WorldWideScience

Sample records for fusion energy production

  1. Inertial fusion and energy production

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1982-01-01

    Inertial-confinement fusion (ICF) is a technology for releasing nuclear energy from the fusion of light nuclei. For energy production, the most reactive hydrogen isotopes (deuterium (D) and tritium (T)) are commonly considered. The energy aplication requires the compression of a few milligrams of a DT mixture to great density, approximately 1000 times its liquid-state density, and to a high temperature, nearly 100 million 0 K. Under these conditions, efficient nuclear-fusion reactions occur, which can result in over 30% burn-up of the fusion fuel. The high density and temperature can be achieved by focusing very powerful laser or ion beams onto the target. The resultant ablation of the outer layers of the target compresses the fuel in the target, DT ignition occurs, and burn-up of the fuel results as the thermonuclear burn wave propagates outward. The DT-fuel burn-up occurs in about 199 picoseconds. On this short time scale, inertial forces are sufficiently strong to prevent target disassembly before fuel burn-up occurs. The energy released by the DT fusion is projected to be several hundred times greater than the energy delivered by the driver. The present statuds of ICF technology is described

  2. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  3. Optimization of nonthermal fusion power consistent with channeling of charged fusion product energy

    International Nuclear Information System (INIS)

    Snyder, P.B.; Herrmann, M.C.; Fisch, N.J.

    1994-01-01

    If the energy of charged fusion products can be diverted directly to fuel ions, non-Maxwellian fuel ion distributions and temperature differences between species will result. To determine the importance of these nonthermal effects, the fusion power density is optimized at constant-β for non-thermal distributions that are self-consistently maintained by channeling of energy from charged fusion products. For D-T and D- 3 He reactors, with 75% of charged fusion product power diverted to fuel ions, temperature differences between electrons and ions increase the reactivity by 40-70%, while non-Maxwellian fuel ion distributions and temperature differences between ionic species increase the reactivity by an additional 3-15%

  4. Fusion-product energy loss in inertial confinement fusion plasmas with applications to target burns

    International Nuclear Information System (INIS)

    Harris, D.B.; Miley, G.H.

    1984-01-01

    Inertial confinement fusion (ICF) has been proposed as a competitor to magnetic fusion in the drive towards energy production, but ICF target performance still contains many uncertainties. One such area is the energy-loss rate of fusion products. This situation is due in part to the unique plasma parameters encountered in ICF plasmas which are compressed to more than one-thousand times solid density. The work presented here investigates three aspects of this uncertainty

  5. Target production for inertial fusion energy

    International Nuclear Information System (INIS)

    Woodworth, J.G.; Meier, W.

    1995-03-01

    Inertial fusion energy (IFE) power plants will require the ignition and burn of 5-10 fusion fuel targets every second. The technology to economically mass produce high-quality, precision targets at this rate is beyond the current state of the art. Techniques that are scalable to high production rates, however, have been identified for all the necessary process steps, and many have been tested in laboratory experiments or are similar to current commercial manufacturing processes. In this paper, we describe a baseline target factory conceptual design and estimate its capital and operating costs. The result is a total production cost of ∼16 cents per target. At this level, target production represents about 6% of the estimated cost of electricity from a 1-GW e IFE power plant. Cost scaling relationships are presented and used to show the variation in target cost with production rate and plant power level

  6. The perspectives of fusion energy: The roadmap towards energy production and fusion energy in a distributed energy system

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Korsholm, Søren Bang

    2014-01-01

    at very high temperature where all matter is in the plasma state as the involved energies are orders of magnitude higher than typical chemical binding energies. It is one of the great science and engineering challenges to construct a viable power plant based on fusion energy. Fusion research is a world...... The presentation will discuss the present status of the fusion energy research and review the EU Roadmap towards a fusion power plant. Further the cost of fusion energy is assessed as well as how it can be integrated in the distributed energy system......Controlled thermonuclear fusion has the potential of providing an environmentally friendly and inexhaustible energy source for mankind. Fusion energy, which powers our sun and the stars, is released when light elements, such as the hydrogen isotopes deuterium and tritium, fuse together. This occurs...

  7. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.

    1994-01-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  8. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  9. Innovative energy production in fusion reactors

    Science.gov (United States)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are: (1) traveling wave direct energy conversion of 14.7 MeV protons; (2) cusp type direct energy conversion of charged particles; (3) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas; and (4) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising.

  10. Innovative energy production in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author).

  11. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  12. Fusion energy - an abundant energy source for the future

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of fusion energy production and the status and future prospects of the research. Considerations...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  13. Performance requirements of an inertial-fusion-energy source for hydrogen production

    International Nuclear Information System (INIS)

    Hovingh, J.

    1983-01-01

    Performance of an inertial fusion system for the production of hydrogen is compared to a tandem-mirror-system hydrogen producer. Both systems use the General Atomic sulfur-iodine hydrogen-production cycle and produce no net electric power to the grid. An ICF-driven hydrogen producer will have higher system gains and lower electrical-consumption ratios than the design point for the tandem-mirror system if the inertial-fusion-energy gain eta Q > 8.8. For the ICF system to have a higher hydrogen production rate per unit fusion power than the tandem-mirror system requires that eta Q > 17. These can be achieved utilizing realistic laser and pellet performances

  14. Application of controlled thermonuclear reactor fusion energy for food production

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, M.

    1975-06-01

    Food and energy shortages in many parts of the world in the past two years raise an immediate need for the evaluation of energy input in food production. The present paper investigates systematically (1) the energy requirement for food production, and (2) the provision of controlled thermonuclear fusion energy for major energy intensive sectors of food manufacturing. Among all the items of energy input to the ''food industry,'' fertilizers, water for irrigation, food processing industries, such as beet sugar refinery and dough making and single cell protein manufacturing, have been chosen for study in detail. A controlled thermonuclear power reactor was used to provide electrical and thermal energy for all these processes. Conceptual design of the application of controlled thermonuclear power, water and air for methanol and ammonia synthesis and single cell protein production is presented. Economic analysis shows that these processes can be competitive. (auth)

  15. Proliferation Risks of Fusion Energy: Clandestine Production, Covert Production, and Breakout

    International Nuclear Information System (INIS)

    Goldston, R.J.; Glaser, A.; Ross, A.F.

    2009-01-01

    Nuclear proliferation risks from fusion associated with access to weapon-usable material can be divided into three main categories: (1) clandestine production of fissile material in an undeclared facility, (2) covert production of such material in a declared and safeguarded facility, and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper we address each of these categories of risk from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if commercial fusion systems are designed to accommodate appropriate safeguards

  16. Fusion energy research for ITER and beyond

    International Nuclear Information System (INIS)

    Romanelli, Francesco; Laxaaback, Martin

    2011-01-01

    The achievement in the last two decades of controlled fusion in the laboratory environment is opening the way to the realization of fusion as a source of sustainable, safe and environmentally responsible energy. The next step towards this goal is the construction of the International Thermonuclear Experimental Reactor (ITER), which aims to demonstrate net fusion energy production on the reactor scale. This paper reviews the current status of magnetic confinement fusion research in view of the ITER project and provides an overview of the main remaining challenges on the way towards the realization of commercial fusion energy production in the second half of this century. (orig.)

  17. The fusion-hydrogen energy system

    International Nuclear Information System (INIS)

    Williams, L.O.

    1994-01-01

    This paper will describe the structure of the system, from energy generation and hydrogen production through distribution to the end users. It will show how stationary energy users will convert to hydrogen and will outline ancillary uses of hydrogen to aid in reducing other forms of pollution. It will show that the adoption of the fusion hydrogen energy system will facilitate the use of renewable energy such as wind and solar. The development of highly efficient fuel cells for production of electricity near the user and for transportation will be outlined. The safety of the hydrogen fusion energy system is addressed. This paper will show that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. In addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. (Author)

  18. Fusion: an energy source for synthetic fuels

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J; Steinberg, M.

    1980-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  19. Economic effect of fusion in energy market. Economic impact of fusion deployment in energy market

    International Nuclear Information System (INIS)

    Konishi, Satoshi

    2002-01-01

    Energy model analysis estimates the significant contribution of fusion in the latter half of the century under the global environment constraints if it will be successfully developed and introduced into the market. The total possible economical impact of fusion is investigated from the aspect of energy cost savings, sales, and its effects on Gross Domestic Products. Considerable economical possibility will be found in the markets for fusion related devices, of currently developing countries, and for synthesized fuel. The value of fusion development could be evaluated from these possible economic impact in comparison with its necessary investment. (author)

  20. Advanced synfuel production with fusion

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.

    1979-01-01

    An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers a nearly inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  1. Energy by nuclear fusion

    International Nuclear Information System (INIS)

    Buende, R.; Daenner, W.; Herold, H.; Raeder, J.

    1976-12-01

    This report reviews the state of knowledge in a number of fields of fusion research up to autumn 1976. Section 1 gives a very brief presentation of the elementary fusion reactions, the energies delivered by them and the most basic energy balances leading to Lawson-type diagrams. Section 2 outlines the reserves and cost of lithium and deuterium, gives estimates of the total energy available from DT fusion and comments on production technology, availlability and handling of the fuels. In section 3 a survey is given of the different concepts of magnetic confinement (stellarators, tokamaks, toroidal pinches, mirror machines, two-component plasmas), of confinement by walls, gas blankets and imploding liners and, finally, of the concepts of interial confinement (laser fusion, beam fusion). The reactors designed or outlined on the basis of the tokamak, high-β, mirror, and laser fusion concepts are presented in section 4, which is followed in section 5 by a discussion of the key problems of fusion power plants. The present-day knowledge of the cost structure of fusion power plants and the sensitivity of this structure with respect to the physical and technical assumptions made is analysed in section 6. Section 7 and 8 treat the aspects of safety and environment. The problems discussed include the hazard potentials of different designs (radiological, toxicological, and with respect to stored energies), release of radioactivity, possible kinds of malfunctioning, and the environmental impact of waste heat, radiation and radioactive waste (orig.) [de

  2. Stockpile tritium production from fusion

    International Nuclear Information System (INIS)

    Lokke, W.A.; Fowler, T.K.

    1986-01-01

    A fusion breeder holds the promise of a new capability - ''dialable'' reserve capacity at little additional cost - that offers stockpile planners a new way to deal with today's uncertainties in forecasting long range needs. Though still in the research stage, fusion can be developed in time to meet future military requirements. Much of the necessary technology will be developed by the ongoing magnetic fusion energy program. However, a specific program to develop the nuclear technology required for materials production is needed if fusion is to become a viable option for a new production complex around the turn of the century

  3. Fusion energy 2000. Fusion energy 1998 (2001 Edition). Proceedings

    International Nuclear Information System (INIS)

    2001-01-01

    This CD-ROM contains the Proceedings of 18th International Conference on Fusion Energy. It also contains an updated version of the Fusion Energy Conference 1998 Proceedings (38 additional papers included) as well as information on how to use this CD-ROM. The 18th International Atomic Energy Agency Fusion Energy Conference (FEC-2000) was held in Sorrento, Italy, 4-10 October 2000. 573 participants from over thirty countries and three international organizations took part in this Conference. The Conference was organized by the IAEA in co-operation with the Italian National Agency for New Technology, Energy and Environment (ENEA). Around 400 papers were presented in 22 oral and 8 poster sessions on magnetic confinement experiments, inertial fusion energy, plasma heating and current drive, ITER engineering design activities, magnetic confinement theory, innovative concepts, fusion technology, and safety and environment aspects. The 17th International Atomic Energy Agency (IAEA) Fusion Energy Conference was held in Yokohama, Japan, 19-24 October 1999. This 6-day conference, which was attended by 835 participants from over 30 countries and two international organizations, was organized by the IAEA in co-operation with the Japan Atomic Energy Research Institute (JAERI). More than 360 papers plus 5 summary talks were presented in 23 oral and 8 poster sessions on magnetic confinement and experiments, inertial fusion energy, plasma heating and current drive, ITER engineering design activities, magnetic confinement theory, innovative concepts and fusion technology

  4. Potential Fusion Market for Hydrogen Production Under Environmental Constraints

    International Nuclear Information System (INIS)

    Konishi, Satoshi

    2005-01-01

    Potential future hydrogen market and possible applications of fusion were analyzed. Hydrogen is expected as a major energy and fuel mediun for the future, and various processes for hydrogen production can be considered as candidates for the use of fusion energy. In order to significantly contribute to reduction of CO 2 emission, fusion must be deployed in developing countries, and must substitute fossil based energy with synthetic fuel such as hydrogen. Hydrogen production processes will have to evaluated and compared from the aspects of energy efficiency and CO 2 emission. Fusion can provide high temperature heat that is suitable for vapor electrolysis, thermo-chemical water decomposition and steam reforming with biomass waste. That is a possible advantage of fusion over renewables and Light water power reactor. Despite of its technical difficulty, fusion is also expected to have less limitation for siting location in the developing countries. Under environmental constraints, fusion has a chance to be a major primary energy source, and production of hydrogen enhances its contribution, while in 'business as usual', fusion will not be selected in the market. Thus if fusion is to be largely used in the future, meeting socio-economic requirements would be important

  5. Social assessment on fusion energy technology

    International Nuclear Information System (INIS)

    Nemoto, Kazuyasu

    1981-01-01

    In regard to the research and development for fusion energy technologies which are still in the stage of demonstrating scientific availability, it is necessary to accumulate the demonstrations of economic and environmental availability through the demonstration of technological availability. The purpose of this report is to examine how the society can utilize the new fusion energy technology. The technical characteristics of fusion energy system were analyzed in two aspects, namely the production techniques of thermal energy and electric energy. Also on the social characteristics in the fuel cycle stage of fusion reactors, the comparative analysis with existing fission reactors was carried out. Then, prediction and evaluation were made what change of social cycle fusion power generation causes on the social system formalized as a socio-ecological model. Moreover, the restricting factors to be the institutional obstacles to the application of fusion energy system to the society were analyzed from three levels of the decision making on energy policy. Since the convertor of fusion energy system is steam power generation system similar to existing system, the contents and properties of the social cycle change in the American society to which such new energy technology is applied are not much different even if the conversion will be made in future. (Kako, I.)

  6. U. S. Fusion Energy Future

    International Nuclear Information System (INIS)

    Schmidt, John A.; Jassby, Dan; Larson, Scott; Pueyo, Maria; Rutherford, Paul H.

    2000-01-01

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems

  7. Conceptual design of a hybrid fusion-fission reactor with intrinsic safety and optimized energy productivity

    International Nuclear Information System (INIS)

    Talebi, Hosein; Sadat Kiai, S.M.

    2017-01-01

    Highlights: • Designing a high yield and feasible Dense Plasma Focus for driving the reactor. • Presenting a structural method to design the dual layer cylindrical blankets. • Finding, the blanket production energy, in terms of its geometrical and material parameters. • Designing a subcritical blanket with optimization of energy amplification in detail. - Abstract: A hybrid fission-fusion reactor with a Dense Plasma Focus (DPF) as a fusion core and the dual layer fissionable blanket as the energy multiplier were conceptually designed. A cylindrical DPF, energized by a 200 kJ bank energy, is considered to produce fusion neutron, and these neutrons drive the subcritical fission in the surrounding blankets. The emphasis has been placed on the safety and energy production with considering technical and economical limitations. Therefore, the k eff-t of the dual cylindrical blanket was defined and mathematically, specified. By applying the safety criterion (k eff-t ≤ 0.95), the geometrical and material parameters of the blanket optimizing the energy amplification were obtained. Finally, MCNPX code has been used to determine the detailed dimensions of the blankets and fuel rods.

  8. High-energy fusion-product energy-loss measurements. Final technical report, January 1, 1981-December 31, 1983

    International Nuclear Information System (INIS)

    Miley, G.H.

    1983-12-01

    An experiment designed to examine the slowing down of charged fusion products in ICF plasmas was done. A time-of-flight spectrometer was used to simultaneously measure the energy spectra of D-T alphas and D 2 protons escaping from imploded glass microballoons. In order to model fusion-product slowing down in plasmas with nonclassical plasma parameters, the Ion-Sphere (or hard-sphere) potential has been used. The deceleration of fast test ions slowing down off of this potential has been calculated in a straightforward way. An interpolation between the classical slowing-down formula and the Ion-Sphere slowing-down expression in the region between classical and nonclassical plasmas has been derived. This expression, called the Ion-Sphere Interpolation Model, is valid for all fully ionized non-degenerate plasmas. Fusion-product energy deposition in the fuel is necessary for self-heating and burnwave propagation - two effects required for high-gain ICF. The University of Illinois advanced fuel hydrodynamic-burn code, AFBURN, has been used to test the sensitivity of reactor-sized targets to dE/dx. It was found that strongly burning targets are insensitive to both factor of two changes in dE/dx and inclusion of large plasma parameter effects in dE/dx. It was also found that weakly burning targets exhibit a markedly increased sensitivity to these effects

  9. Fusion reaction product diagnostics in ASDEX

    International Nuclear Information System (INIS)

    Bosch, H.S.

    1987-01-01

    A diagnostic method was developed to look for the charged fusion products from the D(D,p)T-reactions in the divertor tokamak ASDEX. With a semi-conductor detector it was possible to evaluate the ion temperature in thermal plasmas from the proton energy spectra as well as from the triton spectra. In lower-hybrid wave heated plasmas non-thermal (fast) ions were observed. These ions create fusion products with a characteristically different energy spectrum. (orig.)

  10. ROK-PRC Cooperation on Laser Fusion Energy

    International Nuclear Information System (INIS)

    Rhee, Yong Joo; Han, J. M.; Lee, S. M.; Nam, S. M.; Kwan, D. H.; Cha, Y. H.; Baek, S. H.

    2009-03-01

    International treaties on the reduction of green-house gases are now being established worldwide and Korea is supposed to join these treaties in a near future. Meanwhile the energy production via fission reactors proposed as a solution to this global environmental contamination has still inherent problems in that it also produces long-life radioactive nuclear waste in the long run, causing many serious social issues. Now the ultimate solution in this situation is believed to be the production of energy by the nuclear fusion reaction. In this project, the collaboration regarding high energy laser fusion has been carried out mainly at the Chinese facility such as ShengGuang II (SG II) laser facility, and ultrahigh intensity laser system of KAERI has been used for the small scale laser fusion and production of fast neutrons. Thomson scattering experiment to analyze the fusion plasma, opacity measurement to understand and develop the computer simulation techniques have been carried out at SG II facility, and experiments on implosion reaction which is basic to laser fusion as well as that of X-ray absorption and transmission have been done at the GEKKO XII facility of ILE, Japan. Satisfactory results both for Korea and China have been deduced by the strategy of project such that different approaches for high energy laser fusion and low energy laser fusion were applied. That is, Korean partner could get opportunities of doing experiments at the large laser facilities to get plasma diagnostic technologies and high density simulation technologies, besides the opportunity to participate in the K-C-J collaborative experiments of implosion and X-ray spectroscopy. And Chinese partner could solve their problem related to the laser fusion and neutron generation which were not successful even with their far high 300TW laser system

  11. Concepts for fusion fuel production blankets

    International Nuclear Information System (INIS)

    Gierszewski, P.

    1986-06-01

    The fusion blanket surrounds the burning hydrogen core of the fusion reactor. It is in this blanket that most of the energy released by the DT fusion reaction is converted into useable product, and where tritium fuel is produced to enable further operation of the reactor. Blankets will involve new materials, conditions and processes. Several recent fusion blanket concepts are presented to illustrate the range of ideas

  12. Synfuel (hydrogen) production from fusion power

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Cox, K.E.; Pendergrass, J.H.; Booth, L.A.

    1979-01-01

    A potential use of fusion energy for the production of synthetic fuel (hydrogen) is described. The hybrid-thermochemical bismuth-sulfate cycle is used as a vehicle to assess the technological and economic merits of this potential nonelectric application of fusion power

  13. Synfuels production from fusion reactors

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  14. Optimization of nonthermal fusion power consistent with energy channeling

    International Nuclear Information System (INIS)

    Snyder, P.B.; Herrmann, M.C.; Fisch, N.J.

    1995-02-01

    If the energy of charged fusion products can be diverted directly to fuel ions, non-Maxwellian fuel ion distributions and temperature differences between species will result. To determine the importance of these nonthermal effects, the fusion power density is optimized at constant-β for nonthermal distributions that are self-consistently maintained by channeling of energy from charged fusion products. For D-T and D- 3 He reactors, with 75% of charged fusion product power diverted to fuel ions, temperature differences between electrons and ions increase the reactivity by 40-70%, while non- Maxwellian fuel ion distributions and temperature differences between ionic species increase the reactivity by an additional 3-15%

  15. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  16. Charged particle accelerators for inertial fusion energy

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1991-01-01

    The long history of successful commercial applications of charged-particle accelerators is largely a result of initiative by private industry. The Department of Energy views accelerators mainly as support equipment for particle physicists rather than components of an energy generation program. In FY 91, the DOE spent over 850 M$ on building and supporting accelerators for physics research versus 5 M$ on induction accelerators for fusion energy. The author believes this emphasis is skewed. One must address problems of long-term energy sources to preserve the possibility of basic research by future generations. In this paper, the author reviews the rationale for accelerators as inertial fusion drivers, emphasizing that these devices provide a viable path of fusion energy from viewpoints of both physics and engineering. In this paper, he covered the full range of accelerator fusion applications. Because of space limitations, this paper concentrates on induction linacs for ICF, an approach singled out in recent reports by the National Academy of Sciences and the Fusion Policy Advisory Committee as a promising path to long-term fusion power production. Review papers by Cook, Leung, Franzke, Hofmann and Reiser in these proceedings give details on light ion fusion and RF accelerator studies

  17. Fusion energy applied to synthetic fuel production: a report to the DOE Division of Magnetic Fusion Energy based on a preliminary study by an ad-hoc advisory group

    International Nuclear Information System (INIS)

    Booth, L.A.

    1977-10-01

    The general conclusion is that the potential for utilization of fusion energy for synthetic fuel production is favorable. Three basic methods of hydrogen production are identified: high-temperature electrolysis, thermochemical cycles, and direct radiolysis. Combinations of these and their use as in combined cycles for electric power generation are considered

  18. Opportunities in the Fusion Energy Sciences Program. Appendix C: Topical Areas Characterization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-06-30

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  19. Hydrogen production in fusion reactors

    Science.gov (United States)

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    As one of the methods of innovative energy production in fusion reactors (that do not include a conventional turbine-type generator), the efficient use of fusion-reactor radiation and semiconductors to supply clean fuel in the form of hydrogen gas is studied. Taking the reactor candidates such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a plant system concept are investigated.

  20. LIFE: The Case for Early Commercialization of Fusion Energy

    International Nuclear Information System (INIS)

    Anklam, T.; Simon, A.J.; Powers, S.; Meier, W.R.

    2011-01-01

    This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

  1. Hydrogen production in fusion reactors

    International Nuclear Information System (INIS)

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated. (author)

  2. Hydrogen production in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated. (author).

  3. Neutronics analysis of water-cooled energy production blanket for a fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Jiang Jieqiong; Wang Minghuang; Chen Zhong; Qiu Yuefeng; Liu Jinchao; Bai Yunqing; Chen Hongli; Hu Yanglin

    2010-01-01

    Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor (M) and tritium breeding ratio (TBR) in a fusion-fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1 GWe with self-sustaining tritium, i.e. the M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33 000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.

  4. Magnetic fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The efforts of the Chemical Technology Division in the area of fusion energy include fuel handling, processing, and containment. These studies are closely coordinated with the ORNL Fusion Energy Division. Current experimental studies are concerned with the development of vacuum pumps for fusion reactors, the evaluation and development of techniques for recovering tritium (fuel) from either solid or liquid lithium containing blankets, and the use of deep beds of sorbents as roughing pumps and/or transfer operations. In addition, a small effort is devoted to the support of the ORNL design of The Next Step (TNS) in tokamak reactor development. The more applied studies--vacuum pump development and TNS design--are funded by the DOE/Magnetic Fusion Energy, and the more fundamental studies--blanket recovery and sorption in deep beds--are funded by the DOE/Basic Energy Sciences

  5. Opportunities in the Fusion Energy Sciences Program [Includes Appendix C: Topical Areas Characterization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-06-01

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  6. Fusion Energy Advisory Committee report on program strategy for US magnetic fusion energy research

    International Nuclear Information System (INIS)

    Conn, R.W.; Berkner, K.H.; Culler, F.L.; Davidson, R.C.; Dreyfus, D.A.; Holdren, J.P.; McCrory, R.L.; Parker, R.R.; Rosenbluth, M.N.; Siemon, R.E.; Staudhammer, P.; Weitzner, H.

    1992-09-01

    The Fusion Energy Advisory Committee (FEAC) was charged by the Department of Energy (DOE) with developing recommendations on how best to pursue the goal of a practical magnetic fusion reactor in the context of several budget scenarios covering the period FY 1994-FY 1998. Four budget scenarios were examined, each anchored to the FY 1993 figure of $337.9 million for fusion energy (less $9 million for inertial fusion energy which is not examined here)

  7. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  8. Radiolytic production of chemical fuels in fusion reactor systems

    International Nuclear Information System (INIS)

    Fish, J.D.

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered

  9. Fusion reactors for hydrogen production via electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    1979-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  10. Process and device for energy production from thermonuclear fusion reactions

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, Bruno.

    1977-01-01

    An energy generating system is described using a fusion reaction. It includes several contrivances for confining a plasma in an area, a protective device around a significant part of each of these confinement contrivances, an appliance for introducing a fusion reaction fuel in each of the confinements so that the plasma may be formed. Each confinement can be separated from the protective device so that it may be replaced by another. The system is connected to the confinements, to the protective devices or to both. It enables the thermal energy to be extracted and transformed into another form, electric, mechanical or both [fr

  11. Fusion: Energy for the future

    International Nuclear Information System (INIS)

    1991-05-01

    Fusion, which occurs in the sun and the stars, is a process of transforming matter into energy. If we can harness the fusion process on Earth, it opens the way to assuring that future generations will not want for heat and electric power. The purpose of this booklet is to introduce the concept of fusion energy as a viable, environmentally sustainable energy source for the twenty-first century. The booklet presents the basic principles of fusion, the global research and development effort in fusion, and Canada's programs for fusion research and development

  12. Inertial fusion energy; L'energie de fusion inertielle

    Energy Technology Data Exchange (ETDEWEB)

    Decroisette, M.; Andre, M.; Bayer, C.; Juraszek, D. [CEA Bruyeres-le-Chatel, Dir. des Systemes d' Information (CEA/DIF), 91 (France); Le Garrec, B. [CEA Centre d' Etudes Scientifiques et Techniques d' Aquitaine, 33 - Le Barp (France); Deutsch, C. [Paris-11 Univ., 91 - Orsay (France); Migus, A. [Institut d' Optique Centre scientifique, 91 - Orsay (France)

    2005-07-01

    We first recall the scientific basis of inertial fusion and then describe a generic fusion reactor with the different components: the driver, the fusion chamber, the material treatment unit, the target factory and the turbines. We analyse the options proposed at the present time for the driver and for target irradiation scheme giving the state of art for each approach. We conclude by the presentation of LMJ (laser Megajoule) and NIF (national ignition facility) projects. These facilities aim to demonstrate the feasibility of laboratory DT ignition, first step toward Inertial Fusion Energy. (authors)

  13. Fusion as an energy option

    International Nuclear Information System (INIS)

    Steiner, D.

    1976-01-01

    The environmental issues, alternative fusion fuels, the economic potential, and the time scale of fusion power are assessed. It is common for the advocate of a long-term energy source to claim his source (fission, fusion, solar, etc.) as the ultimate solution to man's energy needs. The author does not believe that such a stance will lead to a rational energy policy. Dr. Steiner encourages a long-term energy policy that has as its goal the development of fission breeders, fusion, and solar energy--not be totally reliant on a single source. He does advocate vigorous funding for fusion, not because it is a guarantee for ''clean, limitless, and cheap power,'' but because it may provide an important energy option for the next century

  14. Fusion energy division computer systems network

    International Nuclear Information System (INIS)

    Hammons, C.E.

    1980-12-01

    The Fusion Energy Division of the Oak Ridge National Laboratory (ORNL) operated by Union Carbide Corporation Nuclear Division (UCC-ND) is primarily involved in the investigation of problems related to the use of controlled thermonuclear fusion as an energy source. The Fusion Energy Division supports investigations of experimental fusion devices and related fusion theory. This memo provides a brief overview of the computing environment in the Fusion Energy Division and the computing support provided to the experimental effort and theory research

  15. Fusion Energy Update

    International Nuclear Information System (INIS)

    Whitson, M.O.

    1982-01-01

    Fusion Energy Update (CFU) provides monthly abstracting and indexing coverage of current scientific and technical reports, journal articles, conference papers and proceedings, books, patents, theses, and monographs for all sources on fusion energy. All information announced in CFU, plus additional backup information, is included in the energy information data base of the Department of Energy's Technical Information Center. The subject matter covered by CFU includes plasma physics, the physics and engineering of blankets, magnet coils and fields, power supplies and circuitry, cooling systems, fuel systems, radiation hazards, power conversion systems, inertial confinement systems, and component development and testing

  16. Novel, spherically-convergent ion systems for neutron source and fusion energy production

    International Nuclear Information System (INIS)

    Barnes, D.C.; Nebel, R.A.; Ribe, F.L.; Schauer, M.M.; Schranck, L.S.; Umstadter, K.R.

    1999-01-01

    Combining spherical convergence with electrostatic or electro-magnetostatic confinement of a nonneutral plasma offers the possibility of high fusion gain in a centimeter-sized system. The physics principles, scaling laws, and experimental embodiments of this approach are presented. Steps to development of this approach from its present proof-of-principle experiments to a useful fusion power reactor are outlined. This development path is much less expensive and simpler, compared to that for conventional magnetic confinement and leads to different and useful products at each stage. Reactor projections show both high mass power density and low to moderate wall loading. This approach is being tested experimentally in PFX-I (Penning Fusion eXperiment-Ions), which is based on the following recent advances: 1) Demonstration, in PFX (our former experiment), that it is possible to combine nonneutral electron plasma confinement with nonthermal, spherical focussing; 2) Theoretical development of the POPS (Periodically Oscillating Plasma Sphere) concept, which allows spherical compression of thermal-equilibrium ions; 3) The concept of a massively-modular approach to fusion power, and associated elimination of the critical problem of extremely high first wall loading. PFX-I is described. PFX-I is being designed as a small (<1.5 cm) spherical system into which moderate-energy electrons (up to 100 kV) are injected. These electrons are magnetically insulated from passing to the sphere and their space charge field is then used to spherically focus ions. Results of initial operation with electrons only are presented. Deuterium operation can produce significant neutron output with unprecedented efficiency (fusion gain Q). copyright 1999 American Institute of Physics

  17. The European Fusion Energy Research Programme towards the realization of a fusion demonstration reactor

    International Nuclear Information System (INIS)

    Gasparotto, M.; Laesser, R.

    2006-01-01

    Since its inception, the European Fusion Programme has been orientated towards the establishment of the knowledge base needed for the definition of a reactor to be used for power production. Its ultimate goal is then to demonstrate the scientific and the technological feasibility of fusion power while incorporating the assessment of the safety, environmental, social and economic features of this type of energy source. At present, the JET device, the largest tokamak in the world, and the other medium-sized experimental machines are contributing essentially to the basic scientific phase of this development path. Their successful operation greatly contributed to support the design basis of ITER, the next step in fusion, which will aim to demonstrate the scientific and technical feasibility of fusion power production by achieving extended D-T burning plasma operation. Following ITER, the conception and construction of the DEMO device is planned. DEMO will be a demonstration power plant which will be the first fusion device to generate a significant amount of electrical power from fusion. This paper describes the status of fusion research and the European strategy for achievement of the ultimate goal of construction of a prototype reactor. (author)

  18. The pion (muon) energy production cost in muon catalyzed fusion

    International Nuclear Information System (INIS)

    Fadeev, N.G.; Solov'ev, M.I.

    1995-01-01

    The article presents the main steps in the history of the study on the muon catalysis of nuclear fusion. The practical application of the muon catalysis phenomenon to obtain the energy gain is briefly discussed. The details of the problem to produce pion (muon) yield with minimal energy expenses have been considered. 31 refs., 4 tabs

  19. Wave heating and the U.S. magnetic fusion energy program

    International Nuclear Information System (INIS)

    Staten, H.S.

    1985-01-01

    The U.S. Government's support of the fusion program is predicated upon the long-term need for the fusion option in our energy future, as well as the near-term benefits associated with developments on the frontier of science and high technology. As a long-term energy option, magnetic fusion energy has the potential to provide an inexpensive, vast, and secure fuel reserve, to be environmentally clean and safe. It has many potential uses, which include production of central station electricity, fuel for fission reactors, synthetic fuels, and process heat for such applications as desalination of sea water. This paper presents an overview of the U.S. Government program for magnetic fusion energy. The goal and objectives of the U.S. program are reviewed followed by a summary of plasma experiments presently under way and the application of wave heating to these experiments

  20. Intelligible seminar on fusion reactors. (12) Next step toward the realization of fusion reactors. Future vision of fusion energy research and development

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Kurihara, Kenichi; Tobita, Kenji

    2006-01-01

    In the last session of this seminar the progress of research and development for the realization of fusion reactors and future vision of fusion energy research and development are summarized. The some problems to be solved when the commercial fusion reactors would be realized, (1) production of deuterium as the fuel, (2) why need the thermonuclear reactors, (3) environmental problems, and (4) ITER project, are described. (H. Mase)

  1. Energy from inertial fusion

    International Nuclear Information System (INIS)

    1995-03-01

    This book contains 22 articles on inertial fusion energy (IFE) research and development written in the framework of an international collaboration of authors under the guidance of an advisory group on inertial fusion energy set up in 1991 to advise the IAEA. It describes the actual scientific, engineering and technological developments in the field of inertial confinement fusion (ICF). It also identifies ways in which international co-operation in ICF could be stimulated. The book is intended for a large audience and provides an introduction to inertial fusion energy and an overview of the various technologies needed for IFE power plants to be developed. It contains chapters on (i) the fundamentals of IFE; (ii) inertial confinement target physics; (iii) IFE power plant design principles (requirements for power plant drivers, solid state laser drivers, gas laser drivers, heavy ion drivers, and light ion drivers, target fabrication and positioning, reaction chamber systems, power generation and conditioning and radiation control, materials management and target materials recovery), (iv) special design issues (radiation damage in structural materials, induced radioactivity, laser driver- reaction chamber interfaces, ion beam driver-reaction chamber interfaces), (v) inertial fusion energy development strategy, (vi) safety and environmental impact, (vii) economics and other figures of merit; (viii) other uses of inertial fusion (both those involving and not involving implosions); and (ix) international activities. Refs, figs and tabs

  2. Inertial fusion energy

    International Nuclear Information System (INIS)

    Decroisette, M.; Andre, M.; Bayer, C.; Juraszek, D.; Le Garrec, B.; Deutsch, C.; Migus, A.

    2005-01-01

    We first recall the scientific basis of inertial fusion and then describe a generic fusion reactor with the different components: the driver, the fusion chamber, the material treatment unit, the target factory and the turbines. We analyse the options proposed at the present time for the driver and for target irradiation scheme giving the state of art for each approach. We conclude by the presentation of LMJ (laser Megajoule) and NIF (national ignition facility) projects. These facilities aim to demonstrate the feasibility of laboratory DT ignition, first step toward Inertial Fusion Energy. (authors)

  3. The economic value of fusion energy

    International Nuclear Information System (INIS)

    Kim, S.H.; Clarke, J.; Edmonds, J.

    1996-01-01

    The potential economic benefit of fusion energy technology is significant and could dwarf the world's total expenditure on fusion energy research and development. However, the realization of these benefits will depend on the economic competitiveness of electricity generation from fusion energy technologies relative to that from other existing fossil fueled and renewable technologies, as well as the time in which fusion energy technologies are available for commercial operation. Utilizing the Second Generation Model, a long-term energy/economics model, the potential economic benefit of fusion energy technology for the United States was assessed. Model scenarios with hypothetical fusion power technologies based on the International Thermonuclear Experimental Reactor (ITER) design with varying cost and time of availability showed that significant economic benefit exists from a competitive fusion technology with cost of electricity (COE) of 0.06 $/kWhr and available in the year 2025. The fusion technology with these characteristics resulted in a total discounted GDP benefit of $105 billion from the year 1995 to 2100. On the other hand, uncompetitive fusion technologies with higher COE of 0.12 and 0.09 $/kWhr had little economic benefits. Moreover, delaying the introduction of all fusion technologies from 2025 to 2050 reduced the economic benefits of fusion technologies by more than 60 percent. Aside from the economic benefit of fusion technologies operating in the United States, the potential economic value of international trade in fusion technologies is likely to be even greater. If the United States could capture just a portion of the global electricity market, the export value of the fusion technology could amount to hundreds of billions of dollars, whereas the cost of importing the technology to the United States will erase any benefits derived from GDP increases

  4. Nuclear fusion as new energy option in a global single-regional energy system model

    International Nuclear Information System (INIS)

    Eherer, C.; Baumann, M.; Dueweke, J.; Hamacher, T.

    2005-01-01

    Is there a window of opportunity for fusion on the electricity market under 'business as usual' conditions, and if not, how do the boundary conditions have to look like to open such a window? This question is addressed within a subtask of the Socio-Economic Research on Fusion (SERF) programme of the European Commission. The most advanced energy-modelling framework, the TIMES model generator developed by the Energy Technology System Analysis Project group of the IEA (ETSAP) has been used to implement a global single-regional partial equilibrium energy model. Within the current activities the potential role of fusion power in various future energy scenarios is studied. The final energy demand projections of the baseline of the investigations are based on IIASA-WEC Scenario B. Under the quite conservative baseline assumptions fusion only enters the model solution with 35 GW in 2100 and it can be observed that coal technologies dominate electricity production in 2100. Scenario variations show that the role of fusion power is strongly affected by the availability of GEN IV fission breeding technologies as energy option and by CO 2 emission caps. The former appear to be a major competitor of fusion power while the latter open a window of opportunity for fusion power on the electricity market. An interesting outcome is furthermore that the possible share of fusion electricity is more sensitive to the potential of primary resources like coal, gas and uranium, than to the share of solar and wind power in the system. This indicates that both kinds of technologies, renewables and fusion power, can coexist in future energy systems in case of CO 2 emission policies and/or resource scarcity scenarios. It is shown that Endogenous Technological Learning (ETL), a more consistent description of technological progress than mere time series, has an impact on the model results. (author)

  5. Feasibility study of a magnetic fusion production reactor

    Science.gov (United States)

    Moir, R. W.

    1986-12-01

    A magnetic fusion reactor can produce 10.8 kg of tritium at a fusion power of only 400 MW —an order of magnitude lower power than that of a fission production reactor. Alternatively, the same fusion reactor can produce 995 kg of plutonium. Either a tokamak or a tandem mirror production plant can be used for this purpose; the cost is estimated at about 1.4 billion (1982 dollars) in either case. (The direct costs are estimated at 1.1 billion.) The production cost is calculated to be 22,000/g for tritium and 260/g for plutonium of quite high purity (1%240Pu). Because of the lack of demonstrated technology, such a plant could not be constructed today without significant risk. However, good progress is being made in fusion technology and, although success in magnetic fusion science and engineering is hard to predict with assurance, it seems possible that the physics basis and much of the needed technology could be demonstrated in facilities now under construction. Most of the remaining technology could be demonstrated in the early 1990s in a fusion test reactor of a few tens of megawatts. If the Magnetic Fusion Energy Program constructs a fusion test reactor of approximately 400 MW of fusion power as a next step in fusion power development, such a facility could be used later as a production reactor in a spinoff application. A construction decision in the late 1980s could result in an operating production reactor in the late 1990s. A magnetic fusion production reactor (MFPR) has four potential advantages over a fission production reactor: (1) no fissile material input is needed; (2) no fissioning exists in the tritium mode and very low fissioning exists in the plutonium mode thus avoiding the meltdown hazard; (3) the cost will probably be lower because of the smaller thermal power required; (4) and no reprocessing plant is needed in the tritium mode. The MFPR also has two disadvantages: (1) it will be more costly to operate because it consumes rather than sells

  6. On the path to fusion energy. Teller lecture 2005

    International Nuclear Information System (INIS)

    Tabak, M.

    2007-01-01

    There is a need to develop alternate energy sources in the coming century because fossil fuels will become depleted and their use may lead to global climate change. Inertial fusion can become such an energy source, but significant progress must be made before its promise is realized. The high-density approach to inertial fusion suggested by Nuckolls et al. leads reaction chambers compatible with civilian power production. Methods to achieve the good control of hydrodynamic stability and implosion symmetry required to achieve these high fuel densities will be discussed. Fast Ignition, a technique that achieves fusion ignition by igniting fusion fuel after it is assembled, will be described along with its gain curves. Fusion costs of energy for conventional hotspot ignition will be compared with those of Fast Ignition and their capital costs compared with advanced fission plants. Finally, techniques that may improve possible Fast Ignition gains by an order of magnitude and reduce driver scales by an order of magnitude below conventional ignition requirements are described. (author)

  7. HEDP and new directions for fusion energy

    Science.gov (United States)

    Kirkpatrick, Ronald C.

    2010-06-01

    Magnetic-confinement fusion energy and inertia-confinement fusion energy (IFE) represent two extreme approaches to the quest for the application of thermonuclear fusion to electrical energy generation. Blind pursuit of these extreme approaches has long delayed the achievement of their common goal. We point out the possibility of an intermediate approach that promises cheaper, and consequently more rapid development of fusion energy. For example, magneto-inertial fusion appears to be possible over a broad range of parameter space. It is further argued that imposition of artificial constraints impedes the discovery of physics solutions for the fusion energy problem.

  8. Fusion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Lackner, Karl; Tran, Minh Quang [eds.

    2012-09-15

    Recreating the energy production process of the Sun - nuclear fusion - on Earth in a controlled fashion is one of the greatest challenges of this century. If achieved at affordable costs, energy supply security would be greatly enhanced and environmental degradation from fossil fuels greatly diminished. Fusion Physics describes the last fifty years or so of physics and research in innovative technologies to achieve controlled thermonuclear fusion for energy production. The International Atomic Energy Agency (IAEA) has been involved since its establishment in 1957 in fusion research. It has been the driving force behind the biennial conferences on Plasma Physics and Controlled Thermonuclear Fusion, today known as the Fusion Energy Conference. Hosted by several Member States, this biennial conference provides a global forum for exchange of the latest achievements in fusion research against the backdrop of the requirements for a net energy producing fusion device and, eventually, a fusion power plant. The scientific and technological knowledge compiled during this series of conferences, as well as by the IAEA Nuclear Fusion journal, is immense and will surely continue to grow in the future. It has led to the establishment of the International Thermonuclear Experimental Reactor (ITER), which represents the biggest experiment in energy production ever envisaged by humankind.

  9. Ch. 37, Inertial Fusion Energy Technology

    International Nuclear Information System (INIS)

    Moses, E.

    2010-01-01

    Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of

  10. High-Yield Lithium-Injection Fusion-Energy (HYLIFE) reactor

    International Nuclear Information System (INIS)

    Blink, J.A.; Hogam, W.J.; Hovingh, J.; Meier, E.R.; Pitts, J.H.

    1985-01-01

    The High-Yield Lithium-Injection Fusion Energy (HYLIFE) concept to convent inertial confinement fusion energy into electric power has undergone intensive research and refinement at LLNL since 1978. This paper reports on the final HYLIFE design, focusing on five major areas: the HYLIFE reaction chamber (which includes neutronics, liquid-metal jet-array hydrocynamics, and structural design), supporting systems, primary steam system and balance of plant, safety and environmental protection, and costs. An annotated bibliography of reports applicable to HYLIFE is also provided. We conclude that HYLIFE is a particularly viable concept for the safe, clean production of electrical energy. The liquid-metal jet array, HYLIFE's key design feature, protects the surrounding structural components from x-rays, fusion fuel-pellet debris, neutron damage and activation, and high temperatures and stresses, allowing the structure to last for the plant's entire 30-year lifetime without being replaced. 127 refs., 18 figs

  11. Accelerated plan to develop magnetic fusion energy

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1986-01-01

    We have shown that, despite funding delays since the passage of the Magnetic Fusion Engineering Act of 1980, fusion development could still be carried to the point of a demonstration plant by the year 2000 as called for in the Act if funding, now about $365 million per year, were increased to the $1 billion range over the next few years (see Table I). We have also suggested that there may be an economic incentive for the private sector to become in accelerating fusion development on account of the greater stability of energy production costs from fusion. Namely, whereas fossil fuel prices will surely escalate in the course of time, fusion fuel will always be abundantly available at low cost; and fusion technology poses less future risk to the public and the investor compared to conventional nuclear power. In short, once a fusion plant is built, the cost of generating electricity mainly the amortization of the plant capital cost - would be relatively fixed for the life of the plant. In Sec. V, we found that the projected capital cost of fusion plants ($2000 to $4000 per KW/sub e/) would probably be acceptable if fusion plants were available today

  12. 76 FR 49757 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-08-11

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Services Administration, notice is hereby given that the Fusion Energy Sciences Advisory Committee will be... science, fusion science, and fusion technology related to the Fusion Energy Sciences program. Additionally...

  13. EURATOM strategy towards fusion energy

    International Nuclear Information System (INIS)

    Varandas, C.

    2007-01-01

    Research and development (Research and Development) activities in controlled thermonuclear fusion have been carried out since the 60's of the last century aiming at providing a new clean, powerful, practically inexhaustive, safe, environmentally friend and economically attractive energy source for the sustainable development of our society.The EURATOM Fusion Programme (EFP) has the leadership of the magnetic confinement Research and Development activities due to the excellent results obtained on JET and other specialized devices, such as ASDEX-Upgrade, TORE SUPRA, FTU, TCV, TEXTOR, CASTOR, ISTTOK, MAST, TJ-II, W7-X, RFX and EXTRAP. JET is the largest tokamak in operation and the single device that can use deuterium and tritium mixes. It has produced 16 MW of fusion power, during 3 seconds, with an energy amplification of 0.6. The next steps of the EFP strategy towards fusion energy are ITER complemented by a vigorous Accompanying Programme, DEMO and a prototype of a fusion power plant. ITER, the first experimental fusion reactor, is a large-scale project (35-year duration, 10000 MEuros budget), developed in the frame of a very broad international collaboration, involving EURATOM, Japan, Russia Federation, United States of America, Korea, China and India. ITER has two main objectives: (i) to prove the scientific and technical viability of fusion energy by producing 500 MW, during 300 seconds and a energy amplification between 10 and 20; and (ii) to test the simultaneous and integrated operation of the technologies needed for a fusion reactor. The Accompanying Programme aims to prepare the ITER scientific exploitation and the DEMO design, including the development of the International Fusion Materials Irradiation Facility (IFMIF). A substantial part of this programme will be carried out in the frame of the Broader Approach, an agreement signed by EURATOM and Japan. The main goal of DEMO is to produce electricity, during a long time, from nuclear fusion reactions. The

  14. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm 3 are required for a practical fusion-based fission product transmutation system

  15. Fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The efforts of the Chemical Technology Division in fusion energy include the areas of fuel handling, processing, and containment. Current studies are concerned largely with the development of vacuum pumps for fusion reactors and experiments and with development and evaluation of techniques for recovering tritium from solid or liquid breeding blankets. In addition, a small effort is devoted to support of the ORNL design of a major Tokamak experiment, The Next Step (TNS)

  16. Anomalous delayed loss of trapped D-D fusion products in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Darrow, D.S.; Fredrickson, E.D.; Mynick, H.E.

    1993-02-01

    A new anomalous delayed loss of D-D fusion products has been measured at the bottom of the TFRR vessel. This loss is delayed by ∼ 0.2 sec with respect to the usual prompt first-orbit loss, and has a correspondingly lower energy, i.e. about half the fusion product birth energy. This loss process dominates the total fusion product loss measured 90 degrees below the midplane for plasma currents. I≥ 1.8 MA and major radii near R=2.45 m, e.g. for recent TFTR supershots. This delayed feature can occur without large coherent MED activity, although it can be strongly modulated by such activity. Several possible causes for this phenomenon are discussed, but no clear explanation for this delayed loss has yet been found

  17. Inertial Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Mima, K

    2012-09-15

    In 1917, Albert Einstein suggested the theory of stimulated emission of light that led to the development of the laser. The first laser, based on Einstein's theory, was demonstrated by the Maiman experiment in 1960. In association with the invention and developments of the laser, N.G. Basov, A. Prokorov and C.H. Towns received the Nobel prize for physics in 1963. On the other hand, it had been recognized that nuclear fusion energy is the energy source of our universe. It is the origin of the energy in our sun and in the stars. Right after the laser oscillation experiment, it was suggested by J. Nuckolls, E. Teller and S. Colgate in the USA and A. Sakharov in the USSR that nuclear fusion induced by lasers be used to solve the energy problem. Following the suggestion, the pioneering works for heating plasmas to a thermonuclear temperature with a laser were published by N. Basov, O.N. Krohin, J.M. Dawson, C.R. Kastler, H. Hora, F. Flux and S. Eliezer. The new concept of fusion ignition and burn by laser 'implosion' was proposed by J. Nuckolls, which extended the spherically imploding shock concept discovered by G. Guderley to the laser fusion concept. Since then, laser fusion research has started all over the world. For example, many inertial fusion energy (IFE) facilities have been constructed for investigating implosion physics: Lasers: GEKKO I, GEKKO II, GEKKO IV, GEKKO MII and GEKKO xII at ILE, Osaka University, Japan; JANUS, CYCLOPS, ARUGUS, SHIVA and NOVA at Lawrence Livermore National Laboratory (LLNL), USA; OMEGA at the Laboratory for Laser Energetics (LLE), University of Rochester, USA; PHEBUS at Limeil, Paris, France; the ASTERIx iodine laser at the Max-Planck-Institut fuer Plasmaphysik (IPP), Garching, Germany; MPI, GLECO at the Laboratoire d'Utilisation des Lasers Intenses (LULI), ecole Polytecnique, France; HELIOS at Los Alamos National Laboratory, USA; Shengan II at the Shanghai Institute of Optics and Fine Mechanics, China; VULCAN at the Rutherford

  18. COST-EFFECTIVE TARGET FABRICATION FOR INERTIAL FUSION ENERGY

    International Nuclear Information System (INIS)

    GOODIN, D.T; NOBILE, A; SCHROEN, D.G; MAXWELL, J.L; RICKMAN, W.S

    2004-03-01

    A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The IFE target fabrication programs are focusing on methods that will scale to mass production, and working closely with target designers to make material selections that will satisfy a wide range of required and desirable characteristics. Targets produced for current inertial confinement fusion experiments are estimated to cost about $2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have found a cost requirement of about $0.25-0.30 each. While four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the paradigm shifts in target fabrication methodologies that will be needed to economically supply targets and presents the results of ''nth-of-a-kind'' plant layouts and concepts for IFE power plant fueling. Our engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for laser-driven and for heavy ion driven IFE

  19. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements

  20. Direct conversion of fusion energy

    International Nuclear Information System (INIS)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D- 3 He reaction and the p- 11 B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger βB 2 0 to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high β values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D- 3 He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D 3 He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D 3 He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion or liquid metal MHD conversion (LMMHD). For a D

  1. Direct conversion of fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D-{sup 3}He reaction and the p-{sup 11}B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger {beta}B{sup 2}{sub 0} to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high {beta} values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D-{sup 3}He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D{sub 3} He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D{sub 3} He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion

  2. Hydrogen production from fusion reactors coupled with high temperature electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  3. 24. IAEA Fusion Energy Conference. Programme and Book of Abstracts

    International Nuclear Information System (INIS)

    2012-09-01

    The International Atomic Energy Agency (IAEA) fosters the exchange of scientific and technical results in nuclear fusion research through its series of Fusion Energy Conferences. The 24th IAEA Fusion Energy Conference (FEC 2012) aims to provide a forum for the discussion of key physics and technology issues as well as innovative concepts of direct relevance to fusion as a source of nuclear energy. With a number of next-step fusion devices currently being implemented - such as the International Thermonuclear Experimental Reactor (ITER) in Cadarache, France, and the National Ignition Facility (NIF) in Livermore, USA - and in view of the concomitant need to demonstrate the technological feasibility of fusion power plants as well as the economical viability of this method of energy production, the fusion community is now facing new challenges. The resolution of these challenges will dictate research orientations in the present and coming decades. The scientific scope of FEC 2012 is, therefore, intended to reflect the priorities of this new era in fusion energy research. The conference aims to be a platform for sharing the results of research and development efforts in both national and international fusion experiments that have been shaped by these new priorities, and thereby help in pinpointing worldwide advances in fusion theory, experiments, technology, engineering, safety and socio-economics. Furthermore, the conference will also set these results against the backdrop of the requirements for a net energy producing fusion device and a fusion power plant in general, and will thus help in defining the way forward. With the participation of international organizations such as the ITER International Organization and EURATOM, as well as the collaboration of more than forty countries and several research institutes, including those working on smaller plasma devices, it is expected that this conference will, as in the past, serve to identify possibilities and means for a

  4. Fusion-supported decentralized nuclear energy system

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1979-04-01

    A decentralized nuclear energy system is proposed comprising mass-produced pressurized water reactors in the size range 10 to 300 MW (thermal), to be used for the production of process heat, space heat, and electricity in applications where petroleum and natural gas are presently used. Special attention is given to maximizing the refueling interval with no interim batch shuffling in order to minimize fuel transport, reactor downtime, and opportunity for fissile diversion. These objectives demand a substantial fissile enrichment (7 to 15%). The preferred fissile fuel is U-233, which offers an order of magnitude savings in ore requirements (compared with U-235 fuel), and whose higher conversion ratio in thermal reactors serves to extend the period of useful reactivity and relieve demand on the fissile breeding plants (compared with Pu-239 fuel). Application of the neutral-beam-driven tokamak fusion-neutron source to a U-233 breeding pilot plant is examined. This scheme can be extended in part to a decentralized fusion energy system, wherein remotely located large fusion reactors supply excess tritium to a distributed system of relatively small nonbreeding D-T reactors

  5. 21. IAEA fusion energy conference. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Recognizing the prominent role that nuclear energy plays in the world, and based on the expectation that nuclear fusion will be able to provide an abundant source of energy, the International Atomic Energy Agency (IAEA) supports the exchange of scientific and technical information on fusion research through conferences, meetings and projects. The 21st IAEA Fusion Energy Conference (FEC 2006) provided a forum for presenting and discussing the progress that is being made in fusion experiments, theory and technological developments. It is expected that the progress in the establishment of ITER since the last Fusion Energy Conference will put more emphasis on the physics and technology R and D aspects in the realization of fusion as a clean and lasting energy source. FEC 2006 covered the following topics: OV Overviews; EX Magnetic Confinement Experiments; TH Magnetic Confinement Theory and Modelling; IT ITER Activities; IF Inertial Fusion Experiments and Theory; IC Innovative Concepts; FT Fusion Technology and Power Plant Design; SE Safety, Environmental and Economic Aspects of Fusion. At the same time, a series of satellite meetings and fusion related exhibitions took place.

  6. Fusion the energy of the universe

    CERN Document Server

    McCracken, Garry

    2012-01-01

    Fusion: The Energy of the Universe, 2e is an essential reference providing basic principles of fusion energy from its history to the issues and realities progressing from the present day energy crisis. The book provides detailed developments and applications for researchers entering the field of fusion energy research. This second edition includes the latest results from the National Ignition Facility at the Lawrence Radiation Laboratory at Livermore, CA, and the progress on the International Thermonuclear Experimental Reactor (ITER) tokamak programme at Caderache, France.

  7. Fusion Implementation

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    2002-01-01

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans

  8. Fusion-product transport in axisymmetric tokamaks: losses and thermalization

    International Nuclear Information System (INIS)

    Hively, L.M.

    1980-01-01

    High-energy fusion-product losses from an axisymmetric tokamak plasma are studied. Prompt-escape loss fluxes (i.e. prior to slowing down) are calculated including the non-separable dependence of flux as a function of poloidal angle and local angle-of-incidence at the first wall. Fusion-product (fp) thermalization and heating are calculated assuming classical slowing down. The present analytical model describes fast ion orbits and their distribution function in realistic, high-β, non-circular tokamak equilibria. First-orbit losses, trapping effects, and slowing-down drifts are also treated

  9. World progress toward fusion energy

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1989-09-01

    This paper will describe the progress in fusion science and technology from a world perspective. The paper will cover the current technical status, including the understanding of fusion's economic, environmental, and safety characteristics. Fusion experiments are approaching the energy breakeven condition. An energy gain (Q) of 30 percent has been achieved in magnetic confinement experiments. In addition, temperatures required for an ignited plasma (Ti = 32 KeV) and energy confinements about 75 percent of that required for ignition have been achieved in separate experiments. Two major facilities have started the experimental campaign to extend these results and achieve or exceed Q = 1 plasma conditions by 1990. Inertial confinement fusion experiments are also approaching thermonuclear conditions and have achieved a compression factor 100-200 times liquid D-T. Because of this progress, the emphasis in fusion research is turning toward questions of engineering feasibility. Leaders of the major fusion R and D programs in the European Community (EC), Japan, the United States, and the U.S.S.R. have agreed on the major steps that are needed to reach the point at which a practical fusion system can be designed. The United States is preparing for an experiment to address the last unexplored scientific issue, the physics of an ignited plasma, during the late 1990's. The EC, Japan, U.S.S.R., and the United States have joined together under the auspices of the International Atomic Energy Agency (IAEA) to jointly design and prepare the validating R and D for an international facility, the International Thermonuclear Experimental Reactor (ITER), to address all the remaining scientific issues and to explore the engineering technology of fusion around the turn of the century. In addition, a network of international agreements have been concluded between these major parties and a number of smaller fusion programs, to cooperate on resolving a complete spectrum of fusion science and

  10. Magnetic-fusion energy and computers

    International Nuclear Information System (INIS)

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups

  11. Magnetic fusion energy and computers

    International Nuclear Information System (INIS)

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups

  12. Z-Pinch Fusion for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  13. Z-Pinch Fusion for Energy Applications

    International Nuclear Information System (INIS)

    SPIELMAN, RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999

  14. Muon-catalyzed fusion: A new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  15. Muon-catalyzed fusion: a new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  16. Nuclear data for the production of radioisotopes in fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Cheng, E.T.; Schenter, R.E.; Mann, F.M.; Ikeda, Y.

    1991-01-01

    The fusion materials irradiation facility (FMIF) is a neutron source generator that will produce a high-intensity 14-MeV neutron field for testing candidate fusion materials under reactor irradiation conditions. The construction of such a facility is one of the very important development stages toward realization of fusion energy as a practical energy source for electricity production. As a result of the high-intensity neutron field, 10 MW/m 2 or more equivalent neutron wall loading, and the relatively high-energy (10- to 20-MeV) neutrons, the FMIF, as future fusion reactors, also bears the potential capability of producing a significant quantity of radioisotopes. A study is being conducted to identify the potential capability of the FMIF to produce radioisotopes for medical and industrial applications. Two types of radioisotopes are involved: one is already available; the second might not be readily available using conventional production methods. For those radioisotopes that are not readily available, the FMIF could develop significant benefits for future generations as a result of the availability of such radioisotopes for medical or industrial applications. The current production of radioisotopes could help finance the operation of the FMIF for irradiating the candidate fusion materials; thus this concept is attractive. In any case, nuclear data are needed for calculating the neutron flux and spectrum in the FMIF and the potential production rates of these isotopes. In this paper, the authors report the result of a preliminary investigation on the production of 99 Mo, the parent radioisotope for 99m Tc

  17. ITER and the road map towards fusion energy

    International Nuclear Information System (INIS)

    Tran, M.Q.

    2005-01-01

    Outlined is a fusion as a sustainable energy, the conditions and challenges for the realisation of fusion energy. Given is electricity generating power plant conceptual study and the rule of fusion energy in future energy scenarios

  18. Fusion: The Energy of the Universe

    International Nuclear Information System (INIS)

    Lister, J

    2006-01-01

    This book outlines the quest for fusion energy. It is presented in a form which is accessible to the interested layman, but which is precise and detailed for the specialist as well. The book contains 12 detailed chapters which cover the whole of the intended subject matter with copious illustrations and a balance between science and the scientific and political context. In addition, the book presents a useful glossary and a brief set of references for further non-specialist reading. Chapters 1 to 3 treat the underlying physics of nuclear energy and of the reactions in the sun and in the stars in considerable detail, including the creation of the matter in the universe. Chapter 4 presents the fusion reactions which can be harnessed on earth, and poses the fundamental problems of realising fusion energy as a source for our use, explaining the background to the Lawson criterion on the required quality of energy confinement, which 50 years later remains our fundamental milestone. Chapter 5 presents the basis for magnetic confinement, introducing some early attempts as well as some straightforward difficulties and treating linear and circular devices. The origins of the stellarator and of the tokamak are described. Chapter 6 is not essential to the mission of usefully harnessing fusion energy, but nonetheless explains to the layman the difference between fusion and fission in weapons, which should help the readers understand the differences as sources of peaceful energy as well, since this popular confusion remains a problem when proposing fusion with the 'nuclear' label. Chapter 7 returns to energy sources with laser fusion, or inertial confinement fusion, which constitutes both military and civil research, depending on the country. The chapter provides a broad overview of the progress right up to today's hopes for fast ignition. The difficulty of harnessing fusion energy by magnetic or inertial confinement has created a breeding ground for what the authors call 'false

  19. Challenges and the future of the fusion energy

    International Nuclear Information System (INIS)

    Gross, R.A.

    1982-01-01

    The need to develop new large energy resources is discussed. One of three inexhaustible energy resource possibilities is fusion energy, whose history and scientific goals are described. The current world-wide research and development program for fusion is outlined. As an example of today's perception of what fusion energy will be like, a commercial tokamak fusion electric powerplant is described. Special attention is devoted to some of the challenging material problems that face fusion power development. (Author) [pt

  20. Efficient hydrogen production using heat in neutron shield of fusion reactor

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Asaoka, Yoshiyuki; Hiwatari, Ryouji; Yoshida, Tomoaki

    2001-01-01

    In future perspective of energy supply, a hydrogen energy cycle is expected to play an important role as a CO 2 free fuel for mobile or co-generation systems. Fusion power plants should offer advantages, compatibilities and/or synergistic effects with or in such future energy systems. In this paper, a comprehensive power station, in which a fusion plant is integrated with a hydrogen production plant, is proposed. A tenuous heat source in the outboard shield, which is unsuitable to produce high-pressure and high-temperature steam for efficient electric power generation, is used for the hydrogen production. This integrated system provides some synergistic effects and it would be advantageous over any independent use of each plant. (author)

  1. Hydrogen production in early generation fusion power plant and its socio-economic implication

    International Nuclear Information System (INIS)

    Konishi, S.; Yamamoto, Y.

    2007-01-01

    Full text: This paper describes technical possibility of high temperature blanket for the early generation of fusion power plant and its application to hydrogen production. Its anticipated implication and strategy from the socio-economic aspects will be also discussed. Material and energy balances, such as fuel supply and delivery of product energy from fusion plants, as well as waste discharge and accident scenario that lead to environmental impact, are characterized by blanket concepts. Thus blankets are considered to dominate the feature of fusion energy that should respond to the requirements of the sponsors, i.e., public and future market. Fusion blanket concept based on the combinations of LiPb and SiC materials are regarded as a candidate for ITER/TBM, and at the same time, applied in various DEMO designs encompassing high temperature output. Recent developments of SiC-LiPb blanket in Japan, EU, US or China suggests staged development paths starting from TBMs and targeting high temperature blanket and efficient energy output from early generation plants. These strategies are strongly affected by the views of these parties on fusion energy, from the aspects of socio-economics. Hydrogen production process with the high temperature blanket is one of the most important issues, because temperature range much higher than is possible with current or near future fission plants are needed, suggesting market possibility different from that of fission. Fuel cycles, particularly lithium supply and TBR control will be also important. Self-sustained fusion fuel cycle requires technical capability to maintain the lithium contents. Liquid blanket has an advantage in continuous and real-time control TBR in a plant, but large amount of lithium-6 and initial tritium supply remains as issues. As for the environmental effect, normal operation release, assumed accidental scenario, and rad-waste will be the key issue to dominate social acceptance of fusion. (author)

  2. Hydrogen production in early generation fusion power plant and its socio-economic implication

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Yamamoto, Yasushi

    2008-01-01

    This paper describes technical possibility of high temperature blanket for the early generation of fusion power plant and its application to hydrogen production. Its anticipated implication and strategy from the socio-economic aspects will be also discussed. Material and energy balances, such as fuel supply and delivery of product energy from fusion plants, as well as waste discharge and accident scenario that lead to environmental impact, are characterized by blanket concepts. Thus blankets are considered to dominate the feature of fusion energy that should respond to the requirements of the sponsors, i.e., public and future market. Fusion blanket concept based on the combinations of LiPb and SiC materials are regarded as a candidate for ITER/TBM, and at the same time, applied in various DEMO designs encompassing high temperature output. Recent developments of SiC-LiPb blanket in Japan, EU, US or China suggests staged development paths starting from TBMs and targeting high temperature blanket and efficient energy output from early generation plants. These strategies are strongly affected by the views of these parties on fusion energy, from the aspects of socio-economics. Hydrogen production process with the high temperature blanket is one of the most important issues, because temperature range much higher than is possible with current or near future fission plants are needed, suggesting market possibility different from that of fission. Fuel cycles, particularly lithium supply and TBR control will be also important. Self-sustained fusion fuel cycle requires technical capability to maintain the lithium contents. Liquid blanket has an advantage in continuous and real-time control TBR in a plant, but large amount of lithium-6 and initial tritium supply remains as issues. As for the environmental effect, normal operation release, assumed accidental scenario, and rad-waste will be the key issue to dominate social acceptance of fusion. (author)

  3. A roadmap to the realization of fusion energy

    International Nuclear Information System (INIS)

    Romanelli, Francesco

    2013-01-01

    With the reduction of CO2 emissions driving future energy policy, fusion can start market penetration beyond 2050 with up to 30% of electricity production by 2100. This requires an ambitious, yet realistic roadmap towards the demonstration of electricity production by 2050. This talk describes the main technical challenges on the path to fusion energy. For all of the challenges candidate solutions have been developed and the goal of the programme is now to demonstrate that they will also work at the scale of reactor. The roadmap has been developed within a goal-oriented approach articulated in eight different Missions. For each Mission the critical aspects for reactor application, the risks and risk mitigation strategies, the level of readiness now and after ITER and the gaps in the programme have been examined with involvement of experts from the ITER International Organization, Fusion for Energy, EFDA Close Support Unites and EFDA Associates. High-level work packages for the roadmap implementation have been prepared and the resources evaluated. ITER is the key facility in the roadmap and its success represents the most important overarching objectives of the EU programme. A demonstration fusion power plant (DEMO), producing net electricity for the grid at the level of a few hundreds MW is foreseen to start operation in the early 2040s. Following ITER, it will be the single step to a commercial fusion power plant. Industry must be involved early in the DEMO definition and design. The evolution of the programme requires that industry progressively shifts its role from that of provider of high-tech components to that of driver of the fusion development. Industry must be able to take full responsibility for the commercial fusion power plant after successful DEMO operation. For this reason, DEMO cannot be defined and designed by research laboratories alone, but requires the full involvement of industry in all technological and systems aspects of the design. Europe

  4. Charged fusion product and fast ion loss in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Darrow, D.S.; Fredrickson, E.D.; Mynick, H.E.; White, R.B.; Biglari, H.; Bretz, N.; Budny, R.; Bush, C.E.; Chang, C.S.; Chen, L.; Cheng, C.Z.; Fu, G.Y.; Hammett, G.W.; Hawryluk, R.J.; Hosea, J.; Johnson, L.; Mansfield, D.; McGuire, K.; Medley, S.S.; Nazikian, R.; Owens, D.K.; Park, H.; Park, J.; Phillips, C.K.; Schivell, J.; Stratton, B.C.; Ulrickson, M.; Wilson, R.; Young, K.M.; Fisher, R.; McChesney, J.; Fonck, R.; McKee, G.; Tuszewski, M.

    1993-03-01

    Several different fusion product and fast ion loss processes have been observed in TFTR using an array of pitch angle, energy and time resolved scintillator detectors located near the vessel wall. For D-D fusion products (3 MeV protons and 1 MeV tritons) the observed loss is generally consistent with expected first-orbit loss for Ip I MA. However, at higher currents, Ip = 1.4--2.5 MA, an NM induced D-D fusion product loss can be up to 3-4 times larger than the first-orbit loss, particularly at high beam powers, P ≥ 25 MW. The MHD induced loss of 100 KeV neutron beam ions and ∼0.5 MeV ICRF minority tail tons has also been measured ≤ 459 below the outer midplane. be potential implications of these results for D-T alpha particle experiments in TFTR and ITER are described

  5. The challenge to keep nuclear fusion alive as a future energy source

    International Nuclear Information System (INIS)

    D'haeseleer, W.D.

    1999-01-01

    Few people are preoccupied with the energy issue. Indeed, inflation-corrected energy prices (in euros) are currently lower than before the first oil crisis of 1973; the annual growth rate of primary-energy use in the industrialized world has diminished considerably compared to before 1970, and oil and gas production is characterized by increased exploration activity and a wider geographical spread. Nevertheless, there is a real energy issue. If the greenhouse effect turns out to be real, then mankind should at least slow down the consumption of fossil fuels. Given the fact that world energy consumption (especially by the developing countries) will rise in the future, and that nuclear fission power has become unpopular in the western world, the idea reigning in some circles to cope with this situation by total reliance on energy savings and renewable energy sources comes close to wishful thinking. A realistic analysis makes it clear that there will be a need for large workhorses for electricity generation to keep the overall electricity grid sufficiently robust. From a global and long-term perspective, the logical conclusion is the following: because mankind cannot count on the continued use of fossil fuels (due to the finiteness of the resources combined with the possible climate change effects), our generation has the responsibility to develop alternative energy sources for the distant future. Many parallel lines of research and development therefore need be pursued; because of the uncertainties with other alternative sources, it would be irresponsible to kill some of these development lines. This holds for renewable sources, the nuclear fission breeder, and for nuclear fusion. A major hurdle for the survival of long term energy research and development is the liberalization of the electricity market. Because of the revolutionary changes taking place, utilities concentrate on cost cutting and short-term survival. In addition, they are no longer supposed to take

  6. Effects of magnetization on fusion product trapping and secondary neutron spectra

    International Nuclear Information System (INIS)

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.

    2015-01-01

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/−0.06) MG · cm, a ∼ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux

  7. Magnetic fusion energy. Part VI

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The first chapter of this part describes briefly the DOE policy for fusion energy. Subsequent chapters include: FY 1980 overview - activities of the Office of Fusion Energy; subactivity descriptions (confinement systems, development and technology, applied plasma physics, and reactor projects); field activities (DOE laboratories, educational institutions, nonprofit organizations, and commercial firms); commercialization; environmental implications; regional activities; and international programs

  8. Developing a commercial production process for 500,000 targets per day: A key challenge for inertial fusion energy

    International Nuclear Information System (INIS)

    Goodin, D.T.; Alexander, N.B.; Besenbruch, G.E.; Bozek, A.S.; Brown, L.C.; Flint, G.W.; Kilkenny, J.D.; McQuillan, B.W.; Nikroo, A.; Paguio, R.R.; Petzoldt, R.W.; Schroen, D.G.; Sheliak, J.D.; Vermillion, B.A.; Carlson, L.C.; Goodman, P.; Maksaereekul, W.; Raffray, R.; Spalding, J.; Tillack, M.S.

    2006-01-01

    As is true for current-day commercial power plants, a reliable and economic fuel supply is essential for the viability of future Inertial Fusion Energy (IFE) [Energy From Inertial Fusion, edited by W. J. Hogan (International Atomic Energy Agency, Vienna, 1995)] power plants. While IFE power plants will utilize deuterium-tritium (DT) bred in-house as the fusion fuel, the 'target' is the vehicle by which the fuel is delivered to the reaction chamber. Thus the cost of the target becomes a critical issue in regard to fuel cost. Typically six targets per second, or about 500 000/day are required for a nominal 1000 MW(e) power plant. The electricity value within a typical target is about $3, allocating 10% for fuel cost gives only 30 cents per target as-delivered to the chamber center. Complicating this economic goal, the target supply has many significant technical challenge - fabricating the precision fuel-containing capsule, filling it with DT, cooling it to cryogenic temperatures, layering the DT into a uniform layer, characterizing the finished product, accelerating it to high velocity for injection into the chamber, and tracking the target to steer the driver beams to meet it with micron-precision at the chamber center

  9. Interrelationships between mitochondrial fusion, energy metabolism and oxidative stress during development in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Kayo [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Education and Research Support Center, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Hartman, Philip S. [Biology Department, Texas Christian University, Fort Worth, TX 76129 (United States); Ishii, Takamasa [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Suda, Hitoshi [School of High-Technology for Human Welfare, Tokai University, Nishino 317, Numazu, Shizuoka 410-0395 (Japan); Akatsuka, Akira [Education and Research Support Center, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Shoyama, Tetsuji [School of High-Technology for Human Welfare, Tokai University, Nishino 317, Numazu, Shizuoka 410-0395 (Japan); Miyazawa, Masaki [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Ishii, Naoaki, E-mail: nishii@is.icc.u-tokai.ac.jp [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan)

    2011-01-21

    Research highlights: {yields} Growth and development of a fzo-1 mutant defective in the fusion process of mitochondria was delayed relative to the wild type of Caenorhabditis elegans. {yields} Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. {yields} fzo-1 animals had significantly lower metabolism than did N2 and mev-1 overproducing superoxide from mitochondrial electron transport complex II. {yields} Mitochondrial fusion can profoundly affect energy metabolism and development. -- Abstract: Mitochondria are known to be dynamic structures with the energetically and enzymatically mediated processes of fusion and fission responsible for maintaining a constant flux. Mitochondria also play a role of reactive oxygen species production as a byproduct of energy metabolism. In the current study, interrelationships between mitochondrial fusion, energy metabolism and oxidative stress on development were explored using a fzo-1 mutant defective in the fusion process and a mev-1 mutant overproducing superoxide from mitochondrial electron transport complex II of Caenorhabditis elegans. While growth and development of both single mutants was slightly delayed relative to the wild type, the fzo-1;mev-1 double mutant experienced considerable delay. Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. fzo-1 animals had significantly lower metabolism than did N2 and mev-1. These data indicate that mitochondrial fusion can profoundly affect energy metabolism and development.

  10. World progress toward fusion energy

    International Nuclear Information System (INIS)

    Davies, N.A.

    1989-01-01

    The author discusses international progress in fusion research during the last three years. Much of the technical progress has been achieved through international collaboration in magnetic fusion research. This progress has stimulated political interest in a multinational effort, aimed at designing and possibly constructing the world's first experimental fusion reactor. This interest was reflected in recent summit-level discussions involving President Mitterand, General Secretary Gorbachev, and President Reagan. Most recently, the European Community (EC), Japan, the United States, and the U.S.S.R. have decided to begin serious preparation for taking the next step toward practical fusion energy. These parties have agreed to begin the design and supporting R and D for an International Thermonuclear Experimental Reactor (ITER) under the auspices of the International Atomic Energy Agency (IAEA). The initiation of this international program to prepare for a fusion test reactor is discussed

  11. Energy balance of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Hashmi, M.; Staudenmaier, G.

    2000-01-01

    It is shown that a discrepancy and incompatibility persist between basic physics and fusion-literature regarding the radiation losses from a thermonuclear plasma. Whereas the fusion-literature neglects the excitation or line radiation completely, according to basic physics it depends upon the prevailing conditions and cannot be neglected in general. Moreover, for a magnetized plasma, while the fusion-literature assumes a self-absorption or reabsorption of cyclotron or synchrotron radiation emitted by the electrons spiraling along the magnetic field, the basic physics does not allow any effective reabsorption of cyclotron or synchrotron radiation. As is demonstrated, fallacious assumptions and notions, which somehow or other crept into the fusion-literature, are responsible for this discrepancy. In the present work, the theory is corrected. On the grounds of basic physics, a complete energy balance of magnetized and non-magnetized plasmas is presented for pulsed, stationary and self-sustaining operations by taking into account the energy release by reactions of light nuclei as well as different kinds of diffusive (conduction) and radiative (bremsstrahlung, cyclotron or synchrotron radiation and excitation radiation) energy losses. Already the energy losses by radiation make the energy balance negative. Hence, a fusion reactor-an energy producing device-seems to be beyond the realms of realization. (orig.)

  12. On Korean strategy and plan for fusion energy

    International Nuclear Information System (INIS)

    Kim, H.J.; Choi, W-J.; Park, C.; Kim, H.C.

    2012-01-01

    In developing KSTAR (Korean Superconducting Tokamak Advanced Research), Korea had initiated a mid-entry strategy to catch up with the technologies required for the development of a fusion reactor, based on the tokamak magnetic confinement concept. Upon joining ITER (International Thermonuclear Experimental Reactor), Korean government enacted a promotional law for the fusion energy development. Under this promotional law the national promotional plans for developing fusion energy have been established. The National Fusion Research Institute (NFRI) developed the strategy and plan for a fusion DEMO program to realize the magnetic fusion energy. (author)

  13. On Korean strategy and plan for fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.J. [National Fusion Research Inst., Daejeon (Korea, Republic of); Choi, W-J. [Chungnam National Univ., Daejeon (Korea, Republic of); Park, C. [POSTECH, Pohang (Korea, Republic of); Kim, H.C. [National Fusion Research Inst., Daejeon (Korea, Republic of)

    2012-07-01

    In developing KSTAR (Korean Superconducting Tokamak Advanced Research), Korea had initiated a mid-entry strategy to catch up with the technologies required for the development of a fusion reactor, based on the tokamak magnetic confinement concept. Upon joining ITER (International Thermonuclear Experimental Reactor), Korean government enacted a promotional law for the fusion energy development. Under this promotional law the national promotional plans for developing fusion energy have been established. The National Fusion Research Institute (NFRI) developed the strategy and plan for a fusion DEMO program to realize the magnetic fusion energy. (author)

  14. Fusion energy. What Canada can do

    International Nuclear Information System (INIS)

    Weller, J.A.

    1988-01-01

    As Canada's fusion programs have grown, Canadian capabilities in fusion science and technology have grown and matured with them. The fusion capabilities described in this booklet have come from a coordinated national effort. The Government of Canada is committed to continuing its fusion energy program, and to supporting global fusion efforts. These first pages provide an overview of Canada's fusion work and its underlying basis of science and technology

  15. Thermochemical hydrogen production based on magnetic fusion

    International Nuclear Information System (INIS)

    Krikorian, O.H.; Brown, L.C.

    1982-01-01

    Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO 3 decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars

  16. Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers

    International Nuclear Information System (INIS)

    Liu Min; Wang, Ning; Li Zhuxia; Wu Xizhen; Zhao Enguang

    2006-01-01

    The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied

  17. Direct energy conversion of radiation energy in fusion reactor

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned. (author)

  18. Direct energy conversion of radiation energy in fusion reactor

    Science.gov (United States)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned.

  19. Direct energy conversion of radiation energy in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned. (author).

  20. Direct energy conversion of radiation energy in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S. [National Inst. for Fusion Science, Nagoya (Japan); Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1994-12-31

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generate electricity by temperature gradient in conductors. A Strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy converter are mentioned. (author).

  1. Direct energy conversion of radiation energy in fusion reactor

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1994-01-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generate electricity by temperature gradient in conductors. A Strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy converter are mentioned. (author)

  2. HEDP and new directions for fusion energy

    International Nuclear Information System (INIS)

    Kirkpatrick, Ronald C.

    2009-01-01

    The Quest for fusion energy has a long history and the demonstration of thermonuclear energy release in 1951 represented a record achievement for high energy density. While this first demonstration was in response to the extreme fears of mankind, it also marked the beginning of a great hope that it would usher in an era of boundless cheap energy. In fact, fusion still promises to be an enabling technology that can be compared to the prehistoric utilization of fire. Why has the quest for fusion energy been so long on promises and so short in fulfillment? This paper briefly reviews past approaches to fusion energy and suggests new directions. By putting aside the old thinking and vigorously applying our experimental, computational and theoretical tools developed over the past decades we should be able to make rapid progress toward satisfying an urgent need. Fusion not only holds the key to abundant green energy, but also promises to enable deep space missions and the creation of rare elements and isotopes for wide-ranging industrial applications and medical diagnostics.

  3. Fusion: The Energy of the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Lister, J [Ecole Polytechnique Federale de Lausanne (Switzerland)

    2006-05-15

    This book outlines the quest for fusion energy. It is presented in a form which is accessible to the interested layman, but which is precise and detailed for the specialist as well. The book contains 12 detailed chapters which cover the whole of the intended subject matter with copious illustrations and a balance between science and the scientific and political context. In addition, the book presents a useful glossary and a brief set of references for further non-specialist reading. Chapters 1 to 3 treat the underlying physics of nuclear energy and of the reactions in the sun and in the stars in considerable detail, including the creation of the matter in the universe. Chapter 4 presents the fusion reactions which can be harnessed on earth, and poses the fundamental problems of realising fusion energy as a source for our use, explaining the background to the Lawson criterion on the required quality of energy confinement, which 50 years later remains our fundamental milestone. Chapter 5 presents the basis for magnetic confinement, introducing some early attempts as well as some straightforward difficulties and treating linear and circular devices. The origins of the stellarator and of the tokamak are described. Chapter 6 is not essential to the mission of usefully harnessing fusion energy, but nonetheless explains to the layman the difference between fusion and fission in weapons, which should help the readers understand the differences as sources of peaceful energy as well, since this popular confusion remains a problem when proposing fusion with the 'nuclear' label. Chapter 7 returns to energy sources with laser fusion, or inertial confinement fusion, which constitutes both military and civil research, depending on the country. The chapter provides a broad overview of the progress right up to today's hopes for fast ignition. The difficulty of harnessing fusion energy by magnetic or inertial confinement has created a breeding ground for what the

  4. Graphite for fusion energy applications

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  5. LLL magnetic fusion energy program: an overview

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Over the last 12 months, significant progress has been made in the LLL magnetic fusion energy program. In the 2XIIB experiment, a tenfold improvement was achieved in the plasma confinement factor (the product of plasma density and confinement time), pushed plasma temperature and pressure to values never before reached in a magnetic fusion experiment, and demonstrated--for the first time--plasma startup by neutral beam injection. A new laser-pellet startup technique for Baseball IIT has been successfully tested and is now being incorporated in the experiment. Technological improvements have been realized, such as a breakthrough in fabricating niobium-tin conductors for superconducting magnets. These successes, together with complementary progress in theory and reactor design, have led to a proposal to build the MX facility, which could be on the threshold of a mirror fusion reactor

  6. 17. IAEA fusion energy conference. Extended synopses

    International Nuclear Information System (INIS)

    1998-01-01

    Book of extended synopses of the papers, accepted by a international programme committee for presentation at the 17th IAEA Fusion Energy Conference in Yokohama, Japan. The subjects covered are magnetic confinement experiments, plasma heating and current drive, ITER EDA, inertial fusion energy, innovative concepts, fusion technology and theory

  7. Blue energy - The story of thermonuclear fusion energy

    International Nuclear Information System (INIS)

    Laval, G.

    2007-01-01

    The author has written a story of thermonuclear fusion as a future source of energy. This story began about 50 years ago and its last milestone has been the decision of building the ITER machine. This decision has been taken by an international collaboration including a large part of the humanity which shows how great are the expectations put on fusion and that fusion deserves confidence now. For long years fusion energy has been the subject of large controversy due to the questioning about the overcoming of huge theoretical and technological difficulties. Different machines have been built to assess new theoretical developments and to prepare the next step. The physics of hot plasmas has been understood little by little at the pace of the discovery of new instabilities taking place in fusion plasmas. The 2 unique today options: the tokamak-type machine and the laser-driven inertial confinement machine took the lead relatively quickly. (A.C.)

  8. Radioisotope production in fusion reactors

    International Nuclear Information System (INIS)

    Engholm, B.A.; Cheng, E.T.; Schultz, K.R.

    1986-01-01

    Radioisotope production in fusion reactors is being investigated as part of the Fusion Applications and Market Evaluation (FAME) study. /sup 60/Co is the most promising such product identified to date, since the /sup 60/Co demand for medical and food sterilization is strong and the potential output from a fusion reactor is high. Some of the other radioisotopes considered are /sup 99/Tc, /sup 131/l, several Eu isotopes, and /sup 210/Po. Among the stable isotopes of interest are /sup 197/Au, /sup 103/Rh and Os. In all cases, heat or electricity can be co-produced from the fusion reactor, with overall attractive economics

  9. Reaching to a featured formula to deduce the energy of the heaviest particles producing from the controlled thermonuclear fusion reactions

    Science.gov (United States)

    Majeed, Raad H.; Oudah, Osamah N.

    2018-05-01

    Thermonuclear fusion reaction plays an important role in developing and construction any power plant system. Studying the physical behavior for the possible mechanism governed energies released by the fusion products to precise understanding the related kinematics. In this work a theoretical formula controlled the general applied thermonuclear fusion reactions is achieved to calculating the fusion products energy depending upon the reactants physical properties and therefore, one can calculate other parameters governed a given reaction. By using this formula, the energy spectrum of 4He produced from T-3He fusion reaction has been sketched with respect to reaction angle and incident energy ranged from (0.08-0.6) MeV.

  10. Prospect for inertial fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, C.

    1994-01-01

    This paper presents recent inertial fusion experiments at Osaka. The inertial fusion energy reactor used for these experiments was designed according to some principles based on environmental, social and safety considerations. (TEC). 1 fig., 1 ref

  11. A Plan for the Development of Fusion Energy. Final Report to Fusion Energy Sciences Advisory Committee, Fusion Development Path Panel

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-03-05

    This report presents a plan for the deployment of a fusion demonstration power plant within 35 years, leading to commercial application of fusion energy by mid-century. The plan is derived from the necessary features of a demonstration fusion power plant and from the time scale defined by President Bush. It identifies critical milestones, key decision points, needed major facilities and required budgets.

  12. 17. IAEA fusion energy conference. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    Book of extended synopses of the papers, accepted by a international programme committee for presentation at the 17th IAEA Fusion Energy Conference in Yokohama, Japan. The subjects covered are magnetic confinement experiments, plasma heating and current drive, ITER EDA, inertial fusion energy, innovative concepts, fusion technology and theory Refs, figs, tabs

  13. Snowmass 2002: The Fusion Energy Sciences Summer Study

    International Nuclear Information System (INIS)

    Sauthoff, N.; Navratil, G.; Bangerter, R.

    2002-01-01

    The Fusion Summer Study 2002 will be a forum for the critical technical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to the long-range planning activities undertaken by the DOE [Department of Energy] and the FESAC [Fusion Energy Sciences Advisory Committee]. It will be an ideal place for a broad community of scientists to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy science community and significant international participation is encouraged. The objectives of the Fusion Summer Study are three: (1) Review scientific issues in burning plasmas to establish the basis for the following two objectives and to address the relations of burning plasma in tokamaks to innovative magnetic fusion energy (MFE) confinement concepts and of ignition in inertial fusion energy (IFE) to integrated research facilities. (2) Provide a forum for critical discussion and review of proposed MFE burning plasma experiments (e.g., IGNITOR, FIRE, and ITER) and assess the scientific and technological research opportunities and prospective benefits of these approaches to the study of burning plasmas. (3) Provide a forum for the IFE community to present plans for prospective integrated research facilities, assess present status of the technical base for each, and establish a timetable and technical progress necessary to proceed for each. Based on significant preparatory work by the fusion community prior to the July Snowmass meeting, the Snowmass working groups will prepare a draft report that documents the scientific and technological benefits of studies of burning plasmas. The report will also include criteria by which the benefits of each approach to fusion science, fusion engineering/technology, and the fusion development path can be assessed. Finally, the report

  14. The National Ignition Facility (NIF): A path to fusion energy

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2008-01-01

    Fusion energy has long been considered a promising, clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long-term research goal since the invention of the first laser in 1960. The National Ignition Facility (NIF) is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over 30 years of ICF research on high-powered laser systems such as the Nova laser at Lawrence Livermore National Laboratory (LLNL) and the OMEGA laser at the University of Rochester, as well as smaller systems around the world. NIF is a 192-beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009, and ignition experiments will start in 2010. When completed, NIF will produce up to 1.8 MJ of 0.35-μm light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2ω ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high-repetition-rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high-repetition-rate Nd-glass laser for fusion energy driver development. Mercury

  15. The national ignition facility (NIF) : A path to fusion energy

    International Nuclear Information System (INIS)

    Moses, E. I.

    2007-01-01

    Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 μm light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2ω ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light

  16. Overview of US Fusion Energy Programs: January 1993

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1994-01-01

    The US Fusion Program is in open-quotes Transition.close quotes This happens so infrequently that no one knows exactly what to expect; it makes everyone a little skittish. Program leadership does make a difference; Secretary Watkins was a positive force for fusion. Energy Research Director Happer remains in his position and is a positive force for scientific quality. Secretary O'Leary has stated that open-quotes Fusion energy holds great promise as an element of the nation's long-term energy supply.close quotes While new leaders may seek new directions with important implications for fusion, it seems reasonable to expect that, for fusion, such changes are likely to emerge slowly. Thus the assumption now is that the fusion priorities remain unchanged. In the spirit of optimism surrounding the new administration, the Fusion Energy Program's intention is to make as much progress as possible on the course presently established

  17. The quest for fusion energy

    International Nuclear Information System (INIS)

    Johnson, J.L.

    1997-10-01

    A brief history of the magnetic fusion program from the point of view of a stellarator enthusiast who worked at a major tokamak laboratory. The reason that success in the magnetic fusion energy program is essential is presented. (author)

  18. Fusion hindrance at deep sub-barrier energies for the 11B+197Au system

    Science.gov (United States)

    Shrivastava, A.; Mahata, K.; Nanal, V.; Pandit, S. K.; Parkar, V. V.; Rout, P. C.; Dokania, N.; Ramachandran, K.; Kumar, A.; Chatterjee, A.; Kailas, S.

    2017-09-01

    Fusion cross sections for the 11B+197Au system have been measured at energies around and deep below the Coulomb barrier, to probe the occurrence of fusion hindrance in case of asymmetric systems. A deviation with respect to the standard coupled channels calculations has been observed at the lowest energy. The results have been compared with an adiabatic model calculation that considers a damping of the coupling strength for a gradual transition from sudden to adiabatic regime at very low energies. The data could be explained without inclusion of the damping factor. This implies that the influence of fusion hindrance is not significant within the measured energy range for this system. The present result is consistent with the observed trend between the degree of fusion hindrance and the charge product that reveals a weaker influence of hindrance on fusion involving lighter projectiles on heavy targets.

  19. Developing inertial fusion energy - Where do we go from here?

    International Nuclear Information System (INIS)

    Meier, W.R.; Logan, G.

    1996-01-01

    Development of inertial fusion energy (IFE) will require continued R ampersand D in target physics, driver technology, target production and delivery systems, and chamber technologies. It will also require the integration of these technologies in tests and engineering demonstrations of increasing capability and complexity. Development needs in each of these areas are discussed. It is shown how IFE development will leverage off the DOE Defense Programs funded inertial confinement fusion (ICF) work

  20. Neutron excess generation by fusion neutron source for self-consistency of nuclear energy system

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, V.; Chmelev, A.

    1999-01-01

    The present day fission energy technology faces with the problem of transmutation of dangerous radionuclides that requires neutron excess generation. Nuclear energy system based on fission reactors needs fuel breeding and, therefore, suffers from lack of neutron excess to apply large-scale transmutation option including elimination of fission products. Fusion neutron source (FNS) was proposed to improve neutron balance in the nuclear energy system. Energy associated with the performance of FNS should be small enough to keep the position of neutron excess generator, thus, leaving the role of dominant energy producers to fission reactors. The present paper deals with development of general methodology to estimate the effect of neutron excess generation by FNS on the performance of nuclear energy system as a whole. Multiplication of fusion neutrons in both non-fissionable and fissionable multipliers was considered. Based on the present methodology it was concluded that neutron self-consistency with respect to fuel breeding and transmutation of fission products can be attained with small fraction of energy associated with innovated fusion facilities. (author)

  1. Towards abundant and pollution-free energy. Laser nuclear fusion

    International Nuclear Information System (INIS)

    Robieux, J.

    2008-01-01

    This book shows that it is now practically certain that by the year 2080 laser nuclear fusion will allow to produce an abundant and relatively cheap energy. Thanks to this energy, it will be possible to convert a mixture of CO 2 , H 2 and water into an automotive fuel or a food product. Laser nuclear fusion will use deuterium as fuel and thus oil and gas will become useless. Also, thanks to this new energy source, global warming and starvation will be overcome. The laser fusion concept was introduced by J. Robieux in 1962 just after the discovery of the laser. This idea was immediately accepted and sustained by the French President De Gaulle. The research on laser fusion was initially undertaken at the Marcoussis research centre from the Compagnie Generale d'Electricite (General Electricity Company - CGE). In 1967, the lasers built at Marcoussis were 30 times more powerful than any other laser in the rest of world. A cooperation with the USA started at that time and is still going on today. In 1969, the CEA centre of Limeil realized the world premiere experiments of laser fusion. This book presents the historical aspects and the state-of-the-art of this technology today. It is written in two parts, the first part does not require any scientific knowledge and is accessible to everybody, while the second part can be understood only by readers having a basic scientific background. (J.S.)

  2. Nuclear fusion - Inexhaustible source of energy for tomorrow

    International Nuclear Information System (INIS)

    Leiser, M.; Demchenko, V.

    1989-09-01

    The purpose of this paper is to provide a general description of nuclear fusion as an energy option for the future and to clarify to some extent the various issues - scientific, technological, economic and environmental - which are likely to be relevant to controlled thermonuclear fusion. Section 1 describes the world energy problem and some advantages of nuclear fusion compared to other energy options. Sections 2 and 3 describe the fundamentals of fusion energy, plasma confinement, heating and technological aspects of fusion researches. Some plasma confinement schemes (tokamak, stellarator, inertial confinement fusion) are described. The main experimental results and parameter devices are cited to illustrate the state of the art as of 1989. Various engineering problems associated with reactor design, magnetic systems, materials, plasma purity, fueling, blankets, environment, economics and safety are discussed. A description of both bilateral and multilateral efforts in fusion research under the auspices of the IAEA is presented in Section 4. (author). 11 refs, 4 figs, 1 tab

  3. Fusion energy science: Clean, safe, and abundant energy through innovative science and technology

    International Nuclear Information System (INIS)

    2001-01-01

    Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source

  4. Risk considerations for fusion energy

    International Nuclear Information System (INIS)

    Kazimi, M.S.

    1983-01-01

    An assessment is made of the public and occupational health effects implied in the utilization of fusion reactors as a source of electricity. Three conceptual designs for TOKAMAK fusion reactors are used in the assessment. It was assumed in this analysis that a fusion plant will release 10 Ci/day of tritium to the atmosphere. Risk from waste management and accidents are estimated relative to risk of LWR's energy cycle. Comparison of the fusion occupational and public risk from coal, LWR, solar thermal and solar-photovoltaic plants has been undertaken. It is concluded that, compared to other fuel cycles, fusion can potentially have a favorable position with respect to risk

  5. Perspective on the fusion-fission energy concept

    International Nuclear Information System (INIS)

    Liikala, R.C.; Perry, R.T.; Teofilo, V.L.

    1978-01-01

    A concept which has potential for near-term application in the electric power sector of our energy economy is combining fusion and fission technology. The fusion-fission system, called a hybrid, is distinguished from its pure fusion counterpart by incorporation of fertile materials (uranium or thorium) in the blanket region of a fusion machine. The neutrons produced by the fusion process can be used to generate energy through fission events in the blanket or produce fuel for fission reactors through capture events in the fertile material. The performance requirements of the fusion component of hybrids is perceived as being less stringent than those for pure fusion electric power plants. The performance requirements for the fission component of hybrids is perceived as having been demonstrated or could be demonstrated with a modest investment of research and development funds. This paper presents our insights and observations of this concept in the context of why and where it might fit into the picture of meeting our future energy needs. A bibliography of hybrid research is given

  6. Laser for fusion energy

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1995-01-01

    Solid state lasers have proven to be very versatile tools for the study and demonstration of inertial confinement fusion principles. When lasers were first contemplated to be used for the compression of fusion fuel in the late 1950s, the laser output energy levels were nominally one joule and the power levels were 10 3 watts (pulse duration's of 10 -3 sec). During the last 25 years, lasers optimized for fusion research have been increased in power to typically 100,000 joules with power levels approaching 10 14 watts. As a result of experiments with such lasers at many locations, DT target performance has been shown to be consistent with high gain target output. However, the demonstration of ignition and gain requires laser energies of several megajoules. Laser technology improvements demonstrated over the past decade appear to make possible the construction of such multimegajoule lasers at affordable costs. (author)

  7. Nuclear hydrogen production: re-examining the fusion option

    International Nuclear Information System (INIS)

    Baindur, S.

    2007-01-01

    This paper describes a scheme for nuclear hydrogen production by fusion. The basic idea is to use nuclear energy of the fuel (hydrogen plasma) to produce molecular hydrogen fro carbon-free hydrogen compounds. The hydrogen is then stored and utilized electrochemically in fuel cells or chemically as molecular hydrogen in internal combustion engines

  8. Additional gleaning of fusion energy development

    International Nuclear Information System (INIS)

    Yamamoto, Kenzo; Koizumi, Koichi

    2002-09-01

    This report summarizes the major topics in the history of fusion energy development in Japan from its dawn to the tokamak fusion experimental reactor, ITER. The domestic circumstances and situation in foreign countries in those days, and the details of each decision and discussion, are described. Since my previous writing, 'Forty years for Nuclear Fusion Energy Development - Big Science in Japan (1997, ERC Press. Co. Ltd.)', was a book which briefly summarize a large quantity of documents on the history, there are many points, which require additional detail explanation. This time, I selected and extracted major topics in the fusion research history, and added additional descriptions and my comments so as to supplement my previous writing. (author)

  9. Strategic plan for the restructured US fusion energy sciences program

    International Nuclear Information System (INIS)

    1996-08-01

    This plan reflects a transition to a restructured fusion program, with a change in focus from an energy technology development program to a fusion energy sciences program. Since the energy crisis of the early 1970's, the U.S. fusion program has presented itself as a goal- oriented fusion energy development program, with milestones that required rapidly increasing budgets. The Energy Policy Act of 1992 also called for a goal-oriented development program consistent with the Department's planning. Actual funding levels, however, have forced a premature narrowing of the program to the tokamak approach. By 1995, with no clear, immediate need driving the schedule for developing fusion energy and with enormous pressure to reduce discretionary spending, Congress cut fusion program funding for FY 1996 by one-third and called for a major restructuring of the program. Based on the recommendations of the Fusion Energy Advisory Committee (FEAC), the Department has decided to pursue a program that concentrates on world-class plasma, science, and on maintaining an involvement in fusion energy science through international collaboration. At the same time, the Japanese and Europeans, with energy situations different from ours, are continuing with their goal- oriented fusion programs. Collaboration with them provides a highly leveraged means of continued involvement in fusion energy science and technology, especially through participation in the engineering and design activities of the International Thermonuclear Experimental Reactor program, ITER. This restructured fusion energy sciences program, with its focus on fundamental fusion science and technology, may well provide insights that lead to more attractive fusion power plants, and will make use of the scientific infrastructure that will allow the United States to launch a fusion energy development program at some future date

  10. Review of fusion synfuels

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  11. HYPERFUSE: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n, 2n), (n, α), etc.) that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  12. Fusion energy 1998. Proceedings. V. 1-4

    International Nuclear Information System (INIS)

    1999-01-01

    The 17-th International Atomic Energy Agency (IAEA) Fusion Energy Conference was held in Yokohama, Japan, 19-24 October 1999. This 6-day conference, which was attended by 835 participants from over 30 countries and two international organizations was organized by the IAEA in co-operation with the Japan Atomic Energy Research Institute (JAERI). More than 360 papers plus 5 summary talks were presented in 23 oral and 8 poster sessions on magnetic confinement and experiments, inertial fusion energy, plasma heating and current drive, ITER engineering design activities, magnetic confinement theory, innovative concepts and fusion technology

  13. Fusion energy 1998. Proceedings. V. 1-4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    The 17-th International Atomic Energy Agency (IAEA) Fusion Energy Conference was held in Yokohama, Japan, 19-24 October 1999. This 6-day conference, which was attended by 835 participants from over 30 countries and two international organizations was organized by the IAEA in co-operation with the Japan Atomic Energy Research Institute (JAERI). More than 360 papers plus 5 summary talks were presented in 23 oral and 8 poster sessions on magnetic confinement and experiments, inertial fusion energy, plasma heating and current drive, ITER engineering design activities, magnetic confinement theory, innovative concepts and fusion technology.

  14. Stored energy in fusion magnet materials irradiated at low temperatures

    International Nuclear Information System (INIS)

    Chaplin, R.L.; Kerchner, H.R.; Klabunde, C.E.; Coltman, R.R.

    1989-08-01

    During the power cycle of a fusion reactor, the radiation reaching the superconducting magnet system will produce an accumulation of immobile defects in the magnet materials. During a subsequent warm-up cycle of the magnet system, the defects will become mobile and interact to produce new defect configurations as well as some mutual defect annihilations which generate heat-the release of stored energy. This report presents a brief qualitative discussion of the mechanisms for the production and release of stored energy in irradiated materials, a theoretical analysis of the thermal response of irradiated materials, theoretical analysis of the thermal response of irradiated materials during warm-up, and a discussion of the possible impact of stored energy release on fusion magnet operation 20 refs

  15. Civilian applications of laser fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

    1978-01-01

    The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. We have found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser fusion studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented

  16. Fusion energy for space missions in the 21st Century

    International Nuclear Information System (INIS)

    Schulze, N.R.

    1991-08-01

    Future space missions were hypothesized and analyzed and the energy source for their accomplishment investigated. The mission included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous mission with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing the High Energy Space Mission were investigated. Potential energy options which could provide the propulsion and electric power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified

  17. Public acceptance of fusion energy and scientific feasibility of a fusion reactor. Spin-off effects of fusion research and development

    International Nuclear Information System (INIS)

    Morino, Nobuyuki; Ogawa, Yuichi

    1998-01-01

    It is observed that new and sophisticated technologies developed through research and development in relation to magnetic confinement fusion have been transferred to other industrial and scientific fields with remarkable spin-off effects. Approximately 10 years ago, the Japan Atomic Industrial Forum (JAIF) has investigated technical transfer and spin-off effects of fusion technologies developed in Japan. The essence of the results of this investigation as well as high technologies developed in the last decade, some of which are in the early stage of technical spin-off, are described. It is additionally explained that independent technical development conducted by our country as well as by engineers themselves is important in achieving effective spin-off. An outline of scientific spin-off effects is also described, including utilization technologies of fusion reactions besides those for energy production purposes, the progress of scientific understanding in the course of fusion research, and scientific information transfer and communication with other fields. (author)

  18. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Kevin James [Univ. of California, Berkeley, CA (United States)

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  19. Technology assessment of laser-fusion power production

    International Nuclear Information System (INIS)

    Booth, L.A.; Frank, T.G.

    1976-01-01

    The inherent features of laser-induced fusion, some laser-fusion reactor concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation are discussed. Theoretical fusion-pellet microexplosion energy release characteristics are described and the effects of pellet design options on pellet-microexplosion characteristics are discussed. The results of analyses to assess the engineering feasibility of reactor cavities for which protection of cavity components is provided either by suitable ablative materials or by diversion of plasmas by magnetic fields are presented. Two conceptual laser-fusion electric generating stations, based on different laser-fusion reactor concepts, are described. Technology developments for ultimate commercial application are outlined

  20. 78 FR 15937 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-03-13

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee. The Federal Advisory Committee Act requires that public notice of...

  1. Inertial fusion energy with krypton fluoride lasers

    International Nuclear Information System (INIS)

    Sethian, J.D.

    2010-01-01

    Complete text of publication follows. We are developing the science and technologies needed for a practical fusion energy source using high energy krypton fluoride (KrF) lasers. The physics basis for this work is a family of simulations that exploit the unique advantages of KrF lasers. KrF lasers provide uniform enough laser light to illuminate the capsule directly, greatly improving the laser-target coupling efficiency, as well as simplifying the target design. KrF's shorter wavelength allows higher ablation pressures and helps suppress laser-plasma instabilities. These advantages are being demonstrated on the NRL Nike KrF laser facility. A particularly promising approach is shock ignition, in which a high intensity laser pulse drives an intense shock at peak compression. Simulations with experimentally benchmarked codes predict a 1 MJ KrF laser can produce 200 MJ of pure fusion energy. We have similarly advanced the laser technology. We have developed a KrF laser, using technologies that scale to a reactor beamline, that fires 5 times per second for long duration runs and is projected be efficient enough for a reactor. The science and the technology for the key components are developed at the same time as part of a coherent system. A multi-institutional team from industry, national labs, and universities has developed credible solutions for these components. This includes methods to fabricate the spherical pellets on mass production basis, a means to repetitively inject the capsules into the chamber and precisely hit them with the laser, scaled tests to develop the laser optics, and designs for the reaction vessel. Based on these advances NRL and its collaborators have formulated a three stage plan that could lead to practical fusion energy on a much faster time scale than currently believed. Stage I develops full scale components: a laser beam line, target factory and injector, and chamber technologies. Stage II is the Fusion Test Facility (FTF). Simulations

  2. Cell fusion in tumor progression: the isolation of cell fusion products by physical methods

    Directory of Open Access Journals (Sweden)

    Vincitorio Massimo

    2011-09-01

    Full Text Available Abstract Background Cell fusion induced by polyethylene glycol (PEG is an efficient but poorly controlled procedure for obtaining somatic cell hybrids used in gene mapping, monoclonal antibody production, and tumour immunotherapy. Genetic selection techniques and fluorescent cell sorting are usually employed to isolate cell fusion products, but both procedures have several drawbacks. Results Here we describe a simple improvement in PEG-mediated cell fusion that was obtained by modifying the standard single-step procedure. We found that the use of two PEG undertreatments obtains a better yield of cell fusion products than the standard method, and most of these products are bi- or trinucleated polykaryocytes. Fusion rate was quantified using fluorescent cell staining microscopy. We used this improved cell fusion and cell isolation method to compare giant cells obtained in vitro and giant cells obtained in vivo from patients with Hodgkin's disease and erythroleukemia. Conclusions In the present study we show how to improve PEG-mediated cell fusion and that cell separation by velocity sedimentation offers a simple alternative for the efficient purification of cell fusion products and to investigate giant cell formation in tumor development.

  3. 19. IAEA fusion energy conference. Book of abstracts

    International Nuclear Information System (INIS)

    2002-01-01

    Book of abstracts of the papers, accepted by an international programme committee for presentation at the 19th IAEA Fusion Energy Conference in Lyon, France. The subjects covered are magnetic confinement experiments, plasma heating and current drive, ITER EDA, inertial fusion energy, innovative concepts, fusion technology and theory

  4. Net energy gain from DT fusion

    International Nuclear Information System (INIS)

    Buende, R.

    1985-01-01

    The net energy which can be gained from an energy raw material by means of a certain conversion system is deduced as the figure-of-merit which adequately characterizes the net energy balance of utilizing an energy source. This potential net energy gain is determined for DT fusion power plants. It is represented as a function of the degree of exploitation of the energy raw material lithium ore and is compared with the net energy which can be gained with LW and FBR power plants by exploiting uranium ore. The comparison clearly demonstrates the net energetic advantage of DT fusion. A sensitivity study shows that this holds even if the energy expenditure for constructing and operating is drastically increased

  5. A comparison of the radiological impact of energy production by fission and fusion reactions

    International Nuclear Information System (INIS)

    Rancillac, F.; Despres, A.

    1990-04-01

    The impacts of respectively a light water reactor and a planned fusion reactor, for which tritium-deuterium fusion reactions will act as energy source have been compared. The comparison is made on the basis of a generated capacity of 1 GWe.year, using the following criteria: fuel inventories, radioactive releases, collective effective dose equivalent commitments to the public and the volume of wastes. The accidental risk is not introduced. Fusion reactor parameters are still subject to uncertainties, which prevent accurate quantification of radionuclide releases (tritium apart) from the nuclear plant. Only orders of magnitude extrapolated from values for the NET tokamak are given. Despite these uncertainties, it would seem more interesting, from the dosimetric point of view, to use fusion reactors to produce electricity, although problems of radioactive releases, handling and long-term storage of radioactive waste would remain. Fusion reactors also generate generate high-level wastes with long-term exposure rates that are lower than those of light water reactors [fr

  6. 75 FR 8685 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2010-02-25

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...

  7. 76 FR 40714 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-07-11

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...

  8. Towards fusion energy as a sustainable energy source: Activities at DTU Physics

    DEFF Research Database (Denmark)

    Rasmussen, Jesper; Christensen, Alexander Simon; Dam, Magnus

    2014-01-01

    a fusion plasma) and to confine it within magnetic fields. Learning how such plasmas behave and can be controlled is a crucial step towards realizing fusion as a sustainable energy source.At the Plasma Physics and Fusion Energy (PPFE) section at DTU Physics, we are exploring these issues,focusing on areas...

  9. How does incomplete fusion show up at slightly above barrier energies?

    Directory of Open Access Journals (Sweden)

    Prasad R.

    2012-02-01

    Full Text Available Experimental results on the onset of incomplete fusion at slightly above barrier energies are discussed in this paper. Spin-distributions of evaporation residues populated via complete and/or incomplete fusion of 12C,16O (Elab ≈ 4–7 MeV with 169Tm have been measured to probe associated ℓ–values. Particle (Z=1,2 – γ – coincidence technique has been used for channel selection. Entirely different entry state spin populations have been observed during the de-excitation of complete and incomplete composites. The complete fusion residues are found to be strongly fed over a broad spin range. While, a narrow range feeding for only high spin states has been observed in case of incomplete fusion residues. In the present work, incomplete fusion is shown to be a promising tool to populate high spin states in final reaction products. For better insight into the onset and strength of incomplete fusion, the relative contributions of complete and incomplete fusion have been deduced from the analysis of excitation functions and forward recoil ranges. A significant fraction of ICF has been observed even at energy as low as ≈ 7% above the barrier. The relative strengths of complete and incomplete fusion deduced from the analysis of forward-recoil-ranges and excitation functions complement each other. All the available results are discussed in light of the Morgenstern’s mass-asymmetry systematics. Incomplete fusion fraction is found to be large for more mass-asymmetric systems for individual projectiles, which points towards the projectile structure effect on incomplete fusion fraction. Experimentally measured forward ranges of recoils complement the existence of incomplete fusion at slightly above barrier energies, where more than one linear-momentum-transfer components associated with full- and/or partial-fusion of projectile(s have been observed. Present results conclusively demonstrate the possibility to selectively populate high spin states

  10. Civilian applications of laser fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

    1977-01-01

    The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. It was found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented

  11. Civilian applications of laser fusion

    Energy Technology Data Exchange (ETDEWEB)

    Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

    1977-11-17

    The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. It was found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented.

  12. Snowmass 2002: The Fusion Energy Sciences Summer Study; TOPICAL

    International Nuclear Information System (INIS)

    N. Sauthoff; G. Navratil; R. Bangerter

    2002-01-01

    The Fusion Summer Study 2002 will be a forum for the critical technical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to the long-range planning activities undertaken by the DOE[Department of Energy] and the FESAC[Fusion Energy Sciences Advisory Committee]. It will be an ideal place for a broad community of scientists to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy science community and significant international participation is encouraged. The objectives of the Fusion Summer Study are three: (1) Review scientific issues in burning plasmas to establish the basis for the following two objectives and to address the relations of burning plasma in tokamaks to innovative magnetic fusion energy (MFE) confinement concepts and of ignition in inertial fusion energy (IFE) to integrated research facilities. (2) Provide a forum for critical discussion and review of proposed MFE burning plasma experiments (e.g., IGNITOR, FIRE, and ITER) and assess the scientific and technological research opportunities and prospective benefits of these approaches to the study of burning plasmas. (3) Provide a forum for the IFE community to present plans for prospective integrated research facilities, assess present status of the technical base for each, and establish a timetable and technical progress necessary to proceed for each. Based on significant preparatory work by the fusion community prior to the July Snowmass meeting, the Snowmass working groups will prepare a draft report that documents the scientific and technological benefits of studies of burning plasmas. The report will also include criteria by which the benefits of each approach to fusion science, fusion engineering/technology, and the fusion development path can be assessed. Finally, the report will

  13. Calculated cross sections for production and destruction of some long-lived nuclides of importance in fusion energy applications

    International Nuclear Information System (INIS)

    Gardner, M.A.; Gardner, D.G.

    1993-01-01

    Knowledge of the production and destruction of long-lived species via neutrons, photons, and charged-particles is required in many fusion energy applications, such as reactor first-wall and blanket design, radioactive waste management, etc. Here we describe our calculational results for the production, via the (n,2n) reaction, of the following long-lived species: 150 Eu(t 1/2 = 36 y), 152 Eu(t 1/2 = 13 y), and 192m2 Ir(t 1/2 = 241 y). Some comments on calculations that we've made for destruction reactions of these species are also included

  14. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  15. Starpower: the US and the international quest for fusion energy

    International Nuclear Information System (INIS)

    1987-10-01

    This report, requested by the House Committee on Science, Space, and Technology and endorsed by the Senate Committee on Energy and Natural Resources, reviews the status of magnetic-confinement fusion research and compares its progress with the requirements for development of a useful energy technology. The report does not analyze inertial-confinement fusion research, which is overseen by the House and Senate Armed Services Committees. Contents include: Executive Summary; Introduction and overview; History of fusion research; Fusion science and technology; Fusion as an energy program; Fusion as a research program; Fusion as an international program; Future paths for the magnetic-fusion program; Appendixes--(Non-electric applications for fusion, Other approaches to fusion, Data for figures, List of acronyms and glossary)

  16. Activation product transport in fusion reactors

    International Nuclear Information System (INIS)

    Klein, A.C.; Vogelsang, W.F.

    1984-01-01

    Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. A computer code, RAPTOR, has been developed to determine the transport of these products in fusion reactor coolant/tritium breeding materials. Without special treatment, it is likely that fusion reactor power plant operators could experience dose rates as high as 8 rem per hour around a number of plant components after only a few years of operation. (orig.)

  17. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    International Nuclear Information System (INIS)

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-01-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  18. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Amy [Univ. of Wisconsin, Madison, WI (United States); Callis, Richard [General Atomics, San Diego, CA (United States); Efthimion, Philip [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Foster, John [Univ. of Michigan, Ann Arbor, MI (United States); Keane, Christopher [Washington State Univ., Pullman, WA (United States); Onsager, Terry [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); O' Shea, Patrick [Univ. of Maryland, College Park, MD (United States)

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  19. ICRF-induced fusion product loss in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Chang, C.S.; Zweben, S.J.

    1994-01-01

    When ICRF power is applied to plasmas in which there is no externally-supplied minority species, an enhanced loss of DD fusion products results. The characteristics of the loss are consistent with particles at or near the birth energy having their perpendicular velocity increased by the ICRF such that those near the passing/trapped boundary are carried into the first orbit loss cone. A rudimentary model of this process predicts losses of a magnitude similar to those seen. Predictions based upon this data for hypothetical ICRF ash removal from reactor plasmas suggest that the technique will not be energy efficient

  20. Reprocessing free nuclear fuel production via fusion fission hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Kotschenreuther, Mike, E-mail: mtk@mail.utexas.edu [Intitute for Fusion Studies, University of Texas at Austin (United States); Valanju, Prashant; Mahajan, Swadesh [Intitute for Fusion Studies, University of Texas at Austin (United States)

    2012-05-15

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively 'new' cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th{sup 232}-U{sup 233} conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO{sub 2} matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U{sup 235} fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  1. Reprocessing free nuclear fuel production via fusion fission hybrids

    International Nuclear Information System (INIS)

    Kotschenreuther, Mike; Valanju, Prashant; Mahajan, Swadesh

    2012-01-01

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively “new” cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th 232 –U 233 conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO 2 matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U 235 fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  2. BOOK REVIEW: Fusion: The Energy of the Universe

    Science.gov (United States)

    Lister, J.

    2006-05-01

    This book outlines the quest for fusion energy. It is presented in a form which is accessible to the interested layman, but which is precise and detailed for the specialist as well. The book contains 12 detailed chapters which cover the whole of the intended subject matter with copious illustrations and a balance between science and the scientific and political context. In addition, the book presents a useful glossary and a brief set of references for further non-specialist reading. Chapters 1 to 3 treat the underlying physics of nuclear energy and of the reactions in the sun and in the stars in considerable detail, including the creation of the matter in the universe. Chapter 4 presents the fusion reactions which can be harnessed on earth, and poses the fundamental problems of realising fusion energy as a source for our use, explaining the background to the Lawson criterion on the required quality of energy confinement, which 50 years later remains our fundamental milestone. Chapter 5 presents the basis for magnetic confinement, introducing some early attempts as well as some straightforward difficulties and treating linear and circular devices. The origins of the stellarator and of the tokamak are described. Chapter 6 is not essential to the mission of usefully harnessing fusion energy, but nonetheless explains to the layman the difference between fusion and fission in weapons, which should help the readers understand the differences as sources of peaceful energy as well, since this popular confusion remains a problem when proposing fusion with the `nuclear' label. Chapter 7 returns to energy sources with laser fusion, or inertial confinement fusion, which constitutes both military and civil research, depending on the country. The chapter provides a broad overview of the progress right up to today's hopes for fast ignition. The difficulty of harnessing fusion energy by magnetic or inertial confinement has created a breeding ground for what the authors call `false

  3. Hyper fuse: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1979-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with a target in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14 MeV fusion neutrons released during the pellet burn cause transmutation reactions [e.g., (n, 2n), (n, α), etc.] that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  4. Energy payback and CO2 gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences

    International Nuclear Information System (INIS)

    Kulcinski, G.L.

    2002-01-01

    A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES)

  5. Energy dependence of fusion evaporation-residue cross sections in the 28Si+12C reaction

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Mateja, J.F.; Beck, C.; Atencio, S.E.; Dennis, L.C.; Frawley, A.D.; Henderson, D.J.; Janssens, R.V.F.; Kemper, K.W.; Kovar, D.G.; Maguire, C.F.; Padalino, S.J.; Prosser, F.W.; Stephans, G.S.F.; Tiede, M.A.; Wilkins, B.D.; Zingarelli, R.A.

    1993-01-01

    Fusion evaporation-residue cross sections for the 28 Si+ 12 C reaction have been measured in the energy range 18≤E c.m. ≤136 MeV using time-of-flight techniques. Velocity distributions of mass-identified reaction products were used to identify evaporation residues and to determine the complete-fusion cross sections at high energies. The data are in agreement with previously established systematics which indicate an entrance-channel mass-asymmetry dependence of the incomplete-fusion evaporation-residue process. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with earlier measurements and the predictions of existing models

  6. Thermonuclear fusion: from fundamental research to energy production? Science and technology report No. 26

    International Nuclear Information System (INIS)

    Laval, Guy; Blanzat, Bernard; Aspect, Alain; Aymar, Robert; Bielak, Bogdan; Decroisette, Michel; Martin, Georges; Andre, Michel; Schirmann, Daniel; Garbet, Xavier; Jacquinot, Jean; Laviron, Clement; Migus, Arnold; Moreau, Rene; Pironneau, Olivier; Quere, Yves; Vallee, Alain; Dercourt, Jean; Bayer, Charles; Juraszek, Denis; Deutsch, Claude; Le Garrec, Bruno; Hennequin, Pascale; Peysson, Yves; Rax, Jean-Marcel; Pesme, Denis; Bauche, Jacques; Monier-Garbet, Pascale; Stamm, Roland; Zerah, Gilles; Ghendrih, Philippe; Layet, Roland; Grosman, Andre; Alamo, Ana; Giancarli, Luciano; Poitevin, Yves; Rigal, Emmanuel; Chieze, Jean-Pierre

    2007-01-01

    This work has been commissioned by the French ministry of Education, Sciences and Research, its aim is to provide a reliable account of the state of development of thermonuclear fusion. This report makes a point on the scientific knowledge accumulated on the topic and highlights the research programs that are necessary to overcome the technological difficulties and draws the necessary steps before an industrial application to electricity production. This report is divided into 10 chapters: 1) tokamak technology and ITER, 2) inertial fusion, 3) magnetized hot plasmas, 4) laser-plasma interaction and peta-watt lasers, 5) atomic physics and fusion, 6) computer simulation, 7) plasma-wall interaction, 8) materials for fusion reactors, 9) safety analysis, and 10) inertial fusion and astrophysics. This report has been written by a large panel of experts gathered by the French Academy of Sciences. The comments on the issue by the 3 French organizations: Cea, Cnrs and SFP (French Society of Physics) follow the last chapter

  7. Conceptual design of tritium production fusion reactor based on spherical torus

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinhua

    2003-01-01

    Conceptual design of an advanced tritium production fusion reactor based on spherical torus, which is intermediate application of fusion energy, was presented in this paper. Differing from the traditional tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST were used to minimize tritium leakage and maximize tritium breeding ratio with arrangement of tritium production blankets within vacuum vessel as possible in order to produce 1 kg excess tritium except need of self-sufficient plasma core with 40% or more corresponding plant availability. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR was presented, providing the backgrounds and reference for next detailed conceptual design

  8. Plasma fluctuations and confinement of fusion reaction products

    International Nuclear Information System (INIS)

    Coppi, B.; Pegoraro, F.

    1981-01-01

    The interaction between the fluctuations that can be excited in a magnetically confined plasma and the high-energy-particle population produced by fusion reactions is analyzed in view of its relevance to the process of thermonuclear ignition. The spectrum of the perturbations that, in the absence of fusion reaction products, would be described by the incompressible ideal magnetohydrodynamic approximation is studied considering finite value of the plasma pressure relative ot the magnetic pressure. The combined effects of the magnetic field curvature and shear are taken into account and the relevant spectrum is shown to consist of a continuous portion, that could be identified as a mixture of shear-Alfven and interchange oscillations, and a discrete unstable part corresponding to the so-called ballooning modes. The rate of diffusion of the fusion reaction products induced by oscillations in the continuous part of the spectrum, as estimated from the appropriate quasi-linear theory, is found to be significantly smaller than could be expected if normal modes (i.e., nonconvective solutions) were excited. However, a relatively wide intermediate region is identified where opalescent fluctuations, capable of achieving significant amplitudes and corresponding to a quasi-discrete spectrum, can be excited

  9. Managing fusion high-level waste-A strategy for burning the long-lived products in fusion devices

    International Nuclear Information System (INIS)

    El-Guebaly, L.A.

    2006-01-01

    Fusion devices appear to be a viable option for burning their own high-level waste (HLW). We propose a novel strategy to eliminate (or minimize) the HLW generated by fusion systems. The main source of the fusion HLW includes the structural and recycled materials, refractory metals, and liquid breeders. The basic idea involves recycling and reprocessing the waste, separating the long-lived radionuclides from the bulk low-level waste, and irradiating the limited amount of HLW in a specially designed module to transmute the long-lived products into short-lived radioisotopes or preferably, stable elements. The potential performance of the new concept seems promising. Our analysis indicated moderate to excellent transmutation rates could be achieved in advanced fusion designs. Successive irradiation should burn the majority of the HLW. The figures of merit for the concept relate to the HLW burn-up fraction, neutron economy, and impact on tritium breeding. Hopefully, the added design requirements could be accommodated easily in fusion power plants and the cost of the proposed system would be much less than disposal in a deep geological HLW repository. Overall, this innovative approach offers benefits to fusion systems and helps earn public acceptance for fusion as a HLW-free source of clean nuclear energy

  10. Nuclear Fusion with Polarized Nucleons & PolFusion

    CERN Document Server

    Engels, Ralf; Büscher, Markus; Vasilyev, Alexander

    2016-01-01

    This book offers a detailed examination of the latest work on the potential of polarized fuel to realize the vision of energy production by nuclear fusion. It brings together contributions from nuclear physicists and fusion physicists with the aims of fostering exchange of information between the two communities, describing the current status in the field, and examining new ideas and projects under development. It is evident that polarized fuel can offer huge improvements for the first generation of fusion reactors and open new technological possibilities for future generations, including neutron lean reactors, which could be the most popular and sustainable energy production option to avoid environmental problems. Nevertheless, many questions must be resolved before polarized fuel can be used for energy production in the different reactor types. Readers will find this book to be a stimulating source of information on the key issues. It is based on contributions from leading scientists delivered at the meetin...

  11. Assessment of the Fusion Energy Sciences Program. Final Report

    International Nuclear Information System (INIS)

    2001-01-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study

  12. Synthetic fuels and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J A; Powell, J; Steinberg, M [Brookhaven National Lab., Upton, NY (USA)

    1981-03-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. equal to 40-60% and hydrogen production efficiencies by high temperature electrolysis of approx. equal to 50-70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long-term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  13. Review of the Inertial Fusion Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  14. Review of the Inertial Fusion Energy Program

    International Nuclear Information System (INIS)

    2004-01-01

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of @@@drivers@@@ for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  15. Low energy incomplete fusion and its relevance to the synthesis of super heavy elements

    Directory of Open Access Journals (Sweden)

    Yadav Abhishek

    2015-01-01

    Full Text Available To study the presence of incomplete fusion at energies around the Coulomb-barrier and to understand its dependence on various entrance-channel parameters, the incomplete fusion fractions have been deduced (i from excitation function measurements for 18O,13,12C+159Tb, and (ii from forward recoil range measurements for 12C+159Tb systems, at low energies (<7MeV/A. The data have been analyzed within the framework of compound nucleus decay, which suggests the production of xn/pxn-channels via complete fusion, as these are found to be well reproduced by PACE4 predictions, while, a significant enhancement in the excitation functions of α-emitting channels has been observed over the theoretical ones, which has been attributed due to the incomplete fusion processes. Further, the incomplete fusion events observed in case of forward recoil ranges have been explained on the basis of the breakup fusion model, where these events may be attributed to the fusion of 8Be and/or 4He from 12C projectile to the target nucleus. For better insight into the underlying dynamics, the deduced fractions of incomplete fusion have been compared with other nearby systems as a function of various entrance channel parameters. The incomplete fusion has been found to be sensitive to the projectile’s energy and alpha-Q-value of the projectile.

  16. Fusion energy and Canada's role

    International Nuclear Information System (INIS)

    Drolet, T.S.

    1992-01-01

    Fusion is the process of releasing energy from matter which occurs in our sun. Canada is contributing to the development of technology which will permit this process to be harnessed and made available on earth. The international effort has increased from a modest beginning in the 1950s to a level of approximately two billion dollars annually in the 1980s. The purpose of this booklet is to introduce the concept of fusion energy as a technology which should make an important addition to the mix of energy sources for our future. Through a co-ordinated approach, Canada has established several projects which will contribute significantly to the development of technologies in specific areas leading to opportunities now for Canadian industry in the international effort

  17. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    International Nuclear Information System (INIS)

    Schulze, N.R.; Roth, J.R.

    1990-01-01

    An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology

  18. Nuclear fusion, an energy source of the future

    International Nuclear Information System (INIS)

    Koeppendoerfer, W.

    1994-01-01

    The paper discusses the possibility to obtain energy by nuclear fusion. It deals successively with: The physical bases of nuclear fusion, research and development with a view to harnessing nuclear fusion, properties of a fusion reactor, and programme and timetable to economic exploitation. (orig./UA) [de

  19. Requirements for low-cost electricity and hydrogen fuel production from multiunit inertial fusion energy plants with a shared driver and target factory

    International Nuclear Information System (INIS)

    Logan, G.B.; Moir, R.W.; Hoffmman, M.A.

    1995-01-01

    The economy of scale for multiunit inertial fusion energy (IFE) power plants is explored based on the molten salt HYLIFE-II fusion chamber concept, for the purpose of producing lower cost electricity and hydrogen fuel. The cost of electricity (CoE) is minimized with a new IFE systems code IFEFUEL5 for a matrix of plant cases with one to eight fusion chambers of 250 to 2000-MW (electric) net output each, sharing a common heavy-ion driver and target factory. Improvements to previous HYLIFE-II models include a recirculating induction linac driver optimized as a function of driver energy and rep-rate (average driver power), inclusion of beam switchyard costs, a fusion chamber cost scaling dependence on both thermal power and fusion yield, and a more accurate bypass pump power scaling with chamber rep-rate. A CoE less than 3 cents/kW(electric)-h is found for plant outputs greater than 2 GW(electric), allowing hydrogen fuel production by wafer electrolysis to provide lower fuel cost per mile for higher efficiency hydrogen engines compared with gasoline engines. These multiunit, multi-GW(electric) IFE plants allow staged utility plant deployment, lower optimum chamber rep-rates, less sensitivity to driver and target fabrication costs, and a CoE possibly lower than future fission, fossil, and solar competitors. 37 refs., 12 figs., 4 tabs

  20. Fusion reactor wastes

    International Nuclear Information System (INIS)

    Young, J.R.

    1976-01-01

    The fusion reactor currently is being developed as a clean source of electricity with an essentially infinite source of fuel. These reactors are visualized as using a fusion reaction to generate large quantities of high temperature energy which can be used as process heat or for the generation of electricity. The energy would be created primarily as the kinetic energy of neutrons or other reaction products. Neutron energy could be converted to high-temperature heat by moderation and capture of the neutrons. The energy of other reaction products could be converted to high-temperature heat by capture, or directly to electricity by direct conversion electrostatic equipment. An analysis to determine the wastes released as a result of operation of fusion power plants is presented

  1. Direct energy conversion system for D-3He fusion

    International Nuclear Information System (INIS)

    Tomita, Y.; Shu, L.Y.; Momota, H.

    1993-11-01

    A novel and highly efficient direct energy conversion system is proposed for utilizing D- 3 He fueled fusion. In order to convert kinetic energy of ions, we applied a pair of direct energy conversion systems each of which has a cusp-type DEC and a traveling wave DEC (TWDEC). In a cusp-type DEC, electrons are separated from the escaping ions at the first line-cusp and the energy of thermal ion components is converted at the second cusp DEC. The fusion protons go through the cusp-type DEC and arrive at the TWDEC, which principle is similar to 'LINAC.' The energy of fusion protons is recovered to electricity with an efficiency of more than 70%. These DECs bring about the high efficient fusion plant. (author)

  2. Fusion Energy Postdoctoral Research Program, Professional Development Program: FY 1987 annual report

    International Nuclear Information System (INIS)

    1988-01-01

    In FY 1986, Oak Ridge Associated Universities (ORAU) initiated two programs for the US Department of Energy (DOE), Office of Fusion Energy (OFE): the Fusion Energy Postdoctoral Research Program and the Fusion Energy Professional Development Program. These programs provide opportunities to conduct collaborative research in magnetic fusion energy research and development programs at DOE laboratories and contractor sites. Participants become trained in advanced fusion energy research, interact with outstanding professionals, and become familiar with energy-related national issues while making personal contributions to the search for solutions to scientific problems. Both programs enhance the national fusion energy research and development effort by providing channels for the exchange of scientists and engineers, the diffusion of ideas and knowledge, and the transfer of relevant technologies. These programs, along with the Magnetic Fusion Energy Science and Technology Fellowship Programs, compose the fusion energy manpower development programs administered by ORAU for DOE/OFE

  3. Review of the Fusion Theory and Computing Program. Fusion Energy Sciences Advisory Committee (FESAC)

    International Nuclear Information System (INIS)

    Antonsen, Thomas M.; Berry, Lee A.; Brown, Michael R.; Dahlburg, Jill P.; Davidson, Ronald C.; Greenwald, Martin; Hegna, Chris C.; McCurdy, William; Newman, David E.; Pellegrini, Claudio; Phillips, Cynthia K.; Post, Douglass E.; Rosenbluth, Marshall N.; Sheffield, John; Simonen, Thomas C.; Van Dam, James

    2001-01-01

    At the November 14-15, 2000, meeting of the Fusion Energy Sciences Advisory Committee, a Panel was set up to address questions about the Theory and Computing program, posed in a charge from the Office of Fusion Energy Sciences (see Appendix A). This area was of theory and computing/simulations had been considered in the FESAC Knoxville meeting of 1999 and in the deliberations of the Integrated Program Planning Activity (IPPA) in 2000. A National Research Council committee provided a detailed review of the scientific quality of the fusion energy sciences program, including theory and computing, in 2000.

  4. Fusion energy

    International Nuclear Information System (INIS)

    Gross, R.A.

    1984-01-01

    This textbook covers the physics and technology upon which future fusion power reactors will be based. It reviews the history of fusion, reaction physics, plasma physics, heating, and confinement. Descriptions of commercial plants and design concepts are included. Topics covered include: fusion reactions and fuel resources; reaction rates; ignition, and confinement; basic plasma directory; Tokamak confinement physics; fusion technology; STARFIRE: A commercial Tokamak fusion power plant. MARS: A tandem-mirror fusion power plant; and other fusion reactor concepts

  5. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1981-10-01

    The net energy balance for a tokamak fusion power plant was determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the net energy balance of the fusion power plant turns out to be more advantageous than that of an LWR, HTR or coal-fired power plant and nearly in the same range as FBR power plants. (orig.)

  6. Fire hazard analysis for fusion energy experiments

    International Nuclear Information System (INIS)

    Alvares, N.J.; Hasegawa, H.K.

    1979-01-01

    The 2XIIB mirror fusion facility at Lawrence Livermore Laboratory (LLL) was used to evaluate the fire safety of state-of-the-art fusion energy experiments. The primary objective of this evaluation was to ensure the parallel development of fire safety and fusion energy technology. Through fault-tree analysis, we obtained a detailed engineering description of the 2XIIB fire protection system. This information helped us establish an optimum level of fire protection for experimental fusion energy facilities as well as evaluate the level of protection provided by various systems. Concurrently, we analyzed the fire hazard inherent to the facility using techniques that relate the probability of ignition to the flame spread and heat-release potential of construction materials, electrical and thermal insulations, and dielectric fluids. A comparison of the results of both analyses revealed that the existing fire protection system should be modified to accommodate the range of fire hazards inherent to the 2XIIB facility

  7. Magnetic-fusion program

    International Nuclear Information System (INIS)

    1980-08-01

    In February 1980, the Director of Energy Research requested that the Energy Research Advisory Board (ERAB) review the Department of Energy (DOE) Magnetic Fusion Program. Of particular concern to the DOE was the judicious choice of the next major steps toward demonstration of economic power production from fusion. Of equal concern was the overall soundness of the DOE Magnetic Fusion Program: its pace, scope, and funding profiles. Their finding and recommendations are included

  8. The prospect of laser fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, C.

    2000-01-01

    The inertial confinement fusion research has developed remarkably in these 30 years, which enables us to scope the inertial fusion energy in the next century. The recent progress in the ICF is briefly reviewed. The GEKKO XII n d glass laser has succeeded to get the long cherished world's purpose that was to compress a D-T fuel up to 1000 times the normal density. The neutron yield was some what less than the expected value. The MJ laser system is under construction expecting to ignite and bum a fuel. The alternative way is to use a PW short pulse laser for the fast ignition. The inertial fusion energy strategy is described with economic overviews on IFE power plants. Various applications of IFE are summarized. (author)

  9. Understanding and accepting fusion as an alternative energy source

    Energy Technology Data Exchange (ETDEWEB)

    Goerz, D.A.

    1987-12-10

    Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs.

  10. Understanding and accepting fusion as an alternative energy source

    International Nuclear Information System (INIS)

    Goerz, D.A.

    1987-01-01

    Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs

  11. Non-electrical uses of thermal energy generated in the production of fissile fuel in fusion--fission reactors: a comparative economic parametric analysis for a hybrid with or without synthetic fuel production

    International Nuclear Information System (INIS)

    Tai, A.S.; Krakowski, R.A.

    1979-01-01

    A parametric analysis has been carried out for testing the sensitivity of the synfuel production cost in relation to crucial economic and technologic quantities (investment costs of hybrid and synfuel plant, energy multiplication of the fission blanket, recirculating power fraction of the fusion driver, etc.). In addition, a minimum synfuel selling price has been evaluated, from which the fission--fusion--synfuel complex brings about a higher economic benefit than does the fusion--fission hybrid entirely devoted to fissile-fuel and electricity generation. Assuming an electricity cost of 2.7 cents/kWh, an annual investment cost per power unit of 4.2 to 6 $/GJ (132 to 189 k$/MWty) for the fission--fusion complex and 1.5 to 3 $/GJ (47 to 95 k$/MWty) for the synfuel plant, the synfuel production net cost (i.e., revenue = cost) varies between 6.5 and 8.6 $/GJ. These costs can compete with those obtained by other processes (natural gas reforming, resid partial oxidation, coal gasification, nuclear fission, solar electrolysis, etc.). This study points out a potential use of the fusion--fission hybrid other than fissile-fuel and electricity generation

  12. Fusion energy for space missions in the 21st century: Executive summary

    International Nuclear Information System (INIS)

    Schulze, N.R.

    1991-08-01

    Future space missions were hypothesized and analyzed, and the energy source of their accomplishment investigated. The missions included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous missions with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing missions where delta v requirements range from 90 km/sec to 30,000 km/sec (High Energy Space Mission) were investigated. The need to develop a power space of this magnitude is a key issue to address if the U.S. civil space program is to continue to advance as mandated by the National Space Policy. Potential energy options which could provide the propulsion and electrical power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Additionally, fusion energy can offer significant safety, environmental, economic, and operational advantages. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified. A strategy that will produce fusion powered vehicles as part of the space transportation infrastructure was developed. Space program resources must be directed toward this issue as a matter of the top policy priority

  13. Fusion energy for space missions in the 21st century: Executive summary

    Science.gov (United States)

    Schulze, Norman R.

    1991-08-01

    Future space missions were hypothesized and analyzed, and the energy source of their accomplishment investigated. The missions included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous missions with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing missions where delta v requirements range from 90 km/sec to 30,000 km/sec (High Energy Space Mission) were investigated. The need to develop a power space of this magnitude is a key issue to address if the U.S. civil space program is to continue to advance as mandated by the National Space Policy. Potential energy options which could provide the propulsion and electrical power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Additionally, fusion energy can offer significant safety, environmental, economic, and operational advantages. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified. A strategy that will produce fusion powered vehicles as part of the space transportation infrastructure was developed. Space program resources must be directed toward this issue as a matter of the top policy priority.

  14. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1983-01-01

    The net energy balance for a tokamak fusion power plant of present day design is determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the energy expenditures of the fusion power plant turn out to be lower than that of an LWR, HTR, or coal-fired power plant of equal net electric power output and nearly in the same range as FBR power plants. (orig.)

  15. Nuclear fusion

    International Nuclear Information System (INIS)

    Al-zaelic, M.M.

    2013-01-01

    Nuclear fusion can be relied on to solve the global energy crisis if the process of limiting the heat produced by the fusion reaction (Plasma) is successful. Currently scientists are progressively working on this aspect whereas there are two methods to limit the heat produced by fusion reaction, the two methods are auto-restriction using laser beam and magnetic restriction through the use of magnetic fields and research is carried out to improve these two methods. It is expected that at the end of this century the nuclear fusion energy will play a vital role in overcoming the global energy crisis and for these reasons, acquiring energy through the use of nuclear fusion reactors is one of the most urge nt demands of all mankind at this time. The conclusion given is that the source of fuel for energy production is readily available and inexpensive ( hydrogen atoms) and whole process is free of risks and hazards, especially to general health and the environment . Nuclear fusion importance lies in the fact that energy produced by the process is estimated to be about four to five times the energy produced by nuclear fission. (author)

  16. The development of nuclear fusion, its demands on the economy: a rough draft concerning the changeover, as fast as possible, of the US industry to fusion energy

    International Nuclear Information System (INIS)

    Lerner, E.

    1977-01-01

    This paper is the Fusion Energy Foundation (FEF) antithesis to Carter's energy programme which aims at a zero growth rate for energy in the USA. According to this antithesis, fusion energy alone meets the two fundamental requirements, i.e. sufficient energy flux density and availability of energy, which are to be demanded from an energy source for the future. The paper states that the changeover to fusion energy cannot be attained by a decrease in consumption but only by a strong increase in energy consumption; an annual growth rate of 20% (on a world average) for 15 to 20 years is deemed necessary to reach a fusion economy. Two criteria for such a growth rate, according to the paper, are an increase in the capital formation rate of about 17% per year by a doubled production of capital goods and a full utilisation of the potential labour force. Finally, the present discrepancies of opinion between the White House and the US public are mentioned. The FEF thinks that humanity has reached a historical turning point and that only fast and consequent realisation of fusion technology may open an era of nearly unlimited technological innovation and help to show mankind the way into the 21st century. (GG) [de

  17. Plutonium-239 production rate study using a typical fusion reactor

    International Nuclear Information System (INIS)

    Faghihi, F.; Havasi, H.; Amin-Mozafari, M.

    2008-01-01

    The purpose of the present paper is to compute fissile 239 Pu material by supposed typical fusion reactor operation to make the fuel requirement for other purposes (e.g. MOX fissile fuel, etc.). It is assumed that there is a fusion reactor has a cylindrical geometry and uses uniformly distributed deuterium-tritium as fuel so that neutron wall load is taken at 10(MW)/(m 2 ) . Moreover, the reactor core is surrounded by six suggested blankets to make best performance of the physical conditions described herein. We determined neutron flux in each considered blanket as well as tritium self-sufficiency using two groups neutron energy and then computation is followed by the MCNP-4C code. Finally, material depletion according to a set of dynamical coupled differential equations is solved to estimate 239 Pu production rate. Produced 239 Pu is compared with two typical fission reactors to find performance of plutonium breeding ratio in the case of the fusion reactor. We found that 0.92% of initial U is converted into fissile Pu by our suggested fusion reactor with thermal power of 3000 MW. For comparison, 239 Pu yield of suggested large scale PWR is about 0.65% and for LMFBR is close to 1.7%. The results show that the fusion reactor has an acceptable efficiency for Pu production compared with a large scale PWR fission reactor type

  18. Fusion Power Deployment

    International Nuclear Information System (INIS)

    Schmidt, J.A.; Ogden, J.M.

    2002-01-01

    Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment

  19. ICRF-induced DD fusion product losses in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Zweben, S.J.; Budny, R.V.

    1994-10-01

    When ICRF power is applied to TFTR plasmas in which there is no externally-supplied minority species, an enhanced loss of DD fusion products results. The characteristics of the loss are consistent with particles at or near the birth energy having their perpendicular velocity increased by the ICRF such that those near the passing/trapped boundary are carried into the first orbit loss cone. A rudimentary model of this process predicts losses of a magnitude similar to those seen. Extrapolations based upon this data for hypothetical ICRF ash removal from reactor plasmas suggest that the technique will not be energy efficient

  20. Outline of cold nuclear fusion reaction

    International Nuclear Information System (INIS)

    Tachikawa, Enzo

    1991-01-01

    In 2010, as the total supply capacity of primary energy, 666 million liter is anticipated under the measures of thorough energy conservation. The development of energy sources along the energy policy based on environment preservation, safety, the quantity of resources and economy is strongly demanded. The nuclear power generation utilizing nuclear fission has been successfully carried out. As the third means of energy production, the basic research and technical development have been actively advanced on the energy production utilizing nuclear fusion reaction. The main object of the nuclear fusion research being advanced now is D-D reaction and D-T reaction. In order to realize low temperature nuclear fusion reaction, muon nuclear fusion has been studied so far. The cold nuclear fusion reaction by the electrolysis of heavy water has been reported in 1989, and its outline is ixplained in this report. The trend of the research on cold nuclear fusion is described. But the possibility of cold nuclear fusion as an energy source is almost denied. (K.I.)

  1. Studies on nuclear fusion energy potential based on a long-term world energy and environment model

    International Nuclear Information System (INIS)

    Tokimatsu, K.; Fujino, J.; Asaoka, Y.

    2001-01-01

    This study investigates introduction conditions and potential of nuclear fusion energy as energy supply and CO 2 mitigation technologies in the 21st century. Time horizon of the 21st century, 10 regionally allocated world energy/environment model (Linearized Dynamic New Earth 21) is used for this study. Following nuclear fusion technological data are taken into consideration: cost of electricity (COE) in nuclear fusion introduction year, annual COE reduction rates, regional introduction year, and maximum regional plant capacity constraints by maximum plant construction speed. We made simulation under a constraint of atmospheric CO 2 concentration of 550 parts per million by volume (ppmv) targeted at year 2100, assuming that sequestration technologies and unknown innovative technologies for CO 2 reduction are available. The results indicate that under the 550ppm scenario with nuclear fusion within maximum construction speed, 66mill/kWh is required for introducing nuclear fusion in 2050, 92 mill/kWh in 2060, and 106 mill/kWh in 2070. Therefore, tokamak type nuclear fusion reactors of present several reactor cost estimates are expected to be introduced between 2060 and 2070, and electricity generation fraction by nuclear fusion will go around 20% in 2100 if nuclear fusion energy growth is limited only by the maximum construction speed. CO 2 reduction by nuclear fusion introduced in 2050 from business-as-usual (BAU) scenario without nuclear fusion is about 20% of total reduction amount in 2100. In conclusion, nuclear fusion energy is revealed to be one of the candidates of energy supply technologies and CO 2 mitigation technologies. Cost competitiveness and removal of capacity constraint factors are desired for use of nuclear fusion energy in a large scale. (author)

  2. Fusion for Energy: The European joint undertaking for ITER and the development of fusion energy

    International Nuclear Information System (INIS)

    Diegele, E.

    2009-01-01

    Materials development in nuclear fusion for in-vessel components, i.e. for breeder blankets and divertors, has a history of more than two decades. It is the specific in-service and loading conditions and the consequentially required properties in combination with safety standards and social-economic demands that create a unique set of specifications. Objectives of Fusion for Energy (F4E) include: 1) To provide Europe's contribution to the ITER international fusion energy project; 2) To implement the Broader Approach agreement between Euratom and Japan; 3) To prepare for the construction and demonstration of fusion reactors (DEMO). Consequently, activities in F4E focus on structural materials for the first generations of breeder blankets, i.e. ITER Test Blanket Modules (TBM) and DEMO, whereas a Fusion Materials Topical Group implemented under EFDA coordinates R and D on physically based modelling of irradiation effects and R and D in the longer term (new and /or higher risk materials). The paper focuses on martensitic-ferritic steels and (i) reviews briefly the challenges and the rationales for the decisions taken in the past, (ii) analyses the status of the main activities of development and qualification, (iii) indicates unresolved issues, and (iv) outlines future strategies and needs and their implications. Due to the exposure to intense high energy neutron flux, the main issue for breeder materials is high radiation resistance. The First Wall of a breeder blanket should survive 3-5 full power years or, respectively in terms of irradiation damage, typically 50-70 dpa for DEMO and double figures for a power plant. Even though the objective is to have the materials and key fabrication technologies needed for DEMO fully developed and qualified within the next two decades, a major part of the task has to be completed much earlier. Tritium breeding test blanket modules will be installed in ITER with the objective to test DEMO relevant technologies in fusion

  3. Nuclear elastic scattering effects on fusion product transport in the FRM

    International Nuclear Information System (INIS)

    DeVeaux, J.C.; Greenspan, E.; Miley, G.H.

    1981-01-01

    Large energy transfer (LET) events such as nuclear elastic scatterng (NES) are shown to have significant effects on fusion product transport in the field-reversed mirror. The method used and preliminary results obtained from the study on NES effects on f/sub p/ orbits are described

  4. Fusion: A necessary component of US energy policy

    International Nuclear Information System (INIS)

    Correll, D.L. Jr.

    1989-01-01

    US energy policy must ensure that its security, its economy, or its world leadership in technology development are not compromised by failure to meet the nation's electrical energy needs. Increased concerns over the greenhouse effect from fossil-fuel combustion mean that US energy policy must consider how electrical energy dependence on oil and coal can be lessened by conservation, renewable energy sources, and advanced energy options (nuclear fission, solar energy, and thermonuclear fusion). In determining how US energy policy is to respond to these issues, it will be necessary to consider what role each of the three advanced energy options might play, and to determine how these options can complement one another. This paper reviews and comments on the principal US studies and legislation that have addressed fusion since 1980, and then suggests a research, development, and demonstration program that is consistent with the conclusions of those prior authorities and that will allow us to determine how fusion technology can fit into a US energy policy that takes a balanced, long term view of US needs. 17 refs

  5. Magnetic fusion energy technology fellowship: Report on survey of institutional coordinators

    International Nuclear Information System (INIS)

    1993-02-01

    In 1980, the Magnetic Fusion Energy Technology (MFET) Fellowship program was established by the US Department of Energy, Office of Fusion Energy, to encourage outstanding students interested in fusion energy technology to continue their education at a qualified graduate school. The basic objective of the MFET Fellowship program is to ensure an adequate supply of scientists in this field by supporting graduate study, training, and research in magnetic fusion energy technology. The program also supports the broader objective of advancing fusion toward the realization of commercially viable energy systems through the research by MFET fellows. The MFET Fellowship program is administered by the Science/Engineering Education Division of Oak Ridge Institute for Science and Education. Guidance for program administration is provided by an academic advisory committee

  6. 20th IAEA fusion energy conference 2004. Conference proceedings

    International Nuclear Information System (INIS)

    2005-01-01

    The 20th International Atomic Energy Agency (IAEA) Fusion Energy Conference (FEC) was held in Vilamoura, Portugal, from 1 to 6 November 2004. The Instituto Superior Tecnico through the Centro de Fusao Nuclear on behalf of the Portuguese Government and the Association EURATOM/IST hosted the conference. The IAEA wishes to express its gratitude to the host. More than 600 delegates representing 33 countries and three international organizations attended the Fusion Energy Conference 2004. The Programme Committee accepted a total of some 437 papers for presentation at the conference. The scientific experimental and theoretical papers have been grouped with respect to the following themes: Overview on magnetic and inertial fusion; Advanced Scenarios and Steady State; Edge Localized Modes; Fusion Technology; Transport Theory; Beta Limits; Hybrid Scenarios; H-mode and Transport; ITER; Alfven Modes and Wave Heating; Operational Limits and Momentum Transport; Energetic Particles and Stability; Neoclassical Tearing Modes; Transport and Turbulence; Inertial Fusion; Configuration Effects and Transport; and Plasma-wall Interaction. The conference adjourned with the announcement of the next IAEA Fusion Energy Conference, which will be held for the first time in the People's Republic of China, in the city of Chengdu, October 16-22, 2006

  7. Proceedings of the Second Fusion-Fission Energy Systems Review Meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-11-02

    The agenda of the meeting was developed to address, in turn, the following major areas: specific problem areas in nuclear energy systems for application of fusion-fission concepts; current and proposed fusion-fission programs in response to the identified problem areas; target costs and projected benefits associated with fusion-fission energy systems; and technical problems associated with the development of fusion-fission concepts. The greatest emphasis was placed on the characteristics of and problems, associated with fuel producing fusion-fission hybrid reactors.

  8. Economic evaluations of fusion-based energy storage systems in an electric utility

    International Nuclear Information System (INIS)

    Hwang, W.G.

    1977-01-01

    The feasibility of introducing a fusion energy storage system, which consists of a fusion-fission reactor and a water-splitting process, in an electric utility was investigated. The fusion energy storage system was assumed to be run during off-peak periods in order to make use of unused, low fuel cost capacity of an electric utility. The fusion energy storage system produces both fissile fuel and hydrogen. The produced hydrogen was assumed to be transmitted through and stored in existing natural gas trunklines for later use during peak-load hours. The peaking units in the utility were assumed to burn the hydrogen. Reserve power is usually cheap on systems with heavy nuclear fission reactor installation. The system studied utilizes this cheap energy for producing expensive fuel. The thermochemical water-splitting process was employed to recover thermal energy from the fusion-fission reactor system. The cost of fusion energy storage systems as well as the value of produced fuel were calculated. In order to simulate the operations of the fusion energy storage system for a multi-year planning period, a computer program, FESUT (Fusion Energy Simulation at the University of Texas), was developed for the present study. Two year utility simulations with the fusion energy storage system were performed

  9. Fusion technologies for Laser Inertial Fusion Energy (LIFE∗

    Directory of Open Access Journals (Sweden)

    Kramer K.J.

    2013-11-01

    Full Text Available The Laser Inertial Fusion-based Energy (LIFE engine design builds upon on going progress at the National Ignition Facility (NIF and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant.

  10. Sensitivity of low-energy incomplete fusion to various entrance-channel parameters

    Science.gov (United States)

    Kumar, Harish; Tali, Suhail A.; Afzal Ansari, M.; Singh, D.; Ali, Rahbar; Kumar, Kamal; Sathik, N. P. M.; Ali, Asif; Parashari, Siddharth; Dubey, R.; Bala, Indu; Kumar, R.; Singh, R. P.; Muralithar, S.

    2018-03-01

    The disentangling of incomplete fusion dependence on various entrance channel parameters has been made from the forward recoil range distribution measurement for the 12C+175Lu system at ≈ 88 MeV energy. It gives the direct measure of full and/or partial linear momentum transfer from the projectile to the target nucleus. The comparison of observed recoil ranges with theoretical ranges calculated using the code SRIM infers the production of evaporation residues via complete and/or incomplete fusion process. Present results show that incomplete fusion process contributes significantly in the production of α xn and 2α xn emission channels. The deduced incomplete fusion probability (F_{ICF}) is compared with that obtained for systems available in the literature. An interesting behavior of F_{ICF} with ZP ZT is observed in the reinvestigation of incomplete fusion dependency with the Coulomb factor (ZPZT), contrary to the recent observations. The present results based on (ZPZT) are found in good agreement with recent observations of our group. A larger F_{ICF} value for 12C induced reactions is found than that for 13C, although both have the same ZPZT. A nonsystematic behavior of the incomplete fusion process with the target deformation parameter (β2) is observed, which is further correlated with a new parameter (ZP ZT . β2). The projectile α -Q-value is found to explain more clearly the discrepancy observed in incomplete fusion dependency with parameters ( ZPZT) and (ZP ZT . β2). It may be pointed out that any single entrance channel parameter (mass-asymmetry or (ZPZT) or β2 or projectile α-Q-value) may not be able to explain completely the incomplete fusion process.

  11. Multi-unit Inertial Fusion Energy (IFE) plants producing hydrogen fuel

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-12-01

    A quantitative energy pathway comparison is made between a modern oil refinery and genetic fusion hydrogen plant supporting hybrid-electric cars powered by gasoline and hydrogen-optimized internal combustion engines, respectively, both meeting President Clinton's goal for advanced car goal of 80 mpg gasoline equivalent. The comparison shows that a fusion electric plant producing hydrogen by water electrolysis at 80% efficiency must have an electric capacity of 10 GWe to support as many hydrogen-powered hybrid cars as one modern 200,000 bbl/day-capacity oil refinery could support in gasoline-powered hybrid cars. A 10 GWe fusion electric plant capital cost is limited to 12.5 B$ to produce electricity at 2.3 cents/kWehr, and hydrogen production by electrolysis at 8 $/GJ, for equal consumer fuel cost per passenger mile as in the oil-gasoline-hybrid pathway

  12. Fusion energy and nuclear liability considerations

    International Nuclear Information System (INIS)

    Fork, William E.; Peterson, Charles H.

    2014-01-01

    For over 60 years, fusion energy has been recognised as a promising technology for safe, secure and environmentally-sustainable commercial electrical power generation. Over the past decade, research and development programmes across the globe have shown progress in developing critical underlying technologies. Approaches ranging from high-temperature plasma magnetic confinement fusion to inertial confinement fusion are increasingly better understood. As scientific research progresses in its aim to achieve fusion 'ignition', where nuclear fusion becomes self-sustaining, the international legal community should consider how fusion power technologies fit within the current nuclear liability legal framework. An understanding of the history of the civil nuclear liability regimes, along with the different risks associated with fusion power, will enable nations to consider the proper legal conditions needed to deploy and commercialise fusion technologies for civil power generation. This note is divided into three substantive parts. It first provides background regarding fusion power and describes the relatively limited risks of fusion technologies when compared with traditional nuclear fission technologies. It then describes the international nuclear liability regime and analyses how fusion power fits within the text of the three leading conventions. Finally, it examines how fusion power may fall within the international nuclear liability framework in the future, a discussion that includes possible amendments to the relevant international liability conventions. It concludes that the unique nature of the current civil nuclear liability regime points towards the development of a more tailored liability solution because of the reduced risks associated with fusion power. (authors)

  13. The fusion-fission hybrid

    International Nuclear Information System (INIS)

    Teller, E.

    1985-01-01

    As the history of the development of fusion energy shows, a sustained controlled fusion reaction is much more difficult to produce than rapid uncontrolled release of fusion energy. Currently, the ''magnetic bottle'' technique shows sufficient progress that it might applied for the commercial fuel production of /sup 233/U, suitable for use in fission reactors, by developing a fusion-fission hybrid. Such a device would consist of a fusion chamber core surrounded by a region containing cladded uranium pellets cooled by helium, with lithium salts also present to produce tritium to refuel the fusion process. Successful development of this hybrid might be possible within 10 y, and would provide both experience and funds for further development of controlled fusion energy

  14. The High Field Path to Practical Fusion Energy

    Science.gov (United States)

    Mumgaard, Robert; Whyte, D.; Greenwald, M.; Hartwig, Z.; Brunner, D.; Sorbom, B.; Marmar, E.; Minervini, J.; Bonoli, P.; Irby, J.; Labombard, B.; Terry, J.; Vieira, R.; Wukitch, S.

    2017-10-01

    We propose a faster, lower cost development path for fusion energy enabled by high temperature superconductors, devices at high magnetic field, innovative technologies and modern approaches to technology development. Timeliness, scale, and economic-viability are the drivers for fusion energy to combat climate change and aid economic development. The opportunities provided by high-temperature superconductors, innovative engineering and physics, and new organizational structures identified over the last few years open new possibilities for realizing practical fusion energy that could meet mid-century de-carbonization needs. We discuss re-factoring the fusion energy development path with an emphasis on concrete risk retirement strategies utilizing a modular approach based on the high-field tokamak that leverages the broader tokamak physics understanding of confinement, stability, and operational limits. Elements of this plan include development of high-temperature superconductor magnets, simplified immersion blankets, advanced long-leg divertors, a compact divertor test tokamak, efficient current drive, modular construction, and demountable magnet joints. An R&D plan culminating in the construction of an integrated pilot plant and test facility modeled on the ARC concept is presented.

  15. Ball lightning as a route to fusion energy

    International Nuclear Information System (INIS)

    Roth, J.R.

    1989-01-01

    The reality of ball lightning is attested to by observations reported in surveys of large populations, which are the subject of several books. These observations indicate that its characteristics may be relevant to fusion energy applications. Ball lightning can have a diameter up to several meters, a lifetime of over 100 seconds, an energy content in excess of 10 megajoules, and an energy density and a kinetic pressure greater than that of a reacting DT plasma. This paper reviews some of the properties of ball lightning which commend it to the attention of the fusion community, and it discusses some potential advantages and applications of ball lightning fusion reactors. 11 refs., 6 figs., 1 tab

  16. Plutonium-239 production rate study using a typical fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, F. [Research Center for Radiation Protection, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: faghihif@shirazu.ac.ir; Havasi, H.; Amin-Mozafari, M. [Department of Nuclear Engineering, School of Engineering, Shiraz University, 71348-51154 Shiraz (Iran, Islamic Republic of)

    2008-05-15

    The purpose of the present paper is to compute fissile {sup 239}Pu material by supposed typical fusion reactor operation to make the fuel requirement for other purposes (e.g. MOX fissile fuel, etc.). It is assumed that there is a fusion reactor has a cylindrical geometry and uses uniformly distributed deuterium-tritium as fuel so that neutron wall load is taken at 10(MW)/(m{sup 2}) . Moreover, the reactor core is surrounded by six suggested blankets to make best performance of the physical conditions described herein. We determined neutron flux in each considered blanket as well as tritium self-sufficiency using two groups neutron energy and then computation is followed by the MCNP-4C code. Finally, material depletion according to a set of dynamical coupled differential equations is solved to estimate {sup 239}Pu production rate. Produced {sup 239}Pu is compared with two typical fission reactors to find performance of plutonium breeding ratio in the case of the fusion reactor. We found that 0.92% of initial U is converted into fissile Pu by our suggested fusion reactor with thermal power of 3000 MW. For comparison, {sup 239}Pu yield of suggested large scale PWR is about 0.65% and for LMFBR is close to 1.7%. The results show that the fusion reactor has an acceptable efficiency for Pu production compared with a large scale PWR fission reactor type.

  17. Fusion utilization projections in the United States energy economy

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.

    1979-11-01

    The following topics are discussed in some detail in this report: (1) applications of fusion energy, (2) fusion implementation in the US energy system, (3) reactor performance requirements, (4) technology for electric applications, and (5) technology for synthetic fuel/chemical applications

  18. Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket

    Science.gov (United States)

    Slough, John; Pancotti, Anthony; Kirtley, David; Pihl, Christopher; Pfaff, Michael

    2012-01-01

    The future of manned space exploration and development of space depends critically on the creation of a dramatically more proficient propulsion architecture for in-space transportation. A very persuasive reason for investigating the applicability of nuclear power in rockets is the vast energy density gain of nuclear fuel when compared to chemical combustion energy. Current nuclear fusion efforts have focused on the generation of electric grid power and are wholly inappropriate for space transportation as the application of a reactor based fusion-electric system creates a colossal mass and heat rejection problem for space application.

  19. High-energy krypton fluoride lasers for inertial fusion.

    Science.gov (United States)

    Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max

    2015-11-01

    Laser fusion researchers have realized since the 1970s that the deep UV light from excimer lasers would be an advantage as a driver for robust high-performance capsule implosions for inertial confinement fusion (ICF). Most of this research has centered on the krypton-fluoride (KrF) laser. In this article we review the advantages of the KrF laser for direct-drive ICF, the history of high-energy KrF laser development, and the present state of the art and describe a development path to the performance needed for laser fusion and its energy application. We include descriptions of the architecture and performance of the multi-kilojoule Nike KrF laser-target facility and the 700 J Electra high-repetition-rate KrF laser that were developed at the U.S. Naval Research Laboratory. Nike and Electra are the most advanced KrF lasers for inertial fusion research and energy applications.

  20. Fusion--fission energy systems, some utility perspectives

    International Nuclear Information System (INIS)

    Huse, R.A.; Burger, J.M.; Lotker, M.

    1974-01-01

    Some of the issues that are important in assessing fusion-- fission energy systems from a utility perspective are discussed. A number of qualitative systems-oriented observations are given along with some economic quantification of the benefits from fusion--fission hybrids and their allowed capital cost. (U.S.)

  1. Fusion Simulation Project. Workshop sponsored by the U.S. Department of Energy Rockville, MD, May 16-18, 2007

    International Nuclear Information System (INIS)

    2007-01-01

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel (Journal of Fusion Energy 20, 135 (2001)) recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts (Journal of Fusion Energy 23, 1 (2004)). The current FSP planning effort involved forty-six physicists, applied mathematicians and computer scientists, from twenty-one institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a three-day workshop in May 2007.

  2. Fusion Simulation Project. Workshop Sponsored by the U.S. Department of Energy, Rockville, MD, May 16-18, 2007

    International Nuclear Information System (INIS)

    Kritz, A.; Keyes, D.

    2007-01-01

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved forty-six physicists, applied mathematicians and computer scientists, from twenty-one institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a three-day workshop in May 2007

  3. Fusion Simulation Project. Workshop Sponsored by the U.S. Department of Energy, Rockville, MD, May 16-18, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Kritz, A.; Keyes, D.

    2007-05-18

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved forty-six physicists, applied mathematicians and computer scientists, from twenty-one institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a three-day workshop in May 2007.

  4. Fusion Simulation Project. Workshop sponsored by the U.S. Department of Energy Rockville, MD, May 16-18, 2007

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-05-16

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved forty-six physicists, applied mathematicians and computer scientists, from twenty-one institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a three-day workshop in May 2007.

  5. The prospect for fusion energy with light ions

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Adams, R.G.; Bailey, J.E.

    1998-01-01

    Intense ion beams may be the best option for an Inertial Fusion Energy (IFE) driver. While light ions may be the long-term pulsed power approach to IFE, the current economic climate is such that there is no urgency in developing fusion energy sources. Research on light ion beams at Sandia will be suspended at the end of this fiscal year in favor of z-pinches studying ICF target physics, high yield fusion, and stewardship issues. The authors document the status of light ion research and the understanding of the feasibility of scaling light ions to IFE

  6. Direct energy conversion for IEC fusion for space applications

    International Nuclear Information System (INIS)

    Momota, Hiromu; Nadler, Jon; Miley, George H.

    2000-08-01

    The paper describes a concept of extracting fusion power from D- 3 He fueled IEC (Inertia Electrostatic Configuration) devices. The fusion system consists of a series of fusion modules and direct energy converters at an end or at both ends. This system of multiple units is linear and is connected by a magnetic field. A pair of coils anti-parallel to the magnetic field yields a field-null domain at the center of each unit as required for IEC operation. A stabilizing coil installed between the coil pairs eliminates the strong attractive force between the anti-parallel coils. Accessible regions for charged particle trajectories are essentially isolated from the coil structure. Thus, charged particles are directed along magnetic field lines to the direct energy converter without appreciable losses. A direct energy converter unit designed to be compatible to this unique system is also described. It basically consists of a separator and a traveling wave converter. A separator separates low energy ions and electron from the 14.7 MeV fusion protons and then converts their energy into electricity. In the traveling wave direct energy converter, fusion protons are modulated to form bunches. It couples with a transmission line to couple AC power out. The overall conversion efficiency of this system, combined with E- 3 He IEC cores, is estimated as high as 60%. (author)

  7. Direct energy conversion for IEC fusion for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Momota, Hiromu; Nadler, Jon [National Inst. for Fusion Science, Toki, Gifu (Japan); Miley, George H. [Fusion Studies Laboratory, Urbana, IL (United States)

    2000-08-01

    The paper describes a concept of extracting fusion power from D-{sup 3}He fueled IEC (Inertia Electrostatic Configuration) devices. The fusion system consists of a series of fusion modules and direct energy converters at an end or at both ends. This system of multiple units is linear and is connected by a magnetic field. A pair of coils anti-parallel to the magnetic field yields a field-null domain at the center of each unit as required for IEC operation. A stabilizing coil installed between the coil pairs eliminates the strong attractive force between the anti-parallel coils. Accessible regions for charged particle trajectories are essentially isolated from the coil structure. Thus, charged particles are directed along magnetic field lines to the direct energy converter without appreciable losses. A direct energy converter unit designed to be compatible to this unique system is also described. It basically consists of a separator and a traveling wave converter. A separator separates low energy ions and electron from the 14.7 MeV fusion protons and then converts their energy into electricity. In the traveling wave direct energy converter, fusion protons are modulated to form bunches. It couples with a transmission line to couple AC power out. The overall conversion efficiency of this system, combined with E-{sup 3}He IEC cores, is estimated as high as 60%. (author)

  8. Fusion fuel blanket technology

    International Nuclear Information System (INIS)

    Hastings, I.J.; Gierszewski, P.

    1987-05-01

    The fusion blanket surrounds the burning hydrogen core of a fusion reactor. It is in this blanket that most of the energy released by the nuclear fusion of deuterium-tritium is converted into useful product, and where tritium fuel is produced to enable further operation of the reactor. As fusion research turns from present short-pulse physics experiments to long-burn engineering tests in the 1990's, energy removal and tritium production capabilities become important. This technology will involve new materials, conditions and processes with applications both to fusion and beyond. In this paper, we introduce features of proposed blanket designs and update and status of international research. In focusing on the Canadian blanket technology program, we discuss the aqueous lithium salt blanket concept, and the in-reactor tritium recovery test program

  9. Magnetic fusion energy research and development

    International Nuclear Information System (INIS)

    1984-02-01

    This report on the Department of Energy's Magnetic Fusion Program was requested by the Secretary of Energy. The Panel finds that substantial progress has been made in the three years since the previous ERAB review, although budget constraints have precluded the engineering initiatives recommended in that review and authorized in the Magnetic Fusion Energy Engineering Act of 1980 (the Act). Recognizing that the goals of the Act cannot now be met, the Panel recommends that the engineering phase be further postponed in favor of a strong base program in physics and technology, including immediate commitment to a major new tokamak-based device for the investigation of an ignited long-pulse plasma designated in this report as the Burning Core Experiment or BCX. Resources to design such a device could be obtained from within the existing program by redirecting work toward to BCX. At this time it is not possible to assess accurately the potential economic viability of fusion power in the future. The Panel strongly recommends expansion of international collaboration, particularly the joint construction and operation of major new unique facilities, such as the proposed BCX

  10. Z-inertial fusion energy: power plant final report FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark (University of Wisconsin, Madison, WI); Kulcinski, Gerald (University of Wisconsin, Madison, WI); Zhao, Haihua (University of California, Berkeley, CA); Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne (Lawrence Livermore National Laboratories); McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth (University of California, Berkeley, CA); Smith, James Dean; Ying, Alice (University of California, Los Angeles, CA); Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A. (University of California, Los Angeles, CA); Bonazza, Riccardo (University of Wisconsin, Madison, WI); Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse (University of Wisconsin, Madison, WI); Peterson, Per F. (University of California, Berkeley, CA); Marriott, Ed (University of Wisconsin, Madison, WI); Oakley, Jason (University of Wisconsin, Madison, WI)

    2006-10-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

  11. Z-inertial fusion energy: power plant final report FY 2006

    International Nuclear Information System (INIS)

    Anderson, Mark; Kulcinski, Gerald; Zhao, Haihua; Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne; McConnell, Paul E.; Ghiaasiaan, M.; Kern, Brian; Tajima, Yu; Campen, Chistopher; Sketchley, Tomas; Moir, R; Bardet, Philippe M.; Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L.; Modesto-Beato, Marcos A.; Franklin, James Kenneth; Smith, James Dean; Ying, Alice; Cook, Jason T.; Schmitz, Lothar; Abdel-Khalik, S.; Farnum, Cathy Ottinger; Abdou, Mohamed A.; Bonazza, Riccardo; Rodriguez, Salvador B.; Sridharan, Kumar; Rochau, Gary Eugene; Gudmundson, Jesse; Peterson, Per F.; Marriott, Ed; Oakley, Jason

    2006-01-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques

  12. Magnetic Fusion Energy Technology Fellowship Program: Summary of program activities for calendar year 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This report summarizes the activities of the US Department of Energy (DOE) Magnetic Fusion Energy Technology Fellowship program (MFETF) for the 1985 calendar year. The MFETF program has continued to support the mission of the Office of Fusion Energy (OFE) and its Division of Development and Technology (DDT) by ensuring the availability of appropriately trained engineering manpower needed to implement the OFE/DDT magnetic fusion energy agenda. This program provides training and research opportunities to highly qualified students at DOE-designated academic, private sector, and government magnetic fusion energy institutions. The objectives of the Magnetic Fusion Energy Technology Fellowship program are: (1) to provide support for graduate study, training, and research in magnetic fusion energy technology; (2) to ensure an adequate supply of appropriately trained manpower to implement the nation's magnetic fusion energy agenda; (3) to raise the visibility of careers in magnetic fusion energy technology and to encourage students to pursue such careers; and (4) to make national magnetic fusion energy facilities available for manpower training

  13. Enhanced loss of fusion products during mode conversion heating in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Majeski, R.; Fisch, N.J.; Heeter, R.F.; Herrmann, H.W.; Herrmann, M.C.; Zarnstorff, M.C.; Zweben, S.J.

    1995-07-01

    Ion Bernstein waves (IBWS) have been generated by mode conversion of ion cyclotron range of frequency (ICRF) fast waves in TFTR. The loss rate of fusion products in these discharges can be large, up to 10 times the first orbit loss rate. The losses are observed at the passing/trapped boundary, indicating that passing particles are being moved onto loss orbits either by increase of their v perpendicular due to the wave, by outward transport in minor radius, or both. The lost particles appear to be DD fusion produced tritons heated to ∼1.5 times their birth energy

  14. Barrier for cold-fusion production of superheavy elements

    International Nuclear Information System (INIS)

    Ichikawa, Takatoshi; Iwamoto, Akira; Moeller, Peter; Sierk, Arnold J.

    2005-01-01

    We estimate the fusion-barrier height B fu (two-body) for approaching ions in cold-fusion reactions in a model where the projectile deformation and quadrupole zero-point vibrational energy are taken into account. This barrier height is defined as the barrier energy at the target and projectile separation distance where an original oblate deformation of projectile and/or target caused by a repulsive Coulomb force turns into a large prolate deformation caused by the attractive nuclear force as the target and projectile come closer. The instability develops before touching because the attractive short-range nuclear force overcomes the repulsive Coulomb force and the shape-stabilizing effect of shell structure. The shell structure of the doubly magic 208 Pb target is sufficiently strong that its shape remains very close to spherical in all cases studied here. The fusion potential for approaching ions in the two-body channel is calculated in the macroscopic-microscopic model with the quadrupole vibrational zero-point energy obtained in the WKB approximation. We compare our results with data from 10 experimental cold-fusion reactions and with the Bass barriers. Differences and similarities between the Yukawa-plus-exponential model and the Bass model are discussed. We also calculate five-dimensional potential-energy surfaces for the single compound system and show that well-established fission and fusion valleys are both present. For heavy systems, B fu (two-body) becomes lower than the fission barrier just beyond the ground state of the compound system. In the vicinity of this transition, the optimum collision energy for formation of evaporation residues can be expected to depend in a delicate fashion on the interplay among B fu (two-body) , the fusion valley, the fission barrier of the compound system, and the one- and two-neutron separation energies S 1n and S 2n . We discuss these issues in detail and calculate fission-barrier heights. Except for reactions in which

  15. Centralized supercomputer support for magnetic fusion energy research

    International Nuclear Information System (INIS)

    Fuss, D.; Tull, G.G.

    1984-01-01

    High-speed computers with large memories are vital to magnetic fusion energy research. Magnetohydrodynamic (MHD), transport, equilibrium, Vlasov, particle, and Fokker-Planck codes that model plasma behavior play an important role in designing experimental hardware and interpreting the resulting data, as well as in advancing plasma theory itself. The size, architecture, and software of supercomputers to run these codes are often the crucial constraints on the benefits such computational modeling can provide. Hence, vector computers such as the CRAY-1 offer a valuable research resource. To meet the computational needs of the fusion program, the National Magnetic Fusion Energy Computer Center (NMFECC) was established in 1974 at the Lawrence Livermore National Laboratory. Supercomputers at the central computing facility are linked to smaller computer centers at each of the major fusion laboratories by a satellite communication network. In addition to providing large-scale computing, the NMFECC environment stimulates collaboration and the sharing of computer codes and data among the many fusion researchers in a cost-effective manner

  16. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  17. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  18. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    International Nuclear Information System (INIS)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs

  19. ITER session at the IAEA fusion energy conference

    International Nuclear Information System (INIS)

    Stewart, M.J.

    2003-01-01

    A highlight of this year's Fusion Energy Conference, held in Lyon, France, on 14-19 October, was the participation by the ITER Parties in both a Special ITER Informal Session and in the Fusion Institute Exhibition at the Paella's des Congres de Lyon. These gave conference participants an opportunity to hear the latest on this collaborative international fusion energy research and development project, and to speak with the experts from each of the four sites being offered for the construction of ITER. The Special ITER Informal Session was held on the evening of 16 October and it was very well attended, with approximately 350 conference participants attending

  20. Automated laser fusion target production concept

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1977-01-01

    A target production concept is described for the production of multilayered cryogenic spherical inertial confinement fusion targets. The facility is to deliver targets to the reactor chamber at rates up to 10 per second and at costs consistent with economic production of power

  1. Cold fusion research

    International Nuclear Information System (INIS)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy

  2. Review of magnetic fusion energy neutron cross section needs: neutronics viewpoint

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Muir, D.W.

    1977-01-01

    In the overall context of fusion nucleonic analysis, most cross section deficiencies lie in the energy range 14 MeV and below. This review deals not only with new data requirements generated by current interest in d-Li sources but also with the needs of conventional nucleonic studies (i.e., 14-MeV source calculations). The many compilations of requirements are referenced, and the current assessment of high-priority needs is succinctly summarized. Then typical methodology and results (sensitivity and uncertainty analysis) are given for quantitative data assessments of the Tokamak Fusion Test Reactor and a fusion Experimental Power Reactor. Finally, a summary is presented of some probings into data above 14 MeV, which have potential applications for d-Li irradiation facilities, d-Be medical therapy sources, and electronuclear fuel production facilities. 2 figures, 9 tables

  3. Measurements of fusion product emission profiles in tokamaks

    International Nuclear Information System (INIS)

    Strachan, J.D.; Heidbrink, W.W.; Hendel, H.W.; Lovberg, J.; Murphy, T.J.; Nieschmidt, E.B.; Tait, G.D.; Zweben, S.J.

    1986-11-01

    The techniques and results of fusion product emission profile measurements are reviewed. While neutron source strength profile measurements have been attempted by several methods, neutron scattering is a limitation to the results. Profile measurements using charged fusion products have recently provided an alternative since collimation is much easier for the charged particles

  4. Status report on fusion research

    International Nuclear Information System (INIS)

    Burkhart, Werner

    2005-01-01

    At the beginning of the twenty-first century mankind is faced with the serious problem of meeting the energy demands of a rapidly industrializing population around the globe. This, against the backdrop of fast diminishing fossil fuel resources (which have been the main source of energy of the last century) and the increasing realization that the use of fossil fuels has started to adversely affect our environment, has greatly intensified the quest for alternative energy sources. In this quest, fusion has the potential to play a very important role and we are today at the threshold of realizing net energy production from controlled fusion experiments. Fusion is, today, one of the most promising of all alternative energy sources because of the vast reserves of fuel, potentially lasting several thousands of years and the possibility of a relatively 'clean' form of energy, as required for use in concentrated urban industrial settings, with minimal long term environmental implications. The last decade and a half has seen unprecedented advances in controlled fusion experiments with the discovery of new regimes of operations in experiments, production of 16 MW of fusion power and operations close to and above the so-called 'break-even' conditions. A great deal of research has also been carried out in analysing various socio-economic aspects of fusion energy. This paper briefly reviews the various aspects and achievements of fusion research all over the world during this period

  5. Fusion probability and survivability in estimates of heaviest nuclei production

    International Nuclear Information System (INIS)

    Sagaidak, Roman

    2012-01-01

    A number of theoretical models have been recently developed to predict production cross sections for the heaviest nuclei in fusion-evaporation reactions. All the models reproduce cross sections obtained in experiments quite well. At the same time they give fusion probability values P fus ≡ P CN differed within several orders of the value. This difference implies a corresponding distinction in the calculated values of survivability. The production of the heaviest nuclei (from Cm to the region of superheavy elements (SHE) close to Z = 114 and N = 184) in fusion-evaporation reactions induced by heavy ions has been considered in a systematic way within the framework of the barrier-passing (fusion) model coupled with the standard statistical model (SSM) of the compound nucleus (CN) decay. Both models are incorporated into the HIVAP code. Available data on the excitation functions for fission and evaporation residues (ER) produced in very asymmetric combinations can be described rather well within the framework of HIVAP. Cross-section data obtained in these reactions allow one to choose model parameters quite definitely. Thus one can scale and fix macroscopic (liquid-drop) fission barriers for nuclei involved in the evaporation-fission cascade. In less asymmetric combinations (with 22 Ne and heavier projectiles) effects of fusion suppression caused by quasi-fission are starting to appear in the entrance channel of reactions. The P fus values derived from the capture-fission and fusion-fission cross-sections obtained at energies above the Bass barrier were plotted as a function of the Coulomb parameter. For more symmetric combinations one can deduce the P fus values semi-empirically, using the ER and fission excitation functions measured in experiments, and applying SSM model with parameters obtained in the analysis of a very asymmetric combination leading to the production of (nearly) the same CN, as was done for reactions leading to the pre-actinide nuclei formation

  6. An unexpected response of torulopsis glabrata fusion products to x-irradiation

    International Nuclear Information System (INIS)

    Galeotti, C.L.; Sriprakash, K.S.; Batum, C.M.; Clark-Walker, G.D.

    1981-01-01

    Intra-species fusion products of Saccharomyces cerevisiae, Saccharomyces unisporus and Torulopsis glabrata have been isolated following polyethylene glycol-induced fusion of protoplasts and selection for prototrophic colonies. Staining with lomofungin showed that all fusion products were uninucleate. Measurement of DNA content mostly gave values between haploid and diploid levels indicating that the majority of fusion products were aneuploid. Nevertheless fusion products of S. cerevisiae and S. unisporus were, as expected, more resistant to X-irradiation than their haploid parents. By contrast, the X-ray doze-response curve of all T. glabrata fusion products was indistinguishable from their progenitors despite the fact that mitotic segregants could be recovered amongst the survivors to X-rays. A possible explanation for the behaviour towards X-rays of T. glabrata fusion products is that this species lacks a DNA repair pathway involving recombination between homologous chromosomes. We conclude from this study that the shape of the X-ray dose-response curve should not be taken to indicate the ploidy of new yeast isolates without supporting data. (orig.)

  7. K factor for Higgs boson production via gluon fusion process at hadron colliders

    International Nuclear Information System (INIS)

    Tanaka, H.

    1992-01-01

    In this paper soft gluon corrections for Higgs boson production at hadron colliders are calculated. It is found that the soft contributions for the Higgs boson production via gluon fusion process is large and it cannot be neglected even at SSC energy. Some qualitative discussions for the QCD corrections to the Higgs boson production at hadron colliders and their background processes are presented for various Higgs boson mass cases

  8. Catalyzed deuterium-deuterium and deuterium-tritium fusion blankets for high temperature process heat production

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Salimi, B.

    1982-01-01

    Tritiumless blanket designs, associated with a catalyzed deuterium-deuterium (D-D) fusion cycle and using a single high temperature solid pebble or falling bed zone, for process heat production, are proposed. Neutronics and photonics calculations, using the Monte Carlo method, show that an about 90% heat deposition fraction is possible in the high temperature zone, compared to a 30 to 40% fraction if a deuterium-tritium (D-T) fusion cycle is used with separate breeding and heat deposition zones. Such a design is intended primarily for synthetic fuels manufacture through hydrogen production using high temperature water electrolysis. A system analysis involving plant energy balances and accounting for the different fusion energy partitions into neutrons and charged particles showed that plasma amplification factors in the range of 2 are needed. In terms of maximization of process heat and electricity production, and the maximization of the ratio of high temperature process heat to electricity, the catalyzed D-D system outperforms the D-T one by about 20%. The concept is thought competitive to the lithium boiler concept for such applications, with the added potential advantages of lower tritium inventories in the plasma, reduced lithium pumping (in the case of magnetic confinement) and safety problems, less radiation damage at the first wall, and minimized risks of radioactive product contamination by tritium

  9. Potential of incineration of long-life fission products from fission energy system by D-T and D-D fusion reactors

    International Nuclear Information System (INIS)

    Sekimoto, H.; Takashima, H.

    2001-01-01

    The incineration of LLFPs, all of which can not be incinerated with only the fast reactor without isotope separation is studied by employing the DT and DD fusion reactors. The requirement of production of tritium for the DT reactor is severe and the thickness of the blanket should be decreased considerably to incinerate the considerable amount of LLFPs. On the other hand the DD fusion reactor is free from the neutron economy constraint and can incinerate all LLFPs. The pure DD reactor can also show the excellent performance to reduce the first wall loading less than 1 MW/m 2 even for total LLFP incineration. By raising the wall loading to the design limit, the D-D reactor can incinerate the LLFPs from several fast reactors. When the fusion reactor is utilized as an energy producer, plasma confinement is very difficult problem, especially for the D-D reactor compared to the D-T reactor. However, when it is utilized as an incinerator of LLFP, this problem becomes considerably easier. Therefore, the incineration of LLFP is considered as an attractive subject for the D-D reactor. (author)

  10. Potential of incineration of long-life fission products from fission energy system by D-T and D-D fusion reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Takashima, Hiroaki

    1999-01-01

    The incineration of LLFPs, all of which can not be incinerated with only the fast reactor without isotope separation is studied by employing the DT and DD fusion reactors. The requirement of production of tritium for the DT reactor is severe and the thickness of the blanket should be decreased considerably to incinerate the considerable amount of LLFPs. On the other hand the DD fusion reactor is free from the neutron economy constraint and can incinerate all LLFPs. The pure DD reactor can also show the excellent performance to reduce the first wall loading less than 1 MW/m 2 even for total LLFP incineration. By raising the wall loading to the design limit, the D-D reactor can incinerate the LLFPs from several fast reactors. When the fusion reactor is utilized as an energy producer, plasma confinement is very difficult problem, especially for the D-D reactor compared to the D-T reactor. However, when it is utilized as an incinerator of LLFP, this problem becomes considerably easier. Therefore, the incineration of LLFP is considered as an attractive subject for the D-D reactor. (author)

  11. The international magnetic fusion energy program

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1988-01-01

    In May of 1988, the long tradition of international cooperation in magnetic fusion energy research culminated in the initiation of design work on the International Thermonuclear Experimental Reactor (ITER). If eventually constructed in the 1990s, ITER would be the world's first magnetic fusion reactor. This paper discusses the background events that led to ITER and the present status of the ITER activity. This paper presents a brief summary of the technical, political, and organizational activities that have led to the creation of the ITER design activity. The ITER activity is now the main focus of international cooperation in magnetic fusion research and one of the largest international cooperative efforts in all of science. 2 refs., 12 figs

  12. Fusion of 6Li with 159Tb at near-barrier energies

    International Nuclear Information System (INIS)

    Pradhan, M. K.; Mukherjee, A.; Basu, P.; Goswami, A.; Kshetri, R.; Roy, Subinit; Chowdhury, P. Roy; Sarkar, M. Saha; Palit, R.; Parkar, V. V.; Santra, S.; Ray, M.

    2011-01-01

    Complete and incomplete fusion cross sections for 6 Li + 159 Tb have been measured at energies around the Coulomb barrier by the γ-ray method. The measurements show that the complete fusion cross sections at above-barrier energies are suppressed by ∼34% compared to coupled-channel calculations. A comparison of the complete fusion cross sections at above-barrier energies with the existing data for 11,10 B + 159 Tb and 7 Li + 159 Tb shows that the extent of suppression is correlated with the α separation energies of the projectiles. It has been argued that the Dy isotopes produced in the reaction 6 Li + 159 Tb at below-barrier energies are primarily due to the d transfer to unbound states of 159 Tb, while both transfer and incomplete fusion processes contribute at above-barrier energies.

  13. Commercial applications of inertial confinement fusion

    International Nuclear Information System (INIS)

    Booth, L.A.; Frank, T.G.

    1977-05-01

    This report describes the fundamentals of inertial-confinement fusion, some laser-fusion reactor (LFR) concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation. In addition, other commercial energy-related applications, such as the production of fissionable fuels, of synthetic hydrocarbon-based fuels, and of process heat for a variety of uses, as well as the environmental and safety aspects of fusion energy, are discussed. Finally, the requirements for commercialization of laser fusion technologies are described

  14. Development of Strategic Technology Road map for Establishing Safety Infrastructure of Fusion Energy

    International Nuclear Information System (INIS)

    Han, B. S.; Cho, S. H.; Kam, S. C.; Kim, K. T.

    2009-01-01

    The Korean Government established an 'Act for the Promotion of Fusion Energy Development (APFED)' and formulated a 'Strategy Promotion Plan for Fusion Energy Development.' KINS has carried out a safety review of KSTAR (Korea Superconducting Tokamak Advanced Research), for which an application for use was received in 2002 and the license was issued in August 2007. With respect to the APFED, 'Atomic Energy Acts (AEAs)' shall apply in the fusion safety regulation. However the AEAs are not applicable because they aim for dealing with nuclear energy. In this regard, this study was planned to establish safety infrastructure for fusion energy and to develop technologies necessary for verifying the safety. The purpose of this study is to develop a 'Strategic Technology Roadmap (STR) for establishing safety infrastructure of the fusion energy', which displays the content and development schedule and strategy for developing the laws, safety goals and principles, and safety standards applicable for fusion safety regulation, and core technology required for safety regulation of fusion facilities

  15. Laser fusion and future energy sources - some recent results

    International Nuclear Information System (INIS)

    Hora, H.

    1979-01-01

    While the laser fusion is at present producing more genuine fusion neutrons than the tokamak with magnetic confinement, if use of short laser pulses is preferred, the then appearing nonlinear effect causes considerable complications. Nonlinear processes for the preferred geometry of perpendicular incidence can avoid the problems of resonance absorption, while parametric instabilities have no quantitative influence on the energy balance. The early stages of interaction show the generation of thick 'cold' compressing plasma blocks which can be used for a nonlinear force fast pusher compression of high efficiency (low entropy production). A short time interaction results in a fast thermalization of the plasma corona by soliton decay and this provides the necessary condition for Nuckolls' gasdynamic ablation compression. For longer duration of high intensity irradiation, a pulsation of reflectivity and thermalization will complicate the interaction

  16. Role of supercomputers in magnetic fusion and energy research programs

    International Nuclear Information System (INIS)

    Killeen, J.

    1985-06-01

    The importance of computer modeling in magnetic fusion (MFE) and energy research (ER) programs is discussed. The need for the most advanced supercomputers is described, and the role of the National Magnetic Fusion Energy Computer Center in meeting these needs is explained

  17. Fusion Energy Sciences Program at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, Ramon J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-15

    This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.

  18. 78 FR 2259 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-01-10

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770... Energy Sciences; U.S. Department of Energy; 1000 Independence Avenue SW.; Washington, DC 20585-1290...

  19. Approximation of the economy of fusion energy

    Czech Academy of Sciences Publication Activity Database

    Entler, Slavomír; Horáček, Jan; Dlouhý, T.; Dostál, V.

    2018-01-01

    Roč. 152, June (2018), s. 489-497 ISSN 0360-5442 Grant - others:AV ČR(CZ) StrategieAV21/2 Program:StrategieAV Institutional support: RVO:61389021 Keywords : Nuclear fusion * Fusion energy * Economy * NPV * LCOE * External costs Subject RIV: JF - Nuclear Energetics OBOR OECD: Thermodynamics Impact factor: 4.520, year: 2016 https://www.sciencedirect.com/science/article/pii/S0360544218305395

  20. Fusion program overview

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1983-01-01

    There has been and continues to be a perceived need for the fusion energy option in our energy future. The National Energy Plan states that ''the Federal Government recognizes a direct responsibility to demonstrate the scientific and engineering feasibility of fusion''. The goal of the program, in exercising this responsibility, is to develop the knowledge base upon which decisions on the commercial feasibility of fusion will be made after the conclusion of the present scientific feasibility phase of the program. The strategy is to preceed sequentially through a product definition phase, to the product development phase. Product definition is the identification of an attractive fusion reactor concept supported by a sound base of scientific and technological information. Product development is the further refinement of scientific, technological and engineering information base of the selected concept to provide a firm basis for commercial application. Each of these phases will be discussed with special emphasis on the relationship between the annual appropriation process and the influence of external forces on the pace of the program. This discussion will include the use of international cooperation to maintain and extend program scope. Further discussion will cover the important scientific and technological advances of the last few years and the way in which they have influenced the development of our management strategy to maximize our resources

  1. Neutronic Parametric Study on a Conceptual Design for a Transmutation Fusion Blanket

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2011-01-01

    Fusion energy may be the one of options of future energy. In all over the world, researchers are putting their efforts for its commercial and economical availability. Fusion-fission hybrid reactors have been studied for various applications in China. First milestone of fusion energy is expected to be the fusion fission hybrid reactors. In fusion-fission hybrid reactor the blanket design is of second prime importance after fusion source. In this study conceptual design of a fusion blanket is initiated for calculation of tritium production, transmutation of minor actinides (MA) and fission products (FP) and energy multiplication calculations

  2. Evaluation of the energy required for constructing and operating a fusion power plant

    International Nuclear Information System (INIS)

    Buende, R.

    1982-09-01

    The energy required for constructing and operating a tokamak fusion power plant is appraised with respect to the energy output during the lifetime of the plant. A harvesting factor is deduced as a relevant figure of energetic merit and is used for a comparison between fusion, fission, and coal-fired power plants. Because fusion power plants involve considerable uncertainties the comparison is supplemented by a sensitivity analysis. In comparison with Light Water Reactor plants fusion power plants appear to be rather favourable in this respect. The energy required for providing the fuel is relatively low for fusion plants, thus overcompensating the considerable higher amount of energy necessary for constructing the fusion power plant. (orig.)

  3. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    International Nuclear Information System (INIS)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division's activities). Highlights from program activities during 1990 and 1991 are presented

  4. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  5. The international magnetic fusion energy program

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T.K.

    1988-10-06

    In May of 1988, the long tradition of international cooperation in magnetic fusion energy research culminated in the initiation of design work on the International Thermonuclear Experimental Reactor (ITER). If eventually constructed in the 1990s, ITER would be the world's first magnetic fusion reactor. This paper discusses the background events that led to ITER and the present status of the ITER activity. This paper presents a brief summary of the technical, political, and organizational activities that have led to the creation of the ITER design activity. The ITER activity is now the main focus of international cooperation in magnetic fusion research and one of the largest international cooperative efforts in all of science. 2 refs., 12 figs.

  6. Pitch angle resolved measurements of escaping charged fusion products in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Zweben, S.J.

    1989-01-01

    Measurements of the flux of charged fusion products escaping from the TFTR plasma have been made with a new type of detector which can resolve the particle flux vs. pitch angle, energy, and time. The design of this detector is described, and results from the 1987 TFTR run are presented. These results are roughly consistent with predictions from a simple first-orbit particle loss model with respect to the pitch angle, energy, time, and plasma current dependence of the signals. 11 refs., 9 figs.

  7. Pitch angle resolved measurements of escaping charged fusion products in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.

    1989-01-01

    Measurements of the flux of charged fusion products escaping from the TFTR plasma have been made with a new type of detector which can resolve the particle flux vs. pitch angle, energy, and time. The design of this detector is described, and results from the 1987 TFTR run are presented. These results are roughly consistent with predictions from a simple first-orbit particle loss model with respect to the pitch angle, energy, time, and plasma current dependence of the signals. 11 refs., 9 figs

  8. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated

  9. The scientific status of fusion

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1989-01-01

    The development of fusion energy has been a large-scale scientific undertaking of broad interest. The magnetic plasma containment in tokamaks and the laser-drive ignition of microfusion capsules appear to be scientifically feasible sources of energy. These concepts are bounded by questions of required intensity in magnetid field and plasma currents or in drive energy and, for both concepts, by issues of plasma stability and energy transport. The basic concept and the current scientific issues are described for magnetic fusion and for the interesting, but likely infeasible, muon-catalyzed fusion concept. Inertial fusion is mentioned, qualitatively, to complete the context. For magnetic fusion, the required net energy production within the plasma may be accomplished soon, but the more useful goal of self-sustained plasma ignition requires a new device of somewhat uncertain (factor of 2) cost and size. (orig.)

  10. Radio-frequency energy in fusion power generation

    International Nuclear Information System (INIS)

    Lawson, J.Q.; Becraft, W.R.; Hoffman, D.J.

    1983-01-01

    The history of radio-frequency (rf) energy in fusion experiments is reviewed, and the status of current efforts is described. Potential applications to tasks other than plasma heating are described, as are the research and development needs of rf energy technology

  11. Office of Fusion Energy Sciences. A ten-year perspective (2015-2025)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-12-01

    The vision described here builds on the present U.S. activities in fusion plasma and materials science relevant to the energy goal and extends plasma science at the frontier of discovery. The plan is founded on recommendations made by the National Academies, a number of recent studies by the Fusion Energy Sciences Advisory Committee (FESAC), and the Administration’s views on the greatest opportunities for U.S. scientific leadership.This report highlights five areas of critical importance for the U.S. fusion energy sciences enterprise over the next decade: 1) Massively parallel computing with the goal of validated whole-fusion-device modeling will enable a transformation in predictive power, which is required to minimize risk in future fusion energy development steps; 2) Materials science as it relates to plasma and fusion sciences will provide the scientific foundations for greatly improved plasma confinement and heat exhaust; 3) Research in the prediction and control of transient events that can be deleterious to toroidal fusion plasma confinement will provide greater confidence in machine designs and operation with stable plasmas; 4) Continued stewardship of discovery in plasma science that is not expressly driven by the energy goal will address frontier science issues underpinning great mysteries of the visible universe and help attract and retain a new generation of plasma/fusion science leaders; 5) FES user facilities will be kept world-leading through robust operations support and regular upgrades. Finally, we will continue leveraging resources among agencies and institutions and strengthening our partnerships with international research facilities.

  12. ITER implementation and fusion energy research in China

    International Nuclear Information System (INIS)

    Zhao, Jing; Feng, Zhaoliang; Yang, Changchun

    2015-01-01

    ITER Project is jointly implemented by China, EU, India, Japan, Korea, Russian Federation and USA, under the coordination of Center Team of ITER International Fusion Energy Organization (IO-CT). Chinese fusion research related institutes and industrial enterprises are fully involved in the implementation of China contribution to the project under the leadership of ITER China Domestic Agency (CN-DA), together with IO-CT. The progresses of Procurement Packages (PA) allocated to China and the technical issues, especially on key technology development and schedule, QA/QC issues, are highlighted in this report. The specific enterprises carrying out different PAs are identified in order to make the increasing international manufactures and producers to ITER PAs know each other well for the successful implementation of ITER project. The participation of China to the management of IO-CT is also included, mainly from the governmental aspect and staff recruited from China. On the other hand, the domestic fusion researches, including upgrade of EAST, HL-2A Tokamaks in China, TBM program, the next step design activities for fusion energy power plant, namely, CFETR and training in this area, are also introduced for global cooperation for international fusion community. (author)

  13. The attitudes of science policy, environmental, and utility leaders on US energy issues and fusion

    International Nuclear Information System (INIS)

    Miller, J.D.

    1986-01-01

    One example of basic and applied research at LLNL that has produced major, highly visible scientific and engineering advances has been the research related to controlled fusion energy. Continuing experimentation at LLNL and elsewhere is likely to demonstrate that fusion is a viable, inexhaustible alternative source of energy. Having conducted major fusion energy experiments for over 30 years at LLNL, it scientists and engineers recognized the enormous challenges that lay ahead in this important endeavor. To be successful, it was clear that collaborative efforts with universities, private industry, and other national laboratories would need to be greatly expanded. Along with invention and scientific discovery would come the challenge of transferring the myriad of new technologies from the laboratories to the private sector for commercialization of the fusion energy process and the application of related technologies to yet unimagined new industries and products. Therefore, using fusion energy research as the focus, the Laboratory's Technology Transfer Initiatives Program contracted with the Public Opinion Laboratory to conduct a survey designed to promote a better understanding of effective technology transfer. As one of the recognized authorities on scientific surveys, Dr. Jon Miller of the POL worked with Laboratory scientists to understand the objectives of the survey. He then formulated the questions, designed the survey, and derived his survey sample from a qualified list developed at the POL, which has formed the basis for other survey panels. This report, prepared by Dr. Miller, describes the basis and methodology of this survey process and then presents the survey findings and some conclusions. 12 refs., 28 tabs

  14. Some Simple Arguments about Cost Externalization and its Relevance to the Price of Fusion Energy

    International Nuclear Information System (INIS)

    Budny, R.; Winfree, R.

    1999-01-01

    The primary goal of fusion energy research is to develop a source of energy that is less harmful to the environment than are the present sources. A concern often expressed by critics of fusion research is that fusion energy will never be economically competitive with fossil fuels, which in 1997 provided 75% of the world's energy. And in fact, studies of projected fusion electricity generation generally project fusion costs to be higher than those of conventional methods. Yet it is widely agreed that the environmental costs of fossil fuel use are high. Because these costs aren't included in the market price, and furthermore because many governments subsidize fossil fuel production, fossil fuels seem less expensive than they really are. Here we review some simple arguments about cost externalization which provide a useful background for discussion of energy prices. The collectively self-destructive behavior that is the root of many environmental problems, including fossil fuel use, was termed ''the tragedy of the commons'' by the biologist G. Hardin. Hardin's metaphor is that of a grazing commons that is open to all. Each herdsman, in deciding whether to add a cow to his herd, compares the benefit of doing so, which accrues to him alone, to the cost, which is shared by all the herdsmen using the commons, and therefore adds his cow. In this way individually rational behavior leads to the collective destruction of the shared resource. As Hardin pointed out, pollution is one kind of tragedy of the commons. CO 2 emissions and global warming are in this sense classic tragedies

  15. Fusion energy development at McDonnell Douglas: why and how

    International Nuclear Information System (INIS)

    Ard, W.B.

    1985-01-01

    The McDonnell Douglas Astronautics Company started a development program in fusion energy in 1974. This paper discusses the rationale for an industrial program in fusion energy and gives a brief account of the major activities that the company has been involved in during the course of this effort

  16. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    International Nuclear Information System (INIS)

    Latkowski, J.F.; Kramer, K.J.; Abbott, R.P.; Morris, K.R.; DeMuth, J.; Divol, L.; El-Dasher, B.; Lafuente, A.; Loosmore, G.; Reyes, S.; Moses, G.A.; Fratoni, M.; Flowers, D.; Aceves, S.; Rhodes, M.; Kane, J.; Scott, H.; Kramer, R.; Pantano, C.; Scullard, C.; Sawicki, R.; Wilks, S.; Mehl, M.

    2010-01-01

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  17. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  18. Inertial fusion commercial power plants

    International Nuclear Information System (INIS)

    Logan, B.G.

    1994-01-01

    This presentation discusses the motivation for inertial fusion energy, a brief synopsis of five recently-completed inertial fusion power plant designs, some general conclusions drawn from these studies, and an example of an IFE hydrogen synfuel plant to suggest that future fusion studies consider broadening fusion use to low-emission fuels production as well as electricity

  19. Materials handbook for fusion energy systems

    Science.gov (United States)

    Davis, J. W.; Marchbanks, M. F.

    A materials data book for use in the design and analysis of components and systems in near term experimental and commercial reactor concepts has been created by the Office of Fusion Energy. The handbook is known as the Materials Handbook for Fusion Energy Systems (MHFES) and is available to all organizations actively involved in fusion related research or system designs. Distribution of the MHFES and its data pages is handled by the Hanford Engineering Development Laboratory (HEDL), while its direction and content is handled by McDonnell Douglas Astronautics Company — St. Louis (MDAC-STL). The MHFES differs from other handbooks in that its format is geared more to the designer and structural analyst than to the materials scientist or materials engineer. The format that is used organizes the handbook by subsystems or components rather than material. Within each subsystem is information pertaining to material selection, specific material properties, and comments or recommendations on treatment of data. Since its inception a little more than a year ago, over 80 copies have been distributed to over 28 organizations consisting of national laboratories, universities, and private industries.

  20. Energy for the long run: fission or fusion

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Kessler, G.; Holdren, J.; Haefele, W.

    1979-01-01

    The alternatives of the most likely and controversial long-range energy sources, fusion and fast-breeder fission, are compared in several areas: potential biological and social hazards, costs of research and development, capital costs, technical complexity, and time factors. It is concluded that from biological and social hazards standpoint, fusion is preferable to fast-breeder fission reactors; however, the LMFBR has already passed on the threshold of scientific and engineering feasibility. It is pointed out that LMFBR should not be compared with short-term energy sources, e.g. coal or oil, but should be compared only with other long-term energy sources, e.g. other types of breeder reactors

  1. Role of nuclear fusion in future energy systems and the environment under future uncertainties

    International Nuclear Information System (INIS)

    Tokimatsu, Koji; Fujino, Jun'ichi; Konishi, Satoshi; Ogawa, Yuichi; Yamaji, Kenji

    2003-01-01

    Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. This is because the prospects for nuclear fusion are quite uncertain and the investments therefore carry the risk of quite large regrets, even though investment is needed in order to develop the technology. The timeframe by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we identify three roles that nuclear fusion will take on when breakeven prices are achieved: (i) a portion of the electricity market in 2100, (ii) reduction of annual global total energy systems cost, and (iii) mitigation of carbon tax (shadow price of carbon) under CO 2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction timeframe for nuclear fusion, capacity projections of nuclear fusion, CO 2 target in 2100, capacity utilization ratio of options in energy/environment technologies, and utility discount rates. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 2050-2060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO 2 concentration constraint

  2. Z-pinch driven fusion energy

    International Nuclear Information System (INIS)

    Slutz, Stephen A.; Olson, Craig L.; Rochau, Gary E.; Dezon, Mark S.; Peterson, P.F.; Degroot, J.S.; Jensen, N.; Miller, G.

    2000-01-01

    The Z machine at Sandia National Laboratories (SNL) is the most powerful multi-module synchronized pulsed-power accelerator in the world. Rapid development of z-pinch loads on Z has led to outstanding progress in the last few years, resulting in radiative powers of up to 280 TW in 4 ns and a total radiated x-ray energy of 1.8 MJ. The present goal is to demonstrate single-shot, high-yield fusion capsules. Pulsed power is a robust and inexpensive technology, which should be well suited for Inertial Fusion Energy, but a rep-rated capability is needed. Recent developments have led to a viable conceptual approach for a rep-rated z-pinch power plant for IFE. This concept exploits the advantages of going to high yield (a few GJ) at low rep-rate (approximately 0.1 Hz), and using a Recyclable Transmission Line (RTL) to provide the necessary standoff between the fusion target and the power plant chamber. In this approach, a portion of the transmission line near the capsule is replaced after each shot. The RTL should be constructed of materials that can easily be separated from the liquid coolant stream and refabricated for a subsequent shots. One possibility is that most of the RTL is formed by casting FLiBe, a salt composed of fluorine, lithium, and beryllium, which is an attractive choice for the reactor coolant, with chemically compatible lead or tin on the surface to provide conductivity. The authors estimate that fusion yields greater than 1 GJ will be required for efficient generation of electricity. Calculations indicate that the first wall will have an acceptable lifetime with these high yields if blast mitigation techniques are used. Furthermore, yields above 5 GJ may allow the use of a compact blanket direct conversion scheme

  3. Assessing a new direction for fusion

    International Nuclear Information System (INIS)

    Waganer, L.M.

    2000-01-01

    The principal application proposed for fusion for the past 40 years has been the central station, electrical power generation plant. However, the sizable increases that were forecast for future electrical power demands have not been realized to date. Only coal power plants have been increasing (3%/year) generating capacity (Annual Energy Outlook, 1998) . Likewise, the ability of fusion to deliver economical electrical power has not been credibly postulated, much less demonstrated. Together these two factors have stagnated the commercialization of fusion power. It is now time for a reassessment of what fusion can best do for the world. Fusion, with a practically inexhaustible energy supply, has many unique properties that enable a wide variety of useful products. A study by the ARIES team is underway to review possible fusion applications and assess those with the potential to provide useful and worthwhile new products. A roadmap of possible applications has been developed to assess the utilization of the unique properties of the fusion process. The potential product categories are energy production (fuel, electricity, heat), space propulsion, altered or transmuted material properties (transmutation, waste treatment, tritium production), chemical compound dissociation (waste treatment, ore reduction, refining), and direct use of fusion nuclear products (radiography, lithography, radiotherapy, activation analyses). An evaluation methodology based on the success and failure of previous large, national and international technology development projects was developed to assess and recommend encouraging fusion product applications. A list of significant attributes was defined to describe and characterize projects that are likely to succeed or fail in the global marketplace. These attributes were assigned weights according to their perceived value to the national or global enterprise. An additive utility theory methodology was used to qualitatively evaluate the proposed

  4. MHD deceleration of fusion reaction products

    International Nuclear Information System (INIS)

    Chow, S.; Bohachevsky, I.O.

    1979-04-01

    The feasibility of magnetohydrodynamic (MHD) deceleration of fuel pellet debris ions exiting from an inertial confinement fusion (ICF) reactor cavity is investigated using one-dimensional flow equations. For engineering reasons, induction-type devices are emphasized; their performance characteristics are similar to those of electrode-type decelerators. Results of the analysis presented in this report indicate that MHD decelerators can be designed within conventional magnet technology to not only decelerate the high-energy fusion pellet debris ions but also to produce some net electric power in the process

  5. Fusion energy 1996. V. 1. Proceedings of the 16. international conference

    International Nuclear Information System (INIS)

    1997-01-01

    The sixteenth International Atomic Energy Agency (IAEA) Fusion Energy Conference was held in Montreal, Canada, from 7 to 11 October 1996. The conference, which was attended by some 500 participants from over thirty countries and two international organizations, was organized by the IAEA in cooperation with the Centre canadien de fusion magnetique and the Canadian National Fusion Program. Some 270 papers were presented in 19 oral and 8 poster sessions on magnetic and inertial confinement systems, plasma theory, computer modelling, alternative confinement approaches, fusion technology and future experiments. Refs, figs, tabs

  6. Fusion energy 1996. V. 3. Proceedings of the 16. international conference

    International Nuclear Information System (INIS)

    1997-01-01

    The sixteenth International Atomic Energy Agency (IAEA) Fusion Energy Conference was held in Montreal, Canada, from 7 to 11 October 1996. The conference, which was attended by some 500 participants from over thirty countries and two international organizations, was organized by the IAEA in cooperation with the Centre canadien de fusion magnetique and the Canadian National Fusion Program. Some 270 papers were presented in 19 oral and 8 poster sessions on magnetic and inertial confinement systems, plasma theory, computer modelling, alternative confinement approaches, fusion technology and future experiments

  7. The role of inertial fusion energy in the energy marketplace of the 21st century and beyond

    Science.gov (United States)

    John Perkins, L.

    The viability of inertial fusion in the 21st century and beyond will be determined by its ultimate cost, complexity, and development path relative to other competing, long term, primary energy sources. We examine this potential marketplace in terms of projections for population growth, energy demands, competing fuel sources and environmental constraints (CO 2), and show that the two competitors for inertial fusion energy (IFE) in the medium and long term are methane gas hydrates and advanced, breeder fission; both have potential fuel reserves that will last for thousands of years. Relative to other classes of fusion concepts, we argue that the single largest advantage of the inertial route is the perception by future customers that the IFE fusion power core could achieve credible capacity factors, a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. In particular, we show that the size, cost and complexity of the IFE reactor chamber is little different to a fission reactor vessel of the same thermal power. Therefore, relative to fission, because of IFE's tangible advantages in safety, environment, waste disposal, fuel supply and proliferation, our research in advanced targets and innovative drivers can lead to a certain, reduced-size driver at which future utility executives will be indifferent to the choice of an advanced fission plant or an advanced IFE power plant; from this point on, we have a competitive commercial product. Finally, given that the major potential customer for energy in the next century is the present developing world, we put the case for future IFE "reservations" which could be viable propositions providing sufficient reliability and redundancy can be realized for each modular reactor unit.

  8. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  9. Systems-design and energy-balance considerations for impact fusion

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.

    1979-01-01

    Areas of concern and potential problems for impact fusion are qualitatively considered within an overall systems context. A parametric and qualitative description of the general energy balance and systems considerations for an Impact Fusion Reactor (IFR) design is discussed. Reactor systems design considerations for an IFR are presented. An attempt to assess the IFR viability is made based on highly simplified but limiting projectile-target energy balances and thermonuclear burn models

  10. Response to FESAC survey, non-fusion connections to Fusion Energy Sciences. Applications of the FES-supported beam and plasma simulation code, Warp

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grote, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vay, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-29

    The Fusion Energy Sciences Advisory Committee’s subcommittee on non-fusion applications (FESAC NFA) is conducting a survey to obtain information from the fusion community about non-fusion work that has resulted from their DOE-funded fusion research. The subcommittee has requested that members of the community describe recent developments connected to the activities of the DOE Office of Fusion Energy Sciences. Two questions in particular were posed by the subcommittee. This document contains the authors’ responses to those questions.

  11. Fusion energy in context: its fitness for the long term

    International Nuclear Information System (INIS)

    Holdren, J.P.

    1978-01-01

    Long-term limits to growth in energy will be imposed not by inability to expand supply, but by the rising environmental and social costs of doing so. These costs will therefore be cental issues in choosing long-term options. Fusion, like solar energy, is not one possibility but many, some with very attractive environmental characteristics and others perhaps little better in these regards than fission. None of the fusion options will be cheap, and none is likely to be widely available before the year 2010. The most attractive forms of fusion may require greater investments of time and money to achieve, but they are the real reason for wanting fusion at all

  12. Study on conceptual design system of tritium production fusion reactor

    International Nuclear Information System (INIS)

    He Kaihui

    2004-11-01

    Conceptual design of an advanced tritium production reactor based on spherical torus, which is intermediate application of fusion energy, was presented. Different from traditional tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST were used to minimize tritium leakage and to maximize tritium breeding ratio with arrangement of tritium production blankets as possible as it can within vacuum vessel in order to produce 1 kg excess tritium except self-sufficient plasma core, corresponding plant availability 40% or more. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR was presented. Besides systematical analyses; design risk, uncertainty and backup are introduced generally for the backgrounds of next detailed conceptual design. (author)

  13. Compact fusion energy based on the spherical tokamak

    Science.gov (United States)

    Sykes, A.; Costley, A. E.; Windsor, C. G.; Asunta, O.; Brittles, G.; Buxton, P.; Chuyanov, V.; Connor, J. W.; Gryaznevich, M. P.; Huang, B.; Hugill, J.; Kukushkin, A.; Kingham, D.; Langtry, A. V.; McNamara, S.; Morgan, J. G.; Noonan, P.; Ross, J. S. H.; Shevchenko, V.; Slade, R.; Smith, G.

    2018-01-01

    Tokamak Energy Ltd, UK, is developing spherical tokamaks using high temperature superconductor magnets as a possible route to fusion power using relatively small devices. We present an overview of the development programme including details of the enabling technologies, the key modelling methods and results, and the remaining challenges on the path to compact fusion.

  14. Peaceful Uses of Fusion

    Science.gov (United States)

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  15. Overview of nonelectrical applications of fusion

    International Nuclear Information System (INIS)

    Miley, G.H.

    1979-01-01

    The potential for, and importance of, nonelectrical applications of fusion energy is discussed. Three possibilities are reviewed in some detail: fusion-fission hybrids for fissile fuel production; high-temperature electrolysis and thermochemical processes for hydrogen production; and high-temperature steam for coal gasification. The hybrid could be an early application of fusion if this route is identified as a desirable goal. Hydrogen production and coal gasification processes appear feasible and could be developed as a part of the conventional fusion blanket research and development. The question of economics, particularly in view of the high capital cost of fusion plants, remains an open issue requiring more study

  16. Fission, fusion and the energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, S E [Aston Univ., Birmingham (UK)

    1980-01-01

    The subject is covered in chapters, entitled: living on capital (energy reserves and consumption forecasts); the atom and its nucleus, mass and energy; fission and the bomb; the natural uranium reactor; enriched reactors; control and safety; long-term economics (the breeder reactions and nuclear fuel reserves); short-term economics (cost per kilowatt hour); national nuclear power programmes; nuclear power and the environment (including reprocessing, radioactive waste management, public relations); renewable energy sources; the fusion programme; summary and comment.

  17. Fusion Energy Division annual progress report, period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  18. Fusion Energy Division annual progress report, period ending December 31, 1989

    International Nuclear Information System (INIS)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report

  19. The fusion applications study - FAME

    International Nuclear Information System (INIS)

    Schultz, K.R.; Engholm, B.A.; Bourque, R.F.; Cheng, E.T.; Schaffer, M.J.; Wong, C.P.C.

    1986-01-01

    The Fusion Applications and Market Evaluation (''FAME'') study, being conducted by GA Technologies for Lawrence Livermore National Laboratory (LLNL) and US Department of Energy, Office of Fusion Energy, (US DOE) is described. This two-year program has a FY86 objective of Evaluating Alternative Applications of Fusion, and a FY87 goal of Exploring Innovative Applications. Applications are being reviewed and categorized into Baseline, Nuclear, Chemical, Electromagnetic, and Thermal application categories. The ''traditional'' applications of electricity generation, fissile fuel and tritium production, and hydrogen production continue to look attractive. Particularly promising new applications to date, with potential for near-term markets, are isotope production and radiation processing, especially when allied with the traditional application of electricity production. The economics of separate applications as well as coproduction are discussed. The combination of electricity and /sup 60/Co production appears to be one of the most attractive

  20. Elise - The next step in development of induction heavy ion drivers for inertial fusion energy

    International Nuclear Information System (INIS)

    Lee, E.; Bangerter, R.O.; Celata, C.; Faltens, A.; Fessenden, T.; Peters, C.; Pickrell, J.; Reginato, L.; Seidl, P.; Yu, S.; Deadeick, F.

    1995-01-01

    This document presents the main features of Elise, a future electric-focused accelerator proposed by the Lawrence Berkeley Laboratory (LBL) and the Lawrence Livermore National Laboratory (LLNL). The goal of the Heavy Ion Fusion Accelerator Research Program is to develop accelerators for fusion energy production. The Elise accelerator would be capable of accelerating and electrostatically focusing four parallel, full-scale ion beams and would be designed to be extendible so as to meet this goal. (TEC). 3 refs., 3 figs

  1. Accelerators for heavy ion inertial fusion: Progress and plans

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Friedman, A.; Herrmannsfeldt, W.B.

    1994-08-01

    The Heavy Ion Inertial Fusion Program is the principal part of the Inertial Fusion Energy Program in the Office of Fusion Energy of the U.S. Department of Energy. The emphasis of the Heavy Ion Program is the development of accelerators for fusion power production. Target physics research and some elements of fusion chamber development are supported in the much larger Inertial Confinement Fusion Program, a dual purpose (defense and energy) program in the Defense Programs part of the Department of Energy. The accelerator research program will establish feasibility through a sequence of scaled experiments that will demonstrate key physics and engineering issues at low cost compared to other fusion programs. This paper discusses progress in the accelerator program and outlines how the planned research will address the key economic issues of inertial fusion energy

  2. Commercial objectives, technology transfer, and systems analysis for fusion power development

    Science.gov (United States)

    Dean, Stephen O.

    1988-03-01

    Fusion is an essentially inexhaustible source of energy that has the potential for economically attractive commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion-energy development program is the generation of centralstation electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high-energy neutrons suggests potentially unique applications. These include breeding of fissile fuels, production of hydrogen and other chemical products, transmutation or “burning” of various nuclear or chemical wastes, radiation processing of materials, production of radioisotopes, food preservation, medical diagnosis and medical treatment, and space power and space propulsion. In addition, fusion R&D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other hand, are the two primary criteria for setting long-range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R&D program toward practical applications. The transfer of fusion technology and skills from the national laboratories and universities to industry is the key to achieving the long-range objective of commercial fusion applications.

  3. Magnetic Fusion Energy Program of India

    International Nuclear Information System (INIS)

    Sen, Abhijit

    2013-01-01

    The magnetic fusion energy program of India started in the early eighties with the construction of an indigenous tokamak device ADITYA at the Institute for Plasma Research in Gandhinagar. The initial thrust was on fundamental studies related to plasma instabilities and turbulence phenomena but there was also a significant emphasis on technology development in the areas of magnetics, high vacuum, radio-frequency heating and neutral beam technology. The program took a major leap forward in the late nineties with the decision to build a state-of-the-art superconducting tokamak (SST-1) that catapulted India into the mainstream of the international tokamak research effort. The SST experience and the associated technological and human resource development has now earned the country a place in the ITER collaboration as an equal partner with other major nations. Keeping in mind the rapidly growing and enormous energy needs of the future the program has also identified and launched key development projects that can lead us to a DEMO reactor and eventually a Fusion Power Plant in a systematic manner. I will give a brief overview of the early origins, the present status and some of the highlights of the future road map of the Indian Fusion Program. (author)

  4. Nuclear elastic scattering effects on fusion product transport in compact tori

    International Nuclear Information System (INIS)

    DeVeaux, J.; Greenspan, E.; Miley, G.H.

    1980-01-01

    This paper seeks to advance previous work including the effects of nuclear elastic scattering (NES) on fusion-product transport. We have found that NES may dominate the slowing-down process for high-temperature, advance-fuel plasmas which burn Cat.D or D- 3 He. A modified version of the Monte Carlo fusion product transport code, MCFRM, was used to evaluate the effects of NES on discrete fusion-product orbits in the FRM

  5. Design and evaluation of a laser fusion energy station for industrial applications

    International Nuclear Information System (INIS)

    Kok, K.D.; Bates, F.J.; Denning, R.S.; Triplett, M.B.; Waddell, J.D.

    1978-01-01

    The identification and development of long-term energy options is important in the continued growth of industry in the United States. Fusion and particularly laser fusion is one of the possible options. This paper applies the criteria used by industry in the selection of an energy source to the first of a series of conceptual designs for a laser fusion energy station. Several conclusions are presented including the constraints placed on the design by the criteria

  6. Real options valuation of fusion energy R and D programme

    International Nuclear Information System (INIS)

    Bednyagin, Denis; Gnansounou, Edgard

    2011-01-01

    This paper aims to perform a real options valuation of fusion energy R and D programme. Strategic value of thermonuclear fusion technology is estimated here based on the expected cash flows from construction and operation of fusion power plants and the real options value arising due to managerial flexibility and the underlying uncertainty. First, a basic investment option model of Black-Scholes type is being considered. Then, a fuzzy compound real R and D option model is elaborated, which reflects in a better way the multi-stage nature of the programme and takes into account the imprecision of information as one of the components of the overall programme uncertainty. Two different strategies are compared: 'Baseline' corresponding to a relatively moderate pace of fusion research, development, demonstration and deployment activities vs. 'Accelerated' strategy, which assumes a rapid demonstration and massive deployment of fusion. The conclusions are drawn from the model calculations regarding the strategic value of fusion energy R and D and the advantages of accelerated development path. - Research highlights: → Real options analysis of fusion R and D, demonstration and deployment (RDDD) programme. → ENPV of fusion RDDD programme is calculated using stochastic probabilistic simulation. → Fusion RDDD programme exhibits substantial positive real options value: Euro 245 billion. → Fuzzy compound real option valuation method provides more robust results.

  7. Study of Heating and Fusion Power Production in ITER Discharges

    International Nuclear Information System (INIS)

    Rafiq, T.; Kritz, A. H.; Bateman, G.; Kessel, C.; McCune, D. C.; Budny, R. V.; Pankin, A. Y.

    2011-01-01

    ITER simulations, in which the temperatures, toroidal angular frequency and currents are evolved, are carried out using the PTRANSP code starting with initial profiles and boundary conditions obtained from TSC code studies. The dependence of heat deposition and current drive on ICRF frequency, number of poloidal modes, beam orientation, number of Monte Carlo particles and ECRH launch angles is studied in order to examine various possibilities and contingencies for ITER steady state and hybrid discharges. For the hybrid discharges, the fusion power production and fusion Q, computed using the Multi-Mode MMM v7.1 anomalous transport model, are compared with those predicted using the GLF23 model. The simulations of the hybrid scenario indicate that the fusion power production at 1000 sec will be approximately 500 MW corresponding to a fusion Q = 10.0. The discharge scenarios simulated aid in understanding the conditions for optimizing fusion power production and in examining measures of plasma performance.

  8. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    International Nuclear Information System (INIS)

    Dahlburg, Jill; Corones, James; Batchelor, Donald; Bramley, Randall; Greenwald, Martin; Jardin, Stephen; Krasheninnikov, Sergei; Laub, Alan; Leboeuf, Jean-Noel; Lindl, John; Lokke, William; Rosenbluth, Marshall; Ross, David; Schnack, Dalton

    2002-01-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world's energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the

  9. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, Jill [General Atomics, San Diego, CA (United States); Corones, James [Krell Inst., Ames, IA (United States); Batchelor, Donald [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bramley, Randall [Indiana Univ., Bloomington, IN (United States); Greenwald, Martin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jardin, Stephen [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Krasheninnikov, Sergei [Univ. of California, San Diego, CA (United States); Laub, Alan [Univ. of California, Davis, CA (United States); Leboeuf, Jean-Noel [Univ. of California, Los Angeles, CA (United States); Lindl, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lokke, William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosenbluth, Marshall [Univ. of California, San Diego, CA (United States); Ross, David [Univ. of Texas, Austin, TX (United States); Schnack, Dalton [Science Applications International Corporation, Oak Ridge, TN (United States)

    2002-11-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC

  10. Effect of projectile on incomplete fusion reactions at low energies

    Directory of Open Access Journals (Sweden)

    Sharma Vijay R.

    2017-01-01

    Full Text Available Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n excess projectile 13C (as compared to 12C results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B and forward (F α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states

  11. Effect of projectile on incomplete fusion reactions at low energies

    Science.gov (United States)

    Sharma, Vijay R.; Shuaib, Mohd.; Yadav, Abhishek; Singh, Pushpendra P.; Sharma, Manoj K.; Kumar, R.; Singh, Devendra P.; Singh, B. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.; Prasad, R.

    2017-11-01

    Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF) is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n) excess projectile 13C (as compared to 12C) results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B) and forward (F) α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states

  12. Disentangling complete and incomplete fusion for 9Be+187Re system at near barrier energies

    International Nuclear Information System (INIS)

    Kharab, Rajesh; Chahal, Rajiv; Rajiv Kumar

    2015-01-01

    The breakup of projectile before fusion leads to some unusual fusion mechanisms like incomplete fusion (ICF) and sequential complete fusion (SCF). Experimentally, it is not possible to separate SCF events from direct complete fusion (DCF). However, the complete fusion and incomplete fusion can be measured separately. Theoretically it is very difficult to calculate the complete and incomplete fusion cross section separately using different models. Very recently A. Diaz-Torres has developed a computer code platypus based on classical dynamical model wherein the complete and incomplete fusion cross sections are calculated separately. But this model is found to work very well at energies above the barrier energy. Here we have attempted to extrapolate the results of the code platypus by using simple Wong's formula in conjunction with the energy dependent Woods-Saxon potential (EDWSP) in the below barrier energy region

  13. Application of SSNTDs for measurements of fusion reaction products in high-temperature plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Malinowska, A., E-mail: a.malinowska@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Szydlowski, A.; Malinowski, K. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Sadowski, M.J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Institute of Plasma Physics and Laser Microfusion (IPPLM), 00-908 Warsaw (Poland); Zebrowski, J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Scholz, M.; Paduch, M.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion (IPPLM), 00-908 Warsaw (Poland); Jaskola, M.; Korman, A. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland)

    2009-10-15

    The paper describes the application of SSNTDs of the PM-355 type to diagnostics of reaction products emitted from high-temperature deuterium plasmas produced in Plasma Focus (PF) facilities. Acceleration processes occurring in plasma lead often to the generation of high-energy ion beams. Such beams induce nuclear reactions and contribute to the emission of fast neutrons, fusion protons and alpha particles from PF discharges with a deuterium gas. Ion measurements are of primary importance for understanding the mechanisms of the physical processes which drive the charged-particle acceleration. The main aim of the present studies was to perform measurements of spatial- and energy-distributions of fusion-reaction protons (about 3 MeV) within a PF facility. Results obtained from energy measurements were compared with the proton-energy spectra computed theoretically. The protons were measured by means of a set of ion pinhole cameras equipped with PM-355 detectors, which were placed at different angles relative to the electrode axis of the PF facility.

  14. Status of tritium technology development for magnetic-fusion energy

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1983-01-01

    The development of tritium technology for the magnetic fusion energy program has progressed at a rapid rate over the past two years. The focal points for this development in the United States have been the Tritium Systems Test Assembly at Los Alamos and the FED/INTOR studies supported by the Fusion Engineering Design Center at Oak Ridge. In Canada the Canadian Fusion Fuel Technology Project has been initiated and promises to make significant contributions to the tritium technology program in the next few years. The Japanese government has now approved funding for the Tritium Processing Laboratory at the Japan Atomic Energy Research Institute's Tokai Research Establishment. Construction on this new facility is scheduled to begin in April 1983. This facility will be the center for fusion tritium technology development in Japan. The European Community is currently working on the design of the tritium facility for the Joint European Torus. There is considerable interaction between all of these programs, thus accelerating the overall development of this crucial technology

  15. Methods of detection using a cellulose binding domain fusion product

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  16. Neutronics issues and inertial fusion energy: a summary of findings

    International Nuclear Information System (INIS)

    Latkowski, J.F.

    1998-01-01

    We have analyzed and compared five major inertial fusion energy (IFE) and two representative magnetic fusion energy (MFE) power plant designs for their environment, safety, and health (ES ampersand H) characteristics. Our work has focussed upon the neutronics of each of the designs and the resulting radiological hazard indices. The calculation of a consistent set of hazard indices allows comparisons to be made between the designs. Such comparisons enable identification of trends in fusion ES ampersand H characteristics and may be used to increase the likelihood of fusion achieving its full potential with respect to ES ampersand H characteristics. The present work summarizes our findings and conclusions. This work emphasizes the need for more research in low-activation materials and for the experimental measurement of radionuclide release fractions under accident conditions

  17. Ion beam inertial fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1995-01-01

    About twenty years ago, A. W. Maschke of Brookhaven National Laboratory and R. L. Martin of Argonne National Laboratory recognized that the accelerators that have been developed for high energy and nuclear physics are, in many ways, ideally suited to the requirements of inertial fusion power production. These accelerators are reliable, they have a long operating life, and they can be efficient. Maschke and Martin noted that they can focus ion beams to small focal spots over distances of many meters and that they can readily operate at the high pulse repetition rates needed for commercial power production. Fusion, however, does impose some important new constraints that are not important for high energy or nuclear physics applications. The most challenging new constraint from a scientific standpoint is the requirement that the accelerator deliver more than 10 14 W of beam power to a small quantity (less than 100 mg) of matter. The most challenging constraint from an engineering standpoint is accelerator cost. Maschke showed theoretically that accelerators could produce adequate work. Heavy-ion fusion is widely recognized to be a promising approach to inertial fusion power production. It provides an excellent opportunity to apply methods and technology developed for basic science to an important societal need. The pulsed-power community has developed a complementary, parallel approach to ion beam fusion known as light-ion fusion. The talk will discuss both heavy-ion and light-ion fusion. It will explain target physics requirements and show how they lead to constraints on the usual accelerator parameters such as kinetic energy, current, and emittance. The talk will discuss experiments that are presently underway, specifically experiments on high-current ion sources and injectors, pulsed-power machines recirculating induction accelerators, and transverse beam combining. The talk will give a brief description of a proposed new accelerator called Elise

  18. Higgs production in gluon fusion beyond NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Richard D. [Edinburgh Univ. (United Kingdom). Tait Inst.; Bonvini, Marco [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Forte, Stefano [Milano Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Milano (Italy); Marzani, Simone [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ridolfi, Giovanni [Genova Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Genova (Italy)

    2013-03-15

    We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N{sup 3}LO) in {alpha}{sub s} with finite top mass. We argue that an accurate approximation can be constructed by exploiting the analiticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N{sup 3}LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result.

  19. Higgs production in gluon fusion beyond NNLO

    International Nuclear Information System (INIS)

    Ball, Richard D.; Bonvini, Marco; Forte, Stefano; Marzani, Simone; Ridolfi, Giovanni

    2013-01-01

    We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N 3 LO) in α s with finite top mass. We argue that an accurate approximation can be constructed by exploiting the analyticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N 3 LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result

  20. Higgs production in gluon fusion beyond NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Richard D. [Tait Institute, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom); Bonvini, Marco [Deutsches Elektronen-Synchroton, DESY, Notkestraße 85, D-22603 Hamburg (Germany); Forte, Stefano, E-mail: forte@mi.infn.it [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Marzani, Simone [Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE, England (United Kingdom); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy)

    2013-09-21

    We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N{sup 3}LO) in α{sub s} with finite top mass. We argue that an accurate approximation can be constructed by exploiting the analyticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N{sup 3}LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result.

  1. Higgs production in gluon fusion beyond NNLO

    International Nuclear Information System (INIS)

    Ball, Richard D.; Forte, Stefano; Marzani, Simone

    2013-03-01

    We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N 3 LO) in α s with finite top mass. We argue that an accurate approximation can be constructed by exploiting the analiticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N 3 LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result.

  2. Some thoughts on the production of muons for fusion catalysis

    International Nuclear Information System (INIS)

    Chapline, G.; Moir, R.

    1986-01-01

    For muon-catalyzed fusion to be of practical interest, a very efficient means of producing muons must be found. We describe here some schemes for producing muons that may be more energy efficient than any heretofore proposed. There are, in particular, some potential advantages of creating muons from collisions of high-energy tritons confined in a magnetic mirror configuration. If one could catalyze 200 fusions per muon and employ a uranium blanket that would multiply the neutron energy by a factor of ten, one might produce electricity with an overall plant efficiency (ratio of electric energy produced to nuclear energy released) approaching 30%

  3. Environmental and economic assessments of magnetic and inertial fusion energy reactors

    Science.gov (United States)

    Yamazaki, K.; Oishi, T.; Mori, K.

    2011-10-01

    Global warming due to rapid greenhouse gas (GHG) emissions is one of the present-day crucial problems, and fusion reactors are expected to be abundant electric power generation systems to reduce human GHG emission amounts. To search for an environmental-friendly and economical fusion reactor system, comparative system studies have been done for several magnetic fusion energy reactors, and have been extended to include inertial fusion energy reactors. We clarify new scaling formulae for the cost of electricity and GHG emission rate with respect to key design parameters, which might be helpful in making a strategy for fusion research development. Comparisons with other conventional electric power generation systems are carried out taking into account the introduction of GHG taxes and the application of the carbon dioxide capture and storage system to fossil power generators.

  4. Progress on z-pinch inertial fusion energy

    International Nuclear Information System (INIS)

    Olson, C.; Rochau, G.; Matzen, M.K.

    2005-01-01

    The goal of z-pinch inertial fusion energy (IFE) is to extend the single-shot z-pinch inertial confinement fusion (ICF) results on Z to a repetitive-shot z-pinch power plant concept for the economical production of electricity. Z produces up to 1.8 MJ of x-rays at powers as high as 230 TW. Recent target experiments on Z have demonstrated capsule implosion convergence ratios of 14-21 with a double-pinch driven target, and DD neutron yields up to 8x10exp10 with a dynamic hohlraum target. For z-pinch IFE, a power plant concept is discussed that uses high-yield IFE targets (3 GJ) with a low rep-rate per chamber (0.1 Hz). The concept includes a repetitive driver at 0.1 Hz, a Recyclable Transmission Line (RTL) to connect the driver to the target, high-yield targets, and a thick-liquid wall chamber. Recent funding by a U.S. Congressional initiative for $4M for FY04 is supporting research on RTLs, repetitive pulsed power drivers, shock mitigation, full RTL cycle planned experiments, high-yield IFE targets, and z-pinch power plant technologies. Recent results of research in all of these areas are discussed, and a Road Map for Z-Pinch IFE is presented. (author)

  5. Nuclear energy contribution to restraining greenhouse gas emissions and long-term energy production

    International Nuclear Information System (INIS)

    Khoda-Bakhsh, R.

    2004-01-01

    An important source of greenhouse gases, in particular Co 2 , is fossil fuel combustion for energy applications. Since nuclear power is an energy source that does not produce Co 2 , nuclear energy is already making a contribution to restraining greenhouse gas emissions. Because it has been internationally decided to reduce carbon dioxide emission before the year 2005 in order to avoid the green house catastrophy of the earth's atmosphere, and since there is an urgent need of energy especially in the developing countries, there is now a strong demand for alternative energy sources. While the established low cost energy production by light water nuclear fission reactors could be a solution for a period of transition (limited by resources of the light Uranium isotope), fusion energy is of interest for long- term and large scale energy production to provide the increased energy demand

  6. Fusion Energy : Expensive and Taking Forever?

    NARCIS (Netherlands)

    Lopez Cardozo, N.J.; Lange, A.G.G.; Kramer, G.J.

    2016-01-01

    The road map of fusion power is compared to the development and deployment of other energy technologies. A generic deployment model is presented, which describes the fastest deployment (of any new technology) achievable with the constraint that the industrial capacity that needs to be built up must

  7. Ion cyclotron emission due to the newly-born fusion products induced fast Alfven wave radiative instabilities in tokamaks

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1995-08-01

    The velocity distribution functions of the newly born (t = 0) charged fusion products of tokamak discharges can be approximated by a monoenergetic ring distribution with a finite v parallel such that v perpendicular ∼ v parallel ∼ v j where (M j V j 2 /2) = E j , the directed birth energy of the charged fusion product species j of mass M j . As the time t progresses these distribution functions will evolve into a Gaussian in velocity with thermal spreadings given by the perpendicular and parallel temperatures T perpendicularj (t) = T parallelj (t) with T j (t) increasing as t increases and finally reaches an isotropic saturation value of T perpendicularj (t ∼ τ j ) = T parallelj (t ∼ τ j ) = T j (t ∼ τ j ) ∼ [M j T d E j /(M j + M)] 1/2 , where T d is the temperature of the background deuterium plasma ions, M is the mass of a triton or a neutron for j = protons and alpha particles, respectively, and τ j ∼ τ sj /4 is the thermalization time of the fusion product species j in the background deuterium plasma and τ sj is the slowing-down time. For times t of the order of τ j their distributions can be approximated by a Gaussian in their total energy. Then for times t ≥ τ sj the velocity distributions of these fusion products will relax towards their appropriate slowing-down distributions. Here the authors will examine the radiative stability of all these distributions. The ion cyclotron emission from energetic ion produced by fusion reactions or neutral beam injection promises to be a useful diagnostic tool

  8. Magnetic fusion energy. Progress report, January--June 1976

    International Nuclear Information System (INIS)

    Doran, D.G.; Yoshikawa, H.H.

    1976-01-01

    Brief descriptions are given of progress in the Irradiation Effects Analysis and Mechanical Performance of Magnetic Fusion Energy (MFE) Materials programs and in related programs. The objective of the Irradiation Effects Analysis program is the correlation of effects produced in neutron and charged particle irradiations in order to apply them to fusion reactor environments. Low energy displacement cascades--of intrinsic interest and the least understood component of high energy cascades--are being simulated by computer codes of the dynamical (D), quasi-dynamical (Q-D), and binary collision (BC) types. Fair agreement has been found between D and Q-D for low index focused replacement sequences; substantial differences appeared for a 250 eV high index event. The objective of the Mechanical Performance of MFE Materials program is to establish the effects of fusion reactor irradiation environments on the mechanical properties of candidate first wall materials. A Precision Torsional Creep Apparatus is being developed to permit accelerator studies of irradiation creep and behavior under cyclic conditions. This apparatus has demonstrated the required strain sensitivity, stress control, and thermal stability for long term thermal testing, and that it can be used for cyclic testing

  9. Fusion Simulation Project Workshop Report

    Science.gov (United States)

    Kritz, Arnold; Keyes, David

    2009-03-01

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved 46 physicists, applied mathematicians and computer scientists, from 21 institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a 3-day workshop in May 2007.

  10. Production of Medical isotope Technecium-99 from DT Fusion neutrons

    Science.gov (United States)

    Boguski, John; Gentile, Charles; Ascione, George

    2011-10-01

    High energy neutrons produced in DT fusion reactors have a secondary application for use in the synthesis of valuable man-made isotopes utilized in industry today. One such isotope is metastable Technecium-99 (Tc99m), a low energy gamma emitter used in ~ 85% of all medical imaging diagnostics. Tc99m is created through beta decay of Molybdenum-99 (Mo99), which itself has only a 66 hour half-life and must be created from a neutron capture by the widely available and stable isotope Molydenum-98. Current worldwide production of Tc99m occurs in just five locations and relies on obtaining the fission byproduct Mo99 from highly enriched Uranium reactors. A Tc99m generator using DT fusion neutrons, however, could potentially be operated at individual hospitals and medical facilities without the use of any fissile material. The neutron interaction of the DT neutrons with Molybdenum in a potential device geometry was modeled using Monte Carlo neutron transport code MCNP. Trial experiments were also performed to test the viability of using DT neutrons to create ample quantities of Tc99m. Modeling and test results will follow.

  11. Study on fusion energy conformity with global environmental issues

    International Nuclear Information System (INIS)

    Kurihara, Kenichi

    1998-01-01

    Global environmental conformity has been one of the most important issues discussed recently as being required for all human activities. From this point of view, this report investigates whether nuclear fusion can be a benign energy source for the global environment. First of all, we chose the following global environmental problems: (1) Global warming, (2) Acid rain, (3) Ozonosphere destruction, (4) Air pollution, (5) Environmental hormones, (6) Radiation and radioactive materials, (7) Electromagnetic waves, and (8) Heat drainage from an energy source. Secondly, these problems were fully surveyed in terms of their relationships with proposed nuclear fusion power plant. Finally, as a result of this discussion, it was confirmed that a fusion power plant would not produce any new problems, but would partially contribute to solving some of the environmental problems. (author)

  12. Advanced nuclear fuel production by using fission-fusion hybrid reactor

    International Nuclear Information System (INIS)

    Al-Kusayer, T.A.; Sahin, S.; Abdulraoof, M.

    1993-01-01

    Efforts are made at the College of Engineering, King Saud University, Riyadh to lay out the main structure of a prototype experimental fusion and fusion-fission (hybrid) reactor blanket in cylindrical geometry. The geometry is consistent with most of the current fusion and hybrid reactor design concepts in respect of the neutronic considerations. Characteristics of the fusion chamber, fusion neutrons and the blanket are provided. The studies have further shown that 1 GWe fission-fusion reactor can produce up to 957 kg/year which is enough to fuel five light water reactors of comparable power. Fuel production can be increased further. 29 refs

  13. Concept evaluation of nuclear fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    This paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders. Two different blanket types were used: metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing. All fusion-driven blankets are assumed to have spherical geometries, with a 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries. These neutronics calculations are coupled with a scenario optimization and cost analysis code. Also, the fusion burn was shaped so as to keep the blanket maximum power density below a preset value, and to improve the performance of the fusion-driven systems. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The nuclear fission breeders that were used as drivers have parameters characteristic of heterogeneous, oxide LMFBRs. They are net plutonium users - the plutonium is obtained from the discharges of LWRs - and U233 is bred in the fission breeder thorium blankets. The analyses of the symbiotic energy systems were performed at equilibrium, at maximum rate of grid expansion, and for a given nuclear power demand

  14. Fusion-product ash buildup in tokamak with radial electric field

    International Nuclear Information System (INIS)

    Downum, W.B.; Choi, C.K.; Miley, G.H.

    1979-01-01

    The buildup of thermalized fusion products (ash) in a tokamak can seriously limit burn times. Prior studies have concentrated on deposition profile effects on alpha particle transport in tokamaks but have not considered the effect on ash of radial electric fields (either created internally, e.g. due to high-energy alpha leakage, or generated externally). The present study focuses on this issue since it appears that electric fields might offer one approach to control of the ash. Approximate field and source profiles are used, based on prior calculations

  15. Demazure Modules, Fusion Products and Q-Systems

    Science.gov (United States)

    Chari, Vyjayanthi; Venkatesh, R.

    2015-01-01

    In this paper, we introduce a family of indecomposable finite-dimensional graded modules for the current algebra associated to a simple Lie algebra. These modules are indexed by an -tuple of partitions , where α varies over a set of positive roots of and we assume that they satisfy a natural compatibility condition. In the case when the are all rectangular, for instance, we prove that these modules are Demazure modules in various levels. As a consequence, we see that the defining relations of Demazure modules can be greatly simplified. We use this simplified presentation to relate our results to the fusion products, defined in (Feigin and Loktev in Am Math Soc Transl Ser (2) 194:61-79, 1999), of representations of the current algebra. We prove that the Q-system of (Hatayama et al. in Contemporary Mathematics, vol. 248, pp. 243-291. American Mathematical Society, Providence, 1998) extends to a canonical short exact sequence of fusion products of representations associated to certain special partitions .Finally, in the last section we deal with the case of and prove that the modules we define are just fusion products of irreducible representations of the associated current algebra and give monomial bases for these modules.

  16. Overview of the Magnetic Fusion Energy Devlopment and Technology Program

    International Nuclear Information System (INIS)

    1978-03-01

    This publication gives a comprehensive introduction to controlled fusion research. Topics covered in the discussion include the following: (1) fusion system engineering and advanced design, (2) plasma engineering, (3) magnetic systems, (4) materials, (5) environment and safety, and (6) alternate energy applications

  17. Complexity versus availability for fusion: The potential advantages of inertial fusion energy

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1996-01-01

    Probably the single largest advantage of the inertial route to fusion energy (IFE) is the perception that its power plant embodiments could achieve acceptable capacity factors. This is a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. We examine these issues in terms of the complexity, reliability, maintainability and, therefore, availability of both magnetic and inertial fusion power plants and compare these factors with corresponding scheduled and unscheduled outage data from present day fission experience. We stress that, given the simple nature of a fission core, the vast majority of unplanned outages in fission plants are due to failures outside the reactor vessel itself Given we must be prepared for similar outages in the analogous plant external to a fusion power core, this puts severe demands on the reliability required of the fusion core itself. We indicate that such requirements can probably be met for IFE plants. We recommend that this advantage be promoted by performing a quantitative reliability and availability study for a representative IFE power plant and suggest that databases are probably adequate for this task

  18. The materials production and processing facility at the Spanish National Centre for fusion technologies (TechnoFusion)

    International Nuclear Information System (INIS)

    Munoz, A.; Monge, M.A.; Pareja, R.; Hernandez, M.T.; Jimenez-Rey, D.; Roman, R.; Gonzalez, M.; Garcia-Cortes, I.; Perlado, M.; Ibarra, A.

    2011-01-01

    In response to the urgent request from the EU Fusion Program, a new facility (TechnoFusion) for research and development of fusion materials has been planned with support from the Regional Government of Madrid and the Ministry of Science and Innovation of Spain. TechnoFusion, the National Centre for Fusion Technologies, aims screening different technologies relevant for ITER and DEMO environments while promoting the contribution of international companies and research groups into the Fusion Programme. For this purpose, the centre will be provided with a large number of unique facilities for the manufacture, testing (a triple-beam multi-ion irradiation, a plasma-wall interaction device, a remote handling for under ionizing radiation testing) and analysis of critical fusion materials. Particularly, the objectives, semi-industrial scale capabilities and present status of the TechnoFusion Materials Production and Processing (MPP) facility are presented. Previous studies revealed that the MPP facility will be a very promising infrastructure for the development of new materials and prototypes demanded by the fusion technology and therefore some of them will be here briefly summarized.

  19. The materials production and processing facility at the Spanish National Centre for fusion technologies (TechnoFusion)

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A., E-mail: rpp@fis.uc3m.es [Departamento de Fisica, UC3M, Avda de la Universidad 30, 28911 Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Departamento de Fisica, UC3M, Avda de la Universidad 30, 28911 Leganes, Madrid (Spain); Hernandez, M.T. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain); Jimenez-Rey, D. [CMAM, UAM, C/Faraday 3, 28049, Madrid (Spain); Roman, R.; Gonzalez, M.; Garcia-Cortes, I. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain); Perlado, M. [IFN, ETSII, UPM, C/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Ibarra, A. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain)

    2011-10-15

    In response to the urgent request from the EU Fusion Program, a new facility (TechnoFusion) for research and development of fusion materials has been planned with support from the Regional Government of Madrid and the Ministry of Science and Innovation of Spain. TechnoFusion, the National Centre for Fusion Technologies, aims screening different technologies relevant for ITER and DEMO environments while promoting the contribution of international companies and research groups into the Fusion Programme. For this purpose, the centre will be provided with a large number of unique facilities for the manufacture, testing (a triple-beam multi-ion irradiation, a plasma-wall interaction device, a remote handling for under ionizing radiation testing) and analysis of critical fusion materials. Particularly, the objectives, semi-industrial scale capabilities and present status of the TechnoFusion Materials Production and Processing (MPP) facility are presented. Previous studies revealed that the MPP facility will be a very promising infrastructure for the development of new materials and prototypes demanded by the fusion technology and therefore some of them will be here briefly summarized.

  20. Overview of FAR-TECH's magnetic fusion energy research

    Science.gov (United States)

    Kim, Jin-Soo; Bogatu, I. N.; Galkin, S. A.; Spencer, J. Andrew; Svidzinski, V. A.; Zhao, L.

    2017-10-01

    FAR-TECH, Inc. has been working on magnetic fusion energy research over two-decades. During the years, we have developed unique approaches to help understanding the physics, and resolving issues in magnetic fusion energy. The specific areas of work have been in modeling RF waves in plasmas, MHD modeling and mode-identification, and nano-particle plasma jet and its application to disruption mitigation. Our research highlights in recent years will be presented with examples, specifically, developments of FullWave (Full Wave RF code), PMARS (Parallelized MARS code), and HEM (Hybrid ElectroMagnetic code). In addition, nano-particle plasma-jet (NPPJ) and its application for disruption mitigation will be presented. Work is supported by the U.S. DOE SBIR program.

  1. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-06-08

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide

  2. A Particle-in-Cell Simulation for the Traveling Wave Direct Energy Converter (TWDEC) for Fusion Propulsion

    Science.gov (United States)

    Chap, Andrew; Tarditi, Alfonso G.; Scott, John H.

    2013-01-01

    A Particle-in-cell simulation model has been developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC) applied to the conversion of charged fusion products into electricity. In this model the availability of a beam of collimated fusion products is assumed; the simulation is focused on the conversion of the beam kinetic energy into alternating current (AC) electric power. The model is electrostatic, as the electro-dynamics of the relatively slow ions can be treated in the quasistatic approximation. A two-dimensional, axisymmetric (radial-axial coordinates) geometry is considered. Ion beam particles are injected on one end and travel along the axis through ring-shaped electrodes with externally applied time-varying voltages, thus modulating the beam by forming a sinusoidal pattern in the beam density. Further downstream, the modulated beam passes through another set of ring electrodes, now electrically oating. The modulated beam induces a time alternating potential di erence between adjacent electrodes. Power can be drawn from the electrodes by connecting a resistive load. As energy is dissipated in the load, a corresponding drop in beam energy is measured. The simulation encapsulates the TWDEC process by reproducing the time-dependent transfer of energy and the particle deceleration due to the electric eld phase time variations.

  3. Fokker-Planck Modelling of Delayed Loss of Charged Fusion Products in TFTR

    International Nuclear Information System (INIS)

    Edenstrasser, J.W.; Goloborod'ko, V.Ya.; Reznik, S.N.; Yavorskij, V.A.; Zweben, S.

    1998-01-01

    The results of a Fokker-Planck simulation of the ripple-induced loss of charged fusion products in the Tokamak Fusion Test Reactor (TFTR) are presented. It is shown that the main features of the measured ''delayed loss'' of partially thermalized fusion products, such as the differences between deuterium-deuterium and deuterium-tritium discharges, the plasma current and major radius dependencies, etc., are in satisfactory agreement with the classical collisional ripple transport mechanism. The inclusion of the inward shift of the vacuum flux surfaces turns out to be necessary for an adequate and consistent explanation of the origin of the partially thermalized fusion product loss to the bottom of TFTR

  4. Energy production by means of inertially confined plasmas

    International Nuclear Information System (INIS)

    Hoernqvist, N.; Witalis, E.

    1984-01-01

    An account is given, about the general but rather intricate physical principles which are fundamental for the ignition, propagation and burning of some listed energy-producing nuclear fusion reactions. Further, the theory is extended to describe the necessary but high performance combination studied or proposed to be achieved by the radiation sources (drivers) in order to bring about, in particular, the increase density of the nuclear fuel by means of a radiation-driven ablative compression. The analysis is extended by conditions and limitations also for technical and economic reasons. This leads to the identification followed by discussions of five critical parameters, each of which is a necessary condition to obtain inertial fusion. In the sequel, components and assemblies for inertial fusion are described, i.e. drivers (lasers, light ions, x-radiation, heavy ions), the structure and properties of fuel pellets and reactor proposals. Special regard is given to known or anticipated limitations of technical, physical or economic nature. A brief description is given about progress and present situation for magnetic confinement fusion. This provides a background of an attempt for a comparison with inertial fusion. It is then claimed that none of these two main-line techiques of fusion research can at present be regarded or expected to be more likely to succeed in providing economic fusion energy production. In the summary recommendations are given about theoretical studies in combination with close observations of the general and international progress of research. An experimental effort, however, is considered as too much of an expensive venture, in particular with regard to present uncertainties in judging techniques involving accelerator-generated heavy ions and x-ray generation methods for driving the implosion processes of inertial fusion. (Author)

  5. Study of charged fusion products in laser produced plasmas

    International Nuclear Information System (INIS)

    Rosenblum, M.

    1981-07-01

    Charged reaction products play a central role in inertial confinement fusion. The investigation of the various processes these particles undergo in laser produced plasmas, their influence on the dynamics of the fusion and their utilization as a diagnostic tool are the main subjects of this thesis. (author)

  6. Thermonuclear fusion

    International Nuclear Information System (INIS)

    Weisse, J.

    2000-01-01

    This document takes stock of the two ways of thermonuclear fusion research explored today: magnetic confinement fusion and inertial confinement fusion. The basic physical principles are recalled first: fundamental nuclear reactions, high temperatures, elementary properties of plasmas, ignition criterion, magnetic confinement (charged particle in a uniform magnetic field, confinement and Tokamak principle, heating of magnetized plasmas (ohmic, neutral particles, high frequency waves, other heating means), results obtained so far (scale laws and extrapolation of performances, tritium experiments, ITER project), inertial fusion (hot spot ignition, instabilities, results (Centurion-Halite program, laser experiments). The second part presents the fusion reactor and its associated technologies: principle (tritium production, heat source, neutron protection, tritium generation, materials), magnetic fusion (superconducting magnets, divertor (role, principle, realization), inertial fusion (energy vector, laser adaptation, particle beams, reaction chamber, stresses, chamber concepts (dry and wet walls, liquid walls), targets (fabrication, injection and pointing)). The third chapter concerns the socio-economic aspects of thermonuclear fusion: safety (normal operation and accidents, wastes), costs (costs structure and elementary comparison, ecological impact and external costs). (J.S.)

  7. Linear induction accelerators for fusion and neutron production

    International Nuclear Information System (INIS)

    Barletta, W.A.; California Univ., Los Angeles, CA

    1993-08-01

    Linear induction accelerators (LIA) with pulsed power drives can produce high energy, intense beams or electrons, protons, or heavy ions with megawatts of average power. The continuing development of highly reliable LIA components permits the use such accelerators as cost-effective beam sources to drive fusion pellets with heavy ions, to produce intense neutron fluxes using proton beams, and to generate with electrons microwave power to drive magnetic fusion reactors and high gradient, rf-linacs

  8. Fusion - 2050 perspective (in Polish)

    CERN Document Server

    Romaniuk, R S

    2013-01-01

    The results of strongly exothermic reaction of thermonuclear fusion between nuclei of deuterium and tritium are: helium nuclei and neutrons, plus considerable kinetic energy of neutrons of over 14 MeV. DT nuclides synthesis reaction is probably not the most favorable one for energy production, but is the most advanced technologically. More efficient would be possibly aneutronic fusion. The EU by its EURATOM agenda prepared a Road Map for research and implementation of Fusion as a commercial method of thermonuclear energy generation in the time horizon of 2050.The milestones on this road are tokomak experiments JET, ITER and DEMO, and neutron experiment IFMIF. There is a hope, that by engagement of the national government, and all research and technical fusion communities, part of this Road Map may be realized in Poland. The infrastructure build for fusion experiments may be also used for material engineering research, chemistry, biomedical, associated with environment protection, power engineering, security, ...

  9. Health physics aspects of activation products from fusion reactors

    International Nuclear Information System (INIS)

    Shoup, R.L.; Poston, J.W.; Easterly, C.E.; Jacobs, D.G.

    1975-01-01

    A review of the activation products from fusion reactors and their attendant impacts is discussed. This includes a discussion on their production, expected inventories, and the status of metabolic data on these products

  10. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    DEFF Research Database (Denmark)

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias

    2015-01-01

    supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced......-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release....

  11. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  12. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    International Nuclear Information System (INIS)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management

  13. Threshold region for Higgs boson production in gluon fusion.

    Science.gov (United States)

    Bonvini, Marco; Forte, Stefano; Ridolfi, Giovanni

    2012-09-07

    We provide a quantitative determination of the effective partonic kinematics for Higgs boson production in gluon fusion in terms of the collider energy at the LHC. We use the result to assess, as a function of the Higgs boson mass, whether the large m(t) approximation is adequate and Sudakov resummation advantageous. We argue that our results hold to all perturbative orders. Based on our results, we conclude that the full inclusion of finite top mass corrections is likely to be important for accurate phenomenology for a light Higgs boson with m(H)~125 GeV at the LHC with √s=14 TeV.

  14. Higgs production as a probe of dark energy interactions

    CERN Document Server

    Brax, Philippe; Davis, Anne-Christine; Seery, David; Weltman, Amanda

    2010-01-01

    We study Higgs production under the influence of a light, scalar dark energy field with chameleon-like couplings to matter. Our analysis is relevant for hadron colliders, such as the Large Hadron Collider, which are expected to manufacture Higgs particles through weak boson fusion, or associated production with a Z or W. We show that the corrections arising in these models are too small to be observed. This result can be attributed to the gauge invariance of the low energy Lagrangian. As a by-product of our analysis, we provide the first microphysical realization of a dark energy model coupled to the electromagnetic field strength. In models where dark energy couples to all matter species in a uniform manner we are able to give a new, stringent bound on its coupling strength.

  15. Higgs production as a probe of dark energy interactions

    International Nuclear Information System (INIS)

    Brax, Philippe; Davis, Anne-Christine; Seery, David

    2009-11-01

    We study Higgs production under the influence of a light, scalar dark energy field with chameleon-like couplings to matter. Our analysis is relevant for hadron colliders, such as the Large Hadron Collider, which are expected to manufacture Higgs particles through weak boson fusion, or associated production with a Z or W ± . We show that the corrections arising in these models are too small to be observed. This result can be attributed to the gauge invariance of the low energy Lagrangian. As a by-product of our analysis, we provide the first microphysical realization of a dark energy model coupled to the electromagnetic field strength. In models where dark energy couples to all matter species in a uniform manner we are able to give a new, stringent bound on its coupling strength. (orig.)

  16. Higgs production as a probe of dark energy interactions

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [CEA, IPhT, CNRS, URA2306, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Davis, Anne-Christine; Seery, David [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences; Weltmann, Amanda [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences; Cape Town Univ. (South Africa). Dept. of Mathematics and Applied Mathematics; Centre for Theoretical Cosmology Fellow, Cambridge (United Kingdom)

    2009-11-15

    We study Higgs production under the influence of a light, scalar dark energy field with chameleon-like couplings to matter. Our analysis is relevant for hadron colliders, such as the Large Hadron Collider, which are expected to manufacture Higgs particles through weak boson fusion, or associated production with a Z or W{sup {+-}}. We show that the corrections arising in these models are too small to be observed. This result can be attributed to the gauge invariance of the low energy Lagrangian. As a by-product of our analysis, we provide the first microphysical realization of a dark energy model coupled to the electromagnetic field strength. In models where dark energy couples to all matter species in a uniform manner we are able to give a new, stringent bound on its coupling strength. (orig.)

  17. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  18. Muon catalyzed fusion under compressive conditions

    International Nuclear Information System (INIS)

    Cripps, G.; Goel, B.; Harms, A.A.

    1991-01-01

    The viability of a symbiotic combination of Muon Catalyzed Fusion (μCF) and high density generation processes has been investigated. The muon catalyzed fusion reaction rates are formulated in the temperature and density range found under moderate compressive conditions. Simplified energy gain and power balance calculations indicate that significant energy gain occurs only if standard type deuterium-tritium (dt) fusion is ignited. A computer simulation of the hydrodynamics and fusion kinetics of a spherical deuterium-tritium pellet implosion including muons is performed. Using the muon catalyzed fusion reaction rates formulated and under ideal conditions, the pellet ignites (and thus has a significant energy gain) only if the initial muon concentration is approximately 10 17 cm -3 . The muons need to be delivered to the pellet within a very short-time (≅ 1 ns). The muon pulse required in order to make the high density and temperature muon catalyzed fusion scheme viable is beyond the present technology for muon production. (orig.) [de

  19. Potential design modifications for the High Yield Lithium Injection Fusion Energy (HYLIFE) reaction chamber

    International Nuclear Information System (INIS)

    Pitts, J.H.; Hovingh, J.; Meier, W.R.; Monsler, M.J.; Powell, E.G.; Walker, P.E.

    1979-01-01

    Generation of electric power from inertial confinement fusion requires a reaction chamber. One promising type, the High Yield Lithium Injection Fusion Energy (HYLIFE) chamber, includes a falling array of liquid lithium jets. These jets act as: (1) a renewable first wall and blanket to shield metal components from x-ray and neutron exposure, (2) a tritium breeder to replace tritium burned during the fusion process, and (3) an absorber and transfer medium for fusion energy. Over 90% of the energy produced in the reaction chamber is absorbed in the lithium jet fall. Design aspects are included

  20. Evaluation of economical introduction of nuclear fusion based on a long-term world energy and environment model

    International Nuclear Information System (INIS)

    Tokimatsu, K.; Asaoka, Y.; Okano, K.; Konishi, S.; Ogawa, Y.; Yamaji, K.

    2003-01-01

    Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. The time frame by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we chose two roles that nuclear fusion will take on when breakeven prices are achieved: i) reduction of annual global total energy systems cost, and ii) mitigation of carbon tax (shadow price of carbon) under CO 2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction time frame for nuclear fusion, capacity projections of nuclear fusion, CO 2 target in 2100. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 2050-2060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO 2 concentration constraint; however, latter introduction of them decreases the cost and the tax less than five times. Earlier introduction of nuclear fusion reactors are desirable for energy systems and environment. (author)

  1. Will fusion be ready to meet the energy challenge for the 21st century?

    Science.gov (United States)

    Bréchet, Yves; Massard, Thierry

    2016-05-01

    Finite amount of fossil fuel, global warming, increasing demand of energies in emerging countries tend to promote new sources of energies to meet the needs of the coming centuries. Despite their attractiveness, renewable energies will not be sufficient both because of intermittency but also because of the pressure they would put on conventional materials. Thus nuclear energy with both fission and fusion reactors remain the main potential source of clean energy for the coming centuries. France has made a strong commitment to fusion reactor through ITER program. But following and sharing Euratom vision on fusion, France supports the academic program on Inertial Fusion Confinement with direct drive and especially the shock ignition scheme which is heavily studied among the French academic community. LMJ a defense facility for nuclear deterrence is also open to academic community along with a unique PW class laser PETAL. Research on fusion at LMJ-PETAL is one of the designated topics for experiments on the facility. Pairing with other smaller European facilities such as Orion, PALS or LULI2000, LMJ-PETAL will bring new and exciting results and contribution in fusion science in the coming years.

  2. Will fusion be ready to meet the energy challenge for the 21st century?

    International Nuclear Information System (INIS)

    Bréchet, Yves; Massard, Thierry

    2016-01-01

    Finite amount of fossil fuel, global warming, increasing demand of energies in emerging countries tend to promote new sources of energies to meet the needs of the coming centuries. Despite their attractiveness, renewable energies will not be sufficient both because of intermittency but also because of the pressure they would put on conventional materials. Thus nuclear energy with both fission and fusion reactors remain the main potential source of clean energy for the coming centuries. France has made a strong commitment to fusion reactor through ITER program. But following and sharing Euratom vision on fusion, France supports the academic program on Inertial Fusion Confinement with direct drive and especially the shock ignition scheme which is heavily studied among the French academic community. LMJ a defense facility for nuclear deterrence is also open to academic community along with a unique PW class laser PETAL. Research on fusion at LMJ-PETAL is one of the designated topics for experiments on the facility. Pairing with other smaller European facilities such as Orion, PALS or LULI2000, LMJ-PETAL will bring new and exciting results and contribution in fusion science in the coming years. (paper)

  3. Influence of projectile α-breakup threshold on complete fusion

    International Nuclear Information System (INIS)

    Mukherjee, A.; Subinit Roy; Pradhan, M.K.; Saha Sarkar, M.; Basu, P.; Dasmahapatra, B.; Bhattacharya, T.; Bhattacharya, S.; Basu, S.K.; Chatterjee, A.; Tripathi, V.; Kailas, S.

    2006-01-01

    Complete fusion excitation functions for B11,10+Tb159 have been measured at energies around the respective Coulomb barriers, and the existing complete fusion measurements for Li7+Tb159 have been extended to higher energies. The measurements show significant reduction of complete fusion cross sections at above-barrier energies for both the reactions, B10+Tb159 and Li7+Tb159, when compared to those for B11+Tb159. The comparison shows that the extent of suppression of complete fusion cross sections is correlated with the α-separation energies of the projectiles. Also, the two reactions, B10+Tb159 and Li7+Tb159 were found to produce incomplete fusion products at energies near the respective Coulomb barriers, with the α-particle emitting channel being the favoured incomplete fusion process in both the cases

  4. Inertial fusion energy

    International Nuclear Information System (INIS)

    Mima, K.

    2001-01-01

    Reviewed is the present status of the inertial confinement energy (IFE) research. The highlights of the IFE presentations are as follows. Toward demonstrating ignition and burning of imploded plasmas, ignition facilities of mega jule class blue laser system are under construction at Lawrence Livermore National Laboratory and the CEA laboratory of Bordeaux. The central ignition by both indirect drive and direct drive will be explored by the middle of 2010's. A new ignition concept so called 'fast ignition' has also been investigated intensively in the last two years. Peta watt level (1PW∼0.1PW output) CPA lasers have been used for heating solid targets and imploded plasmas. With 50J∼500J/psec pulses, solid targets are found to be heated up to 300eV. They were measured by X-ray spectroscopy, neutron energy spectrum, and so on. Summarized are also researches on simulation code developments, target design and fabrication, heavy ion beam fusion, Z-pinch based X-ray source, and laser driver technology. (author)

  5. Engineering computations at the national magnetic fusion energy computer center

    International Nuclear Information System (INIS)

    Murty, S.

    1983-01-01

    The National Magnetic Fusion Energy Computer Center (NMFECC) was established by the U.S. Department of Energy's Division of Magnetic Fusion Energy (MFE). The NMFECC headquarters is located at Lawrence Livermore National Laboratory. Its purpose is to apply large-scale computational technology and computing techniques to the problems of controlled thermonuclear research. In addition to providing cost effective computing services, the NMFECC also maintains a large collection of computer codes in mathematics, physics, and engineering that is shared by the entire MFE research community. This review provides a broad perspective of the NMFECC, and a list of available codes at the NMFECC for engineering computations is given

  6. Coatings for fusion reactor environments

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1979-01-01

    The internal surfaces of a tokamak fusion reactor control the impurity injection and gas recycling into the fusion plasma. Coating of internal surfaces may provide a desirable and possibly necessary design flexibility for achieving the temperatures, ion densities and containment times necessary for net energy production from fusion reactions to take place. In this paper the reactor environments seen by various componentare reviewed along with possible materials responses. Characteristics of coating-substrate systems, important to fusion applications, are delineated and the present status of coating development for fusion applications is reviewed. Coating development for fusion applications is just beginning and poses a unique and important challenge for materials development

  7. ITER, a major step toward nuclear fusion energy; ITER, une etape majeure vers l'energie de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Holtkamp, N.; Pick, M.; Gauche, F.; Garin, P.; Bigot, B.; Luciani, J.F.; Mougniot, J.C.; Watteau, J.P.; Saoutic, B.; Becoulet, A.; Libeyre, P.; Beaumont, B.; Simonin, A.; Giancarli, L.; Rosenvallon, S.; Gastaldi, O.; Marbach, G.; Boudot, C.; Ioki, K.; Mitchell, N.; Girard, J.Ph.; Giraud, B.; Lignini, F.; Giguet, E.; Bofusch, E.; Friconneau, J.P.; Di Pace, L.; Pampin, R.; Cook, I.; Maisonnier, D.; Campbell, D.; Hayward, J.; Li Puma, A.; Norajitra, P.; Sardain, P.; Tran, M.Q.; Ward, D.; Moslang, A.; Carre, F.; Serpantie, J.P

    2007-01-15

    This document gathers together a series of articles dedicated to ITER. They are organized into 5 parts. The first part describes the potential of fusion as a source of energy that will be able to face the challenge of a continuously increasing demand. After a reminder of the main fusion reactions and the conditions to obtain fusion, the second part focuses on the magnetic fusion based concepts with a special emphasis on the tokamak configuration. In the third part the main components of ITER are described: first the plasma facing components, then the vacuum vessel, the superconducting magnets and the heating systems. In the fourth part short papers concerning ITER safety, the maintenance through remote handling systems, the tritium breeding blanket, are given, along with a full article on the waste management. It is interesting to notice that the nuclear wastes will represent: -) between 1600 and 3800 tons of housekeeping and process wastes produced during the 20 years of operation of ITER (20% very low level waste, 75% low or medium activity with short life and 5% medium activity with long life), -) about 750 tons from component replacement during ITER active operation, and -) about 30000 tons from the decommissioning of ITER. The last part presents the European concepts for a power plant based on a fusion reactor. A basic design is given along with a state of the art of the research on the materials that will be used for the structures. It is highlighted that synergies between fission and fusion technologies exist in at least 4 areas: nuclear design code system, high temperature materials, safety approach, and in-service inspection, maintenance and dismantling. (A.C.)

  8. Neutrons and fusion

    International Nuclear Information System (INIS)

    Maynard, C.W.

    1976-01-01

    The production of energy from fusion reactions does not require neutrons in the fundamental sense that they are required in a fission reactor. Nevertheless, the dominant fusion reaction, that between deuterium and tritium, yields a 14 MeV neutron. To contrast a fusion reactor based on this reaction with the fission case, 3 x 10 20 such neutrons produced per gigawatt of power. This is four times as many neutrons as in an equivalent fission reactor and they carry seven times the energy of the fission neutrons. Thus, they dominate the energy recovery problem and create technological problems comparable to the original plasma confinement problem as far as a practical power producing device is concerned. Further contrasts of the fusion and fission cases are presented to establish the general role of neutrons in fusion devices. Details of the energy deposition processes are discussed and those reactions necessary for producing additional tritium are outlined. The relatively high energy flux with its large intensity will activate almost any materials of which the reactor may be composed. This activation is examined from the point of view of decay heat, radiological safety, and long-term storage. In addition, a discussion of the deleterious effects of neutron interactions on materials is given in some detail; this includes the helium and hydrogen producing reactions and displacement rate of the lattice atoms. The various materials that have been proposed for structural purposes, for breeding, reflecting, and moderating neutrons, and for radiation shielding are reviewed from the nuclear standpoint. The specific reactions of interest are taken up for various materials and finally a report is given on the status and prospects of data for fusion studies

  9. The big experimental manual of Free Energy. Cold Fusion - Tesla-Waves - Space-Quantum-Energy - a.o.; Das grosse Freie Energie Experimentier-Handbuch. Kalte Fusion - Tesla-Wellen - Raum-Quanten-Energie - u.v.m.

    Energy Technology Data Exchange (ETDEWEB)

    Lay, P.; Chmela, H.; Wiedergut, W.

    2004-07-01

    The main topics of the lectures are: Experiments on cold fusion; Information on space-quantum energy; phenomena of rotating magnets; advanced electrostatic motors; generation of scalar waves; complex rotating fields and levitation from an advanced view; free energy converters. (GL)

  10. Status report on controlled nuclear fusion as a source of hydrogen energy

    International Nuclear Information System (INIS)

    Powell, J.

    1975-01-01

    The present status of controlled fusion research is reviewed. Possible future reseach is also described. Tokamak systems using both fusion and fissionable fuels are discussed. Various aspects of hydrogen production by fusion reactors are described according to cost and economics. auth)

  11. Energy deposition in liquid metals for D-T, D-D and T-T fusion sources

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Zahakaylo, D.

    1983-01-01

    The nuclear performance of candidate liquid metals: lithium, lead, sodium, potassiu, Na(22%) K(78%), Na(56%) K(44%), is estimated with respect to their neutron and gamma-ray heat deposition rates. Three different neutron sources are considered: DT, DD and TT fusion neutrons. This is intended for the cooling of inertial confinement cavities using fusion pellets with internal tritrium breeding that will possibly eliminate the need to breed tritium in a lithium blanket. Compared to lithium with respect to neutron and gamma energy generation, blanket multiplication and pumping power, it appears that the considered metals can be used only if the environmental and safety advantages from the reduction of the tritium inventory and the avoidance of lithium, outweight the lithium advantages in higher energy production and lower pumping requirement by one to two orders of magnitude. (orig.) [de

  12. Overview of the US Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    Wiffen, F.W.; Dowling, R.J.; Marton, W.A.; Eckstrand, S.A.

    1990-01-01

    Since the 1988 Symposium on Fusion Technology, steady progress has been made in the US Magnetic Fusion Energy Program. The large US tokamaks have reached new levels of plasma performance with associated improvements in the understanding of transport. The technology support for ongoing and future devices is similarly advancing with notable advances in magnetic, rf heating tubes, pellet injector, plasma interactive materials, tritium handling, structural materials, and system studies. Currently, a high level DOE review of the program is underway to provide recommendations for a strategic plan

  13. Materials research and development for fusion energy applications

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Snead, L.L.

    1998-01-01

    Some of the critical issues associated with materials selection for proposed magnetic fusion reactors are reviewed, with a brief overview of refractory alloys (vanadium, tantalum, molybdenum, tungsten) and primary emphasis on ceramic materials. SiC/SiC composites are under consideration for the first wall and blanket structure, and dielectric insulators will be used for the heating, control and diagnostic measurement of the fusion plasma. Key issues for SiC/SiC composites include radiation-induced degradation in the strength and thermal conductivity. Recent work has focused on the development of radiation-resistant fibers and fiber/matrix interfaces (porous SiC, SiC multilayers) which would also produce improved SiC/SiC performance for applications such as heat engines and aerospace components. The key physical parameters for dielectrics include electrical conductivity, dielectric loss tangent and thermal conductivity. Ionizing radiation can increase the electrical conductivity of insulators by many orders of magnitude, and surface leakage currents can compromise the performance of some fusion energy components. Irradiation can cause a pronounced degradation in the loss tangent and thermal conductivity. Fundamental physical parameter measurements on ceramics which are of interest for both fusion and non-fusion applications are discussed

  14. Economic goals and requirements for competitive fusion energy

    International Nuclear Information System (INIS)

    Miller, R.L.

    1998-01-01

    Future economic competitiveness, coupled to and constrained by environmental and safety characteristics, continues to provide a central strategic motivation and concern for fusion research. Attention must also be paid to the evolving cost projections of future fusion competitors, with appropriate consideration of externalized impacts, insofar as they establish the eventual market-penetration context and also influence the near-term funding climate for fusion R and D. With concept optimization and selection in mind, tradeoffs among system power density, recirculating power, plant availability (reflecting both forced and planned outages), complexity, and structural materials and coolant choices are best monitored and resolved in the context of their impacts on capital and operating costs, which, together with low fuel costs and financial assumptions, determine the projected life-cycle product cost of fusion. Considerations deriving from deregulation and privatization are elucidated, as are possible implications of modern investment-analysis methods. (orig.)

  15. Materials handbook for fusion energy systems

    International Nuclear Information System (INIS)

    Davis, J.W.

    1988-01-01

    The objective of this work is to provide a consistent and authoritative source of material property data for use by the fusion community in concept evaluation, design, and performance/verification studies of the various fusion energy systems. A second objective is the early identification of areas in the materials data base where insufficient information or voids exist. The effort during this reporting period has focused on two areas: (1) publication of data pages, and (2) automation of the data pages. The data pages contained new engineering information on lithium and stainless steel along with additional Supporting Documentation pages on annealed and cold worked stainless steel. These pages were distributed in May. In the area of automation, work is proceeding on schedule toward the formation of an electronic materials data base for the MFE computer network

  16. Fusion Energy Sciences Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli [ESNet, Berkeley, CA (United States); Tierney, Brian [ESNet, Berkeley, CA (United States)

    2012-09-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In December 2011, ESnet and the Office of Fusion Energy Sciences (FES), of the DOE Office of Science (SC), organized a workshop to characterize the networking requirements of the programs funded by FES. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  17. Low-energy nuclear fusion data and their relation to magnetic and laser fusion

    International Nuclear Information System (INIS)

    Jarmie, N.

    1980-04-01

    The accuracy of the basic fusion data for the T(d,n) 4 He, 3 He(d,p) 4 He, T(t,2n) 4 He, D(d,n) 3 He, and D(d,p)T reactions was investigated in the 10- to 100-keV bombarding energy region, and the effects of inaccuracies on the design of fusion reactors were assessed. The data base for these reactions [particularly, the most critical T(d,n) 4 He reaction] rests on 25-year-old experiments the accuracy (often assumed to be +- 5%) of which has rarely been questioned: yet, in all except the d + d reactions, there are significant differences among data sets. The errors in the basic data sets may be considerably larger than previously expected, and the effect on design calculations should be significant. Much of the trouble apparently lies in the accuracy of the energy measurements, which are difficult at low energies. Systematic errors of up to 50% are possible in the reactivity values of the present T(d,n) 4 He data base. The errors in the reactivity will propagate proportionately into the errors in fusion probabilities in reactor calculations. 3 He(d,p) 4 He reaction cross sections could be in error by as much as 50% in the low-energy region. The D(d,n) 3 He and D(d,p)T cross sections appear to be well known and consistent. The T(t,2n) 4 He cross section is poorly known and may be subject to large systematic errors. Improved absolute measurements for all the reactions in the low bombarding energy region (10 to 100 keV) are needed, but until they are done, the data sets should be left as they are [except for T(t,2n) 4 He data, which could be lowered by about 50%]. The apparent uncertainties of these data sets should be kept in mind. 14 figures

  18. Chamber technology concepts for inertial fusion energy: Three recent examples

    International Nuclear Information System (INIS)

    Meier, W.R.; Moir, R.W.; Abdou, M.A.

    1997-01-01

    The most serious challenges in the design of chambers for inertial fusion energy (IFE) are 1) protecting the first wall from fusion energy pulses on the order of several hundred megajoules released in the form of x rays, target debris, and high energy neutrons, and 2) operating the chamber at a pulse repetition rate of 5-10 Hz (i.e., re-establishing, the wall protection and chamber conditions needed for beam propagation to the target between pulses). In meeting these challenges, designers have capitalized on the ability to separate the fusion burn physics from the geometry and environment of the fusion chamber. Most recent conceptual designs use gases or flowing liquids inside the chamber. Thin liquid layers of molten salt or metal and low pressure, high-Z gases can protect the first wall from x rays and target debris, while thick liquid layers have the added benefit of protecting structures from fusion neutrons thereby significantly reducing the radiation damage and activation. The use of thick liquid walls is predicted to 1) reduce the cost of electricity by avoiding the cost and down time of changing damaged structures, and 2) reduce the cost of development by avoiding the cost of developing a new, low-activation material. Various schemes have been proposed to assure chamber clearing and renewal of the protective features at the required pulse rate. Representative chamber concepts are described, and key technical feasibility issues are identified for each class of chamber. Experimental activities (past, current, and proposed) to address these issues and technology research and development needs are discussed

  19. Overview of fusion reactor safety

    International Nuclear Information System (INIS)

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Present trends in magnetic fusion research and development indicate the promise of commercialization of one of a limited number of inexhaustible energy options early in the next century. Operation of the large-scale fusion experiments, such as the Joint European Torus (JET) and Takamak Fusion Test Reactor (TFTR) now under construction, are expected to achieve the scientific break even point. Early design concepts of power producing reactors have provided problem definition, whereas the latest concepts, such as STARFIRE, provide a desirable set of answers for commercialization. Safety and environmental concerns have been considered early in the development of magnetic fusion reactor concepts and recognition of proplem areas, coupled with a program to solve these problems, is expected to provide the basis for safe and environmentally acceptable commercial reactors. First generation reactors addressed in this paper are expected to burn deuterium and tritium fuel because of the relatively high reaction rates at lower temperatures compared to advanced fuels such as deuterium-deuterium. This paper presents an overwiew of the safety and environmental problems presently perceived, together with some of the programs and techniques planned and/or underway to solve these problems. A preliminary risk assessment of fusion technology relative to other energy technologies is made. Improvements based on material selection are discussed. Tritium and neutron activation products representing potential radiological hazards in fusion reactor are discussed, and energy sources that can lead to the release of radioactivity from fusion reactors under accident conditions are examined. The handling and disposal of radioactive waste are discussed; the status of biological effects of magnetic fields are referenced; and release mechanisms for tritium and activation products, including analytical methods, are presented. (orig./GG)

  20. Nuclear fusion and its large potential for the future world energy supply

    Directory of Open Access Journals (Sweden)

    Ongena Jef

    2016-12-01

    Full Text Available An overview of the energy problem in the world is presented. The colossal task of ‘decarbonizing’ the current energy system, with ~85% of the primary energy produced from fossil sources is discussed. There are at the moment only two options that can contribute to a solution: renewable energy (sun, wind, hydro, etc. or nuclear fission. Their contributions, ~2% for sun and wind, ~6% for hydro and ~5% for fission, will need to be enormously increased in a relatively short time, to meet the targets set by policy makers. The possible role and large potential for fusion to contribute to a solution in the future as a safe, nearly inexhaustible and environmentally compatible energy source is discussed. The principles of magnetic and inertial confinement are outlined, and the two main options for magnetic confinement, tokamak and stellarator, are explained. The status of magnetic fusion is summarized and the next steps in fusion research, ITER and DEMO, briefly presented.

  1. Laser glass: a key material in the search for fusion energy

    International Nuclear Information System (INIS)

    Campbell, J H

    1999-01-01

    Nuclear fusion is the energy source that powers the sun. For more than four decades man has sought to develop this essentially inexhaustible, clean power source for use on earth. Unfortunately the conditions needed to initiate fusion are daunting; the nuclear fuel, consisting of isotopes of hydrogen, must be heated to temperatures in excess of 100,000,000 C and maintained at that temperature long enough for the nuclear fuel to ignite and burn. Lasers are being used as one of the tools to achieve these conditions. The best lasers for this work are those that derive their energy from a unique set of optical glasses called laser glasses. The work to develop, manufacture and test these glasses has involved a partnership between university and industry that has spanned more than 25 years. During this time lasers used in fusion development have grown from small systems that could fit on the top of a table to systems currently under construction that are approximately the size of a municipal sports stadium. A brief historical and anecdotal account of the development of laser glasses for fusion energy research applications is the subject of the presentation

  2. Bibliography of fusion product physics in tokamaks

    International Nuclear Information System (INIS)

    Hively, L.M.; Sigmar, D.J.

    1989-09-01

    Almost 700 citations have been compiled as the first step in reviewing the recent research on tokamak fusion product effects in tokamaks. The publications are listed alphabetically by the last name of the first author and by subject category

  3. Maximum neutron yeidls in experimental fusion devices

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1979-02-01

    The optimal performances of 12 types of fusion devices are compared with regard to neutron production rate, neutrons per pulse, and fusion energy multiplication, Q/sub p/ (converted to the equivalent value in D-T operation). The record values in all categories are held by the beam-injected tokamak plasma, followed by other beam-target systems. The achieved values of Q/sub p/ for nearly all laboratory plasma fusion devices (magnetically or inertially confined) are found to roughly satisfy a common empirical scaling, Q/sub p/ approx. 10 -6 E/sub in//sup 3/2/, where E/sub in/ is the energy (in kilojoules) injected into the plasma during one or two energy confinement times, or the total energy delivered to the target for inertially confined systems. Fusion energy break-even (Q/sub p/ = 1) in any system apparently requires E/sub in/ approx. 10,000 kJ

  4. Fusion energy 2002. 19th conference proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    This CD-ROM contains the proceedings of the 19th International Conference on Fusion energy 2002, held in Lyon, France, on 14-19 October 2002. The CD-Rom contains HTML files for navigation via WEB brouser, the papers in PDF and Acrobat Reader 5 for Windows, Mac-OS and UNIX

  5. Hydrogen production from high temperature electrolysis and fusion reactor

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, J.F.; Issacs, H.S.; Lazareth, O.; Powell, J.R.; Salzano, F.J.

    1978-01-01

    Production of hydrogen from high temperature electrolysis of steam coupled with a fusion reactor is studied. The process includes three major components: the fusion reactor, the high temperature electrolyzer and the power conversion cycle each of which is discussed in the paper. Detailed process design and analysis of the system is examined. A parametric study on the effect of process efficiency is presented

  6. Leptoquark production at high energy e+e- colliders

    International Nuclear Information System (INIS)

    Bluemlein, J.; Boos, E.

    1994-08-01

    The prospects to search for scalar and vector leptoquarks at high energy e + e - colliders are reviewed. We compare production cross sections in the energy range between √s=O(200 GeV) and 1 TeV for e + e - annihilation. QED and QCD corrections and the effect of beamstrahlung in these processes are discussed. For the case of linear colliders the search potential in the different possible collider modes as e + e - annihilation, e ± γ scattering, and γγ fusion is compared. (orig.)

  7. High-Frequency Gravitational Wave Induced Nuclear Fusion

    International Nuclear Information System (INIS)

    Fontana, Giorgio; Baker, Robert M. L. Jr.

    2007-01-01

    Nuclear fusion is a process in which nuclei, having a total initial mass, combine to produce a single nucleus, having a final mass less than the total initial mass. Below a given atomic number the process is exothermic; that is, since the final mass is less than the combined initial mass and the mass deficit is converted into energy by the nuclear fusion. On Earth nuclear fusion does not happen spontaneously because electrostatic barriers prevent the phenomenon. To induce controlled, industrial scale, nuclear fusion, only a few methods have been discovered that look promising, but net positive energy production is not yet possible because of low overall efficiency of the systems. In this paper we propose that an intense burst of High Frequency Gravitational Waves (HFGWs) could be focused or beamed to a target mass composed of appropriate fuel or target material to efficiently rearrange the atomic or nuclear structure of the target material with consequent nuclear fusion. Provided that efficient generation of HFGW can be technically achieved, the proposed fusion reactor could become a viable solution for the energy needs of mankind and alternatively a process for beaming energy to produce a source of fusion energy remotely - even inside solid materials

  8. Media analysis of the representations of fusion and other future energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Delicado, Ana; Schmidt, Luisa; Pereira, Sergio [Institute of Social Sciences of the University of Lisbon, Av. Prof. Anibal de Bettencourt, 9 1600-189 Lisbon (Portugal); Oltra, Christian; Prades, Ana [CISOT-CIEMAT. Gran Via de les Corts Catalanes 604, 4, 2, 08007 Barcelona (Spain)

    2015-07-01

    Media representations of energy have a relevant impact on public opinion and public support for investment in new energy sources. Fusion energy is one among several emerging energy technologies that requires a strong public investment on its research and development. This paper aims to characterise and compare the media representations of fusion and other emerging energy technologies in Portugal and in Spain. The emerging energy technologies selected for analysis are wave and tidal power, hydrogen, deep sea offshore wind power, energy applications of nanotechnology, bio-fuels from microalgae and IV generation nuclear fission. This work covered the news published in a selection of newspapers in Portugal and Spain between January 2007 and June 2013. (authors)

  9. Media analysis of the representations of fusion and other future energy technologies

    International Nuclear Information System (INIS)

    Delicado, Ana; Schmidt, Luisa; Pereira, Sergio; Oltra, Christian; Prades, Ana

    2015-01-01

    Media representations of energy have a relevant impact on public opinion and public support for investment in new energy sources. Fusion energy is one among several emerging energy technologies that requires a strong public investment on its research and development. This paper aims to characterise and compare the media representations of fusion and other emerging energy technologies in Portugal and in Spain. The emerging energy technologies selected for analysis are wave and tidal power, hydrogen, deep sea offshore wind power, energy applications of nanotechnology, bio-fuels from microalgae and IV generation nuclear fission. This work covered the news published in a selection of newspapers in Portugal and Spain between January 2007 and June 2013. (authors)

  10. The National Ignition Facility. The path to ignition and inertial fusion energy

    International Nuclear Information System (INIS)

    Eric Storm

    2010-01-01

    Complete text of publication follows. The National Ignition Facility (NIF), the world's largest and most energetic laser system built for studying inertial confinement fusion (ICF) and high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF's 192 beams are capable of producing 1.8 MJ and 500 TW of ultraviolet light and are configured to create pressures as high as 100 GB, matter temperatures approaching 10 9 and densities over 1000 g/cm 3 . With these capabis70lities, the NIF will enable exploring scientific problems in strategic defense, basic science and fusion energy. One of the early NIF campaigns is focusing on demonstrating laboratory-scale thermonuclear ignition and burn to produce net fusion energy gains of 10-20 with 1.2 to 1.4 MJ of 0.35 μm light. NIF ignition experiments began late in FY2009 as part of the National Ignition Campaign (NIC). Participants of NIC include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory, and the University of Rochester Laboratory for Energetics (LLE) as well as variety of national and international collaborators. The results from these initial experiments show great promise for the relatively near-term achievement of ignition. Capsule implosion experiments at energies up to 1.2 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with low overall backscatter less than 10%. Cryogenic target capability and additional diagnostics are being installed in preparation for layered target deuterium-tritium implosions to be conducted later in 2010. The goal for NIC is to demonstrate a predictable fusion experimental platform by the end of 2012. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and

  11. Fusion energy: 'clean' nuclear power with cheap fuel

    International Nuclear Information System (INIS)

    Persson, H.

    1976-01-01

    Because of the world energy crisis the possible use of thermonuclear energy is exciting great interest, particularly in the United States. Of primary importance is that the fuel required is cheap and readily available - it is the world's water resources. The basic long standing fundamental problem is to produce a stable plasma; the difficulties and the reasons for them are discussed. Of the machines and methods designed to overcome the problem, to date the Russian-developed Tokamak appears the most likely to succeed. The confidence in this equipment is shown by the number under construction or design in the U.S.; brief descriptions are given of a number of 'tokamaks' being built by Government agencies and universities and by industry. The Energy Research and Development Administration (ERDA) hopes that some useful energy can be produced by 1985 and a 500MW generator by 1995-97. Of importance also to the understanding of the fusion reaction are fundamental investigations with, for instance, particle accelerators. Work at Oakridge, Livermore, Princeton and Brookhaven is discussed. Other experiments e.g. laser induced fusion, are also considered. (G.P.)

  12. Higgs pair production in vector-boson fusion at the LHC and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Bishara, Fady [University of Oxford, Rudolf Peierls Centre for Theoretical Physics, Oxford (United Kingdom); Contino, Roberto [Scuola Normale Superiore, Pisa (Italy); EPFL, Institut de Theorie des Phenomenes Physiques, Lausanne (Switzerland); CERN, Theoretical Physics Department, Geneva (Switzerland); INFN Pisa, Pisa (Italy); Rojo, Juan [VU University Amsterdam, Department of Physics and Astronomy, Amsterdam (Netherlands); Nikhef, Amsterdam (Netherlands)

    2017-07-15

    The production of pairs of Higgs bosons at hadron colliders provides unique information on the Higgs sector and on the mechanism underlying electroweak symmetry breaking (EWSB). Most studies have concentrated on the gluon-fusion production mode which has the largest cross section. However, despite its small production rate, the vector-boson fusion channel can also be relevant since even small modifications of the Higgs couplings to vector bosons induce a striking increase of the cross section as a function of the invariant mass of the Higgs boson pair. In this work we exploit this unique signature to propose a strategy to extract the hhVV quartic coupling and provide model-independent constraints on theories where EWSB is driven by new strong interactions. We take advantage of the higher signal yield of the b anti bb anti b final state and make extensive use of jet-substructure techniques to reconstruct signal events with a boosted topology, characteristic of large partonic energies, where each Higgs boson decays to a single collimated jet. Our results demonstrate that the hhVV coupling can be measured with 45% (20%) precision at the LHC for L = 300 (3000) fb{sup -1}, while a 1% precision can be achieved at a 100 TeV collider. (orig.)

  13. Higgs pair production in vector-boson fusion at the LHC and beyond.

    Science.gov (United States)

    Bishara, Fady; Contino, Roberto; Rojo, Juan

    2017-01-01

    The production of pairs of Higgs bosons at hadron colliders provides unique information on the Higgs sector and on the mechanism underlying electroweak symmetry breaking (EWSB). Most studies have concentrated on the gluon-fusion production mode which has the largest cross section. However, despite its small production rate, the vector-boson fusion channel can also be relevant since even small modifications of the Higgs couplings to vector bosons induce a striking increase of the cross section as a function of the invariant mass of the Higgs boson pair. In this work we exploit this unique signature to propose a strategy to extract the hhVV quartic coupling and provide model-independent constraints on theories where EWSB is driven by new strong interactions. We take advantage of the higher signal yield of the [Formula: see text] final state and make extensive use of jet-substructure techniques to reconstruct signal events with a boosted topology, characteristic of large partonic energies, where each Higgs boson decays to a single collimated jet. Our results demonstrate that the hhVV coupling can be measured with 45% (20%) precision at the LHC for [Formula: see text] (3000) fb[Formula: see text], while a 1% precision can be achieved at a 100 TeV collider.

  14. Pathways to Energy from Inertial Fusion. An Integrated Approach. Report of a Coordinated Research Project 2006-2010

    International Nuclear Information System (INIS)

    2013-04-01

    The IAEA has continuously demonstrated its commitment to supporting the development of safe and environmentally clean nuclear fusion energy. Statistics show that at the current rate of energy consumption, fusion energy would remain an inexhaustible energy source for humankind for millions of years. Furthermore, some of the existing and foreseen risks - such as nuclear waste disposal and rising greenhouse gas emissions from the use of fossil fuels - can also be reduced. In the quest for fusion energy, two main lines of research and development are currently being pursued worldwide, namely the inertial and the magnetic confinement fusion concepts. For both approaches, the IAEA has conducted coordinated research activities focusing on specific physics and technological issues relevant the establishment of the knowledge base and foundation for the design and construction of fusion power plants. This report describes the recent research and technological developments and challenges in inertial fusion energy within the framework of such a coordinated research effort. The coordinated research project on Pathways to Energy from Inertial Fusion: An Integrated Approach was initiated in 2006 and concluded in 2010. The project involved experts and institutions from 16 Member States, addressing issues relevant to advancing inertial fusion energy research and development in its practical applications. The key topics addressed include: (i) high repetition rate, low cost, high efficiency ignition drivers; (ii) beam-matter/beam-plasma interaction related to inertial fusion target physics; (iii) target fusion chamber coupling and interface; and (iv) integrated inertial fusion power plant design. Participants in this coordinated research project have contributed 17 detailed research and technology progress reports of work performed at national and international levels. This report compiles all these reports while highlighting the various achievements.

  15. Towards fusion power

    International Nuclear Information System (INIS)

    Venkataraman, G.

    1975-01-01

    An attempt has been made to present general but broad review of the recent developments in the field of plasma physics and its application to fusion power. The first chapter describes the fusion reactions and fusion power systems. The second chapter deals in detail with production and behaviour of plasma, screening, oscillations, instability, energy losses, temperature effects, etc. Magnetic confinements, including pinch systems, toroidal systems such as Tokamac and stellarator, minor machine, etc. are discussed in detail in chapter III. Laser produced plasma, laser implosion and problems associated with it and future prospects are explained in chapter IV. Chapter V is devoted entirely to the various aspects of hybrid systems. The last chapter throws light on problems of fusion technology, such as plasma heating, vacuum requirements, radiation damage, choice of materials, blanket problems, hazards of fusion reactions, etc. (K.B.)

  16. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT. ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2001-01-01

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility

  17. Fusion Energy Division annual progress report period ending December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  18. Fusion Energy Division annual progress report period ending December 31, 1986

    International Nuclear Information System (INIS)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport

  19. Present status of laser driven fusion--fission energy systems

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.

    1978-01-01

    The potential of laser fusion driven hybrids to produce fissile fuel and/or electricity has been investigated in the laser program at the Lawrence Livermore Laboratory (LLL) for several years. Our earlier studies used neutronic methods of analysis to estimate hybrid performance. The results were encouraging, but it was apparent that a more accurate assessment of the hybrid's potential would require studies which treat the engineering, environmental, and economic issues as well as the neutronic aspects. More recently, we have collaborated with Bechtel and Westinghouse Corporations in two engineering design studies of laser fusion driven hybrid power plants. With Bechtel, we have been engaged in a joint effort to design a laser fusion driven hybrid which emphasizes fissile fuel production while the primary objective of our joint effort with Westinghouse has been to design a hybrid which emphasizes power production. The hybrid designs which have resulted from these two studies are briefly described and analyzed by considering their most important operational parameters

  20. Nuclear fusion research at Tokamak Energy Ltd

    International Nuclear Information System (INIS)

    Windridge, Melanie J.; Gryaznevich, Mikhail; Kingham, David

    2017-01-01

    Tokamak Energy's approach is close to the mainstream of nuclear fusion, and chooses a spherical tokamak, which is an economically developed form of Tokamak reactor design, as research subjects together with a high-temperature superconducting magnet. In the theoretical prediction, it is said that spherical tokamak can make tokamak reactor's scale compact compared with ITER or DEMO. The dependence of fusion energy multiplication factor on reactor size is small. According to model studies, it has been found that the center coil can be protected from heat and radiation damage even if the neutron shielding is optimized to 35 cm instead of 1 m. As a small tokamak with a high-temperature superconducting magnet, ST25 HTS, it demonstrated in 2015 continuous operation for more than 24 hours as a world record. Currently, this company is constructing a slightly larger ST40 type, and it is scheduled to start operation in 2017. ST40 is designed to demonstrate that it can realize a high magnetic field with a compact size and aims at attaining 8-10 keV (reaching the nuclear fusion reaction temperature at about 100 million degrees). This company will verify the startup and heating technology by the coalescence of spherical tokamak expected to have plasma current of 2 MA, and will also use 2 MW of neutral particle beam heating. In parallel with ST40, it is promoting a development program for high-temperature superconducting magnet. (A.O.)

  1. Energetic-economic analysis of inertial fusion plants with tritium commercial production

    International Nuclear Information System (INIS)

    Vezzani, M.; Cerullo, N.; Lanza, S.

    2000-01-01

    The realization of nuclear power plants based on fusion principles is expected to be, at the moment, very expensive. As a result the expected cost of electricity (COE) of fusion power plants is much higher than the COE of fission and fossil power plants. Thus it is necessary to study new solutions for fusion power plant designs to reduce the COE. An interesting solution for the first generation of fusion plants is to produce a surplus of tritium for commercial purposes. The present paper is concerned with the study of whether such a tritium surplus production can improve the plant economic balance, so that the COE is reduced, and to what extent. The result was that such a production allows a considerable reduction of COE and seems to be a good direction for development for the first generation of fusion power plants. To give an example, for a reference inertial confinement fusion (ICF) power plant the rise of the plant net tritium breeding ratio (TBR n ) from 1 to 1.2 would allow, in the conservative estimate of a tritium market price (C T ) of 5 M$/kg, a COE reduction of about 20%. In the estimate of a TBR n rise from 1 to 1.3 and of a C T value of 10 M$/kg, COE reduction could be more than 50%! In conclusion, the present paper points out the influence of TBR increase on COE reduction. Such a conclusion, which holds true for every fusion plant, is much more valid for ICF plants in which it is possible to reach higher TBR values and to use tritium extraction systems easily. Thus, considering the relevant economic advantages, a commercial tritium surplus production should not be disregarded for first generation fusion power plant designs, in particular for ICF plant designs

  2. Study of fusion product effects in field-reversed mirrors

    International Nuclear Information System (INIS)

    Driemeyer, D.E.

    1980-01-01

    The effect of fusion products (fps) on Field-Reversed Mirror (FRM) reactor concepts has been evaluated through the development of two new computer models. The first code (MCFRM) treats fps as test particles in a fixed background plasma, which is represented as a fluid. MCFRM includes a Monte Carlo treatment of Coulomb scattering and thus provides an accurate treatment of fp behavior even at lower energies where pitch-angle scattering becomes important. The second code (FRMOD) is a steady-state, globally averaged, two-fluid (ion and electron), point model of the FRM plasma that incorporates fp heating and ash buildup values which are consistent with the MCFRM calculations. These codes have been used extensively in the development of an advanced-fuel FRM reactor design (SAFFIRE). A Catalyzed-D version of the plant is also discussed along with an investigation of the steady-state energy distribution of fps in the FRM. User guides for the two computer codes are also included

  3. Overview of safety and environmental issues for inertial fusion energy

    International Nuclear Information System (INIS)

    Piet, S.J.; Brereton, S.J.; Tanaka, S.

    1996-01-01

    This paper summarizes safety and environmental issues of Inertial Fusion Energy (IFE): inventories, effluents, maintenance, accident safety, waste management, and recycling. The fusion confinement approach among inertial and magnetic options affects how the fusion reaction is maintained and which materials surround the reaction chamber. The target fill technology has a major impact on the target factory tritium inventory. IFE fusion reaction chambers usually employ some means to protect the first structural wall from fusion pulses. This protective fluid or granular bed also moderates and absorbs most neutrons before they reach the first structural wall. Although the protective fluid activates, most candidate fluids have low activation hazard. Hands-on maintenance seems practical for the driver, target factory, and secondary coolant systems; remote maintenance is likely required for the reaction chamber, primary coolant, and vacuum exhaust cleanup systems. The driver and fuel target facility are well separated from the main reaction chamber

  4. Activation product transport in fusion reactors

    International Nuclear Information System (INIS)

    Klein, A.C.

    1983-01-01

    Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. Similar problems are experienced around fission reactor systems. The determination of the transport of radioactive corrosion and neutron sputtering products through the system is achieved using the computer code RAPTOR. This code calculates the mass transfer of a number of activation products based on the corrosion and sputtering rates through the system, the deposition and release characteristics of various plant components, the neturon flux spectrum, as well as other plant parameters. RAPTOR assembles a system of first order linear differential equations into a matrix equation based upon the reactor system parameters. Included in the transfer matrix are the deposition and erosion coefficients, and the decay and activation data for the various plant nodes and radioactive isotopes. A source vector supplies the corrosion and neutron sputtering source rates. This matrix equation is then solved using a matrix operator technique to give the specific activity distribution of each radioactive species throughout the plant. Once the amount of mass transfer is determined, the photon transport due to the radioactive corrosion and sputtering product sources can be evaluated, and dose rates around the plant components of interest as a function of time can be determined. This method has been used to estimate the radiation hazards around a number of fusion reactor system designs

  5. KrF laser development for fusion energy

    International Nuclear Information System (INIS)

    Wolford, Matthew F.; Sethian, John D.; Myers, Matthew C.; Giuliani, John L.; Obenschain, Stephen P.; Hegeler, Frank

    2013-01-01

    The United States Naval Research Laboratory is developing an electron beam pumped krypton fluoride laser technology for a direct drive inertial fusion energy power plant. The repetitively pulsed krypton fluoride laser technology being developed meets the fusion energy requirements for laser beam quality, wavelength, and repetition rate. The krypton fluoride laser technology is projected, based on experiments, to meet the requirements for wall plug efficiency and durability. The projected wall plug efficiency based on experiments is greater than 7 percent. The Electra laser using laser triggered gas switches has conducted continuous operation for 90,000 shots at 2.5 Hertz operation (ten hours). The Electra laser has achieved greater than 700 Joules per pulse at 1 and 2.5 Hertz repetition rate. The comparison of krypton fluoride laser performance with krypton fluoride kinetics code shows good agreement for pulse shape and laser yield. Development and operation of a durable pulse power system with solid state switches has achieved a continuous run of 11 million pulses into a resistive load at 10 Hz. (author)

  6. Magnetic fusion energy and computers: the role of computing in magnetic fusion energy research and development

    International Nuclear Information System (INIS)

    1979-10-01

    This report examines the role of computing in the Department of Energy magnetic confinement fusion program. The present status of the MFECC and its associated network is described. The third part of this report examines the role of computer models in the main elements of the fusion program and discusses their dependence on the most advanced scientific computers. A review of requirements at the National MFE Computer Center was conducted in the spring of 1976. The results of this review led to the procurement of the CRAY 1, the most advanced scientific computer available, in the spring of 1978. The utilization of this computer in the MFE program has been very successful and is also described in the third part of the report. A new study of computer requirements for the MFE program was conducted during the spring of 1979 and the results of this analysis are presented in the forth part of this report

  7. Petroleum, energy and environment: the status of 2001 fusions-acquisitions

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    After the year 2000 world surge of fusions-acquisitions in various industrial sectors (telecommunications in particular), the phenomenon has slowed down during the year 2001 except for the energy sector and in particular in the oil and gas industry. This article summarizes the status of these fusions-acquisitions according to a study carried out by the French centre of foreign trade (CFCE). (J.S.)

  8. Structural Materials for Efficient Energy Production Systems

    International Nuclear Information System (INIS)

    Gomez Briceno, D.

    2009-01-01

    Increasing the efficiency of electric power production systems implies increasing the operating temperature above those of systems currently in operation. The viability of new systems depends completely on the availability of structural materials that withstand the operating conditions specified in the design: adequate features under mechanical stress at high temperatures and compatibility with the medium. In the case of nuclear systems (fission, fusion), an important requirement is their response to irradiation induced damage. In spite of the significant differences that exist in the design of nuclear power plants, fusion reactors, innovative fission systems, supercritical fossil plants, biomass plants, solar concentration thermal plants, etc., all of them have as a common characteristic the use of resistant materials at high temperatures. The qualification of existing materials for the new and more demanding operating conditions and the development of new materials is one of the challenges faced by the electric power production industry. The science of materials and the understanding of the basic processes that take place in structural materials on exposure to the operating conditions of energy production systems are the tools that are available to obtain safe and economically viable solutions. (Authors) 4 refs.

  9. Technology spinoffs from the Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    1984-02-01

    This document briefly describes eight new spin-offs from the fusion program: (1) cray timesharing system, (2) CRT touch panel, (3) magneform, (4) plasma separation process, (5) homopolar resistance welding, (6) plasma diagnostic development, (7) electrodeless microwave lamp, and (8) superconducting energy storage

  10. Loss of alpha-like MeV fusion products from TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Boivin, R.L.; Diesso, M.; Hayes, S.E.; Hendel, H.W.; Park, H.; Strachan, J.D.

    1990-03-01

    A detailed comparison between the observed and expected loss of alpha-like MeV fusion products in TFTR is presented. The D-D fusion products (mainly the 1 MeV triton) were measured with an 2-D imaging scintillation detector. The expected first-orbit loss was calculated with a simple Lorentz orbit code. In almost all cases the measured loss was consistent with the expected first-orbit loss model. Exceptions are noted for small major radius plasmas and during strong MHD activity. 37 refs., 28 figs

  11. On the production of heavy elements by cold fusion

    International Nuclear Information System (INIS)

    Armbruster, P.

    1985-01-01

    After a short historical introduction (Section 1), this article presents new insights into the mechanism limiting the fusion of heavy nuclides (Section 2). Fusion is finally limited by the increasing Coulomb forces in the formation process of a compound system, as well as in its deexcitation. Moreover, nuclear structure effects in all stages of evaporation residue (EVR) formation are shown to be of importance. The wide field of fusion reaction studies and possible experimental techniques is projected onto the task of element synthesis, and only those aspects that are of relevance here are covered. The better understanding of EVR formation (Section 2) and the new experimental techniques (Section 3) that enabled the production of elements 107-109 (Section 4) are also discussed. In Section 5 ground-state properties and the nuclear structure of the heaviest isotopes, together with their production cross sections, are discussed. Finally, an outlook on how eventually to go beyond Z = 109 is given

  12. High-energy fusion: A quest for a simple, small and environmentally acceptable colliding-beam fusion power source

    International Nuclear Information System (INIS)

    Maglich, B.

    1978-01-01

    Fusion goals should be lowered for a speedier research and development of a less ambitious but a workable 'low-gain fusion power amplifier', based on proven technologies and concepts. The aim of the Migma Program of Controlled Fusion is a small (10-15 liters) fusion power source based on colliding beams instead of plasma or laser heating. Its scientific and technological 'philosophy' is radically different from that of the governmental fusion programs of the USA and USSR. Migmacell uses radiation-free fuels, ('advanced fuels'), rather than tritium. Economic projections show that such a smaller power cell can be econonomically competitive in spite of its low power gain, because it can be mass produced. Power stations could be made either large or small and the power transmission and distribution pattern in the nation would change. An interspersion of energy resources would result. Minifusion opens the possibility to smaller countries (and medium size institutions of large countries), for participation in fusion research; this resource of research talent is presently excluded from fusion by the high cost of the mainline governmental research (over $ 200 million for one experimental fusion device, as compared to $ 1 million for migmacell). The time-scale for obtaining experimental results is reduced from decades to years. Experimental accomplishments to date and the further research needed, are presented. (orig.) [de

  13. Energy, material and land requirement of a fusion plant

    DEFF Research Database (Denmark)

    Schleisner, Liselotte; Hamacher, T.; Cabal, H.

    2001-01-01

    The energy and material necessary to construct a power plant and the land covered by the plant are indicators for the ‘consumption’ of environment by a certain technology. Based on current knowledge, estimations show that the material necessary to construct a fusion plant will exceed the material...... requirement of a fission plant by a factor of two. The material requirement for a fusion plant is roughly 2000 t/MW and little less than 1000 t/MW for a fission plant. The land requirement for a fusion plant is roughly 300 m2/MW and the land requirement for a fission plant is a little less than 200 m2/MW...... less ‘environment’ for the construction than renewable technologies, especially wind and solar....

  14. The physics of magnetic fusion energy

    International Nuclear Information System (INIS)

    Roberts, K.V.

    1980-01-01

    A personal account is given covering the period April 1956 until the present day of the challenging theoretical problems posed by the controlled release of energy by magnetic confinement fusion. The need to analyse in detail the working of a plasma apparatus or reactor as a function of time is stressed and the application of such analysis to the various thermonuclear devices which have been considered during this period, is examined. (UK)

  15. Thermal energy and bootstrap current in fusion reactor plasmas

    International Nuclear Information System (INIS)

    Becker, G.

    1993-01-01

    For DT fusion reactors with prescribed alpha particle heating power P α , plasma volume V and burn temperature i > ∼ 10 keV specific relations for the thermal energy content, bootstrap current, central plasma pressure and other quantities are derived. It is shown that imposing P α and V makes these relations independent of the magnitudes of the density and temperature, i.e. they only depend on P α , V and shape factors or profile parameters. For model density and temperature profiles analytic expressions for these shape factors and for the factor C bs in the bootstrap current formula I bs ∼ C bs (a/R) 1/2 β p I p are given. In the design of next-step devices and fusion reactors, the fusion power is a fixed quantity. Prescription of the alpha particle heating power and plasma volume results in specific relations which can be helpful for interpreting computer simulations and for the design of fusion reactors. (author) 5 refs

  16. A Study on Establishing National Technology Strategy of Fusion Energy Development: Combining PEST-SWOT Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Han Soo; Choi, Won Jae; Tho, Hyun Soo; Kang, Dong Yup; Kim, In Chung [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Nuclear fusion, the joining of light nuclei of hydrogen into heavier nuclei of helium, has potential environmental, safety and proliferation characteristics as an energy source. It can also, provide an adequate amount of fuel to power civilization for a long time compared to human history. It is, however, more challenging to convert to an energy source than nuclear fission. To overcome this, Korea enacted a law to promote the development of fusion as an energy source in 2007. In accordance with this law, the government will establish a promotion plan to develop fusion energy, including policy goals, a framework, strategies, infrastructure, funding, human resources, international cooperation and etc. This will be reviewed every five years. This paper is focused on the combining PEST (political, economic, social and technological) method with SWOT (strength, weakness, opportunity and threat) analysis, which is a prerequisite to form national fusion energy technology strategy

  17. A Study on Establishing National Technology Strategy of Fusion Energy Development: Combining PEST-SWOT Methodologies

    International Nuclear Information System (INIS)

    Chang, Han Soo; Choi, Won Jae; Tho, Hyun Soo; Kang, Dong Yup; Kim, In Chung

    2012-01-01

    Nuclear fusion, the joining of light nuclei of hydrogen into heavier nuclei of helium, has potential environmental, safety and proliferation characteristics as an energy source. It can also, provide an adequate amount of fuel to power civilization for a long time compared to human history. It is, however, more challenging to convert to an energy source than nuclear fission. To overcome this, Korea enacted a law to promote the development of fusion as an energy source in 2007. In accordance with this law, the government will establish a promotion plan to develop fusion energy, including policy goals, a framework, strategies, infrastructure, funding, human resources, international cooperation and etc. This will be reviewed every five years. This paper is focused on the combining PEST (political, economic, social and technological) method with SWOT (strength, weakness, opportunity and threat) analysis, which is a prerequisite to form national fusion energy technology strategy

  18. Flow-through Z-pinch study for radiation generation and fusion energy production

    International Nuclear Information System (INIS)

    Hartman, C.W.; Eddleman, J.L.; Moir, R.; Shumlak, U.

    1994-01-01

    We discuss a high-density fusion reactor which utilizes a flow-through Z pinch magnetic confinement configuration. Assessment of this reactor system is motivated by simplicity and small unit size (few hundred MWe) and immunity to plasma contamination made possible at high density. The type reactor discussed here would employ a liquid Li vortex as the first wall/blanket to capture fusion neutrons with minimum induced radioactivity and to achieve high wall loading and a power density of 200 w/cm 3

  19. Energy strategy of the 21st century taking advantage of fusion

    International Nuclear Information System (INIS)

    Okumura, Norihiro

    2002-01-01

    There is some general concern that economic development in developing countries will hasten global warning. In terms of reducing CO 2 emissions, fusion will have great potential as a primary energy in the late 21st century according to the results of WING model simulations based on scenario analysis, if the cost of fusion with hydrogen generation would become competitive compared with those of other substitutive energies. However, securing social acceptance is very important to maintain the fossil research funded by the government suffering from cumulative debt. (author)

  20. Laser driven fusion fission hybrids

    International Nuclear Information System (INIS)

    Hansen, L.F.; Maniscalco, J.A.

    1977-11-01

    The role of the fusion-fission hybrid reactor (FFHR) as a fissile fuel and/or power producer is discussed. As long range options to supply the world energy needs, hybrid-fueled thermal-burner reactors are compared to liquid metal fast breeder reactors (LMFBR). A discussion of different fuel cycles (thorium, depleted uranium, and spent fuel) is presented in order to compare the energy multiplication, the production of fissile fuel, the laser efficiency and pellet gain requirements of the hybrid reactor. Lawrence Livermore Laboratory (LLL) has collaborated with Bechtel Corporation and with Westinghouse in two engineering design studies of laser fusion driven hybrid power plants. The hybrid designs which have resulted from these two studies are briefly described and analyzed by considering operational parameters, such as energy multiplication, power density, burn-up and plutonium production as a function time

  1. Economic regimes for fission--fusion energy systems

    International Nuclear Information System (INIS)

    Deonigi, D.E.

    1974-01-01

    The objectives of this hybrid fusion-fission economic regimes study are to: (1) define the target costs to be met, (2) define the optimum fissile/electrical production ratio for hybrid blankets, (3) discover synergistic configurations, and (4) define the windows of economic hybrid design having desirable cost/benefit ratios. (U.S.)

  2. Process for manufacture of inertial confinement fusion targets and resulting product

    International Nuclear Information System (INIS)

    Solomon, D.E.; Wise, K.D.; Wuttke, G.H.; Masnari, N.A.; Rensel, W.B.; Robinson, M.G.

    1980-01-01

    A method of manufacturing inertial confinement fusion targets is described which is adaptable for high volume production of low cost targets in a wide variety of sizes. The targets include a spherical pellet of fusion fuel surrounded by a protective concentric shell. (UK)

  3. Low-energy nuclear reaction of the 14N+169Tm system: Incomplete fusion

    Science.gov (United States)

    Kumar, R.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Agarwal, Avinash; Appannababu, S.; Mukherjee, S.; Singh, B. P.; Ali, R.; Bhowmik, R. K.

    2017-11-01

    Excitation functions of reaction residues produced in the 14N+169Tm system have been measured to high precision at energies above the fusion barrier, ranging from 1.04 VB to 1.30 VB , and analyzed in the framework of the statistical model code pace4. Analysis of α -emitting channels points toward the onset of incomplete fusion even at slightly above-barrier energies where complete fusion is supposed to be one of the dominant processes. The onset and strength of incomplete fusion have been deduced and studied in terms of various entrance channel parameters. Present results together with the reanalysis of existing data for various projectile-target combinations conclusively suggest strong influence of projectile structure on the onset of incomplete fusion. Also, a strong dependence on the Coulomb effect (ZPZT) has been observed for the present system along with different projectile-target combinations available in the literature. It is concluded that the fraction of incomplete fusion linearly increases with ZPZT and is found to be more for larger ZPZT values, indicating significantly important linear systematics.

  4. Summary of the report of the Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy

    International Nuclear Information System (INIS)

    Holdren, J.P.; Berwald, D.H.; Budnitz, R.J.

    1987-01-01

    The Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM) has assessed magnetic fusion energy's prospects for providing energy with economic, environmental, and safety characteristics that would be attractive compared with other energy sources (mainly fission) available in the year 2015 and beyond. ESECOM gives particular attention to the interaction of environmental, safety, and economic characteristics of a variety of magnetic fusion reactors, and compares them with a variety of fission cases. Eight fusion cases, two fusion-fission hybrid cases, and four fission cases are examined, using consistent economic and safety models. These models permit exploration of the environmental, safety, and economic potential of fusion concepts using a wide range of possible materials choices, power densities, power conversion schemes, and fuel cycles. The ESECOM analysis indicates that magnetic fusion energy systems have the potential to achieve costs-of-electricity comparable to those of present and future fission systems, coupled with significant safety and environmental advantages. 75 refs., 2 figs., 24 tabs

  5. Fusion cross sections for 6,7Li + 24Mg reactions at energies below and above the barrier

    International Nuclear Information System (INIS)

    Ray, M.; Mukherjee, A.; Pradhan, M. K.; Kshetri, Ritesh; Sarkar, M. Saha; Dasmahapatra, B.; Palit, R.; Majumdar, I.; Joshi, P. K.; Jain, H. C.

    2008-01-01

    Measurement of fusion cross sections for the 6,7 Li + 24 Mg reactions by the characteristic γ-ray method has been done at energies from below to well above the respective Coulomb barriers. The fusion cross sections obtained from these γ-ray cross sections for the two systems are found to agree well with the total reaction cross sections at low energies. The relatively large difference between total cross sections and measured fusion cross sections at higher energies is consistent with the fact that other channels, in particular breakup, open up with an increase of bombarding energy. The breakup channel, however, appears not to have any influence on fusion cross sections. The critical angular momenta (l cr ) deduced from the fusion cross sections are found to have an energy dependence similar to other Li-induced reactions

  6. JAERI contribution to the 19th IAEA Fusion Energy Conference

    International Nuclear Information System (INIS)

    2003-03-01

    This report compiles the contributed papers and presentation materials from JAERI to the 19th IAEA Fusion Energy Conference held at Lyon, France, from October 14th to 19th, 2002. The papers describe the recent progress in the experimental research in JT-60U and JFT-2M tokamaks, theoretical studies, fusion technology and R and D for ITER and fusion reactors. Total 32 papers consist of 1 overview talk, 14 oral and 17 poster presentations. Eight papers written by authors from other institutes and universities under collaboration with JAERI are also included. The 40 of the presented papers are indexed individually. (J.P.N.)

  7. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    International Nuclear Information System (INIS)

    None

    2000-01-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  8. Fusion reactors-high temperature electrolysis (HTE)

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1978-01-01

    Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 1800 0 C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 1400 0 C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) [$1000/KW(E) equivalent], the H 2 energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 10 6 scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen

  9. Toroidal electron beam energy storage for controlled fusion

    International Nuclear Information System (INIS)

    Clark, W.; Korn, P.; Mondelli, A.; Rostoker, N.

    1976-01-01

    In the presence of an external magnetic field stable equilibria exist for an unneutralized electron beam with ν/γ >1. As a result, it is in principle, possible to store very large quantities of energy in relatively small volumes by confining an unneutralized electron beam in a Tokamak-like device. The energy is stored principally in the electrostatic and self-magnetic fields associated with the beam and is available for rapid heating of pellets for controlled fusion. The large electrostatic potential well in such a device would be sufficient to contain energetic alpha particles, thereby reducing reactor wall bombardment. This approach also avoids plasma loss and wall bombardment by charge exchange neutrals. The conceptual design of an electrostatic Tokamak fusion reactor (ETFR) is discussed. A small toroidal device (the STP machine) has been constructed to test the principles involved. Preliminary experiments on this device have produced electron densities approximately 10% of those required in a reactor

  10. Energy dependence of fusion evaporation-residue cross sections in the 28Si+28Si reaction

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Bauer, J.S.; Gosdin, C.H.; Trotter, R.S.; Kovar, D.G.; Beck, C.; Henderson, D.J.; Janssens, R.V.F.; Wilkins, B.D.; Rosner, G.; Chowdhury, P.; Ikezoe, H.; Kuhn, W.; Kolata, J.J.; Hinnefeld, J.D.; Maguire, C.F.; Mateja, J.F.; Prosser, F.W.; Stephans, G.S.F.

    1990-01-01

    Velocity distributions of mass-identified evaporation residues produced in the 28 Si+ 28 Si reaction have been measured at bombarding energies of 174, 215, 240, 309, 397, and 452 MeV using time-of-flight techniques. These distributions were used to identify evaporation residues and to separate the complete-fusion and incomplete-fusion components. Angular distributions and total cross sections were extracted at all six bombarding energies. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with lower energy data and the predictions of existing models

  11. Measurement of Higgs boson production via vector boson fusion in decays into W bosons with the ATLAS detector

    International Nuclear Information System (INIS)

    Bronner, Johanna

    2014-01-01

    The vector boson fusion production rate of the Standard Model Higgs boson has been measured in decays into two W bosons, each subsequently decaying into an electron or muon and a neutrino, with the ATLAS detector at the Large Hadron Collider (LHC). The vector boson fusion production cross section in the Standard Model is about an order of magnitude smaller than the dominant Higgs boson production cross section from gluon fusion. Proton-proton collision data at a center-of-mass energy of 8 TeV delivered by the LHC recorded with the ATLAS detector corresponding to an integrated luminosity of 21 fb -1 have been analyzed. Motivated by the recent discovery of a Higgs-like boson with a mass of (125.5±0.6) GeV and (125.7±0.4) GeV by the ATLAS and CMS collaborations at the LHC, the analysis is optimized for this mass. An excess of events, compatible with the Standard Model expectation for a Higgs boson with m H =125 GeV, is observed with a significance of 2.8 standard deviations when compared to the background-only expectation. The corresponding signal strength, the observed event rate relative to the Standard Model prediction of m H =125 GeV is 2.1 -0.8 +1.0 . A Higgs boson produced via vector boson fusion is excluded with 95% confidence level in the mass range between 152 GeV and 185 GeV. When combined with measurements of other Higgs boson production and decay channels by ATLAS, evidence for vector boson fusion production with a significance of 3.3 standard deviations is observed. All measurements of Higgs boson couplings to Standard Model particles are in agreement with the predictions of the Standard Model.

  12. Effects of sawtooth crashes on beam ions and fusion product tritons in JET

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F B; Hone, M A; Jarvis, O N; Loughlin, M J; Sadler, G [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Adams, J M; Bond, D S; Watkins, N [UKAEA Harwell Lab. (United Kingdom). Energy Technology Div.; Howarth, P J.A. [Birmingham Univ. (United Kingdom)

    1994-07-01

    The effect of a sawtooth crash on the radial distribution of the slowing down fusion product tritons and on beams ions, is examined with measurements of the 2.5 MeV and 14 MeV neutron emission line-integrals before and after sawtooth crashes. In deuterium discharges, the 14 MeV neutron production was wholly attributable to burnup of the 1 MeV fusion product tritons from d-d fusion. The local emissivity of 14 MeV neutrons, and hence of the profile of thermalizing tritons, is shown to be only weakly affected by crashes in the discharges studied. This is in contradiction with the apparent behaviour of injected beam ions as deduced from a study of the considerable changes in local emissivity of the 2.5 MeV neutrons. Nevertheless, the behaviour of the fusion product tritons is consistent with the scaling of the beam injected deuterium. 1 ref., 6 figs.

  13. Effects of sawtooth crashes on beam ions and fusion product tritons in JET

    International Nuclear Information System (INIS)

    Marcus, F.B.; Hone, M.A.; Jarvis, O.N.; Loughlin, M.J.; Sadler, G.

    1994-01-01

    The effect of a sawtooth crash on the radial distribution of the slowing down fusion product tritons and on beams ions, is examined with measurements of the 2.5 MeV and 14 MeV neutron emission line-integrals before and after sawtooth crashes. In deuterium discharges, the 14 MeV neutron production was wholly attributable to burnup of the 1 MeV fusion product tritons from d-d fusion. The local emissivity of 14 MeV neutrons, and hence of the profile of thermalizing tritons, is shown to be only weakly affected by crashes in the discharges studied. This is in contradiction with the apparent behaviour of injected beam ions as deduced from a study of the considerable changes in local emissivity of the 2.5 MeV neutrons. Nevertheless, the behaviour of the fusion product tritons is consistent with the scaling of the beam injected deuterium. 1 ref., 6 figs

  14. Tritium Aspects of Fueling and Exhaust Pumping in Magnetic Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, Larry R. [ORNL; Meitner, Steven J. [ORNL

    2017-04-01

    Magnetically confined fusion plasmas generate energy from deuterium-tritium (DT) fusion reactions that produce energetic 3.5 MeV alpha particles and 14 MeV neutrons. Since the DT fusion reaction rate is a strong function of plasma density, an efficient fueling source is needed to maintain high plasma density in such systems. Energetic ions in fusion plasmas are able to escape the confining magnetic fields at a much higher rate than the fusion reactions occur, thus dictating the fueling rate needed. These lost ions become neutralized and need to be pumped away as exhaust gas to be reinjected into the plasma as fuel atoms.The technology to fuel and pump fusion plasmas has to be inherently compatible with the tritium fuel. An ideal holistic solution would couple the pumping and fueling such that the pump exhaust is directly fed back into pellet formation without including impurity gases. This would greatly reduce the processing needs for the exhaust. Concepts to accomplish this are discussed along with the fueling and pumping needs for a DT fusion reactor.

  15. Fusion Energy Division annual progress report period ending December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth.

  16. Fusion Energy Division annual progress report period ending December 31, 1983

    International Nuclear Information System (INIS)

    1984-09-01

    The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth

  17. The international thermonuclear experimental reactor and the future of nuclear fusion energy

    International Nuclear Information System (INIS)

    Pan Chuanhong

    2010-01-01

    Energy shortage and environmental problems are now the two largest challenges for human beings. Magnetic confinement nuclear fusion, which has achieved great progress since the 1990's, is anticipated to be a way to realize an ideal source of energy in the future because of its abundance, environmental compatibility, and zero carbon release. Exemplified by the construction of the International Thermonuclear Experimental Reactor (ITER), the development of nuclear fusion energy is now in its engineering phase, and should be realized by the middle of this century if all objectives of the ITER project are met. (author)

  18. The NIF: An international high energy density science and inertial fusion user facility

    Directory of Open Access Journals (Sweden)

    Moses E.I.

    2013-11-01

    Full Text Available The National Ignition Facility (NIF, a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF and high-energy-density science (HEDS, is operational at Lawrence Livermore National Laboratory (LLNL. A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC, an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE. This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  19. The NIF: An international high energy density science and inertial fusion user facility

    Science.gov (United States)

    Moses, E. I.; Storm, E.

    2013-11-01

    The National Ignition Facility (NIF), a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF) and high-energy-density science (HEDS), is operational at Lawrence Livermore National Laboratory (LLNL). A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC), an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE). This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  20. Controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Trocheris, M.

    1975-01-01

    An outline is given of the present position of research into controlled fusion. After a brief reminder of the nuclear reactions of fusion and the principle of their use as a source of energy, the results obtained by the method of magnetic confinement are summarized. Among the many solutions that have been imagined and tried out to achieve a magnetic containing vessel capable of holding the thermonuclear plasma, the devices of the Tokamak type have a good lead and that is why they are described in greater detail. An idea is then given of the problems that arise when one intends conceiving the thermonuclear reactor based on the principle of the Tokamaks. The last section deals with fusion by lasers which is a new and most attractive alternative, at least from the viewpoint of basis physics. The report concludes with an indication of the stages to be passed through to reach production of energy on an industrial scale [fr

  1. NIFS contributions to 19th IAEA fusion energy conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-01

    NIFS has presented 21 papers at the 19th IAEA Fusion Energy Conference (Lyon, France, 14-19 October 2002). The contributed papers are collected in this report. The 21 papers are indexed individually. (J.P.N.)

  2. Magneized target fusion: An overview of the concept

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.

    1994-01-01

    Magnetized target fusion (MTF) seeks to take advantage of the reduction of thermal conductivity through the application of a strong magneticfield and thereby ease the requirements for reaching fusion conditions in a thermonuclear (TN) fusion fuel. A potentially important benefit of the strong field in the partial trapping of energetic charged particles to enhance energy deposition by the TN fusion reaction products. The essential physics is described. MTF appears to lead to fusion targets that require orders of magnitude less power and intensity for fusion ignition than currently proposed (unmagnetized) inertial confinement fusion (ICF) targets do, making some very energetic pulsed power drivers attractive for realizing controlled fusion

  3. Complexity and availability for fusion power plants: The potential advantages of inertial fusion energy

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1997-01-01

    Probably the single largest advantage of the inertial route to fusion energy (IFE) is the perception that its power plant embodiments could achieve acceptable capacity factors. This is a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. The author examines these issues in terms of the complexity, reliability, maintainability and, therefore, availability of both magnetic and inertial fusion power plants and compares these factors with corresponding scheduled and unscheduled outage data from present day fission experience. The author stresses that, given the simple nature of a fission core, the vast majority of unplanned outages in fission plants are due to failures outside the reactor vessel itself. Given one must be prepared for similar outages in the analogous plant external to a fusion power core, this puts severe demands on the reliability required of the fusion core itself. The author indicates that such requirements can probably be met for IFE plants. He recommends that this advantage be promoted by performing a quantitative reliability and availability study for a representative IFE power plant and suggests that databases are probably adequate for this task. 40 refs., 4 figs., 3 tabs

  4. Use of the National Ignition Facility for the development of inertial fusion energy

    International Nuclear Information System (INIS)

    Tobin, M.; Logan, G.; Anderson, A.; De LaRubia Diaz, T.

    1994-06-01

    The primary purpose of the workshop was to gather input from the inertial confinement fusion (ICF) laboratories, private industry, and universities on the potential use of the NIF to conduct experiments in support of the development of IFE. To accomplish this, we asked the over 60 workshop participants to identify key credibility and development issues for IFE in four areas Target Physics --Issues related to the design and performance of targets for IFE; Chamber Dynamics -- Issues in IFE chambers resulting from the deposition of x-rays and debris; Inertial Fusion Power Technology -- Issues for energy conversion, tritium breeding and processing, and radiation shielding; interactions of neutrons with materials; and chamber design; Target System -- Issues related to automated, high-production-rate manufacture of low-cost targets for IFE, target handling and transport, target injection, tracking, and beam pointing. These topics are discussed in this report

  5. Accident consequences analysis of the HYLIFE-II inertial fusion energy power plant design

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, S. E-mail: reyessuarezl@llnl.gov; Latkowski, J.F.; Gomez del Rio, J.; Sanz, J

    2001-05-21

    Previous studies of the safety and environmental aspects of the HYLIFE-II inertial fusion energy power plant design have used simplistic assumptions in order to estimate radioactivity releases under accident conditions. Conservatisms associated with these traditional analyses can mask the actual behavior of the plant and have revealed the need for more accurate modeling and analysis of accident conditions and radioactivity mobilization mechanisms. In the present work, computer codes traditionally used for magnetic fusion safety analyses (CHEMCON, MELCOR) have been applied for simulating accident conditions in a simple model of the HYLIFE-II IFE design. Here we consider a severe loss of coolant accident (LOCA) in conjunction with simultaneous failures of the beam tubes (providing a pathway for radioactivity release from the vacuum vessel towards the confinement) and of the two barriers surrounding the chamber (inner shielding and confinement building itself). Even though confinement failure would be a very unlikely event it would be needed in order to produce significant off-site doses. CHEMCON code allows calculation of long-term temperature transients in fusion reactor first wall, blanket, and shield structures resulting from decay heating. MELCOR is used to simulate a wide range of physical phenomena including thermal-hydraulics, heat transfer, aerosol physics and fusion product transport and release. The results of these calculations show that the estimated off-site dose is less than 5 mSv (0.5 rem), which is well below the value of 10 mSv (1 rem) given by the DOE Fusion Safety Standards for protection of the public from exposure to radiation during off-normal conditions.

  6. Accident consequences analysis of the HYLIFE-II inertial fusion energy power plant design

    Science.gov (United States)

    Reyes, S.; Latkowski, J. F.; Gomez del Rio, J.; Sanz, J.

    2001-05-01

    Previous studies of the safety and environmental aspects of the HYLIFE-II inertial fusion energy power plant design have used simplistic assumptions in order to estimate radioactivity releases under accident conditions. Conservatisms associated with these traditional analyses can mask the actual behavior of the plant and have revealed the need for more accurate modeling and analysis of accident conditions and radioactivity mobilization mechanisms. In the present work, computer codes traditionally used for magnetic fusion safety analyses (CHEMCON, MELCOR) have been applied for simulating accident conditions in a simple model of the HYLIFE-II IFE design. Here we consider a severe loss of coolant accident (LOCA) in conjunction with simultaneous failures of the beam tubes (providing a pathway for radioactivity release from the vacuum vessel towards the confinement) and of the two barriers surrounding the chamber (inner shielding and confinement building itself). Even though confinement failure would be a very unlikely event it would be needed in order to produce significant off-site doses. CHEMCON code allows calculation of long-term temperature transients in fusion reactor first wall, blanket, and shield structures resulting from decay heating. MELCOR is used to simulate a wide range of physical phenomena including thermal-hydraulics, heat transfer, aerosol physics and fusion product transport and release. The results of these calculations show that the estimated off-site dose is less than 5 mSv (0.5 rem), which is well below the value of 10 mSv (1 rem) given by the DOE Fusion Safety Standards for protection of the public from exposure to radiation during off-normal conditions.

  7. Economics of fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    The economic analysis of symbiotic energy systems in which U233 (to fuel advanced converters burning U233 fuel) is generated in blankets surrounding fusioning D-T plasma's depends on factors such as the plasma performance parameters, ore costs, and the relative costs of Fusion Breeders (CTR) to Advanced Fission Converters. The analysis also depends on detailed information such as initial, final makeup fuel requirements, fuel isotopics, reprocessing and fabrication costs, reprocessing losses (1%) and delays (2 years), the cost of money, and the effect of the underutilization of the factory thermal installation at the beginning of cycle. In this paper we present the results of calculations of overall fuel cycle and power costs, ore requirements, proliferation resistance and possibilities for grid expansion, based on detailed mass and energy flow diagrams and standard US INFCE cost data and introduction constraints, for realistic symbiotic scenarios involving CTR's (used as drivers) and denatured CANDU's (used as U233 burners). We compare the results with those obtained for other strategies involving heterogeneous LMFBR's which burn Pu to produce U233 for U233-burners such as the advanced CANDU converters

  8. Methods of economic analysis applied to fusion research. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    In this and previous efforts ECON has provided economic assessment of a fusion research program. This phase of study focused on two tasks, the first concerned with the economics of fusion in an economy that relies heavily upon synthetic fuels, and the second concerned with the overall economic effects of pursuing soft energy technologies instead of hard technologies. This report is organized in two parts, the first entitled An Economic Analysis of Coproduction of Fusion-Electric Energy and Other Products, and the second entitled Arguments Associated with the Choice of Potential Energy Futures

  9. Premises for use of fusion systems for actinide waste incineration

    International Nuclear Information System (INIS)

    Taczanowski, S.

    2007-01-01

    The motivation for the present study is induction of a change in the attitude of fusion community and first of all of the respective decision makers with regard to the fission power. The aim is to convince them that admittance of any kinship of fusion to fission energy is not the greatest threat for its deployment. The true problems of fusion power lie in the physical and technological difficulties that are hindering the achievement of reliable operation and economical competitiveness of fusion reactors. It seems that the strong objections against any symbiosis of fusion with fission, which one could observe for over two decades, are based upon the ignorance of the public unaware of the common nuclear roots of both processes. They manifest themselves, among others, in the non-negligible activity to be induced in fusion devices, as a result of the exposition of construction materials to very strong fluxes of fusion (14 MeV) neutrons. The latter ones in addition, are the source of a very serious material damage in these materials. Meanwhile, most of the real difficulties fusion power is still facing can be effectively relaxed while shifting the heavy burden of sufficient production of energy to energy rich fission process. Seeing all this, first are reminded some important problems of existing fission power that stem from the unavoidable production of Minor Actinides, distinct by undesirable physical properties (intense radioactivity, heat release, positive reactivity coefficients). Thus, in search for solutions Fusion-Driven Incineration (FDI) subcritical systems (well remote from super prompt criticality) are proposed. Next, the problems of nuclear fusion are addressed and the use of fission energy contained in actinides of spent nuclear fuel is suggested. The main advantage of that option of fusion power, /thanks to energy release from fissions/, is the prospect of a radical reduction of necessary plasma energy gain Q to levels achievable in much smaller i.e. much

  10. ITER, a major step toward nuclear fusion energy

    International Nuclear Information System (INIS)

    Ikeda, K.; Holtkamp, N.; Pick, M.; Gauche, F.; Garin, P.; Bigot, B.; Luciani, J.F.; Mougniot, J.C.; Watteau, J.P.; Saoutic, B.; Becoulet, A.; Libeyre, P.; Beaumont, B.; Simonin, A.; Giancarli, L.; Rosenvallon, S.; Gastaldi, O.; Marbach, G.; Boudot, C.; Ioki, K.; Mitchell, N.; Girard, J.Ph.; Giraud, B.; Lignini, F.; Giguet, E.; Bofusch, E.; Friconneau, J.P.; Di Pace, L.; Pampin, R.; Cook, I.; Maisonnier, D.; Campbell, D.; Hayward, J.; Li Puma, A.; Norajitra, P.; Sardain, P.; Tran, M.Q.; Ward, D.; Moslang, A.; Carre, F.; Serpantie, J.P.

    2007-01-01

    This document gathers together a series of articles dedicated to ITER. They are organized into 5 parts. The first part describes the potential of fusion as a source of energy that will be able to face the challenge of a continuously increasing demand. After a reminder of the main fusion reactions and the conditions to obtain fusion, the second part focuses on the magnetic fusion based concepts with a special emphasis on the tokamak configuration. In the third part the main components of ITER are described: first the plasma facing components, then the vacuum vessel, the superconducting magnets and the heating systems. In the fourth part short papers concerning ITER safety, the maintenance through remote handling systems, the tritium breeding blanket, are given, along with a full article on the waste management. It is interesting to notice that the nuclear wastes will represent: -) between 1600 and 3800 tons of housekeeping and process wastes produced during the 20 years of operation of ITER (20% very low level waste, 75% low or medium activity with short life and 5% medium activity with long life), -) about 750 tons from component replacement during ITER active operation, and -) about 30000 tons from the decommissioning of ITER. The last part presents the European concepts for a power plant based on a fusion reactor. A basic design is given along with a state of the art of the research on the materials that will be used for the structures. It is highlighted that synergies between fission and fusion technologies exist in at least 4 areas: nuclear design code system, high temperature materials, safety approach, and in-service inspection, maintenance and dismantling. (A.C.)

  11. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2009-01-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus

  12. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    Science.gov (United States)

    Moses, Edward I.

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus

  13. Comparative study of energy accounting for heavy ion fusion with various driver accelerators

    International Nuclear Information System (INIS)

    Kawasaki, S.; Miyahara, A.

    1980-04-01

    Typical designs of driver heavy ion accelerator systems are referred and compared with regard to the assessment of the energy payback problem involved in their applications to the inertial fusion. Detailed analyses show that the energy investment for the construction of the HIF power station is fairly smaller than the energy produced by the station in its lifetime, in spite of the large scale of its hardware. The situation could be more favourable than, or at least comparable with, the case of the magnetically confined fusion. (author)

  14. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET

    International Nuclear Information System (INIS)

    Dendy, R.O.; Clements, K.G.; Lashmore-Davies, C.N.; Cottrell, G.A.; Majeski, R.; Cauffman, S.

    1995-06-01

    Ion cyclotron emission (ICE) has been observed from neutral beam-heated TFTR and JET tritium experiments at sequential cyclotron harmonics of both fusion products and beam ions. The emission originates from the outer mid-plane plasma, where fusion products and beam ions are likely to have a drifting ring-type velocity-space distribution which is anisotropic and sharply peaked. Fusion product-driven ICE in both TFTR and JET can be attributed to the magnetoacoustic cyclotron instability, which involves the excitation of obliquely propagating waves on the fast Alfven/ion Bernstein branch at cyclotron harmonics of the fusion products. Differences between ICE observations in JET and TFTR appear to reflect the sensitivity of the instability growth rate to the ratio υ birth /c A , where υ birth is the fusion product birth speed and c A is the local Alfven speed:for fusion products in the outer midplane edge of TFTR, υ birth A ; for alpha-particles in the outer midplane edge of JET, the opposite inequality applies. If sub-Alfvenic fusion products are isotropic or have undergone even a moderate degree of thermalization, the magnetoacoustic instability cannot occur. In contrast, the super-Alfvenic alpha-particles which are present in the outer mid-plane of JET can drive the magnetoacoustic cyclotron instability even if they are isotropic or have a relatively broad distribution of speeds. These conclusions may account for the observation that fusion product-driven ICE in JET persists for longer than fusion product-driven ICE in TFTR. (Author)

  15. On fusion and fission breeder reactors

    International Nuclear Information System (INIS)

    Brandt, B.; Schuurman, W.; Klippel, H.Th.

    1981-02-01

    Fast breeder reactors and fusion reactors are suitable candidates for centralized, long-term energy production, their fuel reserves being practically unlimited. The technology of a durable and economical fusion reactor is still to be developed. Such a development parallel with the fast breeder is valuable by reasons of safety, proliferation, new fuel reserves, and by the very broad potential of the development of the fusion reactor. In order to facilitate a discussion of these aspects, the fusion reactor and the fast breeder reactor were compared in the IIASA-report. Aspects of both reactor systems are compared

  16. Commercial objectives, technology transfer, and systems analysis for fusion power development

    Science.gov (United States)

    Dean, Stephen O.

    1988-09-01

    Fusion is an inexhaustible source of energy that has the potential for economic commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion energy development program is the generation of central station electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high energy neutrons suggests potentially unique applications. In addition, fusion R and D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other, are the two primary criteria for setting long range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R and D program toward practical applications. The transfer of fusion technology and skills from the national labs and universities to industry is the key to achieving the long range objective of commercial fusion applications.

  17. The ITER fusion reactor and its role in the development of a fusion power plant

    International Nuclear Information System (INIS)

    McLean, A.

    2002-01-01

    Energy from nuclear fusion is the future source of sustained, full life-cycle environmentally benign, intrinsically safe, base-load power production. The nuclear fusion process powers our sun, innumerable other stars in the sky, and some day, it will power the Earth, its cities and our homes. The International Thermonuclear Experimental Reactor, ITER, represents the next step toward fulfilling that promise. ITER will be a test bed for key steppingstones toward engineering feasibility of a demonstration fusion power plant (DEMO) in a single experimental step. It will establish the physics basis for steady state Tokamak magnetic containment fusion reactors to follow it, exploring ion temperature, plasma density and containment time regimes beyond the breakeven power condition, and culminating in experimental fusion self-ignition. (author)

  18. Prospects for Tokamak Fusion Reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.

    1995-01-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant

  19. Case for the fusion hybrid

    International Nuclear Information System (INIS)

    Rose, R.P.

    1981-01-01

    The use of nuclear fusion to produce fuel for nuclear fission power stations is discussed in the context of a crucial need for future energy options. The fusion hybrid is first considered as an element in the future of nuclear fission power to provide long term assurance of adequate fuel supplies for both breeder and convertor reactors. Generic differences in neutronic characteristics lead to a fuel production potential of fusion-fission hybrid systems which is significantly greater than that obtainable with fission systems alone. Furthermore, cost benefit studies show a variety of scenarios in which the hybrid offers sufficient potential to justify development costs ranging in the tens of billions of dollars. The hybrid is then considered as an element in the ultimate development of fusion electric power. The hybrid offers a near term application of fusion where experience with the requisite technologies can be derived as a vital step in mapping a credible route to eventual commercial feasibility of pure fusion systems. Finally, the criteria for assessment of future energy options are discussed with prime emphasis on the need for rational comparision of alternatives

  20. The role of fusion power in energy scenarios. Proposed method and review of existing scenarios

    International Nuclear Information System (INIS)

    Lako, P; Ybema, J.R.; Seebregts, A.J.

    1998-04-01

    The European Commission wishes more insight in the potential role of fusion energy in the second half of the 21st century. Therefore, several scenario studies are carried out in the so-called macro-task Long Term Scenarios to investigate the potential role of fusion power in the energy system. The main contribution of ECN to the macro-task is to perform a long term energy scenario study for Western Europe with special focus on the role of fusion power. This interim report gives some methodological considerations for such an analysis. A discussion is given on the problems related to the long time horizon of the scenario study such as the forecast of technological innovations, the selection of appropriate discount rates and the links with climate change. Key parameters which are expected to have large effects on the role and cost-effectiveness are discussed in general terms. The key parameters to be varied include level and structure of energy demand, availability and prices of fossil energy, CO2 reduction policy, discount rates, cost and potential of renewable energy sources, availability of fission power and CO2 capture and disposal and the cost and the maximum rate of market growth of fusion power. The scenario calculations are to be performed later in the project with the help of an existing cost minimisation model of the Western European energy system. This MARKAL model is briefly introduced. The results of the model calculations are expected to make clear under which combinations of scenario parameters fusion power is needed and how large the expected financial benefits will be. The present interim report also gives an evaluation of existing energy scenarios with respect to the role of fusion power. 18 refs

  1. Fusion probability and survivability in estimates of heaviest nuclei production

    Directory of Open Access Journals (Sweden)

    Sagaidak Roman N.

    2012-02-01

    Full Text Available Production of the heavy and heaviest nuclei (from Po to the region of superheavy elements close to Z=114 and N=184 in fusion-evaporation reactions induced by heavy ions has been considered in a systematic way within the framework of the barrier-passing model coupled with the statistical model (SM of de-excitation of a compound nucleus (CN. Excitation functions for fission and evaporation residues (ER measured in very asymmetric combinations can be described rather well. One can scale and fix macroscopic (liquid-drop fission barriers for nuclei involved in the calculation of survivability with SM. In less asymmetric combinations, effects of fusion suppression caused by quasi-fission (QF are starting to appear in the entrance channel of reactions. QF effects could be semi-empirically taken into account using fusion probabilities deduced as the ratio of measured ER cross sections to the ones obtained in the assumption of absence of the fusion suppression in corresponding reactions. SM parameters (fission barriers obtained at the analysis of a very asymmetric combination leading to the production of (nearly the same CN should be used for this evaluation.

  2. Physics and technology of inertial fusion energy targets chambers and drivers. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2005-09-01

    The third IAEA Technical Meeting on Physics and Technology of Inertial Fusion Energy Targets and Chambers took place 11-13 October 2004 in the Yousung Hotel Daejon, Republic of Korea. The first meeting was held in Madrid, Spain, 7-9 June 2000, and the second one in San Diego, California, 17-19 June 2002. Nuclear fusion has the promise of becoming an abundant energy source with good environmental compatibility. Excellent progress has been made in controlled nuclear fusion research on both magnetic and inertial approaches for plasma confinement. The IAEA plays a pro-active role to catalyze innovation and enhance worldwide commitment to fusion. This is done by creating awareness of the different concepts of magnetic as well as inertial confinement. The International Fusion Research Council (IFRC) supports the IAEA in the development of strategies to enhance fusion research in Member States. As part of the recommendations, a technical meeting on the physics and technology of inertial fusion energy (IFE) was proposed in one of the council meetings. The objective of the technical meeting was to contribute to advancing the understanding of targets and chambers for all proposed inertial fusion energy power plant designs. The topics to be covered were: Target design and physics, chamber design and physics, target fabrication injection and Tritium handling, assessment of safety, environment and economy aspect of IFE. It was recognized by the International Advisory Committee that the scope of the meeting should also include fusion drivers. The presentations of the meeting included target and chamber physics and technology for all proposed IFE plant concepts (laser driven, heavy-ion driven, Z-pinches, etc.). The final Research Coordination Meeting of the Coordinated Research Project on Elements of Power Plant Design for Inertial Fusion Energy, including further new results and achievements, followed the technical meeting. Twenty-nine participants from 12 countries participated

  3. Survey of particle codes in the Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    1977-12-01

    In the spring of 1976, the Fusion Plasma Theory Branch of the Division of Magnetic Fusion Energy conducted a survey of all the physics computer codes being supported at that time. The purpose of that survey was to allow DMFE to prepare a description of the codes for distribution to the plasma physics community. This document is the first of several planned and covers those types of codes which treat the plasma as a group of particles

  4. Potential need for fusion in the U.S. energy system

    International Nuclear Information System (INIS)

    Beardsworth, E.; Powell, J.

    1977-09-01

    For fusion to become available for commercial use in the 21st century, R and D must be undertaken now. But it is hard to justify these expenditures with a ''cost/benefit'' oriented assessment methodology, because of both the time frame and the uncertainty of the future benefits. Focusing on the factors most relevant for current consideration of fusion's commercial prospects, i.e., consumption levels and the outcomes for fission, solar, and coal, many possible futures of the U.S. energy system are posited and analyzed under various assumptions about costs. The ''Reference Energy System'' approach was modified to establish both an appropriate degree of detail and explicit time dependence, and a computer code used to organize the relevant data and to perform calculations of system cost (annual and discounted present value), resource use, and residuals that are implied by the consumption levels and technology mix in each scenario. Not-unreasonable scenarios indicate benefits in the form of direct cost savings, which may well exceed R and D costs, which could be attributed to the implementation of fusion

  5. Potential need for fusion in the U. S. energy system

    Energy Technology Data Exchange (ETDEWEB)

    Beardsworth, E; Powell, J

    1977-09-01

    For fusion to become available for commercial use in the 21st century, R and D must be undertaken now. But it is hard to justify these expenditures with a ''cost/benefit'' oriented assessment methodology, because of both the time frame and the uncertainty of the future benefits. Focusing on the factors most relevant for current consideration of fusion's commercial prospects, i.e., consumption levels and the outcomes for fission, solar, and coal, many possible futures of the U.S. energy system are posited and analyzed under various assumptions about costs. The ''Reference Energy System'' approach was modified to establish both an appropriate degree of detail and explicit time dependence, and a computer code used to organize the relevant data and to perform calculations of system cost (annual and discounted present value), resource use, and residuals that are implied by the consumption levels and technology mix in each scenario. Not-unreasonable scenarios indicate benefits in the form of direct cost savings, which may well exceed R and D costs, which could be attributed to the implementation of fusion.

  6. An exploration for a feasible fusion energy research strategy in Korea

    International Nuclear Information System (INIS)

    Kim, Sung Kyu; Park, Jong Kyun; Yang, Maeng Ho

    2005-01-01

    Recently, the fierce competition between European Union (EU) and Japan to host the International Thermo-nuclear Experimental Reactor (ITER) has aroused in Korea renewed interests in fusion research and its pros-pect for commercial fusion power generation. Korea has committed itself in 2003 to the construction and operation of ITER which spans three decades. This 30-years-long commitment to ITER surely is longer than any other scientific and/or technological venture that has ever been taken up after its birth in 1948. ITER poses both as a great opportunity for Korea, allegedly but not convincingly enough, and as a potential 'black hole' sucking in all resources for future energy researches, to the domestic technical communities and industries. However, ITER and fusion research is not just a technico-industrial issue but may as well be a politico-security issue, like many other apparent technology issues such as recent participation in the Galileo project. In this article, the authors will explore this situation with an emphasis on domestic and foreign constraints and propose a realistic and verifiable strategy to address these issues and to develop fusion energy in Korea

  7. QCD and electroweak interference in Higgs production by gauge boson fusion

    International Nuclear Information System (INIS)

    Andersen, Jeppe R.; Smillie, Jennifer M.

    2007-01-01

    We explicitly calculate the contribution to Higgs production at the LHC from the interference between gluon fusion and weak vector boson fusion, and compare it to the pure QCD and pure electroweak result. While the effect is small at tree level, we speculate it will be significantly enhanced by loop effects

  8. Common views of potentially attractive fusion concepts

    International Nuclear Information System (INIS)

    Piet, S.J.

    1986-01-01

    Several innovative fusion concepts have recently been proposed with the intent of improving radically the attractiveness of fusion energy. Before their assessment is complete, however, the question of what constitutes an especially attractive fusion product should be examined from multiple viewpoints. The primary purpose of this paper is to examine views of potentially attractive fusion concepts from three perspectives, trying to determine commonalities. These viewpoints are (a) economics, (b) maintenance and reliability, and (c) safety and environment. The secondary purpose of the paper is to review some innovative concepts from these viewpoints

  9. Inertial fusion energy: A clearer view of the environmental and safety perspectives

    International Nuclear Information System (INIS)

    Latkowski, J.F.

    1996-11-01

    If fusion energy is to achieve its full potential for safety and environmental (S ampersand E) advantages, the S ampersand E characteristics of fusion power plant designs must be quantified and understood, and the resulting insights must be embodied in the ongoing process of development of fusion energy. As part of this task, the present work compares S ampersand E characteristics of five inertial and two magnetic fusion power plant designs. For each design, a set of radiological hazard indices has been calculated with a system of computer codes and data libraries assembled for this purpose. These indices quantify the radiological hazards associated with the operation of fusion power plants with respect to three classes of hazard: accidents, occupational exposure, and waste disposal. The three classes of hazard have been qualitatively integrated to rank the best and worst fusion power plant designs with respect to S ampersand E characteristics. From these rankings, the specific designs, and other S ampersand E trends, design features that result in S ampersand E advantages have been identified. Additionally, key areas for future fusion research have been identified. Specific experiments needed include the investigation of elemental release rates (expanded to include many more materials) and the verification of sequential charged-particle reactions. Improvements to the calculational methodology are recommended to enable future comparative analyses to represent more accurately the radiological hazards presented by fusion power plants. Finally, future work must consider economic effects. Trade-offs among design features will be decided not by S ampersand E characteristics alone, but also by cost-benefit analyses. 118 refs., 35 figs., 35 tabs

  10. Fusion enhancement at near and sub-barrier energies in {sup 19}O + {sup 12}C

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Varinderjit; Vadas, J.; Steinbach, T.K.; Wiggins, B.B.; Hudan, S. [Department of Chemistry and Center for Exploration of Energy and Matter, Indiana University, 2401 Milo B. Sampson Lane, Bloomington, IN 47408 (United States); Souza, R.T. de, E-mail: deSouza@indiana.edu [Department of Chemistry and Center for Exploration of Energy and Matter, Indiana University, 2401 Milo B. Sampson Lane, Bloomington, IN 47408 (United States); Lin, Zidu; Horowitz, C.J. [Department of Physics and Center for Exploration of Energy and Matter, Indiana University, 2401 Milo B. Sampson Lane, Bloomington, IN 47408 (United States); Baby, L.T.; Kuvin, S.A.; Tripathi, Vandana; Wiedenhöver, I. [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Umar, A.S. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States)

    2017-02-10

    Measuring the fusion excitation function for an isotopic chain of projectile nuclei provides a stringent test of a microscopic description of fusion. We report the first measurement of the fusion excitation function at near-barrier energies for the {sup 19}O + {sup 12}C system. The measured excitation function is compared with the fusion excitation function of {sup 18}O + {sup 12}C. A significant enhancement in the fusion probability of {sup 19}O ions with a {sup 12}C target as compared to {sup 18}O ions is observed. The experimental cross-sections observed at near-barrier energies are compared with a state-of-the-art microscopic model.

  11. Heavy ion fusion

    International Nuclear Information System (INIS)

    Hofmann, Ingo

    1993-01-01

    With controlled thermonuclear fusion holding out the possibility of a prolific and clean new source of energy, the goal remains elusive after many years of continual effort. While the conventional Tokamak route with magnetic confinement continues to hit the headlines, other alternatives are now becoming competitive. One possible solution is to confine the thermonuclear fuel pellet by high power beams. Current research and perspectives for future work in such inertial confinement was the subject of the 'Prospects for Heavy Ion Fusion' European Research Conference held in Aghia Pelaghia, Crete, last year. Its main focus was on the potential of heavy ion accelerators as well as recent advances in target physics with high power lasers and light ion beams. Carlo Rubbia declared that high energy accelerators, with their high efficiency, are the most promising approach to economical fusion energy production. However the need for cost saving in the driver accelerator requires new ideas in target design tailored to the particularities of heavy ion beams, which need to be pushed to the limits of high current and phase space density at the same time

  12. The cost and benefit of energy technology in the global context - the case of fusion power

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1994-01-01

    This paper is an attempt to evaluate the economical and environmental consequences of fusion power for the next century. For this evaluation, the Pacific Northwest Laboratory global energy/economy model is used. In applying the model to analyse costs and benefits of fusion energy, the author compares the projections of the model for a world with and without fusion. (TEC). 5 tabs., 7 figs., 18 refs

  13. Small mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Schultz, K.R.; Smith, A.C. Jr.

    1978-01-01

    Basic requirements for the pilot plants are that they produce a net product and that they have a potential for commercial upgrade. We have investigated a small standard mirror fusion-fission hybrid, a two-component tandem mirror hybrid, and two versions of a field-reversed mirror fusion reactor--one a steady state, single cell reactor with a neutral beam-sustained plasma, the other a moving ring field-reversed mirror where the plasma passes through a reaction chamber with no energy addition

  14. Need for research and development in fusion: Economical energy for a sustainable future with low environmental impact

    International Nuclear Information System (INIS)

    Logan, B.G.; Perkins, L.J.; Moir, R.W.; Ryutov, D.D.

    1995-01-01

    Fusion, advanced fission, and solar-electric plants are the only unlimited nonfossil options for a sustainable energy future for the world. Fusion poses the only indigenous fuel reserve that will last as long as the earth itself lasts. However, continued innovation and diversity in fusion R ampersand D will be required to meet its economic goal. The long-term nature of fusion research means that the required R ampersand D investment will not come from the private sector. However, once fusion is realized commercially, the dividend for humanity will be profound in terms of the welfare of the global community. We should also not underestimate the huge potential export opportunities that would then open up for industry. Federal energy R ampersand D at nearly 1% of U.S. energy costs is prudent and justified to allow pursuit of all three primary energy options for a sustainable energy future. Multiple parallel paths are essential to ensure success. The projected timescale for significant shortfalls in world energy supply to become apparent is nearly 30 to 40 yr depending on assumptions. The time to develop fusion from near-term R ampersand D through significant commercial market penetration is at least of the same order, so its development must not be delayed. 6 refs., 2 figs

  15. Fusion plasma physics during half a century

    International Nuclear Information System (INIS)

    Lehnert, Bo

    1999-08-01

    A review is given on the potentialities of fusion energy with respect to energy production and related environmental problems, the various approaches to controlled thermonuclear fusion, the main problem areas of research, the historical development, the present state of investigations, and future perspectives. This article also presents a personal memorandum of the author. Thereby special reference will be given to part of the research conducted at the Royal Institute of Technology in Stockholm, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. In large tokamak experiments temperatures above the ignition limit of about 10 8 K have been reached under break-even conditions where the fusion power generation is comparable to the energy loss. A power producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient. The future international research programme has therefore to be conducted along broad lines, with necessary ingredients of basis research and new ideas, and also within lines of magnetic confinement being alternative to that of tokamaks

  16. Nuclear fusion as an energy option for the 21st Century

    International Nuclear Information System (INIS)

    Herrera V, J.J.E.

    2007-01-01

    Under the point of view of the engineering, it is even a long road to travel before it is possible to build an economically competitive fusion reactor. In contrast, for each obstacle in the road different forms can be devised of approaching it, and the future is promising, whenever the necessary financing exists to support the investigations. The fusion can contribute to satisfy the energy necessities for the development of the civilization in a sustainable way, to medium term if it is used in symbiosis with the fission reactors, providing fuel and transmuting radioactive waste. In any event, this focus should be developed spreading the safety primarily in mind, and so the processes are economically competitive. Just as it can be appreciate in the sections of this work, the investigation in fusion requires of determination, discipline, and it is not for the weak of spirit. While other energy sources, particularly the renewable ones, they should take advantage in Mexico, the fusion is the more plaintiff, and it requires of scientific and technological resources of forefront. In certain form, together with the fission technology, it determines the crossroad that separates to the developed countries of those that are 'developing'. Brazil, South Korea, China and India, aware of the necessity of enough energy sources to sustain their development, they have already taken the initiative to accept the challenge. It corresponds Mexico to follow the example, or to stay in the status of 'developing country.' (Author)

  17. Determination of extra-push energies for fusion from differential fission cross-section measurements

    International Nuclear Information System (INIS)

    Ramamurthy, V.S.; Kapoor, S.S.

    1993-01-01

    Apparent discrepancies between values of extra-push energies for fusion of two heavy nuclei derived through measurements of fusion evaporation residue cross sections and of differential fission cross sections have been reported by Keller et al. We show here that with the inclusion of the recently proposed preequilibrium fission decay channel in the analysis, there is no inconsistency between the two sets of data in terms of the deduced extra-push energies

  18. Contribution to the actual discussion on the technological problems of nuclear fusion energy exploitation

    International Nuclear Information System (INIS)

    Seifritz, W.

    1982-02-01

    Recently increased criticism has been raised from many sides as to the technical realization of fusion reactors. The basic argument is continually stated whether it is really sensible to invest the enormous sums of money in order to produce a commercial fusion reactor. In this article, the principle problems facing nuclear fusion are presented and it is outlined which priorities should be set for the realization of fusion energy in the near future. (Auth.)

  19. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    Science.gov (United States)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  20. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    International Nuclear Information System (INIS)

    Rawat, R S

    2015-01-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 10 10 J/m 3 . The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I 4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of