WorldWideScience

Sample records for fusion divertor surface

  1. Evaluation of helium cooling for fusion divertors

    International Nuclear Information System (INIS)

    Baxi, C.B.

    1993-09-01

    The divertors of future fusion reactors will have a power throughput of several hundred MW. The peak heat flux on the diverter surface is estimated to be 5 to 15 MW/m 2 at an average heat flux of 2 MW/m 2 . The divertors have a requirement of both minimum temperature (100 degrees C) and maximum temperature. The minimum temperature is dictated by the requirement to reduce the absorption of plasma, and the maximum temperature is determined by the thermo-mechanical properties of the plasma facing materials. Coolants that have been considered for fusion reactors are water, liquid metals and helium. Helium cooling has been shown to be very attractive from safety and other considerations. Helium is chemically and neutronically inert and is suitable for power conversion. The challenges associated with helium cooling are: (1) Manifold sizes; (2) Pumping power; and (3) Leak prevention. In this paper the first two of the above design issues are addressed. A variety of heat transfer enhancement techniques are considered to demonstrate that the manifold sizes and the pumping power can be reduced to acceptable levels. A helium-cooled diverter module was designed and fabricated by GA for steady-state heat flux of 10 MW/m 2 . This module was recently tested at Sandia National Laboratories. At an inlet pressure of 4 MPa, the module was tested at a steady-state heat flux of 10 MW/m 2 . The pumping power required was less than 1% of the power removed. These results verified the design prediction

  2. Analysis of noble gas recycling at a fusion plasma divertor

    International Nuclear Information System (INIS)

    Brooks, J.N.

    1996-01-01

    Near-surface recycling of neon and argon atoms and ions at a divertor has been studied using impurity transport and surface interaction codes. A fixed background deuterium endash tritium plasma model is used corresponding to the International Thermonuclear Experimental Reactor (ITER) [ITER EDA Agreement and Protocol 2, ITER EDA Documentation Series No. 5 (International Atomic Energy Agency, Vienna, 1994)] radiative plasma conditions (T e ≤10 eV). The noble gas transport depends critically on the divertor surface material. For low-Z materials (Be and C) both neon and argon recycle many (e.g., ∼100) times before leaving the near-surface region. This is also true for an argon on tungsten combination. For neon on tungsten, however, there is low recycling. These variations are due to differences in particle and energy reflection coefficients, mass, and ionization rates. In some cases a high flux of recycling atoms is ionized within the magnetic sheath and this can change local sheath parameters. Due to inhibited backflow, high recycling, and possibly high sputtering, noble gas seeding (for purposes of enhancing radiation) may be incompatible with Be or C surfaces, for fusion reactor conditions. On the other hand, neon use appears compatible with tungsten. copyright 1996 American Institute of Physics

  3. Alternative divertor target concepts for next step fusion devices

    Science.gov (United States)

    Mazul, I. V.

    2016-12-01

    The operational conditions of a divertor target in the next steps of fusion devices are more severe in comparison with ITER. The current divertor designs and technologies have a limited application concerning these conditions, and so new design concepts/technologies are required. The main reasons which practically prevent the use of the traditional motionless solid divertor target are analyzed. We describe several alternative divertor target concepts in this paper. The comparative analysis of these concepts (including the advantages and the drawbacks) is made and the prospects for their practical implementation are prioritized. The concept of the swept divertor target with a liquid metal interlayer between the moving armour and motionless heat-sink is presented in more detail. The critical issues of this design are listed and outlined, and the possible experiments are presented.

  4. Development of liquid lithium divertor for fusion reactor

    International Nuclear Information System (INIS)

    Evtihkin, V. A.; Lyublinskij, I. E.; Vertkov, A.V.; Chumanov, A.V.; Shpolyanskij, V.N.

    2000-01-01

    Development of divertor is one of the most acute problems of the tokamak fusion reactor. The use of such materials as tungsten, beryllium, graphite and CFC's enabled to solve the problem to a certain extent fulfilling the need of the ITER project. The problem still rests unsolved for the DEMO-type reactors. Lithium if used as a material for high heat flux components may provide a successful solution of the problem. A concept of Li divertor based on the use of capillary-pore structures (CPS) is proposed and is being validated by a complex of experimental research and engineering developments. An optional concept of Li divertor for power removal at 400 MW in steady-state (DEMO-S project) is presented. The complex of experimental research is under way to prove the serviceability of the Li CPS in different conditions that would be realized in divertor

  5. Divertor for a linear fusion device

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D. [Lawrence Livermore National laboratory, Livermore, CA, 94550 (United States); Yushmanov, P. N.; Barnes, D. C.; Putvinski, S. V. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, CA 92688 (United States)

    2016-03-25

    Linear fusion devices can use large magnetic flux flaring in the end tanks to reduce the heat load on the end structures. In order to reduce parallel electron heat loss, one has to create conditions where the neutral gas density in the end tanks is low, as otherwise cold electrons produced by the ionization of the neutrals would cool down the core plasma electrons. The processes determining the neutral gas formation and spatial distribution are analysed for the case where neutrals are formed by the surface recombination of the outflowing plasma. The conditions under which the cooling of the core plasma is negligible are formulated.

  6. Divertor conceptual designs for a fusion power plant

    International Nuclear Information System (INIS)

    Norajitra, P.; Ihli, T.; Janeschitz, G.; Abdel-Khalik, S.; Mazul, I.; Malang, S.

    2007-01-01

    The development of a divertor concept for post-ITER fusion power plants is deemed to be an urgent task to meet the EU Fast Track scenario. Developing a divertor is particularly challenging due to the wide range of requirements to be met including the high incident peak heat flux, the blanket design with which the divertor has to be integrated, sputtering erosion of the plasma-facing material caused by the incident a particles, radiation effects on the properties of structural materials, and efficient recovery and conversion of the divertor thermal power (∝15% of the total fusion thermal power) by maximizing the coolant operating temperature while minimizing the pumping power. In the course of the EU PPCS, three near-term (A, B and AB) and two advanced power plant models (C, D) were investigated. Model A utilizes a water-cooled lead-lithium (WCLL) blanket and a water-cooled divertor with a peak heat flux of 15 MW/m 2 . Model B uses a He-cooled ceramics/beryllium pebble bed (HCPB) blanket and a He-cooled divertor concept (10 MW/m 2 ). Model AB uses a He-cooled lithium-lead (HCLL) blanket and a He-cooled divertor concept (10 MW/m 2 ). Model C is based on a dual-coolant (DC) blanket (lead/lithium self-cooled bulk and He-cooled structures) and a He-cooled divertor (10 MW/m 2 ). Model D employs a self-cooled lead/lithium (SCLL) blanket and lead-lithiumcooled divertor (5 MW/m 2 ). The values in parenthesis correspond to the maximum peak heat fluxes required. It can be noted that the helium-cooled divertor is used in most of the EU plant models; it has also been proposed for the US ARIES-CS reactor study. Since 2002, it has been investigated extensively in Europe under the PPCS with the goal of reaching a maximum heat flux of at least 10 MW/m2. Work has covered many areas including conceptual design, analysis, material and fabrication issues, and experiments. Generally, the helium-cooled divertor is considered to be a suitable solution for fusion power plants, as it

  7. Multiscale study on hydrogen mobility in metallic fusion divertor material

    International Nuclear Information System (INIS)

    Heinola, K.

    2010-01-01

    For achieving efficient fusion energy production, the plasma-facing wall materials of the fusion reactor should ensure long time operation. In the next step fusion device, ITER, the first wall region facing the highest heat and particle load, i.e. the divertor area, will mainly consist of tiles based on tungsten. During the reactor operation, the tungsten material is slowly but inevitably saturated with tritium. Tritium is the relatively short-lived hydrogen isotope used in the fusion reaction. The amount of tritium retained in the wall materials should be minimized and its recycling back to the plasma must be unrestrained, otherwise it cannot be used for fueling the plasma. A very expensive and thus economically not viable solution is to replace the first walls quite often. A better solution is to heat the walls to temperatures where tritium is released. Unfortunately, the exact mechanisms of hydrogen release in tungsten are not known. In this thesis both experimental and computational methods have been used for studying the release and retention of hydrogen in tungsten. The experimental work consists of hydrogen implantations into pure polycrystalline tungsten, the determination of the hydrogen concentrations using ion beam analyses (IBA) and monitoring the out-diffused hydrogen gas with thermodesorption spectrometry (TDS) as the tungsten samples are heated at elevated temperatures. Combining IBA methods with TDS, the retained amount of hydrogen is obtained as well as the temperatures needed for the hydrogen release. With computational methods the hydrogen-defect interactions and implantation-induced irradiation damage can be examined at the atomic level. The method of multiscale modelling combines the results obtained from computational methodologies applicable at different length and time scales. Electron density functional theory calculations were used for determining the energetics of the elementary processes of hydrogen in tungsten, such as diffusivity and

  8. Plasma surface interactions in controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L. [and others

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak.

  9. Surface heat flux feedback controlled impurity seeding experiments with Alcator C-Mod’s high-Z vertical target plate divertor: performance, limitations and implications for fusion power reactors

    Science.gov (United States)

    Brunner, D.; Wolfe, S. M.; LaBombard, B.; Kuang, A. Q.; Lipschultz, B.; Reinke, M. L.; Hubbard, A.; Hughes, J.; Mumgaard, R. T.; Terry, J. L.; Umansky, M. V.; The Alcator C-Mod Team

    2017-08-01

    The Alcator C-Mod team has recently developed a feedback system to measure and control surface heat flux in real-time. The system uses real-time measurements of surface heat flux from surface thermocouples and a pulse-width modulated piezo valve to inject low-Z impurities (typically N2) into the private flux region. It has been used in C-Mod to mitigate peak surface heat fluxes  >40 MW m-2 down to    1. While the system works quite well under relatively steady conditions, use of it during transients has revealed important limitations on feedback control of impurity seeding in conventional vertical target plate divertors. In some cases, the system is unable to avoid plasma reattachment to the divertor plate or the formation of a confinement-damaging x-point MARFE. This is due to the small operational window for mitigated heat flux in the parameters of incident plasma heat flux, plasma density, and impurity density as well as the relatively slow response of the impurity gas injection system compared to plasma transients. Given the severe consequences for failure of such a system to operate reliably in a reactor, there is substantial risk that the conventional vertical target plate divertor will not provide an adequately controllable system in reactor-class devices. These considerations motivate the need to develop passively stable, highly compliant divertor configurations and experimental facilities that can test such possible solutions.

  10. Engineering design of a toroidal divertor for the EBT-S fusion device. Final report, Phase II. EBT-S divertor project

    International Nuclear Information System (INIS)

    Mai, L.P.; Malick, F.S.

    1981-01-01

    The mechanical, structural, thermal, electrical, and vacuum design of a magnetic toroidal divertor system for the Elmo Bumpy Torus (EBT-S) is presented. The EBT-S is a toroidal magnetic fusion device located at the ORNL that operates under steady state conditions. The engineering of the divertor was performed during the second of three phases of a program aimed at the selection, design, fabrication, and installation of a magnetic divertor for EBT-S. The magnetic analysis of the toroidal divertor was performed during Phase I of the program and has been reported in a separate document. In addition to the details of the divertor design, the modest modifications that are required to the EBT-S device and facility to accommodate the divertor system are presented

  11. Physical study of experimental fusion breeder FEB divertor

    International Nuclear Information System (INIS)

    Zhu Yukun; Zhou Xiaobing; Huang Jinhua; Feng Kaiming; Deng Peizhi; Huo Tiejun

    1999-10-01

    The physical study of FEB divertor is presented. In order to improve the impurity control and increase ion-neutral interactions in the divertor, the configuration of the divertor is optimized to be the close type in the engineering design activity compared with the open type in the early conceptual activity. The operation mode of the divertor is designed to be partial detached plasma mode under conditions of combination gas-puffing with impurity injection. The position of gas-puffing is optimized to be at the torus mid-plane with NEWT1D code from the viewpoint of impurity retention and radiation in the scrape-off layer/divertor region. Boron is chosen as the injected impurity. The effect of boron impurity injection is evaluated from the reduced heat load on the divertor target. The plasma pressure drop along the scrape-off layer/divertor region is estimated with the two-point transport model and impurity radiation model in the dynamic gas target concept. The simulation results show that the plasma pressure drop factor f p is not only related to the radiation fraction f rad but also related greatly to the stagnation point density n s

  12. Studies of power exhaust and divertor design for a 1.5 GW-level fusion power DEMO

    Science.gov (United States)

    Asakura, N.; Hoshino, K.; Suzuki, S.; Tokunaga, S.; Someya, Y.; Utoh, H.; Kudo, H.; Sakamoto, Y.; Hiwatari, R.; Tobita, K.; Shimizu, K.; Ezato, K.; Seki, Y.; Ohno, N.; Ueda, Y.; Joint Special TeamDEMO Design

    2017-12-01

    Power exhaust to the divertor and the conceptual design have been investigated for a steady-state DEMO in Japan with 1.5 GW-level fusion power and the major radius of 8.5 m, where the plasma parameters were revised appropriate for the impurity seeding scenario. A system code survey for the Ar impurity seeding suggested the volume-averaged density, impurity concentration and exhaust power from the main plasma of {{P}sep ~ }   =  205-285 MW. The divertor plasma simulation (SONIC) was performed in the divertor leg length of 1.6 m with the fixed exhaust power to the edge of {{P}out}   =  250 MW and the total radiation fraction at the edge, SOL and divertor ({{P}rad}/{{P}out}   =  0.8), as a first step to investigate appropriate design of the divertor size and geometry. At the outer target, partial detachment was produced near the strike-point, and the peak heat load ({{q}target} ) at the attached region was reduced to ~5 MW m-2 with appropriate fuel and impurity puff rates. At the inner divertor target, full detachment of ion flux was produced and the peak {{q}target} was less than 10 MW m-2 mostly due to the surface-recombination. These results showed a power exhaust scenario and the divertor design concept. An integrated design of the water-cooling heat sink for the long leg divertor was proposed. Cu-ally (CuCrZr) cooling pipe was applicable as the heat sink to handle the high heat flux near the strike-point, where displacements per atom rate was estimated to be 0.5-1.5 per year by neutronics calculation. An arrangement of the coolant rooting for Cu-alloy and Reduced Activation Ferritic Martensitic (RAFM) steel (F82H) pipes in a divertor cassette was investigated, and the heat transport analysis of the W-monoblock and Cu-alloy pipe under the peak {{q}target} of 10 MWm-2 and nuclear heating was performed. The maximum temperatures on the W-surface and Cu-alloy pipe were 1021 and 331 °C. Heat flux of 16 MW m-2 was distributed in the major part

  13. Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices

    Science.gov (United States)

    Guo, H. Y.; Hill, D. N.; Leonard, A. W.; Allen, S. L.; Stangeby, P. C.; Thomas, D.; Unterberg, E. A.; Abrams, T.; Boedo, J.; Briesemeister, A. R.; Buchenauer, D.; Bykov, I.; Canik, J. M.; Chrobak, C.; Covele, B.; Ding, R.; Doerner, R.; Donovan, D.; Du, H.; Elder, D.; Eldon, D.; Lasa, A.; Groth, M.; Guterl, J.; Jarvinen, A.; Hinson, E.; Kolemen, E.; Lasnier, C. J.; Lore, J.; Makowski, M. A.; McLean, A.; Meyer, B.; Moser, A. L.; Nygren, R.; Owen, L.; Petrie, T. W.; Porter, G. D.; Rognlien, T. D.; Rudakov, D.; Sang, C. F.; Samuell, C.; Si, H.; Schmitz, O.; Sontag, A.; Soukhanovskii, V.; Wampler, W.; Wang, H.; Watkins, J. G.

    2016-12-01

    A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, which we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). This paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.

  14. Modeling of fully-developed, liquid metal, thin film flows for fusion divertor applications

    International Nuclear Information System (INIS)

    Morley, N.B.; Abdou, M.A.

    1995-01-01

    Interest in thin film flows of liquid metal (LM) in a strong magnetic field has increased due to the possible application of such flows to the protection of divertor surfaces in a tokamak fusion reactor. In order to investigate the behavior of such a thin film flow in the fully-developed limit, a two-dimensional numerical model of open-channel, magnetohydrodynamic (MHD) flow has been constructed. This flow is contained in a chute of arbitrary electrical conductance with a magnetic field perpendicular to the flow direction but with arbitrary azimuthal orientation. Results of this self-consistent model are used to examine issues of importance to the successful fusion divertor application of thin film flow, such as the uniform film height and heat transfer of the films. It is seen that the flow height can be dominated by even a small transverse component of the field, rather than the stronger coplanar component, due to the elongated nature of the film. The model is also used to determine the validity of the Hartmann-averaging technique, an approximation used extensively in previous developing film models to account for the effects of a dominant coplanar field. This Hartmann-averaging is shown to be accurate in predicting the behavior of the core flow in the strong coplanar MHD interaction regimes, but cannot predict the flow quantity in parallel layer jets that can make up an appreciable portion of the flow. The Hartmann-averaging method is seen to be unsuitable for elongated flows dominated by the transverse field component. (orig.)

  15. Optimization design study of an innovative divertor concept for future experimental tokamak-type fusion reactors

    International Nuclear Information System (INIS)

    Willem Janssens, Ir.; Crutzen, Y.; Farfaletti-Casali, F.; Matera, R.

    1991-01-01

    The design optimization study of an innovative divertor concept for future experimental tokamak-type fusion devices is both an answer to the actual problems encountered in the multilayer divertor proposals and an illustration of a rational modelling philosophy and optimization strategy for the development of a new divertor structure. Instead of using mechanical attachment or metallurgical bonding of the protective material to the heat sink as in most actual divertor concepts, the so-called brush divertor in this study uses an array of unidirectional fibers penetrating in both the protective armor and the underling composite heat sink. Although the approach is fully concentrated on the divertor performance, including both a description of its function from the theoretical point of view and an overview of the problems related to the materials choice and evaluation, both the approach followed in the numerical modelling and the judgment of the results are thought to be valid also for other applications. Therefore the spin-off of the study must be situated in both the technological progress towards a feasible divertor solution, which introduces no additional physical uncertainties, and in the general area of the thermo-mechanical finite-element modelling on both macro-and microscale. The brush divertor itself embodies the use, and thus the modelling, of advanced materials such as tailor-made metal matrix composites and dispersion strengthened metals, and is shown to offer large potential advantages, demanding however and experimental validation under working conditions. It is clearly indicated where the need originates for an integrated experimental program which must allow to verify the basic modelling assumptions in order to arrive at the use of numerical computation as a powerful and realistic tool of structural testing and life-time prediction

  16. Reduction of surface erosion in fusion reactors

    International Nuclear Information System (INIS)

    Rossing, T.D.; Das, S.K.; Kaminsky, M.

    1976-01-01

    Some of the major processes leading to surface erosion in fusion reactors are reviewed briefly, including blistering by implanted gas, sputtering by ions, atoms, and neutrons, and vaporization by local heating. Surface erosion affects the structural integrity and limits the lifetime of reactor components exposed to plasma radiation. In addition, some of the processes leading to surface erosion also cause the release of plasma contaminants. Methods proposed to reduce surface erosion have included control of surface temperature, selection of materials with a favorable microstructure, chemical and mechanical treatment of surfaces, and employment of protective surface coatings, wall liners, and divertors. The advantages and disadvantages of some of these methods are discussed

  17. Energy system for the generation of divertor magnetic fields in the PDX fusion research device

    International Nuclear Information System (INIS)

    Turitzin, N.M.

    1976-05-01

    One of the major problems encountered in the development of Tokamak type fusion reactors is the presence of impurities in the plasma. The PDX device is designed to study the operation of poloidal magnetic field divertors and consequent magnetic limiters for controlling and reducing the amount of impurities. A system of coils placed at specific locations produces a required field configuration for the poloidal divertor. This paper describes the system of energy supplies required and the interrelations of field coil currents during plasma current initiation, growth and steady state

  18. US assessment of free surface liquid metal divertors -- Design analysis and R and D needs

    International Nuclear Information System (INIS)

    Mattas, R.F.

    1997-01-01

    One of the objectives of the restructured US Fusion Energy Sciences Program is to identify and evaluate new high performance concepts for advanced technology with high neutron wall load capability and attractive safety and environmental features. One promising technology specified by the Advanced Technologies and Materials Working Group is liquid plasma-facing surfaces for divertors. Some of the possible advantages of using liquid surfaces in divertors, relative to conventional solid surface approaches, include higher surface heat flux capability, continuously renewable surfaces, and higher temperature operation. A planning activity has been undertaken to identify the work to be performed over approximately three years to evaluate liquid surface concepts on the basis of such factors as their compatibility with fusion plasmas, high power density handling capabilities, engineering feasibility, lifetime, safety, and R and D requirements. A group, known as the Advanced Liquid Plasma-facing Surface (ALPS) planning group, was organized to prepare a plan for the activities needed to conduct such an evaluation. This paper will summarize the work of the ALPS group including recommendations on specific activities and a tentative schedule

  19. Surface heat loads on the ITER divertor vertical targets

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Carpentier-Chouchana, S.; Escourbiac, F.; Hirai, T.; Panayotis, S.; Pitts, R.A.; Corre, Y.; Dejarnac, Renaud; Firdaouss, M.; Kočan, M.; Komm, Michael; Kukushkin, A.; Languille, P.; Missirlian, M.; Zhao, W.; Zhong, G.

    2017-01-01

    Roč. 57, č. 4 (2017), č. článku 046025. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : ITER * divertor * ELM heat load * inter-ELM heat load * tungsten Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa5e2a

  20. European development of He-cooled divertors for fusion power plants

    International Nuclear Information System (INIS)

    Norajitra, P.; Giniyatulin, R.; Kuznetsov, V.; Mazul, I.; Ovchinnikov, I.; Ihli, T.; Janeschitz, G.; Krauss, W.; Kruessmann, R.; Karditsas, P.; Maisonnier, D.; Sardain, P.; Nardi, C.; Papastergiou, S.; Pizzuto, A.

    2005-01-01

    Helium-cooled divertor concepts are considered suitable for use in fusion power plants for safety reasons, as they enable the use of a coolant compatible with any blanket concept, since water would not be acceptable e.g. in connection with ceramic breeder blankets using large amounts of beryllium. Moreover, they allow for a high coolant exit temperature for increasing the efficiency of the power conversion system. Within the framework of the European power plant conceptual study (PPCS), different helium-cooled divertor concepts based on different heat transfer mechanisms are being investigated at ENEA Frascati, Italy, and Forschungszentrum Karlsruhe, Germany. They are based on a modular design which helps reduce thermal stresses. The design goal is to withstand a high heat flux of about 10-15 MW/m 2 , a value which is considered relevant to future fusion power plants to be built after ITER. The development and optimisation of the divertor concepts require an iterative design approach with analyses, studies of materials and fabrication technologies, and the execution of experiments. These issues and the state of the art of divertor development shall be the subject of this report. (author)

  1. Divertor erosion study for TPX and implications for steady-state fusion reactors

    International Nuclear Information System (INIS)

    Brooks, J.N.

    1995-01-01

    A sputtering erosion analysis was performed for the tilted plate divertor design of the proposed TPX tokamak. High temperature (∼ 100 eV), non-radiative, steady-state compatible, plasma edge conditions were used as input to the REDEP erosion/redeposition code. For the reference carbon surface the results show a stable erosion profile, i.e., non-runaway self-sputtering, in spite of carbon self-sputtering coefficients that are locally in excess of unity. The resulting net erosion rates are high (peak ∼ 1--2.5 m/burn-yr) but may be acceptable for a low duty factor experimental device such as TPX. Other surface materials were also analyzed, in part to obtain insight for fusion reactor designs using a similar plasma regime. Both medium and high-Z materials are predicted not to work, due to runaway self-sputtering. Beryllium is stable but has erosion rates as high or higher than carbon. A liquid metal lithium surface has stable sputtering with a zero-erosion potential and may thus be an attractive future material choice

  2. Divertor erosion study for TPX and implications for steady-state fusion reactors

    International Nuclear Information System (INIS)

    Brooks, J.N.

    1995-01-01

    A sputtering erosion analysis was performed for the tilted plate divertor design of the proposed TPX tokamak. High temperature (∼100 eV), non-radiative, steady-state compatible, plasma edge conditions were used as input to the REDEP erosion/redeposition code. For the reference carbon surface the results show a stable erosion profile, i.e., non-runaway self-sputtering, in spite of carbon self-sputtering coefficients that are locally in excess of unity. The resulting net erosion rates are high (peak ∼1--2.5 m/burn-yr) but may be acceptable for a low duty factor experimental device such as TPX. Other surface materials were also analyzed, in part to obtain insight for fusion reactor designs using a similar plasma regime. Both medium and high-Z materials are predicted not to work, due to runaway self-sputtering. Beryllium is stable but has erosion rates as high or higher than carbon. A liquid metal lithium surface has stable sputtering with a zero-erosion potential and may thus be an attractive future material choice

  3. Carbon-metal brazing for divertor plates in fusion devices

    Science.gov (United States)

    Matsuda, T.; Matsumoto, Takashi; Miki, Sokan; Sogabe, T.; Okada, M.; Kubota, Yoshinobu; Sagara, A.; Noda, N.; Motojima, O.; Hino, T.; Yamashina, T.

    1993-02-01

    A diverter unit, which consists of carbon armors brazed to a copper cooling channel, is under development for fusion devices. Isotropic graphite (IG-430U) and CFC (CX-2002U) are used for the armor, and a copper for the cooling tube. A technique named `dissolution and deposit of base metal' was employed for brazing. The reliability of the brazed components was evaluated both by a 4-point bending test and a thermal shock test. According to the results of the 4-point bending test under the temperature ranged from RT to 800 degree(s)C in a vacuum, it was found that the strength of the brazed surface at RT was maintained up to the higher temperature, 600 degree(s)C. A high heat load test has also been performed on the brazed sample in order to find out whether the samples meet the requirement of the diverter plates of LHD. Active Cooling Teststand (ACT:NIFS) with an electron beam power of 100 kW was used. In LHD, it is presumed that the maximum heat flux is 10 MW/m2. In addition, the surface temperature of the diverter has to be kept below 1200 degree(s)C to avoid RES, by active cooling. The heat load test showed that the brazing components of CX-2002U (flat plate type CFC-Cu brazed) were stable at 1300 degree(s)C under a heat flux of 10 MW/m2, when the flow velocity of cooling water was 6 m/s. No damage nor deterioration was found at the brazed zone after the heat load test.

  4. Comparative studies of liquid metals for an alternative divertor target in a fusion reactor

    Science.gov (United States)

    Tabarés, F. L.; Oyarzabal, E.; Tafalla, D.; Martin-Rojo, A. B.; Pastor, I.; Ochando, M. A.; Medina, F.; Zurro, B.; McCarthy, K. J.; the TJ-II Team

    2017-12-01

    Two liquid metals (LM), Li and LiSn (20:80 at), presently considered as alternative materials for the divertor target of a fusion reactor, have been exposed to the plasma in a capillary porous system (CPS) arrangement in TJ-II. A negligible perturbation of the plasma has been recorded in both cases, even when stellarator plasmas are particularly sensitive to high Z elements due to the tendency to central impurity accumulation. The surface temperature of the LM CPS samples (made of a tungsten mesh impregnated in SnLi or Li) has been measured during the plasma pulse with ms resolution by pyrometry and the thermal balance during heating and cooling has been used to obtain the thermal parameters of the SnLi and Li CPS arrangements. Temperatures as high as 1150 K during TJ-II plasma exposure were observed for the LiSn solid case. Strong changes in the thermal conductivity of the alloy were recorded in the cooling phase at temperatures close to the nominal melting point. The deduced values for the thermal conductivity of the LiSn alloy/CPS sample were significantly lower than those predicted from their individual components.

  5. Magnetic divertors

    International Nuclear Information System (INIS)

    Keilhacker, M.

    1978-01-01

    The different needs for divertors in large magnetic confinement experiments and prospective fusion reactors are summarized, special emphasis being placed on the problem of impurities. After alternative concepts for reducing the impurity level are touched on, the basic principle and the different types of divertors are described. The various processes in the scrape-off and divertor regions are discussed in greater detail. The dependence of the effectiveness of the divertor on these processes is illustrated from the examples of an ASDEX/PDX-size and a reactor-size tokamak. Various features determining the design of a divertor are dealt with. Among the physical requirements are the stability of the plasma column and divertor throat and the problems relating to the start-up phase. On the engineering side, there are requirements on the pumping speed and energy deposition, and for a reactor, the need for superconducting coils, neutron shields and remote disassembly

  6. Divertor detachment

    Science.gov (United States)

    Krasheninnikov, Sergei

    2015-11-01

    The heat exhaust is one of the main conceptual issues of magnetic fusion reactor. In a standard operational regime the large heat flux onto divertor target reaches unacceptable level in any foreseeable reactor design. However, about two decades ago so-called ``detached divertor'' regimes were found. They are characterized by reduced power and plasma flux on divertor targets and look as a promising solution for heat exhaust in future reactors. In particular, it is envisioned that ITER will operate in a partly detached divertor regime. However, even though divertor detachment was studied extensively for two decades, still there are some issues requiring a new look. Among them is the compatibility of detached divertor regime with a good core confinement. For example, ELMy H-mode exhibits a very good core confinement, but large ELMs can ``burn through'' detached divertor and release large amounts of energy on the targets. In addition, detached divertor regimes can be subject to thermal instabilities resulting in the MARFE formation, which, potentially, can cause disruption of the discharge. Finally, often inner and outer divertors detach at different plasma conditions, which can lead to core confinement degradation. Here we discuss basic physics of divertor detachment including different mechanisms of power and momentum loss (ionization, impurity and hydrogen radiation loss, ion-neutral collisions, recombination, and their synergistic effects) and evaluate the roles of different plasma processes in the reduction of the plasma flux; detachment stability; and an impact of ELMs on detachment. We also evaluate an impact of different magnetic and divertor geometries on detachment onset, stability, in- out- asymmetry, and tolerance to the ELMs. Supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-DE-FG02-04ER54739 at UCSD.

  7. Development of a non destructive evaluation system using infrared images for divertor on nuclear fusion experiment reactor

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Suzuki, Satoshi; Ezato, Koichiro; Seki, Yohji; Enoeda, Mikio; Akiba, Masato

    2008-01-01

    An infrared thermography NDE facility which is utilized in the acceptance test of ITER divertor components has been developed in JAEA. This NDE facility can inspect the integrity of the bonding interface of the divertor components based on its surface temperature response by means of switching of hot (95 deg C)/cold (5 deg C) water. The advantages of this facility are 1) to have active coolant purging system which enables rapid temperature change and 2) to inspect the surface and the both side walls of three components at a time. We have conduct test operation for the divertor mockups and have found sufficient performance to implement the required acceptance test of the ITER divertor components. (author)

  8. An arc-resistant target for the divertor of a fusion reactor

    International Nuclear Information System (INIS)

    Hugill, J.

    1979-01-01

    If the α-particle energy released by a D-T fusion reactor is channelled onto a target by means of a magnetic divertor, the plasma temperature in the exhaust is several keV for reasonable fractional burn-up in the reacting plasma. This leads to a high potential across the sheath between the plasma and a material target, which can initiate unipolar arcs between the plasma and target, eroding the target and contaminating the plasma. However, it is shown that a target composed of a cloud of sufficiently small solid spheres could, in principle, be free from unipolar arcs. Various design considerations lead to a sphere radius in the range 0.1 to about 1 mm. (orig.)

  9. Conceptual design of a high temperature water-cooled divertor for a fusion power reactor

    International Nuclear Information System (INIS)

    Giancarli, L.; Bonal, J.P.; Puma, A. Li; Michel, B.; Sardain, P.; Salavy, J.F.

    2005-01-01

    This paper presents the conceptual design of a water-cooled divertor target using EUROFER as structural material, water coolant pressure and outlet temperature, respectively, of 15.5 MPa and 325 o C, and W-alloy monoblocks as armour. Assuming an advanced interface, formed by a thermal barrier in the pipe front part and a compliance layer between W and steel, this concept is able to withstand an incident surface heat flux of 15 MW/m 2 . Both thermal barrier and compliance layer are made of carbon-based materials. The main issues are the manufacturing process of the steel/W interface, and the behaviour under irradiation of graphite materials

  10. Micromechanical modelling of functionally graded W-Cu materials for divertor plate components in a fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gasik, M.M. [Helsinki Univ. of Technol. (Finland); Ueda, S.

    1999-10-01

    Thermonuclear fusion process implementation has many materials problems and one of them is related to removal of impurities from plasma. In the International thermonuclear experimental reactor (ITER), a divertor concept has been incorporated for this purpose. In this work, the development of a micromechanical model for FGM is presented and its application to thermal-elasto-plastic analysis is discussed for the case of W-Cu FGM for ITER divertor plates. The model allows the prediction of basic properties of 3-D FGM, computations of thermal stresses, and, in some limits, it may be used for pre-design evaluation of dynamic strain/stress distribution and inelastic behaviour. The model is found to be very useful at the first stages of graded materials design and computation of properties in the nodal points for more detailed numerical analysis. (orig.) 10 refs.

  11. Surface erosion issues and analysis for dissipative divertors

    International Nuclear Information System (INIS)

    Brooks, J.N.; Ruzic, D.N.; Hayden, D.B.; Turkot, R.B. Jr.

    1994-05-01

    Erosion/redeposition is examined for the sidewall of a dissipative divertor using coupled impurity transport, charge exchange, and sputtering codes, applied to a plasma solution for the ITER design. A key issue for this regime is possible runaway self-sputtering, due to the effect of a low boundary density and nearly parallel field geometry on redeposition parameters. Net erosion rates, assuming finite self-sputtering, vary with wall location, boundary conditions, and plasma solution, and are roughly of the following order: 200--2000 angstrom/s for beryllium, 10--100 angstrom/s for vanadium, and 0.3--3 angstrom/s for tungsten

  12. Engineering structure and thermal-technical analysis of fusion experimental breeder FEB divertor

    International Nuclear Information System (INIS)

    Feng Kaiming; Huang Jinhua; Zhu Yukun; Deng Peizhi; Zhou Xiaobing; Wang Min; Huo Tiejun

    1999-10-01

    On the basis of the physical study of FEB divertor, the engineering structure and thermal-technical analysis of FEB divertor are presented. In order to improve the impurity control and to increase ion-neutral interactions in the divertor, the configuration of the divertor is optimized to be the close type in the engineering design activity compared with the open type in the early conceptual activity. The operation mode of the divertor is designed to be partial detached plasma mode under conditions of combination gas-puffing with impurity injection. The position of gas-puffing is optimized at the torus mid-plane with NEWT1D code from the view point of impurity retention and radiation in the scrape-off layer/divertor region. The divertor structure is consisted of 48 rounded cassette modules. The thermal-technical calculations are carried out with COSMOS/M-HSTAR code for target plates. The result showed that the He-cooled target with 4 MPa coolant pressure and radial flowing is feasible

  13. LHD helical divertor

    International Nuclear Information System (INIS)

    Ohyabu, N.; Watanabe, T.; Ji Hantao

    1993-07-01

    The Large Helical Device (LHD) now under construction is a heliotron/torsatron device with a closed divertor system. The edge LHD magnetic structure has been studied in detail. A peculiar feature of the configuration is existence of edge surface layers, a complicated three dimensional magnetic structure which does not, however, seem to hamper the expected divertor functions. Two divertor operational modes are being considered for the LHD experiment, high density, cold radiative divertor operation as a safe heat removal scheme and high temperature divertor plasma operation. In the latter operation, a divertor plasma with temperature of a few kev, generated by efficient pumping, expects to lead to significant improvement in core plasma confinement. Conceptual designs of the LHD divertor components are under way. (author)

  14. Evaluation of copper alloys for fusion reactor divertor and first wall components

    DEFF Research Database (Denmark)

    Fabritsiev, S.A.; Zinkle, S.J.; Singh, B.N.

    1996-01-01

    This paper presents a critical analysis of the main factors of radiation damage limiting the possibility to use copper alloys in the ITER divertor and first wall structure. In copper alloys the most significant types of radiation damage in the proposed temperature-dose operation range are swellin...... strengthened copper (Cu-Al2O3) is considered to be the best candidate for high heat flux structural applications, followed by CuNiBe and CuCrZr.......This paper presents a critical analysis of the main factors of radiation damage limiting the possibility to use copper alloys in the ITER divertor and first wall structure. In copper alloys the most significant types of radiation damage in the proposed temperature-dose operation range are swelling......, creep, and low-temperature radiation embrittlement. Low-temperature radiation embrittlement at T-irr alloys, as their uniform elongation at T-test - T-irr - 100 degrees C drops...

  15. Thermal analysis of protruding surfaces in the JET divertor

    Czech Academy of Sciences Publication Activity Database

    Corre, Y.; Bunting, P.; Coenen, J.W.; Gaspar, J.; Iglesias, D.; Matthews, G.F.; Balboa, I.; Coffey, I.; Dejarnac, Renaud; Firdaouss, M.; Gauthier, E.; Jachmich, S.; Krieger, K.; Pitts, R.A.; Rack, M.; Silburn, S.A.

    2017-01-01

    Roč. 57, č. 6 (2017), č. článku 066009. ISSN 0029-5515 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : IR thermography * heat flux * tungsten melting Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa687e/meta

  16. Plasma-Surface Interaction Studies on DIII-D and Their Implications for Next-Step Fusion Experiments

    International Nuclear Information System (INIS)

    Whyte, D.G.

    2005-01-01

    Unique diagnostic and access features of the DIII-D tokamak, including a sample exposure system, have been used to carry out controlled and well-diagnosed plasma-surface interactions (PSI) experiments. An important contribution of the experiments has been the ability to link a given plasma exposure condition to a measured response of the plasma-facing surface and to thus understand the interaction. This has allowed for benchmarking certain aspects of erosion models, particularly near-surface particle transport. DIII-D has empirically quantified some of the PSI effects that will limit the operation availability and lifetime of future fusion devices, namely, net erosion limiting divertor plate lifetime and hydrogenic fuel retention in deposit layers. Cold divertor plasmas obtained with detachment can suppress net carbon divertor erosion, but many low-temperature divertor PSI phenomena remain poorly understood: nondivertor erosion sources, long-range particle transport, global erosion/deposition patterns, the enhancement of carbon erosion with neon impurity seeding, the sputtered carbon velocity distribution, and the apparent suppression of carbon chemical erosion in detachment. Long-term particle and energy fluences have reduced the chemical erosion yield of lower-divertor tiles. Plasma-caused modification of a material's erosion properties, including material mixing, will occur quickly and be important in long-pulse fusion devices, making prediction of PSI difficult in future devices

  17. Engineering design of the Aries-IV gaseous divertor

    International Nuclear Information System (INIS)

    Hasan, M.Z.; Najmabadi, F.; Sharafat, S.

    1994-01-01

    ARIES-IV is a conceptual, D-T burning, steady-state tokamak fusion reactor producing 1000 MWe net. It operates in the second plasma stability regime. The structural material is SiC composite and the primary coolant is helium at 10MPa base pressure. ARIES-IV uses double-null divertors for particle control. Total thermal power recovered from the divertors is 425MW, which is 16% of the total reactor thermal power. Among the desirable goals of divertor design were to avoid the use of tungsten and to use the same structural material and primary coolant as in the blanket design. In order to reduce peak heat flux, the innovative gaseous divertor has been used in ARIES-IV. A gaseous divertor reduces peak heat flux by increasing the surface area and by distributing particle and radiation energy more uniformly. Another benefit of gaseous divertor is the reduction of plasma temperature in the divertor chamber, so that material erosion due to sputtering, can be diminished. This makes the use of low-Z material possible in a gaseous divertor

  18. Evaluation of copper alloys for fusion reactor divertor and first wall components

    DEFF Research Database (Denmark)

    Fabritsiev, S.A.; Zinkle, S.J.; Singh, B.N.

    1996-01-01

    , creep, and low-temperature radiation embrittlement. Low-temperature radiation embrittlement at T-irr precipitation-hardened (PH) copper alloys, as their uniform elongation at T-test - T-irr - 100 degrees C drops...... to similar to 0.1% after irradiation doses of 0.01 to 0.1 dpa. At irradiation temperatures above 300 degrees C, pronounced softening occurs in PH copper alloys due to radiation-enhanced precipitate coarsening and dislocation recovery and recrystallization processes. The DS copper alloys are relatively......This paper presents a critical analysis of the main factors of radiation damage limiting the possibility to use copper alloys in the ITER divertor and first wall structure. In copper alloys the most significant types of radiation damage in the proposed temperature-dose operation range are swelling...

  19. Thermoelectric conversion at the divertor plates and the first wall of a fusion reactor

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Sagara, A.; Komori, A.; Tazima, T.; Motojima, O.; Iiyoshi, A.; Matsubara, K.; Onozuka, M.; Koganezawa, K.; Matsuda, T.

    1995-01-01

    We investigated thermoelectric conversion on the first wall and the divertor plates. Carbon, B 4 C, and other carbon-based materials were tested as components of a thermoelectric element. The heat flux from the plasma was assumed to be 400 kW/m 2 , and the cooling side temperature the fixed design parameter of either 350 K or 650 K. While differential radiation cooling was not considered in this study, a computer programme was used to estimate the distribution of temperature and thermal stress over the thermoelectric element. The three-legged element was conceived to be 20 cm long and 12 cm wide. The temperature in its arches reached almost 2500 K, and the maximal thermal stress was 80 MPa - still within the acceptable range for the ITER design parameter. The high thermoelectric power of B 4 C accounts for the thermal efficiency of 2.8% (for 650 K) or 3.3% (for 350 K). If we find an N-type semi-conductor material with the same high absolute value as B 4 C to replace carbon, the efficiency will improve to 9.4% (for 650 K) or 11% (for 350 K). Since plasma is a current-conducting medium, we discuss aspects of a plasma-connected thermoelectric element. Its efficiency would depend on the connection length of magnetic field and plasma parameters near the wall. (orig.)

  20. ELM induced divertor heat loads on TCV

    Czech Academy of Sciences Publication Activity Database

    Marki, J.; Pitts, R. A.; Horáček, Jan; Tskhakaya, D.; TCV, team.

    309-391, - (2009), s. 801-805 ISSN 0022-3115. [International Conference on Plasma-Surface Interactions in Controlled Fusion Devices/18th./. Toledo, 26.05.2008-30.5.2008] Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak TCV * divertor heat load * ELM * EVOLUTION * JET Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.933, year: 2009 http://dx.doi.org/10.1016/j.jnucmat.2009.01.212

  1. Molecular dynamics simulations of interactions between hydrogen and fusion-relevant materials

    NARCIS (Netherlands)

    de Rooij, E.D.

    2010-01-01

    In a thermonuclear reactor fusion between hydrogen isotopes takes place, producing helium and energy. The so-called divertor is the part of the fusion reactor vessel where the plasma is neutralized in order to exhaust the helium. The surface plates of the divertor are subjected to high heat loads

  2. Thermomechanical simulation of WEST actively cooled upper divertor

    International Nuclear Information System (INIS)

    Batal, T.; Richou, M.; Guilhem, D.; Firdaouss, M.; Larroque, S.; Ferlay, F.; Missirlian, M.; Bucalossi, J.

    2016-01-01

    The Tore Supra tokamak is being transformed in an x-point divertor fusion device in the frame of the WEST (W-for tungsten-Environment in Steady-state Tokamak) project, launched in support to the ITER tungsten divertor strategy. The WEST project aims to test ITER-like W monoblock Plasma Facing Units (PFU). This ITER-like divertor will be tested under long plasma discharge up to 1000 s, with high heat flux density up to 20 MW/m 2 . This paper presents the results of ANSYS thermal-structural simulations of the WEST upper divertor. The upper divertor is made of twelve 30° sectors, each one composed of 38 PFU. The PFUs are actively cooled CuCrZr heat sinks and the incidence surface is coated with a thin tungsten layer. The fixing system is made of pins engaged in slotted holes. Besides, the fixing system of the sector assembly is the same as WEST lower divertor, so one upper divertor sector can be used indifferently in upper or Lower position during transitional operation phases in WEST. The total surface of the upper divertor is 8 m 2 , and it has to be able to extract up to 4 MW in steady-state, with peak heat flux values up to 8 MW/m 2 . The fixing system was designed to handle structural loads such as forces and torques resulting from halo and eddy current, respectively, especially during disruptions and Vertical Displacement Event (VDE). The torque resulting from eddy current is first calculated thanks to an internal CEA ANSYS APDL routine. Then the ANSYS structural and thermal-structural simulations of the PFU are presented, and its design is validated thanks to A-level RCC-MRx criteria. Finally, the most conservative load case is determined in order to validate the design of the pins and the support structure.

  3. Thermomechanical simulation of WEST actively cooled upper divertor

    Energy Technology Data Exchange (ETDEWEB)

    Batal, T., E-mail: tristan.batal@cea.fr; Richou, M.; Guilhem, D.; Firdaouss, M.; Larroque, S.; Ferlay, F.; Missirlian, M.; Bucalossi, J.

    2016-11-15

    The Tore Supra tokamak is being transformed in an x-point divertor fusion device in the frame of the WEST (W-for tungsten-Environment in Steady-state Tokamak) project, launched in support to the ITER tungsten divertor strategy. The WEST project aims to test ITER-like W monoblock Plasma Facing Units (PFU). This ITER-like divertor will be tested under long plasma discharge up to 1000 s, with high heat flux density up to 20 MW/m{sup 2}. This paper presents the results of ANSYS thermal-structural simulations of the WEST upper divertor. The upper divertor is made of twelve 30° sectors, each one composed of 38 PFU. The PFUs are actively cooled CuCrZr heat sinks and the incidence surface is coated with a thin tungsten layer. The fixing system is made of pins engaged in slotted holes. Besides, the fixing system of the sector assembly is the same as WEST lower divertor, so one upper divertor sector can be used indifferently in upper or Lower position during transitional operation phases in WEST. The total surface of the upper divertor is 8 m{sup 2}, and it has to be able to extract up to 4 MW in steady-state, with peak heat flux values up to 8 MW/m{sup 2}. The fixing system was designed to handle structural loads such as forces and torques resulting from halo and eddy current, respectively, especially during disruptions and Vertical Displacement Event (VDE). The torque resulting from eddy current is first calculated thanks to an internal CEA ANSYS APDL routine. Then the ANSYS structural and thermal-structural simulations of the PFU are presented, and its design is validated thanks to A-level RCC-MRx criteria. Finally, the most conservative load case is determined in order to validate the design of the pins and the support structure.

  4. Turbulent Simulations of Divertor Detachment Based On BOUT + + Framework

    Science.gov (United States)

    Chen, Bin; Xu, Xueqiao; Xia, Tianyang; Ye, Minyou

    2015-11-01

    China Fusion Engineering Testing Reactor is under conceptual design, acting as a bridge between ITER and DEMO. The detached divertor operation offers great promise for a reduction of heat flux onto divertor target plates for acceptable erosion. Therefore, a density scan is performed via an increase of D2 gas puffing rates in the range of 0 . 0 ~ 5 . 0 ×1023s-1 by using the B2-Eirene/SOLPS 5.0 code package to study the heat flux control and impurity screening property. As the density increases, it shows a gradually change of the divertor operation status, from low-recycling regime to high-recycling regime and finally to detachment. Significant radiation loss inside the confined plasma in the divertor region during detachment leads to strong parallel density and temperature gradients. Based on the SOLPS simulations, BOUT + + simulations will be presented to investigate the stability and turbulent transport under divertor plasma detachment, particularly the strong parallel gradient driven instabilities and enhanced plasma turbulence to spread heat flux over larger surface areas. The correlation between outer mid-plane and divertor turbulence and the related transport will be analyzed. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675075.

  5. Divertor, thermonuclear device and method of neutralizing high temperature plasma

    International Nuclear Information System (INIS)

    Ikegami, Hideo.

    1995-01-01

    The thermonuclear device comprises a thermonuclear reactor for taking place fusion reactions to emit fusion plasmas, and a divertor made of a hydrogen occluding material, and the divertor is disposed at a position being in contact with the fusion plasmas after nuclear fusion reaction. The divertor is heated by fusion plasmas after nuclear fusion reaction, and hydrogen is released from the hydrogen occluding material as a constituent material. A gas blanket is formed by the released hydrogen to cool and neutralize the supplied high temperature nuclear fusion plasmas. This prevents the high temperature plasmas from hitting against the divertor, elimination of the divertor by melting and evaporation, and solve a problem of processing a divertor activated by neutrons. In addition, it is possible to utilize hydrogen isotopes of fuels effectively and remove unnecessary helium. Inflow of impurities from out of the system can also be prevented. (N.H.)

  6. Advanced divertor experiments on DIII-D

    International Nuclear Information System (INIS)

    Schaffer, M.J.; Mahdavi, M.A.; Osborne, T.; Petrie, T.W.; Stambaugh, R.D.; Buchenauer, D.; Hill, D.N.; Klepper, C.C.

    1991-01-01

    The poloidal divertor is presently favored for next-step, high-power tokamaks. The DIII-D Advanced Divertor Program (ADP) aims to gain increased control over the divertor plasma and tokamak boundary conditions. This paper reports experiments done in the first phase of the ADP. The DIII-D lower divertor was modified by the addition of a toroidally symmetric, graphite-armoured, water-cooled divertor-biasing ring electrode at the entrance to a gas plenum. (In the past DIII-D operated with an open divertor.) The plenum will eventually contain a He cryogenic loop for active divertor pumping. The separatrix 'strike' position is controlled by the lower poloidal field shaping coils and can be varied smoothly from the ring electrode upper surface to the divertor floor far from the entrance aperture. External power, at up to 550 V and 8 kA separately, has been applied to the electrode to date. (author) 5 refs., 5 figs

  7. Divertor Materials Evaluation System (DiMES)

    International Nuclear Information System (INIS)

    Wong, C.P.; West, W.P.; Whyte, D.G.; Bastasz, R.J.; Brooks, J.; Wampler, W.R.

    1997-11-01

    The mission of the Divertor Materials Evaluation System (DiMES) in DIII-D is to establish an integrated data base from measurements in the divertor of a tokamak in order to address some of the ITER and fusion power reactor plasma material interaction issues. Carbon and metal coatings of Be, W, V, and Mo were exposed to the steady-state outer strike point on DIII-D for 4-18 s. These short exposure times ensure controlled exposure conditions, and the extensive arrays of DIII-D divertor diagnostics provide a well-characterized plasma for modeling efforts. Postexposure analysis provides a direct measure of surface material erosion rates and the amount of retained deuterium. For carbon, these results match closely with the results of accumulated carbon deposition and erosion, and the corresponding deuterium retention of long term exposure tiles in DIII-D. Deuterium retention of different materials was measured using the 3 He(d,p) 4 He nuclear reaction. For carbon, these measurements showed peak deuterium areal density of about 8 x 10 18 D/cm 2 in a co-deposited layer about 6 microm deep, mainly at the usually detached inboard divertor leg. That layer of carbon near the inner divertor strike point has an atomic saturation concentration of D/C ∼ 0.25, which is not significantly lower than the laboratory-measured saturation retention of 0.4. Under the carbon contaminated background plasma of DIII-D, metal coatings of Be, V, Mo, and W were exposed to the steady state outer strike point under ELMing and ELM-free H-mode discharges. The rate of material erosion and tritium retention were measured. As expected, W shows the lowest erosion rate at 0.1 nm/s and the lowest deuterium uptake

  8. Numerical analyses of plasma and neutral particle behavior and design criteria for poloidal divertor in fusion experimental reactor

    International Nuclear Information System (INIS)

    Sugihara, M.; Fujisawa, N.

    1984-01-01

    Divertor performance is investigated using a numerical model for various incoming ion and heat fluxes and geometrical configurations. It is shown that the solution is double-valued over a part of the range of the input fluxes, and that helium exhaust and cold and dense plasma formation will be attained even in open geometry for the expected range of the incoming ion flux. (orig.)

  9. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...

  10. Experimental studies of the snowflake divertor in TCV

    NARCIS (Netherlands)

    Labit, B.; Canal, G. P.; Christen, N.; Duval, B. P.; Lipschultz, B.; Lunt, T.; Nespoli, F.; Reimerdes, H.; Sheikh, U.; Theiler, C.; Tsui, C. K.; Verhaegh, K.; Vijvers, W. A. J.

    2017-01-01

    To address the risk that, in a fusion reactor, the conventional single-null divertor (SND) configuration may not be able to handle the power exhaust, alternative divertor configurations, such as the Snowflake divertor (SFD), are investigated in TCV. The expected benefits of the SFD-minus in terms of

  11. Optimization of a bundle divertor for FED

    International Nuclear Information System (INIS)

    Hively, L.M.; Rothe, K.E.; Minkoff, M.

    1982-01-01

    Optimal double-T bundle divertor configurations have been obtained for the Fusion Engineering Device (FED). On-axis ripple is minimized, while satisfying a series of engineering constraints. The ensuing non-linear optimization problem is solved via a sequence of quadratic programming subproblems, using the VMCON algorithm. The resulting divertor designs are substantially improved over previous configurations

  12. Method development for detecting divertor failures during steady state operation of Wendelstein 7X

    Energy Technology Data Exchange (ETDEWEB)

    Rodatos, Alexander; Jakubowski, Marcin; Sunn Pedersen, Thomas [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, Greifswald (Germany); Greuner, Henri [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, Garching (Germany)

    2015-05-01

    Wendelstein 7-X (W7-X) is stellarator fusion experiment, which will start operation in 2015. One of its goals is the demonstration of the stellarator concepts steady state capability while operating with fusion relevant plasma parameters. For particle and heat exhaust from the plasma a set of 10 island divertor units is installed in the machine. During the steady state operation they are exposed to a heat flux of up to 10MW/m{sup 2} for up to 30 min. Transient, even higher heat fluxes are possible. To guarantee the save operation of W7-X a continues surveillance of the divertor is mandatory, which is realized by a set of 10 infrared cameras observing the divertor surface. These data needs to be evaluated during the experiment identifying defects, surface layers and actual hot spots caused by overheating.

  13. High temperature divertor plasma operation

    International Nuclear Information System (INIS)

    Ohyabu, Nobuyoshi.

    1991-02-01

    High temperature divertor plasma operation has been proposed, which is expected to enhance the core energy confinement and eliminates the heat removal problem. In this approach, the heat flux is guided through divertor channel to a remote area with a large target surface, resulting in low heat load on the target plate. This allows pumping of the particles escaping from the core and hence maintaining of the high divertor temperature, which is comparable to the core temperature. The energy confinement is then determined by the diffusion coefficient of the core plasma, which has been observed to be much lower than the thermal diffusivity. (author)

  14. Statistical characterization of surface features from tungsten-coated divertor inserts in the DIII-D Metal Rings Campaign

    Science.gov (United States)

    Adams, Jacob; Unterberg, Ezekial; Chrobak, Christopher; Stahl, Brian; Abrams, Tyler

    2017-10-01

    Continuing analysis of tungsten-coated inserts from the recent DIII-D Metal Rings Campaign utilizes a statistical approach to study carbon migration and deposition on W surfaces and to characterize the pre- versus post-exposure surface morphology. A TZM base was coated with W using both CVD and PVD and allowed for comparison between the two coating methods. The W inserts were positioned in the lower DIII-D divertor in both the upper (shelf) region and lower (floor) region and subjected to multiple plasma shots, primarily in H-mode. Currently, the post-exposure W inserts are being characterized using SEM/EDX to qualify the surface morphology and to quantify the surface chemical composition. In addition, profilometry is being used to measure the surface roughness of the inserts both before and after plasma exposure. Preliminary results suggest a correlation between the pre-exposure surface roughness and the level of carbon deposited on the surface. Furthermore, ongoing in-depth analysis may reveal insights into the formation mechanism of nanoscale bumps found in the carbon-rich regions of the W surfaces that have not yet been explained. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  15. Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Tokitani, M., E-mail: tokitani.masayuki@LHD.nifs.ac.jp [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, M. [Shimane University, Matsue, Shimane 690-8504 (Japan); Masuzaki, S. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Fujii, Y. [Shimane University, Matsue, Shimane 690-8504 (Japan); Sakamoto, R. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Oya, Y. [Shizuoka University, Shizuoka 422-8529 (Japan); Hatano, Y. [University of Toyama, Toyama 930-8555 (Japan); Otsuka, T. [Kindai University, Higashi-Osaka, Osaka, 577-8502 (Japan); Oyaidzu, M.; Kurotaki, H.; Suzuki, T.; Hamaguchi, D.; Isobe, K.; Asakura, N. [National Institute for Quantum and Radiological Science and Technology (QST), Rokkasho Aomori 039-3212 (Japan); Widdowson, A. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Rubel, M. [Royal Institute of Technology (KTH), 100 44 Stockholm (Sweden)

    2017-03-15

    Highlights: • Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall were studied. • The stratified mixed-material deposition layer composed by W, C, O, Mo and Be with the thickness of ∼1.5 μm was formed on the apron of Tile 1. • The study revealed the micro- and nano-scale modification of the inner tile surface of the JET ILW. - Abstract: Micro-/nano-characterization of the surface structures on the divertor tiles used in the first campaign (2011–2012) of the JET tokamak with the ITER-like wall (JET ILW) were studied. The analyzed tiles were a single poloidal section of the tile numbers of 1, 3 and 4, i.e., upper, vertical and horizontal targets, respectively. A sample from the apron of Tile 1 was deposition-dominated. Stratified mixed-material layers composed of Be, W, Ni, O and C were deposited on the original W-coating. Their total thickness was ∼1.5 μm. By means of transmission electron microscopy, nano-size bubble-like structures with a size of more than 100 nm were identified in that layer. They could be related to deuterium retention in the layer dominated by Be. The surface microstructure of the sample from Tile 4 also showed deposition: a stratified mixed-material layer with the total thickness of 200–300 nm. The electron diffraction pattern obtained with transmission electron microscope indicated Be was included in the layer. No bubble-like structures have been identified. The surface of Tile 3, originally coated by Mo, was identified as the erosion zone. This is consistent with the fact that the strike point was often located on that tile during the plasma operation. The study revealed the micro- and nano-scale modification of the inner tile surface of the JET ILW. In particular, a complex mixed-material deposition layer could affect hydrogen isotope retention and dust formation.

  16. The influence of plasma-surface interaction on the performance of tungsten at the ITER divertor vertical targets

    Science.gov (United States)

    De Temmerman, G.; Hirai, T.; Pitts, R. A.

    2018-04-01

    The tungsten (W) material in the high heat flux regions of the ITER divertor will be exposed to high fluxes of low-energy particles (e.g. H, D, T, He, Ne and/or N). Combined with long-pulse operations, this implies fluences well in excess of the highest values reached in today’s tokamak experiments. Shaping of the individual monoblock top surface and tilting of the vertical targets for leading-edge protection lead to an increased surface heat flux, and thus increased surface temperature and a reduced margin to remain below the temperature at which recrystallization and grain growth begin. Significant morphology changes are known to occur on W after exposure to high fluences of low-energy particles, be it H or He. An analysis of the formation conditions of these morphology changes is made in relation to the conditions expected at the vertical targets during different phases of operations. It is concluded that both H and He-related effects can occur in ITER. In particular, the case of He-induced nanostructure (also known as ‘fuzz’) is reviewed. Fuzz formation appears possible over a limited region of the outer vertical target, the inner target being generally a net Be deposition area. A simple analysis of the fuzz growth rate including the effect of edge-localized modes (ELMs) and the reduced thermal conductivity of fuzz shows that the fuzz thickness is likely to be limited by the occurrence of annealing during ELM-induced thermal excursions. Not only the morphology, but the material mechanical and thermal properties can be modified by plasma exposure. A review of the existing literature is made, but the existing data are insufficient to conclude quantitatively on the importance and extent of these effects for ITER. As a consequence of the high surface temperatures in ITER, W recrystallization is an important effect to consider, since it leads to a decrease in material strength. An approach is proposed here to develop an operational budget for the W material, i

  17. Conceptual design of CFETR divertor remote handling compatible structure

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Huaichu, E-mail: yaodm@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei (China); Yao, Damao; Cao, Lei; Zhou, Zibo; Li, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • Conceptual design for the CFETR divertor have been proposed, especially the divertor remote handling compatible structure. • The degrees of freedom of the divertor are analyzed in order to validate the design the divertor supports structure. • Besides the ITER-like scheme, a new scheme for the divertor remote handling compatible supports is proposed, that is the rack and pinion mechanism. • The installation/removel process is verified through simulation in Delmia in order to check design quality for remote handling requirements. - Abstract: Divertor is one of key components of tokamak fusion reactor. The CFETR is China Fusion Engineering Test Reactor. Its divertor will expose to tritium environment and neutron radiation. Materials of the divertor will be radioactived, and cannot be handled by personnel directly. To develop structure which compatible with robots handle for installation, maintenance and removing is required. This paper introduces a conceptual design of CFETR divertor module which compatible with remote handling end-effectors. The divertor module is confined by inner and outer support. The inner support is only confined divertor module radial, toroidal and vertical moving freedom degrees, but not confined rotating freedom degrees. The outer support is the structure that can confine rotating freedom degrees and should also be compatible with remote handling end-effectors.

  18. Conceptual design of CFETR divertor remote handling compatible structure

    International Nuclear Information System (INIS)

    Dai, Huaichu; Yao, Damao; Cao, Lei; Zhou, Zibo; Li, Lei

    2016-01-01

    Highlights: • Conceptual design for the CFETR divertor have been proposed, especially the divertor remote handling compatible structure. • The degrees of freedom of the divertor are analyzed in order to validate the design the divertor supports structure. • Besides the ITER-like scheme, a new scheme for the divertor remote handling compatible supports is proposed, that is the rack and pinion mechanism. • The installation/removel process is verified through simulation in Delmia in order to check design quality for remote handling requirements. - Abstract: Divertor is one of key components of tokamak fusion reactor. The CFETR is China Fusion Engineering Test Reactor. Its divertor will expose to tritium environment and neutron radiation. Materials of the divertor will be radioactived, and cannot be handled by personnel directly. To develop structure which compatible with robots handle for installation, maintenance and removing is required. This paper introduces a conceptual design of CFETR divertor module which compatible with remote handling end-effectors. The divertor module is confined by inner and outer support. The inner support is only confined divertor module radial, toroidal and vertical moving freedom degrees, but not confined rotating freedom degrees. The outer support is the structure that can confine rotating freedom degrees and should also be compatible with remote handling end-effectors.

  19. Divertor retention for recycling impurities

    International Nuclear Information System (INIS)

    Krieger, K.; Roth, J.; Fussmann, G.

    1992-01-01

    As an important issue for fusion devices with divertor configurations the retention capability for both recycling and non-recycling impurities receives increasing interest. In the case of recycling, gaseous, impurities the retention capability is usually investigated by means of short impurity gas puffs into the plasma vessel and the analysis of the time dependence of the observed line radiation. The detailed understanding of the impurity transport processes related to the retention capability of a certain divertor structure will require modelling of the experimental results with 2D or 3D transport code simulations. However, for the comparison of the global behavior of different configurations a much simpler description of the divertor retention in terms of global time constants may be sufficient. We will give a summary of experimental results from ASDEX for the dependence of the retention capability on parameters like divertor plasma density and temperature and the distance along field lines between main plasma and divertor. In addition we will compare some of these results with similar experiments on DIIID. (author) 8 refs., 2 figs., 2 tabs

  20. Comparison between a pumped-limiter and a divertor for the next step machines

    International Nuclear Information System (INIS)

    Harrison, F.F.A.

    1985-01-01

    The paper presents a simple description of the physics issues which influence the conceptual design of a pumped-limiter and single-null poloidal divertor in a next step, long burn tokamak of NET/INTOR scale. Predicted performance of the limiter and divertor are compared in regard to localised recycling, sputtering of the plasma collection surfaces, penetration of sputtered impurities into the fusion plasma, surface power loading and exhaust of helium ash. It is concluded that the performance of the divertor is superior and that it can be predicted with a reasonable degree of confidence. The viability of the limiter remains in doubt but the concept cannot be rejected at the present time

  1. Advanced divertor concepts

    International Nuclear Information System (INIS)

    Ohyabu, N.; Komori, A.; Sagara, A.; Suzuki, H.; Morisaki, T.; Masuzaki, S.; Watanabe, T.; Noda, N.; Motojima, O.

    1996-01-01

    LHD divertor development program has generated various innovative divertor concepts and technologies which will help to improve the plasma performance in both helical and tokamak devices. They are two divertor operational scenarios (confinement improvement by generating high temperature divertor plasma and simultaneous achievement of radiative cooling and H-mode-like confinement improvement). Local island divertor geometry has also been proposed. This new divertor has been successfully tested in the CHS device and is planned to be installed in the LHD device. In addition, technological development of new efficient hydrogen pumping schemes (carbon sheet pump and membrane pump) are being pursued for enhancement of the divertor control capability. 17 refs., 8 figs

  2. Experimental studies of the snowflake divertor in TCV

    Directory of Open Access Journals (Sweden)

    B. Labit

    2017-08-01

    Full Text Available To address the risk that, in a fusion reactor, the conventional single-null divertor (SND configuration may not be able to handle the power exhaust, alternative divertor configurations, such as the Snowflake divertor (SFD, are investigated in TCV. The expected benefits of the SFD-minus in terms of power load and peak heat flux are discussed and compared to experimental measurements. In addition, key results obtained during the last years are summarized.

  3. Experimental study of the topological aspect of the ergodic divertor in Tore-supra tokamak; Etude experimentale des aspects topologiques du divertor ergodique de Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Costanzo, L

    2001-10-01

    The control of power deposition onto plasma facing components in tokamaks is a determining factor for future thermonuclear fusion reactors. Plasma surface interaction can be performed using limiters or divertors. The ergodic divertor installed on Tore Supra is an atypical example of a magnetic divertor. It consists in applying a magnetic perturbation which establishes a particular topology of the plasma in contact with the wall (edge plasma). We carried out dedicated experiments in order to study parallel heat flux which strike the divertor neutralizers. This quantitative and qualitative analysis of heat flux as a function of experimental conditions allows to determine the profiles of power deposition along the neutralizers. The influence of plasma electron density, additional heating, impurities and injected gas was established. An experimental study of the sheath heat transmission factor {gamma} was carried out by correlating measurements made with Langmuir probes and infrared imaging. This study gave rise to a major conclusion: for ohmic discharges with deuterium injection and most of the time with helium, it was experimentally confirmed that {gamma}=7 in agreement with classical sheath theory. However, an increase of this factor with additional power has been shown. Detached plasma, which is an attractive regime in order to reduce the power deposition, requires an optimized control. A new measurement of the detachment onset has been developed. It is based on the variation of heat flux onto the plates derived from infrared measurements. A detachment cartography with the determination of a new 2D 'IR' Degree of Detachment was carried out allowing to locate the zone where the detachment starts. We can apply this concept both to other tokamaks such as JET and ITER. A comparison between the axisymmetric divertor and the ergodic divertor is also presented concerning the power deposition in the two configurations. Low heat flux with the ergodic divertor is a

  4. Actively convected liquid metal divertor

    International Nuclear Information System (INIS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-01-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem. (letter)

  5. Actively convected liquid metal divertor

    Science.gov (United States)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  6. Cell-surface phosphatidylserine regulates osteoclast precursor fusion.

    Science.gov (United States)

    Verma, Santosh K; Leikina, Evgenia; Melikov, Kamran; Gebert, Claudia; Kram, Vardit; Young, Marian F; Uygur, Berna; Chernomordik, Leonid V

    2018-01-05

    Bone-resorbing multinucleated osteoclasts that play a central role in the maintenance and repair of our bones are formed from bone marrow myeloid progenitor cells by a complex differentiation process that culminates in fusion of mononuclear osteoclast precursors. In this study, we uncoupled the cell fusion step from both pre-fusion stages of osteoclastogenic differentiation and the post-fusion expansion of the nascent fusion connections. We accumulated ready-to-fuse cells in the presence of the fusion inhibitor lysophosphatidylcholine and then removed the inhibitor to study synchronized cell fusion. We found that osteoclast fusion required the dendrocyte-expressed seven transmembrane protein (DC-STAMP)-dependent non-apoptotic exposure of phosphatidylserine at the surface of fusion-committed cells. Fusion also depended on extracellular annexins, phosphatidylserine-binding proteins, which, along with annexin-binding protein S100A4, regulated fusogenic activity of syncytin 1. Thus, in contrast to fusion processes mediated by a single protein, such as epithelial cell fusion in Caenorhabditis elegans , the cell fusion step in osteoclastogenesis is controlled by phosphatidylserine-regulated activity of several proteins.

  7. Divertors for Helical Devices: Concepts, Plans, Results, and Problems

    International Nuclear Information System (INIS)

    Koenig, R.; Grigull, P.; McCormick, K.

    2004-01-01

    With Large Helical Device (LHD) and Wendelstein 7-X (W7-X), the development of helical devices is now taking a large step forward on the path to a steady-state fusion reactor. Important issues that need to be settled in these machines are particle flux and heat control and the impact of divertors on plasma performance in future continuously burning fusion plasmas. The divertor concepts that will initially be explored in these large machines were prepared in smaller-scale devices like Heliotron E, Compact Helical System (CHS), and Wendelstein 7-AS (W7-AS). While advanced divertor scenarios relevant for W7-X were already studied in W7-AS, other smaller-scale experiments like Heliotron-J, CHS, and National Compact Stellarator Experiment will be used for the further development of divertor concepts. The two divertor configurations that are being investigated are the helical and the island divertor, as well as the local island divertor, which was successfully demonstrated on CHS and just went into operation on LHD. At present, on its route to a fully closed helical divertor, LHD operates in an open helical divertor configuration. W7-X will be equipped right from the start with an actively cooled discrete island divertor that will allow quasi-continuous operation. The divertor design is very similar to the one explored on W7-AS. For sufficiently large island sizes and not too long field line connection lengths, this divertor gives access to a partially detached quasi-steady-state operating scenario in a newly found high-density H-mode operating regime, which benefits from high energy and low impurity confinement times, with edge radiation levels of up to 90% and sufficient neutral compression in the subdivertor region (>10) for active pumping. The basic physics of the different divertor concepts and associated implementation problems, like asymmetries due to drifts, accessibility of essential operating scenarios, toroidal asymmetries due to symmetry breaking error fields

  8. Divertors for helical devices: Concepts, plans, results and problems

    International Nuclear Information System (INIS)

    Koenig, R.; Grigull, P.; McCormick, K.

    2003-01-01

    With LHD and W7-X stellarator development is now taking a large leap forward on the path to a steady-state fusion reactor. Important issues that need to be settled in these machines are particle flux and heat control, and the impact of divertors on plasma performance in future continuously burning fusion plasmas. The divertor concepts that will initially be explored in these large stellarators were carefully prepared in smaller scale devices like Heliotron E, CHS and W7-AS. While advanced divertor scenarios relevant for W7-X were already studied in W7-AS, other smaller scale experiments like Heliotron-J, CHS and NCSX will be used for the further development of divertor concepts. The two divertor configurations that are presently being investigated, are the helical and the island divertor, as well as the local island divertor (LID), which was successfully demonstrated on CHS and just went into operation on LHD. Presently, on its route to a fully closed helical divertor, LHD operates in an open helical divertor configuration. W7-X will be equipped right from the start with an actively cooled discrete island divertor which will allow quasi continuous operation. The divertor design is very similar to the one explored on W7-AS. For sufficiently large island sizes and not too long field line connection lengths, this divertor gives access to a partially detached quasi steady-state operating scenario in a newly found high density H-mode operating regime, which benefits from high energy and extremely low impurity confinement times, with edge radiation levels of up to 90 % and sufficient neutral compression in the subdivertor region (> 10) for active pumping. The basic physics of the different divertor concepts and associated implementation problems, like asymmetries due to drifts, accessibility of essential operating scenarios and toroidal asymmetries due to symmetry breaking error fields, etc. will be discussed. (orig.)

  9. Manufacturing and joining technologies for helium cooled divertors

    International Nuclear Information System (INIS)

    Aktaa, J.; Basuki, W.W.; Weber, T.; Norajitra, P.; Krauss, W.; Konys, J.

    2014-01-01

    Highlights: • The manufacturing and joining technologies developed at KIT for helium cooled divertors are reviewed and critically discussed. • Various technologies have been pursued and further developed aiming divertor components with very high quality and sufficient reliability. • Very promising routes have been found for which however still R and D works are necessary. • Technologies developed are also useful for other divertor and even blanket concepts, particularly those with tungsten armor. - Abstract: In the helium cooled (HC) divertor, developed at KIT for a fusion power plant, tungsten has been selected as armor as well as structural material due to its crucial properties: high melting point, very low sputtering yield, good thermal conductivity, high temperature strength, low thermal expansion and low activation. Thereby the armor tungsten is attached to the structural tungsten by thermally conductive joint. Due to the brittleness of tungsten at low temperatures its use as structural material is limited to the high temperature part of the component and a structural joint to the reduced activation ferritic martensitic steel EUROFER97 is foreseen. Hence, to realize the selected hybrid material concept reliable tungsten–steel and tungsten–tungsten joints have been developed and will be reported in this paper. In addition, the modular design of the HC divertor requires tungsten armor tiles and tungsten structural thimbles to be manufactured in high numbers with very high quality. Due to the high strength and low temperature brittleness of tungsten special manufacturing techniques need to be developed for the production of parts with no cavities inside and/or surface flaws. The main achievement in developing the respective manufacturing technologies will be presented and discussed. To achieve the objectives mentioned above various manufacturing and joining technologies are pursued. Their later applicability depends on the level of development

  10. Surface roughness effects on plasma near a divertor plate and local impact angle

    Directory of Open Access Journals (Sweden)

    Wanpeng Hu

    2017-08-01

    Full Text Available The impact of rough surface topography on the electric potential and electric field is generally neglected due to the small scale of surface roughness compared to the width of the plasma sheath. However, the distributions of the electric potential and field on rough surfaces are expected to influence the characteristics of edge plasma and the local impact angle. The distributions of plasma sheath and local impact angle on rough surfaces are investigated by a two dimension-in-space and three dimension-in-velocity (2d3v Particle-In-Cell (PIC code. The influences of the plasma temperature andsurface morphology on the plasma sheath, local impact angle and resulting physical sputtering yield on rough surfaces are investigated.

  11. Experimental study of the topological aspect of the ergodic divertor in Tore-supra tokamak

    International Nuclear Information System (INIS)

    Costanzo, L.

    2001-10-01

    The control of power deposition onto plasma facing components in tokamaks is a determining factor for future thermonuclear fusion reactors. Plasma surface interaction can be performed using limiters or divertors. The ergodic divertor installed on Tore Supra is an atypical example of a magnetic divertor. It consists in applying a magnetic perturbation which establishes a particular topology of the plasma in contact with the wall (edge plasma). We carried out dedicated experiments in order to study parallel heat flux which strike the divertor neutralizers. This quantitative and qualitative analysis of heat flux as a function of experimental conditions allows to determine the profiles of power deposition along the neutralizers. The influence of plasma electron density, additional heating, impurities and injected gas was established. An experimental study of the sheath heat transmission factor γ was carried out by correlating measurements made with Langmuir probes and infrared imaging. This study gave rise to a major conclusion: for ohmic discharges with deuterium injection and most of the time with helium, it was experimentally confirmed that γ=7 in agreement with classical sheath theory. However, an increase of this factor with additional power has been shown. Detached plasma, which is an attractive regime in order to reduce the power deposition, requires an optimized control. A new measurement of the detachment onset has been developed. It is based on the variation of heat flux onto the plates derived from infrared measurements. A detachment cartography with the determination of a new 2D 'IR' Degree of Detachment was carried out allowing to locate the zone where the detachment starts. We can apply this concept both to other tokamaks such as JET and ITER. A comparison between the axisymmetric divertor and the ergodic divertor is also presented concerning the power deposition in the two configurations. Low heat flux with the ergodic divertor is a major advantage

  12. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    Science.gov (United States)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  13. Experimental and numerical investigation of the thermal performance of gas-cooled divertor modules

    Science.gov (United States)

    Crosatti, Lorenzo

    Divertors are in-vessel, plasma-facing, components in magnetic-confinement fusion reactors. Their main function is to remove the fusion reaction ash (alpha-particles), unburned fuel, and eroded particles from the reactor, which adversely affect the quality of the plasma. A significant fraction (˜15 %) of the total fusion thermal power is removed by the divertor coolant and must, therefore, be recovered at elevated temperature in order to enhance the overall thermal efficiency. Helium is the leading coolant because of its high thermal conductivity, material compatibility, and suitability as a working fluid for power conversion systems using a closed high temperature Brayton cycle. Peak surface heat fluxes on the order of 10 MW/m2 are anticipated with surface temperatures in the region of 1,200 °C to 1,500 °C. Recently, several helium-cooled divertor designs have been proposed, including a modular T-tube design and a modular "finger" configuration with jet impingement cooling from perforated end caps. Design calculations performed using the FLUENTRTM CFD software package have shown that these designs can accommodate a peak heat load of 10 MW/m2. Extremely high heat transfer coefficients (˜50,000 W/(m2•K)) were predicted by these calculations. Since these values of heat transfer coefficient are considered to be "outside of the experience base" for gas-cooled systems, an experimental investigation has been undertaken to validate the results of the numerical simulations. Attention has been focused on the thermal performance of the T-tube and the "finger" divertor designs. Experimental and numerical investigations have been performed to support both divertor geometries. Excellent agreement has been obtained between the experimental data and model predictions, thereby confirming the predicted performance of the leading helium-cooled divertor designs for near- and long-term magnetic fusion reactor designs. The results of this investigation provide confidence in the

  14. DiMES divertor erosion experiments on DIII-D

    International Nuclear Information System (INIS)

    Whyte, D.G.; Brooks, J.N.; Wong, C.P.C.; West, W.P.; Bastasz, R.; Wampler, W.R.; Rubinstein, J.

    1996-01-01

    The DiMES (Divertor Material Evaluation Studies) mechanism allows insertion of material samples to the lower divertor floor of the DIII-D tokamak. The main purpose of these studies is to measure erosion rates and redeposition mechanisms under tokamak divertor plasma conditions in order to obtain a physical understanding of the erosion/redeposition processes and to determine its implications for fusion power plant plasma facing components. Thin metal films of Be, W, V, and Mo, were deposited on a Si depth-marked graphite sample and exposed to the steady-state outer strike point on DIII-D. A variety of surface analysis techniques are used to determine the erosion/redeposition of the metals and the carbon after 5--15 seconds of exposure. These short exposure times ensure controlled exposure conditions and the extensive array of DIII-D divertor diagnostics provide a well characterized plasma for modeling efforts. Erosion rates and redeposition lengths are found to decrease with the atomic number of the metallic species, as expected. Under these conditions, the peak net erosion rate for carbon is ∼ 4 nm/s, with the erosion following the ion flux profile. Comparisons of the measured carbon erosion with REDEP code calculations show good agreement for both the absolute net erosion rate and its spatial variation. Measured erosion rates of the metals are smaller than predicted for sputtering from a bare metal surface, apparently due to effects of carbon deposition on the metal surface. Visible spectroscopic measurements of singly ionized Be have determined that the erosion process reaches steady-state during the exposure

  15. Numerical evaluation of heat flux and surface temperature on a misaligned JET divertor W lamella during ELMs

    Czech Academy of Sciences Publication Activity Database

    Dejarnac, Renaud; Podolník, Aleš; Komm, Michael; Arnoux, G.; Coenen, J.W.; Devaux, S.; Frassinetti, L.; Gunn, J. P.; Matthews, G. F.; Pitts, R.A.

    2014-01-01

    Roč. 54, č. 12 (2014), s. 123011-123011 ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : PIC simulations * power flux * plasma–wall interactions * JET * divertor Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.062, year: 2014 http://iopscience.iop.org/0029-5515/54/12/123011/pdf/0029-5515_54_12_123011.pdf

  16. Nuclear Fusion Research Understanding Plasma-Surface Interactions

    CERN Document Server

    Clark, Robert E.H

    2005-01-01

    It became clear in the early days of fusion research that the effects of the containment vessel (erosion of "impurities") degrade the overall fusion plasma performance. Progress in controlled nuclear fusion research over the last decade has led to magnetically confined plasmas that, in turn, are sufficiently powerful to damage the vessel structures over its lifetime. This book reviews current understanding and concepts to deal with this remaining critical design issue for fusion reactors. It reviews both progress and open questions, largely in terms of available and sought-after plasma-surface interaction data and atomic/molecular data related to these "plasma edge" issues.

  17. Fusion plasma theory Task II: ECRH and transport modeling in tandem mirrors and divertor physics. Final report, January 1-December 31, 1985

    International Nuclear Information System (INIS)

    Emmert, G.A.

    1985-07-01

    The research reported here focuses on: (1) the coupling of an ECRH ray tracing and absorption code to a tandem mirror transport code in order to self-consistently model the temporal and spatial evolution of the plasma, and (2) the further development of semi-analytical models for plasma flow in divertors and pumped limiters. 5 refs., 1 fig

  18. Thermal stress analysis of FIRE divertor

    International Nuclear Information System (INIS)

    Baxi, C.B.; Reis, E.E.; Ulrickson, M.A.; Heizenroeder, P.; Driemeyer, D.

    2003-01-01

    The fusion engineering research experiment (FIRE) device is designed for high power density and advanced physics operating modes. Due to the short distance of the divertor from the X-point, the connection lengths are short and the scrape off layer thickness is small. A relatively high peak heat flux of 25 MW/m 2 is expected on the divertor. The FIRE divertor engineering design is based on the design approaches developed for international thermonuclear experimental reactor (ITER). The geometry of the FIRE divertor consists of water cooled copper fingers and a tungsten brush armor as plasma facing material. The divertor assembly consists of modular units for remote handling. A 316 stainless steel back plate is used for support and manifolding. The backing plate is joined to the copper fingers by pins. The coolant channel diameter is 8 mm at a pitch of 14 mm. The total power flow to the outer divertor is 35 MW. Water at an inlet temperature of 30 deg.C, 1.5 MPa and a flow velocity of 10 m/s is used with two channels in series. A margin of ∼1.6 is obtained on the critical heat flux. A three dimensional thermal stress finite element (FE) analysis of this geometry was performed. Thermal hydraulic correlations derived for ITER were used to perform the thermal analysis. Design changes were implemented to reduce the stresses and temperatures to acceptable levels

  19. Innovative Divertor Development to Solve the Plasma Heat-Flux Problem

    International Nuclear Information System (INIS)

    Rognlien, T.; Ryutov, D.; Makowski, M.; Soukhanovskii, V.; Umansky, M.; Cohen, R.; Hill, D.; Joseph, I.

    2009-01-01

    Large, localized plasma heat exhaust continues to be one of the critical problems for the development of tokamak fusion reactors. Excessive heat flux erodes and possibly melts plasma-facing materials, thereby dramatically shortening their lifetime and increasing the impurity contamination of the core plasma. A detailed assessment by the ITER team for their divertor has revealed substantial limitations on the operational space imposed by the divertor performance. For a fusion reactor, the problem becomes worse in that the divertor must accommodate 20% of the total fusion power (less any broadly radiated loss), while not allowing excess buildup of tritium in the walls nor excessive impurity production. This is an extremely challenging set of problems that must be solved for fusion to succeed as a power source; it deserves a substantial research investment. Material heat-flux constraints: Results from present-day tokamaks show that there are two major limitations of peak plasma heat exhaust. The first is the continuous flow of power to the divertor plates and nearby surfaces that, for present technology, is limited to 10-20 MW/m 2 . The second is the transient peak heat-flux that can be tolerated in a short time, τ m , before substantial ablation and melting of the surface occurs; such common large transient events are Edge Localized Mode (ELMs) and disruptions. The material limits imposed by these events give a peak energy/τ m 1/2 parameter of ∼ 40 MJ/m 2 s 1/2 (1). Both the continuous and transient limits can be approached by input powers in the largest present-day devices, and future devices are expected to substantially exceed the limits unless a solution can be found. Since the early 90's LLNL has developed the analytic and computational foundation for analyzing divertor plasmas, and also suggested and studied a number of solid and liquid material concepts for improving divertor/wall performance, with the most recent being the Snowflake divertor concept (2

  20. Advantages and Challenges of Radiative Liquid Lithium Divertor

    Science.gov (United States)

    Ono, Masayuki

    2017-10-01

    Steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid Li divertor (RLLD) concept and its variant, the active liquid Li divertor concept (ARLLD), taking advantage of the enhanced Li radiation in relatively poorly confined divertor plasmas. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest Li-loop could provide a possible solution for the outstanding fusion reactor technology issues such as divertor heat flux mitigation and real time dust removal, while potentially improving the reactor plasma performance. Laboratory tests are also planned to investigate the Li-T recover efficiency and other relevant research topics of the RLLD. This work supported by DoE Contract No. DE-AC02-09CH11466.

  1. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  2. Technology R&D Activities for the ITER Full-tungsten Divertor

    International Nuclear Information System (INIS)

    Lorenzetto, P.; Bednarek, M.; Gavila, P.; Riccardi, B.; Saibene, G.; Escourbiac, F.; Hirai, T.; Merola, M.; Pitts, R.; Suzuki, S.; Mazul, I.

    2012-01-01

    Full text: The current ITER Baseline foresees the use of carbon fibre composite (CFC) as armour material in the high heat flux strike point regions and tungsten (W) elsewhere in the divertor for the initial non-active phase of operation with hydrogen and helium plasmas. This divertor would then be replaced with a full-W divertor for the nuclear phase with deuterium and deuterium- tritium plasmas. To reduce costs the ITER Organization (IO) has proposed to install a full-W divertor from start of operations and to implement a work programme to develop a full-W divertor design, qualify the corresponding fabrication technology and investigate critical physics and operational issues with support from the R&D fusion community. An extensive R&D programme has been implemented over more than 15 years to develop fabrication technologies for the procurement of ITER divertor components. Significant effort has been devoted to the development of reliable armour/heat sink joining techniques such as Hot Isostatic Pressing (Europe), Hot Radial Pressing (Europe) or brazing (Japan, Russia). In this development programme, established for the CFC/W divertor variant, the design solution for W-armoured components was optimized for the divertor baffle and dome regions, namely for steady state operation conditions at heat flux values of typically 5 MW/m 2 and for slow transient events at heat flux values up to 10 MW/m 2 . A very positive outcome of this R&D work has been that some fabrication technologies mentioned above can achieve much higher performances, close to the expected slow transient conditions for the strike point region (20 MW/m 2 for 10 s). To prepare for the procurement of a full-W divertor, a development work programme has been launched including in particular the manufacturing and high heat flux testing of small-scale mock-ups with improved monoblock geometries and full-W pre-qualification prototypes, and the manufacturing and testing of qualification full-size full

  3. Dipole Map For Divertor Tokamaks

    International Nuclear Information System (INIS)

    Ali, Halima; Punjabi, Alkesh; Boozer, Allen

    2003-01-01

    Heat flux impinging on the collector plates of divertor tokamaks can be prodigious. Therefore, the problem of spreading the heat flux on plates is a crucial issue for divertor tokamaks such as ITER. Here we use method of maps /1,2/ to investigate this problem. Magnetic field lines in non-axisymmetric divertor tokamaks are a one and a half degree of freedom Hamiltonian system /1-3/. We represent the unperturbed magnetic topology by the Symmetric Simple Map (SSM) /4/ given by yn+1 = yn + 2kxn - 2k2yn (1 - yn), xn+1 = xn - kyn (1 - yn) - 2k2yn+1 (1 - yn+1). The effects of a current carrying coil placed externally across from X-point is represented by Dipole Map (DP) /4,5/ given by x n+1 = x n + 2δs 3 x n+1 (y n - y s + s/[x n+1 2 + (y n - y s + s) 2 ] 2 ), y n+1 = y n + δs 3 x n+1 ((y n - y s + s) 2 - x n+1 2 /[x n+1 2 + (y n - y s + s) 2 ] 2 ) δ is amplitude of high MN magnetic perturbation, s is the distance of coil from last good surface across from X point, and is the y coordinate of last good surface where it crosses the axis joining X point and O point across from X point. We fix k=0.3 and s = (1/2)|y s |. We calculate the increase in width of stochastic layer and area of footprint of field lines on divertor plate as δ is increased. We also calculate how connection length, toroidal and poloidal circuits and their fractal structures, the number, location and density of hot spots change with δ. Finally, we make conclusions about how the heat flux can be possibly controlled and reduced by applying external magnetic perturbation in divertor tokamaks

  4. ARIES-III divertor engineering design

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Schultz, K.R.; Cheng, E.T.; Grotz, S.; Hasan, M.A.; Najmabadi, F.; Sharafat, S.; Herring, J.S.; Valenti, M.; Steiner, D.

    1992-01-01

    This paper reports the engineering design of the ARIES-III double- null divertor. The divertor coolant tubes are made from W-3Re alloy and cooled by subcooled flow boiling of organic coolant. A coating of 4 mm thick tungsten is plasma sprayed onto the divertor surface. This W layer can withstand the thermal deposition of a few disruptions. At a maximum surface heat flux of 5.4 MW/m 2 , a conventional divertor design can be used. The divertor surface is contoured to have a constant heat flux of 5.4 MW/m 2 . The net erosion of the W-surface was found to be negligible at about 0.1 mm/year. After 3 years of operation, the W-3Re alloy ARIES-III divertor can be disposed of as Class A waste. In order to control the prompt dose release at site boundary to less than 200 Rem, isotopic tailoring of the W-alloy will be needed

  5. Task II: ECRH and transport modeling in tandem mirrors and divertor physics. Annual progress report on fusion plasma theory, January 1, 1983-December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Emmert, G.A.

    1983-08-01

    The research performed under Task II of this contract has focused on (1) the coupling of an ECRH ray tracing and absorption code to a tandem mirror transport code in order to self-consistently model the temporal and spatial evolution of the plasma, and (2) the further development of a semi-analytical kinetic model for plasma flow in divertors and pumped limiters. Work on these topics is briefly summarized in this progress report.

  6. The investigation of structure, chemical composition, hydrogen isotope trapping and release processes in deposition layers on surfaces exposed to DIII-D divertor plasma

    International Nuclear Information System (INIS)

    Buzhinskij, O.I.; Opimach, I.V.; Barsuk, V.A.; Arkhipov, I.I.; Whyte, D.; Wampler, W.R.

    1998-05-01

    The exposure of ATG graphite sample to DIII-D divertor plasma was provided by the DiMES (Divertor Material Evaluation System) mechanism. The graphite sample arranged to receive the parallel heat flux on a small region of the surface was exposed to 600ms of outer strike point plasma. The sample was constructed to collect the eroded material directed downward into a trapping zone onto s Si disk collector. The average heat flux onto the graphite sample during the exposure was about 200W/cm 2 , and the parallel heat flux was about 10 KW/cm 2 . After the exposure the graphite sample and Si collector disk were analyzed using SEM, NRA, RBS, Auger spectroscopy. IR and Raman spectroscopy. The thermal desorption was studied also. The deposited coating on graphite sample is amorphous carbon layer. Just upstream of the high heat flux zone the redeposition layer has a globular structure. The deposition layer on Si disk is composed also from carbon but has a diamond-like structure. The areal density of C and D in the deposited layer on Si disk varied in poloidal and toroidal directions. The maximum D/C areal density ratio is about 0.23, maximum carbon density is about 3.8 x 10 18 cm -2 , maximum D area density is about 3 x 10 17 cm 2 . The thermal desorption spectrum had a peak at 1,250K

  7. Conceptual design study for heat exhaust management in the ARC fusion pilot plant

    Science.gov (United States)

    Dennett, C. A.; Cao, N. M.; Creely, A. J.; Hecla, J.; Hoffman, H.; Kuang, A. Q.; Major, M.; Ruiz Ruiz, J.; Tinguely, R. A.; Tolman, E. A.; Brunner, D.; Labombard, B.; Sorbom, B. N.; Whyte, D. G.; Grover, P.; Laughman, C.

    2017-10-01

    The ARC pilot plant conceptual design study has been extended to explore solutions for managing heat exhaust resulting from 525 MW of fusion power in a compact (R 3.3 m) tokamak. Superconducting poloidal field coils are configured to produce double-null equilibria that support X-point target divertors while maintaining the original core plasma shape and toroidal field coil size. Long outer divertor legs are appended to the original vacuum vessel, providing both large surface areas for surface dissipation of radiative heat and significantly reduced neutron damage for divertor components. A molten salt FLiBe blanket adequately shields all superconductors and functions as a tritium breeder, with advanced neutronics calculations indicating a tritium breeding ratio of 1.08. In addition, FLiBe is used as the active coolant for the entire vessel. A tungsten swirl-tube cooling channel is implemented in the divertor, capable of exhausting 12 MW/m2, heat flux while keeping total FliBe pumping power below 1% of fusion power. Finally, three novel diagnostics are explored: Cherenkov radiation emitted in FLiBe to measure fusion reaction rate, microwave interferometry to measure divertor detachment front location, and IR imaging through the FLiBe blanket to monitor selected divertor ``hotspots.''

  8. Energy-resolved photoemission studies of Be-containing surfaces for fusion; Energievariierte Photoemissionsstudien an berylliumhaltigen Oberflaechen fuer die Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Koeppen, Martin

    2013-02-04

    Fusion research aims at the exploitation of the deuterium-tritium reaction for energy production. Next step on the roadmap is the construction of the experimental reactor ITER. The three elements beryllium, carbon and tungsten are to be used as armour materials for the vacuum vessel. After erosion due to plasma processes, these materials are transported and redeposited together with plasma impurities like oxygen from surface oxides. This leads to the formation of compounds by chemical reactions and diffusive processes, induced both by elevated temperatures and implantation of energetic particles. Due to the complexity of the induced surface processes, a method is required which is capable of both qualitative and quantitative analysis of the involved chemical species. X-ray photoelectron spectroscopy (XPS) provides the chemical analysis. Since diffusive processes play an important role in solid-state reactions, a depth-resolved method is required. In this work, energy-resolved XPS using synchrotron radiation with variable photon energies is extended towards a quantitative depth-resolved analysis. For the quantitative analysis a new model is derived which calculates the depth-resolved composition and the respective composition-dependent electron inelastic mean free path in a self-consistent way. Input is the XPS data which is normalized with all parameters influencing the photoelectron intensities. This fully quantitative model is applied to describe the interaction of energetic oxygen ions with the beryllium-tungsten alloy Be{sub 2}W. Oxygen ions from the plasma are able to interact with plasma facing materials. Formation of Be{sub 2}W is to be expected at the first wall and in the divertor region of ITER. Irradiation of this alloy leads to its decompositions. After decomposition, formation of beryllium oxide BeO is preferred compared to formation of tungsten oxides. Heating to 600K leads to chemical reduction of tungsten oxides. Metallic Be acts as reduction agent

  9. ITER tungsten divertor design development and qualification program

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, T., E-mail: takeshi.hirai@iter.org [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Escourbiac, F.; Carpentier-Chouchana, S.; Fedosov, A.; Ferrand, L.; Jokinen, T.; Komarov, V.; Kukushkin, A.; Merola, M.; Mitteau, R.; Pitts, R.A.; Shu, W.; Sugihara, M. [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Riccardi, B. [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Suzuki, S. [JAEA, Fusion Research and Development Directorate JAEA, 801-1 Mukouyama, Naka, Ibaragi 311-0193 (Japan); Villari, R. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati, Rome (Italy)

    2013-10-15

    Highlights: • Detailed design development plan for the ITER tungsten divertor. • Latest status of the ITER tungsten divertor design. • Brief overview of qualification program for the ITER tungsten divertor and status of R and D activity. -- Abstract: In November 2011, the ITER Council has endorsed the recommendation that a period of up to 2 years be set to develop a full-tungsten divertor design and accelerate technology qualification in view of a possible decision to start operation with a divertor having a full-tungsten plasma-facing surface. To ensure a solid foundation for such a decision, a full tungsten divertor design, together with a demonstration of the necessary high performance tungsten monoblock technology should be completed within the required timescale. The status of both the design and technology R and D activity is summarized in this paper.

  10. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  11. Surface study of fusion research in universities linkage organization

    International Nuclear Information System (INIS)

    Miyahara, Akira.

    1980-04-01

    The surface studies for nuclear fusion research consist of the studies on the surface process and the surface damage. The problems with the surface study are different at different research stages. The plasma-wall interaction in the ignition stage is mainly concerned with heating. The impurity control becomes important in the breakeven stage. In the longer burn experiment, the problems of plasma contamination and ash accumulation are serious, and the blistering is also a problem. From the reactor aspect, the reduction of life of wall due to the irradiation of high fluence must be considered. The surface damage due to plasma disruption is a very big problem. The activities concerning the surface studies in university-linked organizations are the surface characterization for fusion reactor materials by low energy ion scattering spectroscopy, the high power ion irradiation test for CTR first wall, data compilation on plasma-wall interaction, the studies of sputtering process and surface coating, and the study on hydrogen isotope permeation through metals for fusion reactors. Other activities such as the sample characterization at many universities using the SUS 304 samples from the same lot, and the collaboration works on JIPP-T-2 plasma wall experiments are introduced. Concerning the surface study, US-Japan or international collaboration are strongly expected. (Kato, T.)

  12. Plasma detachment in divertor tokamaks

    Science.gov (United States)

    Leonard, A. W.

    2018-04-01

    Observations of divertor plasma detachment in tokamaks are reviewed. Plasma detachment is characterized in terms of transport and dissipation of power, momentum and particle flux along the open field lines from the midplane to the divertor. Asymmetries in detachment onset and other characteristics between the inboard and outboard divertor plasmas is found to be primarily driven by plasma E× B drifts. The effect of divertor plate geometry and magnetic configuration on divertor detachment is summarized. Control of divertor detachment has progressed with a development of a number of diagnostics to characterize the detached state in real-time. Finally the compatibility of detached divertor operation with high performance core plasmas is examined.

  13. Estimation of peak heat flux onto the targets for CFETR with extended divertor leg

    International Nuclear Information System (INIS)

    Zhang, Chuanjia; Chen, Bin; Xing, Zhe; Wu, Haosheng; Mao, Shifeng; Luo, Zhengping; Peng, Xuebing; Ye, Minyou

    2016-01-01

    Highlights: • A hypothetical geometry is assumed to extend the outer divertor leg in CFETR. • Density scan SOLPS simulation is done to study the peak heat flux onto target. • Attached–detached regime transition in out divertor occurs at lower puffing rate. • Unexpected delay of attached–detached regime transition occurs in inner divertor. - Abstract: China Fusion Engineering Test Reactor (CFETR) is now in conceptual design phase. CFETR is proposed as a good complement to ITER for demonstrating of fusion energy. Divertor is a crucial component which faces the plasmas and handles huge heat power for CFETR and future fusion reactor. To explore an effective way for heat exhaust, various methods to reduce the heat flux to divertor target should be considered for CFETR. In this work, the effect of extended out divertor leg on the peak heat flux is studied. The magnetic configuration of the long leg divertor is obtained by EFIT and Tokamak Simulation Code (TSC), while a hypothetical geometry is assumed to extend the out divertor leg as long as possible inside vacuum vessel. A SOLPS simulation is performed to study peak heat flux of the long leg divertor for CFETR. D 2 gas puffing is used and increasing of the puffing rate means increase of plasma density. Both peak heat flux onto inner and outer targets are below 10 MW/m 2 is achieved. A comparison between the peak heat flux between long leg and conventional divertor shows that an attached–detached regime transition of out divertor occurs at lower gas puffing gas puffing rate for long leg divertor. While for the inner divertor, even the configuration is almost the same, the situation is opposite.

  14. Divertor coil device

    International Nuclear Information System (INIS)

    Hanai, Satoru.

    1990-01-01

    The present invention concerns a divertor coil device used in a tokamak type thermonuclear device and the object thereof is to reduce thermal loads in the heat receiving portion. An auxiliary power source is disposed, in addition to a main power source, for supplying main electric current for changing electric current ratio between each of the divertor coils. Then, the null point for forming plasmas is made controllable. As a result, a power source for a part of coils connected to the auxiliary power source of the divertor coils can be changed by controlling the voltage of the auxiliary power source. Accordingly, the electric current distribution in the divertor coils is changed and the position for the null point high thermal load region can be moved laterally. The area of the heat receiving portion can be increased by moving the high thermal load region, thereby decreasing the thermal load density. (I.S.)

  15. Surface materials considerations for fusion reactors

    International Nuclear Information System (INIS)

    Sone, Kazuho; Maeno, Masaki; Yamamoto, Shin; Ohtsuka, Hidewo; Abe, Tetsuya

    1982-11-01

    Surface materials considerations have been made to support the Impurity Control and First Wall Engineering task in the INTOR. They focussed on low-Z material candidates including C(graphite), SiC and TiC. Properties considered are listed in the following: 1) Physical Sputtering. 2) Chemical Sputtering. 3) Arcing. 4) H/He Retention/Release. 5) Redeposited Materials Characteristics. (author)

  16. 'EU divertor celebration day'

    International Nuclear Information System (INIS)

    Merola, M.

    2002-01-01

    The meeting 'EU divertor celebration day' organized on 16 January 2002 at Plansee AG, Reutte, Austria was held on the occasion of the completion of manufacturing activities of a complete set of near full-scale prototypes of divertor components including the vertical target, the dome liner and the cassette body. About 30 participants attended the meeting including Dr. Robert Aymar, ITER Director, representatives from EFDA, CEA, ENEA, IPP and others

  17. Stochastic broadening of the scrapeoff layer of a single-null divertor tokamak

    International Nuclear Information System (INIS)

    Punjabi, A.; Verma, A.; Boozer, A.

    1992-01-01

    Magnetic perturbations cause the region near the separatrix of a magnetic divertor to become stochastic. The last magnetic surface to provide magnetic confinement passes inside the X-point a distance that is proportional to the square root of the applied perturbation. Particles that diffuse across the last confining surface can follow open magnetic lines to the divertor plates. The strike points of these field lines on the divertor plates lie in helical discrete stripes. The properties of these stripes is important for determining if one can control the heat loads on divertor plates as well as assessing the effects of natural perturbations, such as MHD activity, on divertor designs

  18. Recent advances towards a lithium vapor box divertor

    Directory of Open Access Journals (Sweden)

    R.J. Goldston

    2017-08-01

    Full Text Available Fusion power plants are likely to require near complete detachment of the divertor plasma from the divertor target plates, in order to have both acceptable heat flux at the target to avoid prompt damage and also acceptable plasma temperature at the target surface, to minimize long-term erosion. However hydrogenic and impurity puffing experiments show that detached operation leads easily to x-point MARFEs, impure plasmas, degradation in confinement, and lower helium pressure at the exhaust. The concept of the Lithium Vapor Box Divertor is to use local evaporation and strong differential pumping through condensation to localize low-Z gas-phase material that absorbs the plasma heat flux and so achieve detachment while avoiding these difficulties. The vapor localization has been confirmed using preliminary Navier–Stokes calculations. We use ADAS calculations of εcool, the plasma energy lost per injected lithium atom, to estimate the lithium vapor pressure, and so temperature, required for detachment, taking into account power balance. We also develop a simple model of detachment to evaluate the required upstream density, based on further taking into account dynamic pressure balance. A remarkable general result is found, not just for lithium-vapor-induced detachment, that the upstream density divided by the Greenwald-limit density scales as nup/nGW ∝ (P5/8/B3/8 Tdet1/2/(εcool+γTdet, with no explicit size scaling. Tdet is the temperature just before strong pressure loss, assumed to be ∼ ½ of the ionization potential of the dominant recycling species, and γ is the sheath heat transmission factor.

  19. Liquid metal cooled divertor for ARIES

    International Nuclear Information System (INIS)

    Muraviev, E.

    1994-01-01

    The paper represents an overview of the design study of a divertor system with liquid metal coolant (gallium) related to ARIES project. The work has been conducted by a group of specialists from Institute of Nuclear Fusion of Russian Scientific Center Kurchatov Institute within the scope of subcontract No. E212601 with General Atomics, San Diego, CA, USA. The key features of the proposed divertor design concept based on the specific LM coolant properties are as follows: (1) the requirement of the vacuum tightness of the divertor cooling tract is dismissed; (2) the pressurized coolant ducts can be separated from the plasma facing structure (PFS) elements which are subject to the thermal loads, and with this feature PFS can be replaced independently, without disturbing the cooling system; this is achieved with using free LM jets sprayed on the back side of the PFS elements, free LM film cooling and free LM draining under the action of gravity force. The divertor design has been developed formally as particularly applicable to ARIES-II reactor, the major reason for this being the choice of a vanadium-based alloy as the structural material compatible with gallium. Though there are some good prospects that carbon based materials including SiC-composite might be compatible with gallium as well. Then this concept could be used also in ARIES-IV and this possibility should be kept in mind for future

  20. Stability, divertors and innovative concepts

    International Nuclear Information System (INIS)

    Mirnov, S.

    2003-01-01

    This paper contains a short resume of the sections on 'Stability, Divertors and Innovative Concepts' presented at the 19th IAEA Fusion Energy Conference. The main conclusions are: (1) the problem of type I ELMs in tokamaks seems to be not so dramatic; (2) it was demonstrated that the working pulse length of large thermonuclear devices can achieve 100 s and more; (3) the problem of tritium retention seems to be not so dramatic now; probable approaches of its solution are visible; (4) active methods of plasma instabilities suppression (NTM, RWM, sawteeth, external MHD) work successfully; (5) new methods of mitigation of the disruption consequences were offered. New technological ideas and new ideas on magnetic confinement were presented. (author)

  1. Plasma-surface interactions under high heat and particle fluxes

    NARCIS (Netherlands)

    De Temmerman, G.; Bystrov, K.; Liu, F.; Liu, W.; Morgan, T.; Tanyeli, I.; van den Berg, M.; Xu, H.; Zielinski, J.

    2013-01-01

    The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface

  2. Plans of LHD divertor experiment

    International Nuclear Information System (INIS)

    Ohyabu, Nobuyoshi; Komori, Akio; Sagara, Akio; Noda, Nobuaki; Motojima, Osamu

    1996-01-01

    Scenarios of the LHD divertor experiment are presented. In the LHD divertor experimental program, various innovative divertor concepts and technologies, developed during its design phase will be utilized to improve the plasma performance. Two divertor operational scenarios (confinement improvement by generating high temperature divertor plasma and simultaneous achievement of radiative cooling and H-mode-like confinement improvement) are among them. Local island divertor geometry has also been proposed. This new divertor has been successfully tested in the CHS device and is planned to be installed in the LHD device. In addition, technological development of new efficient hydrogen pumping schemes (carbon sheet pump and membrane pump) are being pursued for enhancement of the divertor control capability. (author)

  3. Divertor heat flux control and plasma-material interaction

    International Nuclear Information System (INIS)

    Kikuchi, Yusuke; Nagata, Masayoshi; Sawada, Keiji; Takamura, Shuichi; Ueda, Yoshio

    2014-01-01

    Development of reliable radiative-cooling divertors is essential in DEMO reactor because it uses low-activation materials with low heat removal and the plasma heat flux exhausted from the confined region is 5 times as large as in ITER. It is important to predict precisely the heat and particle flux toward the divertor plate by simulation. In this present article, theoretical and experimental data of the reflection, secondary emission and surface recombination coefficients of the divertor plate by ion bombardment are given and their effects on the power transmission coefficient are discussed. In addition, some topics such as the erosion process of the divertor plate by ELM and the plasma disruption, the thermal shielding due to the vapor layer on the divertor plate and the formation of fuzz structure on W by helium plasma irradiation, are described. (author)

  4. Innovative divertor concepts for LHD

    International Nuclear Information System (INIS)

    Ohyabu, N.; Komori, A.; Akaishi, K.

    1994-07-01

    We are developing various innovative divertor concepts which improve the LHD plasma performance. These are two divertor magnetic geometries (helical and local island divertors), three operational scenarios (radiative cooling in the high density, cold boundary, confinement improvement by generating high temperature divertor plasma and simultaneous achievement of radiative cooling and H-mode like confinement improvement) and technological development of new efficient hydrogen pumping schemes. (author)

  5. Study of Lithium Vapor Flow In a Detached Divertor using DSMC code

    Science.gov (United States)

    Emdee, Eric; Schwartz, Jacob; Goldston, Robert; Jaworski, Michael

    2017-10-01

    A detached divertor is predicted to be necessary to handle the heat fluxes of a demonstration fusion power plant. The lithium vapor box divertor has poloidal baffles to form distinct chambers and contains dense lithium vapor to cause detachment. These chambers would be differentially pumped via condensation, resulting in flow at Knudsen numbers 0.01-0.5 and densities 1019-1023m-3. This divertor geometry is predicted to handle the estimated heat flux while also localizing the vapor in the divertor. We provide a simulation of the divertor's lithium vapor flow using the SPARTA Direct Simulation Monte Carlo (DSMC) code. Lithium mass flow, vapor pressures, and temperatures within each chamber are given. Preliminary simulations of a vapor box divertor similarity experiment are within 30% of an ideal-gas choked nozzle flow calculation. This work supported by DOE Contract No. DE-AC02-09CH11466.

  6. The control of divertor carbon erosion/redeposition in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Whyte, D.G.; West, W.P.; Wong, C.P.C.

    2001-01-01

    The DIII-D tokamak has demonstrated an operational scenario where the graphite-covered divertor is free of net erosion. Reduction of divertor carbon erosion is accomplished using a low temperature (detached) divertor plasma that eliminates physical sputtering. Likewise, the carbon source rate arising from chemical erosion is found to be very low in the detached divertor. Near strikepoint regions, the rate of carbon deposition is ∼3 cm/burn-year, with a corresponding hydrogenic codeposition rate >1kg/m 2 /burn-year; rates both problematic for steady-state fusion reactors. The carbon net deposition rate in the divertor is consistent with carbon arriving from the core plasma region. Carbon influx from the main wall is measured to be relatively large in the high-density detached regime and is of sufficient magnitude to account for the deposition rate in the divertor. Divertor redeposition is therefore determined by non-divertor erosion and transport. Despite the success in reducing divertor erosion on DIII-D with detachment, no significant reduction is found in the core plasma carbon density, illustrating the importance of non-divertor erosion and the complex coupling between erosion/redeposition and impurity plasma transport. (author)

  7. Operating conditions of the BPX divertor

    International Nuclear Information System (INIS)

    Hill, D.N.; Milovich, J.; Rognlien, T.; Braams, B.J.; Brooks, J.N.; Campbell, R.; Haines, J.; Knoll, D.; Prinja, A.; Stotler, D.P.; Ulrickson, M.

    1991-01-01

    In this paper we discuss the expected operating conditions at the divertor of the BPX tokamak (Burning Plasma Experiment), the next- step US tokamak proposed for the study of self-heated plasmas at Q ≅ 5 to ignition. In this double-null device (κ ≅ 2), the predicted first-wall loading is high because of is compact size (R = 2.6m, α = 0.8m, I p = 10.6 MA, and B T ) and its high projected fusion power output (100--500 MW with up to 20 MW of ICRH). Present designs call for inertially cooled carbon-based target plate material and X-point sweeping to handle the divertor heat flux during the 3--5 s flat-top at full power. The X-point is maintained about 15--20 cm off the target plates (a distance of ∼5m along field lines), which represents a reasonable compromise between lowering the divertor electron temperature (T e,d ) by increasing the connection length, and lowering the peak divertor heat flux (q d ) by increasing the magnetic flux expansion (which is about 15--20 in this case). It is planned for the BPX device to operate with H-mode confinement; ELMs are expected because of the relatively high power flow through the edge plasma (P sep ≅ 0.6 MW/m 2 for P fus = 500 MW). The ELMs will help reduce the impurity concentration in the core plasma (Z eff ≅ 1.7) and keep the density down, but should not add significantly to the divertor heat flux since their measured contribution to the global power balance drops with increasing input power

  8. He-cooled divertor development for DEMO

    International Nuclear Information System (INIS)

    Norajitra, P.; Giniyatulin, R.; Ihli, T.; Janeschitz, G.; Krauss, W.; Kruessmann, R.; Kuznetsov, V.; Mazul, I.; Widak, V.; Ovchinnikov, I.; Ruprecht, R.; Zeep, B.

    2007-01-01

    Goal of the He-cooled divertor development for future fusion power plants is to resist a high heat flux of at least 10 MW/m 2 . The development includes the fields of design, analyses, and experiments. A helium-cooled modular jet concept (HEMJ) has been defined as reference solution, which is based on jet impingement cooling. In cooperation with the Efremov Institute, work was aimed at construction and high heat flux tests of prototypical tungsten mockups to demonstrate their manufacturability and their performances. A helium loop was built for this purpose to simulate the realistic thermo-hydraulics conditions close to those of DEMO (10 MPa He, 600 deg. C). The first high heat flux test results confirm the feasibility and the performance of the divertor design

  9. Fusion Canada issue 17

    International Nuclear Information System (INIS)

    1992-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on increased funding for the Canadian Fusion Program, news of the compact Toroid fuelling gun, an update on Tokamak de Varennes, the Canada - U.S. fusion meeting, measurements of plasma flow velocity, and replaceable Tokamak divertors. 4 figs

  10. Divertor IR thermography on Alcator C-Moda)

    Science.gov (United States)

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-01

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  11. High heat flux tests of mock-ups for ITER divertor application

    International Nuclear Information System (INIS)

    Giniatulin, R.; Gervash, A.; Komarov, V.L.; Makhankov, A.; Mazul, I.; Litunovsky, N.; Yablokov, N.

    1998-01-01

    One of the most difficult tasks in fusion reactor development is the designing, fabrication and high heat flux testing of actively cooled plasma facing components (PFCs). At present, for the ITER divertor project it is necessary to design and test components by using mock-ups which reflect the real design and fabrication technology. The cause of failure of the PFCs is likely to be through thermo-cycling of the surface with heat loads in the range 1-15 MW m -2 . Beryllium, tungsten and graphite are considered as the most suitable armour materials for the ITER divertor application. This work presents the results of the tests carried out with divertor mock-ups clad with beryllium and tungsten armour materials. The tests were carried out in an electron beam facility. The results of high heat flux screening tests and thermo-cycling tests in the heat load range 1-9 MW m -2 are presented along with the results of metallographic analysis carried out after the tests. (orig.)

  12. The MAST improved divertor

    International Nuclear Information System (INIS)

    Darke, A.C.; Hayward, R.J.; Counsell, G.F.; Hawkins, K.

    2005-01-01

    The Mega Amp Spherical Tokamak (MAST) at Culham is one of the leading world machines studying the spherical tokamak (ST) concept. At the time of the initial construction in 1998 little was known about the sort of divertor structures that would be required in an ST. The machine was therefore provided with relatively rudimentary structures that were designed mostly to protect important components from the hot plasma. While these have served the machine well it was accepted that they might not be suitable when operating MAST to its full potential. The years of experience of operating MAST have led to the design, manufacture and now installation of a new divertor, the MAST improved divertor (MID), that should be able to cope with the full performance of the machine. The design is based on imbricated (fan-shaped) disks of tiles at the top and bottom of the machine for the outer strike points, giving an excellent compromise between power handling and diagnostic access, with substantial new centre column strike point armour and a shaped plate in between. High purity graphite is chosen as the plasma facing material in preference to CFC since in this case it has a better balance of performance and cost. The lower imbricated disk is insulated in alternate sectors for studies of divertor biasing and extensive diagnostics and additional inboard gas injection are included

  13. Operation method for thermonuclear device and divertor for it

    International Nuclear Information System (INIS)

    Kotake, Michiko; Yoshioka, Ken; Fukumoto, Hideshi; Okazaki, Takashi; Kinoshita, Shigemi; Takeuchi, Kazuhiro.

    1992-01-01

    Divertor plates are disposed subsequently along with circumferential direction of a vacuum vessel in a region where magnetic fluxed generated from the divertor coils are injected toward a container wall. Each of the divertor plates is moved in a state that the injection position of the magnetic fluxes enter to the vacuum vessel is kept constant. Alternatively, each of the divertor plates is inclined at an angle facing the injection direction of plasma particle fluxes, or it is inclined so that the angle between the injection surface and the magnetic fluxes makes an acute angle. Since each of the divertor coils is moved in the state of keeping the injection position of the magnetic fluxes during firing of plasmas, in other words, with on change of the current of the divertor coils, the position of the magnetic fluxed is kept at a predetermined condition. Accordingly, charged particles are prevented from concentrating locally without causing eddy current in the coils and the vacuum vessel, which can contribute to the reduction of the wear of the divertor plates. (N.H.)

  14. Particle exhaust with vented structures: application to the ergodic divertor of Tore Supra

    International Nuclear Information System (INIS)

    Azeroual, A.

    2000-01-01

    In a thermonuclear reactor, one must continuously fuel the discharge and extract the ashes resulting from fusion reactions. To avoid the risk of discharge poisoning, α-particle concentration is limited to ∼ 10 %. To allow for steady-state conditions requires then to extract ≥2 % of the helium out flux. In Tore Supra, the ergodic divertor is the main component managing the heat and particle fluxes at the edge. Its principle consists in generating a resonant perturbation able to destroy magnetic surfaces at the plasma periphery. In this region, the field lines are open and connected at both ends to neutralizers which are wetted by the major part of the heat and particle fluxes and are the structures through which a part of the plasma out flux is pumped for maintaining the discharge in steady-state conditions. This work describes the neutral recirculation around the ergodic divertor and is based on a data base of 56 discharges. One discuss the two processes allowing for particle exhaust: the ballistic collection of ions and that of neutrals backscattered by atomic reactions. These two processes are modelled accounting for a realistic description of the divertor geometry. A comparison between simulations and experiments is presented for measurements characterising the three main actors of plasma-wall interaction: the edge plasma, the D α light emission and the neutral pressure in the divertor plenum. Last, one question how such a system can be extrapolated to next step machines, for which one must account for technical constraints linked to the presence of the shield protecting the coils from the high neutron flux. (author)

  15. Divertor erosion in DIII-D

    International Nuclear Information System (INIS)

    Whyte, D.G.; Bastasz, R.; Wampler, W.R.; Brooks, J.N.; West, W.P.; Wong, C.P.C.; Buzhinskij, O.I.; Opimach, I.V.

    1998-08-01

    Net erosion rates of carbon target plates have been measured in situ for the DIII-D lower divertor. The principal method of obtaining this data is the DiMES sample probe. Recent experiments have focused on erosion at the outer strike-point (OSP) of two divertor plasma conditions: attached (T e > 40 eV) ELMing plasmas, and detached (T e 2 . In this case, measurements and modeling agree for both gross and net carbon erosion, showing the near-surface transport and redeposition of the carbon is well understood. In the attached cases, physical sputtering (with enhancement from self-sputtering and oblique incidence) is dominant, and the effective sputtering yield, Y, is greater than 10%. In ELM-free discharges, the total OSP net erosion rate is equal to the rate of carbon accumulation in the core plasma. For the detached divertor cases, the cold incident plasma eliminates physical sputtering. Attempts to measure chemically eroded hydrocarbon molecules spectroscopically indicate an upper limit of Y ≤ 0.1% for the chemical sputtering yield. Net erosion is suppressed at the outer strike-point, which becomes a region of net redeposition (∼ 4 cm/exposure-year). The private flux wall is measured to be a region of net redeposition with dense, high neutral pressure, attached divertor plasmas. Leading edges intercepting parallel heat flux (∼ 50 MW/m 2 ) have very high net erosion rates at the OSP of an attached plasma (∼ 10 microm/s > 1,000x erosion rate of aligned surfaces). Leading edge erosion, and subsequent carbon redeposition, caused by tile gaps can account for half of the deuterium codeposition in the DIII-D divertor

  16. Divertor erosion in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Whyte, D.G. [Univ. of California, San Diego, CA (United States); Bastasz, R.; Wampler, W.R. [Sandia National Labs., Albuquerque, NM (United States); Brooks, J.N. [Argonne National Lab., IL (United States); West, W.P.; Wong, C.P.C.; Buzhinskij, O.I. [General Atomics, San Diego, CA (United States); Opimach, I.V. [TRINITI Lab. (United States)

    1998-08-01

    Net erosion rates of carbon target plates have been measured in situ for the DIII-D lower divertor. The principal method of obtaining this data is the DiMES sample probe. Recent experiments have focused on erosion at the outer strike-point (OSP) of two divertor plasma conditions: attached (T{sub e} > 40 eV) ELMing plasmas, and detached (T{sub e} < 2 eV) ELMing plasmas. For the attached cases, the erosion rates exceed 10 cm/exposure-year, even with incident heat flux < 1 MW/m{sup 2}. In this case, measurements and modeling agree for both gross and net carbon erosion, showing the near-surface transport and redeposition of the carbon is well understood. In the attached cases, physical sputtering (with enhancement from self-sputtering and oblique incidence) is dominant, and the effective sputtering yield, Y, is greater than 10%. In ELM-free discharges, the total OSP net erosion rate is equal to the rate of carbon accumulation in the core plasma. For the detached divertor cases, the cold incident plasma eliminates physical sputtering. Attempts to measure chemically eroded hydrocarbon molecules spectroscopically indicate an upper limit of Y {le} 0.1% for the chemical sputtering yield. Net erosion is suppressed at the outer strike-point, which becomes a region of net redeposition ({approximately} 4 cm/exposure-year). The private flux wall is measured to be a region of net redeposition with dense, high neutral pressure, attached divertor plasmas. Leading edges intercepting parallel heat flux ({approximately} 50 MW/m{sup 2}) have very high net erosion rates at the OSP of an attached plasma ({approximately} 10 {micro}m/s > 1,000x erosion rate of aligned surfaces). Leading edge erosion, and subsequent carbon redeposition, caused by tile gaps can account for half of the deuterium codeposition in the DIII-D divertor.

  17. Fusion

    International Nuclear Information System (INIS)

    Naraghi, M.

    1976-01-01

    It is proposed that Iran as a world's potential supplier of fossile fuel should participate in fusion research and gain experience in this new field. Fusion, as an ultimate source of energy in future, and the problems concerned with the fusion reactors are reviewed. Furthermore; plasma heating, magnetic and inertial confinement in a fusion reactor are discussed. A brief description of tokamak, theta pinch and magnetic mirror reactors is also included

  18. Divertor erosion in DIII-D

    International Nuclear Information System (INIS)

    Whyte, D.G.; Bastasz, R.; Wampler, W.R.; Brooks, J.N.; West, W.P.; Wong, C.P.C.

    1998-05-01

    Net erosion rates of carbon target plates have been measured in situ for the DIII-D lower divertor. The principal method of obtaining this data is the DiMES sample probe. Recent experiments have focused on erosion at the outer strike-point of two divertor plasma conditions: (1) attached (Te > 40 eV) ELMing plasmas and (2) detached (Te 10 cm/year, even with incident heat flux 2 . In this case, measurements and modeling agree for both gross and net carbon erosion, showing the near-surface transport and redeposition of the carbon is well understood and that effective sputtering yields are > 10%. In ELM-free discharges, this erosion rate can account for the rate of carbon accumulation in the core plasma. Divertor plasma detachment eliminates physical sputtering, while spectroscopically measured chemical erosion yields are also found to be low (Y(C/D + ) ≤ 2.0 x 10 -3 ). This leads to suppression of net erosion at the outer strike-point, which becomes a region of net redeposition (∼ 4 cm/year). The private flux wall is measured to be a region of net redeposition with dense, high neutral pressure, attached divertor plasmas. Leading edges intercepting parallel heat flux (∼ 50 MW/m 2 ) have very high net erosion rates (∼ 10 microm/s) at the OSP of an attached plasma. Leading edge erosion, and subsequent carbon redeposition, caused by tile gaps can account for half of the deuterium codeposition in the DIII-D divertor

  19. Facilities for technology testing of ITER divertor concepts, models, and prototypes in a plasma environment

    International Nuclear Information System (INIS)

    Cohen, S.A.

    1991-12-01

    The exhaust of power and fusion-reaction products from ITER plasma are critical physics and technology issues from performance, safety, and reliability perspectives. Because of inadequate pulse length, fluence, flux, scrape-off layer plasma temperature and density, and other parameters, the present generation of tokamaks, linear plasma devices, or energetic beam facilities are unable to perform adequate technology testing of divertor components, though they are essential contributors to many physics issues such as edge-plasma transport and disruption effects and control. This Technical Requirements Documents presents a description of the capabilities and parameters divertor test facilities should have to perform accelerated life testing on predominantly technological divertor issues such as basic divertor concepts, heat load limits, thermal fatigue, tritium inventory and erosion/redeposition. The cost effectiveness of such divertor technology testing is also discussed

  20. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  1. Diagnostic options for radiative divertor feedback control on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V. A.; Gerhardt, S. P.; Kaita, R.; McLean, A. G.; Raman, R.

    2012-10-01

    A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (qpeak ≤ 15 MW/m2), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D2 or CD4 gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20–30 MW/m2, are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic “security” monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).

  2. ELM-induced transient tungsten melting in the JET divertor

    Science.gov (United States)

    Coenen, J. W.; Arnoux, G.; Bazylev, B.; Matthews, G. F.; Autricque, A.; Balboa, I.; Clever, M.; Dejarnac, R.; Coffey, I.; Corre, Y.; Devaux, S.; Frassinetti, L.; Gauthier, E.; Horacek, J.; Jachmich, S.; Komm, M.; Knaup, M.; Krieger, K.; Marsen, S.; Meigs, A.; Mertens, Ph.; Pitts, R. A.; Puetterich, T.; Rack, M.; Stamp, M.; Sergienko, G.; Tamain, P.; Thompson, V.; Contributors, JET-EFDA

    2015-02-01

    The original goals of the JET ITER-like wall included the study of the impact of an all W divertor on plasma operation (Coenen et al 2013 Nucl. Fusion 53 073043) and fuel retention (Brezinsek et al 2013 Nucl. Fusion 53 083023). ITER has recently decided to install a full-tungsten (W) divertor from the start of operations. One of the key inputs required in support of this decision was the study of the possibility of W melting and melt splashing during transients. Damage of this type can lead to modifications of surface topology which could lead to higher disruption frequency or compromise subsequent plasma operation. Although every effort will be made to avoid leading edges, ITER plasma stored energies are sufficient that transients can drive shallow melting on the top surfaces of components. JET is able to produce ELMs large enough to allow access to transient melting in a regime of relevance to ITER. Transient W melt experiments were performed in JET using a dedicated divertor module and a sequence of IP = 3.0 MA/BT = 2.9 T H-mode pulses with an input power of PIN = 23 MW, a stored energy of ˜6 MJ and regular type I ELMs at ΔWELM = 0.3 MJ and fELM ˜ 30 Hz. By moving the outer strike point onto a dedicated leading edge in the W divertor the base temperature was raised within ˜1 s to a level allowing transient, ELM-driven melting during the subsequent 0.5 s. Such ELMs (δW ˜ 300 kJ per ELM) are comparable to mitigated ELMs expected in ITER (Pitts et al 2011 J. Nucl. Mater. 415 (Suppl.) S957-64). Although significant material losses in terms of ejections into the plasma were not observed, there is indirect evidence that some small droplets (˜80 µm) were released. Almost 1 mm (˜6 mm3) of W was moved by ˜150 ELMs within 7 subsequent discharges. The impact on the main plasma parameters was minor and no disruptions occurred. The W-melt gradually moved along the leading edge towards the high-field side, driven by j × B forces. The evaporation rate determined

  3. Analysis of sweeping heat loads on divertor plate materials

    International Nuclear Information System (INIS)

    Hassanein, A.

    1991-01-01

    The heat flux on the divertor plate of a fusion reactor is probably one of the most limiting constraints on its lifetime. The current heat flux profile on the outer divertor plate of a device like ITER is highly peaked with narrow profile. The peak heat flux can be as high as 30--40 MW/m 2 with full width at half maximum (FWHM) is in the order of a few centimeters. Sweeping the separatrix along the divertor plate is one of the options proposed to reduce the thermomechanical effects of this highly peaked narrow profile distribution. The effectiveness of the sweeping process is investigated parametrically for various design values. The optimum sweeping parameters of a particular heat load will depend on the design of the divertor plate as well as on the profile of such a heat load. In general, moving a highly peaked heat load results in substantial reduction of the thermomechanical effects on the divertor plate. 3 refs., 8 figs

  4. Fusion Canada issue 12

    International Nuclear Information System (INIS)

    1990-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Darlington's Tritium Removal Facility, work at universities on Deuterium Diffusivity in Beryllium, Fusion Studies, confinement research and the operation of divertors at Tokamak de Varennes. 5 figs

  5. Fusion Canada issue 15

    International Nuclear Information System (INIS)

    1991-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the 1996 IAEA Fusion Conference site, operations at the Tokamak de Varennes including divertor pumping of impurities and pumping of carbon monoxide and methane, a discussion of the CFFTP and it's role. 1 fig

  6. Numerical studies on divertor experiments

    International Nuclear Information System (INIS)

    Ueda, N.; Itoh, K.; Itoh, S.-I.; Tanaka, M.; Hasegawa, M.; Shoji, T.; Sugihara, M.

    1988-04-01

    Numerical analysis on the divertor experiments such as JFT-2M tokamak is made by use of the two-dimensional time-dependent simulation code. The plasma in the scrape-off layer (SOL) and divertor region is solved for the given particle and heat sources from the main plasma, Γ p and Q T . Effect of the direction of the toroidal magnetic field is studied. It is found that the heat flux which is proportional to b vector x ∇T i has influences on the divertor plasmas, but has a small effect on the parameters on the midplane in the framework of the fluid model. Parameter survey on Γ p and Q T is made. The transient response of the SOL/divertor plasma to the sudden change of Γ p and Q T is studied. Time delay in the SOL and divertor region is calculated. (author)

  7. Studies of impurity deposition/implantation in JET divertor tiles using SIMS and ion beam techniques

    International Nuclear Information System (INIS)

    Likonen, J.; Lehto, S.; Coad, J.P.; Renvall, T.; Sajavaara, T.; Ahlgren, T.; Hole, D.E.; Matthews, G.F.; Keinonen, J.

    2003-01-01

    At the end of C4 campaign at JET, a 1% SiH 4 /99% D 2 mixture and pure 13 CH 4 were injected into the torus from the outer divertor wall and from the top of the vessel, respectively, in order to study material transport and scrape-off layer (SOL) flows. A set of MkIIGB tiles was removed during the 2001 shutdown for surface analysis. The tiles were analysed with secondary ion mass spectrometry (SIMS) and time-of-flight elastic recoil detection analysis (TOF-ERDA). 13 C was detected in the inner divertor wall tiles implying material transport from the top of the vessel. Silicon was detected mainly at the outer divertor wall tiles and very small amounts were found in the inner divertor wall tiles. Si amounts in the inner divertor wall tiles were so low that rigorous conclusions about material transport from divertor outboard to inboard cannot be made

  8. Ion microanalysis and implantation applied to fusion surface research

    International Nuclear Information System (INIS)

    Vook, F.L.; Doyle, B.L.; Picraux, S.T.

    1978-01-01

    Ion microanalysis and implantation have been used to investigate and analyze plasma-surface interactions relevant to fusion plasma materials. Previous results for pure metals are reviewed and new results are presented for TiB 2 coatings for Tokamak surfaces. Enhanced trapping of implanted, low-energy hydrogen has been shown to occur at room temperature in W, Au, Pd, Mo, Nb, and TiB 2 for He or other ion predamage. Hydrogen depth profiles obtained using 1 H( 19 F,αγ) 16 O resonant nuclear reaction show that the H decorates the He damage profiles at traps whose concentration is proportional to the He-induced damage. For room temperature implantation in TiB 2 , H is trapped at the end of range, and isochronal annealing indicates that the H is lost by release from traps followed by rapid diffusion. For He predamaged samples, annealing at 400 0 C causes the H to be retrapped in the region of the He-induced damage at traps whose cross section is approx. = 1.8 x 10 -18 cm 2 /trap

  9. Liquid lithium loop system to solve challenging technology issues for fusion power plant

    Science.gov (United States)

    Ono, M.; Majeski, R.; Jaworski, M. A.; Hirooka, Y.; Kaita, R.; Gray, T. K.; Maingi, R.; Skinner, C. H.; Christenson, M.; Ruzic, D. N.

    2017-11-01

    Steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor concept and its variant, the active liquid lithium divertor concept, taking advantage of the enhanced or non-coronal Li radiation in relatively poorly confined divertor plasmas. To maintain the LL purity in a 1 GW-electric class fusion power plant, a closed LL loop system with a modest circulating capacity of ~1 l s-1 is envisioned. We examined two key technology issues: (1) dust or solid particle removal and (2) real time recovery of tritium from LL while keeping the tritium inventory level to an acceptable level. By running the LL-loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to the outside where the dust/impurities can be removed by relatively simple dust filter, cold trap and/or centrifugal separation systems. With ~1 l s-1 LL flow, even a small 0.1% dust content by weight (or 0.5 g s-1) suggests that the LL-loop could carry away nearly 16 tons of dust per year. In a 1 GW-electric (or ~3 GW fusion power) fusion power plant, about 0.5 g s-1 of tritium is needed to maintain the fusion fuel cycle

  10. The cascading pebble divertor for the spherical tokamak power plant

    International Nuclear Information System (INIS)

    Voss, G.M.; Bond, A.; Davis, S.; Harte, M.; Watson, R.

    2006-01-01

    The design of a power plant based on the spherical tokamak (ST) is being developed in order to explore its potential advantages. The plasma is operated in a double null configuration, forming both an upper and lower divertor. In order to accommodate the high erosion rates and heat fluxes developed in the divertors, a system based on a cascading flow of silicon carbide pebbles is being developed. The pebbles flow into the upper divertor where they fall as a toroidal curtain, which intercepts the divertor particle flux. The pebbles then flow under gravity through ducts to the lower divertor where they form a similar curtain. The bulk temperature of the pebbles rises to about 1150 deg. C although the outer surface is transiently heated to about 1800 deg. C. The pebbles pass out of the vacuum chamber into holding tanks and then into a fluidised bed heat exchanger. Here the pebbles are cooled down to about 340 deg. C and dust and damaged pebbles are removed. The pebbles are transferred to an upper tank by a pneumatic conveyor where the remaining gas is removed and the pebbles flow into the upper divertor again

  11. Overview of surface study of fusion research in universities linkage organization, (2)

    International Nuclear Information System (INIS)

    Miyahara, Akira; Kamada, Kohji; Yamashina, Toshiro.

    1981-02-01

    Overview of surface material developments for fusion devices in university linkage organization has been described. Including subjects are surface properties investigations, surface diagnostics, coating technologies tritium related surface problems and permeation studies. Because surface material investigations are wide spread subjects, necessities of problem definitions from plasma physics side were recognized. (author)

  12. Innovations in the LHD divertor program

    International Nuclear Information System (INIS)

    Ohyabu, N.; Komori, A.; Noda, N.; Morisaki, T.; Sagara, A.; Suzuki, H.; Watanabe, T.; Motojima, O.; Takase, H.

    1995-01-01

    Various innovative divertor concepts have been developed to improve the LHD plasma performance. They are two divertor magnetic geometries (helical divertor configurations with and without n/m=1/1 island) and two operational scenarios (confinement improvement by generating high temperature divertor plasma and simultaneous achievement of radiative cooling and H-mode-like confinement improvement). In addition, technological development of new efficient hydrogen pumping schemes are being pursued for enhancing the divertor control capability. 16 refs., 4 figs

  13. ASSOCIATION OF LYSOZYME TO PHOSPHOLIPID SURFACES AND VESICLE FUSION

    NARCIS (Netherlands)

    ARNOLD, K; HOEKSTRA, D; OHKI, S

    1992-01-01

    Lysozyme-induced fusion of phosphatidylserine (PS) vesicles was studied as a function of pH. Fusion, monitored by lipid-mixing, was measured by following the dilution of pyrene-labelled phosphatidylcholine, incorporated in PS vesicles, into unlabelled bilayers. It is demonstrated that

  14. Numerical Simulation of Heat and Flow Behaviors in Butt-fusion Welding Process of HDPE Pipes with Curved Fusion Surface

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyun; Ahn, Kyung Hyun [Seoul National University, Seoul (Korea, Republic of); Choi, Sunwoong; Oh, Ju Seok [Hannam University, Daejeon (Korea, Republic of)

    2017-08-15

    Butt-fusion welding process is used to join the polymeric pipes. Recently, some researchers suggest the curved surface to enhance a welding quality. We investigated how curved welding surface affects heat and flow behaviors of polymer melt during the process in 2D axisymmetric domain with finite element method, and discussed the effect to the welding quality. In this study, we considered HDPE pipes. In heat soak stage, curved phase interface between the melt and solid is shown along the shape of welding surface. In jointing stage, squeezing flow is generated between curved welding surface and phase interface. The low shear rate in fusion domain reduces the alignment of polymer to the perpendicular direction of pipes, and then this phenomenon is expected to help to enhance the welding quality.

  15. Impurity re-distribution in the corner regions of the JET divertor

    Science.gov (United States)

    Widdowson, A.; Coad, J. P.; Alves, E.; Baron-Wiechec, A.; Barradas, N. P.; Catarino, N.; Corregidor, V.; Heinola, K.; Krat, S.; Likonen, J.; Matthews, G. F.; Mayer, M.; Petersson, P.; Rubel, M.; Contributors, JET

    2017-12-01

    The International Thermonuclear Experimental Reactor (ITER) will use a mixture of deuterium (D) and tritium (T) as the fuel to generate power. Since T is both radioactive and expensive the Joint European Torus (JET) has been at the forefront of research to discover how much T is used and where it may be retained within the main reaction chamber. Until the year 2010 the JET plasma facing components were constructed of carbon fibre composites. During the JET carbon (C) phases impurities accumulated at the corners of the divertor located towards the bottom of the chamber in regions shadowed from the plasma where they are very difficult to reach and remove. This build-up of C and the associated H-isotope (including T) retention were of particular concern for future fusion reactors therefore, in 2010 JET changed the wall protection to (mainly) Be and the divertor to tungsten (W)—the JET ITER-like wall (ILW)—the choice of materials for ITER. This paper reveals that with the JET ILW impurities are still accumulating in the shadowed regions, with Be being the majority element, though the overall quantities are very much reduced from those in the C phases. Material will be transported into the shadowed regions principally when the plasma strike points are on the corner tiles, but particles typically have about a 75% probability of reflection from line-of sight surfaces, and multiple reflection/scattering results in deposition over all surfaces.

  16. Exfoliation of the tungsten fibreform nanostructure by unipolar arcing in the LHD divertor plasma

    International Nuclear Information System (INIS)

    Tokitani, M.; Masuzaki, S.; Kajita, S.; Hirahata, Y.; Ohno, N.; Tanabe, T.

    2011-01-01

    The tungsten nanostructure (W-fuzz) created in the linear divertor simulator (NAGDIS) was exposed to the Large Helical Device (LHD) divertor plasma for only 2 s (1 shot) to study exfoliation/erosion and microscopic modifications due to the high heat/particle loading under high magnetic field conditions. Very fine and randomly moved unipolar arc trails were clearly observed on about half of the W-fuzz area (6 x 10 mm 2 ). The fuzzy surface was exfoliated by continuously moving arc spots even for the very short exposure time. This is the first observation of unipolar arcing and exfoliation of some areas of the W-fuzz structure itself in a large plasma confinement device with a high magnetic field. The typical width and depth of each arc trail were about 8 μm and 1 μm, respectively, and the arc spots moved randomly on the micrometre scale. The fractality of the arc trails was analysed using a box-counting method, and the fractal dimension (D) of the arc trails was estimated to be D ∼ 1.922. This value indicated that the arc spots moved in Brownian motion, and were scarcely influenced by the magnetic field. One should note that such a large scale exfoliation due to unipolar arcing may enhance the surface erosion of the tungsten armour and act as a serious impurity source for fusion plasmas. (letter)

  17. Exfoliation of the tungsten fibreform nanostructure by unipolar arcing in the LHD divertor plasma

    Science.gov (United States)

    Tokitani, M.; Kajita, S.; Masuzaki, S.; Hirahata, Y.; Ohno, N.; Tanabe, T.; LHD Experiment Group

    2011-10-01

    The tungsten nanostructure (W-fuzz) created in the linear divertor simulator (NAGDIS) was exposed to the Large Helical Device (LHD) divertor plasma for only 2 s (1 shot) to study exfoliation/erosion and microscopic modifications due to the high heat/particle loading under high magnetic field conditions. Very fine and randomly moved unipolar arc trails were clearly observed on about half of the W-fuzz area (6 × 10 mm2). The fuzzy surface was exfoliated by continuously moving arc spots even for the very short exposure time. This is the first observation of unipolar arcing and exfoliation of some areas of the W-fuzz structure itself in a large plasma confinement device with a high magnetic field. The typical width and depth of each arc trail were about 8 µm and 1 µm, respectively, and the arc spots moved randomly on the micrometre scale. The fractality of the arc trails was analysed using a box-counting method, and the fractal dimension (D) of the arc trails was estimated to be D ≈ 1.922. This value indicated that the arc spots moved in Brownian motion, and were scarcely influenced by the magnetic field. One should note that such a large scale exfoliation due to unipolar arcing may enhance the surface erosion of the tungsten armour and act as a serious impurity source for fusion plasmas.

  18. The divertor remote maintenance project

    International Nuclear Information System (INIS)

    Maisonnier, D.; Martin, E.; Akou, K.

    2001-01-01

    Remote replacement of the ITER divertor will be required several times during the life of ITER. To facilitate its regular exchange, the divertor is assembled in the ITER vacuum vessel from 60 cassettes. Radial movers transport each cassette along radial rails through the handling ports and into the vessel where a toroidal mover lifts and transports the cassette around a pair of toroidal rails. Once at its final position the cassette is locked to the toroidal rails and is accurately aligned in both poloidal and toroidal directions. A further requirement on the divertor is to minimise the amount of activated waste to be sent to a repository. To this end the cassettes have been designed to allow the remote replacement, in a hot cell, of their plasma facing components. The paper describes the two facilities built at ENEA Brasimone, Italy, whose aim is to demonstrate the reliable remote maintenance of the divertor cassettes. (author)

  19. The divertor remote maintenance project

    International Nuclear Information System (INIS)

    Maisonnier, D.; Martin, E.; Akou, K.

    1999-01-01

    Remote replacement of the ITER divertor will be required several times during the life of ITER. To facilitate its regular exchange, the divertor is assembled in the ITER vacuum vessel from 60 cassettes. Radial movers transport each cassette along radial rails through the handling ports and into the vessel where a toroidal mover lifts and transports the cassette around a pair of toroidal rails. Once at its final position the cassette is locked to the toroidal rails and is accurately aligned in both poloidal and toroidal directions. A further requirement on the divertor is to minimise the amount of activated waste to be sent to a repository. To this end the cassettes have been designed to allow the remote replacement, in a hot cell, of their plasma facing components. The paper describes the two facilities built at ENEA Brasimone, Italy, whose aim is to demonstrate the reliable remote maintenance of the divertor cassettes. (author)

  20. Fusion

    Science.gov (United States)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  1. Modular He-cooled divertor for power plant application

    International Nuclear Information System (INIS)

    Diegele, Eberhard; Kruessmann, R.; Malang, S.; Norajitra, P.; Rizzi, G.

    2003-01-01

    Gas cooled divertor concepts are regarded as a suitable option for fusion power plants because of an increased thermal efficiency for power conversion systems and the use of a coolant compatible with all blanket systems. A modular helium cooled divertor concept is proposed with an improved heat transfer. The concept employs small tiles made of tungsten and brazed to a finger-like structure made of Mo-alloy (TZM). Design goal was a heat flux of at least 15 MW/m 2 and a minimum temperature of the structure of 600 deg.C. The divertor has to survive a number of cycles (100-1000) between operating temperature and room temperature even for the steady state operation assumed. Thermo-hydraulic design requirements for the concepts include to keep the pumping power below 10% of the thermal power to the divertor plates, and simultaneously achieving a heat transfer coefficient in excess of 60 kW/m 2 K. Inelastic stress analysis indicates that design allowable stress limits on primary and secondary (thermal) stresses as required by the ITER structural design criteria are met even under conservative assumptions. Finally, critical issues for future development are addressed

  2. Time-dependent modeling of dust injection in semi-detached ITER divertor plasma

    Science.gov (United States)

    Smirnov, Roman; Krasheninnikov, Sergei

    2017-10-01

    At present, it is generally understood that dust related issues will play important role in operation of the next step fusion devices, i.e. ITER, and in the development of future fusion reactors. Recent progress in research on dust in magnetic fusion devises has outlined several topics of particular concern: a) degradation of fusion plasma performance; b) impairment of in-vessel diagnostic instruments; and c) safety issues related to dust reactivity and tritium retention. In addition, observed dust events in fusion edge plasmas are highly irregular and require consideration of temporal evolution of both the dust and the fusion plasma. In order to address the dust-related fusion performance issues, we have coupled the dust transport code DUSTT and the edge plasma transport code UEDGE in time-dependent manner, allowing modeling of transient dust-induced phenomena in fusion edge plasmas. Using the coupled codes we simulate burst-like injection of tungsten dust into ITER divertor plasma in semi-detached regime, which is considered as preferable ITER divertor operational mode based on the plasma and heat load control restrictions. Analysis of transport of the dust and the dust-produced impurities, and of dynamics of the ITER divertor and edge plasma in response to the dust injection will be presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-06ER54852.

  3. Experimental testing and theoretical analysis of samples of a divertor plate proposed for NET

    International Nuclear Information System (INIS)

    Brossa, F.; Federici, G.; Renda, V.; Papa, L.

    1986-01-01

    This paper presents the JRC-Ispra effort to support the design of a divertor concept for future reactors. The reference frame used in this work, i.e. divertor geometry and wall loading, is that of the NET (Next European Torus) reactor, which constitutes the European collaboration in the fusion reactor technology Program. Because of its main function of plasma impurity control, the divertor is submitted to high thermal fluxes, severe sputtering rates and electromagnetic forces. The present proposal for the divertor plate is the following: 1) W-5Re for the armour; 2) Cu for the heat sink. This choice is due to the low sputtering rate and favourable high temperature mechanical properties of the W-5Re, and the high thermal conductivity of copper

  4. New achievements of the Divertor Test Platform programme for the ITER divertor remote maintenance R and D

    International Nuclear Information System (INIS)

    Damiani, C.; Baldi, L.; Galbiati, L.; Irving, M.; Lorenzelli, L.; Micciche, G.; Muro, L.; Nucci, S.; Varocchi, G.; Poggianti, A.; Fermani, G.; Maisonnier, D.; Palmer, J.; Martin, E.; Friconneau, J.P.; Gravez, P.; Takeda, N.

    2001-01-01

    The divertor assembly for the ITER fusion reactor consists of a number of rail mounted cassettes (54 now in ITER FEAT) located in the bottom region of the vacuum vessel. These cassettes shall be removed/installed remotely during the life of the reactor by means of specific devices. To demonstrate and optimise the feasibility of the in-vessel maintenance process the Divertor Test Platform (DTP) has been established at the ENEA Research Centre in Brasimone, Italy, as a major part of the large ITER R and D project L7. A first set of tests has been already carried out and reported during 1998, when the basic feasibility of the divertor replacement was demonstrated. In the present period (January 1999-July 2000), new activities, including both site tests and other 'external' R and D works, have been carried out in order to refine and improve the ITER divertor maintenance scenario. These include the study of abnormal maintenance operations and of possible handling equipment failure and its consequences; the procurement and testing of new sub-systems (e.g. a force reflection manipulator arm), and the development of remote handling techniques including a virtual reality system. Following a short description of the DTP, this paper reports on the new results and achievements, draws the relevant conclusions, and finally discusses future activities

  5. Toroidal asymmetries in divertor impurity influxes in NSTX

    Directory of Open Access Journals (Sweden)

    F. Scotti

    2017-08-01

    Full Text Available Toroidal asymmetries in divertor carbon and lithium influxes were observed in NSTX, due to toroidal differences in surface composition, tile leading edges, externally-applied three-dimensional (3D fields and toroidally-localized edge plasma modifications due to radio frequency heating. Understanding toroidal asymmetries in impurity influxes is critical for the evaluation of total impurity sources, often inferred from measurements with a limited toroidal coverage. The toroidally-asymmetric lithium deposition induced asymmetries in divertor lithium influxes. Enhanced impurity influxes at the leading edge of divertor tiles were the main cause of carbon toroidal asymmetries and were enhanced during edge localized modes. Externally-applied 3D fields led to strike point splitting and helical lobes observed in divertor impurity emission, but marginal changes to the toroidally-averaged impurity influxes. Power coupled to the scrape-off layer SOL plasma during radio frequency (RF heating of H-mode discharges enhanced impurity influxes along the non-axisymmetric divertor footprint of flux tubes connecting to plasma in front of the RF antenna.

  6. Model for screening of resonant magnetic perturbations by plasma in a realistic tokamak geometry and its impact on divertor strike points

    Czech Academy of Sciences Publication Activity Database

    Cahyna, Pavel; Nardon, E.

    2011-01-01

    Roč. 415, č. 1 (2011), S927-S931 ISSN 0022-3115. [International Conference on Plasma-Surface Interactions in Controlled Fusion Device/19th./. San Diego, 24.05.2010-28.05.2010] R&D Projects: GA MŠk 7G09042; GA MŠk LA08048 Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamaks * ELM control * resonant magnetic perturbations * divertor Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.052, year: 2011 http://dx.doi.org/10.1016/j.jnucmat.2011.01.117

  7. Divertor plate concept with carbon based armour for NET

    International Nuclear Information System (INIS)

    Moons, F.; Howard, R.; Kneringer, G.; Stickler, R.

    1989-01-01

    A series of tests has been performed on simulated divertor elements for NET at the JET neutral beam injector test bed. The test section consisted of a water cooled main structure, the surface of which was protected with a carbon based armour in the form of tiles. The scope of these was to study the thermal behaviour of mechanically attached tiles with the use of an intermediate soft carbon layer to improve the thermal contact under divertor relevant conditions. (author). 4 refs.; 4 figs.; 1 tab

  8. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  9. The ITER divertor cassette project meeting

    International Nuclear Information System (INIS)

    Merola, M.; Riccardi, B.; Tivey, R.

    1999-01-01

    The Divertor Cassette Project topical meeting was held on May 26-28, 1999 at the ENEA Brasimone Research Centre in Camugnano (Bologna), Italy. Specialists from all the four Parties and the JCT participated in the meeting. It was concluded that the Divertor Cassette Project has significantly contributed to solving a large part of the critical issues of the ITER divertor design

  10. Edge and divertor physics with reversed toroidal field in JET

    Czech Academy of Sciences Publication Activity Database

    Pitts, R. A.; Andrew, P.; Bonnin, X.; Chankin, A.V.; Corre, Y.; Corrigan, G.; Coster, D.; Ďuran, Ivan; Eich, T.; Erents, S. K.; Fundameski, W.; Huber, A.; Jachmich, S.; Kirnev, G.; Lehnen, M.; Lomas, P. J.; Loarte, A.; Matthews, G. F.; Rapp, J.; Silva, C.; Stamp, M.F.; Strachan, J.D.; Tsitrone, E.

    337-339, č. 16 (2005), s. 146-153 ISSN 0022-3115. [Plasma Surface Interactions /16./. Portland, 24.5.2005-28.5.2005] Institutional research plan: CEZ:AV0Z20430508 Keywords : SOL * Particle drifts * JET * Plasma flow * Divertor Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.414, year: 2005

  11. Challenges and opportunities of modeling plasma-surface interactions in tungsten using high-performance computing

    Science.gov (United States)

    Wirth, Brian D.; Hammond, K. D.; Krasheninnikov, S. I.; Maroudas, D.

    2015-08-01

    The performance of plasma facing components (PFCs) is critical for ITER and future magnetic fusion reactors. The ITER divertor will be tungsten, which is the primary candidate material for future reactors. Recent experiments involving tungsten exposure to low-energy helium plasmas reveal significant surface modification, including the growth of nanometer-scale tendrils of "fuzz" and formation of nanometer-sized bubbles in the near-surface region. The large span of spatial and temporal scales governing plasma surface interactions are among the challenges to modeling divertor performance. Fortunately, recent innovations in computational modeling, increasingly powerful high-performance computers, and improved experimental characterization tools provide a path toward self-consistent, experimentally validated models of PFC and divertor performance. Recent advances in understanding tungsten-helium interactions are reviewed, including such processes as helium clustering, which serve as nuclei for gas bubbles; and trap mutation, dislocation loop punching and bubble bursting; which together initiate surface morphological modification.

  12. Challenges and opportunities of modeling plasma–surface interactions in tungsten using high-performance computing

    International Nuclear Information System (INIS)

    Wirth, Brian D.; Hammond, K.D.; Krasheninnikov, S.I.; Maroudas, D.

    2015-01-01

    The performance of plasma facing components (PFCs) is critical for ITER and future magnetic fusion reactors. The ITER divertor will be tungsten, which is the primary candidate material for future reactors. Recent experiments involving tungsten exposure to low-energy helium plasmas reveal significant surface modification, including the growth of nanometer-scale tendrils of “fuzz” and formation of nanometer-sized bubbles in the near-surface region. The large span of spatial and temporal scales governing plasma surface interactions are among the challenges to modeling divertor performance. Fortunately, recent innovations in computational modeling, increasingly powerful high-performance computers, and improved experimental characterization tools provide a path toward self-consistent, experimentally validated models of PFC and divertor performance. Recent advances in understanding tungsten–helium interactions are reviewed, including such processes as helium clustering, which serve as nuclei for gas bubbles; and trap mutation, dislocation loop punching and bubble bursting; which together initiate surface morphological modification

  13. Detached divertor plasmas in JET

    Energy Technology Data Exchange (ETDEWEB)

    Horton, L.D.; Borrass, K.; Corrigan, G.; Gottardi, N.; Lingertat, J.; Loarte, A.; Simonini, R.; Stamp, M.F.; Taroni, A. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Stangeby, P.C. [Toronto Univ., ON (Canada). Inst. for Aerospace Studies

    1994-07-01

    In simulations with high radiated power fractions, it is possible to produce the drop in ion current to the divertor targets typical of detached plasmas. Despite the fact that these experiments are performed on beryllium target tiles, radiation from deuterium and beryllium cannot account for the measured power losses. The neutral deuterium levels in the SOL in these plasmas are higher than the model predicts. This may be due to leakage from the divertor or to additional wall sources related to the non-steady nature of these plasmas. In contrast, a surprisingly high level of carbon is present in these discharges; higher even than would be predicted are the divertor target tiles pure carbon. This level may well be large enough to produce the measured radiation. (authors). 6 refs., 2 figs., 1 tab.

  14. Coatings and claddings for the reduction of plasma contamination and surface erosion in fusion reactors

    International Nuclear Information System (INIS)

    Kaminsky, M.

    1980-01-01

    For the successful operation of plasma devices and future fusion reactors it is necessary to control plasma impurity release and surface erosion. Effective methods to obtain such controls include the application of protective coatings to, and the use of clad materials for, certain first wall components. Major features of the development programs for coatings and claddings for fusion applications will be described together with an outline of the testing program. A discussion of some pertinent test results will be included

  15. Analytical and experimental evaluation of simulated sweeping heat load on the divertor plate for ITER

    International Nuclear Information System (INIS)

    Araki, M.; Akiba, M.; Sugihara, M.; Suzuki, S.; Nishio, S.; Yokoyama, K.

    1993-01-01

    The magnitude of the heat flux on the surface of the divertor plate of ITER is one of the most limiting constraints on its lifetime. A technique for sweeping the separatrix across the divertor surface will be applied to reduce the mean surface heat fluxes and erosion damages due to intense fluxes over 15 MW/m 2 . As a first step for the evaluation of the sweeping effects, the thermal response of the divertor plate has been analyzed under the ITER relevant heat flux conditions that a peak heat flux on the divertor plate and full width at half maximum are expected to be 30 MW/m 2 and 3 cm, respectively. The analytical results show that the application of sweeping is very effective for reducing the surface temperature of the divertor plate. To realize these benefits for ITER, the divertor separatrix must be swept with a frequency of higher than 3.0 Hz over a distance of ±10 cm. Based on the analytical results, thermal response experiments with a divertor mock-up are carried out using the JAERI Electron Beam Irradiation Stand (JEBIS). The conditions for this experiment were a peak heat flux of 30 MW/m 2 with a sweeping frequency of 1.0 Hz over a distance of ±10 cm for a 30 s long cycle. Experimental results show that the divertor mock-up has successfully endured for more than 1000 major thermal cycles without an increase of the surface temperature. Therefore, it has been experimentally demonstrated that application of the sweeping technique is very effective for improvement of the power handling capability of the divertor plate. Experimental results showed a good agreement with analytical results. (orig.)

  16. Computer simulations of the scraper element for the nuclear fusion experiment Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Hoelbe, Hauke; Sunn Pedersen, Thomas; Geiger, Joachim; Bozhenkov, Sergey; Feng, Yuehe [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald (Germany)

    2015-05-01

    The nuclear fusion experiment Wendelstein 7-X (W7-X), located in Greifswald (Germany), will go into operation in a few months (summer 2015). Than W7-X will become the world leading stellarator. The stellarator concept is intrinsically capable of steady state operation while other nuclear fusion concepts based on magnetic confinement such as the Tokamak have to operate in pulsed mode. In W7-X the plasma-wall interaction will take place at a specifically designed region called the divertor. The divertor itself has regions with different heat load capabilities, the most prominent parts can withstand energy fluxes of up to 10 MW/m{sup 2} in steady state operation (almost the energy flux at the surface of the sun). Simulations of certain experimental scenarios have shown that the heat flux limit may be exceeded at one special region of the divertor where the cooling capabilities are less strong. There are several options to deal with this challenge. One of them are an additional divertor plate, called the scraper element (SE), that takes up some of the heat load that would otherwise hit and damage the vulnerable region. The talk is about the effects of an SE in steady state operation as well as the development of new magnetic field configurations to test the SE in an early operational phase.

  17. Experimental study of heating scheme effect on the inner divertor power footprint widths in EAST lower single null discharges

    Science.gov (United States)

    Deng, G. Z.; Xu, J. C.; Liu, X.; Liu, X. J.; Liu, J. B.; Zhang, H.; Liu, S. C.; Chen, L.; Yan, N.; Feng, W.; Liu, H.; Xia, T. Y.; Zhang, B.; Shao, L. M.; Ming, T. F.; Xu, G. S.; Guo, H. Y.; Xu, X. Q.; Gao, X.; Wang, L.

    2018-04-01

    A comprehensive work of the effects of plasma current and heating schemes on divertor power footprint widths is carried out in the experimental advanced superconducting tokamak (EAST). The divertor power footprint widths, i.e., the scrape-off layer heat flux decay length λ q and the heat spreading S, are crucial physical and engineering parameters for fusion reactors. Strong inverse scaling of λ q and S with plasma current have been demonstrated for both neutral beam (NB) and lower hybrid wave (LHW) heated L-mode and H-mode plasmas at the inner divertor target. For plasmas heated by the combination of the two kinds of auxiliary heating schemes (NB and LHW), the divertor power widths tend to be larger in plasmas with higher ratio of LHW power. Comparison between experimental heat flux profiles at outer mid-plane (OMP) and divertor target for NB heated and LHW heated L-mode plasmas reveals that the magnetic topology changes induced by LHW may be the main reason to the wider divertor power widths in LHW heated discharges. The effect of heating schemes on divertor peak heat flux has also been investigated, and it is found that LHW heated discharges tend to have a lower divertor peak heat flux compared with NB heated discharges under similar input power. All these findings seem to suggest that plasmas with LHW auxiliary heating scheme are better heat exhaust scenarios for fusion reactors and should be the priorities for the design of next-step fusion reactors like China Fusion Engineering Test Reactor.

  18. Diagnostic measurements of the pumped divertor plasma

    International Nuclear Information System (INIS)

    Gondhalekar, A.; Bartlett, D.; Costley, A.

    1989-01-01

    The scope of plasma diagnostic capability needed for the pumped divertor is determined by the measurement objectives, which are: (i) to demonstrate feasibility of impurity control using a high flow rate divertor, (ii) to validate a model of the divertor action, and (iii) to optimize pumped divertor performance. Installation of diagnostics, with spatial resolution along the separatrix in the divertor region between the x-point and the target plates, is proposed. Difficult access, small plasma size, large dynamic range, and interpretational issues determine the choices of diagnostic methods which have been made. (author)

  19. Fusion development and technology

    International Nuclear Information System (INIS)

    Montgomery, D.B.

    1991-01-01

    This report discusses the following topics: superconducting magnet technology high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies -- Aries; ITER physics; ITER superconducting PF scenario and magnet analysis; and safety, environmental and economic factors in fusion development

  20. A modified EDDY code to simulate erosion/redeposition of carbon target in an ITER-FEAT divertor

    International Nuclear Information System (INIS)

    Ohya, Kaoru; Kawakami, Retsuo

    2001-01-01

    Modification of a Monte Carlo simulation code, Erosion and Deposition based on DYnamic model (EDDY), for plasma-surface interactions in a designed tokamak, International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT), and its application for erosion and redeposition of a carbon target in the divertor are presented. The modified EDDY code allows us to treat the deposition of plasma impurities and the prompt redeposition of sputtered atoms and molecules on the target surface. At elevated temperatures, furthermore, the impurity diffusion inside the target and chemical sputtering of carbon are taken into account. In the ITER-FEAT, physical sputtering of the divertor target is very small in the scrape-off layer (SOL) region, and chemical sputtering dominates the erosion near the strike point and in the private flux region. Prompt redeposition strongly suppresses the sputtering of the target and plasma carbon impurity deposits on it. As a result, no erosion is calculated in the SOL region and a thick deposition layer is produced near the strike point. A narrow erosion zone remains only in the private flux region. Furthermore, radial distributions of each particle species released in the plasma and their redeposition profiles on the surface are discussed. (author)

  1. VUV Spectroscopy in DIII-D Divertor

    International Nuclear Information System (INIS)

    Alkesh Punjabi; Nelson Jalufka

    2004-01-01

    The research carried out on this grant was motivated by the high power emission from the CIV doublet at 155 nm in the DIII-D divertor and to study the characteristics of the radiative divertor. The radiative divertor is designed to reduce the heat load to the target plates of the divertor by reducing the energy in the divertor plasma using upstream scrape-off-layer (SOL) radiation. In some cases, particularly in Partially Detached Divertor (PDD) operations, this emission accounts for more than 50% of the total radiation from the divertor. In PDD operation, produced by neutral gas injection, the particle flow to the target plate and the divertor temperature are significantly reduced. A father motivation was to study the CIV emission distribution in the lower, open divertor and the upper baffled divertor. Two Vacuum Ultra Violet Tangential viewing Television cameras (VUV TTV) were constructed and installed in the upper, baffled and the lower, open divertor. The images recorded by these cameras were then inverted to produce two-dimensional distributions of CIV in the poloidal plane. Results obtained in the project are summarized in this report

  2. Introduction to the special issue on the technical status of materials for a fusion reactor

    Science.gov (United States)

    Stork, D.; Zinkle, S. J.

    2017-09-01

    Materials determine in a fundamental way the performance and environmental attractiveness of a fusion reactor: through the size (power fluxes to the divertor, neutron fluxes to the first wall); economics (replacement lifetime of critical in-vessel components, thermodynamic efficiency through operating temperature etc); plasma performance (erosion by plasma fluxes to the divertor surfaces); robustness against off-normal accidents (safety); and the effects of post-operation radioactivity on waste disposal and maintenance. The major philosophies and methodologies used to formulate programmes for the development of fusion materials are outlined, as the basis for other articles in this special issue, which deal with the fundamental understanding of the issues regarding these materials and their technical status and prospects for development.

  3. Improved structural strength and lifetime of monoblock divertor targets by using doped tungsten alloys under cyclic high heat flux loading

    Science.gov (United States)

    Nogami, S.; Guan, W. H.; Hattori, T.; James, K.; Hasegawa, A.

    2017-12-01

    The divertor is one of the most important components of a fusion reactor, which performs the function of the removal of waste material from fusion plasma. Because the divertor is subjected to cyclic high heat flux loading up to about 20 MW m-2 induced by the plasma, the plasma facing material of the divertor should exhibit good thermo-mechanical properties. In this work, the possibility of improving the structural strength and the lifetime of fusion reactor divertors by using K-doped W and K-doped W-3%Re as plasma facing material instead of ordinary pure W was evaluated by thermo-mechanical finite element analysis (FEA). These materials have been developed for divertor applications in Japan and show higher recrystallization temperature and strength than pure W. The results of the present study indicated that K-doped W and K-doped W-3%Re render lower applied strain to the divertor and longer fatigue life of the plasma facing material. The evaluation results regarding the macro-crack formation life based on the FEA analyses indicated the possibility of an extension of the fatigue life by using K-doped W and K-doped W-3%Re.

  4. Data fusion analysis of a surface direct-current resistivity and well pick data set

    International Nuclear Information System (INIS)

    Clayton, E.A.; Lewis, R.E.

    1995-09-01

    Pacific Northwest Laboratory (PNL) has been tasked with testing, debugging, and refining the Hanford Site data fusion workstation (DFW), with the assistance of Coleman Research Corporation (CRC), before delivering the DFW to the environmental restoration client at the Hanford Site. Data fusion is the mathematical combination (or fusion) of disparate data sets into a single interpretation. The data fusion software used in this study was developed by CRC. This report discusses the results of evaluating a surface direct-current (dc) resistivity and well-pick data set using two methods: data fusion technology and commercially available software (i.e., RESIX Plus from Interpex Ltd., Golden, Colorado), the conventional method of analysis. The report compares the two technologies; describes the survey, procedures, and results; and includes conclusions and recommendations. The surface dc resistivity and well-pick data set had been acquired by PNL from a study performed in May 1993 at Eielson Air Force Base near Fairbanks, Alaska. The resistivity survey data were acquired to map the top of permafrost in support of a hydrogeologic study. This data set provided an excellent opportunity to test and refine the dc resistivity capabilities of the DFW; previously, the data fusion software was untested on dc resistivity data. The DFW was used to evaluate the dc resistivity survey data and to produce a 3-dimensional earth model of the study area

  5. Overview of co-deposition and fuel inventory in castellated divertor structures at JET

    International Nuclear Information System (INIS)

    Rubel, M.J.; Coad, J.P.; Pitts, R.A.

    2007-01-01

    The main focus of this work is fuel retention in plasma components of the JET water-cooled Mk-I divertors operated with small tiles, first with carbon fibre composite (CFC) and then with castellated beryllium. Until recently these have been the only large-scale structures of this type used in fusion experiments. Three issues regarding fuel retention and material migration are addressed: (i) accumulation in gaps separating tiles and in the grooves of castellation; (ii) comparison of deposition on carbon and beryllium; (iii) in-depth migration of deuterium into the bulk of CFC. The essential results are summarised as follows: (i) co-deposition occurs up to a few cm deep in the gaps between the Mk-I tiles; (ii) fuel inventory in the CFC tile gaps exceeds that on plasma-facing surfaces by up to a factor of 2; (iii) in gaps between the beryllium tiles from the inner divertor corner the fuel content reaches 30% of that on plasma-facing surfaces, whereas in the grooves of castellation in Be the fuel content is less than 3.0% of that found on the top surface; (iv) fuel inventory on the Be tiles is strongly associated with the carbon co-deposition; (v) the D content measured in the bulk (1.5 mm below the surface) on cleaved CFC tiles exceeds 1 x 10 15 cm -2 . Implications of these results for a next-step device are addressed and the transport mechanism into the gaps is briefly discussed. The results presented here suggest that in a machine with non-carbon walls in the main chamber (as foreseen for ITER) the material transport and subsequent fuel inventory in the castellation would be reduced

  6. Enhancing the DEMO divertor target by interlayer engineering

    International Nuclear Information System (INIS)

    Barrett, T.R.; McIntosh, S.C.; Fursdon, M.; Hancock, D.; Timmis, W.; Coleman, M.; Rieth, M.; Reiser, J.

    2015-01-01

    Highlights: • The European ‘near-term’ DEMO forsees a water-cooled divertor. • Divertor targets typically use an interlayer between the armour and structure. • Engineering the properties of the interlayer can yield large gains in performance. • A response surface based design search and optimisation method is used. • A new design passes linear-elastic code rules up to applied heat flux of 18 MW/m 2 . - Abstract: A robust water-cooled divertor target plate solution for DEMO has to date remained elusive. Common to all contemporary concepts is an interlayer at the boundary between the tungsten armour and the cooling structure. In this paper we show by design optimisation that an effectively designed interlayer can produce dramatic gains in power handling. By engineering the interlayer as part of the design study, it is found that divertor performance is enhanced by either a low conductivity ‘Thermal Break’ interlayer or an ‘Ultra-Compliant’ interlayer. For a 10 MW/m 2 surface heat flux we find that a thermal conductivity of 15 W/mK and elastic modulus of 1 GPa are effective. A design is proposed which passes linear-elastic code rules up to an applied heat flux of 18 MW/m 2 .

  7. Enhancing the DEMO divertor target by interlayer engineering

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, T.R., E-mail: tom.barrett@ccfe.ac.uk [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); McIntosh, S.C.; Fursdon, M.; Hancock, D.; Timmis, W.; Coleman, M. [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Rieth, M.; Reiser, J. [Karlsruhe Institute for Technology, IMF-I, D-7602 Karlsruhe (Germany)

    2015-10-15

    Highlights: • The European ‘near-term’ DEMO forsees a water-cooled divertor. • Divertor targets typically use an interlayer between the armour and structure. • Engineering the properties of the interlayer can yield large gains in performance. • A response surface based design search and optimisation method is used. • A new design passes linear-elastic code rules up to applied heat flux of 18 MW/m{sup 2}. - Abstract: A robust water-cooled divertor target plate solution for DEMO has to date remained elusive. Common to all contemporary concepts is an interlayer at the boundary between the tungsten armour and the cooling structure. In this paper we show by design optimisation that an effectively designed interlayer can produce dramatic gains in power handling. By engineering the interlayer as part of the design study, it is found that divertor performance is enhanced by either a low conductivity ‘Thermal Break’ interlayer or an ‘Ultra-Compliant’ interlayer. For a 10 MW/m{sup 2} surface heat flux we find that a thermal conductivity of 15 W/mK and elastic modulus of 1 GPa are effective. A design is proposed which passes linear-elastic code rules up to an applied heat flux of 18 MW/m{sup 2}.

  8. Modeling results for a linear simulator of a divertor

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E.B.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Jackson, M.C.; Kaiser, T.B.; Molvik, A.W.; Nevins, W.M.; Nilson, D.G.; Pearlstein, L.D.; Rognlien, T.D.

    1993-06-23

    A divertor simulator, IDEAL, has been proposed by S. Cohen to study the difficult power-handling requirements of the tokamak program in general and the ITER program in particular. Projections of the power density in the ITER divertor reach {approximately} 1 Gw/m{sup 2} along the magnetic fieldlines and > 10 MW/m{sup 2} on a surface inclined at a shallow angle to the fieldlines. These power densities are substantially greater than can be handled reliably on the surface, so new techniques are required to reduce the power density to a reasonable level. Although the divertor physics must be demonstrated in tokamaks, a linear device could contribute to the development because of its flexibility, the easy access to the plasma and to tested components, and long pulse operation (essentially cw). However, a decision to build a simulator requires not just the recognition of its programmatic value, but also confidence that it can meet the required parameters at an affordable cost. Accordingly, as reported here, it was decided to examine the physics of the proposed device, including kinetic effects resulting from the intense heating required to reach the plasma parameters, and to conduct an independent cost estimate. The detailed role of the simulator in a divertor program is not explored in this report.

  9. Modeling results for a linear simulator of a divertor

    International Nuclear Information System (INIS)

    Hooper, E.B.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Jackson, M.C.; Kaiser, T.B.; Molvik, A.W.; Nevins, W.M.; Nilson, D.G.; Pearlstein, L.D.; Rognlien, T.D.

    1993-01-01

    A divertor simulator, IDEAL, has been proposed by S. Cohen to study the difficult power-handling requirements of the tokamak program in general and the ITER program in particular. Projections of the power density in the ITER divertor reach ∼ 1 Gw/m 2 along the magnetic fieldlines and > 10 MW/m 2 on a surface inclined at a shallow angle to the fieldlines. These power densities are substantially greater than can be handled reliably on the surface, so new techniques are required to reduce the power density to a reasonable level. Although the divertor physics must be demonstrated in tokamaks, a linear device could contribute to the development because of its flexibility, the easy access to the plasma and to tested components, and long pulse operation (essentially cw). However, a decision to build a simulator requires not just the recognition of its programmatic value, but also confidence that it can meet the required parameters at an affordable cost. Accordingly, as reported here, it was decided to examine the physics of the proposed device, including kinetic effects resulting from the intense heating required to reach the plasma parameters, and to conduct an independent cost estimate. The detailed role of the simulator in a divertor program is not explored in this report

  10. Material and design considerations for the carbon armored ITER divertor

    International Nuclear Information System (INIS)

    Smid, I.; Akiba, Masato; Araki, Masanori; Suzuki, Satoshi; Satoh, Kazuyoshi

    1993-07-01

    The properties of materials for the carbon armored ITER divertor were evaluated from literature and manufacturers' documentation. Most of these data, however, have been not known or not published yet. We have evaluated an optimum data set of the candidate materials of the ITER divertor, which were needed for finite element analyses (FEM). The materials evaluated are as follows; MFC-1, CX2002U, SEP-N112, P-130, IG-430U for the carbon based materials, and Oxygen Free Copper (OFCu), Dispersion Strengthened Copper (DSCu), TZM, W5Re and W-Cu as a heat sink material. It should be noted that W-Cu is first proposed for a heat sink application of the ITER divertor plate. The finite element analyses were performed for the residual stress induced by brazing, thermal response and thermal stresses under a uniform heat flux of 15 MW/m 2 to the plasma facing surface. The stress free temperature of 750degC is assumed for the residual stress by brazing. Ten different geometries of the divertor were considered in the analyses including possible material combinations. The FEM results show that the material combinations of MFC-1 and W-30Cu or DSUc in the flat-plate geometry satisfy the presently accepted ITER requirements. The combinations of CX2002U and TZM or W5Re is considered a good choice in terms of residual and thermal stresses, whereas the surface temperature exceeds the ITER requirements. (author) 106 refs

  11. Intermittent Divertor Filaments in the National Spherical Torus Experiment and Their Relation to Midplane Blobs

    International Nuclear Information System (INIS)

    Maqueda, R.J.; Stotler, D.P.

    2010-01-01

    While intermittent filamentary structures, also known as blobs, are routinely seen in the low-field-side scrape-off layer of the National Spherical Torus Experiment (NSTX) (Ono et al 2000 Nucl. Fusion 40 557), fine structured filaments are also seen on the lower divertor target plates of NSTX. These filaments, not associated with edge localized modes, correspond to the interaction of the turbulent blobs seen near the midplane with the divertor plasma facing components. The fluctuation level of the neutral lithium light observed at the divertor, and the skewness and kurtosis of its probability distribution function, is similar to that of midplane blobs seen in D α ; e.g. increasing with increasing radii outside the outer strike point (OSP) (separatrix). In addition, their toroidal and radial movement agrees with the typical movement of midplane blobs. Furthermore, with the appropriate magnetic topology, i.e. mapping between the portion of the target plates being observed into the field of view of the midplane gas puff imaging diagnostic, very good correlation is observed between the blobs and the divertor filaments. The correlation between divertor plate filaments and midplane blobs is lost close to the OSP. This latter observation is consistent with the existence of 'magnetic shear disconnection' due to the lower X-point, as proposed by Cohen and Ryutov (1997 Nucl. Fusion 37 621).

  12. Reversal of plasma flow in tokamak divertors

    International Nuclear Information System (INIS)

    Maddison, G.P.; Reiter, D.; Stangeby, P.C.; Prinja, A.K.

    1993-01-01

    In a magnetic divertor, retention of impurity ions is expected to be dependent on an expulsive thermal force directed up the gradient of ion temperature being opposed by frictional entrainment in a plasma flow towards the target. Preferred conditions of high recycling, however, can induce a reversal of usual plasma flow, with consequent reinforcement of thermal forces potentially leading to damaging contamination of the core. Backflow in diverted plasmas was first anticipated theoretically by Nedospasov and Tokar', subsequently observed experimentally in DITE and JET, and has been seen in a number of numerical studies. We report briefly on a systematic investigation of steady-state divertor flow reversal for ITER-relevant conditions, by detailed numerical modelling. The BRAAMS 'B2' edge plasma transport code is used, with both analytic approximations and EIRENE Monte Carlo simulation of neutral particle recycling. The flexibility of numerical models regarding physics admitted is exploited to expose the key role of redistribution of recycling sources across magnetic surfaces in flow reversal. Concomitant amplification of cross-field ion diffusion in the SOL is also examined. (author) 10 refs., 4 figs

  13. Massachusetts Institute of Technology Plasma Fusion Center 1992--1993 report to the President

    International Nuclear Information System (INIS)

    1993-07-01

    This report discusses research being conducted at MIT's plasma fusion center. Some of the areas covered are: plasma diagnostics; rf plasma heating; gyrotron research; treatment of solid waste by arc plasma; divertor experiments; tokamak studies; and plasma and fusion theory

  14. Divertor plasma modification by divertor biasing and edge ergodization in JFT-2M

    International Nuclear Information System (INIS)

    Shoji, T.; Nagashima, K.; Tamai, H.; Ohdachi, S.; Miura, Y.; Ohasa, K.; Maeda, H.; Ohyabu, N.; Leonard, A.W.; Aikawa, H.; Fujita, T.; Hoshino, K.; Kawashima, H.; Matsuda, T.; Maeno, M.; Mori, M.; Ogawa, H.; Shimada, M.; Uehara, K.; Yamauchi, T.

    1995-01-01

    The effects of divertor biasing and edge ergodization on the divertor plasma have been investigated in the JFT-2M tokamak. Experimental results show; (1) The differential divertor biasing can change the in/out asymmetry of the divertor plasma. It especially changes the density on the ion side divertor plasma. The in/out electron pressure difference has a good correlation with the biasing current. (2) The unipolar divertor biasing can change the density profile of divertor plasma. The radial electric field and shear flow are the cause for this change. (3) The electron temperature of the divertor plasma in the H-mode with frequent ELMs induced by edge ergodization is lower than that of usual H-mode. That is due to the enhancement of the radial particle flux by frequent ELMs, ((orig.))

  15. Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake

    International Nuclear Information System (INIS)

    Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh

    2013-01-01

    Advanced divertors are magnetic geometries where a second X-point is added in the divertor region to address the serious challenges of burning plasma power exhaust. Invoking physical arguments, numerical work, and detailed model magnetic field analysis, we investigate the magnetic field structure of advanced divertors in the physically relevant region for power exhaust—the scrape-off layer. A primary result of our analysis is the emergence of a physical “metric,” the Divertor Index DI, which quantifies the flux expansion increase as one goes from the main X-point to the strike point. It clearly separates three geometries with distinct consequences for divertor physics—the Standard Divertor (DI = 1), and two advanced geometries—the X-Divertor (XD, DI > 1) and the Snowflake (DI < 1). The XD, therefore, cannot be classified as one variant of the Snowflake. By this measure, recent National Spherical Torus Experiment and DIIID experiments are X-Divertors, not Snowflakes

  16. Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake

    Energy Technology Data Exchange (ETDEWEB)

    Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2013-10-15

    Advanced divertors are magnetic geometries where a second X-point is added in the divertor region to address the serious challenges of burning plasma power exhaust. Invoking physical arguments, numerical work, and detailed model magnetic field analysis, we investigate the magnetic field structure of advanced divertors in the physically relevant region for power exhaust—the scrape-off layer. A primary result of our analysis is the emergence of a physical “metric,” the Divertor Index DI, which quantifies the flux expansion increase as one goes from the main X-point to the strike point. It clearly separates three geometries with distinct consequences for divertor physics—the Standard Divertor (DI = 1), and two advanced geometries—the X-Divertor (XD, DI > 1) and the Snowflake (DI < 1). The XD, therefore, cannot be classified as one variant of the Snowflake. By this measure, recent National Spherical Torus Experiment and DIIID experiments are X-Divertors, not Snowflakes.

  17. Physics conclusions in support of ITER W divertor monoblock shaping

    Czech Academy of Sciences Publication Activity Database

    Pitts, R.A.; Bardin, S.; Bazylev, B.; van den Berg, M.A.; Bunting, P.; Carpentier-Chouchana, S.; Coenen, J.W.; Corre, Y.; Dejarnac, Renaud; Escourbiac, F.; Gaspar, J.; Gunn, J. P.; Hirai, T.; Hong, S.-H.; Horáček, Jan; Iglesias, D.; Komm, Michael; Krieger, K.; Lasnier, C.; Matthews, G.F.; Morgan, T.W.; Panayotis, S.; Pestchanyi, S.; Podolník, Aleš; Nygren, R.E.; Rudakov, D.L.; De Temmerman, G.; Vondráček, Petr; Watkins, J.G.

    2017-01-01

    Roč. 12, August (2017), s. 60-74 ISSN 2352-1791. [International Conference on Plasma Surface Interactions 2016, PSI2016 /22./. Roma, 30.05.2016-03.06.2016] Institutional support: RVO:61389021 Keywords : ITER * Tungsten * Divertor * Shaping * Melting * MEMOS Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) http://www.sciencedirect.com/science/article/pii/S2352179116302885

  18. Progress in ergodic divertor operation on Tore Supra

    International Nuclear Information System (INIS)

    Ghendrih, Ph.; Becoulet, M.; Colas, L.; Grosman, A.; Guirlet, R.; Gunn, J.; Loarer, T.; Azeroual, A.; Basiuk, V.; Beaumont, B.; Becoulet, A.; Bremond, S.; Bucalossi, J.; Capes, H.; Corre, Y.; Costanzo, L.; Michelis, C. de; Devynck, P.; Feron, S.; Friant, C.; Garbet, X.; Giannella, R.; Grisolia, C.; Hess, W.; Hogan, J.; Ladurelle, L.; Laugier, F.; Martin, G.; Mattioli, M.; Meslin, B.; Monier-Garbet, P.; Moulin, D.; Nguyen, F.; Pascal, J.Y.; Pecquet, A.L.; Pegourie, B.; Reichle, R.; Saint-Laurent, F.; Vallet, J.C.; Zabiego, M.

    1999-09-01

    Upgrade of the Tore ergodic divertor has led to significant progress in ergodic divertor physics. The disruptive limit governed by the stochastization of the outer magnetic surfaces is found to occur for a value of the Chirikov parameter reaching 2 on the magnetic surface q = 2 + 3 / 12. This experimentally observed robustness allows one to operate at very low safety factor on the separatrix (q ∼ 2). Numerical analysis of ballooning turbulence in a stochastic layer indicates that the decay of the density fluctuations is in associated with an increase of the fluctuating electric drift velocity. The bottom line is then an enhanced cross-field transport in the vicinity of the target plates. This lowering of confinement appears to be compensated by an intrinsic transport barrier on the electron temperature. The 3-D response of the temperature field is computed with a fluid code. The intrinsic transport barrier at the separatrix, reported experimentally, can be recovered together with small amplitude temperature modulations in the divertor volume. Experimental evidence of the 3 density regimes (linear, high recycling and detachment) is reported. The low critical density values for these transitions indicate that similar parallel physics govern the axisymmetric and ergodic divertor, despite the open configuration of the latter. Measurement and understanding of these density regimes provide a means for feedback control of plasma density and an improvement in ICRH coupling scenarios. Experimental data also indicated that particle control with the vented target plates is effective. Increase of impurity control and radiation efficiency are recalled. Global power balance has been analysed. These results confirm the enhanced radiation capacity of the ergodic divertor. (author)

  19. Effect of fusion mixture treatment on the surface of low grade natural ruby

    International Nuclear Information System (INIS)

    Sakthivel, R.; Pradhan, K.C.; Nayak, B.B.; Dash, Tapan; Sahu, R.K.; Mishra, B.K.

    2017-01-01

    Graphical abstract: The colour of low grade natural ruby is enhanced with fusion mixture treatment. Comparative optical absorption and photoluminesence properties of both untreated and treated ruby samples are studied. - Highlights: • Colour of the low grade natural ruby is improved with fusion mixture treatment. • Surface impurities are removed with fusion mixture. • Photoluminescence spectrum of ruby influenced by its Cr 3+ concentration. • X-ray diffraction study confirms the presence of corundum phases in ruby samples. • Treated ruby looks brighter than untreated ruby due to variation in Cr 3+ concentration. - Abstract: Improvement in aesthetic look of low grade natural ruby (gemstone) surface was clearly evident after fusion mixture treatment. Surface impurities of the gemstone were significantly reduced to give it a face lift. The processing consists of heat treatment (1000 °C) of the raw gemstone with fusion mixture (sodium and potassium carbonates), followed by hydrochloric acid digestion (90 °C) and ultrasonic cleaning.Both the untreated and the treated gemstone were characterized by X-ray diffraction, UV–vis spectroscopy (diffuse reflectance),photoluminescence and X-ray photoelectron spectroscopy. The paper consolidates the results of these studies and presents the effect of the typical chemical treatment (stated above) on the low grade natural ruby. While X-ray diffraction study identifies the occurrence of alumina phase in both the treated and the untreated gemstones, the UV–vis spectra exhibit strong characteristic absorption of Cr 3+ at 400 and 550 nm wavelength for the treated gemstone in contrast to weak absorption observed for the untreated gemstone at such wavelengths, thus showing the beneficial effect of fusion mixture treatment. Peaks observed for the gemstone (for both treated and untreated samples) in the excitation spectra of photoluminescence show a good correlation with observed UV–vis (diffuse reflectance) spectra

  20. Effect of fusion mixture treatment on the surface of low grade natural ruby

    Energy Technology Data Exchange (ETDEWEB)

    Sakthivel, R., E-mail: velsak_r@yahoo.com; Pradhan, K.C.; Nayak, B.B.; Dash, Tapan; Sahu, R.K.; Mishra, B.K.

    2017-05-01

    Graphical abstract: The colour of low grade natural ruby is enhanced with fusion mixture treatment. Comparative optical absorption and photoluminesence properties of both untreated and treated ruby samples are studied. - Highlights: • Colour of the low grade natural ruby is improved with fusion mixture treatment. • Surface impurities are removed with fusion mixture. • Photoluminescence spectrum of ruby influenced by its Cr{sup 3+} concentration. • X-ray diffraction study confirms the presence of corundum phases in ruby samples. • Treated ruby looks brighter than untreated ruby due to variation in Cr{sup 3+} concentration. - Abstract: Improvement in aesthetic look of low grade natural ruby (gemstone) surface was clearly evident after fusion mixture treatment. Surface impurities of the gemstone were significantly reduced to give it a face lift. The processing consists of heat treatment (1000 °C) of the raw gemstone with fusion mixture (sodium and potassium carbonates), followed by hydrochloric acid digestion (90 °C) and ultrasonic cleaning.Both the untreated and the treated gemstone were characterized by X-ray diffraction, UV–vis spectroscopy (diffuse reflectance),photoluminescence and X-ray photoelectron spectroscopy. The paper consolidates the results of these studies and presents the effect of the typical chemical treatment (stated above) on the low grade natural ruby. While X-ray diffraction study identifies the occurrence of alumina phase in both the treated and the untreated gemstones, the UV–vis spectra exhibit strong characteristic absorption of Cr{sup 3+}at 400 and 550 nm wavelength for the treated gemstone in contrast to weak absorption observed for the untreated gemstone at such wavelengths, thus showing the beneficial effect of fusion mixture treatment. Peaks observed for the gemstone (for both treated and untreated samples) in the excitation spectra of photoluminescence show a good correlation with observed UV–vis (diffuse reflectance

  1. Development of divertor remote maintenance system

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Nobukazu; Oka, Kiyoshi; Akou, Kentaro; Takiguchi, Yuji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The ITER divertor is categorized as a scheduled maintenance component because of extreme heat and particle loads it is exposed to by plasma. It is also highly activated by 14 MeV neutrons. Reliable remote handling equipment and tools are required for divertor maintenance under intense gamma radiation. To facilitate remote maintenance, the divertor is segmented into 60 cassettes, and each cassette weighing about 25 tons and maintained and replaced through four maintenance ports each 90 degrees. Divertor cassettes must be transported toroidally and radially for replacement through maintenance ports. Remote handling involving cassette movers and carriers for toroidal and radial transport has been developed. Under the ITER R and D program, technology critical to divertor cassette maintenance is being developed jointly by Japan, E.U., and U.S. home teams. This paper summarizes divertor remote maintenance design and the status of technology development by the Japan Home Team. (author)

  2. Development of divertor remote maintenance system

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Oka, Kiyoshi; Akou, Kentaro; Takiguchi, Yuji

    1998-01-01

    The ITER divertor is categorized as a scheduled maintenance component because of extreme heat and particle loads it is exposed to by plasma. It is also highly activated by 14 MeV neutrons. Reliable remote handling equipment and tools are required for divertor maintenance under intense gamma radiation. To facilitate remote maintenance, the divertor is segmented into 60 cassettes, and each cassette weighing about 25 tons and maintained and replaced through four maintenance ports each 90 degrees. Divertor cassettes must be transported toroidally and radially for replacement through maintenance ports. Remote handling involving cassette movers and carriers for toroidal and radial transport has been developed. Under the ITER R and D program, technology critical to divertor cassette maintenance is being developed jointly by Japan, E.U., and U.S. home teams. This paper summarizes divertor remote maintenance design and the status of technology development by the Japan Home Team. (author)

  3. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  4. Analyses of microstructure, composition and retention of hydrogen isotopes in divertor tiles of JET with the ITER-like wall

    Science.gov (United States)

    Masuzaki, S.; Tokitani, M.; Otsuka, T.; Oya, Y.; Hatano, Y.; Miyamoto, M.; Sakamoto, R.; Ashikawa, N.; Sakurada, S.; Uemura, Y.; Azuma, K.; Yumizuru, K.; Oyaizu, M.; Suzuki, T.; Kurotaki, H.; Hamaguchi, D.; Isobe, K.; Asakura, N.; Widdowson, A.; Heinola, K.; Jachmich, S.; Rubel, M.; contributors, JET

    2017-12-01

    Results of the comprehensive surface analyses of divertor tiles and dusts retrieved from JET after the first ITER-like wall campaign (2011–2012) are presented. The samples cored from the divertor tiles were analyzed. Numerous nano-size bubble-like structures were observed in the deposition layer on the apron of the inner divertor tile, and a beryllium dust with the same structures were found in the matter collected from the inner divertor after the campaign. This suggests that the nano-size bubble-like structures can make the deposition layer to become brittle and may lead to cracking followed by dust generation. X-ray photoelectron spectroscopy analyses of chemical states of species in the deposition layers identified the formation of beryllium-tungsten intermetallic compounds on an inner vertical tile. Different tritium retention profiles along the divertor tiles were observed at the top surfaces and at deeper regions of the tiles by using the imaging plate technique.

  5. Data fusion with artificial neural networks (ANN) for classification of earth surface from microwave satellite measurements

    Science.gov (United States)

    Lure, Y. M. Fleming; Grody, Norman C.; Chiou, Y. S. Peter; Yeh, H. Y. Michael

    1993-01-01

    A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular

  6. Controlling marginally detached divertor plasmas

    Science.gov (United States)

    Eldon, D.; Kolemen, E.; Barton, J. L.; Briesemeister, A. R.; Humphreys, D. A.; Leonard, A. W.; Maingi, R.; Makowski, M. A.; McLean, A. G.; Moser, A. L.; Stangeby, P. C.

    2017-06-01

    A new control system at DIII-D has stabilized the inter-ELM detached divertor plasma state for H-mode in close proximity to the threshold for reattachment, thus demonstrating the ability to maintain detachment with minimal gas puffing. When the same control system was instead ordered to hold the plasma at the threshold (here defined as T e  =  5 eV near the divertor target plate), the resulting T e profiles separated into two groups with one group consistent with marginal detachment, and the other with marginal attachment. The plasma dithers between the attached and detached states when the control system attempts to hold at the threshold. The control system is upgraded from the one described in Kolemen et al (2015 J. Nucl. Mater. 463 1186) and it handles ELMing plasmas by using real time D α measurements to remove during-ELM slices from real time T e measurements derived from divertor Thomson scattering. The difference between measured and requested inter-ELM T e is passed to a PID (proportional-integral-derivative) controller to determine gas puff commands. While some degree of detachment is essential for the health of ITER’s divertor, more deeply detached plasmas have greater radiative losses and, at the extreme, confinement degradation, making it desirable to limit detachment to the minimum level needed to protect the target plate (Kolemen et al 2015 J. Nucl. Mater. 463 1186). However, the observed bifurcation in plasma conditions at the outer strike point with the ion B   ×  \

  7. Directed Supramolecular Surface Assembly of SNAP-tag Fusion Proteins

    NARCIS (Netherlands)

    Uhlenheuer, D.A.; Wasserberg, D.; Haase, C.; Nguyen, Hoang D.; Schenkel, J.H.; Huskens, Jurriaan; Ravoo, B.J.; Jonkheijm, Pascal; Brunsveld, Luc

    2012-01-01

    Supramolecular assembly of proteins on surfaces and vesicles was investigated by site-selective incorporation of a supramolecular guest element on proteins. Fluorescent proteins were site-selectively labeled with bisadamantane by SNAP-tag technology. The assembly of the bisadamantane functionalized

  8. The ITER divertor cassette project

    International Nuclear Information System (INIS)

    Ulrickson, M.; Tivey, R.; Akiba, M.

    1999-01-01

    The divertor 'Large Project' was conceived with the aim of demonstrating the feasibility of meeting the lifetime requirements by employing the candidate armor materials of beryllium, tungsten (W) and carbon-fiber-composite (CFC). At the start, there existed only limited experience with constructing water-cooled high heat flux armored components for tokamaks. To this was added the complication posed by the need to use a silver-free joining technique that avoids the transmutation of n-irradiated silver to cadmium. The research project involving the four Home Teams (HTs) has focused on the design, development, manufacture and testing of full-scale Plasma Facing Components (PFCs) suitable for ITER. The task addressed all the issues facing ITER divertor design, such as providing adequate armor erosion lifetime, meeting the required armor-heat sink joint lifetime and heat sink fatigue life, sustaining thermal-hydraulic and electromechanical loads, and seeking to identify the most cost-effective manufacturing options. This paper will report the results of the divertor large project. (author)

  9. The ITER divertor cassette project

    International Nuclear Information System (INIS)

    Ulrickson, M.; Tivey, R.; Akiba, M.

    2001-01-01

    The divertor ''Large Project'' was conceived with the aim of demonstrating the feasibility of meeting the lifetime requirements by employing the candidate armor materials of beryllium, tungsten (W) and carbon-fiber-composite (CFC). At the start, there existed only limited experience with constructing water-cooled high heat flux armored components for tokamaks. To this was added the complication posed by the need to use a silver-free joining technique that avoids the transmutation of n-irradiated silver to cadmium. The research project involving the four Home Teams (HTs) has focused on the design, development, manufacture and testing of full-scale Plasma Facing Components (PFCs) suitable for ITER. The task addressed all the issues facing ITER divertor design, such as providing adequate armor erosion lifetime, meeting the required armor-heat sink joint lifetime and heat sink fatigue life, sustaining thermal-hydraulic and electromechanical loads, and seeking to identify the most cost-effective manufacturing options. This paper will report the results of the divertor large project. (author)

  10. Effect of fusion mixture treatment on the surface of low grade natural ruby

    Science.gov (United States)

    Sakthivel, R.; Pradhan, K. C.; Nayak, B. B.; Dash, Tapan; Sahu, R. K.; Mishra, B. K.

    2017-05-01

    Improvement in aesthetic look of low grade natural ruby (gemstone) surface was clearly evident after fusion mixture treatment. Surface impurities of the gemstone were significantly reduced to give it a face lift. The processing consists of heat treatment (1000 °C) of the raw gemstone with fusion mixture (sodium and potassium carbonates), followed by hydrochloric acid digestion (90 °C) and ultrasonic cleaning.Both the untreated and the treated gemstone were characterized by X-ray diffraction, UV-vis spectroscopy (diffuse reflectance),photoluminescence and X-ray photoelectron spectroscopy. The paper consolidates the results of these studies and presents the effect of the typical chemical treatment (stated above) on the low grade natural ruby. While X-ray diffraction study identifies the occurrence of alumina phase in both the treated and the untreated gemstones, the UV-vis spectra exhibit strong characteristic absorption of Cr3+at 400 and 550 nm wavelength for the treated gemstone in contrast to weak absorption observed for the untreated gemstone at such wavelengths, thus showing the beneficial effect of fusion mixture treatment. Peaks observed for the gemstone (for both treated and untreated samples) in the excitation spectra of photoluminescence show a good correlation with observed UV-vis (diffuse reflectance) spectra. Photoluminescence emission spectra of the untreated gemstone show characteristic emission at 695 nm for Cr3+ ion (as in alumina matrix), but its emission intensity significantly reduces after fusion mixture treatment. It is found that the surface of the fusion mixture treated ruby gemstone looks much brighter than the corresponding untreated surface.

  11. Electron Beam Design and Calibration for the Solid/Liquid Lithium Divertor Experiment

    Science.gov (United States)

    Jaworski, Michael; Flauta, R.; Gray, T. K.; Kim, J.; Lau, C. Y.; Lee, M. B.; Neumann, M. J.; Surla, V.; Ruzic, D. N.

    2008-11-01

    An electron beam has been developed as part of the Solid/Liquid Lithium Divertor Experiment (SLiDE) at the University of Illinois at Urbana-Champaign. The purpose of the SLiDE apparatus is to examine the motion of liquid lithium under fusion relevant heat loads and magnetic fields. To mimic the heat fluxes present in the divertor of a fusion machine, a linear sheet beam is utilized which can operate over a range of applied magnetic fields and power levels. With steady state operation up to 15kW input power, the beam can produce peak heat fluxes of 10 MW/m^2 and heat flux gradients comparable to those found in fusion experiments. The design of the electron beam was developed using commercial beam transport codes and the final design is diagnosed with a two-lead Faraday cup. Beam performance and characteristics are presented.

  12. Development of key fusion technologies at JET

    International Nuclear Information System (INIS)

    2001-01-01

    The recent operational phase in JET in which Deuterium-Tritium fuel was used (DTE1) resulted in record breaking fusion performance. In addition to important contributions in plasma physics, the JET Team has also made major advances in demonstrating the viability of some of the key technologies required for the realisation of future fusion power. Two of the most important technological areas which have been successfully demonstrated in JET are the ITER scale tritium processing plant and the exchange of the divertor and maintenance of the interior of JET by totally remote means. The experiment also provided the first data on tritium retention and co-deposition in a diverted tokamak. Of the 35g of tritium injected into the JET torus, about 6g remained in the tokamak. The amount resides mainly on cool surfaces at the inboard divertor side. The precise, safe and timely execution of the remote handling shutdown proved that the design, function, performance and operational methodology of the RH equipment prepared over the years at JET are appropriate for the successful and rapid replacement of components in an activated tokamak environment. (author)

  13. Development of key fusion technologies at JET

    International Nuclear Information System (INIS)

    1999-01-01

    The recent operational phase in JET in which Deuterium-Tritium fuel was used (DTE1) resulted in record breaking fusion performance. In addition to important contributions in plasma physics, the JET Team has also made major advances in demonstrating the viability of some of the key technologies required for the realisation of future fusion power. Two of the most important technological areas which have been successfully demonstrated in JET are the ITER scale tritium processing plant and the exchange of the divertor and maintenance of the interior of JET by totally remote means. The experiment also provided the first data on tritium retention and co-deposition in a diverted tokamak. Of the 35g of tritium injected into the JET torus, about 6g remained in the tokamak. The amount resides mainly on cool surfaces at the inboard divertor side. The precise, safe and timely execution of the remote handling shutdown proved that the design, function, performance and operational methodology of the RH equipment prepared over the years at JET are appropriate for the successful and rapid replacement of components in an activated tokamak environment. (author)

  14. Numerical modeling and validation of helium jet impingement cooling of high heat flux divertor components

    International Nuclear Information System (INIS)

    Koncar, Bostjan; Simonovski, Igor; Norajitra, Prachai

    2009-01-01

    Numerical analyses of jet impingement cooling presented in this paper were performed as a part of helium-cooled divertor studies for post-ITER generation of fusion reactors. The cooling ability of divertor cooled by multiple helium jets was analysed. Thermal-hydraulic characteristics and temperature distributions in the solid structures were predicted for the reference geometry of one cooling finger. To assess numerical errors, different meshes (hexagonal, tetra, tetra-prism) and discretisation schemes were used. The temperatures in the solid structures decrease with finer mesh and higher order discretisation and converge towards finite values. Numerical simulations were validated against high heat flux experiments, performed at Efremov Institute, St. Petersburg. The predicted design parameters show reasonable agreement with measured data. The calculated maximum thimble temperature was below the tile-thimble brazing temperature, indicating good heat removal capability of reference divertor design. (author)

  15. Erosion and deposition on JET divertor and limiter tiles during the experimental campaigns 2005–2009

    International Nuclear Information System (INIS)

    Krat, S.; Coad, J.P.; Gasparyan, Yu.; Hakola, A.; Likonen, J.; Mayer, M.; Pisarev, A.; Widdowson, A.

    2013-01-01

    Erosion from and deposition on JET divertor tiles used during the 2007–2009 campaign and on inner wall guard limiter (IWGL) tiles used during 2005–2009 are studied. The tungsten coating on the divertor tiles was mostly intact with the largest erosion ∼30% in a small local area. Locally high erosion areas were observed on the load bearing divertor tile 5 and on the horizontal surface of the divertor tile 8. The IWGL tiles show a complicated distribution of erosion and deposition areas. The total amount of carbon deposited on the all IWGL tiles during the campaign 2005–2009 is estimated to be 65 g. The density of carbon deposits is estimated to be 0.67–0.83 g/cm 3

  16. Optimization for steady-state and hybrid operations of ITER by using scaling models of divertor heat load

    International Nuclear Information System (INIS)

    Murakami, Yoshiki; Itami, Kiyoshi; Sugihara, Masayoshi; Fujieda, Hirobumi.

    1992-09-01

    Steady-state and hybrid mode operations of ITER are investigated by 0-D power balance calculations assuming no radiation and charge-exchange cooling in divertor region. Operation points are optimized with respect to divertor heat load which must be reduced to the level of ignition mode (∼5 MW/m 2 ). Dependence of the divertor heat load on the variety of the models, i.e., constant-χ model, Bohm-type-χ model and JT-60U empirical scaling model, is also discussed. The divertor heat load increases linearly with the fusion power (P FUS ) in all models. The possible highest fusion power much differs for each model with an allowable divertor heat load. The heat load evaluated by constant-χ model is, for example, about 1.8 times larger than that by Bohm-type-χ model at P FUS = 750 MW. Effect of reduction of the helium accumulation, improvements of the confinement capability and the current-drive efficiency are also investigated aiming at lowering the divertor heat load. It is found that NBI power should be larger than about 60 MW to obtain a burn time longer than 2000 s. The optimized operation point, where the minimum divertor heat load is achieved, does not depend on the model and is the point with the minimum-P FUS and the maximum-P NBI . When P FUS = 690 MW and P NBI = 110 MW, the divertor heat load can be reduced to the level of ignition mode without impurity seeding if H = 2.2 is achieved. Controllability of the current-profile is also discussed. (J.P.N.)

  17. Effect of Divertor Shaping on Divertor Plasma Behavior on DIII-D

    Science.gov (United States)

    Petrie, T. W.; Leonard, A. W.; Luce, T. C.; Mahdavi, M. A.; Holcomb, C. T.; Fenstermacher, M. E.; Hill, D. N.; Lasnier, C. J.; Watkins, J. G.; Moyer, R. A.; Stangeby, P. C.

    2012-10-01

    Recent experiments examined the dependence of divertor density (nTAR), temperature (TTAR), and heat flux at the outer divertor separatrix target on changes in the divertor separatrix geometry. The responses of nTAR and TTAR to changes in the parallel connection length in the scrape-off layer (SOL) (L||) are consistent with the predictions of the Two Point Model (TPM). However, nTAR and TTAR display a more complex response to changes in the radial location of the outer divertor strike point (RTAR) than expected based on the TPM. SOLPS transport analysis indicates that small differences in divertor geometry can change neutral trapping sufficient to explain differences between experiment and TPM predictions. The response of the core and divertor plasmas to changes in L|| and RTAR, under both radiating and non-radiating divertor conditions, will be shown.

  18. Conceptual design studies for the European DEMO divertor: Rationale and first results

    Energy Technology Data Exchange (ETDEWEB)

    You, J.H., E-mail: you@ipp.mpg.de [Max Planck Institute for Plasma Physics, Boltzmann Str. 2, 85748 Garching (Germany); Mazzone, G.; Visca, E. [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Italy); Bachmann, Ch. [EUROfusion PMU, c/o IPP, Boltzmann Str. 2, 85748 Garching (Germany); Autissier, E. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); Barrett, T. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Cocilovo, V.; Crescenzi, F. [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Italy); Domalapally, P.K. [Research Cnter Rez, Hlavní 130, 250 68 Husinec–Řež (Czech Republic); Dongiovanni, D. [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Italy); Entler, S. [Institute of Plasma Physics CAS, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Federici, G. [EUROfusion PMU, c/o IPP, Boltzmann Str. 2, 85748 Garching (Germany); Frosi, P. [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Italy); Fursdon, M. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Greuner, H. [Max Planck Institute for Plasma Physics, Boltzmann Str. 2, 85748 Garching (Germany); Hancock, D. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Marzullo, D. [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); McIntosh, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Müller, A.V. [Max Planck Institute for Plasma Physics, Boltzmann Str. 2, 85748 Garching (Germany); Porfiri, M.T. [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Italy); and others

    2016-11-01

    Highlights: • A brief overview is given on the overall R&D activities of the work package Divertor which is a project of the EUROfusion Consortium. • The rationale of the hydraulic, thermal and structural design scheme is described. • The first results obtained for the preliminary DEMO divertor cassette model are presented. - Abstract: In the European fusion roadmap, reliable power handling has been defined as one of the most critical challenges for realizing a commercially viable fusion power. In this context, the divertor is the key in-vessel component, as it is responsible for power exhaust and impurity removal for which divertor target is subjected to very high heat flux loads. To this end, an integrated R&D project was launched in the EUROfusion Consortium in order to deliver a holistic conceptual design solution together with the core technologies for the entire divertor system of a DEMO reactor. The work package ‘Divertor’ consists of two project areas: ‘Cassette design and integration’ and ‘Target development’. The essential mission of the project is to develop and verify advanced design concepts and the required technologies for a divertor system being capable of meeting the physical and system requirements defined for the next-generation European DEMO reactor. In this contribution, a brief overview is presented of the works from the first project year (2014). Focus is put on the loads specification, design boundary conditions, materials requirements, design approaches, and R&D strategy. Initial ideas and first estimates are presented.

  19. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures

  20. The TITAN reversed-field-pinch fusion reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures.

  1. Automated magnetic divertor design for optimal power exhaust

    International Nuclear Information System (INIS)

    Blommaert, Maarten

    2017-01-01

    The so-called divertor is the standard particle and power exhaust system of nuclear fusion tokamaks. In essence, the magnetic configuration hereby 'diverts' the plasma to a specific divertor structure. The design of this divertor is still a key issue to be resolved to evolve from experimental fusion tokamaks to commercial power plants. The focus of this dissertation is on one particular design requirement: avoiding excessive heat loads on the divertor structure. The divertor design process is assisted by plasma edge transport codes that simulate the plasma and neutral particle transport in the edge of the reactor. These codes are computationally extremely demanding, not in the least due to the complex collisional processes between plasma and neutrals that lead to strong radiation sinks and macroscopic heat convection near the vessel walls. One way of improving the heat exhaust is by modifying the magnetic confinement that governs the plasma flow. In this dissertation, automated design of the magnetic configuration is pursued using adjoint based optimization methods. A simple and fast perturbation model is used to compute the magnetic field in the vacuum vessel. A stable optimal design method of the nested type is then elaborated that strictly accounts for several nonlinear design constraints and code limitations. Using appropriate cost function definitions, the heat is spread more uniformly over the high-heat load plasma-facing components in a practical design example. Furthermore, practical in-parts adjoint sensitivity calculations are presented that provide a way to an efficient optimization procedure. Results are elaborated for a fictituous JET (Joint European Torus) case. The heat load is strongly reduced by exploiting an expansion of the magnetic flux towards the solid divertor structure. Subsequently, shortcomings of the perturbation model for magnetic field calculations are discussed in comparison to a free boundary equilibrium (FBE) simulation

  2. Automated magnetic divertor design for optimal power exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Blommaert, Maarten

    2017-07-01

    The so-called divertor is the standard particle and power exhaust system of nuclear fusion tokamaks. In essence, the magnetic configuration hereby 'diverts' the plasma to a specific divertor structure. The design of this divertor is still a key issue to be resolved to evolve from experimental fusion tokamaks to commercial power plants. The focus of this dissertation is on one particular design requirement: avoiding excessive heat loads on the divertor structure. The divertor design process is assisted by plasma edge transport codes that simulate the plasma and neutral particle transport in the edge of the reactor. These codes are computationally extremely demanding, not in the least due to the complex collisional processes between plasma and neutrals that lead to strong radiation sinks and macroscopic heat convection near the vessel walls. One way of improving the heat exhaust is by modifying the magnetic confinement that governs the plasma flow. In this dissertation, automated design of the magnetic configuration is pursued using adjoint based optimization methods. A simple and fast perturbation model is used to compute the magnetic field in the vacuum vessel. A stable optimal design method of the nested type is then elaborated that strictly accounts for several nonlinear design constraints and code limitations. Using appropriate cost function definitions, the heat is spread more uniformly over the high-heat load plasma-facing components in a practical design example. Furthermore, practical in-parts adjoint sensitivity calculations are presented that provide a way to an efficient optimization procedure. Results are elaborated for a fictituous JET (Joint European Torus) case. The heat load is strongly reduced by exploiting an expansion of the magnetic flux towards the solid divertor structure. Subsequently, shortcomings of the perturbation model for magnetic field calculations are discussed in comparison to a free boundary equilibrium (FBE) simulation

  3. Comparison between stellarator and tokamak divertor transport

    International Nuclear Information System (INIS)

    Feng, Y.; Lunt, T.; Kobayashi, M.; Reiter, D.

    2010-11-01

    The paper compares the essential divertor transport features of the poloidal divertor, which is well-developed for tokamaks, and the non-axisymmetric divertors currently investigated on helical devices. It aims at surveying the fundamental similarities and differences in divertor concept and geometry, and their consequences for how the divertor functions. In particular, the importance of various transport terms governing axisymmetric and helical scrape-off-layers (SOLs) is examined, with special attention being paid to energy, momentum and impurity transport. Tokamak and stellarator SOLs are compared by identifying key geometric parameters through which the governing physics can be illustrated by simple models and estimates. More quantitative assessments rely nevertheless on the modeling using EMC3-EIRENE code. Most of the theoretical results are discussed in conjunction with experimental observations. (author)

  4. Reactor application of an improved bundle divertor

    International Nuclear Information System (INIS)

    Yang, T.F.; Ruck, G.W.; Lee, A.Y.; Smeltzer, G.; Prevenslik, T.

    1978-11-01

    A Bundle Divertor was chosen as the impurity control and plasma exhaust system for the beam driven Demonstration Tokamak Hybrid Reactor - DTHR. In the context of a preconceptual design study of the reactor and associated facility a bundle divertor concept was developed and integrated into the reactor system. The overall system was found feasible and scalable for reactors with intermediate torodial field strengths on axis. The important design characteristics are: the overall average current density of the divertor coils is 0.73 kA for each tesla of toroidal field on axis; the divertor windings are made from super-conducting cables supported by steel structures and are designed to be maintainable; the particle collection assembly and auxiliary cryosorption vacuum pump are dual systems designed such that they can be reactivated alterntively to allow for continuous reactor operation; and the power requirement for energizing and operating the divertor is about 5 MW

  5. Scrape-off layer and divertor theory meeting: Proceedings

    International Nuclear Information System (INIS)

    1994-03-01

    This report contains viewgraphs on the following topics: fluid modelling of neutrals in the SOL and divertor; instabilities of gas-fueled divertors: theory and adaptive simulations; stability of ionization fronts of gaseous divertor plasmas; monte carlo calculation of heat transport; reduced charge model for edge impurity flows; thermally collapsed solutions for gaseous/radiative divertors; adaptive grid methods in transport simulation; advanced numerical solution algorithms applied to the multispecies edge plasma equations; two-dimensional edge plasma simulation using the multigrid method; neutral behavior and the effects of neutral-neutral and neutral-ion elastic scattering in the ITER gaseous divertor; particle throughput in the TPX divertor; marfes in tokamaks; a comparative study of the limiter and divertor edge plasmas in TEXT-U; issues of toroidal tokamak-type divertor simulators; ASDEX upgrade; the ITER divertor; the DIII-D divertor program and TPX divertor; DEGAS 2: a transmission/escape probabilities model for neutral particle transport: comparison with DEGAS 2; a collisional radiative model of hydrogen for high recycling divertors; comparison of fluid and non- fluid neutral models in B2.5; DIII-D radiative divertor simulations; 3-D fluid simulations of turbulence from conducting wall mode; turbulence and drifts in SOL plasmas; recent results for 1 1/2-D ITER gas target divertor modelling; evaluation of pumping and fueling in coupled core, SOL, and divertor chamber calculations; and ITER gas target divertors: comparison of volume recombination and large radial transport scenarios using DEGAS

  6. Design and analysis of the DII-D radiative divertor water-cooled structures

    International Nuclear Information System (INIS)

    Hollerbach, M.A.; Smith, J.P.; Baxi, C.B.; Bozek; Chin, E.; Phelps, R.D.; Redler, K.M.; Reis, E.E.

    1995-10-01

    The Radiative Divertor is a major modification to the divertor of DIII-D and is being designed and fabricated for installation in late 1996. The Radiative Divertor Program (RDP) will enhance the dissipative processes in the edge and divertor plasmas to reduce the heat flux and plasma erosion at the divertor target. This approach will have major implications for the heat removal methods used in future devices. The divertor is of slot-type configuration designed to minimize the flow of sputtered and injected impurities back to the core plasma. The new divertor will be composed of toroidally continuous, Inconel 625 water-cooled rings of sandwich construction with an internal water channel, incorporating seam welding to provide the water-to-vacuum seal as well as structural integrity. The divertor structure is designed to withstand electromagnetic loads as a result of halo currents and induced toroidal currents. It also accommodates the thermal differences experienced during the 400 degrees C bake used on DIII-D. A low Z plasma-facing surface is provided by mechanically attached graphite tiles. Water flow through the rings will inertially cool these tiles which will be subjected to 38 MW, 10 second pulses. Current schedules call for detailed design in 1996 with installation completed in March 1997. A full size prototype, one-quarter of one ring, is being built to validate manufacturing techniques, machining, roll-forming, and seam welding. The experience and knowledge gained through the fabrication of the prototype is discussed. The design of the electrically isolated (5 kV) vacuum-to-air water feedthroughs supplying the water-cooled rings is also discussed

  7. Transport studies in boundary and divertor plasmas of JT-60U

    International Nuclear Information System (INIS)

    Kumagai, Akira

    1999-03-01

    This thesis describes an investigation on transport of plasma, neutral particle and impurity in the boundary and divertor of the JT-60U tokamak to provide a better understanding of plasma-surface interactions and divertor physics. The asymmetry between the inboard and outboard divertor on plasma parameters (in-out asymmetry) are usually observed in tokamaks with the divertor. In this study, the in-out asymmetry was investigated under various plasma conditions and discharge parameters. The observed results were discussed with several mechanisms that can produce the in-out asymmetry. It was confirmed experimentally that the importance of each mechanism depends on the plasma parameters and discharge conditions. The current flowing in the scrape-off layer (SOL) due to the in-out asymmetry was observed. The SOL currents in the high density plasma with the occurrence of the plasma detachment were investigated for the first time in this study. The ion temperature in the divertor region is one of the most important factors for both generation and transport of impurity. However, the background ion temperature in the divertor region has not been measured in any tokamak so far. The ion temperature in the divertor region has been measured for the first time with the Doppler broading of the C 3+ ion emission line. The measured temperature was analyzed by an impurity particle transport code. The code calculation showed that the measured temperature reflects the low temperature at the outside of the separatrix in the inboard region. The spectral profile of Balmer-α (D α ) line emitted from the deuterium atoms reflects the velocity distribution of neutral particles by the Doppler effect and is effective for investigating the detailed neutral behavior and recycling process. The spatial variation of the D α line spectral profile in the divertor region has been measured for the first time in this study. The observed results were compared with the calculated one by a neutral

  8. Magnetic field models and their application in optimal magnetic divertor design

    Energy Technology Data Exchange (ETDEWEB)

    Blommaert, M.; Reiter, D. [Institute of Energy and Climate Research (IEK-4), FZ Juelich GmbH, Juelich (Germany); Baelmans, M. [KU Leuven, Department of Mechanical Engineering, Leuven (Belgium); Heumann, H. [TEAM CASTOR, INRIA Sophia Antipolis (France); Marandet, Y.; Bufferand, H. [Aix-Marseille Universite, CNRS, PIIM, Marseille (France); Gauger, N.R. [TU Kaiserslautern, Chair for Scientific Computing, Kaiserslautern (Germany)

    2016-08-15

    In recent automated design studies, optimal design methods were introduced to successfully reduce the often excessive heat loads that threaten the divertor target surface. To this end, divertor coils were controlled to improve the magnetic configuration. The divertor performance was then evaluated using a plasma edge transport code and a ''vacuum approach'' for magnetic field perturbations. Recent integration of a free boundary equilibrium (FBE) solver allows to assess the validity of the vacuum approach. It is found that the absence of plasma response currents significantly limits the accuracy of the vacuum approach. Therefore, the optimal magnetic divertor design procedure is extended to incorporate full FBE solutions. The novel procedure is applied to obtain first results for the new WEST (Tungsten Environment in Steady-state Tokamak) divertor currently under construction in the Tore Supra tokamak at CEA (Commissariat a l'Energie Atomique, France). The sensitivities and the related divertor optimization paths are strongly affected by the extension of the magnetic model. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. ITER: the Sun rises over nuclear fusion with West

    International Nuclear Information System (INIS)

    Sacco, Laurent

    2013-01-01

    The ITER project is considered as a critical step on the way to commercial production of electricity by a thermonuclear reactor based on controlled fusion. This project notably requires the development of a divertor which is the objective of the West project which will use the famous Cadarache superconductive magnet reactor, Tore Supra. After having outlined the future lack of fossil energies at the world scale, presented the operation principles of tokamaks and recalled some results obtained in their development, this article justifies the use of superconductive magnets. It presents the ITER project as a step in the production of thermonuclear electricity. ITER will be in fact a proof that such plants can be realised, and it should be followed by Demo, a demonstration power plant, by 2050. The article presents the West project, a test bench for ITER, which introduced modifications in the Tore Supra reactor to create conditions almost similar to that existing at the surface of the Sun. It notably comprises a divertor made of tungsten for the fusion with tritium. It finally outlines that the fusion will be a hot one, not a cold one

  10. Thermal and structural design study of divertor collector plates

    International Nuclear Information System (INIS)

    Kitamura, Kazunori; Iida, Hiromasa; Sako, Kiyoshi

    1982-01-01

    Thermal and structural design study of divertor collector plates for a Swimming Pool Type Tokamak Reactor (SPTR) is carried out. Co-axial tube type divertor plate is employed for the reduction of electromagnetic force caused by plasma disruption. Maximum heat flux on cooling surface is sufficiently below burn-out heat flux. High thermal stress appers at the brazing region between copper cooling tube and tungsten armor. Some measures are required to decrease the thermal stress for extending the life time of the plate. These will be decreasing the heat flux on the plate by the reduction of beam angle to the plate or promoting the boiling in the tube by the reduction of coolant pressure. The life time of the plate by erosion due to ion sputtering is estimated to be about 4 years. (author)

  11. General properties of the magnetic field in a snowflake divertor

    Science.gov (United States)

    Ryutov, D. D.; Makowski, M. A.; Umanski, M. V.

    2010-11-01

    The power-law series for the poloidal magnetic flux function, up to the third order terms, are presented for the case where two nulls of the poloidal magnetic field are separated by a small distance, as in a snowflake divertor. Distinct from the earlier results, no assumptions about the field symmetry are made. Conditions for the realization of an exact snowflake are expressed in terms of the coefficients of the power series. It is shown that, by a proper choice of the coordinate frame in the poloidal plane, one can obtain efficient similarity solutions for the separatrices and flux surfaces in the divertor region: the whole variety of flux surface shapes can be characterized by a single dimensionless parameter. Transition from a snowflake-minus to snowflake-plus configuration in the case of no particular symmetry is described. The effect of the finite toroidal current density in the divertor region is assessed. A possibility of creating a near-snowflake configuration in the ITER-scale facilities is discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. First divertor operation on the HL-2A tokamak

    International Nuclear Information System (INIS)

    Yang Qingwei; Ding Xuantong; Yan Longwen; Xuan Weimin; Liu Dequan; Chen Liaoyuan; Song Xianming; Yuan Baoshan; Zhang Jinhua; Cao Zeng; Li Xiaodong; Mao Weicheng; Zhou Caipin; Wang Enyao; Yan Jiancheng; Liu Yong

    2004-01-01

    HL-2A device is the first divertor tokamak in China. One of its main subjects is to study the features of the divertor plasma. In the last campaign, the first divertor configuration has been achieved and sustained on the HL-2A tokamak. Here authors give a brief description about the HL-2A tokamak, diagnostics arrangements, and the equilibrium analysis results on divertor configuration. The main results of divertor experiments are also presented. (author)

  13. Characterization of protective immune responses induced by pneumococcal surface protein A in fusion with pneumolysin derivatives.

    Directory of Open Access Journals (Sweden)

    Cibelly Goulart

    Full Text Available Pneumococcal surface protein A (PspA and Pneumolysin derivatives (Pds are important vaccine candidates, which can confer protection in different models of pneumococcal infection. Furthermore, the combination of these two proteins was able to increase protection against pneumococcal sepsis in mice. The present study investigated the potential of hybrid proteins generated by genetic fusion of PspA fragments to Pds to increase cross-protection against fatal pneumococcal infection. Pneumolisoids were fused to the N-terminus of clade 1 or clade 2 pspA gene fragments. Mouse immunization with the fusion proteins induced high levels of antibodies against PspA and Pds, able to bind to intact pneumococci expressing a homologous PspA with the same intensity as antibodies to rPspA alone or the co-administered proteins. However, when antibody binding to pneumococci with heterologous PspAs was examined, antisera to the PspA-Pds fusion molecules showed stronger antibody binding and C3 deposition than antisera to co-administered proteins. In agreement with these results, antisera against the hybrid proteins were more effective in promoting the phagocytosis of bacteria bearing heterologous PspAs in vitro, leading to a significant reduction in the number of bacteria when compared to co-administered proteins. The respective antisera were also capable of neutralizing the lytic activity of Pneumolysin on sheep red blood cells. Finally, mice immunized with fusion proteins were protected against fatal challenge with pneumococcal strains expressing heterologous PspAs. Taken together, the results suggest that PspA-Pd fusion proteins comprise a promising vaccine strategy, able to increase the immune response mediated by cross-reactive antibodies and complement deposition to heterologous strains, and to confer protection against fatal challenge.

  14. Engineering design of a radiative divertor for DIII-D

    International Nuclear Information System (INIS)

    Smith, J.P.; Baxi, C.B.; Bozek, A.S.

    1995-10-01

    A new divertor configuration is being developed for the DIII-D tokamak. This divertor will operate in the radiative mode. Experiments and modeling form the basis for the new design. The Radiative Divertor reduces the heat flux on the divertor plates by dispersing the power with radiation in the divertor region. In addition, the Radiative Divertor structure will allow density control in plasma shapes required for advanced tokamak operation. The divertor structure allows for operation in either double-null or single-null plasma configurations. Four independently controlled divertor cryopumps will enable pumping at either the inboard (upper and lower) or the outboard (upper and lower) divertor plates. An upgrade to the DIII-D cryogenic system is part of this project. The increased capabilities of the cryogenic system will allow delivery of liquid helium and nitrogen to the three new cryopumps. The Radiative Divertor design is very flexible, and will allow physics studies of the effects of slot width and length. Radiative Divertor diagnostics are being designed in parallel to provide comprehensive measurements for diagnosing the divertor. The Radiative divertor installation is scheduled for late 1996. Engineering experience gained in the DIII-D Advanced Divertor program form a foundation for the design work on the Radiative Divertor

  15. Fusion development and technology

    International Nuclear Information System (INIS)

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R ampersand D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development

  16. Fusion development and technology

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development.

  17. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  18. A Gaussian Process Data Modelling and Maximum Likelihood Data Fusion Method for Multi-Sensor CMM Measurement of Freeform Surfaces

    Directory of Open Access Journals (Sweden)

    Mingyu Liu

    2016-12-01

    Full Text Available Nowadays, the use of freeform surfaces in various functional applications has become more widespread. Multi-sensor coordinate measuring machines (CMMs are becoming popular and are produced by many CMM manufacturers since their measurement ability can be significantly improved with the help of different kinds of sensors. Moreover, the measurement accuracy after data fusion for multiple sensors can be improved. However, the improvement is affected by many issues in practice, especially when the measurement results have bias and there exists uncertainty regarding the data modelling method. This paper proposes a generic data modelling and data fusion method for the measurement of freeform surfaces using multi-sensor CMMs and attempts to study the factors which affect the fusion result. Based on the data modelling method for the original measurement datasets and the statistical Bayesian inference data fusion method, this paper presents a Gaussian process data modelling and maximum likelihood data fusion method for supporting multi-sensor CMM measurement of freeform surfaces. The datasets from different sensors are firstly modelled with the Gaussian process to obtain the mean surfaces and covariance surfaces, which represent the underlying surfaces and associated measurement uncertainties. Hence, the mean surfaces and the covariance surfaces are fused together with the maximum likelihood principle so as to obtain the statistically best estimated underlying surface and associated measurement uncertainty. With this fusion method, the overall measurement uncertainty after fusion is smaller than each of the single-sensor measurements. The capability of the proposed method is demonstrated through a series of simulations and real measurements of freeform surfaces on a multi-sensor CMM. The accuracy of the Gaussian process data modelling and the influence of the form error and measurement noise are also discussed and demonstrated in a series of experiments

  19. Recent developments towards ITER 2001 divertor maintenance

    International Nuclear Information System (INIS)

    Palmer, J.; Siuko, M.; Agostini, P.; Gottfried, R.; Irving, M.; Martin, E.; Tesini, A.; Uffelen, M. Van

    2005-01-01

    One of the key maintenance operations for the ITER tokamak is the remote replacement of its divertor system. The components making up this system are expected to be activated to a level of several hundred gyrations per hour and contaminated with hazardous and/or activated dust (beryllium, carbon, tungsten) and tritium. A suite of specialized remote handling (RH) equipment is, therefore, necessary to facilitate divertor exchange. This paper describes the ITER divertor maintenance approach together with recent European efforts towards the design and development of the associated remote handling equipment and procedures

  20. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.

    Science.gov (United States)

    Sun, Tianjun; Gauthier, Sherry Y; Campbell, Robert L; Davies, Peter L

    2015-10-08

    Antifreeze proteins (AFPs) adsorb to ice through an extensive, flat, relatively hydrophobic surface. It has been suggested that this ice-binding site (IBS) organizes surface waters into an ice-like clathrate arrangement that matches and fuses to the quasi-liquid layer on the ice surface. On cooling, these waters join the ice lattice and freeze the AFP to its ligand. Evidence for the generality of this binding mechanism is limited because AFPs tend to crystallize with their IBS as a preferred protein-protein contact surface, which displaces some bound waters. Type III AFP is a 7 kDa globular protein with an IBS made up two adjacent surfaces. In the crystal structure of the most active isoform (QAE1), the part of the IBS that docks to the primary prism plane of ice is partially exposed to solvent and has clathrate waters present that match this plane of ice. The adjacent IBS, which matches the pyramidal plane of ice, is involved in protein-protein crystal contacts with few surface waters. Here we have changed the protein-protein contacts in the ice-binding region by crystallizing a fusion of QAE1 to maltose-binding protein. In this 1.9 Å structure, the IBS that fits the pyramidal plane of ice is exposed to solvent. By combining crystallography data with MD simulations, the surface waters on both sides of the IBS were revealed and match well with the target ice planes. The waters on the pyramidal plane IBS were loosely constrained, which might explain why other isoforms of type III AFP that lack the prism plane IBS are less active than QAE1. The AFP fusion crystallization method can potentially be used to force the exposure to solvent of the IBS on other AFPs to reveal the locations of key surface waters.

  1. INVESTIGATION OF MAIN-CHAMBER AND DIVERTOR RECYCING IN DIII-D USING TANGENTIALLY VIEWING CID CAMERAS

    International Nuclear Information System (INIS)

    GROTH, M.; PORTER, G.D.; PETRIE, T.W.; FENSTERMACHER, M.E.; BROOKS, N.H.

    2003-01-01

    OAK-B135 Measurements of the D α emission profiles from the divertor and main chamber region in DIII-D, performed in low-density L-mode, and low and high-density ELMy H-mode plasmas imply that core plasma fueling occurs through the divertor channel. Emission profiles of carbon, combined with UEDGE modeling of the L-mode plasmas, also suggests that chemical sputtering of carbon from the flux surface adjacent to the inner divertor walls, and temperature gradient forces in the scrape-off layer, determine the carbon content of the inner scrape-off layer

  2. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors

    Science.gov (United States)

    Hvasta, M. G.; Kolemen, E.; Fisher, A. E.; Ji, H.

    2018-01-01

    Plasma-facing components (PFC’s) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC’s, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC’s can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metal that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. These results show the promise of electromagnetic control for LM-PFC’s and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.

  3. Thermal and structural analysis of the TPX divertor

    International Nuclear Information System (INIS)

    Reis, E.E.; Baxi, C.B.; Chin, E.; Redler, K.M.

    1995-01-01

    The high heat flux on the surfaces of the TPX divertor will require a design in which a carbon-carbon (C-C) tile material is brazed to water cooled copper tubes. Thermal and structural analyses were performed to assist in the design selection of a divertor tile concept and C-C material. The relevancy of finite element analysis (FEA) for evaluating tile design was examined by conducting a literature survey to compare FEA stress results to subsequent brazing and thermal test results. The thermal responses for five tile concepts and four C-C materials were analyzed for a steady-state heat flux of 7.5 MW/m 2 . Elastic-plastic stress analyses were performed to calculate the residual stresses due to brazing C-C tiles to soft copper heat sinks for the various tile designs. Monoblock and archblock divertor tile concepts were analyzed for residual stresses in which elevated temperature creep effects were included with the elastic-plastic behavior of the copper heat sink for an assumed braze cooldown cycle. As a result of these 2D studies, the archblock concept with a 3D fine weave C-C was initially found to be a preferred design for the divertor. A 3D elastic-plastic analysis for brazing of the arch block tile was performed to investigate the singularity effects at the C-C to copper interface in the direction of the tube axis. This analysis showed that the large residual stresses at the tube and tile edge intersection would produce cracks in the C-C and possible delamination along the braze interface. These results, coupled with the difficulties experienced in brazing archblocks for the Tore Supra Limiter, required that other tile designs be considered

  4. Conceptual design studies for the European DEMO divertor: Rationale and first results

    Czech Academy of Sciences Publication Activity Database

    You, J.H.; Mazzone, F.; Visca, E.; Bachmann, Ch.; Autissier, E.; Barrett, T.; Cocilovo, V.; Crescenzi, F.; Domalapally, P.K.; Dongiovanni, D.; Entler, Slavomír; Federici, G.; Frosi, P.; Fursdon, M.; Greuner, H.; Hancock, D.; Marzullo, D.; McIntosh, S.; Müller, A.V.; Porfiri, M.T.; Ramogida, G.; Reiser, J.; Richou, M.; Rieth, M.; Rydzy, A.; Villari, R.; Widak, V.

    109-111, November (2016), s. 1598-1603 ISSN 0920-3796. [International Symposium on Fusion Nuclear Technology (ISFNT-12)/12./. Jeju, 14.09.2015-18.09.2015] EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : DEMO * Tokamak * Divertor * Plasma-facing component * Conceptual design * Eurofusiona Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379615303331

  5. Steady-state tokamak reactor with non-divertor impurity control: STARFIRE

    International Nuclear Information System (INIS)

    Baker, C.C.

    1980-01-01

    STARFIRE is a conceptual design study of a commercial tokamak fusion electric power plant. Particular emphasis has been placed on simplifying the reactor concept by developing design concepts to produce a steady-state tokamak with non-divertor impurity control and helium ash removal. The concepts of plasma current drive using lower hybrid rf waves and a limiter/vacuum system for reactor applications are described

  6. Enhanced immunogenicity of DNA fusion vaccine encoding secreted hepatitis B surface antigen and chemokine RANTES

    International Nuclear Information System (INIS)

    Kim, Seung Jo; Suh, Dongchul; Park, Sang Eun; Park, Jeong-Sook; Byun, Hyang-Min; Lee, Chan; Lee, Sun Young; Kim, Inho; Oh, Yu-Kyoung

    2003-01-01

    To increase the potency of DNA vaccines, we constructed genetic fusion vaccines encoding antigen, secretion signal, and/or chemokine RANTES. The DNA vaccines encoding secreted hepatitis B surface antigen (HBsAg) were constructed by inserting HBsAg gene into an expression vector with an endoplasmic reticulum (ER)-targeting secretory signal sequence. The plasmid encoding secretory HBsAg (pER/HBs) was fused to cDNA of RANTES, generating pER/HBs/R. For comparison, HBsAg genes were cloned into pVAX1 vector with no signal sequence (pHBs), and further linked to the N-terminus of RANTES (pHBs/R). Immunofluorescence study showed the cytoplasmic localization of HBsAg protein expressed from pHBs and pHBs/R, but not from pER/HBs and pER/HBs/R at 48 h after transfection. In mice, RANTES-fused DNA vaccines more effectively elicited the levels of HBsAg-specific IgG antibodies than pHBs. All the DNA vaccines induced higher levels of IgG 2a rather than IgG 1 antibodies. Of RANTES-fused vaccines, pER/HBs/R encoding the secreted fusion protein revealed much higher humoral and CD8 + T cell-stimulating responses compared to pHBs/R. These results suggest that the immunogenicity of DNA vaccines could be enhanced by genetic fusion to a secretory signal peptide sequence and RANTES

  7. ADX: a high field, high power density, advanced divertor and RF tokamak

    Science.gov (United States)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  8. Molecular resonances, fusion reactions and surface transparency of interaction between heavy ions

    International Nuclear Information System (INIS)

    Abe, Yasuhisa.

    1980-01-01

    A review of the Band Crossing Model is given, including recent results on the 16 O + 16 O system. Surface Transparency is discussed in the light of the recent development in our understanding of the fusion reaction mechanisms and by calculating the number of open channels available to direct reactions. The existence of the Molecular Resonance Region is suggested in several systems by the fact that Band Crossing Region overlaps with the Transparent Region. A systematic study predicts molecular resonances in the 14 C + 14 C and 12 C + 14 C systems as prominent as those observed in the 16 O + 16 O and 12 C + 16 O systems

  9. Research proposal on : amplitude modulated reflectometry system for JET divertor

    International Nuclear Information System (INIS)

    Sanchez, J.; Branas, T.; Estrada, T.; Luna, E. de la.

    1992-01-01

    Amplitude Modulated reflectometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been presented in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps' in the phase signal, which are a big problem when the phase values are much larger than 2 pi. The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad-band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectometry, used for ionospheric studies and recently also proposed for fusion plasma. the main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts (approx 2 pi). (author)

  10. Divertor and first wall design for TIBER-II

    International Nuclear Information System (INIS)

    Gallix, R.; Bourque, R.; Baxi, C.; Creedon, L.; Schultz, K.; Vance, D.

    1987-01-01

    The conceptual design of the double-null divertor plates and the first wall armor for the TIBER-II fusion engineering test reactor is presented. The divertor plates, which receive a steady-state heat flux of up to 4.3 MW/m 2 , are actively cooled. They consist of small carbon or tungsten tiles brazed on water-cooled copper tubes which are fed by a dedicated cooling system. The first wall armor protects the water-cooled shield and blanket modules which form the walls of the plasma chamber. The armor receives an average, steady-state heat flux of 0.23 MW/m 2 and up to 2.4 MJ/m 2 during plasma disruptions. It consists of radiation-cooled, carbon-carbon composite tiles. The tiles cover the entire inboard wall and form 16 discrete poloidal limiters attached to the bare stainless steel outboard wall. Due to potentially severe plasma erosion, the components are designed for remote replacement

  11. Design of the Wendelstein 7-X inertially cooled Test Divertor Unit Scraper Element

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, Arnold, E-mail: lumsdainea@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Boscary, Jean [Max Planck Institute for Plasma Physics, Garching (Germany); Fellinger, Joris [Max Planck Institute for Plasma Physics, Greifswald (Germany); Harris, Jeff [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hölbe, Hauke; König, Ralf [Max Planck Institute for Plasma Physics, Greifswald (Germany); Lore, Jeremy; McGinnis, Dean [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Neilson, Hutch; Titus, Peter [Princeton Plasma Physics Lab, Princeton, NJ (United States); Tretter, Jörg [Max Planck Institute for Plasma Physics, Garching (Germany)

    2015-10-15

    Highlights: • The justification for the installation of the Test Divertor Unit Scraper Element is given. • Specially designed operational scenarios for the component are presented. • Plans for the design of the component are detailed. - Abstract: The Wendelstein 7-X stellarator is scheduled to begin operation in 2015, and to achieve full power steady-state operation in 2019. Computational simulations have indicated that for certain plasma configurations in the steady-state operation, the ends of the divertor targets may receive heat fluxes beyond their qualified technological limit. To address this issue, a high heat-flux “scraper element” (HHF-SE) has been designed that can protect the sensitive divertor target region. The surface profile of the HHF-SE has been carefully designed to meet challenging engineering requirements and severe spatial limitations through an iterative process involving physics simulations, engineering analysis, and computer aided design rendering. The desire to examine how the scraper element interacts with the plasma, both in terms of how it protects the divertor, and how it affects the neutral pumping efficiency, has led to the consideration of installing an inertially cooled version during the short pulse operation phase. This Test Divertor Unit Scraper Element (TDU-SE) would replicate the surface profile of the HHF-SE. The design and instrumentation of this component must be completed carefully in order to satisfy the requirements of the machine operation, as well as to support the possible installation of the HHF-SE for steady-state operation.

  12. Exposures of tungsten nanostructures to divertor plasmas in DIII-D

    International Nuclear Information System (INIS)

    Rudakov, D L; Doerner, R P; Baldwin, M J; Boedo, J A; Hollmann, E M; Moyer, R A; Wong, C P C; Chrobak, C P; Guo, H Y; Leonard, A W; Pace, D C; Thomas, D M; Wright, G M; Abrams, T; Briesemeister, A R; McLean, A G; Fenstermacher, M E; Lasnier, C J; Watkins, J G

    2016-01-01

    Tungsten nanostructures (W-fuzz) prepared in the PISCES-A linear device have been found to survive direct exposure to divertor plasmas in DIII-D. W-fuzz was exposed in the lower divertor of DIII-D using the divertor material evaluation system. Two samples were exposed in lower single null (LSN) deuterium H-mode plasmas. The first sample was exposed in three discharges terminated by vertical displacement event disruptions, and the second in two discharges near the lowered X-point. More recently, three samples were exposed near the lower outer strike point in predominantly helium H-mode LSN plasmas. In all cases, the W-fuzz survived plasma exposure with little obvious damage except in the areas where unipolar arcing occurred. Arcing is effective in W-fuzz removal, and it appears that surfaces covered with W-fuzz can be more prone to arcing than smooth W surfaces. (paper)

  13. Magnetic field structure near the plasma boundary in helical systems and divertor tokamaks

    International Nuclear Information System (INIS)

    Nagasaki, Kazunobu; Itoh, Kimitaka

    1990-02-01

    Magnetic field structure of the scrape off layer (SOL) region in both helical systems and divertor tokamaks is studied numerically by using model fields. The connection length of the field line to the wall is calculated. In helical systems, the connection length, L, has a logarithmic dependence on the distance from the outermost magnetic surface or that from the residual magnetic islands. The effect of axisymmetric fields on the field structure is also determined. In divertor tokamaks, the connection length also has logarithmic properties near the separatrix. Even when the perturbations, which resonate to rational surfaces near the plasma boundary, are added, logarithmic properties still remain. We compare the connection length of torsatron/helical-heliotron systems with that of divertor tokamaks. It is found that the former is shorter than the latter by one order magnitude with similar aspect ratio. (author)

  14. FINAL REPORT FOR THE DIII-D RADIATIVE DIVERTOR PROJECT

    International Nuclear Information System (INIS)

    O'NEIL, RC; STAMBAUGH, RD

    2002-01-01

    OAK A271 FINAL REPORT FOR THE DIII-D RADIATIVE DIVERTOR PROJECT. The Radiative Divertor Project originated in 1993 when the DIII-D Five Year Plan for the period 1994--1998 was prepared. The Project Information Sheet described the objective of the project as ''to demonstrate dispersal of divertor power by a factor of then with sufficient diagnostics and modeling to extend the results to ITER and TPX''. Key divertor components identified were: (1) Carbon-carbon and graphite armor tiles; (2) The divertor structure providing a gas baffle and cooling; and (3) The divertor cryopumps to pump fuel and impurities

  15. Numerical study of the connection lengths for various magnetic configurations in Wendelstein 7-X to optimize the heat load on the divertor

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Priyanjana; Hoelbe, Hauke; Sunn Pedersen, Thomas [Max Planck Institute of Plasma Physics, Greifswald (Germany)

    2016-07-01

    Fusion has the potential to play an important role as a future energy resource. It has the capacity to produce large-scale clean energy. The two main confinement concepts are the tokamak and the stellarator. The W7-X machine is based on stellarator principle and is using special form of coils to achieve steady-state plasma confinement. Divertors are used in tokamaks and stellarator to control the exhaust of waste gases and impurities from the machine. The divertor concept of W7-X is a so-called island divertor. The island chain isolates the confinement core from regions where the plasma-wall interaction takes place. The area of the divertor that receives the main part of the heat loads, the so-called wetted area, increases with the distance along the magnetic field from the outboard midplane to the divertor target. The connection length is relatively short in tokamaks with conventional divertors. In the stellarator island divertor, the connection length can be varied significantly, which should allow for optimization of the wetted area. We present here a numerical study of the achievable connection lengths in various W7-X configurations and discuss the possibilities for running dedicated experiments to understand the physics of what sets the wetted area.

  16. Real-time control of divertor detachment in H-mode with impurity seeding using Langmuir probe feedback in JET-ITER-like wall

    Science.gov (United States)

    Guillemaut, C.; Lennholm, M.; Harrison, J.; Carvalho, I.; Valcarcel, D.; Felton, R.; Griph, S.; Hogben, C.; Lucock, R.; Matthews, G. F.; Perez Von Thun, C.; Pitts, R. A.; Wiesen, S.; contributors, JET

    2017-04-01

    Burning plasmas with 500 MW of fusion power on ITER will rely on partially detached divertor operation to keep target heat loads at manageable levels. Such divertor regimes will be maintained by a real-time control system using the seeding of radiative impurities like nitrogen (N), neon or argon as actuator and one or more diagnostic signals as sensors. Recently, real-time control of divertor detachment has been successfully achieved in Type I ELMy H-mode JET-ITER-like wall discharges by using saturation current (I sat) measurements from divertor Langmuir probes as feedback signals to control the level of N seeding. The degree of divertor detachment is calculated in real-time by comparing the outer target peak I sat measurements to the peak I sat value at the roll-over in order to control the opening of the N injection valve. Real-time control of detachment has been achieved in both fixed and swept strike point experiments. The system has been progressively improved and can now automatically drive the divertor conditions from attached through high recycling and roll-over down to a user-defined level of detachment. Such a demonstration is a successful proof of principle in the context of future operation on ITER which will be extensively equipped with divertor target probes.

  17. The WEST project: preparing power exhaust control for ITER tungsten divertor operation

    International Nuclear Information System (INIS)

    Bucalossi, J.; Traverse, J.M.; Corre, Y.; Courtois, X.; Firdaouss, M.; Grosman, A.; Missirlian, M.; Nardon, E.; Salasca, S.; Tsitrone, E.; Van Houtte, D.; Aumeunier, M.H.

    2015-01-01

    Full text of publication follows. Power exhaust in next step steady state fusion devices will require complex integrated control schemes. The seeding of impurity is foreseen to increase the radiation fraction but with a price to pay on energy confinement. To optimize the plasma performance one will want to minimize the radiation fraction and thus operate close to the technological limit of the plasma facing components (PFC) in terms of power handling. In order to do so, accurate knowledge of the PFC power load is required in real time. Underestimating it will lead to degradation of the PFC and eventually to water leaks while overestimating it will unnecessarily constrain access to high fusion performance. ITER baseline plans the use of a full tungsten (W) divertor for the nuclear phase and discussions to start divertor operation with the full W divertor are ongoing. Simulations have shown that, in the burning phase, the maximum allowable steady state heat flux for the actively cooled divertor can be largely exceeded, typically by a factor 4 if the radiated fraction in the divertor falls to 20%. Therefore, the control of the power exhaust will be mandatory for safe operation. In contrast with present day devices, the metallic environment and the accessibility in ITER will severely constrain power load measurement and further tools will have to be developed in order to properly master the steady state power exhaust. This control issue will be addressed in detail in the frame of the WEST project implementing an actively cooled W divertor representative of ITER PFC inside the long pulse tokamak Tore Supra. Large heat fluxes will be made available in steady state (above 20 MW/m 2 ) and a set of relevant diagnostics will be installed (magnetics, infrared/visible thermography, water calorimetry, thermocouples, etc.). Steady state PFC heat patterns have been simulated (PFCflux code) as well as the associated reflections (SPEOS code) in the complex geometry for different

  18. Numerical Calculation of the Peaking Factor of a Water-Cooled W/Cu Monoblock for a Divertor

    Science.gov (United States)

    Han, Le; Chang, Haiping; Zhang, Jingyang; Xu, Tiejun

    2015-09-01

    In order to accurately predict the incident critical heat flux (ICHF, the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor, the exact knowledge of its peaking factors (fp) under one-sided heating conditions with different design parameters is a key issue. In this paper, the heat conduction in the solid domain of a water-cooled W/Cu monoblock is calculated numerically by assuming the local heat transfer coefficients (HTC) of the cooling wall to be functions of the local wall temperature, so as to obtain fp. The reliability of the calculation method is validated by an experimental example result, with the maximum error of 2.1% only. The effects of geometric and flow parameters on the fp of a water-cooled W/Cu monoblock are investigated. Within the scope of this study, it is shown that the fp increases with increasing dimensionless W/Cu monoblock width and armour thickness (the shortest distance between the heated surface and Cu layer), and the maximum increases are 43.8% and 22.4% respectively. The dimensionless W/Cu monoblock height and Cu thickness have little effect on fp. The increase of Reynolds number and Jakob number causes the increase of fp, and the maximum increases are 6.8% and 9.6% respectively. Based on the calculated results, an empirical correlation on peaking factor is obtained via regression. These results provide a valuable reference for the thermal-hydraulic design of water-cooled divertors. supported by National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005) and Funding of Jiangsu Innovation Program for Graduate Education, China (CXLX12_0170), the Fundamental Research Funds for the Central Universities of China

  19. A helical hydrogen-MARFE-like phenomenon in the divertor of the Wendelstein 7-AS stellarator

    Science.gov (United States)

    Wenzel, U.; König, R.; Pedersen, T. Sunn; the W7-AS Team

    2015-01-01

    In the island divertor of the W7-AS stellarator a high-density zone (HDZ) near the divertor plates was discovered some years ago (Ramasubramanian et al 2004 Nucl. Fusion 44 992-8) with electron densities up to 7 × 1020 m-3. We shed further light on this phenomenon by determining the poloidal and radial location of this zone and discussing potential implications of these findings. The HDZ is in the vicinity of, but clearly separated from the nearest X-point line. The carbon emission is clearly spatially separated, residing near or at the X-point lines. The HDZ shows many similarities with the hydrogen or wall MARFE in Textor-94 (Samm et al 1999 J. Nucl. Mater. 266-269 666). The structure is associated with a strongly increased neutral pressure, thus enabling efficient pumping. This offers the possibility for a very efficient exhaust regime in a stellarator with island divertor such as W7-X, simultaneously with significantly reduced convective heat loads onto the divertor itself. The spatial separation of the HDZ and the carbon radiation region may imply that such a state can be reached even in a non-carbon machine, and might therefore be DEMO-relevant.

  20. Parametric analysis of the thermal effects on the divertor in tokamaks during plasma disruptions

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, M.L.

    1988-04-01

    Plasma disruptions are an ever present danger to the plasma-facing components in today's tokamak fusion reactors. This threat results from our lack of understanding and limited ability to control this complex phenomenon. In particular, severe energy deposition occurs on the divertor component of the double-null configured tokamak reactor during such disruptions. A hybrid computational model developed to estimate and graphically illustrate global thermal effects of disruptions on the divertor plates is described in detail. The quasi-two-dimensional computer code, TADDPAK (Thermal Analysis Divertor during Disruptions PAcKage), is used to conduct parametric analysis for the TIBER II Tokamak Engineering Test Reactor Design. The dependence of these thermal effects on divertor material choice, disruption pulse length, disruption pulse shape, and the characteristic thickness of the plasma scrape-off layer is investigated for this reactor design. Results and conclusions from this analysis are presented. Improvements to this model and issues that require further investigation are discussed. Cursory analysis for ITER (International Thermonuclear Experimental Reactor) is also presented in the appendix. 75 refs., 49 figs., 10 tabs.

  1. Numerical Simulation on Subcooled Boiling Heat Transfer Characteristics of Water-Cooled W/Cu Divertors

    Science.gov (United States)

    Han, Le; Chang, Haiping; Zhang, Jingyang; Xu, Tiejun

    2015-04-01

    In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition, the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial. In this paper, subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic (CFD). The boiling heat transfer was simulated based on the Euler homogeneous phase model, and local differences of liquid physical properties were considered under one-sided high heating conditions. The calculated wall temperature was in good agreement with experimental results, with the maximum error of 5% only. On this basis, the void fraction distribution, flow field and heat transfer coefficient (HTC) distribution were obtained. The effects of heat flux, inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated. These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005), Funding of Jiangsu Innovation Program for Graduate Education (CXLX12_0170), the Fundamental Research Funds for the Central Universities of China

  2. Preliminary analysis of the efficiency of non-standard divertor configurations in DEMO

    Directory of Open Access Journals (Sweden)

    F. Subba

    2017-08-01

    Full Text Available The standard Single Null (SN divertor is currently expected to be installed in DEMO. However, a number of alternative configurations are being evaluated in parallel as backup solutions, in case the standard divertor does not extrapolate successfully from ITER to a fusion power plant. We used the SOLPS code to produce a preliminary analysis of two such configurations, the X-Divertor (XD and the Super X-Divertor (SX, and compare them to the SN solution. Considering the nominal power flowing into the SOL (PSOL = 150 MW, we estimated the amplitude of the acceptable DEMO operational space. The acceptability criterion was chosen as plasma temperature at the target lower than 5eV, providing low sputtering and at least partial detachment, while the operational space was defined in terms of the electron density at the outboard mid-plane separatrix and of the seeded impurity (Ar only in the present study concentration. It was found that both the XD and the SXD extend the DEMO operational space, although the advantages detected so far are not dramatic. The most promising configuration seems to be the XD, which can produce acceptable target temperatures at moderate outboard mid-plane electron density (nomp=4.5×1019 m−3 and Zeff= 1.3.

  3. Nuclear analysis of structural damage and nuclear heating on enhanced K-DEMO divertor model

    Science.gov (United States)

    Park, J.; Im, K.; Kwon, S.; Kim, J.; Kim, D.; Woo, M.; Shin, C.

    2017-12-01

    This paper addresses nuclear analysis on the Korean fusion demonstration reactor (K-DEMO) divertor to estimate the overall trend of nuclear heating values and displacement damages. The K-DEMO divertor model was created and converted by the CAD (Pro-Engineer™) and Monte Carlo automatic modeling programs as a 22.5° sector of the tokamak. The Monte Carlo neutron photon transport and ADVANTG codes were used in this calculation with the FENDL-2.1 nuclear data library. The calculation results indicate that the highest values appeared on the upper outboard target (OT) area, which means the OT is exposed to the highest radiation conditions among the three plasma-facing parts (inboard, central and outboard) in the divertor. Especially, much lower nuclear heating values and displacement damages are indicated on the lower part of the OT area than others. These are important results contributing to thermal-hydraulic and thermo-mechanical analyses on the divertor and also it is expected that the copper alloy materials may be partially used as a heat sink only at the lower part of the OT instead of the reduced activation ferritic-martensitic steel due to copper alloy’s high thermal conductivity.

  4. ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor

    Science.gov (United States)

    Maingi, R.; Hu, J. S.; Sun, Z.; Tritz, K.; Zuo, G. Z.; Xu, W.; Huang, M.; Meng, X. C.; Canik, J. M.; Diallo, A.; Lunsford, R.; Mansfield, D. K.; Osborne, T. H.; Gong, X. Z.; Wang, Y. F.; Li, Y. Y.; EAST team

    2018-02-01

    We report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3–5 s in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D α baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previous ELM elimination results via Li injection into the lower carbon divertor in EAST (Hu et al 2015 Phys. Rev. Lett. 114 055001). These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs (Lang et al 2017 Nucl. Fusion 57 016030), highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.

  5. Workshop on beryllium for fusion applications. Proceedings. IEA Implementing Agreement for a Programme of Research and Development on Fusion Materials

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1993-12-01

    As shown by recent developments beryllium has become one of the most important materials in the development of fusion reactors. It is practically the only neutron multiplier available for blankets with ceramic breeder materials and can be used with liquid metal breeders as well. It is one of the most likely materials to be used on the surface of the first walls and of the divertor. The neutron irradiation behavior of beryllium in a fusion reactor is not well know. Beryllium was extensively irradiated about 25-40 years ago and has been used since then in material testing reactors as reflector. In the meantime, however, beryllium has been improved quite considerably. Today it is possible to obtain commercially beryllium which is much more isotropic and contains smaller ammounts of oxide. There are already indications that these new kinds of beryllium behave better under irradiation. (orig.)

  6. Towards Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and Analysis.

    Science.gov (United States)

    Shaukat, Affan; Blacker, Peter C; Spiteri, Conrad; Gao, Yang

    2016-11-20

    In recent decades, terrain modelling and reconstruction techniques have increased research interest in precise short and long distance autonomous navigation, localisation and mapping within field robotics. One of the most challenging applications is in relation to autonomous planetary exploration using mobile robots. Rovers deployed to explore extraterrestrial surfaces are required to perceive and model the environment with little or no intervention from the ground station. Up to date, stereopsis represents the state-of-the art method and can achieve short-distance planetary surface modelling. However, future space missions will require scene reconstruction at greater distance, fidelity and feature complexity, potentially using other sensors like Light Detection And Ranging (LIDAR). LIDAR has been extensively exploited for target detection, identification, and depth estimation in terrestrial robotics, but is still under development to become a viable technology for space robotics. This paper will first review current methods for scene reconstruction and terrain modelling using cameras in planetary robotics and LIDARs in terrestrial robotics; then we will propose camera-LIDAR fusion as a feasible technique to overcome the limitations of either of these individual sensors for planetary exploration. A comprehensive analysis will be presented to demonstrate the advantages of camera-LIDAR fusion in terms of range, fidelity, accuracy and computation.

  7. Towards Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and Analysis

    Directory of Open Access Journals (Sweden)

    Affan Shaukat

    2016-11-01

    Full Text Available In recent decades, terrain modelling and reconstruction techniques have increased research interest in precise short and long distance autonomous navigation, localisation and mapping within field robotics. One of the most challenging applications is in relation to autonomous planetary exploration using mobile robots. Rovers deployed to explore extraterrestrial surfaces are required to perceive and model the environment with little or no intervention from the ground station. Up to date, stereopsis represents the state-of-the art method and can achieve short-distance planetary surface modelling. However, future space missions will require scene reconstruction at greater distance, fidelity and feature complexity, potentially using other sensors like Light Detection And Ranging (LIDAR. LIDAR has been extensively exploited for target detection, identification, and depth estimation in terrestrial robotics, but is still under development to become a viable technology for space robotics. This paper will first review current methods for scene reconstruction and terrain modelling using cameras in planetary robotics and LIDARs in terrestrial robotics; then we will propose camera-LIDAR fusion as a feasible technique to overcome the limitations of either of these individual sensors for planetary exploration. A comprehensive analysis will be presented to demonstrate the advantages of camera-LIDAR fusion in terms of range, fidelity, accuracy and computation.

  8. Interaction of plasmas with lithium and tungsten fusion plasma facing components

    Science.gov (United States)

    Fiflis, Peter Robert

    One of the largest outstanding issues in magnetic confinement fusion is the interaction of the fusion plasma with the first wall of the device; an interaction which is strongest in the divertor region. Erosion, melting, sputtering, and deformation are all concerns which inform choices of divertor material. Of the many materials proposed for use in the divertor, only a few remain as promising choices. Tungsten has been chosen as the material for the ITER divertor, and liquid lithium stands poised as its replacement in higher heat flux devices. As a refractory metal, tungsten's large melting point and thermal conductivity as well as its low sputtering yield have led to its selection as the material of choice of the ITER divertor. Experiments have reinforced this choice demonstrating tungsten's ability to withstand large heat fluxes when adequately cooled. However, tungsten has shown a propensity to nanostructure under exposure within a certain temperature range to large fluxes of helium ions. These nanostructures if disrupted into the plasma as dust by an off-normal event would cause quenching of the plasma from the generated dust. Liquid lithium, meanwhile, has gathered growing interest within the fusion community in recent years as a divertor, limiter, and alternative first wall material. Liquid lithium is attractive as a low-Z material replacement for refractory metals due to its ability to getter impurities, while also being self-healing in nature. However, concerns exist about the stability of a liquid metal surface at the edge of a fusion device. Liquid metal pools, such as the Li-DiMes probe, have shown evidence of macroscopic lithium displacement as well as droplet formation and ejection into the plasma. These issues must be mitigated in future implementations of liquid lithium divertor concepts. Rayleigh-Taylor-like (RT) and Kelvin-Helmholtz-like (KH) instabilities have been claimed as the initiators of droplet ejection, yet not enough data exists to

  9. Efficiency of water coolant for DEMO divertor

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Renate, E-mail: renate.fetzer@kit.edu; Igitkhanov, Yuri; Bazylev, Boris

    2015-10-15

    Up to now, water-cooled divertor concepts have been developed for limited incident fluxes without taking into account transient power loadings. In this paper we analyzed the efficiency of water as a coolant for the particular PFC tungsten monoblock shield with a cooling tube made from Cu alloy (Cu OFHC) as a laminate adjacent to W and a low activation martensitic steel (Eurofer) as inner tube contacting the coolant. Thermal analysis is carried out by using the code MEMOS, which simulates W armour damage under the repetitive ELM heat loads. We consider cooling conditions which allow one to keep relatively high material temperatures (in the range 300–600 °C) thus minimizing Eurofer embrittlement under neutron irradiation. Expected DEMO I and DEMO II heat loads including type I ELMs are found to cause melting of the W surface during unmitigated ELMs. By mitigation of the ELMs melting of W is avoided. DEMO I operation under these conditions is save for cooling at water pressure 15.5 MPa and temperature 325 °C, while for DEMO II with mitigated ELMs the critical heat flux is exceeded and safe operation is not provided.

  10. Efficiency of water coolant for DEMO divertor

    International Nuclear Information System (INIS)

    Fetzer, Renate; Igitkhanov, Yuri; Bazylev, Boris

    2015-01-01

    Up to now, water-cooled divertor concepts have been developed for limited incident fluxes without taking into account transient power loadings. In this paper we analyzed the efficiency of water as a coolant for the particular PFC tungsten monoblock shield with a cooling tube made from Cu alloy (Cu OFHC) as a laminate adjacent to W and a low activation martensitic steel (Eurofer) as inner tube contacting the coolant. Thermal analysis is carried out by using the code MEMOS, which simulates W armour damage under the repetitive ELM heat loads. We consider cooling conditions which allow one to keep relatively high material temperatures (in the range 300–600 °C) thus minimizing Eurofer embrittlement under neutron irradiation. Expected DEMO I and DEMO II heat loads including type I ELMs are found to cause melting of the W surface during unmitigated ELMs. By mitigation of the ELMs melting of W is avoided. DEMO I operation under these conditions is save for cooling at water pressure 15.5 MPa and temperature 325 °C, while for DEMO II with mitigated ELMs the critical heat flux is exceeded and safe operation is not provided.

  11. Snowflake divertor configuration studies for NSTX-Upgrade

    International Nuclear Information System (INIS)

    Soukhanovskii, V.A.

    2011-01-01

    Snowflake divertor experiments in NSTX provide basis for PMI development toward NSTX-Upgrade. Snowflake configuration formation was followed by radiative detachment. Significant reduction of steady-state divertor heat flux observed in snowflake divertor. Impulsive heat loads due to Type I ELMs are partially mitigated in snowflake divertor. Magnetic control of snowflake divertor configuration is being developed. Plasma material interface development is critical for NSTX-U success. Four divertor coils should enable flexibility in boundary shaping and control in NSTX-U. Snowflake divertor experiments in NSTX provide good basis for PMI development in NSTX-Upgrade. FY 2009-2010 snowflake divertor experiments in NSTX: (1) Helped understand control of magnetic properties; (2) Core H-mode confinement unchanged; (3) Core and edge carbon concentration reduced; and (4) Divertor heat flux significantly reduced - (a) Steady-state reduction due to geometry and radiative detachment, (b) Encouraging results for transient heat flux handling, (c) Combined with impurity-seeded radiative divertor. Outlook for snowflake divertor in NSTX-Upgrade: (1) 2D fluid modeling of snowflake divertor properties scaling - (a) Edge and divertor transport, radiation, detachment threshold, (b) Compatibility with cryo-pump and lithium conditioning; (2) Magnetic control development; and (3) PFC development - PFC alignment and PFC material choice.

  12. High-Z material erosion and its control in DIII-D carbon divertor

    Directory of Open Access Journals (Sweden)

    R. Ding

    2017-08-01

    Full Text Available As High-Z materials will likely be used as plasma-facing components (PFCs in future fusion devices, the erosion of high-Z materials is a key issue for high-power, long pulse operation. High-Z material erosion and redeposition have been studied using tungsten and molybdenum coated samples exposed in well-diagnosed DIII-D divertor plasma discharges. By coupling dedicated experiments and modelling using the 3D Monte Carlo code ERO, the roles of sheath potential and background carbon impurities in determining high-Z material erosion are identified. Different methods suggested by modelling have been investigated to control high-Z material erosion in DIII-D experiments. The erosion of Mo and W is found to be strongly suppressed by local injection of methane and deuterium gases. The 13C deposition resulting from local 13CH4 injection also provides information on radial transport due to E ×B drifts and cross field diffusion. Finally, D2 gas puffing is found to cause local plasma perturbation, suppressing W erosion because of the lower effective sputtering yield of W at lower plasma temperature and for higher carbon concentration in the mixed surface layer.

  13. Estimation of the tritium retention in ITER tungsten divertor target using macroscopic rate equations simulations

    Science.gov (United States)

    Hodille, E. A.; Bernard, E.; Markelj, S.; Mougenot, J.; Becquart, C. S.; Bisson, R.; Grisolia, C.

    2017-12-01

    Based on macroscopic rate equation simulations of tritium migration in an actively cooled tungsten (W) plasma facing component (PFC) using the code MHIMS (migration of hydrogen isotopes in metals), an estimation has been made of the tritium retention in ITER W divertor target during a non-uniform exponential distribution of particle fluxes. Two grades of materials are considered to be exposed to tritium ions: an undamaged W and a damaged W exposed to fast fusion neutrons. Due to strong temperature gradient in the PFC, Soret effect’s impacts on tritium retention is also evaluated for both cases. Thanks to the simulation, the evolutions of the tritium retention and the tritium migration depth are obtained as a function of the implanted flux and the number of cycles. From these evolutions, extrapolation laws are built to estimate the number of cycles needed for tritium to permeate from the implantation zone to the cooled surface and to quantify the corresponding retention of tritium throughout the W PFC.

  14. Tritium analysis of divertor tiles used in JET ITER-like wall campaigns by means of β-ray induced x-ray spectrometry

    Science.gov (United States)

    Hatano, Y.; Yumizuru, K.; Koivuranta, S.; Likonen, J.; Hara, M.; Matsuyama, M.; Masuzaki, S.; Tokitani, M.; Asakura, N.; Isobe, K.; Hayashi, T.; Baron-Wiechec, A.; Widdowson, A.; contributors, JET

    2017-12-01

    Energy spectra of β-ray induced x-rays from divertor tiles used in ITER-like wall campaigns of the Joint European Torus were measured to examine tritium (T) penetration into tungsten (W) layers. The penetration depth of T evaluated from the intensity ratio of W(Lα) x-rays to W(Mα) x-rays showed clear correlation with poloidal position; the penetration depth at the upper divertor region reached several micrometers, while that at the lower divertor region was less than 500 nm. The deep penetration at the upper part was ascribed to the implantation of high energy T produced by DD fusion reactions. The poloidal distribution of total x-ray intensity indicated higher T retention in the inboard side than the outboard side of the divertor region.

  15. Plasma etching to enhance the surface insulating stability of alumina for fusion applications

    Directory of Open Access Journals (Sweden)

    M. Malo

    2016-12-01

    Full Text Available A significant increase in the surface electrical conductivity of alumina, considered one of the most promising insulating materials for numerous applications in fusion devices, has been observed during ion bombardment in vacuum due to oxygen loss by preferential sputtering. Although this is expected to cause serious limitations to insulating components functionality, recent studies showed it is possible to restore the damaged lattice by oxygen reincorporation during thermal treatments in air. These studies also revealed a correlation between conductivity and ion beam induced luminescence, which is being used to monitor surface electrical conductivity degradation and help qualify the post irradiation recovery. Work now carried out for Wesgo alumina considers oxygen implantation and plasma etching as additional methods to improve recovered layer depth and quality. Both conductivity and luminescence results indicate the potential use of plasma etching not only for damage recovery, but also as a pre-treatment to enhance material stability during irradiation.

  16. Integrated core-edge-divertor modeling studies

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    An integrated calculation model for simulating the interaction of physics phenomena taking place in the plasma core, in the plasma edge and in the SOL and divertor of tokamaks has been developed and applied to study such interactions. The model synthesises a combination of numerical calculations (1) the power and particle balances for the core plasma, using empirical confinement scaling laws and taking into account radiation losses (2), the particle, momentum and power balances in the SOL and divertor, taking into account the effects of radiation and recycling neutrals, (3) the transport of feeling and recycling neutrals, explicitly representing divertor and pumping geometry, and (4) edge pedestal gradient scale lengths and widths, evaluation of theoretical predictions (5) confinement degradation due to thermal instabilities in the edge pedestals, (6) detachment and divertor MARFE onset, (7) core MARFE onsets leading to a H-L transition, and (8) radiative collapse leading to a disruption and evaluation of empirical fits (9) power thresholds for the L-H and H-L transitions and (10) the width of the edge pedestals. The various components of the calculation model are coupled and must be iterated to a self-consistent convergence. The model was developed over several years for the purpose of interpreting various edge phenomena observed in DIII-D experiments and thereby, to some extent, has been benchmarked against experiment. Because the model treats the interactions of various phenomena in the core, edge and divertor, yet is computationally efficient, it lends itself to the investigation of the effects of different choices of various edge plasma operating conditions on overall divertor and core plasma performance. Studies of the effect of feeling location and rate, divertor geometry, plasma shape, pumping and over 'edge parameters' on core plasma properties (line average density, confinement, density limit, etc.) have been performed for DIII-D model problems. A

  17. Optimizing the overall configuration of a He-cooled W-alloy divertor for a power plant

    International Nuclear Information System (INIS)

    Raffray, A.R.; Malang, S.; Wang, X.

    2009-01-01

    A number of different He-cooled divertor configurations have been proposed for magnetic fusion energy (MFE) power plant application. They range in scale from a plate configuration with characteristic dimension of the order of 1 m, to the ARIES-CS T-tube configuration with characteristic dimension of the order of 10 cm, to the EU FZK finger concept with characteristic dimension of the order of 1.5 cm. All these designs utilize tungsten or tungsten alloy as structural material. This paper considers the characteristics of the different divertor configurations and proposes the possibility of optimizing the design by combining different configurations in an integrated design based on the anticipated divertor heat flux profile.

  18. High-speed surface temperature measurements on plasma facing materials for fusion applications

    Science.gov (United States)

    Araki, Masanori; Kobayashi, Masanobu

    1996-01-01

    For the lifetime evaluation of plasma facing materials in fusion experimental machines, it is essential to investigate their surface behavior and their temperature responses during an off-normal event such as the plasma disruptions. An infrared thermometer with a sampling speed as fast as 1×10-6 s/data, namely, the high-speed infrared thermometer (HSIR), has been developed by the National Research Laboratory of Metrology in Japan. To evaluate an applicability of the newly developed HSIR on the surface temperature measurement of plasma facing materials, high heat flux beam irradiation experiments have been performed with three different materials under the surface heat fluxes up to 170 MW/m2 for 0.04 s in a hydrogen ion beam test facility at the Japan Atomic Energy Research Institute. As for the results, HSIR can be applicable for measuring the surface temperature responses of the armor tile materials with a little modification. It is also confirmed that surface temperatures measured with the HSIR thermometer show good agreement with the analytical results for stainless steel and carbon based materials at a temperature range of up to 2500 °C. However, for aluminum the HSIR could measure the temperature of the high dense vapor cloud which was produced during the heating due to lower melting temperature. Based on the result, a multichannel arrayed HSIR thermometer has been designed and fabricated.

  19. Particle-in-cell simulations of the plasma interaction with poloidal gaps in the ITER divertor outer vertical target

    Science.gov (United States)

    Komm, M.; Gunn, J. P.; Dejarnac, R.; Pánek, R.; Pitts, R. A.; Podolník, A.

    2017-12-01

    Predictive modelling of the heat flux distribution on ITER tungsten divertor monoblocks is a critical input to the design choice for component front surface shaping and for the understanding of power loading in the case of small-scale exposed edges. This paper presents results of particle-in-cell (PIC) simulations of plasma interaction in the vicinity of poloidal gaps between monoblocks in the high heat flux areas of the ITER outer vertical target. The main objective of the simulations is to assess the role of local electric fields which are accounted for in a related study using the ion orbit approach including only the Lorentz force (Gunn et al 2017 Nucl. Fusion 57 046025). Results of the PIC simulations demonstrate that even if in some cases the electric field plays a distinct role in determining the precise heat flux distribution, when heat diffusion into the bulk material is taken into account, the thermal responses calculated using the PIC or ion orbit approaches are very similar. This is a consequence of the small spatial scales over which the ion orbits distribute the power. The key result of this study is that the computationally much less intensive ion orbit approximation can be used with confidence in monoblock shaping design studies, thus validating the approach used in Gunn et al (2017 Nucl. Fusion 57 046025).

  20. Salmonella flagellin acted as an effective fusion partner for expression of Plasmodium falciparum surface protein 25 in Escherichia coli.

    Science.gov (United States)

    Qian, Feng; Li, Mengmeng; Chen, Yong; Jiang, Lin; Xu, Huji

    2016-09-01

    Plasmodium falciparum surface protein 25 (Pfs25) is a hard-to-express and hard-to-solubilize protein in Escherichia coli. To overcome this problem, the phase 1 flagellin of Salmonella enterica serovar Typhimurium (FliC) was used as a fusion partner for Pfs25. The fusion expression of Pfs25 with FliC greatly enhanced the expression level and solubility of Pfs25 in E. coli BL21(DE3). The Ni-purified fusion protein of FliC-Pfs25 was recognized by two anti-Pfs25 monoclonal antibodies. By comparison, it was shown that the Pfs25 within FliC-Pfs25 contained epitopes similar or identical to those on Pichia pastoris-produced Pfs25. The data obtained from this study demonstrated that the fusion with Salmonella flagellin greatly improved the expression of Pfs25 in E. coli.

  1. Thermomechanical behavior of actively cooled, brazed divertor components under cyclic high heat flux loads

    International Nuclear Information System (INIS)

    You, J.H.; Bolt, H.; Duwe, R.; Linke, J.; Nickel, H.

    1997-01-01

    Actively cooled divertor mock-ups consisting of various low-Z armor tiles brazed to refractory metal heat sinks were tested in the electron beam test facility at Juelich. Screening and thermal cycling tests were perfomed on the mock-ups to estimate the overall thermal performance under cyclic high heat flux (HHF) loadings. By detecting the temperature of the armor surface and the braze layer, it was possible to assess the heat removal capability and the accumulation of interfacial damage. Microstructures were investigated to elucidate the degradation of the joints. Finite element analyses are carried out for the simulated HHF test conditions. Temperature fields and thermal stresses are calculated for a typical divertor module. The nature of thermomechanical behavior of the divertor mock-ups under cyclic HHF loadings is discussed. (orig.)

  2. Thermomechanical behavior of actively cooled, brazed divertor components under cyclic high heat flux loads

    Science.gov (United States)

    You, J. H.; Bolt, H.; Duwe, R.; Linke, J.; Nickel, H.

    1997-12-01

    Actively cooled divertor mock-ups consisting of various low- Z armor tiles brazed to refractory metal heat sinks were tested in the electron beam test facility at Jülich. Screening and thermal cycling tests were perfomed on the mock-ups to estimate the overall thermal performance under cyclic high heat flux (HHF) loadings. By detecting the temperature of the armor surface and the braze layer, it was possible to assess the heat removal capability and the accumulation of interfacial damage. Microstructures were investigated to elucidate the degradation of the joints. Finite element analyses are carried out for the simulated HHF test conditions. Temperature fields and thermal stresses are calculated for a typical divertor module. The nature of thermomechanical behavior of the divertor mock-ups under cyclic HHF loadings is discussed.

  3. Geometrical properties of a 'snowflake' divertor

    International Nuclear Information System (INIS)

    Ryutov, D. D.

    2007-01-01

    Using a simple set of poloidal field coils, one can reach the situation in which the null of the poloidal magnetic field in the divertor region is of second order, not of first order as in the usual X-point divertor. Then, the separatrix in the vicinity of the null point splits the poloidal plane not into four sectors, but into six sectors, making the whole structure look like a snowflake (hence the name). This arrangement allows one to spread the heat load over a much broader area than in the case of a standard divertor. A disadvantage of this configuration is that it is topologically unstable, and, with the current in the plasma varying with time, it would switch either to the standard X-point mode, or to the mode with two X-points close to each other. To avoid this problem, it is suggested to have a current in the divertor coils that is roughly 5% higher than in an ''optimum'' regime (the one in which a snowflake separatrix is formed). In this mode, the configuration becomes stable and can be controlled by varying the current in the divertor coils in concert with the plasma current; on the other hand, a strong flaring of the scrape-off layer still remains in force. Geometrical properties of this configuration are analyzed. Potential advantages and disadvantages of this scheme are discussed

  4. Annual report of the Naka Fusion Research Establishment for the period of April 1, 1990 to March 31, 1991

    International Nuclear Information System (INIS)

    1991-10-01

    R and D activities of the Naka Fusion Research Establishment, JAERI, are reported for the period from April 1, 1990 to March 31, 1991. Since the shutdown of JT-60 in November 1989, the reconstruction work of the JT-60 device was continued until the end of March 1991. In the JT-60 Upgrade, the poloidal field coils and vacuum vessel were renewed and the plasma current was planned to increase up to 6 MA with lower single null divertor. The divertor plates were designed to be toroidally continuous and to use high-heat-conduction C/C composite materials. Another objective of JT-60U is to facilitate tokamak experiments with deuterium as the working gas. In the JFT-2M program, a system for divertor bias experiments was brought into operation and initial experiments were started to study its effects on plasma discharges. Effects of ergodic magnetic limiter on H-modes were examined and stationary H-modes were obtained under the control of ergodic magnetic limiter currents. The DIII-D program was highlighted by the attainment of 11% beta with a double null divertor plasma. As for the fusion engineering research, development activities of the ceramic turbo-viscous pump and the surface insulation techniques for the tokamak in-vessel components are remarked in the vacuum technology area. In the high heat flux experiments with the JAERI Electron Beam Irradiation Stand (JEBIS), carbon-based materials and refractory metals were tested to evaluate surface erosion at plasma disruptions. The ITER Conceptual Design Activities, which began in April 1988 under the auspices of the IAEA, were successfully completed in December 1990. A lot of contributions to the program were made by JAERI people to support the design and R and D activities and to prepare a plan for the forthcoming Engineering Design Activities. (J.P.N.)

  5. Radioactive waste produced by DEMO and commerical fusion reactors extrapolated from ITER and advanced data bases

    International Nuclear Information System (INIS)

    Stacey, W.M.; Hertel, N.E.; Hoffman, E.A.

    1994-01-01

    The potential for providing energy with minimal environmental impact is a powerful motivation for the development of fusion and is the long-term objective of most fusion programs. However, the societal acceptability of magnetic fusion may well be decided in the near-term when decisions are taken on the construction of DEMO to follow ITER (if not when the construction decision is taken on ITER). Component wastes were calculated for DEMOs based on each data base by first calculating reactor sizes needed to satisfy the physics, stress and radiation attenuation requirements, and then calculating component replacement rates based on radiation damage and erosion limits. Then, radioactive inventories were calculated and compared to a number of international criteria for open-quote near-surface close-quote burial. None of the components in either type of design would meet the Japanese LLW criterion ( 3 ) within 10 years of shutdown, although the advanced (V/Li) blanket would do so soon afterwards. The vanadium first wall, divertor and blanket would satisfy the IAEA LLW criterion (<2 mSv/h contact dose) within about 10 years after shutdown, but none of the stainless steel or copper components would. All the components in the advanced data base designs except the stainless steel vacuum vessel and shield readily satisfy the US extended 10CFR61 intruder dose criterion, but none of the components in the open-quotes ITER data baseclose quotes designs do so. It seems unlikely that a stainless steel first wall or a copper divertor plate could satisfy the US (class C) criterion for near surface burial, much less the more stringent international, criteria. On the other hand, the first wall, divertor and blanket of the V/Li system would still satisfy the intruder dose concentration limits even if the dose criterion was reduced by two orders of magnitude

  6. Thermal effects of runaway electrons in an armoured divertor

    International Nuclear Information System (INIS)

    Stad, R.C.L. van der.

    1993-12-01

    This report describes the results of a numerical thermal analysis of the heat deposition of runaway electrons accompanying plasma disruptions in a armoured divertor. The divertor concepts studied are carbon on molybdenum and beryllium on copper. The conclusion is that the runaway electrons can cause melting of the armour as well as melting of the structure and can damage the divertor severely. (orig.)

  7. The tritium confinement and surface chemistry of plasma facing materials in controlled D-T fusion devices

    International Nuclear Information System (INIS)

    Wu, C.H.

    1987-01-01

    Tritium permeation through first walls, limiters or divertors subjected to energetic tritium charge exchange neutral bombardment is a potentially serious problem area for advanced D-T reactors operating at elevated temperatures. High concentrations of tritium in the near surface region can be reached by implantation of the charge neutral flux combined with a relatively slow recombination of these atoms into molecules at the plasma/ first wall interface. A concentration gradient is established, causing tritium to diffuse into the bulk and essentially to the outer wall surface where it can enter the first wall coolant. Since tritium separation from cooling water is very costly, release of even a small fraction of tritium to the environment could pose undesirable safety problems. Therefore, it is necessary to reduce the tritium permeation. An analysis of the way of inhibition has been made. The tritium interacts with the solid surface of the plasma facing components, resulting in trapping and material erosion, and posing problems with respect to plasma density control. The erosion of the plasma facing component materials is mainly caused by physical and chemical erosion. A detailed analysis of chemical erosion by tritium has been performed and the results are described. (author)

  8. Estimation of the contribution of gaps to tritium retention in the divertor of ITER

    Czech Academy of Sciences Publication Activity Database

    Matveev, D.; Kirschner, A.; Schmid, K.; Litnovsky, A.; Borodin, D.; Komm, Michael; Van Oost, G.; Samm, U.

    -, T159 (2014), 014063-014063 ISSN 0031-8949 Institutional support: RVO:61389021 Keywords : plasma * tokamak * tritium retention * ITER * castellated surfaces * gaps * divertor * impurity deposition Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.126, year: 2014 http://iopscience.iop.org/1402-4896/2014/T159/014063/

  9. Study of production, transport and radiation of carbon impurities near the ergodic divertor in Tore-Supra tokamak

    International Nuclear Information System (INIS)

    Corre, Y.

    2001-11-01

    In a Tokamak thermonuclear reactor, the impurity control is essential to keep the plasma in fusion conditions. Indeed, the impurities which enter the bulk are responsible for the fuel dilution (and hence a significant reduction of the number of fusion reactions). The pollution of fusion plasma by impurities has thus to be as low as possible. In the Tokamak Tore Supra, as in most present day Tokamaks, the main impurity is carbon. First, we have studied the carbon production mechanisms on the Neutralizer Plates of the Tore Supra Ergodic Divertor (where the plasma surface interaction is the most important). For this purpose we have used an endoscope during an experimental campaign in order to measure spectral line brightnesses emitted in the visible wavelength range by low charge carbon ions. The quantitative analysis of the pictures provided by this endoscope, together with measurements by other plasma edge diagnostics, has allowed us to estimate the atom flux extracted from the neutralizer plates during the various density regimes accessed in ED configuration. We have deduced from these calculations an experimental sputtering yield. A comparison with the theoretical sputtering yield allows us to determine the dominant erosion mechanism as a function of the edge plasma density and temperature. This comparative analysis shows that when the edge electron temperature is above 30 eV, the self-sputtering process is the dominant phenomenon for impurity production and bulk contamination. When T e bord is high, the effective erosion is bigger than the erosion due to deuterium ion impacts. This information has then been used to study transport and radiation of this impurity near the neutralizer plates with the 3-D Monte Carlo code BBQ (grill) and other carbon radiation measurements. It has allowed us to characterise the circulation of carbon in the plasma edge and to determine the carbon fraction which enters the confined plasma and the fraction which is rapidly driven back

  10. The TITAN reversed-field-pinch fusion reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures.

  11. A surface defect detection method based on multi-feature fusion

    Science.gov (United States)

    Wu, Xiaojun; Xiong, Huijiang; Yu, Zhiyang; Wen, Peizhi

    2017-07-01

    Automatic inspection takes a great role in guaranteeing the product quality. But one of the limitations of current inspection algorithms is either product specific or problem specific. In this paper, we propose a defect detection method based on three image features fusion for variety of industrial products surface detection. The proposed method learns sub-image gray level difference, color histogram and pixel regularity of qualified images off-line and test the images based on the detection results of these three image features. It avoids the feature training of defect products as it is difficult to collect large amount of defect samples. The experimental results show that the detection accuracy is between 93% and 98% and the approach is efficient for the real time applications of industrial product inspect.

  12. Numerical exploration of non-axisymmetric divertor closure in the small angle slot (SAS) divertor at DIII-D

    Science.gov (United States)

    Frerichs, H.; Schmitz, O.; Covele, B.; Feng, Y.; Guo, H. Y.; Hill, D.

    2018-05-01

    Numerical simulations of toroidal asymmetries in a tightly baffled small angle slot (SAS) divertor on the DIII-D tokamak show that toroidal asymmetries in divertor closure result in (non-axisymmetric) local onset of detachment within a density window of 10-15% on top of the nominal threshold separatrix density. The SAS divertor is explored at DIII-D for improving access to cold, dissipative/detached divertor conditions. The narrow width of the slot divertor coupled with a small magnetic field line-to-target angle facilitates the buildup of neutral density, thereby increasing radiative and neutrals-related (atoms and molecules) losses in the divertor. Small changes in the strike point location can be expected to have a large impact on divertor conditions. The combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field configuration causes the strike point to move along the divertor target plate, possibly leaving the divertor slot at some locations. The latter extreme case essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade the performance of the slot divertor. Such a strike point dislocation is approximated by a finite gap in the divertor baffle for which 3D edge plasma and neutral gas simulations are performed with the EMC3-EIRENE code.

  13. Engineering design of a Radiative Divertor for DIII-D

    International Nuclear Information System (INIS)

    Smith, J.P.; Allen, S.L.; Anderson, P.M.; Baxi, C.B.; Chin, E.; Fenstermacher, M.E.; Hill, D.N.; Hollerbach, M.A.; Hyatt, A.W.; Junge, R.; Mahdavi, M.A.; Porter, G.D.; Redler, K.; Reis, E.E.; Schaffer, M.J.; Sevier, D.L.; Stambaugh, R.D.

    1995-01-01

    A new divertor called the Radiative Divertor is presently being designed for the DIII-D tokamak. Input from tokamak experiments and modeling form the basis for the new design. The Radiative Divertor is intended to reduce the heat flux on the divertor plates by dispersing the power with radiation. Gas puffing experiments in the current open divertor have shown a reduction of the divertor heat flux with either deuterium or impurity puffing. However, either the plasma density (D 2 ) or the core Z eff (impurities) increases in these experiments. The radiative divertor uses a slot structure to isolate the divertor plasma region from the area surrounding the core plasma. Modeling has shown that the Radiative Divertor hardware will provide better baffling and particle control and thereby minimize the effect of the gas puffing in the divertor region on the plasma core. In addition, the Radiative Divertor structure will allow density control in plasma shapes with high triangularity (>0.8) required for advanced tokamak operation. The divertor structure allows for operation in either double or single-null plasma configurations. Four independently controlled divertor cryopumps will enable pumping at either the inboard (upper and lower) or the outboard (upper and lower) divertor plates. Biasing is an integral part of the design and is based on experience at the Tokamak de Varennes (TdeV) and DIII-D. Boron nitride tiles electrically insulate the inner and outer strike points and a low current electrode is used to apply a radial electric field to the scrape-off layer. TdeV has shown that biasing can provide particle and impurity control. The design is extremely flexible, and will allow physics studies of the effect of slot width and height. This is extremely important, as the amount of chamber volume needed for the divertor in future machines such as International Thermonuclear Experiment Reactor (ITER) and Tokamak Physics Experiment (TPX) must be determined. (orig./WL)

  14. Free-boundary ideal MHD stability of W7-X divertor equilibria

    Science.gov (United States)

    Nührenberg, C.

    2016-07-01

    Plasma configurations describing the stellarator experiment Wendelstein 7-X (W7-X) are computationally established taking into account the geometry of the test-divertor unit and the high-heat-flux divertor which will be installed in the vacuum chamber of the device (Gasparotto et al 2014 Fusion Eng. Des. 89 2121). These plasma equilibria are computationally studied for their global ideal magnetohydrodynamic (MHD) stability properties. Results from the ideal MHD stability code cas3d (Nührenberg 1996 Phys. Plasmas 3 2401), stability limits, spatial structures and growth rates are presented for free-boundary perturbations. The work focusses on the exploration of MHD unstable regions of the W7-X configuration space, thereby providing information for future experiments in W7-X aiming at an assessment of the role of ideal MHD in stellarator confinement.

  15. Surface Density of the Hendra G Protein Modulates Hendra F Protein-Promoted Membrane Fusion: Role for Hendra G Protein Trafficking and Degradation

    OpenAIRE

    Whitman, Shannon D.; Dutch, Rebecca Ellis

    2007-01-01

    Hendra virus, like most paramyxoviruses, requires both a fusion (F) and attachment (G) protein for promotion of cell-cell fusion. Recent studies determined that Hendra F is proteolytically processed by the cellular protease cathepsin L after endocytosis. This unique cathepsin L processing results in a small percentage of Hendra F on the cell surface. To determine how the surface densities of the two Hendra glycoproteins affect fusion promotion, we performed experiments that varied the levels ...

  16. Towards the procurement of the ITER divertor

    International Nuclear Information System (INIS)

    Merola, M.; Tivey, R.; Martin, A.; Pick, M.

    2006-01-01

    The procurement of the ITER divertor is planned to start in 2009. On the basis of the present common understanding of the sharing of the ITER components, the Japanese Participating Team (JAPT) will supply the outer vertical target, the Russian Federation (RF) PT the dome liner and will perform the high heat flux testing, the EU PT will supply the inner vertical targets and the cassette bodies, including final assembly of the divertor plasma-facing components (PFCs). The manufacturing of the PFCs of the ITER divertor represents a challenging endeavor due to the high technologies which are involved, and due to the unprecedented series production. To mitigate the associated risks, special arrangements need to be put in place prior to and during procurement to ensure quality and to keep to the time schedule. Before procurement can start, an ITER review of the qualification and production capability of each candidate PT is planned. Well in advance of the assumed start of the procurement, each PT which would like to contribute to the divertor PFC procurement, should first demonstrate its technical qualification to carry out the procurement with the required quality, and in an efficient and timely manner. Appropriate precautions, like subdivision of the procurement into stages, are also to be adopted during the procurement phase to mitigate the consequences of possible unexpected manufacturing problems. In preparation for writing the procurement specification for the vertical targets, the topic of setting acceptance criteria is also being addressed. This activity has the objective of defining workable acceptance criteria for the PFC armour joints. A complete set of analyses is also in progress to assess the latest design modifications against the design requirements. This task includes neutronic, shielding, thermo-mechanical and electromagnetic analyses. More than half of the ITER plasma parameters that must be measured and the related diagnostics are located in the

  17. Safety characteristics of the monolithic CFC divertor

    International Nuclear Information System (INIS)

    Zucchetti, M.; Merola, M.; Matera, R.

    1994-01-01

    The main distinguishing feature of the monolithic CFC divertor is the use of a single material, a carbon fibre reinforced carbon, for the protective armour, the heat sink and the cooling channels. This removes joint interface problems which are one of the most important concerns related to the reference solutions of the ITER CDA divertor. An activation analysis of the different coolant options for this concept is presented. It turns out that neither short-term nor long-term activation are a concern for any coolants investigated. Therefore the proposed concept proves to be attractive from a safety stand-point also. ((orig.))

  18. Safety characteristics of the monolithic CFC divertor

    Science.gov (United States)

    Zucchetti, M.; Merola, M.; Matera, R.

    1994-09-01

    The main distinguishing feature of the monolithic CFC divertor is the use of a single material, a carbon fibre reinforced carbon, for the protective armour, the heat sink and the cooling channels. This removes joint interface problems which are one of the most important concerns related to the reference solutions of the ITER CDA divertor. An activation analysis of the different coolant options for this concept is presented. It turns out that neither short-term nor long-term activation are a concern for any coolants investigated. Therefore the proposed concept proves to be attractive from a safety stand-point also.

  19. Local island divertor experiments on LHD

    International Nuclear Information System (INIS)

    Morisaki, T.; Masuzaki, S.; Komori, A.; Ohyabu, N.; Kobayashi, M.; Feng, Y.; Sardei, F.; Narihara, K.; Tanaka, K.; Ida, K.; Peterson, B.J.; Yoshinuma, M.; Ashikawa, N.; Emoto, M.; Funaba, H.; Goto, M.; Ikeda, K.; Inagaki, S.; Kaneko, O.; Kawahata, K.; Kubo, S.; Miyazawa, J.; Morita, S.; Nagaoka, K.; Nagayama, Y.; Nakanishi, H.; Ohkubo, K.; Oka, Y.; Osakabe, M.; Shimozuma, T.; Shoji, M.; Takeiri, Y.; Sakakibara, S.; Sakamoto, R.; Sato, K.; Toi, K.; Tsumori, K.; Watababe, K.Y.; Yamada, H.; Yamada, I.; Yoshimura, Y.; Motojima, O.

    2005-01-01

    A local island divertor (LID) experiment has begun on LHD, with the aims of controlling edge recycling and improving the plasma confinement. The fundamental divertor functions of the LID have been demonstrated in the recent experiments. From the particle flux profile measurements on the LID head it was found that the particles diffusing out from the core region are well guided along the island separatrix to the LID head. Owing to the closed configuration around the LID head, evidence of the high efficient pumping was observed, together with a strong capacity to screen impurities. The first results of edge modeling using the EMC3-EIRENE code are also presented

  20. Local island divertor experiments on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Morisaki, T. [National Institute for Fusion Science, 322-6 Orosi, Toki, Gifu 509-5292 (Japan)]. E-mail: morisaki@nifs.ac.jp; Masuzaki, S.; Komori, A; Ohyabu, N.; Kobayashi, M.; Narihara, K.; Tanaka, K.; Ida, K.; Peterson, B.J.; Yoshinuma, M.; Ashikawa, N.; Emoto, M.; Funaba, H.; Goto, M.; Ikeda, K.; Inagaki, S.; Kaneko, O.; Kawahata, K.; Kubo, S.; Miyazawa, J.; Morita, S.; Nagaoka, K.; Nagayama, Y.; Nakanishi, H.; Ohkubo, K.; Oka, Y.; Osakabe, M.; Shimozuma, T.; Shoji, M.; Takeiri, Y.; Sakakibara, S.; Sakamoto, R.; Sato, K.; Toi, K.; Tsumori, K.; Watababe, K.Y.; Yamada, H.; Yamada, I.; Yoshimura, Y.; Motojima, O. [National Institute for Fusion Science, 322-6 Orosi, Toki, Gifu 509-5292 (Japan); Feng, Y.; Sardei, F. [Max-Planck-Institute fuer Plasmaphysik, Euratom Association Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)

    2005-03-01

    A local island divertor (LID) experiment has begun on LHD, with the aims of controlling edge recycling and improving the plasma confinement. The fundamental divertor functions of the LID have been demonstrated in the recent experiments. From the particle flux profile measurements on the LID head it was found that the particles diffusing out from the core region are well guided along the island separatrix to the LID head. Owing to the closed configuration around the LID head, evidence of the high efficient pumping was observed, together with a strong capacity to screen impurities. The first results of edge modeling using the EMC3-EIRENE code are also 0015present.

  1. Deposition of deuterium and metals on divertor tiles in the DIII--D tokamak

    International Nuclear Information System (INIS)

    Walsh, D.S.; Doyle, B.L.; Jackson, G.L.

    1992-01-01

    Hydrogen recycling and impurity influx are important issues in obtaining high confinement discharges in the DIII--D tokamak. To reduce metallic impurities in DIII--D, 40% of the wall area, including the highest heat flux zones, have been covered with graphite tiles. However, erosion, redeposition, and hydrogen retention in the tiles, as well as metal transport from the remaining Inconel walls, can lead to enhanced recycling and impurity influx. Hydrogen and metal retention in divertor floor tiles have been measured using external ion beam analysis techniques following four campaigns where tiles were exposed to several thousand tokamak discharges. The areal density of deuterium retained following exposure to tokamak plasmas was measured with external nuclear reaction analysis. External proton-induced x-ray emission analysis was used to measure the areal densities of metallic impurities deposited upon the divertor tiles either by sputtering of metallic components during discharges or as contamination during tile fabrication. Measurements for both deuterium and metallic impurities were taken on both the tile surfaces which face the operating plasma and the surfaces on the sides of the tiles which form the small gaps separating each of the tiles in the divertor. The highest areal densities of both deuterium (from 2 to 8 x 10 18 atoms/cm 2 ) and metals (from 0.2 to 1 x 10 18 atoms/cm 2 ) were found on the plasma-facing surface near the inner strike point region of each set of divertor tiles. Significant deposits, extending as far as 1 cm from the plasma-facing surface and containing up to 40% of the total divertor deposition, were also observed on the gap-forming surfaces of the tiles

  2. Fabrication and installation of the DIII-D radiative divertor structures

    International Nuclear Information System (INIS)

    Hollerbach, M.A.; Smith, J.P.

    1997-11-01

    Phase 1A of the Radiative Divertor Program (RDP) is now installed in the DIII-D tokamak located at General Atomics. This hardware was added to enhance both the Divertor and Advanced Tokamak research elements of the DIII-D program. This installation consists of a divertor baffle enveloping a cryocondensation pump at the upper outer divertor target of DIII-D. The divertor baffle consists of two toroidally continuous Inconel 625 water-cooled rings and a toroidal array of discontinuous radiatively-cooled plates. The water-cooled rings are each comprised of four quadrants, mechanically formed, chem.-milled, and resistance and TIG welded Inconel 625 panels. The supports attaching the panels to the vessel wall are designed to accommodate the differential thermal expansion between the rings and vessel during bake and to react the electromagnetic loads induced during disruptions. They are made from either Inconel 625 or Inconel 718 depending on the stress levels predicted in Finite Element Analysis. Gas seals are designed to limit the leakage from the baffle chamber back to the core plasma to 2,500 ell/s and incorporate plasma sprayed alumina to minimize currents flowing through them. The bulk of the water-cooled ring fabrication was performed by a vendor, however, the final machining of penetrations in the conical ring for diagnostic access was performed in-house using a unique machining configuration. This configuration, and the machining of the diagnostic cutouts is described. Graphite tiles were machined from ATJ graphite to form a smooth plasma-facing surface. The installation of all divertor components required only four weeks

  3. E-cadherin cytoplasmic domain inhibits cell surface localization of endogenous cadherins and fusion of C2C12 myoblasts

    Directory of Open Access Journals (Sweden)

    Masayuki Ozawa

    2015-11-01

    Full Text Available Myoblast fusion is a highly regulated process that is essential for skeletal muscle formation during muscle development and regeneration in mammals. Much remains to be elucidated about the molecular mechanism of myoblast fusion although cadherins, which are Ca2+-dependent cell–cell adhesion molecules, are thought to play a critical role in this process. Mouse myoblasts lacking either N-cadherin or M-cadherin can still fuse to form myotubes, indicating that they have no specific function in this process and may be functionally replaced by either M-cadherin or N-cadherin, respectively. In this study, we show that expressing the E-cadherin cytoplasmic domain ectopically in C2C12 myoblasts inhibits cell surface localization of endogenous M-cadherin and N-cadherin, as well as cell–cell fusion. This domain, however, does not inhibit myoblast differentiation according to microarray-based gene expression analysis. In contrast, expressing a dominant-negative β-catenin mutant ectopically, which suppresses Wnt/β-catenin signaling, did not inhibit cell–cell fusion. Therefore, the E-cadherin cytoplasmic domain inhibits cell–cell fusion by inhibiting cell surface localization of endogenous cadherins and not by inhibiting Wnt/β-catenin signaling.

  4. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    International Nuclear Information System (INIS)

    Allain, J.P.; Rokusek, D.L.; Harilal, S.S.; Nieto-Perez, M.; Skinner, C.H.; Kugel, H.W.; Heim, B.; Kaita, R.; Majeski, R.

    2009-01-01

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  5. Application to components for thermonuclear fusion

    International Nuclear Information System (INIS)

    Coppola, R.

    1996-01-01

    Results on the stress characterization in various types of weldings, obtained by the neutron diffraction method, are presented; various analysis have been performed on steel welded or brazed joints with the view of application to the first wall and divertor of future thermonuclear fusion reactors such as NET/ITER

  6. EURATOM-CEA Association Contributions to the 16. European Conference on Controlled Fusion and Plasma Physics

    International Nuclear Information System (INIS)

    1989-01-01

    The contributions to the 16th European Conference on controlled fusion and Plasma Physics are presented. The following subjects, concerning Tore Supra, are discussed: runaway electrons dynamics and confinement; spectroscopic studies of plasma surface interactions; ergodic divertor experiments; magnetic field structure and transport induced by the ergodic divertor; fast ions losses during neutral beam injection; current profile control by electron-cyclotron and lower-hybrid waves; and electromagnetic analysis of the lower hybrid system. The report also includes studies on: a possible explanation for the runaway energy limit (resonant interaction with the ripple field); thermal equilibrium of the edge plasma with an ergodic divertor; neutral confinement in pump limiter with a throat; microtearing turbulence and heat transport; toroidal coupling and frequency spectrum of tearing modes; collisionless fast ion dynamics in tokamaks; variational description of lower hybrid wave propagation and absorption in tokamaks; magnetodrift turbulence and disruptions; specific turbulence associated with sawtooth relaxations in TFR plasmas; detailed structure of the q profile around q = 1 in JET; turbulence propagation during pellet injection; tokamak reactor concept with 100% bootstrap current; optimization of a steady state tokamak driven by lower hybrid waves; and thermodesorption of graphite exposed to a deuterium plasma

  7. Thermal problems in thermonuclear fusion; Les problemes thermiques dans la fusion thermonucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Rebut, P.H. [Academie des Sciences, 75 - Paris (France)

    2005-07-01

    This article makes a status of the recent advances in thermonuclear fusion research: deuterium-tritium fusion reaction; production of tritium; energy status of the fusion reaction; the two ways of plasma confinement: inertial and magnetic; Tokamaks; present day situation: JET and ITER; magnetic confinement losses; radiation losses of the plasma; plasma-divertor plates interactions; 14 MeV neutrons and blanket; liquid metal blankets; water-cooled or helium-cooled blankets; other future possible solutions: fluidized beds, fusion reactors and hybrid fusion-fission reactors. (J.S.)

  8. Divertor design for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Hill, D.N.; Braams, B.

    1994-05-01

    In this paper we discuss the present divertor design for the planned TPX tokamak, which will explore the physics and technology of steady-state (1000s pulses) heat and particle removal in high confinement (2--4x L-mode), high beta (β N ≥ 3) divertor plasmas sustained by non-inductive current drive. The TPX device will operate in the double-null divertor configuration, with actively cooled graphite targets forming a deep (0.5 m) slot at the outer strike point. The peak heat flux on, the highly tilted (74 degrees from normal) re-entrant (to recycle ions back toward the separatrix) will be in the range of 4--6 MW/m 2 with 18 MW of neutral beams and RF heating power. The combination of active pumping and gas puffing (deuterium plus impurities), along with higher heating power (45 MW maximum) will allow testing of radiative divertor concepts at ITER-like power densities

  9. The ITER Divertor Cassette Project meeting

    International Nuclear Information System (INIS)

    Akiba, M.; Tivey, R.

    2000-01-01

    The Divertor Cassette Project topical meeting took place on April 5-7, 2000 at the JAERI Naka site in Japan. The meeting focused on the progress made by the three parties under task agreements on the development of carbon-fibre composite and tungsten armored high flux plasma-facing components

  10. In-pile thermocycling testing and post-test analysis of beryllium divertor mockups

    Energy Technology Data Exchange (ETDEWEB)

    Giniatulin, R.; Mazul, I. [Efremov Inst., St. Petersburg (Russian Federation); Melder, R.; Pokrovsky, A.; Sandakov, V.; Shiuchkin, A.

    1998-01-01

    The main damaging factors which impact the ITER divertor components are neutron irradiation, cyclic surface heat loads and hydrogen environment. One of the important questions in divertor mockups development is the reliability of beryllium/copper joints and the beryllium resistance under neutron irradiation and thermal cycling. This work presents the experiment, where neutron irradiation and thermocyclic heat loads were applied simultaneously for two beryllium/copper divertor mockups in a nuclear reactor channel to simulate divertor operational conditions. Two mockups with different beryllium grades were mounted facing each other with the tantalum heater placed between them. This device was installed in the active zone of the nuclear reactor SM-2 (Dimitrovgrad, Russia) and the tantalum block was heated by neutron irradiation up to a high temperature. The main part of the heat flux from the tantalum surface was transported to the beryllium surface through hydrogen, as a result the heat flux loaded two mockups simultaneously. The mockups were cooled by reactor water. The device was lowered to the active zone so as to obtain the heating regime and to provide cooling lifted. This experiment was performed under the following conditions: tantalum heater temperature - 1950degC; hydrogen environment -1000 Pa; surface heat flux density -3.2 MW/m{sup 2}; number of thermal cycles (lowering and lifting) -101; load time in each cycle - 200-5000 s; dwell time (no heat flux, no neutrons) - 300-2000 s; cooling water parameters: v - 1 m/s, Tin - 50degC, Pin - 5 MPa; neutron fluence -2.5 x 10{sup 20} cm{sup -2} ({approx}8 years of ITER divertor operation from the start up). The metallographic analysis was performed after experiment to investigate the beryllium and beryllium/copper joint structures, the results are presented in the paper. (author)

  11. Deposition of deuterium and metals on divertor tiles in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Walsh, D.S.; Doyle, B.L.; Jackson, G.L.

    1991-01-01

    Hydrogen recycling and impurity influx are important issues in obtaining high confinement discharges in the D3-D tokamak. To reduce metallic impurities in D3-D, 40% of the wall area, including the highest heat flux zones, have been covered with graphite tiles. However erosion, redeposition and hydrogen retention in the tiles, as well as metal transport from the remaining Inconel walls can lead to enhanced recycling and impurity influx. Hydrogen and metal retention in divertor floor tiles have been measured using external ion beam analysis techniques following four campaigns where tiles were exposed to several thousand tokamak discharges. The areal density of deuterium retained following exposure to tokamak plasmas was measured with external nuclear reaction analysis. External proton-induced x-ray emission analysis was used to measure the areal densities of metallic impurities deposited upon the divertor tiles either by sputtering of metallic components during discharges or as contamination during tile fabrication. Measurements for both deuterium and metallic impurities were taken on both the tile surfaces which face the operating plasma and the surfaces on the side of the tiles which form the small gaps separating each of the tiles in the divertor. The highest areal densities of both deuterium and metals were found on the plasma-facing surface near the inner strike point region of each set of divertor tiles. Significant deposits, extending as fast a 1 cm from the plasma-facing and containing up to forty percent of the total divertor deposition, were also observed on the gap-forming surfaces of the tiles

  12. Simulations of material damage to divertor and first wall armour under ITER transient loads by modelling and experiments

    International Nuclear Information System (INIS)

    Bazylev, B.

    2008-01-01

    Operation of ITER at high fusion gain is assumed to be the H-mode. A characteristic feature of this regime is the transient energy release (TE) from the confined plasma onto plasma facing components (PFCs), which can play a determining role in lifetime of these components. The expected fluxes on the ITER PFCs during transients are: Type I ELM Q = 0.5 - 4 MJ/m 2 in timescales t = 0.3 - 0.6 ms, and thermal quench Q = 2 - 13 MJ/m 2 with t = 1 - 3 ms. CFC and tungsten macrobrush armour are foreseen as PFCs for ITER divertor and Be - as FW armour. During the intense TE in ITER the evaporation (CFC, W, Be) and surface melting and melt splashing (W and Be) are seen as the main mechanisms of PFC erosion. A noticeable erosion of CFC PAN fibres and rather intense crack formation for the W targets were observed in plasma gun experiments at rather small heat loads at which the melt damage to W armour is not substantial. The expected erosion of the ITER PFCs TE can be properly estimated by numerical simulations validated against erosion experiments at the plasma gun facilities QSPA-T, MK- 200UG and QSPA-Kh50. Within collaboration between EU fusion programme and Russian Federation, CFC and W macrobrush targets manufactured in EU were exposed to multiple ITER TE-like loads with Q = 0.5 - 2.2 MJ/m 2 and t = 0 .5 ms at the QSPA-T. The measured erosion was used to validate the modelling codes developed in FZK (PEGASUS, MEMOS, and others), which are then applied to model the erosion of the divertor and main chamber ITER PFCs under expected transient loads in ITER. Numerical simulations performed for the expected ITER-like loads predicted: a significant erosion of the CFC target for Q > 0.5 MJ/m 2 was caused by the inhomogeneous structure of the CFC; the W macrobrush structure is effective in preventing gross melt layer displacement. Optimization of macrobrush geometry to minimize melt splashing is done. Different mechanisms of melt splashing are compared with the results obtained in

  13. Surface temperature measurements by means of pulsed photothermal effects in fusion devices

    International Nuclear Information System (INIS)

    Loarer, Th.; Brygo, F.; Gauthier, E.; Grisolia, C.; Le Guern, F.; Moreau, F.; Murari, A.; Roche, H.; Semerok, A.

    2007-01-01

    In fusion devices, the surface temperature of plasma facing components is measured using infrared cameras. This method requires a knowledge of the emissivity of the material, the reflected and parasitic fluxes (Bremsstrahlung). For carbon, the emissivity is known and constant over the detection wavelength (∼3-5 μm). For beryllium and tungsten, the reflected flux could contribute significantly to the collected flux. The pulsed photothermal method described in this paper allows temperature measurements independently of both reflected and parasitic fluxes. A local increase of the surface temperature (ΔT ∼ 10-15 K) introduced by a laser pulse (few ns) results in an additional component of the photon flux collected by the detector. Few μs after the pulse, a filtering of the signal allows to extract a temporal flux proportional only to the variation of the emitted flux, the emissivity and ΔT. The ratio of simultaneous measurements at two wavelengths leads to the elimination of ΔT and emissivity. The range of application increases for measurements at short wavelengths (1-1.7 μm) with no limitation due to the Bremsstrahlung emission

  14. Algorithm development for safeguarding the Wendelstein 7-X divertor during steady state operation

    Energy Technology Data Exchange (ETDEWEB)

    Rodatos, A.; Jakubowski, M. [Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Greuner, H.; Sunn Pedersen, T. [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Wurden, G.A. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States)

    2014-07-01

    The divertor of Wendelstein 7X is designed to withstand steady state heat fluxes of 10 MW/m{sup 2} and 15 MW/m{sup 2} transiently. However higher local heat fluxes are possible. 10 thermographic infrared (IR) observation systems will be installed to monitor the divertor and its center goal is the detection of overheated areas in real time. Besides an increased plasma heat flux, there are at least two potential causes of an elevated diverter surface temperature. First, redeposited eroded material forming surface layers with a poor thermal connection to the underlying water-cooled tiles. Second, delaminated CFC tiles will exhibit an elevated surface temperature relative to properly bonded tiles. Using the measured characteristic time scales for the thermal response, gained from experiments at GLADIS, we have concluded that it is possible to distinguish between healthy, delaminated, surface-coated and delaminated surface-coated tiles.

  15. Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER

    Science.gov (United States)

    Bazylev, B. N.; Janeschitz, G.; Landman, I. S.; Loarte, A.; Pestchanyi, S. E.

    2007-06-01

    Tungsten in the form of macrobrush structure is foreseen as one of two candidate materials for the ITER divertor and dome. In ITER, even for moderate and weak ELMs when a thin shielding layer does not protect the armour surface from the dumped plasma, the main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. The melt erosion of W-macrobrush targets with different geometry of brush surface under the heat loads caused by weak ELMs is numerically investigated using the modified code MEMOS. The optimal angle of brush surface inclination that provides a minimum of surface roughness is estimated for given inclination angles of impacting plasma stream and given parameters of the macrobrush target. For multiple disruptions the damage of the dome gaps and the gaps between divertor cassettes caused by the radiation impact is estimated.

  16. Transport studies in boundary and divertor plasmas of JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Akira [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1999-03-01

    This thesis describes an investigation on transport of plasma, neutral particle and impurity in the boundary and divertor of the JT-60U tokamak to provide a better understanding of plasma-surface interactions and divertor physics. The asymmetry between the inboard and outboard divertor on plasma parameters (in-out asymmetry) are usually observed in tokamaks with the divertor. In this study, the in-out asymmetry was investigated under various plasma conditions and discharge parameters. The observed results were discussed with several mechanisms that can produce the in-out asymmetry. It was confirmed experimentally that the importance of each mechanism depends on the plasma parameters and discharge conditions. The current flowing in the scrape-off layer (SOL) due to the in-out asymmetry was observed. The SOL currents in the high density plasma with the occurrence of the plasma detachment were investigated for the first time in this study. The ion temperature in the divertor region is one of the most important factors for both generation and transport of impurity. However, the background ion temperature in the divertor region has not been measured in any tokamak so far. The ion temperature in the divertor region has been measured for the first time with the Doppler broading of the C{sup 3+} ion emission line. The measured temperature was analyzed by an impurity particle transport code. The code calculation showed that the measured temperature reflects the low temperature at the outside of the separatrix in the inboard region. The spectral profile of Balmer-{alpha} (D{sub {alpha}}) line emitted from the deuterium atoms reflects the velocity distribution of neutral particles by the Doppler effect and is effective for investigating the detailed neutral behavior and recycling process. The spatial variation of the D{sub {alpha}} line spectral profile in the divertor region has been measured for the first time in this study. The observed results were compared with the

  17. Controlled fusion and plasma heating

    International Nuclear Information System (INIS)

    1990-06-01

    The contributions presented in the 17th European Conference on Controlled Fusion and Plasma Heating were focused on Tore Supra investigations. The following subjects were presented: ohmic discharges, lower hybrid experiments, runaway electrons, Thomson scattering, plasma density measurements, magnetic fluctuations, polarization scattering, plasma currents, plasma fluctuation measurements, evaporation of hydrogen pellets in presence of fast electrons, ripple induced stochastic diffusion of trapped particles, tearing mode stabilization, edge effects on turbulence behavior, electron cyclotron heating, micro-tearing modes, divertors, limiters

  18. A procedure for generating quantitative 3-D camera views of tokamak divertors

    International Nuclear Information System (INIS)

    Edmonds, P.H.; Medley, S.S.

    1996-05-01

    A procedure is described for precision modeling of the views for imaging diagnostics monitoring tokamak internal components, particularly high heat flux divertor components. These models are required to enable predictions of resolution and viewing angle for the available viewing locations. Because of the oblique views expected for slot divertors, fully 3-D perspective imaging is required. A suite of matched 3-D CAD, graphics and animation applications are used to provide a fast and flexible technique for reproducing these views. An analytic calculation of the resolution and viewing incidence angle is developed to validate the results of the modeling procedures. The calculation is applicable to any viewed surface describable with a coordinate array. The Tokamak Physics Experiment (TPX) diagnostics for infrared viewing are used as an example to demonstrate the implementation of the tools. For the TPX experiment the available locations are severely constrained by access limitations at the end resulting images are marginal in both resolution and viewing incidence angle. Full coverage of the divertor is possible if an array of cameras is installed at 45 degree toroidal intervals. Two poloidal locations are required in order to view both the upper and lower divertors. The procedures described here provide a complete design tool for in-vessel viewing, both for camera location and for identification of viewed surfaces. Additionally these same tools can be used for the interpretation of the actual images obtained by the actual diagnostic

  19. Optimization of the Expression of DT386-BR2 Fusion Protein in Escherichia coli using Response Surface Methodology.

    Science.gov (United States)

    Shafiee, Fatemeh; Rabbani, Mohammad; Jahanian-Najafabadi, Ali

    2017-01-01

    The aim of this study was to determine the best condition for the production of DT386-BR2 fusion protein, an immunotoxin consisting of catalytic and translocation domains of diphtheria toxin fused to BR2, a cancer specific cell penetrating peptide, for targeted eradication of cancer cells, in terms of the host, cultivation condition, and culture medium. Recombinant pET28a vector containing the codons optimized for the expression of the DT386-BR2 gene was transformed to different strains of Escherichia coli ( E. coli BL21 DE3, E. coli Rosetta DE3 and E. coli Rosetta-gami 2 DE3), followed by the induction of expression using 1 mM IPTG. Then, the strain with the highest ability to produce recombinant protein was selected and used to determine the best expression condition using response surface methodology (RSM). Finally, the best culture medium was selected. Densitometry analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the expressed fusion protein showed that E. coli Rosetta DE3 produced the highest amounts of the recombinant fusion protein when quantified by 1 mg/ml bovine serum albumin (178.07 μg/ml). Results of RSM also showed the best condition for the production of the recombinant fusion protein was induction with 1 mM IPTG for 2 h at 37°C. Finally, it was established that terrific broth could produce higher amounts of the fusion protein when compared to other culture media. In this study, we expressed the recombinant DT386-BR2 fusion protein in large amounts by optimizing the expression host, cultivation condition, and culture medium. This fusion protein will be subjected to purification and evaluation of its cytotoxic effects in future studies.

  20. Optimization of the Expression of DT386-BR2 Fusion Protein in Escherichia coli using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Fatemeh Shafiee

    2017-01-01

    Full Text Available Background: The aim of this study was to determine the best condition for the production of DT386-BR2 fusion protein, an immunotoxin consisting of catalytic and translocation domains of diphtheria toxin fused to BR2, a cancer specific cell penetrating peptide, for targeted eradication of cancer cells, in terms of the host, cultivation condition, and culture medium. Materials and Methods: Recombinant pET28a vector containing the codons optimized for the expression of the DT386-BR2 gene was transformed to different strains of Escherichia coli (E. coli BL21 DE3, E. coli Rosetta DE3 and E. coli Rosetta-gami 2 DE3, followed by the induction of expression using 1 mM IPTG. Then, the strain with the highest ability to produce recombinant protein was selected and used to determine the best expression condition using response surface methodology (RSM. Finally, the best culture medium was selected. Results: Densitometry analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the expressed fusion protein showed that E. coli Rosetta DE3 produced the highest amounts of the recombinant fusion protein when quantified by 1 mg/ml bovine serum albumin (178.07 μg/ml. Results of RSM also showed the best condition for the production of the recombinant fusion protein was induction with 1 mM IPTG for 2 h at 37°C. Finally, it was established that terrific broth could produce higher amounts of the fusion protein when compared to other culture media. Conclusion: In this study, we expressed the recombinant DT386-BR2 fusion protein in large amounts by optimizing the expression host, cultivation condition, and culture medium. This fusion protein will be subjected to purification and evaluation of its cytotoxic effects in future studies.

  1. Septum assessment of the JET gas box divertor

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, J; Huber, A [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM Association, TEC, Juelich (Germany); Fundamenski, W; Matthews, G F; Morgan, P; Stamp, M F [EURATOM-UKAEA/Fusion Association, Culham Science Centre, Abingdon, OXON (United Kingdom); Ingesson, L C [FOM Instituut voor Plasma Fysica Rijnhuizen, EURATOM Association, TEC, Nieuwegein (Netherlands); Jachmich, S [LPP-ERM/KMS, EURATOM-Belgian State Association, TEC, Brussels (Belgium)

    2008-09-15

    The influence of the physical isolation of inner and outer divertor volumes by a septum plate of the Mk-II gas box divertor, thus increasing divertor closure and neutral compression, on the plasma and divertor performance has been studied at the Joint European Torus (JET). The septum plate was installed in 1999, together with the original Mk-II gas box divertor, and was then replaced by a simple protection plate in 2001. This removal reduced the closure of the divertor by opening a line of sight path for neutrals to travel between the inner to the outer divertor volumes. Comparison of identical discharges with and without the septum thus provides direct evidence of the effect of divertor closure on plasma behaviour. With this aim, following septum removal, several dedicated L-mode and H-mode discharges have been performed, in each case repeating earlier discharges when the septum was still in place. In each case, the fuelling location was varied between the inner/outer divertor and the main chamber, and differences in detachment in the inner and outer divertors were studied. Under L-mode conditions, differences in detachment dynamics were indeed observed between closed (with septum) and open (without septum) divertor configurations, although the differences were only significant in the medium density range. In contrast, the ultimate density limit was not affected, being determined in each case by the formation of a wall multifacedted asymmetric radiation from the edge (MARFE), rather than an X-point MARFE. Under H-mode conditions, the differences were more subtle. Although the ion fluxes to the targets were unaffected, the target electron temperatures were found to be lower in the closed divertor configuration. In this case, the fuelling efficiency was the largest when the gas injected from the inner divertor, with implications on global energy confinement and ELM frequency. Otherwise, no difference in the confinement of the discharges with and without septum was

  2. Fusion Advanced Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    El-Guebaly, Laila [Univ. of Wisconsin, Madison, WI (United States); Henderson, Douglass [Univ. of Wisconsin, Madison, WI (United States); Wilson, Paul [Univ. of Wisconsin, Madison, WI (United States); Blanchard, Jake [Univ. of Wisconsin, Madison, WI (United States)

    2017-03-24

    During the January 1, 2013 – December 31, 2015 contract period, the UW Fusion Technology Institute personnel have actively participated in the ARIES-ACT and FESS-FNSF projects, led the nuclear and thermostructural tasks, attended several project meetings, and participated in all conference calls. The main areas of effort and technical achievements include updating and documenting the nuclear analysis for ARIES-ACT1, performing nuclear analysis for ARIES-ACT2, performing thermostructural analysis for ARIES divertor, performing disruption analysis for ARIES vacuum vessel, and developing blanket testing strategy and Materials Test Module for FNSF.

  3. AGGREGATION AND FUSION OF PLANT-PROTOPLASTS AFTER SURFACE-LABELING WITH BIOTIN AND AVIDIN

    NARCIS (Netherlands)

    VANKESTEREN, WJP; MOLEMA, E; TEMPELAAR, MJ

    1993-01-01

    In mass electrofusion systems with aggregation of protoplasts by alignment, the yield and composition of fusion products can be predicted by a simple model. Through computer simulation, upper limits were found for the yield of binary and multi fusions. To overcome constraints on binary products,

  4. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-02-01

    This report describes the engineering conceptual design of Fusion Experimental Reactor (FER) which is to be built as a next generation tokamak machine. This design covers overall reactor systems including MHD equilibrium analysis, mechanical configuration of reactor, divertor, pumped limiter, first wall/breeding blanket/shield, toroidal field magnet, poloidal field magnet, cryostat, electromagnetic analysis, vacuum system, power handling and conversion, NBI, RF heating device, tritium system, neutronics, maintenance, cooling system and layout of facilities. The engineering comparison of a divertor with pumped limiters and safety analysis of reactor systems are also conducted. (author)

  5. Ion orbit modelling of ELM heat loads on ITER divertor vertical targets.

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Carpentier-Chouchana, S.; Dejarnac, Renaud; Escourbiac, F.; Hirai, T.; Komm, Michael; Kukushkin, A.; Panayotis, S.; Pitts, R.A.

    2017-01-01

    Roč. 12, August (2017), s. 75-83 ISSN 2352-1791. [International Conference on Plasma Surface Interactions 2016, PSI2016 /22./. Roma, 30.05.2016-03.06.2016] Institutional support: RVO:61389021 Keywords : ITER * Divertor * ELM heat loads Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) http://www.sciencedirect.com/science/article/pii/S2352179116302745

  6. Simulation of neutral gas flow in a tokamak divertor using the Direct Simulation Monte Carlo method

    International Nuclear Information System (INIS)

    Gleason-González, Cristian; Varoutis, Stylianos; Hauer, Volker; Day, Christian

    2014-01-01

    Highlights: • Subdivertor gas flows calculations in tokamaks by coupling the B2-EIRENE and DSMC method. • The results include pressure, temperature, bulk velocity and particle fluxes in the subdivertor. • Gas recirculation effect towards the plasma chamber through the vertical targets is found. • Comparison between DSMC and the ITERVAC code reveals a very good agreement. - Abstract: This paper presents a new innovative scientific and engineering approach for describing sub-divertor gas flows of fusion devices by coupling the B2-EIRENE (SOLPS) code and the Direct Simulation Monte Carlo (DSMC) method. The present study exemplifies this with a computational investigation of neutral gas flow in the ITER's sub-divertor region. The numerical results include the flow fields and contours of the overall quantities of practical interest such as the pressure, the temperature and the bulk velocity assuming helium as model gas. Moreover, the study unravels the gas recirculation effect located behind the vertical targets, viz. neutral particles flowing towards the plasma chamber. Comparison between calculations performed by the DSMC method and the ITERVAC code reveals a very good agreement along the main sub-divertor ducts

  7. Conceptual design of divertor cassette handling by remote handling system of JT-60SA

    International Nuclear Information System (INIS)

    Hayashi, Takao; Sakurai, Shinji; Masaki, Kei; Tamai, Hiroshi; Yoshida, Kiyoshi; Matsukawa, Makoto

    2008-01-01

    The JT-60SA aims to contribute and supplement ITER toward demonstration fusion reactor based on tokamak concept. One of the features of JT-60SA is its high power long pulse heating, causing the large annual neutron fluence. Because the expected dose rate at the vacuum vessel (VV) may exceed 1 mSv/hr after 10 years operation and three month cooling, the human access inside the VV is restricted. Therefore a remote handling (RH) system is necessary for the maintenance and repair of in-vessel components. This paper described the RH system of JT-60SA, especially the expansion of the RH rail and exchange of the divertor cassettes. The RH rail is divided into nine and three-point mounting. The nine sections can cover 225 degrees in toroidal direction. A divertor cassette, which is 10 degrees wide in toroidal direction and weighs 500 kg itself due to the limitations of port width and handling weight, can be exchanged by heavy weight manipulator (HWM). The HWM brings the divertor cassette to the front of the other RH port, which is used for supporting the rail and/or carrying in and out equipments. Then another RH device receives and brings out the cassette by a pallet installed from outside the VV. (author)

  8. Estimation of the contribution of gaps to tritium retention in the divertor of ITER

    International Nuclear Information System (INIS)

    Matveev, D; Kirschner, A; Litnovsky, A; Borodin, D; Samm, U; Schmid, K; Komm, M; Van Oost, G

    2014-01-01

    An estimation of the contribution of gaps to beryllium deposition and resulting tritium retention in the divertor of ITER is presented. Deposition of beryllium layers in gaps of the full tungsten divertor is simulated with the 3D-GAPS code. For gaps aligned along the poloidal direction, non-shaped and shaped solutions are compared. Plasma and impurity ion fluxes from Schmid (2008 Nucl. Fusion 48 105004) are used as input. Ion penetration into gaps is considered to be geometrical along magnetic field lines. The effect of realistic ion penetration into gaps is discussed. In total, gaps in the divertor are estimated to contribute about 0.3 mgT s −1 to the overall tritium retention dominated by toroidal gaps, which are not shaped. This amount corresponds to about 7800 ITER discharges up to the safety limit of 1 kg in-vessel tritium; excluding, however, tritium release during wall baking and retention at plasma-wetted and remote areas. (paper)

  9. Design and construction of a lithium vapor box divertor similarity experiment

    Science.gov (United States)

    Schwartz, J. A.; Cohen, R. A.; Emdee, E. D.; Jaworski, M. A.; Goldston, R. J.

    2017-10-01

    Future fusion devices will require handling extreme heat fluxes. The lithium vapor box divertor is a concept to manage this heat flux. The divertor plasma impinges on a dense cloud of lithium vapor, leading to volumetric cooling, radiation, and recombination. The vapor is localized by baffles and condensation on the divertor slot walls upstream of the target, limiting the lithium reaching the main chamber. A series of test stand experiments will study vapor confinement and plasma plugging in a simplified baffled-pipe geometry. A first experiment without plasma will validate a DSMC model for evaporation, flow, and condensation of lithium vapor. Three stainless steel cylindrical cans will be heated to 550C, 600C, and 650C respectively inside a vacuum chamber. Lithium flow will be measured by weighing the cans before and after heating and by calorimetry of the latent heat of the vapor. Progress on the experiment will be presented. This work supported by DOE Contract No. DE-AC02-09CH11466.

  10. Failure mode analysis of preliminary design of ITER divertor impurity monitor

    International Nuclear Information System (INIS)

    Kitazawa, Sin-iti; Ogawa, Hiroaki

    2016-01-01

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • Failure mode of DIM was prepared for RAMI analysis. • RAMI analysis on DIM was performed to reduce technical risks. - Abstract: The objective of the divertor impurity influx monitor (DIM) for ITER is to measure the parameters of impurities and hydrogen isotopes (tritium, deuterium, and hydrogen) in divertor plasma using visible and UV spectroscopic techniques in the 200–1000 nm wavelength range. In ITER, special provisions are required to ensure accuracy and full functionality of the diagnostic components under harsh conditions (high temperature, high magnetic field, high vacuum condition, and high radiation field). Japan Domestic Agency is preparing the preliminary design of the ITER DIM system, which will be installed in the upper, equatorial and lower ports. The optical and mechanical designs of the DIM are conducted to fit ITER’s requirements. The optical and mechanical designs meet the requirements of spatial resolution. Some auxiliary systems were examined via prototyping. The preliminary design of the ITER DIM system was evaluated by RAMI analysis. The availability of the designed system is adequately high to satisfy the project requirements. However, some equipment does not have certain designs, and this may cause potential technical risks. The preliminary design should be modified to reduce technical risks and to prepare the final design.

  11. Failure mode analysis of preliminary design of ITER divertor impurity monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, Sin-iti, E-mail: kitazawa.siniti@qst.go.jp; Ogawa, Hiroaki

    2016-11-15

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • Failure mode of DIM was prepared for RAMI analysis. • RAMI analysis on DIM was performed to reduce technical risks. - Abstract: The objective of the divertor impurity influx monitor (DIM) for ITER is to measure the parameters of impurities and hydrogen isotopes (tritium, deuterium, and hydrogen) in divertor plasma using visible and UV spectroscopic techniques in the 200–1000 nm wavelength range. In ITER, special provisions are required to ensure accuracy and full functionality of the diagnostic components under harsh conditions (high temperature, high magnetic field, high vacuum condition, and high radiation field). Japan Domestic Agency is preparing the preliminary design of the ITER DIM system, which will be installed in the upper, equatorial and lower ports. The optical and mechanical designs of the DIM are conducted to fit ITER’s requirements. The optical and mechanical designs meet the requirements of spatial resolution. Some auxiliary systems were examined via prototyping. The preliminary design of the ITER DIM system was evaluated by RAMI analysis. The availability of the designed system is adequately high to satisfy the project requirements. However, some equipment does not have certain designs, and this may cause potential technical risks. The preliminary design should be modified to reduce technical risks and to prepare the final design.

  12. ATHENA simulations of divertor loss of heat sink transient for the GSSR - Final report with updates

    International Nuclear Information System (INIS)

    Sponton, L.L.

    2001-05-01

    The ITER-FEAT Generic Site Safety Report includes evaluations of the consequences of various types of conceivable transients that can occur during operation. The transients that have to be considered in this respect are specified in the Accident Analysis Specifications document of the safety report. For the divertor primary heat transport system the ranges of transients include amongst others a loss of heat sink at full fusion power operation. The thermal-hydraulic consequences related to the coolability of the divertor primary heat transport system components for this transient have been evaluated and summarised in the safety report and in the current report an overview of those efforts and associated outcome is provided. The analyses have been made with the ATHENA thermal-hydraulic code using a separately developed ATHENA model of the ITER-FEAT divertor cooling system. In the current report results from calculations with an updated pressurizer model and pressurizer control system are outlined. The results show that the pressurizer safety valve does not open, that the pressurizer level increase is moderate and that no temperature increases jeopardize the structure integrity

  13. The isotope effect on divertor conditions and neutral pumping in horizontal divertor configurations in JET-ILW Ohmic plasmas

    Directory of Open Access Journals (Sweden)

    J. Uljanovs

    2017-08-01

    Full Text Available Understanding the impact of isotope mass and divertor configuration on the divertor conditions and neutral pressures is critical for predicting the performance of the ITER divertor in DT operation. To address this need, ohmically heated hydrogen and deuterium plasma experiments were conducted in JET with the ITER-like wall in varying divertor configurations. In this study, these plasmas are simulated with EDGE2D-EIRENE outfitted with a sub-divertor model, to predict the neutral pressures in the plenum with similar fashion to the experiments. EDGE2D-EIRENE predictions show that the increased isotope mass results in up to a 25% increase in peak electron densities and 15% increase in peak ion saturation current at the outer target in deuterium when compared to hydrogen for all horizontal divertor configurations. Indicating that a change from hydrogen to deuterium as main fuel decreases the neutral mean free path, leading to higher neutral density in the divertor. Consequently, this mechanism also leads to higher neutral pressures in the sub-divertor. The experimental data provided by the hydrogen and deuterium ohmic discharges shows that closer proximity of the outer strike point to the pumping plenum results in a higher neutral pressure in the sub-divertor. The diaphragm capacitance gauge pressure measurements show that a two to three-fold increase in sub-divertor pressure was achieved in the corner and nearby horizontal configurations compared to the far-horizontal configurations, likely due to ballistic transport (with respect to the plasma facing components of the neutrals into the sub-divertor. The corner divertor configuration also indicates that a neutral expansion occurs during detachment, resulting in a sub-divertor neutral density plateau as a function of upstream density at the outer-mid plane.

  14. Current state-of-the-art manufacturing technology for He-cooled divertor finger

    Science.gov (United States)

    Norajitra, P.; Antusch, S.; Giniyatulin, R.; Mazul, I.; Ritz, G.; Ritzhaupt-Kleissl, H.-J.; Spatafora, L.

    2011-10-01

    A divertor concept for DEMO has been investigated at Karlsruhe Institute of Technology (KIT) which has to withstand a heat flux of 10 MW/m 2. The design utilizes small finger module composed of a small tungsten tile brazed on a thimble made from tungsten alloy. The divertor finger is cooled by helium jet impingement at 10 MPa and 600 °C. The subject of this paper is technological studies on machining and braze joining the divertor components. Goal of this task, which is considered an important R&D issue, is to find out appropriate manufacturing methods to ensure high functionality and high reliability of the divertor as well as to meet the economic aspect. One of the major requirements for manufacturing is micro-crack-free surface of tungsten parts, since crack propagations in tungsten were observed in the previous high-heat-flux tests at Efremov. Different manufacturing methods and the corresponding results are discussed in the following report.

  15. Erosion/redeposition analysis of the ITER [International Tokamak Engineering Reactor] divertor

    International Nuclear Information System (INIS)

    Brooks, J.N.

    1989-07-01

    Sputtering erosion of the proposed ITER divertor has been analyzed using the REDEP computer code. A carbon coated plate at medium and low plasma edge temperatures, as well as beryllium and tungsten plates, have been examined. Peak net erosion rates for C and Be are very high (∼20--80 cm/burn·yr) though an order of magnitude less than the gross rates. Tritium buildup rates in codeposited carbon surface layers may also be high (∼50--250 kg/burn·yr). Plasma contamination, however, from divertor sputtering is low (approx lt.5%). Operation with low Z divertor plates, at high duty factors, therefore appears unacceptable due to erosion, but may work for low duty factor (∼2%) ''physics phase'' operation. Sweeping of the poloidal field lines at the divertor can reduce erosion, by typical factors of ∼2--8. A tungsten coated plate works well, from the erosion standpoint, for plasma plate temperatures of ∼40 eV or less. 18 refs., 11 figs., 3 tabs

  16. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    International Nuclear Information System (INIS)

    Buice, E.S.; Alger, E.T.; Antipa, N.A.; Bhandarkar, S.D.; Biesiada, T.A.; Conder, A.D.; Dzenitis, E.G.; Flegel, M.S.; Hamza, A.V.; Heinbockel, C.L.; Horner, J.; Johnson, M.A.; Kegelmeyer, L.M.; Meyer, J.S.; Montesanti, R.C.; Reynolds, J.L.; Taylor, J.S.; Wegner, P.J.

    2011-01-01

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 (micro)m diameter glass-core fill-tube that tapers down to a 10(micro) diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1σ), which corresponds to approximately 5 (micro)m linear error on the capsule surface.

  17. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    Energy Technology Data Exchange (ETDEWEB)

    Buice, E S; Alger, E T; Antipa, N A; Bhandarkar, S D; Biesiada, T A; Conder, A D; Dzenitis, E G; Flegel, M S; Hamza, A V; Heinbockel, C L; Horner, J; Johnson, M A; Kegelmeyer, L M; Meyer, J S; Montesanti, R C; Reynolds, J L; Taylor, J S; Wegner, P J

    2011-02-18

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 {micro}m diameter glass-core fill-tube that tapers down to a 10{micro} diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1{sigma}), which corresponds to approximately 5 {micro}m linear error on the capsule surface.

  18. Method for comparison of tokamak divertor strike point data with magnetic perturbation models

    Czech Academy of Sciences Publication Activity Database

    Cahyna, Pavel; Peterka, Matěj; Nardon, E.; Frerichs, H.; Pánek, Radomír

    2014-01-01

    Roč. 54, č. 6 (2014), 064002-064002 ISSN 0029-5515. [International Workshop on Stochasticity in Fusion Plasmas /6./. Jülich, 18.03.2013-20.03.2013] R&D Projects: GA ČR GAP205/11/2341 Institutional support: RVO:61389021 Keywords : divertor * resonant magnetic perturbation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.062, year: 2014 http://iopscience.iop.org/0029-5515/54/6/064002/pdf/0029-5515_54_6_064002.pdf

  19. Feasibility study of fast swept divertor strike point suppressing transient heat fluxes in big tokamaks.

    Czech Academy of Sciences Publication Activity Database

    Horáček, Jan; Cunningham, G.; Entler, Slavomír; Dobias, P.; Duban, R.; Imríšek, Martin; Markovič, Tomáš; Havlíček, Josef; Enikeev, R.

    2017-01-01

    Roč. 123, November (2017), s. 646-649 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] R&D Projects: GA ČR(CZ) GA16-14228S; GA MŠk(CZ) LM2015045; GA MŠk(CZ) 8D15001; GA MŠk LG14002 Institutional support: RVO:61389021 Keywords : DEMO * ELM * Divertor * Heat flux * Tokamak Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379617300376

  20. The Design and Use of Tungsten Coated TZM Molybdenum Tile Inserts in the DIII-D Tokamak Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Christopher [General Atomics, San Diego; Nygren, R. E. [Sandia National Laboratories (SNL); Chrobak, C P. [General Atomics, San Diego; Buchenauer, Dean [Sandia National Laboratories (SNL); Holtrop, Kurt [General Atomics, San Diego; Unterberg, Ezekial A. [ORNL; Zach, Mike P. [ORNL

    2017-08-01

    Future tokamak devices are envisioned to utilize a high-Z metal divertor with tungsten as theleading candidate. However, tokamak experiments with tungsten divertors have seen significantdetrimental effects on plasma performance. The DIII-D tokamak presently has carbon as theplasma facing surface but to study the effect of tungsten on the plasma and its migration aroundthe vessel, two toroidal rows of carbon tiles in the divertor region were modified with high-Zmetal inserts, composed of a molybdenum alloy (TZM) coated with tungsten. A dedicated twoweek experimental campaign was run with the high-Z metal inserts. One row was coated withtungsten containing naturally occurring levels of isotopes. The second row was coated withtungsten where the isotope 182W was enhanced from the natural level of 26% up to greater than90%. The different isotopic concentrations enabled the experiment to differentiate between thetwo different sources of metal migration from the divertor. Various coating methods wereexplored for the deposition of the tungsten coating, including chemical vapor deposition,electroplating, vacuum plasma spray, and electron beam physical vapor deposition. The coatingswere tested to see if they were robust enough to act as a divertor target for the experiment. Testsincluded cyclic thermal heating using a high power laser and high-fluence deuterium plasmabombardment. The issues associate with the design of the inserts (tile installation, thermal stress,arcing, leading edges, surface preparation, etc.), are reviewed. The results of the tests used toselect the coating method and preliminary experimental observations are presented.

  1. Stable sheath formation in expanding magnetic field to divertor plate

    International Nuclear Information System (INIS)

    Tomita, Y.; Takayama, A.; Takamaru, H.; Sato, T.

    2001-01-01

    The stable sheath formation in expanding magnetic field to a divertor plate was studied theoretically by one-dimensional analysis. In fusion devices the magnetic field is expanding in the direction of the plate, i.e. the magnitude of magnetic field is decreasing to the plate. In this configuration ions are accelerated to the plate due to the gradient of the magnetic field strength, so called a mirror force. The bombardment of accelerated ions to the plate may cause several severe problems to fusion plasmas, for example, release of large amount of impurities from the diverter plate. Limited research efforts have been carried out describing magnetic field effects on various potential formation and particle and heat fluxes to the divertor plate. The plasma-wall interaction in an oblique to the plate but uniform magnetic field has been studied by means of 1D-PIC numerical simulation. This analysis shows the formation of a quasi-neutral magnetic pre-sheath preceding the electrostatic Debye sheath, which scales to the ion gyroradius at the sound speed and to the incidence angle of the magnetic field. Sato clarifies this magnetic pre-sheath is attributed to the ion polarisation drift by the two dimensional kinetic analysis. None of effects, however, of non-uniformity of the magnetic field has been taken into account on the stable electrostatic potential and sheath formation. In this paper, we consider a collisionless sheath model between an infinite metal plate and a quasi-neutral plasma in the expanding magnetic field to the plate. One dimensional kinetic analysis leads that a condition for flow velocity of ions at a plasma-sheath boundary is more restricted than that of the uniform magnetic field, which should be larger than the ion sound speed. The difference, however, between both cases is an order of the Debye length to a plasma radius, which is negligible small. The requirement for the ion flow velocity inside the plasma is obtained from the condition of the quasi

  2. Development of a radiative divertor for DIII-D

    International Nuclear Information System (INIS)

    Allen, S.L.; Brooks, N.H.; Campbell, R.B.; Fenstermacher, M.E.; Hill, D.N.; Hyatt, A.W.; Knoll, D.; Lasnier, C.J.; Lazarus, E.A.; Leonard, A.W.; Lippmann, S.I.; Mahdavi, M.A.; Maingi, R.; Meyer, W.; Moyer, R.A.; Petrie, T.W.; Porter, G.D.; Rensink, M.E.; Rognlien, T.D.; Schaffer, M.J.; Smith, J.P.; Staebler, G.M.; Stambaugh, R.D.; West, W.P.; Wood, R.D.

    1995-01-01

    We have used experiments and modeling to develop a new radiative divertor configuration for DIII-D. Gas puffing experiments with the existing open divertor have shown the creation of a localized ( similar 10 cm diameter) radiation zone which results in substantial reduction (3-10) in the divertor heat flux while τ E remains similar 2 times ITER-89P scaling. However, n e increases with D 2 puffing, and Z eff increases with neon puffing. Divertor structures are required to minimize the effects on the core plasma. The UEDGE fluid code, benchmarked with DIII-D data, and the DEGAS neutrals transport code are used to estimate the effectiveness of divertor configurations; slots reduce the core ionization more than baffles. The overall divertor shape is set by confinement studies which indicate that high triangularity (δ∼0.8) is important for high τ E VH-modes. Results from engineering feasibility studies, including diagnostic access, will be presented. ((orig.))

  3. Role of molecular effects in divertor plasma recombination

    Directory of Open Access Journals (Sweden)

    A.S. Kukushkin

    2017-08-01

    Full Text Available Molecule-Activated Recombination (MAR effect is re-considered in view of divertor plasma conditions. A strong isotopic effect is demonstrated. In deuterium plasmas, the reaction chain through D2+ formation, usually considered dominant and included in 2D edge plasma models, is negligible. However, in this case the other branch, through D−, usually neglected in modelling, becomes relatively strong. The overall share of MAR in divertor plasma recycling stays within 20%. The operational parameters of the divertor plasmas, such as the peak power loading on the divertor targets or the pressure limit for partial detachment of the divertor plasma, are insensitive to the presence of MAR, although the latter may be important for correct interpretation of the divertor diagnostics.

  4. Thermo-mechanical and damage analyses of EAST carbon divertor under type-I ELMy H-mode operation

    International Nuclear Information System (INIS)

    Li, W.X.; Song, Y.T.; Ye, M.Y.; Peng, X.B.; Wu, S.T.; Qian, X.Y.; Zhu, C.C.

    2016-01-01

    Highlights: • Type-I ELMy H-mode is one of the most severe operating environment in tokamak. • An actual time-history heat load has been used in thermo-mechanical analysis. • The analysis results are time-dependent during the whole discharge process. • The analysis could be very useful in evaluating the operational capability of the divertor. - Abstract: The lower carbon divertor has been used since 2008 in EAST, and many significant physical results, like the 410 s long pulse discharge and the 32 s H-mode operation, have been achieved. As the carbon divertor will still be used in the next few years while the injected auxiliary heating power would be increased gradually, it’s necessary to evaluate the operational capability of the carbon divertor under the heat loads during future operation. In this paper, an actual time-history heat load during type-I ELMy H-mode from EAST experiment, as one of the most severe operating environment in tokamak, has been used in the calculation and analysis. The finite element (FE) thermal and mechanical calculations have been carried out to analysis the stress and deformation of the carbon divertor during the heat loads. According to the results, the main impact on the overall temperature comes from the relative stable phase before and after the type-I ELMs and local peak load, and the transient thermal load such as type-I ELMy only has a significant effect on the surface temperature of the graphite tiles. The carbon divertor would work with high stress near the screw bolts in the current operational conditions, because of high preload and conservative frictional coefficient between the bolts and heatsink. For the future operation, new plasma facing materials (PFM) and divertor technology should be developed.

  5. Comparative divertor-transport study for helical devices

    International Nuclear Information System (INIS)

    Feng, Y.; Sardei, F.; Kobayashi, M.

    2008-10-01

    Using the island divertors (ID) of W7-AS and W7-X and the helical divertor (HD) of LHD as examples, the paper presents a comparative divertor transport study for three typical helical devices of different machine-size following two distinct divertor concepts, aiming at identifying common physics issues/effects for mutual validation and combined studies. Based on EMC3/EIRENE simulations supported by experimental results, the paper first reviews and compares the essential transport features of the W7-AS ID and the LHD HD in order to build a base and framework for a predictive study of W7-X. Revealed is the fundamental role of the low-order magnetic islands in both divertor concepts. Preliminary EMC3/EIRENE simulation results for W7-X are presented and discussed with respect to W7-AS and LHD in order to show how the individual field and divertor topologies affect the divertor transport and performance. For instance, a high recycling regime which is absent from W7-AS and LHD is expected for W7-X. Topics addressed are restricted to the basic function elements of a divertor such as particle flux enhancement and impurity retention. In particular, the divertor function on reducing the influx of intrinsic impurities is examined for all the three devices under different divertor plasma conditions. Special attention is paid to examining the island screening potential of intrinsic impurities which has been predicted for all the three devices under high divertor collisionality conditions. The results are discussed in conjunction with the experimental observations for high density divertor plasmas in W7-AS and LHD. (author)

  6. NSTX plasma response to lithium coated divertor

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, M.G.; Allain, J.P.; Bell, R.E.; Ding, S.; Gerhardt, S.P.; Jaworski, M.A.; Kaita, R.; Kallman, J.; Kaye, S.M.; LeBlanc, B.P.; Maingi, Rajesh; Majeski, R.; Maqueda, R.J.; Mansfield, D.K.; Mueller, D.; Nygren, R.E.; Paul, S.F.; Raman, R.; Roquemore, A.L.; Sabbagh, S.A.; Schneider, H.; Skinner, C.H.; Soukhanovskii, V.A.; Taylor, C.N.; Timberlake, J.; Wampler, W.R.; Zakharov, L.E.; Zweben, S.J.

    2011-01-01

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma-facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Z(eff) and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, < 0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  7. NSTX Plasma Response to Lithium Coated Divertor

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  8. Boundary plasma control with the ergodic divertor

    International Nuclear Information System (INIS)

    Ghendrih, Ph.; Becoulet, M.; Beyer, P.

    1999-01-01

    Ergodic divertor experiments on Tore Supra provide evidence of significant control of plasma-wall interaction. Theoretical investigation of the laminar region (i.e. governed by parallel transport) indicates that control of the plasma state at the target plate can be achieved with plasma states similar to that observed with the axisymmetric divertor. Analysis of the temperature field with a 2-D test particle code allows one to recover the observed spatial modulation and shows that an intrinsic barrier appears to develop at the separatrix. Energy deposition peaking, analysed with a 3-D code, is strongly reduced when moderate transverse transport is considered. Possible control of upstream parameters can thus be achieved in the ergodic region, for instance a lowering of the parallel energy flux by cross field transport. (author)

  9. Boundary plasma control with the ergodic divertor

    International Nuclear Information System (INIS)

    Ghendrih, Ph.; Becoulet, M.; Beyer, P.

    2001-01-01

    Ergodic divertor experiments on Tore Supra provide evidence of significant control of plasma-wall interaction. Theoretical investigation of the laminar region (i.e. governed by parallel transport) indicates that control of the plasma state at the target plate can be achieved with plasma states similar to that observed with the axisymmetric divertor. Analysis of the temperature field with a 2-D test particle code allows one to recover the observed spatial modulation and shows that an intrinsic barrier appears to develop at the separatrix. Energy deposition peaking, analysed with a 3-D code, is strongly reduced when moderate transverse transport is considered. Possible control of upstream parameters can thus be achieved in the ergodic region, for instance a lowering of the parallel energy flux by cross field transport. (author)

  10. Divertor-localized fluctuations in NSTX-U L-mode discharges

    Science.gov (United States)

    Scotti, Filippo; Soukhanovskii, V. A.; Zweben, S.; Myra, J.; Baver, D.; Sabbagh, S. A.

    2017-10-01

    The 3-D structure of divertor turbulence is characterized in NSTX-U by means of fast camera imaging. Edge and divertor turbulence can be important in determining the heat flux width in fusion devices. Field-aligned filaments are found on the divertor legs via imaging of C III and D- α emission in NBI-heated diverted L-mode discharges, similar to observations in Alcator C-Mod and MAST. These flute-like fluctuations of up to 10-20% in RMS/mean are radially localized around the separatrix and limited to the region below the X-point. Poloidal and parallel correlation lengths are a few cm (10-50ρi) and several meters, respectively. For the outer leg filaments, poloidal correlation lengths decrease along the leg away from the strike point and typical effective toroidal mode numbers are in the range of 10-20. Opposite toroidal rotation is observed for inner (co-current rotation) and outer leg (counter-current rotation) filaments with apparent poloidal propagation of 1 km/s. The poloidal motion of outer leg filaments is opposite to the one typically observed for NSTX upstream blobs in the scrape-off layer. The shape, dynamics and absence of correlation with upstream turbulence suggest that these fluctuations are generated and localized in the divertor region. Supported by US DOE DE-AC52-07NA27344, DE-AC02-09CH11466, DE-FG02- 02ER54678, DE-FG02-99ER54524.

  11. Advancing of Land Surface Temperature Retrieval Using Extreme Learning Machine and Spatio-Temporal Adaptive Data Fusion Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2015-04-01

    Full Text Available As a critical variable to characterize the biophysical processes in ecological environment, and as a key indicator in the surface energy balance, evapotranspiration and urban heat islands, Land Surface Temperature (LST retrieved from Thermal Infra-Red (TIR images at both high temporal and spatial resolution is in urgent need. However, due to the limitations of the existing satellite sensors, there is no earth observation which can obtain TIR at detailed spatial- and temporal-resolution simultaneously. Thus, several attempts of image fusion by blending the TIR data from high temporal resolution sensor with data from high spatial resolution sensor have been studied. This paper presents a novel data fusion method by integrating image fusion and spatio-temporal fusion techniques, for deriving LST datasets at 30 m spatial resolution from daily MODIS image and Landsat ETM+ images. The Landsat ETM+ TIR data were firstly enhanced based on extreme learning machine (ELM algorithm using neural network regression model, from 60 m to 30 m resolution. Then, the MODIS LST and enhanced Landsat ETM+ TIR data were fused by Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT in order to derive high resolution synthetic data. The synthetic images were evaluated for both testing and simulated satellite images. The average difference (AD and absolute average difference (AAD are smaller than 1.7 K, where the correlation coefficient (CC and root-mean-square error (RMSE are 0.755 and 1.824, respectively, showing that the proposed method enhances the spatial resolution of the predicted LST images and preserves the spectral information at the same time.

  12. Divertor and scoop limiter experiments on PDX

    International Nuclear Information System (INIS)

    McGuire, K.; Beirsdorfer, P.; Bell, M.

    1985-01-01

    Routine operation in the enhanced-energy-confinement (or H-mode) regime during neutral-beam injection was achieved by modifying the PDX divertor hardware to inhibit the influx of neutral gas from the divertor region to the main plasma chamber. A particle scoop limiter has been studied as a mechanical means of controlling particles at the plasma edge, and neutral-beam-heated discharges with this limiter show similar confinement times (normalized to tausub(E)/Isub(p)) to average H-mode plasma. Two new instabilities are observed near the plasma edge in PDX during H-mode operation. The first, a quasi-coherent fluctuation, occurred in bursts at well-defined frequencies (Δω/ω<=0.1) in the range 50 to 180 kHz, and had no obvious effects on confinement. The second instability, the edge relaxation phenomena (ERP), did cause deterioration in the global confinement time. The ERPs are characterized by sharp spikes in the divertor plasma density, Hsub(α) emission, and on the X-ray signals they appear as sawtooth-like relaxations at the plasma edge with an inversion radius near the separatrix. Attempts to obtain high βsub(T) in the H-mode discharges were hampered by a deterioration in the H-mode confinement and major disruptions which limited the achievable βsub(T). A study of the stability of both the limiter L-mode and divertor H-mode discharge close to the theoretical β boundary showed that the major disruptions observed there are sometimes caused by a fast growing m/n=1/1 mode with no observable external precursor oscillations. (author)

  13. Divertor and scoop limiter experiments on PDX

    International Nuclear Information System (INIS)

    McGuire, K.; Beiersdorfer, P.; Bell, M.

    1985-01-01

    Routine operation in the enhanced energy confinement (or H-mode) regime during neutral beam injection was achieved by modifying the PDX divertor hardware to inhibit the influx of neutral gas from the divertor region to the main plasma chamber. A particle scoop limiter has been studied as a mechanical means of controlling particles at the plasma edge, and neutral beam heated discharges with this limiter show similar confinement times (normalized to tau/sub E//I/sub p/) to average H-mode plasmas. Two new instabilities are observed near the plasma edge in PDX during H-mode operation. The first, a quasicoherent fluctuation, occurred in bursts at well-defined frequencies (Δω/ω less than or equal to 0.1) in the range 50 to 180 kHz, and had no obvious effects on confinement. The second instability, the edge relaxation phenomena (ERP), did cause deterioration in the global confinement time. The ERP's are characterized by sharp spikes in the divertor plasma density, H/sub α/ emission, and on the x-ray signals they appear as sawtoothlike relaxations at the plasma edge with an inversion radius near the separatrix. Attempts to obtain high β/sub T/ in the H-mode discharges were hampered by a deterioration in the H-mode confinement and major disruptions which limited the achievable β/sub T/. A study of the stability of both the limiter L-mode and divertor H-mode discharges close to the theoretical β boundary, showed that the major disruptions observed there are sometimes caused by a fast growing m/n = 1/1 mode with no observable external precursor oscillations

  14. Two-point model for divertor transport

    International Nuclear Information System (INIS)

    Galambos, J.D.; Peng, Y.K.M.

    1984-04-01

    Plasma transport along divertor field lines was investigated using a two-point model. This treatment requires considerably less effort to find solutions to the transport equations than previously used one-dimensional (1-D) models and is useful for studying general trends. It also can be a valuable tool for benchmarking more sophisticated models. The model was used to investigate the possibility of operating in the so-called high density, low temperature regime

  15. Low energy neutral particle fluxes in the JET divertor

    International Nuclear Information System (INIS)

    Reichle, R.; Horton, L.D.; Ingesson, L.C.; Jaeckel, H.J.; McCormick, G.K.; Loarte, A.; Simonini, R.; Stamp, M.F.

    1997-01-01

    First measurements are presented of the total power loss through neutral particles and their average energy in the JET divertor. The method used distinguishes between the heat flux and the electromagnetic radiation on bolometers. This is done by comparing measurements from inside the divertor either with opposite lines of sight or with a tomographic reconstruction of the radiation. The typical value of the total power loss in the divertor through neutrals is about 1 MW. The average energy of the neutral particles at the inner divertor leg is 1.5-3 eV when detachment is in progress, which agrees with EDGE2D/NIMBUS modelling. (orig.)

  16. Physics conclusions in support of ITER W divertor monoblock shaping

    Directory of Open Access Journals (Sweden)

    R.A. Pitts

    2017-08-01

    Full Text Available The key remaining physics design issue for the ITER tungsten (W divertor is the question of monoblock (MB front surface shaping in the high heat flux target areas of the actively cooled targets. Engineering tolerance specifications impose a challenging maximum radial step between toroidally adjacent MBs of 0.3mm. Assuming optical projection of the parallel heat loads, magnetic shadowing of these edges is required if quasi-steady state melting is to be avoided under certain conditions during burning plasma operation and transiently during edge localized mode (ELM or disruption induced power loading. An experiment on JET in 2013 designed to investigate the consequences of transient W edge melting on ITER, found significant deficits in the edge power loads expected on the basis of simple geometric arguments, throwing doubt on the understanding of edge loading at glancing field line angles. As a result, a coordinated multi-experiment and simulation effort was initiated via the International Tokamak Physics Activity (ITPA and through ITER contracts, aimed at improving the physics basis supporting a MB shaping decision from the point of view both of edge power loading and melt dynamics. This paper reports on the outcome of this activity, concluding first that the geometrical approximation for leading edge power loading on radially misaligned poloidal leading edges is indeed valid. On this basis, the behaviour of shaped and unshaped monoblock surfaces under stationary and transient loads, with and without melting, is compared in order to examine the consequences of melting, or power overload in context of the benefit, or not, of shaping. The paper concludes that MB top surface shaping is recommended to shadow poloidal gap edges in the high heat flux areas of the ITER divertor targets.

  17. Island divertor studies on W7-AS

    International Nuclear Information System (INIS)

    Sardei, F.; Feng, Y.; Grigull, P.; Herre, G.; Hildebrandt, D.; Hofmann, J.V.; Kisslinger, J.; Brakel, R.; Das, J.; Geiger, J.; Heinrich, O.; Kuehner, G.; Niedermeyer, H.; Reiter, D.; Richter-Gloetzl, M.; Runov, A.; Schneider, R.; Stroth, U.; Verbeek, H.; Wagner, F.; Wolf, R.

    1997-01-01

    Basic topological features of the island divertor concept for low shear stellarators are discussed with emphasis on the differences to tokamak divertors. Extensive measurements of the edge structures by two-dimensional plasma spectroscopy and by target calorimetry are in excellent agreement with predicted vacuum and equilibrium configurations, which are available up to central β values of ∝1%. For this β value the calculated field-line pitch inside the islands is twice that of the corresponding vacuum case. Video observations of the strike points indicate stability of the island structures for central β values up to ∝3.7%. The interpretation of the complex island divertor physics of W7-AS has become possible by the development of the three-dimensional plasma transport code EMC3 (Edge Monte Carlo 3D), which has been coupled self-consistently to the EIRENE neutral gas code. Analysis of high density NBI discharges gives strong indications of stable high recycling conditions for n e ≥10 20 m -3 . The observations are reproduced by the EMC3/EIRENE code and supported by calculations with the B2/EIRENE code adapted to W7-AS. Improvement of recycling, pumping and target load distribution is expected from the new optimized target plates and baffles to be installed in W7-AS. (orig.)

  18. Enhanced expression of rabies virus surface G-protein in Escherichia coli using SUMO fusion.

    Science.gov (United States)

    Singh, Ankit; Yadav, Dinesh; Rai, Krishan Mohan; Srivastava, Meenal; Verma, Praveen C; Singh, Pradhyumna K; Tuli, Rakesh

    2012-01-01

    Fusion systems are known to increase the expression of difficult to express recombinant proteins in soluble form to facilitate their purification. Rabies glycoprotein was also tough to express at sufficient level in soluble form in both E. coli and plant. The present work was aimed to over-express and purify this membrane protein from soluble extract of E. coli. Fusion of Small Ubiqutin like Modifier (SUMO) with rabies glycoprotein increased ~1.5 fold higher expression and ~3.0 fold solubility in comparison to non-fused in E. coli. The SUMO fusion also simplified the purification process. Previously engineered rabies glycoprotein gene in tobacco plants provides complete protection to mice, but the expression was very low for purification. Our finding demonstrated that the SUMO-fusion was useful for enhancing expression and solubility of the membrane protein and again proves to be a good alternative technology for applications in biomedical and pharmaceutical research.

  19. Structural impact of creep in tungsten monoblock divertor target at 20 MW/m2

    Directory of Open Access Journals (Sweden)

    Muyuan Li

    2018-01-01

    Full Text Available In order to increase erosion lifetime of the divertor target, in the 2nd design phase of R&D work package ‘Divertor’ for European DEMO, armor thickness of tungsten monoblock divertor target is increased from 5 mm to 8 mm. By increasing armor thickness, surface temperature increases nearly linearly, which makes effect of creep no longer negligible at slow transients of 20 MW/m2. In this work, structural impact of creep in tungsten monoblock divertor target is for the first time quantitatively analyzed with the aid of finite element method. The numerical simulations have revealed that creep results in an increase of inelastic strain accumulation. With increasing armor thickness, tensile surface stress along x-axis (the longer edge at the plasma-facing surface of tungsten monoblock reduces, while surface stress along z-axis (axial direction of the cooling tube changes from tensile to compressive. Creep will accelerate this change. With increasing grain size, creep strain accumulation at loading surface increases due to higher creep rates, while plastic strain accumulation decreases. Creep can mitigate the risk of deep cracking by reducing the driving force for crack opening, and has a positive impact for preventing the contact between the upper parts of neighboring monoblocks in high heat flux tests.

  20. Power transport to the poloidal divertor experiment scoop limiter

    International Nuclear Information System (INIS)

    Kugel, H.W.; Budny, R.; Fonck, R.

    1987-01-01

    Power transport to the Poloidal Divertor Experiment graphite scoop limiter was measured during both ohmic- and neutral-beam-heated discharges by observing its front face temperatures using an infrared camera. Measurements were made as a function of a plasma density, current, position, fueling mode, and heating power for both co- and counter-neutral beam injection. The measured thermal load on the scoop limiter was 25 to 50%. of the total plasma heating power. The measured peak front face midplane temperature was 1500 0 C, corresponding to a peak surface power density of 3 kW/cm/sup 2/. This power density implies an effective parallel power flow of 54 kW/cm/sup 2/ in agreement with the radial power distribution extrapolated from television Thomson scattering and calorimetry measurements

  1. The DIII-D Radiative Divertor Project: Status and plans

    International Nuclear Information System (INIS)

    Smith, J.P.; Baxi, C.B.; Bozek, A.S.

    1996-10-01

    New divertor hardware is being designed and fabricated for the Radiative Divertor modification of the DIII-D tokamak. The installation of the hardware has been separated into two phases, the first phase starting in October of 1996 and the second and final phase, in 1998. The phased approach enables the continuation of the divertor characterization research in the lower divertor while providing pumping for density control in high triangularity, single- or double-null advanced tokamak discharges. When completed, the Radiative Divertor Project hardware will provide pumping at all four strike points of a double-null, high triangularity discharge and provide baffling of the neutral particles from transport back to the core plasma. By puffing neutral gas into the divertor region, a reduction in the heat flux on the target plates will be be demonstrated without a large rise in core density. This reduction in heat flux is accomplished by dispersing the power with radiation in the divertor region. Experiments and modeling have formed the basis for the new design. The capability of the DIII-D cryogenic system is being upgraded as part of this project. The increased capability of the cryogenic system will allow delivery of liquid helium and nitrogen to three new cryopumps. Physics studies on the effects of slot width and length can be accomplished easily with the design of the Radiative Divertor. The slot width can be varied by installing graphite tiles of different geometry. The change in slot length, the distance from the X-point to the target plate, requires relocating the structure vertically and can be completed in about 6-8 weeks. Radiative Divertor diagnostics are being designed to provide comprehensive measurements for diagnosing the divertor. Required diagnostic modifications will be minimal for Phase 1, but extensive for Phase 2 installation. These Phase 2 diagnostics will be required to fully diagnose the high triangularity discharges in the divertor slots

  2. Divertor plasma studies on DIII-D: Experiment and modeling

    International Nuclear Information System (INIS)

    West, W.P.; Brooks, N.H.; Allen, S.L.

    1996-09-01

    In a magnetically diverted tokamak, the scrape-off layer (SOL) and divertor plasma provides separation between the first wall and the core plasma, intercepting impurities generated at the wall before they reach the core plasma. The divertor plasma can also serve to spread the heat and particle flux over a large area of divertor structure wall using impurity radiation and neutral charge exchange, thus reducing peak heat and particle fluxes at the divertor strike plate. Such a reduction will be required in the next generation of tokamaks, for without it, the divertor engineering requirements are very demanding. To successfully demonstrate a radiative divertor, a highly radiative condition with significant volume recombination must be achieved in the divertor, while maintaining a low impurity content in the core plasma. Divertor plasma properties are determined by a complex interaction of classical parallel transport, anomalous perpendicular transport, impurity transport and radiation, and plasma wall interaction. In this paper the authors describe a set of experiments on DIII-D designed to provide detailed two dimensional documentation of the divertor and SOL plasma. Measurements have been made in operating modes where the plasma is attached to the divertor strike plate and in highly radiating cases where the plasma is detached from the divertor strike plate. They also discuss the results of experiments designed to influence the distribution of impurities in the plasma using enhanced SOL plasma flow. Extensive modeling efforts will be described which are successfully reproducing attached plasma conditions and are helping to elucidate the important plasma and atomic physics involved in the detachment process

  3. Experience gained with the 3D machining of the W7-X HHF divertor target elements

    Energy Technology Data Exchange (ETDEWEB)

    Junghanns, P. [Max Planck Institute for Plasma Physics, Greifswald (Germany); Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max Planck Institute for Plasma Physics, Garching (Germany); Peacock, A. [Max Planck Institute for Plasma Physics, Garching (Germany)

    2015-10-15

    Highlights: • The Wendelstein 7-X surface of the actively cooled divertor is built up of 890 individually 3D machined target elements. • To date 300 target elements have been 3D machined with an accuracy of ±0.015 mm. • Copper discovered on the surface of few elements is no risk to operation. - Abstract: The high heat flux (HHF) divertor of W7-X consists of 100 target modules assembled from 890 actively water-cooled target elements protected with CFC tiles. The divertor surface will be built up of individually 3D machined target elements with 89 individual element types. To date 300 of the 890 target elements have been 3D machined with a very good accuracy. To achieve this successful result, a prototyping phase has been conducted to qualify the manufacturing route and to define the acceptance criteria with measures taken to minimize the risk of unacceptable damage during the manufacturing. After the 3D-machining, during the incoming inspection, copper infiltration from the interface between the CFC tiles and the CuCrZr heat sink to the plasma facing surface was detected in a small number of elements.

  4. Experience gained with the 3D machining of the W7-X HHF divertor target elements

    International Nuclear Information System (INIS)

    Junghanns, P.; Boscary, J.; Peacock, A.

    2015-01-01

    Highlights: • The Wendelstein 7-X surface of the actively cooled divertor is built up of 890 individually 3D machined target elements. • To date 300 target elements have been 3D machined with an accuracy of ±0.015 mm. • Copper discovered on the surface of few elements is no risk to operation. - Abstract: The high heat flux (HHF) divertor of W7-X consists of 100 target modules assembled from 890 actively water-cooled target elements protected with CFC tiles. The divertor surface will be built up of individually 3D machined target elements with 89 individual element types. To date 300 of the 890 target elements have been 3D machined with a very good accuracy. To achieve this successful result, a prototyping phase has been conducted to qualify the manufacturing route and to define the acceptance criteria with measures taken to minimize the risk of unacceptable damage during the manufacturing. After the 3D-machining, during the incoming inspection, copper infiltration from the interface between the CFC tiles and the CuCrZr heat sink to the plasma facing surface was detected in a small number of elements.

  5. A new fully automatic PIM tool to replicate two component tungsten DEMO divertor parts

    International Nuclear Information System (INIS)

    Antusch, Steffen; Commin, Lorelei; Heneka, Jochen; Piotter, Volker; Plewa, Klaus; Walter, Heinz

    2013-01-01

    Highlights: • Development of a fully automatic 2C-PIM tool. • Replicate fusion relevant components in one step without additional brazing. • No cracks or gaps in the seam of the joining zone visible. • For both material combinations a solid bond of the material interface was achieved. • PIM is a powerful process for mass production as well as for joining even complex shaped parts. -- Abstract: At Karlsruhe Institute of Technology (KIT), divertor design concepts for future nuclear fusion power plants beyond ITER are intensively investigated. One promising KIT divertor design concept for the future DEMO power reactor is based on modular He-cooled finger units. The manufacturing of such parts by mechanical machining such as milling and turning, however, is extremely cost and time intensive because tungsten is very hard and brittle. Powder Injection Molding (PIM) has been adapted to tungsten processing at KIT since a couple of years. This production method is deemed promising in view of large-scale production of tungsten parts with high near-net-shape precision, hence, offering an advantage of cost-saving process compared to conventional machining. The properties of the effectively and successfully manufactured divertor part tile consisting only of pure tungsten are a microstructure without cracks and a high density (>98% T.D.). Based on the achieved results a new fully automatic multicomponent PIM tool was developed and allows the replication and joining without brazing of fusion relevant components of different materials in one step and the creation of composite materials. This contribution describes the process route to design and engineer a new fully automatic 2C-PIM tool, including the filling simulation and the implementing of the tool. The complete technological fabrication process of tungsten 2C-PIM, including material and feedstock (powder and binder) development, injection molding, and heat-treatment of real DEMO divertor parts is outlined

  6. Fusion through the NET

    International Nuclear Information System (INIS)

    Spears, B.

    1987-01-01

    The paper concerns the next generation of fusion machines which are intended to demonstrate the technical viability of fusion. In Europe, the device that will follow on from JET is known as NET - the Next European Torus. If the design programme for NET proceeds, Europe could start to build the machine in 1994. The present JET programme hopes to achieve breakeven in the early 1990's. NET hopes to reach ignition in the next century, and so lay the foundation for a demonstration reactor. A description is given of the technical specifications of the components of NET, including: the first wall, the divertors to protect the wall, the array of magnets that provide the fields containing the plasma, the superconducting magnets, and the shield of the machine. NET's research programme is briefly outlined, including the testing programme to optimise conditions in the machine to achieve ignition, and its safety work. (U.K.)

  7. Erosion of ITER divertor armour and contamination of sol after transient events erosion products

    International Nuclear Information System (INIS)

    Bazylev, B.N.; Landman, I.S.; Pestchanyi, S.E.

    2005-01-01

    Plasma impact to the divertor expected in the tokamak ITER during ELMs or disruptions can result in a significant surface damage to CFC- and tungsten armours (brittle destruction and melting respectively) as well as in contamination of SOL by evaporated impurities. Numerical investigations for tungsten and CFC targets provide important details of the material erosion process. The simulations carried out in FZK on the material damage, carbon plasma expansion and the radiation fluxes from the carbon impurity are surveyed

  8. Fusion technology development: first wall/blanket system and component testing in existing nuclear facilities

    International Nuclear Information System (INIS)

    Hsu, P.Y.S.; Bohn, T.S.; Deis, G.A.; Judd, J.L.; Longhurst, G.R.; Miller, L.G.; Millsap, D.A.; Scott, A.J.; Wessol, D.E.

    1980-12-01

    A novel concept to produce a reasonable simulation of a fusion first wall/blanket test environment employing an existing nuclear facility, the Engineering Test Reactor at the Idaho National Engineering Laboratory, is presented. Preliminary results show that an asymmetric, nuclear test environment with surface and volumetric heating rates similar to those expected in a fusion first wall/blanket or divertor chamber surface appears feasible. The proposed concept takes advantage of nuclear reactions within the annulus of an existing test space (15 cm in diameter and approximately 100 cm high) to provide an energy flux to the surface of a test module. The principal reaction considered involves 3 He in the annulus as follows: n + 3 He → p + t + 0.75 MeV. Bulk heating in the test module is accomplished by neutron thermalization, gamma heating, and absorption reactions involving 6 Li in the blanket breeding region. The concept can be extended to modified core configurations that will accommodate test modules of different sizes and types. It makes possible development testing of first wall/blanket systems and other fusion components on a scale and in ways not otherwise available until actual high-power fusion reactors are built

  9. ADX: a high field, high power density, Advanced Divertor test eXperiment

    Science.gov (United States)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  10. Study of the radiation in divertor plasmas; Etude du rayonnement dans les plasmas de divertor

    Energy Technology Data Exchange (ETDEWEB)

    Laugier, F

    2000-10-19

    We have studied the cooling of the edge plasma by radiation in the divertor volume, in order to optimize the extraction of power in tokamaks and to limit the wall erosion. In attached divertor plasmas experiments, the concentration of intrinsic impurities at the edge is related to the response of the wall to the incident energy flow of plasma, depending on a phenomenological law. We carried out an analysis of the radiation according to this law and to the control parameters of the discharges. The largest radiated fraction and best synergy are obtained when the concentration of intrinsic impurities strongly increases with the energy of incident plasma. On the other hand, the erosion of the wall is stronger. In detached plasmas, we proved that the performances in terms of incident plasma energy loss and pressure loss are optimal when the density of the slowest neutrals is strong at the edge and when their radial penetration is small. On Tore Supra, we highlighted the correlations between the maximum Mach number of incident plasma flow, the radiation front and the penetration of the neutrals. A simple diagnostic based on the localization of the maximum Mach number proves that detached mode is not optimal on Tore Supra, because the radial penetration of the slowest neutrals is not sufficiently small. In the last part, we obtained the three-dimensional topology of the radiation in the ergodic divertor using a spectral analysis code and boundary conditions consistent with the temperature distribution on the wall. The radiation is maximum in front of the divertor modules. As a consequence, radiated power is underestimated by standards measurements of Tore Supra that are located between the modules. We finally showed that the profiles of temperature along the field lines are modulated, this is specific to the ergodic divertor. (author)

  11. Numerical study of the ITER divertor plasma with the B2-EIRENE code package

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, V.; Reiter, D. [Forschungszentrum Juelich (DE). Inst. fuer Energieforschung (IEF), Plasmaphysik (IEF-4); Kukushkin, A.S. [ITER International Team, Cadarache (France)

    2007-11-15

    The problem of plasma-wall interaction and impurity control is one of the remaining critical issues for development of an industrial energy source based on nuclear fusion of light isotopes. In this field sophisticated integrated numerical tools are widely used both for the analysis of current experiments and for predictions guiding future device design. The present work is dedicated to the numerical modelling of the edge plasma region in divertor configurations of large-scale tokamak fusion devices. A well established software tool for this kind of modelling is the B2-EIRENE code. It was originally developed for a relatively hot (>> 10 eV) ''high recycling divertor''. It did not take into account a number of physical effects which can be potentially important for ''detached conditions'' (cold, - several eV, - high density, - {approx} 10{sup 21} m{sup -3}, - plasma) typical for large tokamak devices. This is especially critical for the modelling of the divertor plasma of ITER: an international project of an experimental tokamak fusion reactor to be built in Cadarache, France by 2016. This present work is devoted to a major upgrade of the B2-EIRENE package, which is routinely used for ITER modelling, essentially with a significantly revised version of EIRENE: the Monte-Carlo neutral transport code. The main part of the thesis address three major groups of the new physical effects which have been added to the model in frame of this work: the neutral-neutral collisions, the up-to date hydrogen molecular reaction kinetics and the line radiation transport. The impact of the each stage of the upgrade on the self-consistent (between plasma, the neutral gas and the radiation field) solution for the reference ITER case is analysed. The strongest effect is found to be due to the revised molecular collision kinetics, in particular due to hitherto neglected elastic collisions of hydrogen molecules with ions. The newly added non

  12. Numerical exploration of non-axisymmetric divertor closure in the small angle slot (SAS) divertor at DIII-D

    Science.gov (United States)

    Frerichs, Heinke; Schmitz, Oliver; Covele, Brent; Guo, Houyang; Hill, David; Feng, Yuhe

    2017-10-01

    In the Small Angle Slot (SAS) divertor in DIII-D, the combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field causes the strike point to vary radially along the divertor slot and even leave it at some toroidal locations. This effect essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade performance of the slot divertor. This effect has been approximated by a finite gap in the divertor baffle. Simulations with EMC3-EIRENE show that a toroidally localized loss of divertor closure can result in non-axisymmetric divertor densities and temperatures. This introduces a density window of 10-15% on top of the nominal threshold separatrix density during which a non-axisymmetric onset of local detachment occurs, initially leaving the gap and up to 60 deg beyond that still attached. Conversely, the impact of such toroidally localized divertor perturbations on the toroidal symmetry of midplane separatrix conditions is small. This work has been funded by the U.S. Department of Energy under Early Career Award Grant DE-SC0013911, and Grant DE-FC02-04ER54698.

  13. Design analysis of the ITER divertor

    International Nuclear Information System (INIS)

    Samuelli, G.; Marin, A.; Roccella, M.; Lucca, F.; Merola, M.; Riccardi, B.; Petrizzi, L.; Villari, R.

    2007-01-01

    The divertor is one of the most challenging components of the ITER machine. Its function is to reduce the impurity in the plasma and consists essentially of two parts: the plasma facing components (PFCs) and a massive support structure called the cassette body (CB). Considerable R and D effort (developed by EFDA CSU GARCHING and the ITER International Team together with the EU Associations and the EU Industries) has been spent in designing divertor components capable of withstanding the expected electromagnetic (EM) loads and to take into account the latest ITER design conditions. In support of such efforts extensive and very detailed Neutronic, Thermal, EM and Structural analyses have been performed. A summary of the analyses performed will be presented. One of the main result is a typical exercise of integration between the different kind of analyses and the importance of keeping the consistency between the different assumptions and simplifications. The models used for the numerical analyses include a detailed geometrical description of the CB, the inlet, outlet hydraulic manifolds, the CB to vacuum vessel locking system and three configurations of the PFU. The effect of electrical bridging, both in poloidal and toroidal direction, of the PFU castellation, due to a possible melting at the W mono-block or tiles, occurring during the plasma disruptions, has been analyzed. For all these configurations 2 VDE scenarios including the effect of the Toroidal Field Variation and the HaloCurrent with the related out of plane induced EM forces have been extensively analyzed and a detailed poloidal and radial distribution of the nuclear heating has been used for the neutronic flux on the divertor components. The aim of this activity is to produce a comprehensive design and assessment of the ITER divertor via: -The estimation of the neutronic heat deposition and shielding capability; -The calculation of the related thermal and mechanical effects and the comparison of the

  14. On the refuelling of large divertor experiments

    International Nuclear Information System (INIS)

    Staebler, A.; Haas, G.; Ott, W.; Speth, E.

    1976-01-01

    The use of fast hydrogen atoms, molecules and clusters for refuelling large divertor-experiments like ASDEX is investigated. Three criteria for the choice among the various methods are discussed. It is shown that clusters suffer from lack of penetration. Molecules, created by fragmentation of clusters, offer the advantage of plasma-like energy combined with appreciable penetration. Large penetration and high ionization efficiency can only be achieved at energies for above the plasma temperature with H 0 -atoms of several tens of keV

  15. Oscillatory vapour shielding of liquid metal walls in nuclear fusion devices.

    Science.gov (United States)

    van Eden, G G; Kvon, V; van de Sanden, M C M; Morgan, T W

    2017-08-04

    Providing an efficacious plasma facing surface between the extreme plasma heat exhaust and the structural materials of nuclear fusion devices is a major challenge on the road to electricity production by fusion power plants. The performance of solid plasma facing surfaces may become critically reduced over time due to progressing damage accumulation. Liquid metals, however, are now gaining interest in solving the challenge of extreme heat flux hitting the reactor walls. A key advantage of liquid metals is the use of vapour shielding to reduce the plasma exhaust. Here we demonstrate that this phenomenon is oscillatory by nature. The dynamics of a Sn vapour cloud are investigated by exposing liquid Sn targets to H and He plasmas at heat fluxes greater than 5 MW m -2 . The observations indicate the presence of a dynamic equilibrium between the plasma and liquid target ruled by recombinatory processes in the plasma, leading to an approximately stable surface temperature.Vapour shielding is one of the interesting mechanisms for reducing the heat load to plasma facing components in fusion reactors. Here the authors report on the observation of a dynamic equilibrium between the plasma and the divertor liquid Sn surface leading to an overall stable surface temperature.

  16. Design, fabrication, and testing of a helium-cooled module for the ITER divertor

    International Nuclear Information System (INIS)

    Baxi, C.B.; Smith, J.P.; Youchison, D.

    1994-08-01

    The International Thermonuclear Reactor (ITER) will have a single-null divertor with total power flow of 200 MW and a peak heat flux of about 5 MW/m 2 . The reference coolant for the divertor is water. However, helium is a viable alternative and offers advantages from safety considerations, such as excellent radiation stability and chemical inertness. In order to prove the feasibility of helium cooling at ITER relevant heat flux conditions, General Atomics designed, fabricated, and tested a helium-cooled divertor module. The module was made from dispersion strengthened copper, with a heat flux surface 25 mm wide and 80 mm long, designed for twice the ITER divertor heat flux. Different techniques were examined to enhance the heat transfer, which in turn reduced the flow and pumping power required to cool the module. It was concluded that an extended surface was the most practical solution. An optimization study was performed to find the best extended surface parameters. The optimum extended surface geometry consisted of fins: 10 mm high, 0.4 mm thick with a 1 mm pitch. It was estimated to require a pumping power of 150 W to remove 20 kW of power. This is more than an order of magnitude reduction in pumping power requirement, compared to smooth surface. The module was fabricated by electric discharge machining (EDM) process. The testing was carried out at SNLA during August 1993. The testing confirmed the design calculations. The peak heat flux during the test was 10 MW/m 2 applied over a surface area of 20 cm 2 . The pumping power calculated from flow rate and pressure drop measurement was about 160 W, which was less than 1% of the power removed. It is planned to test the module to higher temperature limits and higher heat fluxes during coming months. As a result of this effort we conclude that helium cooling of the ITER divertor is feasible without requiring a very large helium pressure or a large pumping power

  17. Mechanical design and manufacture of magnetic ergodic divertor for the TORE SUPRA tokamak

    International Nuclear Information System (INIS)

    Lipa, M.; Aymar, R.; Deschamps, P.; Hertout, P.; Portafaix, C.; Samain, A.

    1989-01-01

    A configuration of six equally spaced ergodic divertors has been chosen to control the plasma impurities in the TORE SUPRA tokamak since the control of these impurities is essential to the long pulse duration envisioned for the machine. Each of the six indentical modules is composed of (8) conductor bars arranged in a poloidal direction forming a resonant helical winding. The proximity of the conductors to the plasma requires that each copper assembly be water cooled, enclosed in a stainless steel casing and protected by pure graphite tiles attaches to the inner surface of the casing. Particles which drift between the coil bars are neutralized on actively water cooled neutralizer plates and then pumped out by titanium getter pumps which are located on each toroidal end of a divertor modul. (author). 5 refs.; 7 figs.; 1 tab

  18. Erosion and deposition of metals and carbon in the DIII-D divertor

    International Nuclear Information System (INIS)

    Wampler, W.R.; Bastasz, R.; Buchenauer, D.

    1995-01-01

    Net erosion rates at the outer strike point of the DIII-D divertor plasma were measured for several materials during quiescent H-mode operation with deuterium plasmas. Materials examined include graphite, beryllium, tungsten, vanadium and molybdenum. For graphite, net erosion rates up to 4 nm/sec were found. Erosion rates for the metals were much smaller than for carbon. Ion fluxes from Langmuir probe measurements were used to predict gross erosion by sputtering. Measured net erosion was much smaller than predicted gross erosion. Transport of metal atoms by the plasma across the divertor surface was also examined. Light atoms were transported farther than heavy atoms as predicted by impurity transport models

  19. Engineering challenges and development of the ITER Blanket System and Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Merola, Mario, E-mail: mario.merola@iter.org; Escourbiac, Frederic; Raffray, Alphonse Rene; Chappuis, Philippe; Hirai, Takeshi; Gicquel, Stefan

    2015-10-15

    The ITER Blanket System and the Divertor are the main components which directly face the plasma. Being the first physical barrier to the plasma, they have very demanding design requirements, which include accommodating: (1) surface heat flux and neutronic volumetric heating, (2) electromagnetic loads, (3) nuclear shielding function, (4) capability of being assembled and remote-handled, (5) interfaces with other in-vessel components, and (6) high heat flux technologies and complex welded structures in the design. The main functions of the Blanket System have been substantially expanded and it has now also to provide limiting surfaces that define the plasma boundary during startup and shutdown. As regards the Divertor, the ITER Council decided in November 2013 to start the ITER operation with a full-tungsten armour in order to minimize costs and already gain operational experience with tungsten during the non-active phase of the machine. This paper gives an overview of the design and technology qualification of the Blanket System and the Divertor.

  20. Use of isotopically-enriched carbon probes for erosion/deposition measurements in the ASDEX divertor

    International Nuclear Information System (INIS)

    Roberto, J.B.; Roth, J.; Taglauer, E.; Holland, O.W.

    1984-01-01

    An isotopic marker technique has been developed and used to measure near-surface erosion and carbon and impurity deposition on graphite samples in the ASDEX divertor chamber. Papyex graphite strips were enriched to approx. 20% 13 C over the first 1000 A by ion implantation. The implanted 13 C can be clearly distinguished from 12 C of the host by Rutherford backscattering using 2.7 MeV 4 He. Carbon erosion and deposition were determined from changes in the depth distribution of the 13 C, and impurity accumulation was also monitored in the backscattering spectrum. The 13 C profiles remained sharp in spite of high heat fluxes to the samples (sufficient to melt stainless steel), and the results showed clear evidence of simultaneous erosion and deposition of carbon and impurities. During 2.4 MW neutral injection, net carbon erosion exceeded 250 A/s in the divertor throat. High carbon erosion was also observed during periods of substantial Fe and Ti impurity accumulation on the samples. The results demonstrate the applicability of the 13 C technique for measuring erosion/deposition at high-heat-flux surfaces such as limiters or divertor plates

  1. Neutral gas flows in fusion devices with finite Knudsen numbers

    International Nuclear Information System (INIS)

    May, C.

    1997-12-01

    The effects of neutral particles on the conditions of the plasma edge play a key role in divertor and limiter physics. In computational models they are usually treated in the linear test particle approximation or in the fluid limit. However, in some divertor concepts a large neutral gas pressure is required in the divertor chamber to provide sufficient neutral-plasma interaction in the plasma fan (momentum removal and energy dissipation) and to permit adequate pumping performance. In such regimes visous effects in the neutral gas may become relevant. The linear Monte Carlo Code for neutral gas transport in fusion plasmas is extended by a non-linear BGK collision integral. The new features of the model are tested against analytical solutions, and are applied to an ITER divertor configuration. This, for the first time, allows to assess the issue of momentum removal from the divertor fan through the gas in the divertor chamber for real configurations. As expected, we find a partial thermalization between atoms and molecules. Momentum sources seem to be redistributed in the plasma fan due to viscous forces in the gas. Possible consequences for the design are discussed. (orig.)

  2. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    Energy Technology Data Exchange (ETDEWEB)

    Allain, Jean Paul [Univ. of Illinois, Champaign, IL (United States)

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  3. Charge state of sputtered impurity ions near a limiter or divertor in a tokamak

    International Nuclear Information System (INIS)

    Boley, C.D.; Brooks, J.N.; Kim, Y.K.

    1983-03-01

    Many impurity atoms sputtered from a limiter or divertor plate are ionized in the scrapeoff zone and return to the sputtering surface bacause of friction with incoming plasma ions. The final charge state attained by such impurities has been calculated for a variety of plasma edge conditions. The surface materials considered are tungsten, beryllium, beryllium oxide, and carbon. Estimates of the successive ionization cross sections for tungsten are developed. In all cases examined, returning impurity ions are found to be multiply ionized. This implies a significant energy gain in the sheath region, with important implications for self-sputtering of redeposited surface material

  4. 9. European fusion theory conference. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    The aim of the conference was to provide a discussion forum covering all areas of magnetic fusion-oriented theoretical activities in Europe. The following main topics are included: multidimensional equilibria and operational limits; magnetic topology, macroinstabilities and magnetic reconnection; microinstabilities, turbulence, structures and transport processes; plasma rotation and radial electric fields; RF heating, current drive, helicity injection and non-resonant forces; plasma edge and divertor physics; computational modelling in magnetic fusion research. (LN)

  5. Tritium inventory and recovery in next-step fusion devices

    International Nuclear Information System (INIS)

    Causey, R.A.; Brooks, J.N.; Federici, G.

    2002-01-01

    Future fusion devices will use tritium and deuterium fuel. Because tritium is both radioactive and expensive, it is absolutely necessary that there be an understanding of the tritium retention characteristics of the materials used in these devices as well as how to recover the tritium. There are three materials that are strong candidates for plasma-facing-material use in next-step fusion devices. These are beryllium, tungsten, and carbon. While beryllium has the disadvantage of high sputtering and low melting point (which limits its power handling capabilities in divertor areas), it has the advantages of being a low-Z material with a good thermal conductivity and the ability to get oxygen from the plasma. Due to beryllium's very low solubility for hydrogen, implantation of beryllium with deuterium and tritium results in a saturated layer in the very near-surface with limited inventory (J. Nucl. Mater. 273 (1999) 1). Unfortunately, there are nuclear reactions generated by neutrons that will breed tritium and helium in the material bulk (J. Nucl. Mater. 179 (1991) 329). This process will lead to a substantial tritium inventory in the bulk of the beryllium after long-term neutron exposure (i.e. well beyond the operation life time of a next-step reactor like ITER). Tungsten is a high-Z material that will be used in the divertor region of next-step devices (e.g. ITER) and possibly as a first wall material in later devices. The divertor is the preferred location for tungsten use because net erosion is very low there due to low sputtering and high redeposition. While experiments are still continuing on tritium retention in tungsten, present data suggest that relatively low tritium inventories will result with this material (J. Nucl. Mater. 290-293 (2001) 505). For tritium inventories, carbon is the problem material. Neutron damage to the graphite can result in substantial bulk tritium retention (J. Nucl. Mater. 191-194 (1992) 368), and codeposition of the sputtered carbon

  6. Biosensing of BCR/ABL fusion gene using an intensity-interrogation surface plasmon resonance imaging system

    Science.gov (United States)

    Wu, Jiangling; Huang, Yu; Bian, Xintong; Li, DanDan; Cheng, Quan; Ding, Shijia

    2016-10-01

    In this work, a custom-made intensity-interrogation surface plasmon resonance imaging (SPRi) system has been developed to directly detect a specific sequence of BCR/ABL fusion gene in chronic myelogenous leukemia (CML). The variation in the reflected light intensity detected from the sensor chip composed of gold islands array is proportional to the change of refractive index due to the selective hybridization of surface-bound DNA probes with target ssDNA. SPRi measurements were performed with different concentrations of synthetic target DNA sequence. The calibration curve of synthetic target sequence shows a good relationship between the concentration of synthetic target and the change of reflected light intensity. The detection limit of this SPRi measurement could approach 10.29 nM. By comparing SPRi images, the target ssDNA and non-complementary DNA sequence are able to be distinguished. This SPRi system has been applied for assay of BCR/ABL fusion gene extracted from real samples. This nucleic acid-based SPRi biosensor therefore offers an alternative high-effective, high-throughput label-free tool for DNA detection in biomedical research and molecular diagnosis.

  7. Deuterium retention in the divertor tiles of JET ITER-Like wall

    Directory of Open Access Journals (Sweden)

    A. Lahtinen

    2017-08-01

    Full Text Available Divertor tiles removed after the second JET ITER-Like Wall campaign 2013–2014 (ILW-2 were studied using Secondary Ion Mass Spectrometry (SIMS. Measurements show that the thickest beryllium (Be dominated deposition layers are located at the upper part of the inner divertor and are up to ∼40µm thick at the lower part of Tile 0 exposed in 2011–2014. The highest deuterium (D amounts (>8 · 1018at./cm2, in contrast, were found on the upper part of Tile 1 (2013–2014, where the Be deposits are ∼10µm thick. D was mainly retained in the near-surface layer of the Be deposits but also deeper in tungsten (W and molybdenum (Mo layers of the marker coated tiles, especially at W–Mo layer interfaces. D retention for the ILW-2 divertor tiles is higher than for the first campaign 2011–2012 (ILW-1 and probable reasons for the difference are that SIMS measurements for the ILW-2 samples were done deeper than for the ILW-1 samples, some of the tiles were exposed during both ILW-1 and ILW-2 and therefore had a longer exposure time, and the differences between ILW-1 and ILW-2 campaigns e.g. in strike point distributions and injected powers.

  8. A new divertor plates design concept for the double null NET configuration

    International Nuclear Information System (INIS)

    Farfaletti-Casali, F.; Renda, V.; Federici, G.; Papa, L.

    1986-01-01

    A new divertor plate design concept for the Double Null NET configuration (NET-DN) is presented. This concept applies to the plasma configuration of NET and takes advantage by the maintenance scheme of the internal components adopted in NET. According to this maintenance approach, which uses the top loading of the internal segments, 48 inboard removable segments, 3 for each of the 16 reactor sectors, act as simple protective panels, gathering together in only one piece the plates of both the upper and lower divertor regions and the intermediate portion of the inboard first wall. They are cooled by water flowing inside a set of hairpin-shaped, stainless steel tubes, arranged in poloidal direction inside a copper heat sink, and fed by supply lines at the top of the reactor. The surface facing the plasma is covered by a tungsten alloy layer. In such a way, the maintenance of the two divertor regions and of the inboard first wall can be easily achieved by removing the inboard panels from the top of the reactor. The layout of the cooling system and preliminary thermohydraulics and thermomechanical calculations, carried out for assessing the feasibility of the proposed system for the NET reference configuration, are reported in this paper. (author)

  9. High heat flux Langmuir probe array for the DIII-D divertor platesa)

    Science.gov (United States)

    Watkins, J. G.; Taussig, D.; Boivin, R. L.; Mahdavi, M. A.; Nygren, R. E.

    2008-10-01

    Two modular arrays of Langmuir probes designed to handle a heat flux of up to 25 MW/m2 for 10 s exposures have been installed in the lower divertor target plates of the DIII-D tokamak. The 20 pyrolytic graphite probe tips have more than three times higher thermal conductivity and 16 times larger mass than the original DIII-D isotropic graphite probes. The probe tips have a fixed 12.5° surface angle to distribute the heat flux more uniformly than the previous 6 mm diameter domed collectors and a symmetric "rooftop" design to allow operation with reversed toroidal magnetic field. A large spring-loaded contact area improves heat conduction from each probe tip through a ceramic insulator into a cooled graphite divertor floor tile. The probe tips, brazed to molybdenum foil to ensure good electrical contact, are mounted in a ceramic tray for electrical isolation and reliable cable connections. The new probes are located 1.5 cm radially apart in a staggered arrangement near the entrance to the lower divertor pumping baffle and are linearly spaced 3 cm apart on the shelf above the in-vessel cryopump. Typical target plate profiles of Jsat, Te, and Vf with 4 mm spatial resolution are shown.

  10. High heat flux Langmuir probe array for the DIII-D divertor plates.

    Science.gov (United States)

    Watkins, J G; Taussig, D; Boivin, R L; Mahdavi, M A; Nygren, R E

    2008-10-01

    Two modular arrays of Langmuir probes designed to handle a heat flux of up to 25 MW/m(2) for 10 s exposures have been installed in the lower divertor target plates of the DIII-D tokamak. The 20 pyrolytic graphite probe tips have more than three times higher thermal conductivity and 16 times larger mass than the original DIII-D isotropic graphite probes. The probe tips have a fixed 12.5 degree surface angle to distribute the heat flux more uniformly than the previous 6 mm diameter domed collectors and a symmetric "rooftop" design to allow operation with reversed toroidal magnetic field. A large spring-loaded contact area improves heat conduction from each probe tip through a ceramic insulator into a cooled graphite divertor floor tile. The probe tips, brazed to molybdenum foil to ensure good electrical contact, are mounted in a ceramic tray for electrical isolation and reliable cable connections. The new probes are located 1.5 cm radially apart in a staggered arrangement near the entrance to the lower divertor pumping baffle and are linearly spaced 3 cm apart on the shelf above the in-vessel cryopump. Typical target plate profiles of J(sat), T(e), and V(f) with 4 mm spatial resolution are shown.

  11. Effects of neutral gas collisions on the power transmission factor at the divertor sheath

    International Nuclear Information System (INIS)

    Futch, A.H.; Matthews, G.F.; Buchenauer, D.; Hill, D.N.; Jong, R.A.; Porter, G.D.

    1992-01-01

    We show that charge-exchange and other ion-neutral collision can reduce the power transmission factor of the plasma sheath, thereby lowering the ion impact energy and target plate sputtering. The power transmission factor relates the heat flux reaching the divertor target to the plasma density and temperature just in front of the surface: δ=Q surf /J ew k T e . Experimental data from the DIII-D tokamak suggests that δ could be as low as 2-3 near the region of peak divertor particle flux, instead of the 7-8 expected from usual sheath theory. Several effects combine to allow ion-neutral interactions to be important in the divertor plasma sheath. The shallow angle of incidence of the magnetic field (1-3deg in DIII-D) leads to the spatial extension of the sheath from approximately ρ i ∝1 mm normal to the plate to several centimeters along the field lines. Ionization reduces the sheath potential, and collisions reduce the ion impact energy. (orig.)

  12. Fluctuations measured by flush mounted versus proud divertor Langmuir probes - why are they different?

    Science.gov (United States)

    Garcia, O. E.; Kuang, A. Q.; Brunner, D.; Labombard, B.; Kube, R.

    2017-10-01

    A flush-mounted, toroidally-elongated, and field-aligned divertor `rail' Langmuir probe array was installed in Alcator C-Mod in 2015. This geometry is heat flux tolerant and effectively mitigates sheath expansion effects down to incident field line angles of 0.5 degree. Further complications have arisen that cannot be explained by sheath-expansion. In particular, the `rail' probe geometry measures significantly higher plasma fluctuation levels in the common flux region compared to traditional proud probes, whereas they are similar in the private flux zone. In some instances, the amplitudes of ion saturation current fluctuations normalized to the mean are a factor of 2 higher; probability distribution functions correspondingly record large amplitude events that are not seen by the proud probes. This discrepancy also appears to depend on divertor plasma regime. For example, fluctuations become similar near the strikepoint when the electron temperature is low. To ensure that these discrepancies were not due to perturbations caused by the voltage bias or currents collected by the probes, the two Langmuir probe systems were left to `float' and the fluctuation statistics analyzed. Yet, even in this non-perturbative situation, there exist clear differences in the fluctuation characteristics. The raises two questions: how does the probe geometry affect plasma fluctuations measurements and what are the true plasma fluctuations experienced by the divertor surface? Supported by USDoE awards DE-FC02-99ER54512.

  13. A new divertor plates design concept for the double null net configuration

    International Nuclear Information System (INIS)

    Farfaletti-Casali, F.; Iop, O.; Renda, V.; Federici, G.; Papa, L.

    1987-01-01

    A new divertor plate design concept for the Double Null NET configuration (NET-DN) is presented in this paper. This concept applies to the plasma configuration of NET and takes advantage by the maintenance scheme of the internal components adopted in NET. According to this maintenance approach, which uses the top loading of the internal segments, 48 inboard removable segments, 3 for each of the 16 reactor sectors, act as simple protective panels, gathering together in only one piece the plates of both the upper and lower divertor regions and the intermediate portion of the inboard first wall. They are cooled by water flowing inside a set of hairpin-shaped, stainless steel tubes, arranged in poloidal direction inside a copper heat sink, and fed by supply lines at the top of the reactor. The surface facing the plasma is covered by a tungsten alloy layer. In such a way, the maintenance of the two divertor regions and of the inboard first wall can be easily achieved by removing the inboard panels from the top of the reactor. The layout of the cooling system and preliminary thermohydraulics and thermomechanical calculations, carried out for assessing the feasibility of the proposed system for the NET reference configuration, are reported in this paper

  14. The impact of the biasing radial electric field on the SOL in a divertor tokamak

    International Nuclear Information System (INIS)

    Rozhansky, V.; Tendler, M.

    1993-01-01

    Strong radial electric field can be induced within the SOL in a divertor tokamak by applying a voltage to divertor plates with respect to the first wall. This biasing scheme results in the strong radial electric field which is much larger than the natural electric field, usually of the order T e /e. Experiments employing this biasing scheme were carried out on the tokamak TdeV. Many interesting effects such as - modifications of the density profile and radial transport of impurities as a function of the polarity and the magnitude of the biasing voltage, the generation of the flux surface average toroidal rotation proportional to the applied voltage, redistribution of the plasma outflow onto divertor plates and so on - were demonstrated to result from the biasing. Furthermore, in contrast to studies carried out employing a different biasing scheme which primarily results in a poloidal electric field, the strong radial electric field impacts more significantly within SOL than the poloidal electric field. Here, we aim to show that the main effects observed experimentally follow from the analysis, provided continuity and momentum balances are employed invoking anomalous viscosity and inertia. (author) 4 refs

  15. Multicriteria selection in concept design of a divertor remote maintenance port in the EU DEMO reactor using an AHP participative approach

    Energy Technology Data Exchange (ETDEWEB)

    Carfora, D. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Gironimo, G. Di, E-mail: giuseppe.digironimo@unina.it [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Esposito, G. [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Huhtala, K. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Määttä, T.; Mäkinen, H. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Miccichè, G. [ENEA Brasimone, I:40032 Camugnano (Italy); Mozzillo, R. [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy)

    2016-11-15

    Highlights: • Concept Studies in Divertor Remote Handling. • Prioritization of concept alternatives. • Comparison and evaluation of product alternatives using AHP. - Abstract: The work behind this paper took place in the Eurofusion remote maintenance system project (WPRM) for the EU Demonstration Fusion Power Reactor (DEMO). Following ITER, the aim of DEMO is to demonstrate the capability of generating several hundreds of MW of net electricity by 2050. The main objective of this paper was the study of the most efficient design of the maintenance port for replacing the divertor cassettes in a Remote Handling (RH) point of view. In DEMO overall design, one important consideration is the availability and short down time operations. The inclination of the divertor port has a very important impact on all the RH tasks such as the design of the divertor mover, the divertor locking systems and the end effectors. The current reference scenario of the EU DEMO foresees a 45° inclined port for the remote maintenance (RM) of the divertor in the lower part of the reactor. Nevertheless, in the optic of the systems engineering (SE) approach, in early concept design phase, all possible configurations shall be taken into account. Even the solutions which seem not feasible at all need to be investigated, because they could lead to new and innovative engineering proposals. The different solutions were compared using an approach based on the Analytic Hierarchy Process (AHP). The technique is a multi-criteria decision making approach in which the factors that are important in making a decision are arranged in a hierarchic structure. The results of these studies show how the application of the AHP improved and focused the selection on the concept which is closer to the requirements arose from technical meetings with the experts of the RH field.

  16. PISCES program plasma-surface interactions research

    International Nuclear Information System (INIS)

    1989-05-01

    This paper discusses the following about the Pisces program: Major objectives of the program; Staff in the PISCES program at UCLA; Highlights in the program; Collaborations with other institutions; PISCES-A facility; PISCES-B facility; Fast scanning Langmuir probe; Omegatron mass spectrometer; Spectroscopic diagnostics; Data acquisition system; Redeposition effect on carbon chemical erosion; Erosion of carbon tokamakium from TFTR; Effect of boron-doping on carbon chemical erosion; Radiation enhanced sublimation of carbon; Surface analysis of TEXTOR titles; Spectroscopic analysis of carbon impurities; Biased limiter and divertor; Biased divertor channel; Gaseous divertor experiments; Presheath profile measurements; Particle transport in CCT tokamak; and Biased divertor experiments in CCT

  17. Resonant island divertor experiments on text

    International Nuclear Information System (INIS)

    deGrassie, J.S.; Evans, T.E.; Jackson, G.L.

    1988-09-01

    The first experimental tests of the resonant island divertor (RID) concept have been carried out on the Texas Experimental Tokamak (TEXT). Modular perturbation coils produce static resonant magnetic fields at the tokamak boundary. The resulting magnetic islands are used to guide heat and particle fluxes around a small scoop limiter head. An enhancement in the limiter collection efficiency over the nonisland operation, as evidenced by enhanced neutral density within the limiter head, of up to a factor of 4 is obtained. This enhancement is larger than one would expect given the measured magnitude of the cross-field particle transport in TEXT. It is proposed that electrostatic perturbations occur which enhance the ion convection rate around the islands. Preliminary experiments utilizing electron cyclotron heating (ECH) in conjunction with RID operation have also have been performed. 6 refs., 3 figs

  18. Metallurgical Bonding Development of V-4Cr-4Ti Alloy for the DIII-D Radiative Divertor Program

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Trester, P.W.

    1998-01-01

    General Atomics (GA), in conjunction with the Department of Energy's (DOE) DIII-D Program, is carrying out a plan to utilize a vanadium alloy in the DIII-D tokamak as part of the DIII-D Radiative Divertor (RD) upgrade. The V-4Cr-4Ti alloy has been selected in the U.S. as the leading candidate vanadium alloy for fusion applications. This alloy will be used for the divertor fabrication. Manufacturing development with the V-4Cr-4Ti alloy is a focus of the DIII-D RD Program. The RD structure, part of which will be fabricated from V-4Cr-4Ti alloy, will require many product forms and types of metal/metal bonded joints. Metallurgical bonding methods development on this vanadium alloy is therefore a key area of study by GA. Several solid state (non-fusion weld) and fusion weld joining methods are being investigated. To date, GA has been successful in producing ductile, high strength, vacuum leak tight joints by all of the methods under investigation. The solid state joining was accomplished in air, i.e., without the need for a vacuum or inert gas environment to prevent interstitial impurity contamination of the V-4Cr-4Ti alloy

  19. Design of divertor impurity monitoring system for ITER. 2

    International Nuclear Information System (INIS)

    Sugie, Tatsuo; Ogawa, Hiroaki; Ebisawa, Katsuyuki; Ando, Toshiro; Kasai, Satoshi; Katsunuma, Atsushi; Maruo, Mitsumasa; Kita, Yoshio

    1998-11-01

    The divertor impurity monitoring system of ITER has been designed. The main functions of this system are to identify impurity species and to measure the two-dimensional distributions of the particle influxes in the divertor plasmas. The wavelength range is 200 nm to 1000 nm. The viewing fans are realized by molybdenum mirrors located in the divertor cassette. With additional viewing fans seeing through the gap between the divertor cassettes, the region approximately from the divertor leg to the x-point will be observed. The light from the divertor region passes through the quartz windows on the divertor port plug and the cryostat, and goes through the dog-leg optics in the biological shield. Three different type of spectrometers: (i) survey spectrometers for impurity species monitoring, (ii) filter spectrometers for the particle influx measurement with the spatial resolution of 10 mm and the time resolution of 1 ms and (iii) high dispersion spectrometers for high resolution wavelength measurements are designed. These spectrometers are installed just behind the biological shield (for λ < 450 nm) to prevent the transmission loss in fiber and in the diagnostic room (for λ ≥ 450 nm) from the point of view of accessibility and flexibility. The optics have been optimized by a ray trace analysis. As a result, 10-15 mm spatial resolution will be achieved in all regions of the divertor. In addition, the measurable limit, the neutron and γ-ray irradiation effect on windows, a calibration method, an alignment method, a remote handling method and a data acquisition method are considered. (author)

  20. Design of divertor impurity monitoring system for ITER

    International Nuclear Information System (INIS)

    Sugie, Tatsuo; Ogawa, Hiroaki; Ando, Toshiro; Kasai, Satoshi; Katsunuma, Jun; Maruo, Mitsumasa.

    1996-12-01

    The divertor impurity monitoring system of ITER has been designed. The main objectives of this system are to identify impurity species and to measure two-dimensional distributions of particle influxes in the divertor plasma. This system, which is one of the most important diagnostic systems for plasma control of ITER, is nominated for the start-up set of ITER diagnostics. The conceptual design, the optical design and the mechanical design are mainly carried out. In order to satisfy the required measurements, three deferent type of spectral systems are selected corresponding to each objectives. First is the spectral system for impurity species monitoring. Second is the spectral system for particle influx measurement with spatial and time resolution. Third is the spectral system with high dispersion for particle energy distribution measurement in the divertor. The divertor impurity monitoring system is composed of these three systems. The two-dimensional measurement in the divertor is carried out with two viewing fans intersected each other. These viewing fans are realized by metallic mirrors (made of molybdenum or copper) sitting in the divertor cassette. In the optical design, the optimization of the optical system from the divertor to the spectrometer are carried out by using ray trace analysis. As the result, it is difficult to satisfy the spatial resolution of 3 mm in the divertor region. About 10 mm resolution will be reasonable. In addition, the measurable limit, the neutron and γ-ray irradiation effect on the optical fiber, the remote handling concept and the space requirement are considered preliminarily. The necessary design works during EDA, and necessary R and D are also listed. (author)

  1. Progress in the design, R and D and procurement preparation of the ITER Divertor Remote Handling System

    Energy Technology Data Exchange (ETDEWEB)

    Esqué, Salvador, E-mail: Salvador.Esque@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Hille, Carine van; Ranz, Roberto; Damiani, Carlo [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Palmer, Jim; Hamilton, David [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France)

    2014-10-15

    Highlights: •The ITER Divertor Remote Handling System (DRHS) reference design is presented. •Different R and D activities that have contributed to the development and validation of the current reference design are reported. •The DRHS turns to be a unique system in terms of complexity due to size of the to-be-handled components, the novelty of the remote operations and the operational conditions. -- Abstract: The ITER Divertor Remote Handling System (DRHS) consists of a number of dedicated remote handling equipment and tooling that will provide the means to perform the exchange of the divertor system in a full-remote way. In order to achieve this objective the DRHS will need to perform a number of novel and complex remote operations in a contaminated and space-constrained environment, in rather poor lightening conditions. Fusion for Energy has recently launched the tendering phase for the in-kind procurement of the DRHS. The procurement is based on a set of system requirements and functional specifications supported by a reference design which are presented and discussed in this paper along with the main outcomes of the different R and D activities that have contributed to the development and validation of the current reference design.

  2. Research proposal on: amplitude modulated reflectometry system for the JET divertor

    International Nuclear Information System (INIS)

    Sanchez, J.; Branas, B.; Estrada, T.; Luna, E. de la

    1992-01-01

    Amplitude Modulated reflectometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been present in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps in the phase signal, which are a big problem when the phase values are much larger than 2π The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad- band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectometry, used for onospheric studies and recently also proposed for fusion plasmas. The main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts ( ∼ 2π ). (Author) 2 refs

  3. Powder Injection Molding for mass production of He-cooled divertor parts

    International Nuclear Information System (INIS)

    Antusch, S.; Norajitra, P.; Piotter, V.; Ritzhaupt-Kleissl, H.-J.

    2011-01-01

    A He-cooled divertor for future fusion power plants has been developed at KIT. Tungsten and tungsten alloys are presently considered the most promising materials for functional and structural divertor components. The advantages of tungsten materials lie, e.g. in the high melting point, and low activation, the disadvantages are high hardness and brittleness. The machinig of tungsten, e.g. milling, is very complex and cost-intensive. Powder Injection Molding (PIM) is a method for cost effective mass production of near-net-shape parts with high precision. The complete W-PIM process route is outlined and, results of product examination discussed. A binary tungsten powder feedstock with a grain size distribution in the range 0.7-1.7 μm FSSS, and a solid load of 50 vol.% was developed. After heat treatment, the successfully finished samples showed promising results, i.e. 97.6% theoretical density, a grain size of approximately 5 μm, and a hardness of 457 HV0.1.

  4. Improving concept design of divertor support system for FAST tokamak using TRIZ theory and AHP approach

    International Nuclear Information System (INIS)

    Di Gironimo, G.; Carfora, D.; Esposito, G.; Labate, C.; Mozzillo, R.; Renno, F.; Lanzotti, A.; Siuko, M.

    2013-01-01

    Highlights: • Optimization of the RH system for the FAST divertor using TRIZ. • Participative design approach using virtual reality. • Comparison of product alternatives in an immersive virtual reality environment. • Prioritization of concept alternatives based on AHP. -- Abstract: The paper focuses on the application of the Theory of Inventive Problem Solving (TRIZ) to divertor Remote Handling (RH) issues in Fusion Advanced Studies Torus (FAST), a satellite tokamak acting as a test bed for the study and the development of innovative technologies oriented to ITER and DEMO programs. The objective of this study consists in generating concepts or solutions able to overcome design and technical weak points in the current maintenance procedure. Two different concepts are designed with the help of a parametric CAD software, CATIA V5, using a top-down modeling approach; kinematic simulations of the remote handling system are performed using Digital Mock-Up (DMU) capabilities of the software. The evaluation of the concepts is carried out involving a group of experts in a participative design approach using virtual reality, classifying the concepts with the help of the Analytical Hierarchy Process (AHP)

  5. A practical globalization of one-shot optimization for optimal design of tokamak divertors

    Energy Technology Data Exchange (ETDEWEB)

    Blommaert, Maarten, E-mail: maarten.blommaert@kuleuven.be [Institute of Energy and Climate Research (IEK-4), FZ Jülich GmbH, D-52425 Jülich (Germany); Dekeyser, Wouter; Baelmans, Martine [KU Leuven, Department of Mechanical Engineering, 3001 Leuven (Belgium); Gauger, Nicolas R. [TU Kaiserslautern, Chair for Scientific Computing, 67663 Kaiserslautern (Germany); Reiter, Detlev [Institute of Energy and Climate Research (IEK-4), FZ Jülich GmbH, D-52425 Jülich (Germany)

    2017-01-01

    In past studies, nested optimization methods were successfully applied to design of the magnetic divertor configuration in nuclear fusion reactors. In this paper, so-called one-shot optimization methods are pursued. Due to convergence issues, a globalization strategy for the one-shot solver is sought. Whereas Griewank introduced a globalization strategy using a doubly augmented Lagrangian function that includes primal and adjoint residuals, its practical usability is limited by the necessity of second order derivatives and expensive line search iterations. In this paper, a practical alternative is offered that avoids these drawbacks by using a regular augmented Lagrangian merit function that penalizes only state residuals. Additionally, robust rank-two Hessian estimation is achieved by adaptation of Powell's damped BFGS update rule. The application of the novel one-shot approach to magnetic divertor design is considered in detail. For this purpose, the approach is adapted to be complementary with practical in parts adjoint sensitivities. Using the globalization strategy, stable convergence of the one-shot approach is achieved.

  6. Research proposal on: amplitude modulated reflectometry system for the JET divertor

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J.; Branas, B.; Estrada, T.; Luna, E. de la

    1992-07-01

    Amplitude Modulated reflectometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been present in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps in the phase signal, which are a big problem when the phase values are much larger than 2{pi} The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad- band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectometry, used for onospheric studies and recently also proposed for fusion plasmas. The main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts ( {approx} 2{pi} ). (Author) 2 refs.

  7. Thermal fatigue damage in monofilament reinforced copper for heat sink applications in divertor elements

    Science.gov (United States)

    Schöbel, M.; Jonke, J.; Degischer, H. P.; Paffenholz, V.; Brendel, A.; Wimpory, R. C.; Di Michiel, M.

    2011-02-01

    In fusion reactor systems extreme conditions require materials with high temperature and radiation resistance. The divertor component consists of a plasma facing W plate attached to a Cu heat sink to extract the heat from the nuclear reaction chamber coolant. The Coefficient of Thermal Expansion (CTE) mismatch between the W plate and the Cu heat sink causes interface delamination reducing the long term stability of the divertor. To avert this problem, composites are developed as interlayer materials with a high thermal conducting Cu matrix reinforced with up to 50 vol.% SiC or W monofilaments to increase the mechanical strength and to reduce the CTE mismatch. Thermal stresses are transferred from the macroscopic interface between the components into the bulk of the composite. Oscillating micro stresses may lead to fiber delamination and matrix damage during thermal cycling. Different matrix alloys, fiber materials and interface designs are investigated. In situ neutron diffraction performed during thermal cycling show the effect of bonding strength on the stress amplitudes expected under service conditions. The long term stability is tested by measurements after further ex situ cycling. Thermal fatigue damage and its propagation are visualized by in situ as well as ex situ high resolution synchrotron tomography. The combination of both methods helps to understand the strain induced damage mechanisms. Weak bonding leads to delamination of the fiber-matrix interfaces. Strong bonding causes severe matrix deformation and damage. Fiber cracks originating from sample production cause accumulating thermal fatigue damage during thermal cycling.

  8. Integrated simulations of H-mode operation in ITER including core fuelling, divertor detachment and ELM control

    Science.gov (United States)

    Polevoi, A. R.; Loarte, A.; Dux, R.; Eich, T.; Fable, E.; Coster, D.; Maruyama, S.; Medvedev, S. Yu.; Köchl, F.; Zhogolev, V. E.

    2018-05-01

    ELM mitigation to avoid melting of the tungsten (W) divertor is one of the main factors affecting plasma fuelling and detachment control at full current for high Q operation in ITER. Here we derive the ITER operational space, where ELM mitigation to avoid melting of the W divertor monoblocks top surface is not required and appropriate control of W sources and radiation in the main plasma can be ensured through ELM control by pellet pacing. We apply the experimental scaling that relates the maximum ELM energy density deposited at the divertor with the pedestal parameters and this eliminates the uncertainty related with the ELM wetted area for energy deposition at the divertor and enables the definition of the ITER operating space through global plasma parameters. Our evaluation is thus based on this empirical scaling for ELM power loads together with the scaling for the pedestal pressure limit based on predictions from stability codes. In particular, our analysis has revealed that for the pedestal pressure predicted by the EPED1  +  SOLPS scaling, ELM mitigation to avoid melting of the W divertor monoblocks top surface may not be required for 2.65 T H-modes with normalized pedestal densities (to the Greenwald limit) larger than 0.5 to a level of current of 6.5–7.5 MA, which depends on assumptions on the divertor power flux during ELMs and between ELMs that expand the range of experimental uncertainties. The pellet and gas fuelling requirements compatible with control of plasma detachment, core plasma tungsten accumulation and H-mode operation (including post-ELM W transient radiation) have been assessed by 1.5D transport simulations for a range of assumptions regarding W re-deposition at the divertor including the most conservative assumption of zero prompt re-deposition. With such conservative assumptions, the post-ELM W transient radiation imposes a very stringent limit on ELM energy losses and the associated minimum required ELM frequency. Depending on

  9. The effect of resonant magnetic perturbations on the divertor heat and particle fluxes in MAST

    Czech Academy of Sciences Publication Activity Database

    Thornton, A.J.; Kirk, A.; Cahyna, Pavel; Chapman, I.T.; Harrison, J.R.; Liu, Y.

    2014-01-01

    Roč. 54, č. 6 (2014), 064011-064011 ISSN 0029-5515. [International Workshop on Stochasticity in Fusion Plasmas /6./. Jülich, 18.03.2013-20.03.2013] R&D Projects: GA ČR GAP205/11/2341 Institutional support: RVO:61389021 Keywords : divertor * edge localized mode * resonant magnetic perturbation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.062, year: 2014 http://iopscience.iop.org/0029-5515/54/6/064011/pdf/0029-5515_54_6_064011.pdf

  10. Experimental tests concerning the use of the tungsten-copper couple design concept on the divertor system

    International Nuclear Information System (INIS)

    Brossa, F.; Ghiselli, P.; Tommei, G.; Piatti, G.; Schiller, P.

    1983-01-01

    The technique of brazing tungsten armour to the Cu heat sink to form divertor plates for the INTOR fusion reactor raises fabrication problems to bypass thermal stresses produced by the high thermal flux and the differences in the thermal expansion of the two components. To demonstrate that Cu-W structures are able to withstand the anticipated operating conditions, large Cu-W samples have been prepared by means of different techniques. Samples have been studied before and after thermal cycling (10 4 cycles). (author)

  11. Optimization of tungsten castellated structures for the ITER divertor

    Czech Academy of Sciences Publication Activity Database

    Litnovsky, A.; Hellwig, M.; Matveev, D.; Komm, Michael; van den Berg, M.; De Temmerman, G.; Rudakov, D.; Ding, F.; Luo, G.-N.; Krieger, K.; Sugiyama, K.; Pitts, R.A.; Petersson, P.

    2015-01-01

    Roč. 463, August (2015), s. 174-179 ISSN 0022-3115. [PLASMA-SURFACE INTERACTIONS 21: International Conference on Plasma-Surface Interactions in Controlled Fusion Devices. Kanazawa, 26.05.2014-30.05.2014] Institutional support: RVO:61389021 Keywords : plasma * tokamak * ITER Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 2.199, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022311514007909#

  12. Power flux in the ITER divertor tile gaps during ELMs

    Czech Academy of Sciences Publication Activity Database

    Dejarnac, Renaud; Komm, Michael; Gunn, J. P.; Pánek, Radomír

    390-391, - (2009), s. 818-821 ISSN 0022-3115. [International Conference on Plasma-Surface Interactions in Controlled Fusion Devices/18th./. Toledo, 26.05.2008-30.05.2008] R&D Projects: GA AV ČR KJB100430602 Institutional research plan: CEZ:AV0Z20430508 Keywords : Edge modeling * Ion-surface interactions * ITER * Sheaths Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.933, year: 2009

  13. First measurements of electron temperature and density with divertor Thomson Scattering in radiative divertor discharges on DIII-D

    International Nuclear Information System (INIS)

    Allen, S.L.; Hill, D.N.; Carlstrom, T.N.; Nilson, D.G.

    1996-10-01

    We have obtained the first measurements of n e and T e in the DIII-D divertor region with a multi-pulse (20 Hz) Divertor Thomson Scattering (DTS) system. Eight measurement locations are distributed vertically up to 21 cm above the divertor plate. Two-dimensional distributions have been obtained by sweeping the divertor plasma across the DTS measurement location. Several operating modes have been studied, including ohmic, L-mode, Elming H-mode, and Radiative Divertor operation with puffing of D 2 and impurities. Mapping of the data to either the (L pol , φ) or (R, Z) planes with the EFIT equilibrium is used to analyze the 2D profiles. We find that in ELMing H-mode: n e , T e , and P e are relatively constant along field lines from the X-point to the divertor plate, especially near the separatrix field line. With D 2 puffing, the DTS profiles indicate that T e in a large part of divertor region below the X-point is dramatically reduced from ∼30-40 eV in ELMing H-mode to 1-2 eV. This results in a fairly uniform low-T e divertor, with an increased electron density in the range of 2 to 4 x 10 20 m -3 . Detailed comparisons of the spatial profiles of n e , T e , and electron pressure P e , are presented for several operating modes. In addition, these data are compared with initial calculations from the UEDGE fluid code

  14. Testing candidate interlayers for an enhanced water-cooled divertor target

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, David, E-mail: david.hancock@ccfe.ac.uk [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Barrett, Tom; Foster, James; Fursdon, Mike; Keech, Gregory; McIntosh, Simon; Timmis, William [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Rieth, Michael; Reiser, Jens [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2015-10-15

    Highlights: • We introduce an optimised divertor target concept: the “Thermal Break”. • We suggest a candidate interlayer material for this concept: FeltMetal. • We describe a bespoke rig for testing the thermal conductivity of this material. • We present preliminary results for a number of samples. - Abstract: The design of a divertor target for DEMO remains one of the most challenging engineering tasks to be overcome on the path to fusion power. Under the European DEMO programme, a promising concept known as Thermal Break has been developed at CCFE. This concept is a variation of the ITER tungsten divertor in which the pure Copper interlayer between Copper Chrome Zirconium coolant pipe and Tungsten monoblock armour is replaced with a low thermal conductivity compliant interlayer, with the aim of reducing the thermal mismatch stress between the armour and structure. One candidate material for this interlayer is FeltMetal™ (Technetics Group, USA). This material consists of an amorphous matrix of fine copper wires which are sintered onto a thin copper foil, creating a sheet of approximately 1 mm thickness. FeltMetal has been successfully used for many years to provide compliant sliding electrical contacts for the MAST TF coils and on ALCATOR C-Mod and extensive material testing has therefore been undertaken to quantify thermal and mechanical properties. These tests, however, have not been performed under vacuum or DEMO-relevant conditions. A bespoke experimental test rig has therefore been designed and constructed with which to measure the interlayer thermal conductance as a function of temperature and pressure under vacuum conditions. The design of this apparatus and the results of experiments on FeltMetal as well as other candidate interlayers are presented here. In parallel, joint mockups using the candidate interlayers have been prepared and Thermal Break divertor target mockups have been manufactured, requiring the development of a dedicated

  15. Testing candidate interlayers for an enhanced water-cooled divertor target

    International Nuclear Information System (INIS)

    Hancock, David; Barrett, Tom; Foster, James; Fursdon, Mike; Keech, Gregory; McIntosh, Simon; Timmis, William; Rieth, Michael; Reiser, Jens

    2015-01-01

    Highlights: • We introduce an optimised divertor target concept: the “Thermal Break”. • We suggest a candidate interlayer material for this concept: FeltMetal. • We describe a bespoke rig for testing the thermal conductivity of this material. • We present preliminary results for a number of samples. - Abstract: The design of a divertor target for DEMO remains one of the most challenging engineering tasks to be overcome on the path to fusion power. Under the European DEMO programme, a promising concept known as Thermal Break has been developed at CCFE. This concept is a variation of the ITER tungsten divertor in which the pure Copper interlayer between Copper Chrome Zirconium coolant pipe and Tungsten monoblock armour is replaced with a low thermal conductivity compliant interlayer, with the aim of reducing the thermal mismatch stress between the armour and structure. One candidate material for this interlayer is FeltMetal™ (Technetics Group, USA). This material consists of an amorphous matrix of fine copper wires which are sintered onto a thin copper foil, creating a sheet of approximately 1 mm thickness. FeltMetal has been successfully used for many years to provide compliant sliding electrical contacts for the MAST TF coils and on ALCATOR C-Mod and extensive material testing has therefore been undertaken to quantify thermal and mechanical properties. These tests, however, have not been performed under vacuum or DEMO-relevant conditions. A bespoke experimental test rig has therefore been designed and constructed with which to measure the interlayer thermal conductance as a function of temperature and pressure under vacuum conditions. The design of this apparatus and the results of experiments on FeltMetal as well as other candidate interlayers are presented here. In parallel, joint mockups using the candidate interlayers have been prepared and Thermal Break divertor target mockups have been manufactured, requiring the development of a dedicated

  16. In-situ change and repairing method of armour tile made of carbon fiber composite material in divertor

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro.

    1994-01-01

    A joint portion of a damaged armour tile of a carbon fiber composite material and a divertor substrate is locally heated spontaneously to re-melt the soldering. Then, the damaged tile is removed and the portion where the tile is removed is heated again to melt the soldering, then a tile for exchange is joined. Alternatively, a thermosetting type adhesive is coated on the surface of the damaged armour tile made of carbon fiber composite material on the divertor, and a tile for repairing is adhered thereon then the joint surface is locally heated to cure the adhesive. For local heating, for example, high frequency heating or dielectric heating is used. It is preferably conducted by remote handling by using robot arms under vacuum in an vacuum vessel of the thermonuclear device. The operations of the heating and pressurization for the joint surface are preferably repeated for several times. (N.H.)

  17. A Data Fusion Approach for the Production of Impervious Surface Area Estimates Using Sentinel-1 A and Landsat-8 Data

    Science.gov (United States)

    Mantas, Vasco M.; Marques, Joao Carlos; Pereira, Alcides J. S. C.

    2016-08-01

    Urbanization is a global phenomenon driven by multiple complex variables with a broad impact over the health of ecosystems. The often fast pace at which urban development takes place, calls for dynamic and flexible monitoring tools that can provide accurate and meaningful data in a timely manner to all stakeholders. A regional Impervious Surface Area (ISA) product was generated for a test area consisting of a Portuguese river watershed (Mondego river, covering an area with 6670 km2) using a Regression Tree Model. A data fusion approach was used to combine Synthetic Aperture Radar (SAR) (Sentinel-1A) and optical (Landsat-8 OLI) data through Principal Component Analysis.The results clearly show that the introduction of Sentinel-1A data improves the model (Correlation Coefficient of 96.2% and Mean Absolute Error of 2.9%) while reducing the number of rules in the regression tree model (and thus conserving computing power) and the need for ancillary data.

  18. Communication links for fusion reactor maintenance operations

    International Nuclear Information System (INIS)

    Van Uffelen, M.

    2005-01-01

    Different architectures are envisaged for data transmission with fibre optic links in a radiation environment, as proposed in literature for both space and high energy physics applications. Their needs and constraints differ from those encountered for maintenance tasks in the future ITER environment, not only in terms of temperature and radiation levels, but also with respect to transmission speed requirements. Our approach attempts to limit the use of radiation-sensitive electronics for transmission of both digital and/or analogue data to the control room, using glass fibres as transport medium. We therefore assessed the radiation behaviour of a cost-effective fibre optic transmitter at 850 nm, consisting of a PWM (pulse width modulator), a radiation tolerant current driver (previously developed at SCK-CEN) and a VCSEL (Vertical-Cavity Surface Emitting Laser assembly, up to 10 MGy at 60 degrees Celsius. The PWM enables to transform an analogue sensor signal into a pseudo numerical signal, with a pulse width proportional to the incoming signal. The main objective of this task is to contribute to the major design of the maintenance equipment and strategy needed for the remote replacement of the divertor system in the future ITER fusion reactor, with particular attention to the implications of radiation hardening rules and recommendations. Next to the radiation assessment studies of remote handling tools, including actuators and sensors, we also develop radiation tolerant communication links with multiplexing capabilities

  19. Density profile variation in a high recycling divertor in a next step device: comparison of results from analytic and Monte Carlo neutral models and influence on convergence

    International Nuclear Information System (INIS)

    Pacher, H.D.; Pacher, G.W.; D'haeseleer, W.D.

    1993-01-01

    The demonstration of viable regimes for high power operation of next step devices requires 2-D plasma calculations coupled to an appropriate neutral particle treatment. Demonstration of convergence of the coupled code for the relevant parameter range is also required. Previous work, carried out with the B2 code coupled to an analytic model, demonstrated exponentially decreasing residuals as well as plasma particle and energy balance to 10 -6 of the particle flux to the plate and the input power, respectively. To permit comparison with previous work, the geometry chosen in the present paper is that of the ITER CDA divertor (22 MA, R=6 m), double null and having a poloidal X-point to strike-point distance of 1.4 m). All results refer to one outer divertor channel from midplane to divertor plate; the input power P to one outer divertor is 0.4 of the total power to the SOL and 0.05 of the fusion power, and the power per unit area, f p , is given without safety and peaking factors. The mesh has a strongly nonlinear distribution of cells. Results from analytic and Monte Carlo recycling models are compared. In both cases, only DT ions, atoms and molecules are treated but collision frequencies are corrected for impurities. Radial transport coefficients are uniform in space, with χ e =2 m 2 /s and D=χ i =χ e /3. The results apply to the high recycling regime of next step devices. (author) 7 refs., 6 figs

  20. Feasibility study for an engineering concept of a stainless steel/copper divertor plate protected by W-5 Re alloy or graphite armor

    International Nuclear Information System (INIS)

    Renda, V.; Federici, G.; Papa, L.

    1988-01-01

    The latest Joint Research Centre (JRC)-Ispra proposal is presented to support the design of a divertor concept that has long been considered the most crucial component of the plasma impurity control system for the Next Europen Torus (NET) tokamak fusion reactor. Because of the harsh tokamak environment, the divertor panel is the plasma facing component that suffers the most severe loading conditions, such as high thermal stresses, thermal fatigue, severe erosion rates and neutron damage. An analysis of a new divertor panel concept has evolved from the previous studies carried out at JRC-Ispra. The materials considered in this study are AISI 316 stainless steel for the cooling tubes, pure copper for the heat sink, and W-5 Re alloy or graphite for the protective armor. The panel is cooled by pressurized water circulation in U-tubes. A preliminary thermo-hydraulic analysis has been carried out to evaluate a set of reference parameters, such as optimum coolant velocity, maximum outlet water temperature, convective heat exchange coefficient, and the expected pressure drops in the channels. Thermal and mechanical calculations, performed by using the finite element technique, showed encouraging results about the engineering feasibility of the pressure boundary of the divertor for loading conditions similar to those of NET double null, assumed as the reference mainframe

  1. Particle and impurity transport in the Axial Symmetric Divertor Experiment Upgrade and the Joint European Torus, experimental observations and theoretical understanding

    DEFF Research Database (Denmark)

    Angioni, C.; Carraro, L.; Dannert, T.

    2007-01-01

    Experimental observations on core particle and impurity transport from the Axial Symmetric Divertor Experiment Upgrade [O. Gruber, H.-S. Bosch, S. Gunter , Nucl Fusion 39, 1321 (1999)] and the Joint European Torus [J. Pamela, E. R. Solano, and JET EFDA Contributors, Nucl. Fusion 43, 1540 (2003......)] tokamaks are reviewed and compared. Robust general experimental behaviors observed in both the devices and related parametric dependences are identified. The experimental observations are compared with the most recent theoretical results in the field of core particle transport. (C) 2007 American Institute...

  2. Comment on “Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake” [Phys. Plasmas 20, 102507 (2013)

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D., E-mail: ryutov1@llnl.gov; Cohen, R. H.; Rognlien, T. D.; Soukhanovskii, V. A.; Umansky, M. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-05-15

    In the recently published paper “Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake” [Phys. Plasmas 20, 102507 (2013)], the authors raise interesting and important issues concerning divertor physics and design. However, the paper contains significant errors: (a) The conceptual framework used in it for the evaluation of divertor “quality” is reduced to the assessment of the magnetic field structure in the outer Scrape-Off Layer. This framework is incorrect because processes affecting the pedestal, the private flux region and all of the divertor legs (four, in the case of a snowflake) are an inseparable part of divertor operation. (b) The concept of the divertor index focuses on only one feature of the magnetic field structure and can be quite misleading when applied to divertor design. (c) The suggestion to rename the divertor configurations experimentally realized on NSTX (National Spherical Torus Experiment) and DIII-D (Doublet III-D) from snowflakes to X-divertors is not justified: it is not based on comparison of these configurations with the prototypical X-divertor, and it ignores the fact that the NSTX and DIII-D poloidal magnetic field geometries fit very well into the snowflake “two-null” prescription.

  3. The ITER divertor cassette. Steady state characterisation and draining and drying transient hydraulic analyses

    International Nuclear Information System (INIS)

    Pietro Alessandro Di Maio; Valerio Tomarchio; Giuseppe Vella; Irene Zammuto; Giovanni Dell'Orco

    2005-01-01

    Full text of publication follows: The divertor is one of the most challenging components of the next step ITER nuclear fusion reactor. It is aimed at controlling the characteristics of boundary plasma, reducing the impurities in the plasma and sustaining the heat and particle fluxes arising from it, during normal and transient operations as well as during disruption events. The ITER divertor consists of 54 cassettes, each one mainly composed of three Plasma-Facing Components (PFCs), namely the inner vertical target, the outer vertical target and the dome-liner, actively cooled by subcooled pressurized water. Each PFC consists in a number of plasma facing units, cooled in parallel and assembled onto a supporting structure. The water maximum total flow rate, for the whole divertor, should be 1000 kg/s, with 100-150 deg. C inlet/outlet temperatures, 4.2 MPa inlet pressure and a maximum pressure drop of 1.4 MPa. The PFCs are cooled in series, with a maximum water velocity in the channel of 11 m/s, whilst the water coolant is routed via the cassette body. Due to the extremely high heat loads expected onto the PFCs (up to 20 MW/m 2 over 20 s), the hydraulic design of the divertor is particularly demanding. It shall ensure that the foreseen flow rate actually reaches each plasma-facing unit to ensure an adequate cooling and to prevent any risk of Critical Heat Flux (CHF). Sufficient margin ( > 40 %) to avoid the reaching of a CHR limit on the PFCs could be obtained by using hypervapotron design inside the flat channels and swirl flow turbulence tape promoters inside the vertical target cooling tubes. Furthermore the overall pressure drop and flow rate shall be within the specified design limit to avoid an unduly high pumping power. Another important issue is the definition of a proper procedure to drain the coolant and dry the divertor components prior to the maintenance operations as well as to refill them with water after maintenance, ensuring a complete elimination of

  4. The ITER divertor cassette. Steady state characterisation and draining and drying transient hydraulic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Pietro Alessandro Di Maio; Valerio Tomarchio; Giuseppe Vella; Irene Zammuto [Dipartimento di Ingegneria Nucleare, Viale delle Scienze, 90128 Palermo, (Italy); Giovanni Dell' Orco [ENEA-Brasimone, 40032 Camugnano, Bologna (Italy)

    2005-07-01

    Full text of publication follows: The divertor is one of the most challenging components of the next step ITER nuclear fusion reactor. It is aimed at controlling the characteristics of boundary plasma, reducing the impurities in the plasma and sustaining the heat and particle fluxes arising from it, during normal and transient operations as well as during disruption events. The ITER divertor consists of 54 cassettes, each one mainly composed of three Plasma-Facing Components (PFCs), namely the inner vertical target, the outer vertical target and the dome-liner, actively cooled by subcooled pressurized water. Each PFC consists in a number of plasma facing units, cooled in parallel and assembled onto a supporting structure. The water maximum total flow rate, for the whole divertor, should be 1000 kg/s, with 100-150 deg. C inlet/outlet temperatures, 4.2 MPa inlet pressure and a maximum pressure drop of 1.4 MPa. The PFCs are cooled in series, with a maximum water velocity in the channel of 11 m/s, whilst the water coolant is routed via the cassette body. Due to the extremely high heat loads expected onto the PFCs (up to 20 MW/m{sup 2} over 20 s), the hydraulic design of the divertor is particularly demanding. It shall ensure that the foreseen flow rate actually reaches each plasma-facing unit to ensure an adequate cooling and to prevent any risk of Critical Heat Flux (CHF). Sufficient margin ( > 40 %) to avoid the reaching of a CHR limit on the PFCs could be obtained by using hypervapotron design inside the flat channels and swirl flow turbulence tape promoters inside the vertical target cooling tubes. Furthermore the overall pressure drop and flow rate shall be within the specified design limit to avoid an unduly high pumping power. Another important issue is the definition of a proper procedure to drain the coolant and dry the divertor components prior to the maintenance operations as well as to refill them with water after maintenance, ensuring a complete

  5. Neutron diffraction stress determination in W-laminates for structural divertor applications

    Directory of Open Access Journals (Sweden)

    R. Coppola

    2015-07-01

    Full Text Available Neutron diffraction measurements have been carried out to develop a non-destructive experimental tool for characterizing the crystallographic structure and the internal stress field in W foil laminates for structural divertor applications in future fusion reactors. The model sample selected for this study had been prepared by brazing, at 1085 °C, 13 W foils with 12 Cu foils. A complete strain distribution measurement through the brazed multilayered specimen and determination of the corresponding stresses has been obtained, assuming zero stress in the through-thickness direction. The average stress determined from the technique across the specimen (over both ‘phases’ of W and Cu is close to zero at −17 ± 32 MPa, in accordance with the expectations.

  6. Infrared thermography inspection methods applied to the target elements of W7-X divertor

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France)], E-mail: marc.missirlian@cea.fr; Traxler, H. [PLANSEE SE, Technology Center, A-6600 Reutte (Austria); Boscary, J. [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, Boltzmannstr. 2, D-85748 Garching (Germany); Durocher, A.; Escourbiac, F.; Schlosser, J. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France); Schedler, B.; Schuler, P. [PLANSEE SE, Technology Center, A-6600 Reutte (Austria)

    2007-10-15

    The non-destructive examination (NDE) method is one of the key issues in developing highly loaded plasma-facing components (PFCs) for a next generation fusion devices such as W7-X and ITER. The most critical step is certainly the fabrication and the examination of the bond between the armour and the heat sink. Two inspection systems based on the infrared thermography methods, namely, the transient thermography (SATIR-CEA) and the pulsed thermography (ARGUS-PLANSEE), are being developed and have been applied to the pre-series of target elements of the W7-X divertor. Results obtained from qualification experiences performed on target elements with artificial calibrated defects allowed to demonstrate the capability of the two techniques and raised the efficiency of inspection to a level which is appropriate for industrial application.

  7. Infrared thermography inspection methods applied to the target elements of W7-X divertor

    International Nuclear Information System (INIS)

    Missirlian, M.; Traxler, H.; Boscary, J.; Durocher, A.; Escourbiac, F.; Schlosser, J.; Schedler, B.; Schuler, P.

    2007-01-01

    The non-destructive examination (NDE) method is one of the key issues in developing highly loaded plasma-facing components (PFCs) for a next generation fusion devices such as W7-X and ITER. The most critical step is certainly the fabrication and the examination of the bond between the armour and the heat sink. Two inspection systems based on the infrared thermography methods, namely, the transient thermography (SATIR-CEA) and the pulsed thermography (ARGUS-PLANSEE), are being developed and have been applied to the pre-series of target elements of the W7-X divertor. Results obtained from qualification experiences performed on target elements with artificial calibrated defects allowed to demonstrate the capability of the two techniques and raised the efficiency of inspection to a level which is appropriate for industrial application

  8. Diagnostics for Evaluating Performance of NSTX Liquid Lihium Divertor

    Science.gov (United States)

    Kaita, R.; Kugel, H.; Kallman, J.; Leblanc, B.; Paul, S.; Roquemore, A. L.; Skinner, C.; Soukhanovskii, V.; Maingi, R.; Ahn, J.-W.; Wilgen, J.; Allain, J.-P.; Taylor, C.

    2009-11-01

    A Liquid Lithium Divertor (LLD) is being installed on NSTX to investigate particle control and power handling with liquid lithium as plasma-facing component (PFC). The LLD is expected to provide a low-recycling plasma-facing component (PFC). To study the effects of such a PFC on plasma performance, a variety of edge measurements are required. Since its surface is highly reflective at visible wavelengths, a Lyman-alpha detector array will be used to monitor the recycling. To understand changes in edge transport, electron temperature and density measurements will be made with Langmuir probes mounted in PFC's near the LLD, and the edge sightlines of a multipoint Thomson scattering system. A frequency-scanning reflectometer will also provide scrapeoff layer electron density profiles. The LLD response to heat loads will be examined with infrared cameras and thermocouples. Diagnostics are also needed to measure the erosion and codeposition of lithium. They include quartz deposition monitors and a retractable probe for exposing samples to the plasma.

  9. Development and optimisation of tungsten armour geometry for ITER divertor

    International Nuclear Information System (INIS)

    Makhankov, A.; Mazul, I.; Safronov, V.; Yablokov, N.

    1998-01-01

    The plasma facing components (PFC) of the future thermonuclear reactor in great extend determine the time of non-stop operation of the reactor. In current ITER project the most of the divertor PFC surfaces are covered by tungsten armour. Therefore selection of tungsten grade and attachment scheme for joining the tungsten armour to heat sink is a matter of great importance. Two attachment schemes for highly loaded components (up to 20 MW/m 2 ) are described in this paper. The small size mock-ups were manufactured and successfully tested at heat fluxes up to 30 MW/m 2 in screening test and up to 20 MW/m 2 at thermal fatigue test. One mock-up with four different tungsten grades was tested by consequent thermal shock (15 MJ/m 2 at 50 μs) and thermal cycling loading (15 MW/m 2 ). The damages that could lead to mock-up failure were not found but the behaviour of tungsten grades was quite different. (author)

  10. Technologies for ITER divertor vertical target plasma facing components

    International Nuclear Information System (INIS)

    Schlosser, J.; Escourbiac, F.; Merola, M.; Fouquet, S.; Bayetti, P.; Cordier, J.J.; Grosman, A.; Missirlian, M.; Tivey, R.; Roedig, M.

    2005-01-01

    The ITER divertor vertical target has to sustain heat fluxes up to 20 MW m -2 . The concept developed for this plasma facing component working at steady state is based on carbon fibre composite armour for the lower straight part and tungsten for the curved upper part. The main challenges involved in the use of such components include the removal of the high heat fluxes deposited and mechanically and thermally joining the armour to the metallic heat sink, despite the mismatch in the thermal expansions. Two solutions based on the use of a CuCrZr hardened copper alloy and an active metal casting (AMC (registered) ) process were investigated during the ITER EDA phase: the first one called 'flat tile geometry' was mainly developed for the Tore Supra pumped limiter, the second one called 'monoblock geometry' was developed by the EU Participating Team for the ITER project. This paper presents a review of these two solutions and analyses their assets and drawbacks: pressure drop, critical heat flux, surface temperature and expected behaviour during operation, risks during the manufacture, control of the armour defects during the manufacture and at the reception, and the possibility of repairing defective tiles

  11. Manufacturing and testing of a Be/OFHCCu divertor module

    Science.gov (United States)

    Araki, M.; Youchison, D. L.; Akiba, M.; Watson, R. D.; Sato, K.; Suzuki, S.

    1996-10-01

    Beryllium, carbon-based materials and tungsten are considered as plasma facing materials for the next generation of fusion machines such as the international thermonuclear experimental reactor (ITER). Beryllium is one of the primary candidate materials because of its low atomic number and lack of tritium codeposition. However, joining of a beryllium armor to a copper heat sink remains a critical problem due to the formation of brittle intermetallics at the interface. To address this concern, the Japan Atomic Energy Research Institute manufactured a beryllium/Cu divertor module with Cr and Ni diffusion barriers. This Be/Cu module was tested in the electron beam test system of Sandia National Laboratories in the framework of the US—Japan Fusion Collaboration. The divertor module consisted of four beryllium tiles, 25 mm × 25 mm, and a square copper heat sink with convolutions like a screw nut inside the coolant channel. To evaluate the integrity of the brazed bonds under various heat fluxes, beryllium tiles of two different thicknesses, 2 and 10 mm, were bonded to the copper heat sink. Cooling conditions of 10 m/s water flow velocity at 1 MPa, and a water inlet temperature of 20°C were selected based on the thermal analysis. During high heat flux testing the 10 mm thick Be tiles detached at an absorbed heat flux around 5 MW/m 2 for several shots due to flaws at the braze joint confirmed by optical observation after manufacturing. One of the 2 mm thick Be tiles failed after 550 cycles at the steady state heat flux of 6.5 MW/m 2. Most likely the failure was caused by brittleness at the interface caused by the presence of BeCu intermetallics.

  12. Manufacturing and testing of a Be/OFHC-Cu divertor module

    International Nuclear Information System (INIS)

    Araki, M.; Youchison, D.L.; Akiba, M.; Watson, R.D.; Sato, K.; Suzuki, S.

    1996-01-01

    Beryllium, carbon-based materials and tungsten are considered as plasma facing materials for the next generation of fusion machines such as the international thermonuclear experimental reactor (ITER). Beryllium is one of the primary candidate materials because of its low atomic number and lack of tritium codeposition. However, joining of a beryllium armor to a copper heat sink remains a critical problem due to the formation of brittle intermetallics at the interface. To address this concern, the Japan Atomic Energy Research Institute manufactured a beryllium/Cu divertor module with Cr and Ni diffusion barriers. This Be/Cu module was tested in the electron beam test system of Sandia National Laboratories in the framework of the US-Japan Fusion Collaboration. The divertor module consisted of four beryllium tiles, 25 mm x 25 mm, and a square copper heat sink with convolutions like a screw nut inside the coolant channel. To evaluate the integrity of the brazed bonds under various heat fluxes, beryllium tiles of two different thicknesses, 2 and 10 mm, were bonded to the copper heat sink. Cooling conditions of 10 m/s water flow velocity at 1 MPa, and a water inlet temperature of 20 C were selected based on the thermal analysis. During high heat flux testing the 10 mm thick Be tiles detached at an absorbed heat flux around 5 MW/m 2 for several shots due to flaws at the braze joint confirmed by optical observation after manufacturing. One of the 2 mm thick Be tiles failed after 550 cycles at the steady state heat flux of 6.5 MW/m 2 . Most likely the failure was caused by brittleness at the interface caused by the presence of Be-Cu intermetallics. (orig.)

  13. Annual report of the Division of Thermonuclear Fusion Research, JAERI

    International Nuclear Information System (INIS)

    1976-01-01

    Works performed in the Division of Thermonuclear Fusion Research for the period of April 1974 to March 1975 are described. (1) In JFT-2, power-up work of the generator to increase the toroidal magnetic field from 10 kG to 18 kG was completed in October 1974, and the JFT-2 phase-II experiment started. (2) A JFT-2a tokamak of a tear-drop cross-section with axisymmetric divertor was put into operation in August 1974, as scheduled. Initial experiments confirmed that the plasma enclosed inside a separatrix magnetic surface was stably produced. (3) In the diagnostics, a data processing system and a multi-channel particle analyzer were fabricated and put into operation. (4) A test stand (ITS-1) for the development of neutral beam injectors was assembled, and the preliminary experiment on an ion source started in February 1975. (5) In design study of a large tokamak device JT-60, the preliminary design was completed under contract with the industry. Physical studies on the plasma confinement in JT-60 and refinement and improvement of the design continued. (6) Theoretical and computational works continued in neutral injection heating, impurity transport, relaxation of radial electric field and mhd stability. (7) The design of a 2000 MW fusion power reactor which started in the previous year was further improved. The concept and design criteria of an experimental power reactor were studied. (auth.)

  14. Fusion of THEMIS and TES for Accurate Mars Surface Characterization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In a recent NASA ROSES solicitation, NASA has expressed strong interest in improving surface characterization of Mars using orbital imagers. Thermal Emission Imaging...

  15. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    International Nuclear Information System (INIS)

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage

  16. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y. [eds.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  17. Material Challenges For Plasma Facing Components in Future Fusion Reactors

    International Nuclear Information System (INIS)

    Linke, J; Pintsuk, G.; Rödig, M.

    2013-01-01

    . Here a considerable fraction of the plasma energy is deposited on a localized surface area in the divertor strike zone; the time scale of these events is typically in the order of 1 ms. As a consequence, thermal shock induced crack formation, vaporization, surface melting and droplet ejection as well as particle emission induced by brittle destruction processes will limit the lifetime of the components. This is also valid for instabilities in the plasma positioning (vertical displacement events) which cause irreversible damage to plasma facing components, particularly to the metallic wall armour. Moreover, dust particles (neutron activated or toxic metals or tritium enriched carbon) are a serious concern form a safety point of view. In order to investigate the thermally induced plasma wall interaction under fusion specific thermal loads, high heat flux simulation tests are performed routinely in electron or ion beam test facilities as well as in quasi stationary plasma devices. These experiments cover thermal fatigue loads and/or thermal shock tests with relevant operational loading conditions. Furthermore, the wall bombardment with 14 MeV neutrons in D-T-burning plasma devices and the resulting material damage are another critical issue, both, from a safety point of view, but also under the aspect of the component lifetime. While the integrated neutron fluence in ITER will be only in the order of 1 dpa (displacements per atom), future devices such as DEMO or commercial fusion reactors will experience integrated neutron wall loads of 80 to 150 dpa. Therefore the development of new radiation resistant materials and their testing under realistic conditions is required. Due to the lack of an intense 14 MeV neutron source, complex neutron irradiation experiments are performed in material test reactors to quantify the neutron-induced material damage. These tests provide a valuable data base on the degradation of thermal and mechanical parameters. (author)

  18. Measurements of carbon and tungsten erosion/deposition in the DIII-D divertor

    International Nuclear Information System (INIS)

    Bastasz, R.; Wampler, W.R.; Cuthbertson, J.W.; Buchenauer, D.A.; Brooks, N.; Junge, R.; West, W.P.; Wong, C.P.C.

    1994-01-01

    Net erosion/deposition rates of carbon and tungsten were measured at the outer strike point of the divertor plasma on the floor of the DIII-D tokamak during deuterium H-mode operation at a peak power deposition of about 40 W/cm 2 . For carbon, net erosion rates of up to 4 nm/s were found. For a tungsten film, no appreciable erosion was detected. However, measurements of deposited tungsten on adjacent carbon surfaces indicated a net W erosion rate of 0.06 nm/s

  19. Electron temperature and heat load measurements in the COMPASS divertor using the new system of probes

    Czech Academy of Sciences Publication Activity Database

    Adámek, Jiří; Seidl, Jakub; Horáček, Jan; Komm, Michael; Eich, T.; Pánek, Radomír; Cavalier, J.; Devitre, A.; Peterka, Matěj; Vondráček, Petr; Stöckel, Jan; Šesták, David; Grover, Ondřej; Bílková, Petra; Böhm, Petr; Varju, Jozef; Havránek, Aleš; Weinzettl, Vladimír; Lovell, J.; Dimitrova, Miglena; Mitošinková, Klára; Dejarnac, Renaud; Hron, Martin

    2017-01-01

    Roč. 57, č. 11 (2017), č. článku 116017. ISSN 0029-5515 R&D Projects: GA ČR(CZ) GA15-10723S; GA ČR(CZ) GA16-14228S; GA MŠk(CZ) LM2015045 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : COMPASS * divertor * heat load * ELM * electron temperature * Ball-pen probe Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa7e09

  20. Characterization of divertor footprints and the pedestal plasmas in the presence of applied n = 3 fields for the attached and detached conditions in NSTX

    International Nuclear Information System (INIS)

    Ahn, J-W; Canik, J M; Lore, J D; Maingi, R; Gray, T K; Scotti, F; Kim, K; Bell, R E; Diallo, A; Gerhardt, S P; Kaye, S M; LeBlanc, B P; McLean, A G; Soukhanovskii, V A; Tritz, K

    2014-01-01

    Recent progress in the study of 3D field effects on the divertor and pedestal plasmas is reported with the use of a new set of diagnostics. A wide angle visible camera provides 2D data of lower divertor surface covering almost the full range of radius (r) and toroidal angle (Φ), a significant advantage over the conventional 1D radial profile in examining non-axisymmetric effects of 3D fields on the divertor footprints. The spatial distribution of connection lengths (L c ) calculated by vacuum field line tracing in the presence of 3D fields (n = 3) agrees with the footprint pattern observed in the 2D wide angle camera images. The full (r, Φ) image data with high temporal resolution revealed that the spatial structure of modified divertor footprints is maintained even during the edge-localized modes (ELMs) triggered by applied n = 3 fields, when the ELM size is sufficiently small, i.e. the ELMs are ‘phase locked’ to the imposed perturbation field structure. This phase-lock is lost during the ELM rise time for ELMs with large energy loss, e.g. ΔW ELM /W MHD  > 4–5%. Divertor gas puff was used to create detached divertor condition and the effect of 3D fields on the detachment was investigated. The divertor remains partially detached with the 3D field application when a sufficient amount of gas is injected into the divertor region, which is accompanied by a noticeable drop of pedestal electron temperature (T e ). However, with a lower gas puff, the divertor plasma re-attaches, when 3D fields were applied to the detached plasma, and the pedestal T e rises back up. There observed no other change in the pedestal profile associated with the re-attachment, indicating that this is likely to be dominated by a change in the electron thermal transport processes. A TRANSP analysis shows that the drop of pedestal electron heat diffusivity (χ e ) is responsible for this change but the source of this reduction is yet unclear. (paper)

  1. Optimal thermal-hydraulic performance for helium-cooled divertors

    International Nuclear Information System (INIS)

    Izenson, M.G.; Martin, J.L.

    1996-01-01

    Normal flow heat exchanger (NFHX) technology offers the potential for cooling divertor panels with reduced pressure drops (<0.5% Δp/p), reduced pumping power (<0.75% pumping/thermal power), and smaller duct sizes than conventional helium heat exchangers. Furthermore, the NFHX can easily be fabricated in the large sizes required for divertors in large tokamaks. Recent experimental and computational results from a program to develop NFHX technology for divertor coolings using porous metal heat transfer media are described. We have tested the thermal and flow characteristics of porous metals and identified the optimal heat transfer material for the divertor heat exchanger. Methods have been developed to create highly conductive thermal bonds between the porous material and a solid substrate. Computational fluid dynamics calculations of flow and heat transfer in the porous metal layer have shown the capability of high thermal effectiveness. An 18-kW NFHX, designed to meet specifications for the international Thermonuclear Experimental Reactor divertor, has been fabricated and tested for thermal and flow performance. Preliminary results confirm design and fabrication methods. 11 refs., 12 figs., 1 tab

  2. Upgraded divertor Thomson scattering system on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Glass, F., E-mail: glassf@fusion.gat.com; Carlstrom, T. N.; Du, D.; Taussig, D. A.; Boivin, R. L. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); McLean, A. G. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2016-11-15

    A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard — beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror — and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, before being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (T{sub e} in the range of 0.5 eV–2 keV, n{sub e} in the range of 5 × 10{sup 18}–1 × 10{sup 21} m{sup 3}) for both low T{sub e} in detachment and high T{sub e} measurement up beyond the separatrix.

  3. Three-dimensional modeling of plasma edge transport and divertor fluxes during application of resonant magnetic perturbations on ITER

    Czech Academy of Sciences Publication Activity Database

    Schmitz, O.; Becoulet, M.; Cahyna, Pavel; Evans, T.E.; Feng, Y.; Frerichs, H.; Loarte, A.; Pitts, R.A.; Reiser, D.; Fenstermacher, M.E.; Harting, D.; Kirschner, A.; Kukushkin, A.; Lunt, T.; Saibene, G.; Reiter, D.; Samm, U.; Wiesen, S.

    2016-01-01

    Roč. 56, č. 6 (2016), č. článku 066008. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : resonant magnetic perturbations * plasma edge physics * 3D modeling * neutral particle physics * ITER * divertor heat and particle loads * ELM control Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/56/6/066008/meta

  4. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1985-01-01

    The Fusion Experimental Reactor (FER) being developed at JAERI as a next generation tokamak to JT-60 has a major mission of realizing a self-ignited long-burning DT plasma and demonstrating engineering feasibility. During FY82 and FY83 a comprehensive and intensive conceptual design study has been conducted for a pulsed operation FER as a reference option which employs a conventional inductive current drive and a double-null divertor. In parallel with the reference design, studies have been carried out to evaluate advanced reactor concepts such as quasi-steady state operation and steady state operation based on RF current drive and pumped limiter, and comparative studies for single-null divertor/pumped limiter. This report presents major results obtained primarily from FY83 design studies, while the results of FY82 design studies are described in previous references (JAERI-M 83-213--216). (author)

  5. Coatings for fusion reactor environments

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1979-01-01

    The internal surfaces of a tokamak fusion reactor control the impurity injection and gas recycling into the fusion plasma. Coating of internal surfaces may provide a desirable and possibly necessary design flexibility for achieving the temperatures, ion densities and containment times necessary for net energy production from fusion reactions to take place. In this paper the reactor environments seen by various componentare reviewed along with possible materials responses. Characteristics of coating-substrate systems, important to fusion applications, are delineated and the present status of coating development for fusion applications is reviewed. Coating development for fusion applications is just beginning and poses a unique and important challenge for materials development

  6. Developing physics basis for the snowflake divertor in the DIII-D tokamak

    Science.gov (United States)

    Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; Lasnier, C. J.; Makowski, M. A.; McLean, A. G.; Meyer, W. H.; Ryutov, D. D.; Kolemen, E.; Groebner, R. J.; Hyatt, A. W.; Leonard, A. W.; Osborne, T. H.; Petrie, T. W.; Watkins, J.

    2018-03-01

    Recent DIII-D results demonstrate that the snowflake (SF) divertor geometry (see standard divertor) enables significant manipulation of divertor heat transport for heat spreading and reduction in attached and radiative divertor regimes, between and during edge localized modes (ELMs), while maintaining good H-mode confinement. Snowflake divertor configurations have been realized in the DIII-D tokamak for several seconds in H-mode discharges with heating power P_NBI ≤slant 4 -5 MW and a range of plasma currents I_p=0.8-1.2 MA. In this work, inter-ELM transport and radiative SF divertor properties are studied. Significant impact of geometric properties on SOL and divertor plasma parameters, including increased poloidal magnetic flux expansion, divertor magnetic field line length and divertor volume, is confirmed. In the SF-minus configuration, heat deposition is affected by the geometry, and peak divertor heat fluxes are significantly reduced. In the SF-plus and near-exact SF configurations, divertor peak heat flux reduction and outer strike point heat flux profile broadening are observed. Inter-ELM sharing of power and particle fluxes between the main and additional snowflake divertor strike points has been demonstrated. The additional strike points typically receive up to 10-15% of total outer divertor power. Measurements of electron pressure and poloidal beta βp support the theoretically proposed churning mode that is driven by toroidal curvature and vertical pressure gradient in the weak poloidal field region. A comparison of the 4-4.5 MW NBI-heated H-mode plasmas with radiative SF divertor and the standard radiative divertor (both induced with additional gas puffing) shows a nearly complete power detachment and broader divertor radiated power distribution in the SF, as compared to a partial detachment and peaked localized radiation in the standard divertor. However, insignificant difference in the detachment onset w.r.t. density between the SF and the standard

  7. A program to evaluate the erosion on the CFC tiles of the ITER divertor

    International Nuclear Information System (INIS)

    D'Agata, E.; Ogorodnikova, O.V.; Tivey, R.; Lowry, C.; Schlosser, J.

    2007-01-01

    The plasma-facing surfaces of the ITER divertor are armoured with tungsten in the upper part of the inner and outer vertical targets, and carbon fibre composite (CFC) in the lower part, the region where the scrape-off layer intercepts the divertor. The CFC in the form of a monoblock in the vertical target is the most loaded part of the plasma-facing surfaces, and hence it is subjected to high erosion and has a significant risk of failure. A program has been developed with the aim of understanding the impact on the erosion lifetime due to a combination of two main effects: the material property variations (particularly pronounced in CFC) and the presence of joining defects. The software allows the evolution of the surface profile of the armour to be predicted and the margin on critical heat flux at the heat-sink-to-coolant interface to be estimated for a range of postulated defects, from start-of-life through to end-of-life of the component. In assessing erosion, the code takes account of geometry and sublimation, and physical and chemical erosion of the CFC armour. The incident angle (a glancing angle of a few degrees) of the particle and heat flux onto the target is taken into account. The program has been validated by comparison with analytical approximations very well validated against experimental data. The code has been developed in the APDL language to operate inside a commercial and certificated finite element program such as ANSYS

  8. Hydrogen recycling and transport in the helical divertor of TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Clever, Meike

    2010-07-01

    The aim of this thesis was to investigate the hydrogen recycling at the target plates of the helical divertor in TEXTOR and by this the capability of this divertor configuration to access such favourable operational regimes. In order to study the different divertor density regimes in TEXTOR, discharges were performed in which the total plasma density was increased continuously up to the density limit. The recycling was investigated in a fixed helical divertor structure where four helical strike points with a poloidal width of about 8-10 cm are created at the divertor target plates. The experimental investigation of the hydrogen recycling was carried out using mainly spectroscopic methods supplemented by Langmuir probe, interferometric and atomic beam measurements. In the framework of this thesis a spectroscopic multi camera system has been built that facilitates the simultaneous observation of four different spectral lines, recording images of the divertor target plates and the plasma volume close to the target. The system facilitates the simultaneous measurement of the poloidal and toroidal pattern of the recycling flux at the divertor target without the need for sweeping the plasma structure. The simultaneous observation of different spectral lines reduces the uncertainty in the analysis based on several lines, as the contribution from uncertainties in the reproducibility of plasma parameters in different discharges are eliminated and only the uncertainty of the measurement method limits the accuracy. The spatial resolution of the system in poloidal and toroidal direction (0.8 mm{+-}0.01 mm) is small compared to the separation of the helical strike points, the capability of the measurement method to resolve these structures is therefore limited by the line-of-sight integration and the penetration depth of the light emitting species. The measurements showed that the recycling flux increases linearly with increasing plasma density, a high recycling regime is not

  9. Stability of the plasma in a bundle divertor

    International Nuclear Information System (INIS)

    Yang, T.F.; Callen, J.D.

    1979-02-01

    Due to the pressure and magnetic field gradients and curvature of the magnetic field lines in a bundle divertor of a tokamak device, the plasma may be unstable to local interchange modes. Turbulent transport could be quite large and lead to a thick scrape-off layer which is as large as the radius of curvature of the diverted flux bundle. Such turbulence would be beneficial for lowering the energy and particle fluxes on the collector in a bundle divertor. The effect of a bundle divertor on the β limit resulting from the ballooning modes of instability in the central plasma is also estimated. The critical β is reduced by less than one percent

  10. Plasma transport in a simulated magnetic-divertor configuration

    Energy Technology Data Exchange (ETDEWEB)

    Strawitch, C. M.

    1981-03-01

    The transport properties of plasma on magnetic field lines that intersect a conducting plate are studied experimentally in the Wisconsin internal ring D.C. machine. The magnetic geometry is intended to simulate certain aspects of plasma phenomena that may take place in a tokamak divertor. It is found by a variety of measurements that the cross field transport is non-ambipolar; this may have important implications in heat loading considerations in tokamak divertors. The undesirable effects of nonambipolar flow make it preferable to be able to eliminate it. However, we find that though the non-ambipolarity may be reduced, it is difficult to eliminate entirely. The plasma flow velocity parallel to the magnetic field is found to be near the ion acoustic velocity in all cases. The experimental density and electron temperature profiles are compared to the solutions to a one dimensional transport model that is commonly used in divertor theory.

  11. The simple map for a single-null divertor tokamak

    International Nuclear Information System (INIS)

    Punjabi, A.; Verma, A.; Boozer, A.

    1996-01-01

    We present the simple map for a single-null divertor tokamak. The simple map is an area-preserving map based on the idea that magnetic field lines are a single-degree-of-freedom time-dependent Hamiltonian system, and that the basic features of such systems near the X-point are generic. We obtain the properties of this map and the resulting footprints of field lines on the divertor plate. These include the width of the stochastic layer, the edge safety factor, the area of the footprint and the amount of magnetic flux diverted. We give the safety factor profile, the average and median values of strike angles, lengths and the Liapunov exponents. We describe how the effects of magnetic perturbations can be included in the simple map. We show how the map can be applied to the problem of the determination of heat flux on the divertor plate in tokamaks. (Author)

  12. A survey of problems in divertor and edge plasma theory

    International Nuclear Information System (INIS)

    Boozer, A.; Braams, B.; Weitzner, H.; Hazeltine, R.; Houlberg, W.; Oktay, E.; Sadowski, W.; Wootton, A.

    1992-01-01

    Theoretical physics problems related to divertor design are presented, organized by the region in which they occur. Some of the open questions in edge physics are presented from a theoretician's point of view. After a cursory sketch of the fluid models of the edge plasma and their numerical realization, the following topics are taken up: time-dependent problems, non-axisymmetric effects, anomalous transport in the scrape-off layer, edge kinetic theory, sheath effects and boundary conditions in divertors, electric field effects, atomic and molecular data issues, impurity transport in the divertor region, poloidally localized power dissipation (MARFEs and dense gas targets), helium ash removal, and neutral transport. The report ends with a summary of selected problems of particular significance and a brief bibliography of survey articles and related conference proceedings

  13. Hydrogen recycling and transport in the helical divertor of TEXTOR

    International Nuclear Information System (INIS)

    Clever, Meike

    2010-01-01

    The aim of this thesis was to investigate the hydrogen recycling at the target plates of the helical divertor in TEXTOR and by this the capability of this divertor configuration to access such favourable operational regimes. In order to study the different divertor density regimes in TEXTOR, discharges were performed in which the total plasma density was increased continuously up to the density limit. The recycling was investigated in a fixed helical divertor structure where four helical strike points with a poloidal width of about 8-10 cm are created at the divertor target plates. The experimental investigation of the hydrogen recycling was carried out using mainly spectroscopic methods supplemented by Langmuir probe, interferometric and atomic beam measurements. In the framework of this thesis a spectroscopic multi camera system has been built that facilitates the simultaneous observation of four different spectral lines, recording images of the divertor target plates and the plasma volume close to the target. The system facilitates the simultaneous measurement of the poloidal and toroidal pattern of the recycling flux at the divertor target without the need for sweeping the plasma structure. The simultaneous observation of different spectral lines reduces the uncertainty in the analysis based on several lines, as the contribution from uncertainties in the reproducibility of plasma parameters in different discharges are eliminated and only the uncertainty of the measurement method limits the accuracy. The spatial resolution of the system in poloidal and toroidal direction (0.8 mm±0.01 mm) is small compared to the separation of the helical strike points, the capability of the measurement method to resolve these structures is therefore limited by the line-of-sight integration and the penetration depth of the light emitting species. The measurements showed that the recycling flux increases linearly with increasing plasma density, a high recycling regime is not

  14. Radiative divertor plasmas with convection in DIII-D

    International Nuclear Information System (INIS)

    Leornard, A.W.; Porter, G.D.; Wood, R.D.

    1998-01-01

    The radiation of divertor heat flux on DIII-D is shown to greatly exceed the limits imposed by assumptions of energy transport dominated by electron thermal conduction parallel to the magnetic field. Approximately 90% of the power flowing into the divertor is dissipated through low Z radiation and plasma recombination. The dissipation is made possible by an extended region of low electron temperature in the divertor. A one-dimensional analysis of the parallel heat flux finds that the electron temperature profile is incompatible with conduction dominated parallel transport. Plasma flow at up to the ion acoustic speed, produced by upstream ionization, can account for the parallel heat flux. Modeling with the two-dimensional fluid code UEDGE has reproduced many of the observed experimental features

  15. Final Progress Report The U.S. Department of Energy Research Grant No. DE-SC0008660 Plasma Surface Interactions: Bridging from the Surface to the Micron Frontier through Leadership Class Computing

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, Sergei [Univ. of California, San Diego, CA (United States); Smirnov, Roman [Univ. of California, San Diego, CA (United States); Guterl, Jerome [Univ. of California, San Diego, CA (United States)

    2017-12-12

    The choice of material for the plasma facing components (PFC), in particular, for divertor targets, is one of the main issues for future tokamak reactors. There are two major requirements for the PFC’s material: acceptable level of tritium retention and durability in a harsh environment of fusion grade plasma. Based on these criteria, some years ago it was decided that tungsten is an acceptable material for divertor targets in ITER. However, further experimental studies reveal that the irradiation of tungsten even with low energetic (well below sputtering threshold!) He containing plasma causes significant modification of surface morphology, formation of the layer of He nano-bubbles (in the temperature range T<1000 K), “fuzz” (for 1000 K2000 K) (e.g. see Fig. 1). Recall that He, being an ash of D-T fusion reactions, is an inherent impurity in fusion plasma. The goals of the UCSD Applied Plasma Theory Group was: i) investigate the mechanisms of the formation of He nano-bubble layer and fuzz growth under He irradiation, as well as the physics of transport of hydrogen species in tungsten lattice, and ii) develop physics understanding of the models suitable for the incorporation into the Xolotl-PSI code based on the reaction-diffusion approach, which is the flagship of the whole SciDAC project [8], which can guide both numerical simulations and experimental studies. Here we just highlight our major accomplishments.

  16. Progress in fusion technology at SWIP

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X.R., E-mail: duanxr@swip.ac.cn; Chen, J.M.; Feng, K.M.; Liu, X.; Li, B.; Wu, J.H.; Wang, X.Y.; Zheng, P.F.; Wang, Y.Q.; Wang, P.H.; Liu, Yong

    2016-11-01

    Highlights: • Dispersion strengthened CLF-1 steel, vanadium alloys and tungsten alloys are developed. • The HCCB TBM conceptual design, development of functional materials such as Li{sub 4}SiO{sub 4} pebbles and Be pebbles are in progress. • A full size prototype shield block has been fabricated and passed ITER qualification. • Advanced divertor for a new tokamak are designed and analyzed. • GIS and GDC have entered the engineering design phase. - Abstract: The fusion research activities at Southwestern Institute of Physics (SWIP) include the HL-2A & HL-2M tokamak programs, fusion reactor design and materials, along with key fusion technologies including R&D on ITER procurement packages. This paper presents the progress of fusion technology at SWIP, including the ITER first wall and blanket, Chinese helium cooled ceramic breeder test blanket module (HCCB–TBM) for ITER, gas injection system and gas discharge cleaning system, as well as the recent activities on reactor materials and R&D related to advanced divertor. The final design for ITER first wall and blanket shielding blocks allocated to SWIP have been completed, and were validated by recent tests. Major manufacturing technologies, such as forging, deep drilling, explosion bonding and deep laser welding, have been successfully demonstrated. Furthermore, the conceptual design of CN–HCCB–TBM has been completed, the related materials’ preparation, mock-up manufacturing and tests have been implemented. The tungsten divertor has been studied with various bonding and coating technologies. Meanwhile, highlights of functional material for TBM, oxides and carbides dispersion strengthened (ODS, CDS) reduced activation ferritic/martensitic (RAFM) steel, vanadium and tungsten alloys are also presented.

  17. Tokamak fusion reactor exhaust

    International Nuclear Information System (INIS)

    Harrison, M.F.A.; Harbour, P.J.; Hotston, E.S.

    1981-08-01

    This report presents a compilation of papers dealing with reactor exhaust which were produced as part of the TIGER Tokamak Installation for Generating Electricity study at Culham. The papers are entitled: (1) Exhaust impurity control and refuelling. (2) Consideration of the physical problems of a self-consistent exhaust and divertor system for a long burn Tokamak. (3) Possible bundle divertors for INTOR and TIGER. (4) Consideration of various magnetic divertor configurations for INTOR and TIGER. (5) A appraisal of divertor experiments. (6) Hybrid divertors on INTOR. (7) Refuelling and the scrape-off layer of INTOR. (8) Simple modelling of the scrape-off layer. (9) Power flow in the scrape-off layer. (10) A model of particle transport within the scrape-off plasma and divertor. (11) Controlled recirculation of exhaust gas from the divertor into the scrape-off plasma. (U.K.)

  18. Turbulence studies in tokamak boundary plasmas with realistic divertor geometry

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.; Por, G.D. ter; Rognlien, T.D.; Ryutov, D.D.; Myra, J.R.; D'Ippolito, D.A.; Moyer, R.; Groebner, R.J.

    1999-01-01

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT and the linearized shooting code BAL for studies of turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the E x B drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters. (author)

  19. Turbulence studies in tokamak boundary plasmas with realistic divertor geometry

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.; Porter, G.D.; Rognlien, T.; Ryutov, D.D.; Myra, J.R.; D'Ippolito, D.A.; Moyer, R.; Groebner, R.J.

    2001-01-01

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT and the linearized shooting code BAL for studies of turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and nite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters. (author)

  20. OEDGE modeling of plasma contamination efficiency of Ar puffing from different divertor locations in EAST

    Science.gov (United States)

    Pengfei, ZHANG; Ling, ZHANG; Zhenwei, WU; Zong, XU; Wei, GAO; Liang, WANG; Qingquan, YANG; Jichan, XU; Jianbin, LIU; Hao, QU; Yong, LIU; Juan, HUANG; Chengrui, WU; Yumei, HOU; Zhao, JIN; J, D. ELDER; Houyang, GUO

    2018-04-01

    Modeling with OEDGE was carried out to assess the initial and long-term plasma contamination efficiency of Ar puffing from different divertor locations, i.e. the inner divertor, the outer divertor and the dome, in the EAST superconducting tokamak for typical ohmic plasma conditions. It was found that the initial Ar contamination efficiency is dependent on the local plasma conditions at the different gas puff locations. However, it quickly approaches a similar steady state value for Ar recycling efficiency >0.9. OEDGE modeling shows that the final equilibrium Ar contamination efficiency is significantly lower for the more closed lower divertor than that for the upper divertor.

  1. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Harvey, Karen [ORNL; Ferrada, Juan J [ORNL

    2011-02-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  2. Study on turbulence characteristics of free surface flow for cooling of fusion reactors, accelerator targets and reactor safety

    International Nuclear Information System (INIS)

    Yusuke, Ishii; Atsuhiro, Nishino; Minoru, Takahashi

    2001-01-01

    For the development of innovative fusion reactors, we examine the film flow along the first wall to simplify blanket and reduce the cost. A film flow is formed in primary cooling circuits of the light water reactors (LWR) when the loss of coolant accident (LOCA) occurs and a cold water is injected into the primary systems. In order to estimate the interfacial condensation rate at the developing region, it is required to have the knowledge about interfacial turbulent thermal diffusion of a thick film flow. Therefore, these systems have the same problem of heat transfer and transport inside the film flows. It is necessary to investigate the velocity and turbulence characteristics that have a close relation to the heat transfer and transport. Although there have been performed various studies on turbulence structure having free surface in a fully developed flow region, the turbulence properties of the film flows in a developing flow region has not been investigated sufficiently. Thus, we measure the velocity profiles and velocity fluctuations in a developing flow region using Laser Doppler Velocimeter (LDV). Then, experimental data are compared with analytical result that is obtained using the k-ε model of turbulence. (author)

  3. Immunogenicity of a fusion protein comprising coli surface antigen 3 and labile B subunit of enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Alerasol, Masoome; Mousavi Gargari, Seyed Latif; Nazarian, Shahram; Bagheri, Samane

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are the major causes of diarrheal disease in humans and animals. Colonization factors and enterotoxins are the major virulence factors in ETEC pathogenesis. For the broad-spectrum protection against ETEC, one could focus on colonization factors and non-toxic heat labile as a vaccine candidate. A fusion protein is composed of a major fimbrial subunit of coli surface antigen 3, and the heat-labile B subunit (LTB) was constructed as a chimeric immunogen. For optimum level expression of protein, the gene was synthesized with codon bias of E. coli. Also, recombinant protein was expressed in E. coli BL21DE3. ELISA and Western tests were carried out for determination of antigen and specificity of antibody raised against recombinant protein in animals. The anti-toxicity and anti-adherence properties of the immune sera against ETEC were also evaluated. Immunological analyses showed the production of high titer of specific antibody in immunized mice. The built-in LTB retains native toxin properties which were approved by GM1 binding assay. Pre-treatment of the ETEC cells with anti-sera significantly decreased their adhesion to Caco-2 cells. The results indicated the efficacy of the recombinant chimeric protein as an effective immunogen inducing strong humoral response. The designated chimer would be an interesting prototype for a vaccine and worthy of further investigation.

  4. Induction of Boosted Immune Response in Mice by Leptospiral Surface Proteins Expressed in Fusion with DnaK

    Directory of Open Access Journals (Sweden)

    Marina V. Atzingen

    2014-01-01

    Full Text Available Leptospirosis is an important global disease of human and veterinary concern. Caused by pathogenic Leptospira, the illness was recently classified as an emerging infectious disease. Currently available veterinarian vaccines do not induce long-term protection against infection and do not provide cross-protective immunity. Several studies have suggested the use of DnaK as an antigen in vaccine formulation, due to an exceptional degree of immunogenicity. We focused on four surface proteins: rLIC10368 (Lsa21, rLIC10494, rLIC12690 (Lp95, and rLIC12730, previously shown to be involved in host-pathogen interactions. Our goal was to evaluate the immunogenicity of the proteins genetically fused with DnaK in animal model. The chosen genes were amplified by PCR methodology and cloned into pAE, an E. coli vector. The recombinant proteins were expressed alone or in fusion with DnaK at the N-terminus. Our results demonstrate that leptospiral proteins fused with DnaK have elicited an enhanced immune response in mice when compared to the effect promoted by the individual proteins. The boosted immune effect was demonstrated by the production of total IgG, lymphocyte proliferation, and significant amounts of IL-10 in supernatant of splenocyte cell cultures. We believe that this approach could be employed in vaccines to enhance presentation of antigens of Leptospira to professional immune cells.

  5. Vapor condensation on the surface of a liquid blanket jet in an inertial-confinement fusion reactor

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Inoue, Akira; Fujinuma, Hajime; Tsukui, Jun.

    1991-01-01

    As the fundamental study on lithium jet cooling of an inertial-confinement fusion reactor, the experiment was performed to investigate for the steady condensation of saturated steam on a vertical downward water jet. The experimental parameters were the nozzle diameter of 3 and 5 mm, the jet length of 60∼316 mm, the outlet velocity of 2∼12 m/s, the outlet temperature of 30∼70degC, and the pressure of 0.03∼0.44 MPa, which corresponds to the Reynolds number of 1.35 x 10 4 ∼2.71 x 10 5 and the Prandtl number of 1.0∼5.2. As the Reynolds number or the jet length is increased, the Stanton number decreases and then increases again. As the steam pressure is increased, it increases monotonously. These characteristics of condensation heat transfer have been classical into four regions based on the criteria for jet break-up and surface disturbance, or entrainment. The empirical correlations for the Stanton number have been obtained for these regions, and the validity was confirmed by comparing them with the previous correlations. (author)

  6. Progress in the engineering design and assessment of the European DEMO first wall and divertor plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Thomas R., E-mail: tom.barrett@ukaea.uk [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Ellwood, G.; Pérez, G.; Kovari, M.; Fursdon, M.; Domptail, F.; Kirk, S.; McIntosh, S.C.; Roberts, S.; Zheng, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Boccaccini, L.V. [KIT, INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); You, J.-H. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Bachmann, C. [EUROfusion, PPPT, Boltzmann Str. 2, 85748 Garching (Germany); Reiser, J.; Rieth, M. [KIT, IAM, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Visca, E.; Mazzone, G. [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Italy); Arbeiter, F. [KIT, INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Domalapally, P.K. [Research Center Rez, Hlavní 130, 250 68 Husinec – Řež (Czech Republic)

    2016-11-01

    Highlights: • The engineering of the plasma facing components for DEMO is an extreme challenge. • PFC overall requirements, methods for assessment and designs status are described. • Viable divertor concepts for 10 MW/m{sup 2} surface heat flux appear to be within reach. • The first wall PFC concept will need to vary poloidally around the wall. • First wall coolant, structural material and PFC topology are open design choices. - Abstract: The European DEMO power reactor is currently under conceptual design within the EUROfusion Consortium. One of the most critical activities is the engineering of the plasma-facing components (PFCs) covering the plasma chamber wall, which must operate reliably in an extreme environment of neutron irradiation and surface heat and particle flux, while also allowing sufficient neutron transmission to the tritium breeding blankets. A systems approach using advanced numerical analysis is vital to realising viable solutions for these first wall and divertor PFCs. Here, we present the system requirements and describe bespoke thermo-mechanical and thermo-hydraulic assessment procedures which have been used as tools for design. The current first wall and divertor designs are overviewed along with supporting analyses. The PFC solutions employed will necessarily vary around the wall, depending on local conditions, and must be designed in an integrated manner by analysis and physical testing.

  7. Modeling of stimulated Brillouin scattering near the critical-density surface in the plasmas of direct-drive inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Maximov, A.V.; Myatt, J.; Seka, W.; Short, R.W.; Craxton, R.S.

    2004-01-01

    OAK-B135 The nonlinear propagation of laser beams, smoothed by spatial and temporal bandwidth, near the critical density surface of direct-drive inertial confinement fusion (ICF) targets has been modeled. The interplay between filamentation and forward and backward stimulated Brillouin scattering (SBS) is described in the presence of light reflected from the critical density surface and high absorption of light near the critical density. The spectrum of backscattered light develops a red shift due to SBS, which can be seeded by the reflection of light from the critical surface. The intensity of backscattered light decreases moderately as the bandwidth of smoothing by spectral dispersion (SSD) is increased

  8. Non-superconducting magnet structures for near-term, large fusion experimental devices

    International Nuclear Information System (INIS)

    File, J.; Knutson, D.S.; Marino, R.E.; Rappe, G.H.

    1980-10-01

    This paper describes the magnet and structural design in the following American tokamak devices: the Princeton Large Torus (PLT), the Princeton Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The Joint European Torus (JET), also presented herein, has a magnet structure evolved from several European programs and, like TFTR, represents state of the art magnet and structure design

  9. Fusion reactor materials

    International Nuclear Information System (INIS)

    Sethi, V.K.; Scholz, R.; Nolfi, F.V. Jr.; Turner, A.P.L.

    1980-01-01

    Data are given for each of the following areas: (1) effects of irradiation on fusion reactor materials, (2) hydrogen permeation and materials behavior in alloys, (3) carbon coatings for fusion applications, (4) surface damage of TiB 2 coatings under energetic D + and 4 He + irradiations, and (5) neutron dosimetry

  10. Coatings for laser fusion

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.

    1981-01-01

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors

  11. Spinal fusion

    Science.gov (United States)

    ... Herniated disk - fusion; Spinal stenosis - fusion; Laminectomy - fusion Patient Instructions Bathroom safety - adults Preventing falls Preventing falls - what to ask your doctor Spine surgery - discharge Surgical wound care - open Images Scoliosis Spinal ...

  12. Proceedings of US/Japan Workshop (97FT5-06) on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    International Nuclear Information System (INIS)

    Nygren, Richard; Kureczko, Diana

    1998-10-01

    The 1997 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices was held at the Warwick Regis Hotel in San Francisco, California, on December 8-11, 1997. There were 53 presentations as well as discussions on technical issues and on planning for future collaborations, and 35 researchers from japan and the US participated in the workshop. Over the last few years, with the strong emphasis in the US on technology for ITER, there has been less work done in the US fusion program on basic plasma materials interaction and this change in emphasis workshops. The program this year emphasized activities that were not carried out under the ITER program and a new element this year in the US program was planning and some analysis on liquid surface concepts for advanced plasma facing components. The program included a ceremony to honor Professor Yamashina, who was retiring this year and a special presentation on his career

  13. Visible spectroscopy in the DIII-D divertor

    International Nuclear Information System (INIS)

    Brooks, N.H.; Fehling, D.; Hillis, D.L.; Klepper, C.C.; Naumenko, N.; Tugarinov, S.; Whyte, D.G.

    1996-06-01

    Spectroscopy measurements in the DIII-D divertor have been carried out with a survey spectrometer which provides simultaneous registration of the visible spectrum over the region 400--900 nm with a resolution of 0.2 nm. Broad spectral coverage is achieved through use of a fiberoptic transformer assembly to map the curved focal plane of a fast (f/3) Rowland spectrograph into a rastered format on the rectangular sensor area of a two-dimensional CCD camera. Vertical grouping of pixels during CCD readout integrates the signal intensity over the height of each spectral segment in the rastered image, minimizing readout time. For the full visible spectrum, readout time is 50 ms. Faster response time (< 10 ms) may be obtained by selecting for readout just a small number of the twenty spectral segments in the image on the CCD. Simultaneous recording of low charge states of carbon, oxygen and injected impurities has yielded information about gas recycling and impurity behavior at the divertor strike points. Transport of lithium to the divertor region during lithium pellet injection has been studied, as well as cumulative deposition of lithium on the divertor targets from pellet injection over many successive discharges

  14. Visible spectroscopy in the DIII endash D divertor

    International Nuclear Information System (INIS)

    Brooks, N.H.; Fehling, D.; Hillis, D.L.; Klepper, C.C.; Naumenko, N.N.; Tugarinov, S.N.; Whyte, D.G.

    1997-01-01

    Spectroscopy measurements in the DIII endash D divertor have been carried out with a survey spectrometer that provides simultaneous registration of the visible spectrum over the region 400 endash 900 nm with a resolution of 0.25 nm. Broad spectral coverage is achieved through the use of a fiberoptic transformer assembly to map the curved focal plane of a fast (f/3) Rowland spectrograph [Tugarinov et al., Rev. Sci. Instrum. 66, 603 (1995)] into a rastered format on the rectangular sensor area of a two-dimensional charge-coupled device (CCD) camera. Vertical grouping of pixels during CCD readout integrates the signal intensity over the height of each spectral segment in the rastered image, minimizing readout time. For the full visible spectrum, readout time is 50 ms. Faster response time (<10 ms) may be obtained by selecting for readout just a small number of the 20 spectral segments in the image on the CCD. Simultaneous recording of low charge states of carbon, oxygen, and injected impurities has yielded information about gas recycling and impurity behavior at the divertor strike points. Transport of lithium to the divertor region during lithium pellet injection has been studied, as well as cumulative deposition of lithium on the divertor targets from pellet injection over many successive discharges. copyright 1997 American Institute of Physics

  15. Taming the plasma-material interface with the snowflake divertor.

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A

    2015-04-24

    Experiments in several tokamaks have provided increasing support for the snowflake configuration as a viable tokamak heat exhaust concept. This white paper summarizes the snowflake properties predicted theoretically and studied experimentally, and identifies outstanding issues to be resolved in existing and future facilities before the snowflake divertor can qualify for the reactor interface.

  16. Thermal–hydraulic analysis of a candidate design for ITER divertor neutron flux monitor (DNFM)

    International Nuclear Information System (INIS)

    Tanchuk, Victor; Alexandrov, Evgeny; Batyunin, Alexander; Kashchuk, Yuri; Korban, Svetlana; Lyublin, Boris; Obudovsky, Sergey; Senik, Konstantin

    2013-01-01

    The key role in direct measurement of the ITER fusion power is assigned to the neutron diagnostic system for measurement of total neutron flux of the D–D and D–T fusion reaction with the help of a neutron flux monitor located under the divertor dome. High plasma heat loads in this position implies stringent requirements for the detector design and its cooling system to ensure the required temperature operation regime of the neutron detector. The paper describes the neutron flux monitor design developed in close collaboration with IO ITER diagnostic division. Two numerical models (hydraulic and thermal) built up to simulate the water flow in the cooling system and the temperature state of detector components are also presented and discussed. The numerical investigations carried out on the developed models have shown that only good thermal contact between the shell of the detector blocks and water-cooled casing of the monitor (fit, brazing) will provide the required temperature operation regimes of the most temperature-sensitive IFC electrodes. The obtained high temperature of the detector supports makes necessary an auxiliary direct cooling of the supports or their redesign so as to provide their higher thermal conductivity

  17. Geospatial Data Fusion and Multigroup Decision Support for Surface Water Quality Management

    Science.gov (United States)

    Sun, A. Y.; Osidele, O.; Green, R. T.; Xie, H.

    2010-12-01

    Social networking and social media have gained significant popularity and brought fundamental changes to many facets of our everyday life. With the ever-increasing adoption of GPS-enabled gadgets and technology, location-based content is likely to play a central role in social networking sites. While location-based content is not new to the geoscience community, where geographic information systems (GIS) are extensively used, the delivery of useful geospatial data to targeted user groups for decision support is new. Decision makers and modelers ought to make more effective use of the new web-based tools to expand the scope of environmental awareness education, public outreach, and stakeholder interaction. Environmental decision processes are often rife with uncertainty and controversy, requiring integration of multiple sources of information and compromises between diverse interests. Fusing of multisource, multiscale environmental data for multigroup decision support is a challenging task. Toward this goal, a multigroup decision support platform should strive to achieve transparency, impartiality, and timely synthesis of information. The latter criterion often constitutes a major technical bottleneck to traditional GIS-based media, featuring large file or image sizes and requiring special processing before web deployment. Many tools and design patterns have appeared in recent years to ease the situation somewhat. In this project, we explore the use of Web 2.0 technologies for “pushing” location-based content to multigroups involved in surface water quality management and decision making. In particular, our granular bottom-up approach facilitates effective delivery of information to most relevant user groups. Our location-based content includes in-situ and remotely sensed data disseminated by NASA and other national and local agencies. Our project is demonstrated for managing the total maximum daily load (TMDL) program in the Arroyo Colorado coastal river basin

  18. Infrared thermography inspection methods applied to the target elements of W7-X Divertor

    International Nuclear Information System (INIS)

    Missirlian, M.; Durocher, A.; Schlosser, J.; Farjon, J.-L.; Vignal, N.; Traxler, H.; Schedler, B.; Boscary, J.

    2006-01-01

    As heat exhaust capability and lifetime of plasma-facing component (PFC) during in-situ operation are linked to the manufacturing quality, a set of non-destructive testing must be operated during R-and-D and manufacturing phases. Within this framework, advanced non-destructive examination (NDE) methods are one of the key issues to achieve a high level of quality and reliability of joining techniques in the production of high heat flux components but also to develop and built successfully PFCs for a next generation of fusion devices. In this frame, two NDE infrared thermographic approaches, which have been recently applied to the qualification of CFC target elements of the W7-X divertor during the first series production will be discussed in this paper. The first one, developed by CEA (SATIR facility) and used with successfully to the control of the mass-produced actively cooled PFCs on Tore Supra, is based on the transient thermography where the testing protocol consists in inducing a thermal transient within the heat sink structure by an alternative hot/cold water flow. The second one, recently developed by PLANSEE (ARGUS facility), is based on the pulsed thermography where the component is heated externally by a single powerful flash of light. Results obtained on qualification experiences performed during the first series production of W7-X divertor components representing about thirty mock-ups with artificial and manufacturing defects, demonstrated the capabilities of these two methods and raised the efficiency of inspection to a level which is appropriate for industrial application. This comparative study, associated to a cross-checking analysis between the high heat flux performance tests and these inspection methods by infrared thermography, showed a good reproducibility and allowed to set a detectable limit specific at each method. Finally, the detectability of relevant defects showed excellent coincidence with thermal images obtained from high heat flux

  19. Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U

    Science.gov (United States)

    van Eden, G. G.; Reinke, M. L.; Peterson, B. J.; Gray, T. K.; Delgado-Aparicio, L. F.; Jaworski, M. A.; Lore, J.; Mukai, K.; Sano, R.; Pandya, S. N.; Morgan, T. W.

    2016-11-01

    The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm2 Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solving the 2D+time heat diffusion equation, using the foil's calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. The optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs.

  20. Laser fusion

    International Nuclear Information System (INIS)

    Eliezer, S.

    1982-02-01

    In this paper, the physics of laser fusion is described on an elementary level. The irradiated matter consists of a dense inner core surrounded by a less dense plasma corona. The laser radiation is mainly absorbed in the outer periphery of the plasma. The absorbed energy is transported inward to the ablation surface where plasma flow is created. Due to this plasma flow, a sequence of inward going shock waves and heat waves are created, resulting in the compression and heating of the core to high density and temperature. The interaction physics between laser and matter leading to thermonuclear burn is summarized by the following sequence of events: Laser absorption → Energy transport → Compression → Nuclear Fusion. This scenario is shown in particular for a Nd:laser with a wavelength of 1 μm. The wavelength scaling of the physical processes is also discussed. In addition to the laser-plasma physics, the Nd high power pulsed laser is described. We give a very brief description of the oscillator, the amplifiers, the spatial filters, the isolators and the diagnostics involved. Last, but not least, the concept of reactors for laser fusion and the necessary laser system are discussed. (author)

  1. Nuclear data needs for fusion reactors

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-01-01

    The nuclear design of fusion components (e.g., first wall, blanket, shield, magnet, limiter, divertor, etc.) requires an accurate prediction of the radiation field, the radiation damage parameters, and the activation analysis. The fusion nucleonics for these tasks are reviewed with special attention to point out nuclear data needs and deficiencies which effect the design process. The main areas included in this review are tritium breeding analyses, nuclear heating calculations, radiation damage in reactor components, shield designs, and results of uncertainty analyses as applied to fusion reactor studies. Design choices and reactor parameters that impact the neutronics performance of the blanket are discussed with emphasis on the tritium breeding ratio. Nuclear data required for kerma factors, shielding analysis, and radiation damage are discussed. Improvements in the evaluated data libraries are described to overcome the existing problems. 84 refs., 11 figs., 9 tabs

  2. Plasma facing components integration studies for the WEST divertor

    Energy Technology Data Exchange (ETDEWEB)

    Ferlay, Fabien, E-mail: fabien.ferlay@cea.fr; Missirlian, Marc; Guilhem, Dominique; Firdaouss, Mehdi; Richou, Marianne; Doceul, Louis; Faisse, Frédéric; Languille, Pascal; Larroque, Sébastien; Martinez, André; Proust, Maxime; Louison, Céphise; Jeanne, Florian; Saille, Alain; Samaille, Frank; Verger, Jean-Marc; Bucalossi, Jérôme

    2015-10-15

    Highlights: • The divertor PFU integration has been studied regarding existing environment. • Magnetic, electric, thermal, hydraulic, mechanical loads and assembly are considered. - Abstract: In the context of the Tokamak Tore-Supra evolution, the CEA aims at transforming it into a test bench for ITER actively cooled tungsten (ACW) plasma facing components (PFC). This project named WEST (Tungsten Environment in Steady state Tokamak) is especially focused on the divertor target. The modification of the machine, by adding two axisymmetric divertors will make feasible an H-mode with an X-point close to the lower divertor. This environment will allow exposing the divertor ACW components up to 20 MW/m{sup 2} heat flux during long pulse. These specifications are well suited to test the ITER-like ACW target elements, respecting the ITER design. One challenge in such machine evolution is to integrate components in an existing vacuum vessel in order to obtain the best achievable performance. This paper deals with the design integration of ITER ACW target elements into the WEST environment considering magnetic, electric, thermal and mechanical loads. The feasibility of installation and maintenance has to be strongly considered as these PFC could be replaced several times. The ports size allows entering a 30° sector of pre-installed tungsten targets which will be plugged as quickly and easily as possible. The main feature of steady state operation is the active cooling, which leads to have many embedded cooling channels and bulky pipes on the PFC module including many connections and sealings between vacuum and water channels. The 30° sector design is now finalized regarding the ITER ACW elements specifications. No major modifications are expected.

  3. Optimization and limitations of known DEMO divertor concepts

    International Nuclear Information System (INIS)

    Reiser, Jens; Rieth, Michael

    2012-01-01

    Highlights: ► Limitations of the materials. ► Improved H 2 O cooled divertor. ► Improved He cooled divertor. - Abstract: In this work we will introduce and discuss improvements for two types of DEMO divertors based on known designs: (i) gas cooled designs and (ii) liquid coolant concepts. In a first step, the advantages and disadvantages of gas cooling as well as the necessity of a jet impingement to increase the heat transfer coefficients will be discussed. Further discussion deals with the pros and cons of liquid coolant concepts, like for example, liquid metal or water cooling. Thereafter, we will present two rather contrary DEMO divertor concepts which are based on today's knowledge on refractory materials science, fabrication and joining technology. The first improved concept uses water flowing through steel pipes, typically made of Eurofer steel. It is well known that using Eurofer at low temperatures is critical due to its severe embrittlement under neutron irradiation. Here we make a proposal how it could be possible to use the Eurofer steel anyway: the solution could consist in a limited operation period followed by an annealing cycle at 550 °C for a few hours during any maintenance shut down phases. The second design is based on the known helium cooling concept using jet impingement. Drawbacks of the actual He-cooled divertor design are small scale parts as well as the necessary high helium inlet temperature of about 600–800 °C which leads to the question: How can we deal with such high helium temperatures? This paper shows a solution for large scale components as well as a new thermal management for the helium outlet gas that we call ‘cooling of the coolant’. Both concepts are discussed in terms of materials selection due to material limits and joining technology with a special focus on the material issue using already existing and available materials.

  4. Hydrogen molecules in the divertor of ASDEX Upgrade

    International Nuclear Information System (INIS)

    Fantz, U.; Reiter, D.; Heger, B.; Coster, D.

    2001-01-01

    In order to reduce the power load onto the target plates detached divertor conditions are often preferred. These are characterized by volume recombination, i.e. three-body and radiative recombination. Due to low T e (few eV) hydrogen molecules can penetrate into the plasma and may play a role in divertor dynamics. In particular, it was suggested, that molecules may assist the volume recombination process. The role of molecules in the divertor is examined here by a combination of experimental results with plasma edge simulations (B2-EIRENE) and a collisional-radiative model for hydrogen molecules. Spectroscopic diagnostics of the Fulcher transition carried out at the divertor of ASDEX Upgrade yield estimates of molecular hydrogen fluxes and the vibrational population in the ground state in detached and attached hydrogen plasmas. Good agreement with B2-EIRENE is achieved only if vibrational levels are treated as distinct (metastable) particles in the model and if the collisional-radiative model is applied to the electronically excited levels. On this basis the contribution of molecules to plasma recombination was determined to be in the order of a few 10%. The dominant molecular process is the dissociation process via H 2 + . As a consequence initially detached divertor plasmas can even re-attach if vibrationally resolved molecules are properly included in plasma edge models. A set of B2-EIRENE calculations carried out for ASDEX Upgrade is discussed. In particular the threshold upstream density for detachment was found to be up to a factor 1.5 higher than that originally expected due to these molecular effects. The transferability of the results to deuterium will be discussed

  5. Thermal desorption and surface modification of He+ implanted into tungsten

    International Nuclear Information System (INIS)

    Fu Zhang; Yoshida, N.; Iwakiri, H.; Xu Zengyu

    2004-01-01

    Tungsten divertor plates in fusion reactors will be subject to helium bombardment. Helium retention and thermal desorption is a concerned issue in controlling helium ash. In the present study, fluence dependence of thermal desorption behavior of helium in tungsten was studied at different irradiation temperatures and ion energies. Results showed that helium desorption could start at ∼400 K with increasing fluence, while no noticeable peaks were detected at low fluence. Total helium desorption reached a saturation value at high fluence range, which was not sensitive to irradiation temperature or ion energy for the conditions evaluated. Surface modifications caused by either ion irradiation or thermal desorption were observed by SEM. The relationship of surface modifications and helium desorption behavior was discussed. Some special features of elevated irradiation temperature and lower ion energy were also indicated

  6. Motor Function Evaluation of Hemiplegic Upper-Extremities Using Data Fusion from Wearable Inertial and Surface EMG Sensors

    Directory of Open Access Journals (Sweden)

    Yanran Li

    2017-03-01

    Full Text Available Quantitative evaluation of motor function is of great demand for monitoring clinical outcome of applied interventions and further guiding the establishment of therapeutic protocol. This study proposes a novel framework for evaluating upper limb motor function based on data fusion from inertial measurement units (IMUs and surface electromyography (EMG sensors. With wearable sensors worn on the tested upper limbs, subjects were asked to perform eleven straightforward, specifically designed canonical upper-limb functional tasks. A series of machine learning algorithms were applied to the recorded motion data to produce evaluation indicators, which is able to reflect the level of upper-limb motor function abnormality. Sixteen healthy subjects and eighteen stroke subjects with substantial hemiparesis were recruited in the experiment. The combined IMU and EMG data yielded superior performance over the IMU data alone and the EMG data alone, in terms of decreased normal data variation rate (NDVR and improved determination coefficient (DC from a regression analysis between the derived indicator and routine clinical assessment score. Three common unsupervised learning algorithms achieved comparable performance with NDVR around 10% and strong DC around 0.85. By contrast, the use of a supervised algorithm was able to dramatically decrease the NDVR to 6.55%. With the proposed framework, all the produced indicators demonstrated high agreement with the routine clinical assessment scale, indicating their capability of assessing upper-limb motor functions. This study offers a feasible solution to motor function assessment in an objective and quantitative manner, especially suitable for home and community use.

  7. An experimental investigation of the post-CHF enhancement factor for a prototypical ITER divertor plate with water coolant

    International Nuclear Information System (INIS)

    Marshall, T.D.; Watson, R.D.; McDonald, J.M.

    1995-01-01

    In an off-normal event, water-cooled copper divertor plates in the International Thermonuclear Experimental Reactor (ITER) may either experience heat loads beyond their design basis, or the normal heat loads may be accompanied by low coolant pressure and velocity. The purpose of this experiment was to illustrate that during one-sided heating, as in ITER, a copper divertor plate with the proper side wall thickness, at low system pressure and velocity can absorb without failing an incident heat flux, q i , that significantly exceed the value, q i CHF , which is associated with local CHF at the wall of the coolant channel. The experiment was performed using a 30 kW electron beam test system for heating of a square cross-section divertor heat sink with a smooth circular channel of 7.63 mm diameter. The heated width, length, and wall thickness were 16, 40, and 3 mm, respectively. Stable surface temperatures were observed at incident heat fluxes greater than the local CHF point, presumably due to circumferential conduction around the thick tube walls when q i CHF was exceeded. The Post-CHF enhancement factor, η, is defined as the ratio of the incident burnout heat flux, q i BO , to q i CHF . For this experiment with water at inlet conditions of 70 degrees C, 1 m/s, and 1 MPa, q i CHF and q i BO were 600 and 1100 W/cm 2 , respectively, which gave an η of 1.8

  8. Time-resolved deposition in the remote region of the JET-ILW divertor: measurements and modelling

    Science.gov (United States)

    Catarino, N.; Widdowson, A.; Baron-Wiechec, A.; Coad, J. P.; Heinola, K.; Rubel, M.; Alves, E.; Contributors, JET

    2017-12-01

    One crucial requirement for the development of fusion power is to know where, and how much, impurities collect in the machine, and how much of the fuelling isotope tritium will be trapped therein. The most relevant information on this issue comes from the operation of the Joint European Tokamak (JET), which is the world’s largest operating tokamak and has the same interior plasma-facing materials as the next step machine, ITER. Much of the information gained so far has been from post-mortem analysis of samples collected after whole campaigns involving varied types of operation. This paper describes time-resolved measurements of the deposition rate using rotating collectors (RC) placed in remote areas of the JET divertor during the 2013–2014 campaign with the ITER-like Wall (ILW). These techniques allow the effects of different types of operation to be distinguished. Rotating collectors made of silicon discs housed behind an aperture are exposed to the plasma. Each time the magnetic field coils are ramped up for a discharge the disc rotates, providing a linear relationship between the exposed region and the discharge number. Post-mortem ion beam analyses provide information on the deposit composition as a function of the discharge number. The results show that the Be deposition average for the RC in the corners of the inner and outer divertor are 4.9 × 1016 cm‑2 and 1.8 × 1017 cm‑2, respectively, accumulated over an average of ∼25 pulses. Data from the rotating collector below Tile 5 in the central region of divertor indicate a Be deposition rate of 9.3 × 1015 cm‑2, per ∼25 pulses.

  9. Thermal analysis of an exposed tungsten edge in the JET divertor

    Energy Technology Data Exchange (ETDEWEB)

    Arnoux, G., E-mail: gilles.arnoux@ccfe.ac.uk [CCFE Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Coenen, J. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, 52425 Jülich (Germany); Bazylev, B. [Forshungzentrum Karlsruhe GmbH, P.O.Box 3640, D-76021 Karlsruhe (Germany); Corre, Y. [CEA/DSM/IRFM, CEA Cadarache, 13108 Saint Paul Lez Durance (France); Matthews, G.F.; Balboa, I. [CCFE Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Clever, M. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, 52425 Jülich (Germany); Dejarnac, R. [IPP.CR, Institute of Plasma Physics AS CR, Za Slovankou 3, 182 21 Praha 8 (Czech Republic); Devaux, S.; Eich, T. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Gauthier, E. [CEA/DSM/IRFM, CEA Cadarache, 13108 Saint Paul Lez Durance (France); Frassinetti, L. [Fusion Plasma Physics, EES, KTH, SE-10044 Stockholm (Sweden); Horacek, J. [IPP.CR, Institute of Plasma Physics AS CR, Za Slovankou 3, 182 21 Praha 8 (Czech Republic); Jachmich, S. [Laboratory for Plasma Physics Koninklijke Militaire School – Ecole Royale Militaire, Renaissancelaan, 30 Avenue de la Renaissance, B-1000 Brussels (Belgium); Kinna, D. [CCFE Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Marsen, S. [Max-Planck-Institut für Plasmaphysik, Teilinsitut Greifswald, D-17491 Greifswald (Germany); and others

    2015-08-15

    Highlights: • We provide experimental evidences that melting of the JET tungsten divertor is achieved by transients only. • The measurements show that less than half the parallel heat flux reaches the melted sample. • We propose ideas to investigate to explain the missing heat flux. - Abstract: In the recent melt experiments with the JET tungsten divertor, we observe that the heat flux impacting on a leading edge is 3–10 times lower than a geometrical projection would predict. The surface temperature, tungsten vaporisation rate and melt motion measured during these experiments is consistent with the simulations using the MEMOS code, only if one applies the heat flux reduction. This unexpected observation is the result of our efforts to demonstrate that the tungsten lamella was melted by ELM induced transient heat loads only. This paper describes in details the measurements and data analysis method that led us to this strong conclusion. The reason for the reduced heat flux are yet to be clearly established and we provide some ideas to explore. Explaining the physics of this heat flux reduction would allow to understand whether it can be extrapolated to ITER.

  10. Thermomechanical design evaluation and material properties requirements for net divertor elements

    Science.gov (United States)

    Zolti, E.

    1988-07-01

    The major thermomechanical problems of the divertor target plates of the Next European Torus (NET), the procedures and the material data needed for design evaluation are described. As a representative example a preliminary analysis of the divertor plates, which consist of an assembly of one-channel TZM elements, cooled with helium and protected with brazed graphite, is presented. The thermal and mechanical results show, on the one hand, the viability of this concept with respect to peak graphite temperatures, distortion limit to maintain adequate angles with the separatrix, and thermal fatigue and ratchetting of the TZM structure, for a peak surface heat flux of 5 MW/m 2. On the other hand, they contribute to the definition of the material testing programme in terms of further data needs, priorities and test parameter range. Emphasis is put on the fracture mechanics behaviour of the refractory materials under static and dynamic conditions, on the thermal and mechanical properties of intermediate joining layers, on irradiation effects on graphite and carbon fibre composites, and on the relevance of the graphite thermal conductivity in the plasma-to-coolant direction and of its strength under cyclic tensile stresses in the perpendicular direction.

  11. Thermomechanical design evaluation and material properties requirements for NET divertor elements

    International Nuclear Information System (INIS)

    Zolti, E.

    1988-01-01

    The major thermomechanical problems of the divertor target plates of the Next European Torus (NET), the procedures and the material data needed for design evaluation are described. As a representative example a preliminary analysis of the divertor plates, which consist of an assembly of one-channel TZM elements, cooled with helium and protected with brazed graphite, is presented. The thermal and mechanical results show, on the one hand, the viability of this concept with respect to peak graphite temperatures, distortion limit to maintain adequate angles with the separatrix, and thermal fatigue and ratchetting of the TZM structure, for a peak surface heat flux of 5 MW/m 2 . On the other hand, they contribute to the definition of the material testing programme in terms of further data needs, priorities and test parameter range. Emphasis is put on the fracture mechanics behavior of the refractory materials under static and dynamic conditions, on the thermal and mechanical properties of intermediate joining layers, on irradiation effects on graphite and carbon fibre composites, and on the relevance of the graphite thermal conductivity in the plasma-to-coolant direction and of its strength under cyclic tensile stresses in the perpendicular direction. (orig.)

  12. Manufacturing and testing of a copper/CFC divertor mock-up for JET

    International Nuclear Information System (INIS)

    Brossa, M.; Ciric, D.; Deksnis, E.; Falter, H.; Guerreschi, U.; Peacock, A.; Pick, M.; Rossi, M.; Shen, Y.; Zacchia, F.

    1995-01-01

    An actively cooled divertor is a possible option for future developments at The Joint European Torus (JET). A proof of principle actively cooled tile has been produced in order to qualify the relevant manufacturing technologies and the non destructive control processes. In this frame Ansaldo Ricerche (ARI) has been involved in the construction of a mock-up comprising 6 OFHC copper tubes for water cooling that are brazed to a plate made out of carbon fibre composite (CFC). The final objective was the high heat flux testing of the mock-up at JET in order to evaluate the general behaviour of the component under relevant operating conditions. The key point of the work was the realisation of a sound joint by adapting the expertise gained in ARI in previous R and D activities on brazing heterogeneous materials. Reliable methods for ultrasonic examinations of the pieces were also set up. For successful application to the JET pumped divertor a water-cooled CFC target plate must show surface temperatures of 2 . Furthermore, global hydraulic considerations specific to JET limit the system pressure to 0.7 MPa. In such a design, critical heat flux is not the key limit, rather the reliability of the CFC-copper joint in terms of extent of wetting. First tests in the neutral beam test bed at JET show an adequate response for fluxes up to 15 MW/m 2 . (orig.)

  13. Thermo-mechanical tests of a CFC divertor mock-up

    International Nuclear Information System (INIS)

    Cardella, A.; Akiba, M.; Duwe, R.; Di Pietro, E.; Suzuki, S.; Satoh, K.; Reheis, N.

    1994-01-01

    Thermo-mechanical tests have been performed on a divertor mock-up consisting of a metallic tube armoured with five carbon fibre composite tiles. The tube is inserted the tiles and brazed with TiCuSil braze (monoblock concept). The tube material is TZM, a molybdenum alloy, and the armour material is SEP CARB N112, a high conductivity carbon-carbon composite. Using special surface preparation consisting of laser drilling, small (≅ 500 μm) holes in the composite have been made to increase the surface wetted by the braze and the resistance. The mock-up has been tested at the JAERI 400 kW electron beam test facility JEBIS. The aim of the test was to assess the performance of the mock-up in screening and thermal fatigue tests with particular attention to the behaviour of the armour to heat sink joint. (orig.)

  14. High heat flux testing of EU tungsten monoblock mock-ups for the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Gavila, P., E-mail: pierre.gavila@f4e.europa.eu [Fusion for Energy, 08019 Barcelona (Spain); Riccardi, B. [Fusion for Energy, 08019 Barcelona (Spain); Pintsuk, G. [Forschungszentrum Juelich, 52425 Juelich (Germany); Ritz, G. [AREVA NP, Centre Technique France, 71205 Le Creusot (France); Kuznetsov, V. [JCS “Efremov Institute”, Doroga na Metallostroy 3, Metallostroy, Saint-Petersburg 196641 (Russian Federation); Durocher, A. [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 Saint Paul-lez-Durance (France)

    2015-10-15

    Highlights: • All the tested items sustained the ITER Full W divertor qualification program requirements. This confirms that the technology for the manufacturing of the first set of the ITER Divertor is available in Europe. • The surface roughening and local melting of the W surface under high heat flux was proven to be significantly reduced for an armour thickness lower or equal to 6 mm. • However, this campaign highlighted some specific areas of improvement to be implemented ideally before the upcoming ITER Divertor IVT serial production. • The issue of the self-castellation of the W monoblocks, which typically appears after a few tenths of cycles at 20 MW/m{sup 2}, is critical because it generates some uncontrolled defects at the amour to heat sink joints. Besides, they create a gap which exposure is almost perpendicular to the magnetic field lines and which might lead to local W melting in the strike point region. • This campaign also evidenced that the minimum IO requirements on the CuCrZr ductility could be revised to avoid the occurrence of rather early fatigue failures. Although the W material characterization program has been set up by the IO, the strategy on the CuCrZr still needs to be defined. - Abstract: With the aim to assess the option to start the ITER operation with a full tungsten divertor, an R&D program was launched in order to evaluate the performances of tungsten (W) armoured plasma facing components (PFCs) under high heat flux. The F4E program consisted in the manufacturing and high heat flux (HHF) testing of W monoblock mock-ups and medium scale prototypes up to 20 MW/m{sup 2}. During the test campaign, 26 W mock-ups and two medium scale prototypes manufactured by Plansee SE (Austria) and by Ansaldo Nucleare (Italy) have been tested at the FE200 (AREVA, Le Creusot, France) and ITER Divertor Test Facility (IDTF) (Efremov Institute Saint Petersburg, Russian Federation) electron beam test facilities. The high heat flux (HHF) testing

  15. High heat flux testing of EU tungsten monoblock mock-ups for the ITER divertor

    International Nuclear Information System (INIS)

    Gavila, P.; Riccardi, B.; Pintsuk, G.; Ritz, G.; Kuznetsov, V.; Durocher, A.

    2015-01-01

    Highlights: • All the tested items sustained the ITER Full W divertor qualification program requirements. This confirms that the technology for the manufacturing of the first set of the ITER Divertor is available in Europe. • The surface roughening and local melting of the W surface under high heat flux was proven to be significantly reduced for an armour thickness lower or equal to 6 mm. • However, this campaign highlighted some specific areas of improvement to be implemented ideally before the upcoming ITER Divertor IVT serial production. • The issue of the self-castellation of the W monoblocks, which typically appears after a few tenths of cycles at 20 MW/m 2 , is critical because it generates some uncontrolled defects at the amour to heat sink joints. Besides, they create a gap which exposure is almost perpendicular to the magnetic field lines and which might lead to local W melting in the strike point region. • This campaign also evidenced that the minimum IO requirements on the CuCrZr ductility could be revised to avoid the occurrence of rather early fatigue failures. Although the W material characterization program has been set up by the IO, the strategy on the CuCrZr still needs to be defined. - Abstract: With the aim to assess the option to start the ITER operation with a full tungsten divertor, an R&D program was launched in order to evaluate the performances of tungsten (W) armoured plasma facing components (PFCs) under high heat flux. The F4E program consisted in the manufacturing and high heat flux (HHF) testing of W monoblock mock-ups and medium scale prototypes up to 20 MW/m 2 . During the test campaign, 26 W mock-ups and two medium scale prototypes manufactured by Plansee SE (Austria) and by Ansaldo Nucleare (Italy) have been tested at the FE200 (AREVA, Le Creusot, France) and ITER Divertor Test Facility (IDTF) (Efremov Institute Saint Petersburg, Russian Federation) electron beam test facilities. The high heat flux (HHF) testing program

  16. EMP Fusion

    OpenAIRE

    KUNTAY, Isık

    2010-01-01

    This paper introduces a novel fusion scheme, called EMP Fusion, which has the promise of achieving breakeven and realizing commercial fusion power. The method is based on harnessing the power of an electromagnetic pulse generated by the now well-developed flux compression technology. The electromagnetic pulse acts as a means of both heating up the plasma and confining the plasma, eliminating intermediate steps. The EMP Fusion device is simpler compared to other fusion devices and this reduces...

  17. Steady state and transient thermal-hydraulic characterization of full-scale ITER divertor plasma facing components

    International Nuclear Information System (INIS)

    Tincani, A.; Malavasi, A.; Ricapito, I.; Riccardi, B.; Di Maio, P.A.; Vella, G.

    2007-01-01

    In the frame of the activities related to ITER divertor R and D, ENEA CR Brasimone was charged by EFDA (European Fusion Design Agreement) to investigate the thermal-hydraulic behaviour of the full-scale divertor plasma facing components, i.e. Inner Vertical Target, Dome Liner and Outer Vertical Target, both in steady state and during draining and drying transient. More in detail, for each PFC, the first phase of the work is the steady state hydraulic characterization which consists of: - measurements of pressure drops at different temperatures; - determination of the velocity distribution in the internal channels; - check the possible insurgence of cavitation. The subsequent phase of the thermal-hydraulic characterization foresees a testing campaign of draining and drying procedure by means of a suitable gas flow. The objective of this experimental procedure is to eliminate in the most efficient way the residual amount of water after gravity discharge. In order to accomplish this experimental campaign a significant modification of CEF1 loop has been designed and realized. This paper presents, first of all, the experimental set-up, the agreed test matrix and the achieved results for both steady state and transient tests. Moreover, the level of the implementation of a predictive hydraulic model, based on RELAP 5 code, as well as its results are described, discussed and compared with the experimental ones. (orig.)

  18. Molecular dynamics simulations of interactions between hydrogen and fusion-relevant materials

    International Nuclear Information System (INIS)

    Rooij, Dagmar de

    2010-01-01

    In a thermonuclear reactor fusion between hydrogen isotopes takes place, producing helium and energy. The so-called divertor is the part of the fusion reactor vessel where the plasma is neutralized in order to exhaust the helium. The surface plates of the divertor are subjected to high heat loads and high fluxes of energetic hydrogen and helium. In the next generation fusion device - the tokamak ITER - the expected conditions at the plates are particle fluxes exceeding 10 24 per second and square metre, particle energies ranging from 1 to 100 eV and an average heat load of 10 MW per square metre. Two materials have been identified as candidates for the ITER divertor plates: carbon and tungsten. Since there are currently no fusion devices that can create these harsh conditions, it is unknown how the materials will behave in terms of erosion and hydrogen retention. To gain more insight in the physical processes under these conditions molecular dynamics simulations have been conducted. Since diamond has been proposed as possible plasma facing material, we have studied erosion and hydrogen retention in diamond and amorphous hydrogenated carbon (a-C:H). As in experiments, diamond shows a lower erosion yield than a-C:H, however the hydrogen retention in diamond is much larger than in a-C:H and also hardly depending on the substrate temperature. This implies that simple heating of the surface is not sufficient to retrieve the hydrogen from diamond material, whereas a-C:H readily releases the retained hydrogen. So, in spite of the higher erosion yield carbon material other than diamond seems more suitable. Experiments suggest that the erosion yield of carbon material decreases with increasing flux. This was studied in our simulations. The results show no flux dependency, suggesting that the observed reduction is not a material property but is caused by external factors as, for example, redeposition of the erosion products. Our study of the redeposition showed that the

  19. Thermal transients due to sweeping of the separatrix on the monoblock divertor concept for ITER

    International Nuclear Information System (INIS)

    Renda, V.; Papa, L.; Soria, A.

    1991-01-01

    The ITER divertor plate considered in the present study is the monoblock design option, consisting of an armour of CFC-SEP-Carb graphite tiles, crossed by the tubes of the water cooling system made in Mo-Re alloy. Preliminary steady-state calculations for a peak flux of 15 MW/m 2 showed that the allowable thickness to limit the maximum temperature to 1273 K (1000degC) is about 5 mm. This small value reduces the lifetime of the plate, due to the expected erosion rate, to an unacceptable value from the engineering standpoint. A sweeping of the separatrix has been proposed to reduce the erosion of the protective armour and to lessen the thermomechanical effects of the localized peak surface heat flux. A rotation of the null points of the separatrix of 30 mm radius with a frequency of 0.3 Hz for a surface heat flux of 15 MW/m 2 was assumed as nominal working condition. Several scenarios were considered as off-normal conditions: the loss of sweeping accident, the change in frequency from 0.3 to 0.1 Hz and the change of the peak of the surface heat flux from 15 to 30 MW/m 2 . The results related to the nominal condition show that a 16 mm thick armour could be allowed; this value should ensure an acceptable lifetime for the divertor plate. The loss of sweeping accident leads the surface temperature to reach about 2273 K in few seconds; the change in frequency raises the maximum temperature of 423 K, but its range doubles; the change in peak flux leads to a maximum temperature of about 2373 K. (author)

  20. Material Science Activities for Fusion Reactors in Kazakhstan

    International Nuclear Information System (INIS)

    Tazhibayeva, I.; Kenzhin, E.; Kulsartov, T.; Shestakov, V.; Chikhray, Y.; Azizov, E.; Filatov, O.; Chernov, V.M.

    2007-01-01

    Full text of publication follows: Paper contains results of fusion material testing national program and results of activities on creation of material testing spherical tokamak. Hydrogen isotope behavior (diffusion, permeation, and accumulation) in the components of the first wall and divertor was studied taking into account temperature, pressure, and reactor irradiation. There were carried out out-of-pile and in-pile (reactors IVG-IM, WWRK, RA) studies of beryllium of various grades (TV-56, TShG-56, DV-56, TGP-56, TIP-56), graphites (RG-T, MPG-8, FP 479, R 4340), molybdenum, tungsten, steels (Cr18Ni10Ti, Cr16Ni15, MANET, F82H), alloys V-(4-6)Cr-( 4-5)Ti, Cu+1%Cr+0.1%Zr, and double Be/Cu and triple Be/Cu/steel structures. Tritium permeability from eutectic Pb+17%Li through steels Cr18Ni10Ti, Cr16Ni15, MANET, and F82H were studied taking into account protective coating effects. The tritium production rate was experimentally assessed during in-pile and post-reactor experiments. There were carried out radiation tests of ceramic Li 2 TiO 3 (96% enrichment by Li-6) with in-situ registration of released tritium and following post-irradiation material tests of irradiated samples. Verification of computer codes for simulation of accidents related to LOCA in ITER reactor was carried out. Codes' verification was carried out for a mockup of first wall in a form of three-layer cylinder of beryllium, bronze (Cu-Cr-Zr) and stainless steel. At present Kazakhstan Tokamak for Material testing (tokamak KTM) is created in National Nuclear Center of Republic of Kazakhstan in cooperation with Russian Federation organizations (start-up is scheduled on 2008). Tokamak KTM allows for expansion and specification of the studies and tests of materials, protection options of first wall, receiving divertor tiles and divertor components, methods for load reduction at divertor, and various options of heat/power removal, fast evacuation of divertor volume and development of the techniques for

  1. Divertor heat and particle control experiments on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Baker, D.R.; Allen, S.L.

    1994-05-01

    In this paper we present a summary of recent DIII-D divertor physics activity and plans for future divertor upgrades. During the past year, DIII-D experimental effort was focused on areas of active heat and particle control and divertor target erosion studies. Using the DIII-D Advanced Divertor system we have succeeded for the first time to control the plasma density and demonstrate helium exhaust in H-mode plasmas. Divertor heat flux control by means of D 2 gas puffing and impurity injection were studied separately and in, both cases up to a factor of five reduction of the divertor peak heat flux was observed. Using the DiMES sample transfer system we have obtained erosion data on various material samples in well diagnosed plasmas and compared the results with predictions of numerical models

  2. The effect of charge exchange with neutral deuterium on carbon emission in JET divertor plasmas

    International Nuclear Information System (INIS)

    Maggi, C.; Horton, L.; Summers, H.

    1999-11-01

    High density, low temperature divertor plasma operation in tokamaks results in large neutral deuterium concentrations in the divertor volume. In these conditions, low energy charge transfer reactions between neutral deuterium and the impurity ions can in principle enhance the impurity radiative losses and thus help to reduce the maximum heat load to the divertor target. A quantitative study of the effect of charge exchange on carbon emission is presented, applied to the JET divertor. Total and state selective effective charge exchange recombination rate coefficients were calculated in the collisional radiative picture. These coefficients were coupled to divertor and impurity transport models to study the effect of charge exchange on the measured carbon spectral emission in JET divertor discharges. The sensitivity of the effect of charge exchange to the assumptions in the impurity transport model was also investigated. A reassessment was made of fundamental charge exchange cross section data in support of this study. (author)

  3. L-H power threshold studies with tungsten/carbon divertor on the EAST tokamak

    DEFF Research Database (Denmark)

    Chen, L.; Xu, G. S.; Gao, W.

    2016-01-01

    carbon divertor. For both sets of divertors, the power threshold was found to decrease with gradual accumulation of the lithium wall coating, suggesting the important role played by the low Z impurities and/or the edge neutral density on the L-H power threshold. When operating in the upper single null......The power threshold for low (L) to high (H) confinement mode transition achieved by radio-frequency heating and molybdenum first wall with lithium coating has been experimentally investigated on the EAST tokamak for two sets of divertor geometries and materials: tungsten/carbon divertor and full...... configuration, with the ion grad-B drift direction away from the primary X-point, a lower normalized power threshold is observed in EAST with the tungsten/carbon divertor, compared to the carbon divertor after intensive lithium wall coating. A newly installed cryopump increasing the pumping efficiency also...

  4. The effect of charge exchange with neutral deuterium on carbon emission in JET divertor plasmas

    International Nuclear Information System (INIS)

    Maggi, C.F.; Horton, L.D.; Summers, H.P.

    2000-01-01

    High-density, low-temperature divertor plasma operation in tokamaks results in large neutral deuterium concentrations in the divertor volume. Under these conditions, low-energy charge transfer reactions between neutral deuterium and the impurity ions can, in principle, enhance the impurity radiative losses and thus help to reduce the maximum heat load to the divertor target. A quantitative study of the effect of charge exchange on carbon emission is presented, and applied to the JET divertor. Total and state-selective effective charge exchange recombination rate coefficients were calculated in the collisional radiative picture. These coefficients were coupled to divertor and impurity transport models in order to study the effect of charge exchange on the measured carbon spectral emission in JET divertor discharges. The sensitivity of the effect of charge exchange to the assumptions in the impurity transport model was also investigated. A reassessment of fundamental charge exchange cross section data in support of this study was made. (author)

  5. Engineering, installation, testing, and initial operation of the DIII-D Advanced Divertor

    International Nuclear Information System (INIS)

    Andersen, P.M.; Baxi, C.B.; Reis, E.E.; Schaffer, M.J.; Smith, J.P.

    1990-09-01

    The Advanced Divertor (AD) for General Atomics tokamak, DIII-D, was installed in the summer of 1990. The AD has enabled two classes of physics experiments to be run: divertor biasing and divertor baffling. Both are new experiments for DIII-D. The AD has two principal components: (1) a continuous ring electrode; and (2) a toroidally symmetric baffle. The tokamak can be run in bias baffle or standard DIII-D divertor modes by accurate positioning of the outer divertor strike point through the use of the DIII-D control system. The paper covers design, analysis, fabrication, installation, instrumentation, testing, initial operation, and future plans for the Advanced Divertor from an engineering viewpoint. 2 refs., 5 figs

  6. The control of convection by fuelling and pumping in the JET pumped divertor

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, P.J.; Andrew, P.; Campbell, D.; Clement, S.; Davies, S.; Ehrenberg, J.; Erents, S.K.; Gondhalekar, A.; Gadeberg, M.; Gottardi, N.; Von Hellermann, M.; Horton, L.; Loarte, A.; Lowry, C.; Maggi, C.; McCormick, K.; O`Brien, D.; Reichle, R.; Saibene, G.; Simonini, R.; Spence, J.; Stamp, M.; Stork, D.; Taroni, A.; Vlases, G. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    Convection from the scrape-off layer (SOL) to the divertor will control core impurities, if it retains them in a cold, dense, divertor plasma. This implies a high impurity concentration in the divertor, low at its entrance. Particle flux into the divertor entrance can be varied systematically in JET, using the new fuelling and pumping systems. The convection ratio has been estimated for various conditions of operation. Particle convection into the divertor should increase thermal convection, decreasing thermal conduction, and temperature and density gradients along the magnetic field, hence increasing the frictional force and decreasing the thermal force on impurities. Changes in convection in the SOL, caused by gaseous fuelling, have been studied, both experimentally in the JET Mk I divertor and with EDGE2/NIMBUS. 1 ref., 4 figs., 1 tab.

  7. Development of innovative fuelling systems for fusion energy science

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.

    1996-01-01

    The development of innovative fueling systems in support of magnetic fusion energy, particularly the International Thermonuclear Experimental Reactor (ITER), is described. The ITER fuelling system will use a combination of deuterium-tritium (D-T) gas puffing and pellet injection to achieve and maintain ignited plasmas. This combination will provide a flexible fuelling source with D-T pellets penetrating beyond the separatrix to sustain the ignited fusion plasma and with deuterium-rich gas fuelling the edge region to meet divertor requirements in a process called isotopic fuelling. More advanced systems with potential for deeper penetration, such as multistage pellet guns and compact toroid injection, are also described

  8. Diffusion bonding as joining technique for fusion reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Ceccotti, G.C.; Magnoli, L.

    1992-11-01

    The development of joining techniques for fusion reactor divertors has been undertaken at ENEA (Italian Agency for Energy, New Technologies and the Environment) IFEC Saluggia. Joints were made by the diffusion bonding technique between graphite composite material with DS copper and with molybdenum TZM alloy, respectively. The inter-layers, when necessary, were obtained by metallization with an electronic gun. The same technique is employed in joining Be/SS, DS copper/Be, TZM/Be and graphite/Be for the first wall or plasma facing components of fusion reactors. In this case, a suitable inter-layer material can avoid the problems occuring with the more traditional brazing processes.

  9. Fusion Technology 1996. Proceedings. Volume 1 and 2

    International Nuclear Information System (INIS)

    Varandas, C.; Serra, F.

    1997-01-01

    The objective of these proceedings was to provide a platform for the exchange of information on the design, construction and operation of fusion experiments. The technology which is being developed for the next step devices and fusion reactors was also covered. Sections in volume 1 concern (A) first wall, divertors and vacuum systems; (B) plasma heating and control; (C) plasma engineering and control; and (D) experimental systems. The sections in volume 2 deal with (E) magnet and related power supplies; (F) fuel cycle and tritium processing systems; (G) blanket technology/materials; (H) assembly, remote handling and waste management and storage; and (I) safety and environment, and reactor studies

  10. Edge plasma control: Particle channeling in Tore Supra pump limiter and ergodic divertor

    International Nuclear Information System (INIS)

    Ghendrih, P.; Samain, A.; Grosman, A.; Capes, H.; Morera, J.P.

    1989-01-01

    Improved pumping efficiency can be achieved on Tore Supra by channeling process for particles, i.e. channeling of neutrals in the throat of pump limiters and channeling of plasma towards neutralizer plates in the ergodic divertor. The plugging length for the pump limiter throat is computed and numerical evidence of plasma flux channeling between the conductor bars of the ergodic divertor is presented. The effect of the Tore Supra ergodic divertor on edge plasma state and edge plasma transport is discussed. (orig.)

  11. Alignment systems for pumped divertor installation at JET

    International Nuclear Information System (INIS)

    Macklin, B.; Celentano, G.; Israel, G.; Tait, J.; Lente, E. van; Cordier, J.J.

    1994-01-01

    The installation of the JET Pumped Divertor, designed to study impurity control, has recently been completed. The main components are four magnetic coils, forty eight divertor plate assemblies, one toroidal cryopump, eight ICRH antennae, sixteen inner wall guard limiters and twelve poloidal limiters. Due to the high thermal loads, accurate positioning of plasma facing components to the magnetic centre of the machine was a major requirement. Typically alignment within ± 2 mm was required, with steps between tiles on a component being controlled to ± 0.25 mm. In some cases a set of components was required to be concentric, while also lying within a narrow band defined by the position of some other components. A typical example of this was the positioning of the poloidal limiters, which perform the dual function of limiting the plasma and also protecting the antennae. Clearly, a measuring system accurate to better than ± 0.5 mm was required. (author) 4 refs.; 3 figs

  12. Diagnosing transient plasma status: from solar atmosphere to tokamak divertor

    International Nuclear Information System (INIS)

    Giunta, A.S.; Henderson, S.; O'Mullane, M.; Summers, H.P.; Harrison, J.; Doyle, J.G.

    2016-01-01

    This work strongly exploits the interdisciplinary links between astrophysical (such as the solar upper atmosphere) and laboratory plasmas (such as tokamak devices) by sharing the development of a common modelling for time-dependent ionisation. This is applied to the interpretation of solar flare data observed by the UVSP (Ultraviolet Spectrometer and Polarimeter), on-board the Solar Maximum Mission and the IRIS (Interface Region Imaging Spectrograph), and also to data from B2-SOLPS (Scrape Off Layer Plasma Simulations) for MAST (Mega Ampère Spherical Tokamak) Super-X divertor upgrade. The derived atomic data, calculated in the framework of the ADAS (Atomic Data and Analysis Structure) project, allow equivalent prediction in non-stationary transport regimes and transients of both the solar atmosphere and tokamak divertors, except that the tokamak evolution is about one thousand times faster.

  13. Divertor armour issues: lifetime, safety and influence on ITER performance

    International Nuclear Information System (INIS)

    Pestchanyi, S.

    2009-01-01

    Comprehensive simulations of the ITER divertor armour vaporization and brittle destruction under ELMs of different sizes have revealed that the erosion rate of CFC armour is intolerable for an industrial reactor, but it can be considerably reduced by the armour fibre structure optimization. The ITER core contamination with carbon is tolerable for medium size ELMs, but large type I ELM can run the confinement into the disruption. Erosion of tungsten, an alternative armour material, under ELMs influence is satisfactory, but the danger of the core plasma contamination with tungsten is still not enough understood and potentially it could be very dangerous. Vaporization of tungsten, its cracking and dust production during ELMs are rather urgent issues to be investigated for proper choice of the divertor armour material for ITER. However, the erosion rate under action of the disruptive heat loads is tolerable for both armour materials assuming few hundred disruptions falls out during ITER lifetime

  14. SOLPS simulations of X-