charles University and General Faculty Hospital in Prague made operations of the pancreas ever since 1971. In the work sooner or later all approaches to surgical treatment pancreatitis were reflected. The authors present a brief review of results and their own experience since 1994 when duodenum-sparing operations were introduced. Indications for surgical treatment were based on the diagnosis by US, CT and ERCP, in exceptional case MR, after evaluation by a pancreatologist, roentgenologist and surgeon. The group of patients with chronic pancreatitis was extended by 21 patients from a group operated because of preoperative suspicion of a malignant pancreatic tumour not confirmed during and after surgery. In those Whipple's operation was preformed. The same operation was performed in three patients with chronic pancreatitis with serious changes in the area of the head of the pancreas. In 123 patients a drainage and duodenum sparing operation was preformed, of these in 57 according to Beger, 19 according to Frey, 37 Partington-Rochelle's procedure. The authors record two sepsis postoperative complications after the classical Beger operation and the hospital stay was on average by five days shorter as compared with the classical method of Whipple. When evaluating postoperative complaints and problems (pain, malnutrition, physical constitution and social position) the authors recorded equally favourable results as after non-complicated duodenopancreatectomy. They varied, depending on the patients co-operation round 84-87% while authors consider Beger's operation logical because of the removal of the main tissue mass of the head of the pancreas, responsible for pain, complications caused by fibrosis in the area round the bile duct and duodenum, responsible for the deteriation of the compartment syndrome in the left half of the gland. Its result is destruction of the remainder of exocrine and endocrine tissue. Of

  17. Operational experience of HR AVI Amsterdam; Erste Betriebserfahrungen der HR AVI, Amsterdam

    Energy Technology Data Exchange (ETDEWEB)

    Wandschneider, Joern [wandschneider + gutjahr ingenieurgesellschaft mbH, Hamburg (Germany)

    2010-05-15

    The HR-AVI (which derives from ''high efficiency waste treatment plant'' in Dutch) in Amsterdam is the first waste fired power plant worldwide to demonstrate more than 30 % net electrical efficiency. This was in fact the target when designing the plant; it thus features a number of innovations. The HR-AVI is in operation since September 2007, and two years of operational experience are available for evaluation. The first year was marked by a number of extraordinary difficulties that could not have been anticipated in this form, and which bear no significance on the plant efficiency. In particular, the break-age of the generator shaft led to a turbine outage for a lengthy period, resulting in operating modes that had not been intended continuously. It proved that the plant is able to meet the efficiency require ment with ease. But some problems evolved when operating the complex systems in automatic or manual control. Moreover, the maximum electrical efficiency is a diver ging requirement with regard to the maximum refuse through put, if the turbine including peripherals is not always fully available. A display is installed in the control room to indicate the current efficiency. Unfortunately, there are no operational means to compensate for losses in that efficiency figure. The remaining task is to optimize both the operation and the reliability of the water and steam cycle, meaning to produce more of the built-in efficiency in the actually practiced day to day operation. (orig.)

  18. Hard x-ray transmission curved crystal spectrometers(10–100 keV) for laser fusion experiments at the ShenGuang-Ⅲ laser facility

    Institute of Scientific and Technical Information of China (English)

    Ming-hai Yu; Guang-yue Hu; Ning An; Feng Qian; Yu-chi Wu; Xiao-ding Zhang; Yu-qiu Gu; Qiu-ping Wang; Jian Zheng

    2016-01-01

    Two transmission curved crystal spectrometers are designed to measure the hard x-ray emission in the laser fusion experiment of Compton radiography of implosion target on ShenGuang-III laser facility in China. Cylindrically curvedα-quartz(10–11) crystals with curvature radii of 150 and 300 mm are used to cover spectral ranges of 10–56 and17–100 ke V, respectively. The distance between the crystal and the x-ray source can be changed over a broad distance from 200 to 1500 mm. The optical design, including the integral reflectivity of the curved crystal, the sensitivity, and the spectral resolution of the spectrometers, is discussed. We also provide mechanic design details and experimental results using a Mo anode x-ray source. High-quality spectra were obtained. We confirmed that the spectral resolution can be improved by increasing the working distance, which is the distance between the recording medium and the Rowland circle.

  19. Approach to multisensor/multilook information fusion

    Science.gov (United States)

    Myler, Harley R.; Patton, Ronald

    1997-07-01

    We are developing a multi-sensor, multi-look Artificial Intelligence Enhanced Information Processor (AIEIP) that combines classification elements of geometric hashing, neural networks and evolutionary algorithms in a synergistic combination. The fusion is coordinated using a piecewise level fusion algorithm that operates on probability data from statistics of the individual classifiers. Further, the AIEIP incorporates a knowledge-based system to aid a user in evaluating target data dynamically. The AIEIP is intended as a semi-autonomous system that not only fuses information from electronic data sources, but also has the capability to include human input derived from battlefield awareness and intelligence sources. The system would be useful in either advanced reconnaissance information fusion tasks where multiple fixed sensors and human observer inputs must be combined or for a dynamic fusion scenario incorporating an unmanned vehicle swarm with dynamic, multiple sensor data inputs. This paper represents our initial results from experiments and data analysis using the individual components of the AIEIP on FLIR target sets of ground vehicles.

  20. 900-L liquid xenon cryogenic system operation for the MEG experiment

    CERN Document Server

    Haruyama, T; Mihara, S; Hisamatsu, Y; Iawamoto, W; Mori, T; Nishiguchi, H; Otani, W; Sawada, R; Uchiyama, Y; Nishitani, T

    2009-01-01

    A cryogenic system for the MEG (muon rare decay) experiment has started operation at the Paul Sherrer Institute in Zurich. The main part of the MEG detector is the 900-L liquid xenon calorimeter for gamma ray detection, equipped with 850 photo multipliers directly immersed in liquid xenon. A 200 W pulse tube cryocooler enabled LN2-free operation of this calorimeter. A liquid purification system; using a liquid pump and a zero boil-off 1000-L cryogenic buffer dewar is also included in the system. The first entire engineering run was carried out in November-December 2007 and satisfactory cryogenic performances were confirmed.

  1. The performance of the Barrel CRID at the SLD: Long-term operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K. [Tohoku Univ., Sendai (Japan); Ashford, V.; Aston, D. [Stanford Univ., CA (US). Stanford Linear Accelerator Center] [and others

    1997-11-01

    The Barrel CRID detector has been operating successfully at SLD for the past 7 years. It is an important tool for SLD physics analyses. The authors report results based on long term operational experience of a number of important quantities such as the Cherenkov quality factor, N{sub o}, of the device, fluid transparency, electron lifetime, single electron detection efficiency, anode wire aging, TMAE purity, long term stability of the gas refraction index, liquid radiator transparency, Cherenkov angle resolution and the number of photoelectrons observed per ring.

  2. Fusion Nuclear Science Pathways Assessment

    Energy Technology Data Exchange (ETDEWEB)

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  3. Deepwater completion/workover riser and control system: Operational experience and lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Parks, W.C.; Beebe, D.C.

    1996-12-31

    Sonsub International designed, built and is currently operating a deepwater Completion/Workover (C/WO) Riser and Control System which is being offered to the industry on a lease basis. In an industry partnering approach, Sonsub worked closely with both operating companies and Deepstar participants to develop a system that would meet both current and future requirements for completion/workover operations in deepwater subsea development applications. The C/WO Riser and Control System is designed for use in water depths up to 6,000 ft (but is capable of being extended to 10,000 ft) and is rated for 10,000 psi working pressure. The system includes all of the equipment required for use in well completion operations to run and install the tubing hanger and subsea tree and in workover operations to provide wireline and/or coiled tubing access into the well bore. The C/WO Riser and Control System was used initially by Shell Offshore, Inc. (SOI) to complete two wells in 2,040 ft of water in the Popeye Field in the US Gulf of Mexico (GOM) during the second half of 1995, and a single well in 2,960 ft of water in the Mars field in the GOM in early 1996. It is scheduled for use by SOI in 5,400 ft of water in the Mensa field in the GOM in late 1996/early 1997. This paper discusses the design of the C/WO Riser and Control System and the experience gained from operating this equipment in the Popeye and Mars fields and also discusses some of the lessons learned (both positive and negative). This information is currently being used to enhance the design and operating features of the C/WO Riser and Control System and to further refine the operating procedures to improve operating efficiency and reduce costs.

  4. Operating experiences of the TESC BWE filter in the Escatron PFBC power plant

    Energy Technology Data Exchange (ETDEWEB)

    Tejedor, A.; Guilarte, R.; Nales, T.; Abellanal, I.

    1999-07-01

    A Ceramic Filter based on the TESC (Two Ends Supported Candle) concept by BWE has been operating since November 1997 at the 71 MWe Escatron PFBC Power Plant of ENDESA S.A. The Ceramic Filter is treating 1/9 of the combustion gases (this is 10.5 Kg/s), replacing a secondary cyclone, at temperatures ranging 750--820 C. The aim of this Project is to demonstrate the performance of a Ceramic Filter based on the TESC system, which keeps the ceramic elements working on compression by a pneumatic supporting system. The Escatron PFBC plant burns local lignites working under commercial conditions, and the objective is to optimize the main filtration parameters for these coals. The operating experience will permit evaluation of the design, the prediction of life expectancy of the materials used, while carrying out the tests needed to define commercial operating parameters. At present (December 1998) 4,420 hours of operation have been logged, 2,300 hours through the Ceramic Filter (mainly at full load) and the rest through a bypass cyclone system. The longest continuous Filter run lasted 687 hours, while the average run duration at the present test period is around 500 hours. Some problems regarding massive ash bridging due to the extremely sticky nature of the ash have been the main operating problem. Nevertheless, the operating results together with the very few candle failures (only in two of the runs) have proved that the TESC concept is right and a promising way to commercial hot gas filtration units. This paper describes the Escatron Filter Plant and reviews the operation experiences of the TESC Ceramic Filter at 71 MWe Escatron PFBC Plant.

  5. Trophoblast fusion.

    Science.gov (United States)

    Huppertz, Berthold; Gauster, Martin

    2011-01-01

    The villous trophoblast of the human placenta is the epithelial cover of the fetal chorionic villi floating in maternal blood. This epithelial cover is organized in two distinct layers, the multinucleated syncytiotrophoblast directly facing maternal blood and a second layer of mononucleated cytotrophoblasts. During pregnancy single cytotrophoblasts continuously fuse with the overlying syncytiotrophoblast to preserve this end-differentiated layer until delivery. Syncytial fusion continuously supplies the syncytiotrophoblast with compounds of fusing cytotrophoblasts such as proteins, nucleic acids and lipids as well as organelles. At the same time the input of cytotrophoblastic components is counterbalanced by a continuous release of apoptotic material from the syncytiotrophoblast into maternal blood. Fusion is an essential step in maintaining the syncytiotrophoblast. Trophoblast fusion was shown to be dependant on and regulated by multiple factors such as fusion proteins, proteases and cytoskeletal proteins as well as cytokines, hormones and transcription factors. In this chapter we focus on factors that may be involved in the fusion process of trophoblast directly or that may prepare the cytotrophoblast to fuse.

  6. Multibiometrics Belief Fusion

    CERN Document Server

    Kisku, Dakshina Ranjan; Gupta, Phalguni

    2010-01-01

    This paper proposes a multimodal biometric system through Gaussian Mixture Model (GMM) for face and ear biometrics with belief fusion of the estimated scores characterized by Gabor responses and the proposed fusion is accomplished by Dempster-Shafer (DS) decision theory. Face and ear images are convolved with Gabor wavelet filters to extracts spatially enhanced Gabor facial features and Gabor ear features. Further, GMM is applied to the high-dimensional Gabor face and Gabor ear responses separately for quantitive measurements. Expectation Maximization (EM) algorithm is used to estimate density parameters in GMM. This produces two sets of feature vectors which are then fused using Dempster-Shafer theory. Experiments are conducted on multimodal database containing face and ear images of 400 individuals. It is found that use of Gabor wavelet filters along with GMM and DS theory can provide robust and efficient multimodal fusion strategy.

  7. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  8. Laser fusion monthly -- August 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, H.G. [ed.

    1980-08-01

    This report documents the monthly progress for the laser fusion research at Lawrence Livermore National Laboratory. First it gives facilities report for both the Shiva and Argus projects. Topics discussed include; laser system for the Nova Project; the fusion experiments analysis facility; optical/x-ray streak camera; Shiva Dante System temporal response; 2{omega}{sub 0} experiment; and planning for an ICF engineering test facility.

  9. Operational Experience and Performance with the ATLAS Pixel detector with emphasis on radiation damage

    CERN Document Server

    Butti, Pierfrancesco; The ATLAS collaboration

    2017-01-01

    The tracking performance of the ATLAS detector relies critically on its 4-layer Pixel Detector, that has undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the Large Hadron Collider, with record breaking instantaneous luminosities of 1.3 x 10^34 cm-2 s-1 recently surpassed. The key status and performance metrics of the ATLAS Pixel Detector are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described, with special emphasis to radiation damage experience.

  10. Operational Experience and Performance with the ATLAS Pixel detector with emphasis on radiation damage

    CERN Document Server

    Garcia Pascual, Juan Antonio; The ATLAS collaboration

    2017-01-01

    The tracking performance of the ATLAS detector relies critically on its 4-layer Pixel Detector, that has undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the Large Hadron Collider, with record breaking instantaneous luminosities of 1.3 x 10$^{34}$ cm$^{-2}$ s$^{-1}$ recently surpassed. The key status and performance metrics of the ATLAS Pixel Detector are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described, with special emphasis to radiation damage experience.

  11. Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Phase 1, Study

    Energy Technology Data Exchange (ETDEWEB)

    Hoopingarner, K.R.; Vause, J.W.; Dingee, D.A.; Nesbitt, J.F.

    1987-08-01

    Pacific Northwest Laboratory evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume I, reviews diesel-generator experience to identify the systems and components most subject to aging degradation and isolates the major causes of failure that may affect future operational readiness. Evaluations show that as plants age, the percent of aging-related failures increases and failure modes change. A compilation is presented of recommended corrective actions for the failures identified. This study also includes a review of current, relevant industry programs, research, and standards. Volume II reports the results of an industry-wide workshop held on May 28 and 29, 1986 to discuss the technical issues associated with aging of nuclear service emergency diesel generators.

  12. Operation experiences of biofuel dryers; Drifterfarenheter fraan aangtorkar och direkta roekgastorkar

    Energy Technology Data Exchange (ETDEWEB)

    Berge, Christian; Dejfors, Charlotte [AaF Energikonsult Stockholm AB (Sweden)

    2000-01-01

    A study regarding operation experiences of indirect steam dryers and direct flue gas dryers of biofuels has been conducted. In the study, plants with the two types of dryers have been visited and operational experiences have been gathered and analysed. Results show that the well proven technique with flue gas dryers has a higher availability than the steam dryers. Several plants have problem with the feeding and discharge systems. Material selection is very important to prevent corrosion. Indirect steam dryers have more environmental regulations than flue gas dryers because of the generated condensate from the fuel drying process. Future work should concentrate on material selections, refining the feeding and discharge systems and control system.

  13. Experience with the use of building commissioning advisor - from design to operation

    DEFF Research Database (Denmark)

    Forman, Marianne

    2016-01-01

    is explorative, which means that focus is on the specific use of commissioning in order to learn from the experience and translate it according to Copenhagen Property's long-term strategies, including the need to establish a new internal infrastructure between operations, planning and construction. Drawing...... with the client's requirements. However, experience and knowledge of the impact of the commissioning process on the construction process and the building's performance in practice is still insufficient. In order to shed light on the role of energy commissioning in construction and on how well it functions...... on ethnographic methods and theories, this paper will analyse and discuss what the use of a commissioning adviser in the design stage means for the interaction between design and operation. It may seem that "technical solutions" are made before “ongoing learning processes” in which new themes are articulated...

  14. Integrating experiences from operations into engineering design: modelling knowledge transfer in the offshore oil industry

    DEFF Research Database (Denmark)

    Souza da Conceição, Carolina; Broberg, Ole; Paravizo, Esdras

    2017-01-01

    and workwise distance between operations and engineering design teams, integrating human factors and transferring knowledge are key aspects when designing for better performance systems. Research Objective: Based on an in-depth empirical investigation in an offshore oil company, this study aims to provide......Summative Statement: Integrating human factors and users’ experiences in design projects is a well-known challenge. This study focus on the specific challenges for transferring these experiences and how using a knowledge transfer model can help this integration on the design of high-risk productive...... a framework for the knowledge transfer process from operations into engineering design that helps identifying and facing the challenges for such a transfer process. Methodology: The study was carried out as a case study in an offshore oil company. We used the empirical data collected through interviews...

  15. Coordinate Systems, Numerical Objects and Algorithmic Operations of Computational Experiment in Fluid Mechanics

    Directory of Open Access Journals (Sweden)

    Degtyarev Alexander

    2016-01-01

    Full Text Available The paper deals with the computer implementation of direct computational experiments in fluid mechanics, constructed on the basis of the approach developed by the authors. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the effciency of the algorithms developed by numerical procedures with natural parallelism. The paper examines the main objects and operations that let you manage computational experiments and monitor the status of the computation process. Special attention is given to a realization of tensor representations of numerical schemes for direct simulation; b realization of representation of large particles of a continuous medium motion in two coordinate systems (global and mobile; c computing operations in the projections of coordinate systems, direct and inverse transformation in these systems. Particular attention is paid to the use of hardware and software of modern computer systems.

  16. A streamer tube detector for operation at high rates in the CPLEAR experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Bennet, J.M. [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Carroll, M. [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Cawley, E.L. [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Dodgson, M. [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Fry, J.R. [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Gabathuler, E. [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Gamet, R. [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Harrison, P. [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Harrison, P.F. [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Haselden, A.R. [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Hayman, P.J. [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; King, D. [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Maley, P.D. [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Sacks, L.E. [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Sanders, P.M. [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.

    1996-06-01

    The design and instrumentation of a streamer tube detector for operation in the high rate environment of the CPLEAR experiment at CERN is described. A study of gas mixtures for use in the streamer tube is discussed. The final mixture of 46% argon, 50% isobutane, 4% methylal and 0.01% freon produces an axial resolution of 1.5 cm with an efficiency of 98% per layer. (orig.).

  17. A case method for Sales and Operations Planning: a learning experience from Germany

    OpenAIRE

    Luiz Felipe Scavarda; Bernd Hellingrath; Tobias Kreuter; Antonio Márcio Tavares Thomé; Marcelo Xavier Seeling; Jan-Hendrick Fischer; Raquel Mello

    2017-01-01

    Abstract Adequate preparation, learning, and training is required for Sales and Operations Planning (S&OP) to aid organizations in achieving the full expected benefits from its implementation. This paper presents a case method for S&OP and the learning experience of its application at the University of Münster (Germany). The “constructive alignment principle” was applied with a “team teaching” approach, involving an executive from the case company. Students improved th...

  18. Two methods for estimating aeroelastic damping of operational wind turbine modes from experiments

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Thomsen, Kenneth; Fuglsang, Peter;

    2006-01-01

    on stochastic subspace identification, where a linear model of the turbine is estimated alone from measured response signals by assuming that the ambient excitation from turbulence is random in time and space. Although the assumption is not satisfied, this operational modal analysis method can handle......The theory and results of two experimental methods for estimating the modal damping of a wind turbine during operation are presented. Estimations of the aeroelastic damping of the operational turbine modes (including the effects of the aerodynamic forces) give a quantitative view of the stability...... characteristics of the turbine. In the first method the estimation of modal damping is based on the assumption that a turbine mode can be excited by a harmonic force at its natural frequency, whereby the decaying response after the end of excitation gives an estimate of the damping. Simulations and experiments...

  19. Operating experience during high-level waste vitrification at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, P.J.; Elliott, D.I.

    1999-01-01

    This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes.

  20. International Space Station United States Orbital Segment Oxygen Generation System On-Orbit Operational Experience

    Science.gov (United States)

    Erickson, Robert J.; Howe, John, Jr.; Kulp, Galen W.; VanKeuren, Steven P.

    2008-01-01

    The International Space Station (ISS) United States Orbital Segment (USOS) Oxygen Generation System (OGS) was originally intended to be installed in ISS Node 3. The OGS rack delivery was accelerated, and it was launched to ISS in July of 2006 and installed in the US Laboratory Module. Various modification kits were installed to provide its interfaces, and the OGS was first activated in July of 2007 for 15 hours, In October of 2007 it was again activated for 76 hours with varied production rates and day/night cycling. Operational time in each instance was limited by the quantity of feedwater in a Payload Water Reservoir (PWR) bag. Feedwater will be provided by PWR bag until the USOS Water Recovery System (WRS) is delivered to SS in fall of 2008. This paper will discuss operating experience and characteristics of the OGS, as well as operational issues and their resolution.

  1. Programmable DSP-Based Multi-Bunch Feedback - Operating Experience from Six Installations

    Energy Technology Data Exchange (ETDEWEB)

    Fox, John D

    2000-05-15

    A longitudinal instability control system, originally developed for the PEP-II, DAPHNE and ALS machines has in the last two years been commissioned for use at the PLS and BESSY-II light sources. All of the installations are running identical hardware and use a common software distribution package. This common structure is beneficial in sharing expertise among the labs, and allows rapid commissioning of each new installation based on well-understood diagnostic and operational techniques. While the installations share the common instability control system, there are significant differences in machine dynamics between the various colliders and light sources. These differences require careful specification of the feedback algorithm and system configuration at each installation to achieve good instability control and useful operational margins. This paper highlights some of the operational experience at each installation, using measurements from each facility to illustrate the challenges unique to each machine. The authors experience on the opportunities and headaches of sharing development and operational expertise among labs on three continents is also offered.

  2. Fusion Machinery

    DEFF Research Database (Denmark)

    Sørensen, Jakob Balslev; Milosevic, Ira

    2015-01-01

    the vesicular SNARE VAMP2/synaptobrevin-2 and the target (plasma membrane) SNAREs SNAP25 and syntaxin-1 results in fusion and release of neurotransmitter, synchronized to the electrical activity of the cell by calcium influx and binding to synaptotagmin. Formation of the SNARE complex is tightly regulated...... and appears to start with syntaxin-1 bound to an SM (Sec1/Munc18-like) protein. Proteins of the Munc13-family are responsible for opening up syntaxin and allowing sequential binding of SNAP-25 and VAMP2/synaptobrevin-2. N- to C-terminal “zippering” of the SNARE domains leads to membrane fusion...

  3. Mechanisms of influenza viral membrane fusion.

    Science.gov (United States)

    Blijleven, Jelle S; Boonstra, Sander; Onck, Patrick R; van der Giessen, Erik; van Oijen, Antoine M

    2016-12-01

    Influenza viral particles are enveloped by a lipid bilayer. A major step in infection is fusion of the viral and host cellular membranes, a process with large kinetic barriers. Influenza membrane fusion is catalyzed by hemagglutinin (HA), a class I viral fusion protein activated by low pH. The exact nature of the HA conformational changes that deliver the energy required for fusion remains poorly understood. This review summarizes our current knowledge of HA structure and dynamics, describes recent single-particle experiments and modeling studies, and discusses their role in understanding how multiple HAs mediate fusion. These approaches provide a mechanistic picture in which HAs independently and stochastically insert into the target membrane, forming a cluster of HAs that is collectively able to overcome the barrier to membrane fusion. The new experimental and modeling approaches described in this review hold promise for a more complete understanding of other viral fusion systems and the protein systems responsible for cellular fusion.

  4. Nurses' perceptions and experiences of communication in the operating theatre: a focus group interview

    Directory of Open Access Journals (Sweden)

    Kidd Jane

    2006-02-01

    Full Text Available Abstract Nurses' perceptions and experiences of communication in the operating theatre: a focus group interview Background Communication programmes are well established in nurse education. The focus of programmes is most often on communicating with patients with less attention paid to inter-professional communication or skills essential for working in specialised settings. Although there are many anecdotal reports of communication within the operating theatre, there are few empirical studies. This paper explores communication behaviours for effective practice in the operating theatre as perceived by nurses and serves as a basis for developing training. Methods A focus group interview was conducted with seven experienced theatre nurses from a large London teaching hospital. The interview explored their perceptions of the key as well as unique features of effective communication skills in the operating theatre. Data was transcribed and thematically analysed until agreement was achieved by the two authors. Results There was largely consensus on the skills deemed necessary for effective practice including listening, clarity of speech and being polite. Significant influences on the nature of communication included conflict in role perception and organisational issues. Nurses were often expected to work outside of their role which either directly or indirectly created barriers for effective communication. Perceptions of a lack of collaborative team effort also influenced communication. Conclusion Although fundamental communication skills were identified for effective practice in the operating theatre, there were significant barriers to their use because of confusion over clarity of roles (especially nurses' roles and the implications for teamwork. Nurses were dissatisfied with several aspects of communication. Future studies should explore the breadth and depth of this dissatisfaction in other operating theatres, its impact on morale and importantly

  5. Nurses' perceptions and experiences of communication in the operating theatre: a focus group interview

    Science.gov (United States)

    Nestel, Debra; Kidd, Jane

    2006-01-01

    Abstract Nurses' perceptions and experiences of communication in the operating theatre: a focus group interview Background Communication programmes are well established in nurse education. The focus of programmes is most often on communicating with patients with less attention paid to inter-professional communication or skills essential for working in specialised settings. Although there are many anecdotal reports of communication within the operating theatre, there are few empirical studies. This paper explores communication behaviours for effective practice in the operating theatre as perceived by nurses and serves as a basis for developing training. Methods A focus group interview was conducted with seven experienced theatre nurses from a large London teaching hospital. The interview explored their perceptions of the key as well as unique features of effective communication skills in the operating theatre. Data was transcribed and thematically analysed until agreement was achieved by the two authors. Results There was largely consensus on the skills deemed necessary for effective practice including listening, clarity of speech and being polite. Significant influences on the nature of communication included conflict in role perception and organisational issues. Nurses were often expected to work outside of their role which either directly or indirectly created barriers for effective communication. Perceptions of a lack of collaborative team effort also influenced communication. Conclusion Although fundamental communication skills were identified for effective practice in the operating theatre, there were significant barriers to their use because of confusion over clarity of roles (especially nurses' roles) and the implications for teamwork. Nurses were dissatisfied with several aspects of communication. Future studies should explore the breadth and depth of this dissatisfaction in other operating theatres, its impact on morale and importantly on patient safety

  6. Experiments for Evaluating Application of Bayesian Inference to Situation Awareness of Human Operators in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seongkeun; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of this paper is to confirm if Bayesian inference can properly reflect the situation awareness of real human operators, and find the difference between the situation of ideal and practical operators, and investigate the factors which contributes to those difference. As a results, human can not think like computer. If human can memorize all the information, and their thinking process is same to the CPU of computer, the results of these two experiments come out more than 99%. However the probability of finding right malfunction by humans are only 64.52% in simple experiment, and 51.61% in complex experiment. Cognition is the mental processing that includes the attention of working memory, comprehending and producing language, calculating, reasoning, problem solving, and decision making. There are many reasons why human thinking process is different with computer, but in this experiment, we suggest that the working memory is the most important factor. Humans have limited working memory which has only seven chunks capacity. These seven chunks are called magic number. If there are more than seven sequential information, people start to forget the previous information because their working memory capacity is running over. We can check how much working memory affects to the result through the simple experiment. Then what if we neglect the effect of working memory? The total number of subjects who have incorrect memory is 7 (subject 3, 5, 6, 7, 8, 15, 25). They could find the right malfunction if the memory hadn't changed because of lack of working memory. Then the probability of find correct malfunction will be increased to 87.10% from 64.52%. Complex experiment has similar result. In this case, eight subjects(1, 5, 8, 9, 15, 17, 18, 30) had changed the memory, and it affects to find the right malfunction. Considering it, then the probability would be (16+8)/31 = 77.42%.

  7. Impact of Surgeon Experience During Carotid Endarterectomy Operation and Effects on Perioperative Outcomes

    Directory of Open Access Journals (Sweden)

    Volkan Yüksel

    Full Text Available Abstract Objective: We evaluated the effect of surgeon experience on complication and mortality rates of carotid endarterectomy operation. Methods: Fifty-nine consecutive patients who underwent carotid endarterectomy between January 2013 and February 2016 were divided into two groups. Patients who had been operated by surgeons performing carotid endarterectomy for more than 10 years were allocated to group 1 (experienced surgeons; n=34. Group 2 (younger surgeons; n=25 consisted of patients operated by surgeons independently performing carotid endarterectomy for less than 2 years. Both groups were compared in respect of operative results and postoperative complications. Results: No intergroup difference was found for laterality of the lesion or concomitant coronary artery disease. In group 1, signs of local nerve damage (n=2; 5.9% were detected, whereas in group 2 no evidence of local nerve damage was observed. Surgeons in group 1 used local and general anesthesia in 3 (8.8% and 31 (91.2% patients, respectively, while surgeons in group 2 preferred to use local and general anesthesia in 1 (4% and 24 (96% patients, respectively. Postoperative stroke was observed in group 1 (n=2; 5.9% and group 2 (n=2; 5.8%. Conclusion: Younger surgeons perform carotid endarterectomy with similar techniques and have similar results compared to experienced surgeons. Younger surgeons rarely prefer using shunt during carotid endarterectomy. The experience and the skills gained by these surgeons during their training, under the supervision of experienced surgeons, will enable them to perform successful carotid endarterectomy operations independently after completion of their training period.

  8. On Affine Fusion and the Phase Model

    Directory of Open Access Journals (Sweden)

    Mark A. Walton

    2012-11-01

    Full Text Available A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n Wess-Zumino-Novikov-Witten (WZNW conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.

  9. An assessment of the evaporation and condensation phenomena of lithium during the operation of a Li(d,xn) fusion relevant neutron source

    National Research Council Canada - National Science Library

    Knaster, J; Kanemura, T; Kondo, K

    2016-01-01

    The flowing lithium target of a Li(d,xn) fusion relevant neutron source must evacuate the deuteron beam power and generate in a stable manner a flux of neutrons with a broad peak at 14 MeV capable to cause similar phenomena as would undergo...

  10. Modular Aneutronic Fusion Engine

    Energy Technology Data Exchange (ETDEWEB)

    Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

    2012-05-11

    NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

  11. Materials for Fusion Applications

    Directory of Open Access Journals (Sweden)

    Jiří Matějíček

    2013-01-01

    Full Text Available An overview of materials foreseen for use or already used in fusion devices is given. The operating conditions, material requirements and characteristics of candidate materials in several specific application segments are briefly reviewed. These include: construction materials, electrical insulation, permeation barriers and plasma facing components. Special attention will be paid to the latter and to the issues of plasma-material interaction, materials joining and fuctionally graded interlayers.

  12. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  13. [Low field intra-operative magnetic resonance imaging for brain tumour surgery: preliminary experience].

    Science.gov (United States)

    Roldán, Pedro; García, Sergio; González, Josep; Reyes, Luis Alberto; Torales, Jorge; Valero, Ricard; Oleaga, Laura; Enseñat, Joaquim

    Intra-operative magnetic resonance imaging (iMRI) is a recently introduced tool in the most advanced neurosurgical operating rooms worldwide. We present our preliminary experience in brain tumour surgery with low field PoleStar N30® intraoperative MRI since its introduction in 2013 in the Barcelona Clinic Hospital. A prospective non-randomised study was conducted on cases operated on using iMRI and intention of complete removal up to October 2015. A record was made of the data as regards surgical times, resection rates, histological diagnosis, hospital stay, and survival rates during follow-up. The study included 50 patients, with a mean age of 55 years (±13.7), a preoperative mean Karnofsky of 92 (being 81 post-operatively), and a mean follow-up of 10.5 months (±6.5). There were 26% re-operations due to recurrence. High-grade gliomas were reported in 56%, low-grade gliomas in 24%, and 20% "Other" tumours. Overall hospital stay was 10 days (±4.5). Depending on the histologiacl diagnosis, the "Others" group had a longer hospital stay. Overall, there were 52% complete removal, 18% of maximum removals, and 30% of partial removals. The overall survival rates during follow-up was 84%. iMRI is a safe and effective tool for brain tumour surgery. Its use allows an increase in resection rates, and minimises post-operative complications. Its implementation involves an increase in surgical time, which improves with the characteristic learning curve. More studies are needed to establish its role in the long-term survival of patients. Copyright © 2016 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. ESA's billion star surveyor - Flight operations experience from Gaia's first 1.5 Years

    Science.gov (United States)

    Milligan, D.; Rudolph, A.; Whitehead, G.; Loureiro, T.; Serpell, E.; di Marco, F.; Marie, J.; Ecale, E.

    2016-10-01

    This paper details the initial in-flight mission operations experience from ESA's ultra-precise Gaia spacecraft. Tasked with mapping the positions and movements of 1 billion stars to unprecedented precision (to the 10 s of micro-arc-second level, comparable to the width of a coin on the Moon as viewed from Earth). ESA's Science cornerstone mission is expected to also discover and chart 100,000's of new objects including near Earth Asteroids, exoplanets, brown dwarfs and Quasars. After a flawless launch 19 Dec 2013, Gaia was brought the circa 1.5 million kms into L2 via a sequence of technically demanding orbit transfer manoeuvres using onboard thrusters in thrust vectoring mode. Starting in parallel to this, and lasting 6 months, the full spacecraft was commissioned and brought gradually up to the highest operational mode. A number of problems were detected and tackled during commissioning and early routine phase operations. An apparent dimming of the on-board laser and imaged stars, was tracked down to water ice building up inside the telescope enclosure. Also apparent was more straylight than expected. Elsewhere, a micro-propulsion thruster developed unexpected performance levels and a back-up chemical thruster suffered a failed latch valve. These issues, like several others, were dealt with and solved in a series of review meetings, in-orbit special operations and newly developed procedures and on-board software changes. After commissioning Gaia was working so well that it was producing approximately 45% more science data than originally foreseen, primarily since it was able to see stars fainter than required. The mission operations concept was quickly adapted to partially automate ground operations and increase ground station time to allow the full scientific potential of Gaia to be realised.

  15. In-patient operating exposure for dental undergraduates: a valuable experience?

    Science.gov (United States)

    Edwards, J P; Durham, J; Moore, U; Goodson, M; Thomson, P

    2012-02-10

    The General Dental Council, the Association of Dental Education in Europe and the Association of British Academic Oral and Maxillofacial Surgeons have all issued syllabuses suggesting undergraduate dental students should gain experience of oral and maxillofacial in-patient operating.Aim To examine whether final year dental students in a UK dental school had observed, and were comfortable providing an explanation of, oral and maxillofacial in-patient operating.Materials and methods Students at Newcastle University's School of Dental Sciences have block allocations to in-patient operating (16 half-day sessions). A questionnaire was distributed to the whole of the final year (n = 78) at the end of these allocations examining different aspects of their exposure to in-patient operating.Results A response rate of 81% (n = 63) was achieved. Those responding reported that they had seen a wide variety of surgery. The most common procedural group that had not been observed was orthognathic surgery (n = 33, 52%). There was no correlation (p >0.05) between total number of procedural groups observed and total number of procedural groups that students were confident to explain, although there were significant correlations (p operations and having the confidence to explain them. The students felt that the block allocations were beneficial (n = 46, 63%) and offered a variety of free-text reasons for this. Only a minority (n = 24, 38%) had been actively involved in the surgery they had observed, the majority of those individuals having undertaken some suturing (n = 11).Conclusions Students perceive allocations to oral and maxillofacial in-patient operating as beneficial for a variety of reasons. The relationship between having observed a procedure and the individual's perceived ability to explain it appears to be complex. It is difficult to achieve consistent exposure throughout a large year group of undergraduate students, but more targeted learning may be of benefit.

  16. Laser fusion monthly, February 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, H.G.

    1981-02-01

    This report is divided into the following sections: (1) facility reports (Argus and Shiva); (2) Nova project; and (3) fusion experiments. In the Fusion Experiments section of this report, the author describes the results of a series of experiments on Shiva which further the understanding of the production and transport of suprathermal electrons. He found that of the suprathermal electrons which strike a laser irradiated disk target or which interact with the rear surface of a half Cairn hohlraum target, a significant fraction of these electrons orbit the target and strike the rear of the disk. These results have significant implications in the interpretation and modeling of the laser irradiated target experiments.

  17. Magnetic fusion; La fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project.

  18. The VariLift® Interbody Fusion System: expandable, standalone interbody fusion

    Directory of Open Access Journals (Sweden)

    Emstad E

    2015-05-01

    Full Text Available Erik Emstad,1 Diana Cardenas del Monaco,1 Louis C Fielding,2 Jon E Block2 1Wenzel Spine, Inc., Austin, TX, 2The Jon Block Group, San Francisco, CA, USA Abstract: Intervertebral fusion cages have been in clinical use since the 1990s. Cages offer the benefits of bone graft containment, restored intervertebral and foraminal height, and a more repeatable, stable procedure compared to interbody fusion with graft material alone. Due to concerns regarding postoperative stability, loss of lordosis, and subsidence or migration of the implant, interbody cages are commonly used with supplemental fixation such as pedicle screw systems or anterior plates. While providing additional stability, supplemental fixation techniques increase operative time, exposure, cost, and morbidity. The VariLift® Interbody Fusion System (VariLift® system has been developed as a standalone solution to provide the benefits of intervertebral fusion cages without the requirement of supplemental fixation. The VariLift® system, FDA-cleared for standalone use in both the cervical and lumbar spine, is implanted in a minimal profile and then expanded in situ to provide segmental stability, restored lordosis, and a large graft chamber. Preclinical testing and analyses have found that the VariLift® System is durable, and reduces stresses that may contribute to subsidence and migration of other standalone interbody cages. Fifteen years of clinical development with the VariLift® system have demonstrated positive clinical outcomes, continued patient maintenance of segmental stability and lordosis, and no evidence of implant migration. The purpose of this report is to describe the VariLift® system, including implant characteristics, principles of operation, indications for use, patient selection criteria, surgical technique, postoperative care, preclinical testing, and clinical experience. The VariLift® System represents an improved surgical option for a stable interbody fusion without

  19. Experience in using three different minimally invasive approaches in cardiac operations.

    Science.gov (United States)

    Wang, Wen Lin; Cai, Kai Can; Zeng, Wei Sheng; Jiang, Ren Chao

    2003-03-01

    In order to reach a clear understanding of minimally invasive approaches in cardiac operations, the authors review clinical experience in using three such approaches: inferior partial median sternotomy, right anterolateral minor thoracotomy, and the right parasternal approach. Sternotomy and the three different minimally invasive approaches were applied in and 2431 and 323 patients respectively. The approaches were selected according to the circumstances of the individual case. Both external and internal cardiac structures were observed during the operations. The length of the incision, the postoperative drainage, operative time, and cardiopulmonary bypass time were investigated. The postoperative complications occurring after minimally invasive approaches were observed. In inferior partial median sternotomy, all structures except for the ascending aorta could be exposed well. In right anterolateral minor thoracotomy, only the structures on the right side of the heart could be exposed, but the mitral valve could also be exposed well. The exposure of the right parasternal approach was similar to that of right anterolateral minor thoracotomy. There were statistically significant differences between sternotomy and the minimally invasive approaches in terms of incision length and postoperative drainage, but no difference in operative time and cardiopulmonary bypass time. The postoperative complications of MIAs included air embolism (n = 3), chest pain (n = 9), chest wall malacia (n = 1), rib fracture (n = 2), and sternum fracture (n = 2). The total incidence of complications in minimally invasive approaches was 5.3%. The minimally invasive approaches can have satisfactory clinical results if the approaches are correctly chosen and performed.

  20. Performance and operation experience of the ATLAS SemiConductor Tracker

    CERN Document Server

    Robichaud Veronneau, A; The ATLAS collaboration

    2014-01-01

    After more than 3 years of successful operation at the LHC, we report on the operation and performance of the SemiConductor Tracker (SCT) functioning in a high luminosity, high radiation environment. The SCT is part of the ATLAS experiment at CERN and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors were produced in the planar p-in-n technology. The signals are processed in the front-end ABCD3TA ASICs, which use a binary readout architecture. Data is transferred to the off-detector readout electronics via optical fibers. We find 99.3% of the SCT modules are operational, noise occupancy and hit efficiency exceed the design specifications; the alignment is very close to th...

  1. What Makes Fusion Cells Effective?

    Science.gov (United States)

    2009-12-01

    disbanded to address specific operations (e.g., a fleeting hostage rescue operation). Creation of these issue-based fusion cells would be based off...HQ USSOCOM Library MacDill AFB, FL 6. JSOC Fort Bragg, NC 7. ASD/SOLIC Washington, D.C.

  2. Long-term operation test of RPCs for the OPERA experiment

    CERN Document Server

    Barichello, G; Brugnera, R; Candela, A; Carrara, E; D'Incecco, M; Dal Corso, F; Degli Esposti, L; Dusini, S; Garfagnini, A; Gustavino, C; Lindozzi, M; Mengucci, A; Monacelli, P; Paoloni, A; Spinetti, M; Stanco, L; Terranova, F; Ventura, M; Votano, L

    2004-01-01

    OPERA is one of the two detectors foreseen in the CERN Neutrino to Gran Sasso project, devoted to the detection of nu//mu into nu //tau oscillations in the parameter region suggested by SuperKamiokande data on atmospheric neutrinos. Bakelite RPCs will be used to instrument the iron yoke of the muon spectrometers. We present the results of long-term (greater than 6 months) streamer operations of real size OPERA RPCs at cosmic rays fluxes. Given the very low rate observed in the underground Gran Sasso Laboratories, under 3 km w.e., even this short time period is equivalent to more than 10 OPERA years. Results of tests with different gas mixtures are reported, in view of decreasing the streamer charge of operation for the RPCs employed in the experiment.

  3. Experience with Multi-Beam and Multi-Beamline FEL-Operation

    Science.gov (United States)

    Rönsch-Schulenburg, J.; Faatz, B.; Honkavaara, K.; Kuhlmann, M.; Schreiber, S.; Treusch, R.; Vogt, M.

    2017-07-01

    DESY’s free-electron laser FLASH provides soft X-ray pulses for scientific users at wavelengths down to 4nm simultaneously in two undulator beamlines. They are driven by a common linear superconducting accelerator with a beam energy of up to 1.25 GeV. The superconducting technology allows the acceleration of electron bunch trains of several hundred bunches with a spacing of 1 microsecond or more and a repetition rate of 10 Hz. A fast kickerseptum system directs one part of the bunch train to FLASH1 and the other part to FLASH2 keeping the full 10 Hz repetition rate for both. The unique setup of FLASH allows independent FEL pulse parameters for both beamlines. In April 2016, simultaneous operation of FLASH1 and FLASH2 for external users started. This paper reports on our operating experience with this type of multi-beam, multi-beamline set-up.

  4. Operational experience with the CMS pixel detector in LHC Run II

    CERN Document Server

    Karancsi, Janos

    2016-01-01

    The CMS pixel detector was repaired successfully, calibrated and commissioned for the second run of Large Hadron Collider during the first long shutdown between 2013 and 2015. The replaced pixel modules were calibrated separately and show the expected behavior of an un-irradiated detector. In 2015, the system performed very well with an even improved spatial resolution compared to 2012. During this time, the operational team faced various challenges including the loss of a sector in one half shell which was only partially recovered. In 2016, the detector is expected to withstand instantaneous luminosities beyond the design limits and will need a combined effort of both online and offline teams in order to provide the high quality data that is required to reach the physics goals of CMS. We present the operational experience gained during the second run of the LHC and show the latest performance results of the CMS pixel detector.

  5. Clinical Outcome and Fusion Rates after the First 30 Extreme Lateral Interbody Fusions

    Directory of Open Access Journals (Sweden)

    Gregory M. Malham

    2012-01-01

    Full Text Available Introduction. The lateral transpsoas approach for lumbar interbody fusion (XLIF is gaining popularity. Studies examining a surgeon's early experience are rare. We aim to report treatment, complication, clinical, and radiographic outcomes in an early series of patients. Methods. Prospective data from the first thirty patients treated with XLIF by a single surgeon was reviewed. Outcome measures included pain, disability, and quality of life assessment. Radiographic assessment of fusion was performed by computed tomography. Results. Average follow-up was 11.5 months, operative time was 60 minutes per level and blood loss was 50 mL. Complications were observed: clinical subsidence, cage breakage upon insertion, new postoperative motor deficit and bowel injury. Approach side-effects were radiographic subsidence and anterior thigh sensory changes. Two patients required reoperation; microforaminotomy and pedicle screw fixation respectively. VAS back and leg pain decreased 63% and 56%, respectively. ODI improved 41.2% with 51.3% and 8.1% improvements in PCS and MCS. Complete fusion (last follow-up was observed in 85%. Conclusion. The XLIF approach provides superior treatment, clinical outcomes and fusion rates compared to conventional surgical approaches with lowered complication rates. Mentor supervision for early cases and strict adherence to the surgical technique including neuromonitoring is essential.

  6. Fusion Data Grid Service

    Science.gov (United States)

    Shasharina, Svetlana; Wang, Nanbor

    2004-11-01

    Simulations and experiments in the fusion and plasma physics community generate large datasets at remote sites. Visualization and analysis of these datasets are difficult because of the incompatibility among the various data formats adopted by simulation, experiments, and analysis tools, and the large sizes of analyzed data. Grids and Web Services technologies are capable of providing solutions for such heterogeneous settings, but need to be customized to the field-specific needs and merged with distributed technologies currently used by the community. This paper describes how we are addressing these issues in the Fusion Grid Service under development. We also present performance results of relevant data transfer mechanisms including binary SOAP, DIME, GridFTP and MDSplus and CORBA. We will describe the status of data converters (between HDF5 and MDSplus data types), developed in collaboration with MIT (J. Stillerman). Finally, we will analyze bottlenecks of MDSplus data transfer mechanism (work performed in collaboration with General Atomics (D. Schissel and M. Qian).

  7. Plasmas, Dielectrics and the Ultrafast: First Science and Operational Experience at FACET

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, C.I.; Adli, E.; Corde, S.; Decker, F.J.; England, R.J.; Erickson, R.; Fisher, A.; Gessner, S.; Hast, C.; Hogan, M.J.; Li, S.Z.; Lipkowitz, N.; Litos, M.; Nosochkov, Y.; Seeman, J.; Sheppard, J.C.; Tudosa, I.; White, G.; Wienands, U.; Woodley, M.; Wu, Z.; /SLAC /UCLA

    2012-09-14

    FACET (Facility for Advanced Accelerator and Experimental Tests) is an accelerator R&D test facility that has been recently constructed at SLAC National Accelerator Laboratory. The facility provides 20 GeV, 3 nC electron beams, short (20 {micro}m) bunches and small (20 {micro}m wide) spot sizes, producing uniquely high power beams. FACET supports studies from many fields but in particular those of Plasma Wakefield Acceleration and Dielectric Wakefield Acceleration. FACET is also a source of THz radiation for material studies. We present the FACET design, initial operating experience and first science from the facility.

  8. Operational experience of load shedding and new requirements on frequency relays

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, S. [ASEA-ATOM AB, Vaesteraas (Sweden); Runvik, G. [Sydkraft AB, Malmoe (Sweden); Stranne, G. [ABB Network Partner AB (Sweden)

    1997-12-31

    This paper summarises experience and analysis of underfrequency load shedding and power generator islanding. Most power systems can withstand the loss of a single generating unit or a single transmission line. Simultaneous loss of several power system components may cause a severe deficit in active and reactive power. The action of overexcitation limiters on the remaining generators may further aggravate the situation. Such infrequent events may cause severe drop in system frequency and voltage magnitude. Frequency relays for load shedding and power generator islanding must operate correctly even if the system frequency decays and the voltage magnitude decays rapidly at the same time. (author)

  9. Reactivity Initiated Accident Test Series RIA Scoping Test Experiment Operating Specification

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1978-06-01

    This document describes the experiment operating specifications for the Reactivity Initiated Accident (RIA) Scoping Test to be conducted in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory. The primary objectives of the RIA research are to determine fuel failure thresholds, modes, and consequences as functions of (a) enthalpy insertion, (b) irradiation history, and (c) fuel design. Coolant conditions of pressure, temperature, and flow rate that are typical of hot-startup conditions in commercial boiling water reactors (BWRs) will be used in the first six RIA tests, termed Series I.

  10. Commissioning and Early Operation Experience of the NSLS-II Storage Ring RF System

    Energy Technology Data Exchange (ETDEWEB)

    Gao, F.; Rose, J.; Cupolo, J.; Dilgen, T.; Rose, B.; Gash, W.; Ravindranath, V.; Yeddulla, M.; Papu, J.; Davila, P.; Holub, B.; Tagger, J.; Sikora, R.; Ramirez, G.; Kulpin, J.

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) is a 3 GeV electron X-ray user facility commissioned in 2014. The storage ring RF system, essential for replenishing energy loss per turn of the electrons, consists of digital low level RF controllers, 310 kW CW klystron transmitters, CESR-B type superconducting cavities, as well as a supporting cryogenic system. Here we will report on RF commissioning and early operation experience of the system for beam current up to 200mA.

  11. Experiment Based Teaching of Solar Cell Operation and Characterization Using the SolarLab Platform

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2014-01-01

    Experiment based teaching methods are a great way to get students involved and interested in almost any topic. This paper presents such a hands-on approach for teaching solar cell operation principles along with characterization and modelling methods. This is achieved with the SolarLab platform...... interfaces for exploring different solar cell principles and topics. The exercises presented in the current paper have been adapted from the original exercises developed for the SolarLab platform and are currently included in the Photovoltaic Power Systems courses (MSc and PhD level) taught at the Department...

  12. Operational Experience of the ATLAS SemiConductor Tracker and Pixel Detector

    CERN Document Server

    Robinson, Dave; The ATLAS collaboration

    2016-01-01

    The tracking performance of the ATLAS detector relies critically on the silicon and gaseous tracking subsystems that form the ATLAS Inner Detector. Those subsystems have undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the LHC during Run2. The key status and performance metrics of the Pixel Detector and the Semi Conductor Tracker are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described.

  13. Operating experience of the tile carrier transfer facility during the JET remote tile exchange

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, P.; Patel, B.; Davies, N.; Middleton, R.; Mills, S.; Palmer, J.; Pedrick, L.; Wilson, D.W. [JET Joint Undertaking, Abingdon, Oxon (United Kingdom); Hurd, F. [NET Team, Garching (Germany)

    1998-07-01

    During the Remote Tile Exchange shutdown at JET, the purpose built Tile Carrier Transfer Facility (TCTF) has been successfully used for the remote removal and storage of activated, tritiated and beryllium contaminated torus components. The short boom, end effector and tine arrangement was also used during the installation of the new Gas Box Divertor. Tritium levels required the use of techniques and practices which were successful in confining contamination and allowed the declassification of work areas. A holding area and posting facilities enabled ancillary equipment / tool logistics to be managed efficiently. This article presents and describes all the equipment used and reports the operational experience. (authors)

  14. Elements and Experiments of Shenzhen Continuous Operating Reference Stations(SZCORS) System

    Institute of Scientific and Technical Information of China (English)

    LUO Heping; SHI Xiaoyan; LIU Hui

    2005-01-01

    Real-time kinematic GPS precise positioning has been playing an increasing role in both surveying and navigation. Based on the city's fibre LAN network, Shenzhen Continuous Operating Reference Stations (SZCORS) system has been established and consists of GPS reference stations, system control center, user's data center, and real-time datacom network. The SZCORS system provides users the real-time centimeter positioning or post-processing millimeter positioning. This paper makes discussion on the structure of SZCORS system. Some experiments have been made to test the usablity, and then the data has been analyzed.

  15. ORNL integral experiment to provide data for evaluating magnetic-fusion-energy shielding concepts. Part I. Attenuation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, G.T.; Morgan, G.L.; McConnell, J.W.

    1982-08-01

    Integral experiments to measure the energy spectra of neutrons and gamma rays due to the transport of approximately 14-MeV T(d,n)/sup 4/He neutrons through laminated stainless steel and borated-polyethylene shield configurations have been performed at the Oak Ridge National Laboratory. An NE-213 detector and conventional pulse-shape-discrimination circuitry were used to record the pulse-height distributions from which the energy spectra were derived. Descriptions of the facility and experimental techniques are given in this paper along with tables and curves showing the results of the measurements.

  16. Search for a Vector Boson Fusion Higgs boson production in the di-photon channel with the ATLAS experiment

    CERN Document Server

    Petit, E; The ATLAS collaboration

    2012-01-01

    This poster was made for the HCP conference. The initial title submitted to the conference organisation committee was "Search for an associated Higgs boson production in the di-photon channel with the ATLAS experiment" and was about the details of the VH measurements in the di-photon channel with 13 fb-1 of data, and the implications in terms of Higgs boson couplings. But since the H->gammagamma was finally not approved to go for HCP, the title and the content of the posters changed from the VH production mode to the VBF production mode (for which we have results with the ICHEP dataset).

  17. Tame Fusion

    Institute of Scientific and Technical Information of China (English)

    S.D. Scott

    2003-01-01

    The first section of this paper covers preliminaries. Essentially, the next four cover units. It is shown that a compatible nearring with DCCR is Nnilpotent if and only if every maximal right N-subgroup is a right ideal. The last five sections relate to fusion (I.e., N-groups minimal for being generated by Nsubgroups, where each is N-isomorphic to a given N-group). Right N-subgroups of a tame nearring N with DCCR, minimal for not annihilating a minimal ideal from the left, are self monogenic and N-isomorphic. That this holds for any collection of minimal ideals is significant. Here, the right N-subgroup involved is a 'fusion product' of the 'components'.

  18. Long-Term Operating Experience with High-Power Gyrotron Oscillators

    Science.gov (United States)

    Felch, Kevin

    2005-10-01

    High-power, megawatt-class gyrotron oscillators have now been used in electron cyclotron heating (ECH) experiments for several years. The long periods of sustained operation have provided important information about the design limits that had initially been placed on the key elements of the gyrotron. In particular, observations made on recent 110 GHz, 1 MW gyrotrons used in ECH experiments on DIII-D at General Atomics indicate that several of the important components of the device, including the electron guns, interaction cavities and diamond output windows, have performed quite well, while analyses of the electron beam collectors on some of the devices indicate that design limits have often been exceeded. Observations made on these gyrotrons will be summarized and plans to address problem areas will be discussed.

  19. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mace, J; Matrosov, S; Shupe, M; Lawson, P; Hallar, G; McCubbin, I; Marchand, R; Orr, B; Coulter, R; Sedlacek, A; Avallone, L; Long, C

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phase will begin nominally on 1 November 2010 and extend to approximately early April 2011.

  20. Operation and Optimization of a Linux PC farm for Physics Analysis in the ZEUS Experiment

    Institute of Scientific and Technical Information of China (English)

    KrzysztofWrona; RadekKaczorowski; 等

    2001-01-01

    The ZEUS experiment has migrated its reconstruction and analysis farms to a PC-based environment.More than one year of experience has been acquired with successful operation of an analysis farm designed for several hundred users.Specially designed software has been used to proveide fast and reliable access to large amounts of data (30 TB in total),After the ongoing upgrade of the HERA luminosity,higher requirements will arise in terms of data storage capacity and throughput rate,The necessity of a bigger disk cache has led to consideration of solutions based on commodity technology,PC-based file servers are being tested as a cost-effective storage system,In this article we present the hardware and software solutions deplogyed and discuss their performance.scalability and maintenance issues.