WorldWideScience

Sample records for fusion blanket concept

  1. Concepts for fusion fuel production blankets

    International Nuclear Information System (INIS)

    Gierszewski, P.

    1986-06-01

    The fusion blanket surrounds the burning hydrogen core of the fusion reactor. It is in this blanket that most of the energy released by the DT fusion reaction is converted into useable product, and where tritium fuel is produced to enable further operation of the reactor. Blankets will involve new materials, conditions and processes. Several recent fusion blanket concepts are presented to illustrate the range of ideas

  2. Feasibility study of fusion breeding blanket concept employing graphite reflector

    International Nuclear Information System (INIS)

    Cho, Seungyon; Ahn, Mu-Young; Lee, Cheol Woo; Kim, Eung Seon; Park, Yi-Hyun; Lee, Youngmin; Lee, Dong Won

    2015-01-01

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  3. Feasibility study of fusion breeding blanket concept employing graphite reflector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seungyon, E-mail: sycho@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Woo; Kim, Eung Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  4. New concepts for controlled fusion reactor blanket design

    International Nuclear Information System (INIS)

    Conn, R.W.; Kulcinski, G.L.; Avci, H.; El-Maghrabi, M.

    1975-01-01

    Several new concepts for fusion reactor blanket design based on the idea of shifting, or tailoring, the neutron spectrum incident on the first structural wall are presented. The spectral shifter is a nonstructural element which can be made of graphite, silicon carbide, or three dimensionally woven carbon fibers (and containing other materials as appropriate) placed between the neutron source and the first structural wall. The softened neutron spectrum incident on the structural components leads to lower gas production and atom displacement rates than in more standard fusion blanket designs. In turn, this results in longer anticipated lifetimes for the structural materials and can significantly reduce radioactivity and afterheat levels. In addition, the neutron spectrum in the first structural wall can be made to approach the flux shape in fast breeder reactors. Such spectral softening means that existing radiation facilities may be more profitably used to provide relevant materials radiation damage data for the structural materials in these fusion blanket designs. This general class of blanket concepts are referred to as internal spectral shifter and energy converter, or ISSEC concepts. These specific design concepts fall into three main categories: ISSEC/EB concepts based on utilizing existing designs which breed tritium behind the first structural wall; ISSEC/IB concepts based on breeding tritium inside the first vacuum wall; and ISSEC/Bu concepts based on using boron, carbon, and perhaps, beryllium to obtain an energy multiplier and converter design that does not attempt to breed tritium or utilize lithium. The detailed analyses relate specifically to the nuclear performance of ISSEC systems and to a discussion of materials radiation damage problems in the structural material.(U.S.)

  5. Aqueous self-cooled blanket concepts for fusion reactors

    International Nuclear Information System (INIS)

    Varsamis, G.; Embrechts, M.J.; Steiner, D.; Deutsch, L.; Gierszewski, P.

    1987-01-01

    A novel aqueous self-cooled blanket (ASCB) concept has been proposed. The water coolant also serves as the tritium breeding medium by dissolving small amounts of lithium compound in the water. The tritium recovery requirements of the ASCB concept may be facilitated by the novel in-situ radiolytic tritium separation technique in development at Chalk River Nuclear Laboratories. In this separation process deuterium gas is bubbled through the blanket coolant. Due to radiation induced processes, the equilibrium constant favors tritium migration to the deuterium gas stream. It is expected that the inherent simplicity of this design will result in a highly reliable, safe and economically attractive breeding blanket for fusion reactors. The available base of relevant information accumulated through water-cooled fission reactor programs should greatly facilitate the R and D effort required to validate the proposed blanket concept. Tests for tritium separation and corrosion compatibility show encouraging results for the feasibility of this concept

  6. Fusion fuel blanket technology

    International Nuclear Information System (INIS)

    Hastings, I.J.; Gierszewski, P.

    1987-05-01

    The fusion blanket surrounds the burning hydrogen core of a fusion reactor. It is in this blanket that most of the energy released by the nuclear fusion of deuterium-tritium is converted into useful product, and where tritium fuel is produced to enable further operation of the reactor. As fusion research turns from present short-pulse physics experiments to long-burn engineering tests in the 1990's, energy removal and tritium production capabilities become important. This technology will involve new materials, conditions and processes with applications both to fusion and beyond. In this paper, we introduce features of proposed blanket designs and update and status of international research. In focusing on the Canadian blanket technology program, we discuss the aqueous lithium salt blanket concept, and the in-reactor tritium recovery test program

  7. Application of the integrated blanket-coil concept (IBC) to fusion reactors

    International Nuclear Information System (INIS)

    Embrechts, M.J.; Steiner, D.; Mohanti, R.; Duggan, W.

    1987-01-01

    A novel concept is proposed for combining the blanket and coil functions of a fusion reactor into a single component and several unique applications to fusion reactor embodiments are identified. The proposed concept takes advantage of the fact that lithium is a good electrical conductor in addition to being a unique tritium-breeding material capable of energy recovery and transport at high temperatures. This concept, designated the ''integrated-blanket-coil (IBC) concept'' has the potential for: allowing fusion reactor embodiments which are easier to maintain; making fusion reactors more compact with an intrinsic ultra-high mass power density (net kW/sub E//metric tonne); and enhancing the tritium breeding potential for special coil applications such as ohmic heating and bean identation. By assuming a sandwich construction for the IBC walls (i.e., a layered combination of a thin wall of structural material, insulator and structural materials) the magnetohydrodynamic (MHD)-induced pressure drops and associated pressure stresses are modest and well below design limits. Possible unique applications of the IBC concept have been investigated and include the IBC concept applied to the poloidal field (PF) coils, toroidal field (TF) coils, divertor coils, ohmic heating (OH) coils, and identation coils for bean shaping

  8. Status of fusion reactor blanket design

    International Nuclear Information System (INIS)

    Smith, D.L.; Sze, D.K.

    1986-02-01

    The recent Blanket Comparison and Selection Study (BCSS), which was a comprehensive evaluation of fusion reactor blanket design and the status of blanket technology, serves as an excellent basis for further development of blanket technology. This study provided an evaluation of over 130 blanket concepts for the reference case of electric power producing, DT fueled reactors in both Tokamak and Tandem Mirror (TMR) configurations. Based on a specific set of reactor operating parameters, the current understanding of materials and blanket technology, and a uniform evaluation methodology developed as part of the study, a limited number of concepts were identified that offer the greatest potential for making fusion an attractive energy source

  9. Nuclear characteristics of D-D fusion reactor blankets

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao

    1978-01-01

    Fusion reactors operating on deuterium (D-D) cycle are considered to be of long range interest for their freedom from tritium breeding in the blanket. The present paper discusses the various possibilities of D-D fusion reactor blanket designs mainly from the standpoint of the nuclear characteristics. Neutronic and photonic calculations are based on presently available data to provide a basis of the optimal blanket design in D-D fusion reactors. It is found that it appears desirable to design a blanket with blanket/shield (BS) concept in D-D fusion reactors. The BS concept is designed to obtain reasonable shielding characteristics for superconducting magnet (SCM) by using shielding materials in the compact blanket. This concept will open the possibility of compact radiation shield design based on assured technology, and offer the advantage from the system economics point of view. (auth.)

  10. Dual coolant blanket concept

    International Nuclear Information System (INIS)

    Malang, S.; Schleisiek, K.

    1994-11-01

    A self-cooled liquid metal breeder blanket with helium-cooled first wall ('Dual Coolant Blanket Concept') for a fusion DEMO reactor is described. This is one of the four blanket concepts under development in the frame of the European fusion technology program with the aim to select in 1995 the two most promising ones for further development. Described are the design of the blankets including the ancillary loop system and the results of the theoretical and experimental work in the fields of neutronics, magnetohydrodynamics, thermohydraulics, mechanical stresses, compatibility and purification of lead-lithium, tritium control, safety, reliability, and electrically insulating coatings. The remaining open questions and the required R and D programme are identified. (orig.) [de

  11. NOEL: a no-leak fusion blanket concept

    International Nuclear Information System (INIS)

    Powell, J.R.; Yu, W.S.; Fillo, J.A.; Horn, F.L.; Makowitz, H.

    1980-01-01

    Analysis and tests of a no-leak fusion blanket concept (NOEL-NO External Leak) are described. Coolant cannot leak into the plasma chamber even if large through-cracks develop in the first wall. Blanket modules contain a two-phase material, A, that is solid (several cm thick) on the inside of the module shell, and liquid in the interior. The solid layer is maintained by imbedded tubes carrying a coolant, B, below the freezing point of A. Most of the 14-MeV neutron energy is deposited as heat in the module interior. The thermal energy flow from the module interior to the shell keeps the interior liquid. Pressure on the liquid A interior is greater than the pressure on B, so that B cannot leak out if failures occur in coolant tubes. Liquid A cannot leak into the plasma chamber through first wall cracks because of the intervening frozen layer. The thermal hydraulics and neutronics of NOEL blankets have been investigated for various metallic (e.g., Li, Pb 2 , LiPb, Pb) and fused salt choices for material A

  12. Minimum thickness blanket-shield for fusion reactors

    International Nuclear Information System (INIS)

    Karni, Y.; Greenspan, E.

    1989-01-01

    A lower bound on the minimum thickness fusion reactor blankets can be designed to have, if they are to breed 1.267 tritons per fusion neutron, is identified by performing a systematic nucleonic optimization of over a dozen different blanket concepts which use either Be, Li 17 Pb 83 , W or Zr for neutron multiplication. It is found that Be offers minimum thickness blankets; that the blanket and shield (B/S) thickness of Li 17 Pb 83 based blankets which are supplemented by Li 2 O and/or TiH 2 are comparable to the thickness of Be based B/S; that of the Be based blankets, the aqueous self-cooled one offers one of the most compact B/S; and that a number of blanket concepts might enable the design of B/S which is approximately 12 cm and 39 cm thinner than the B/S thickness of, respectively, conventional self-cooled Li 17 Pb 83 and Li blankets. Aqueous self-cooled tungsten blankets could be useful for experimental fusion devices provided they are designed to be heterogeneous. (orig.)

  13. Concept and nuclear performance of direct-enrichment fusion breeder blanket using UO2 powder

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Kasahara, Takayasu; An, Shigehiro

    1985-01-01

    A new concept is presented for direct enrichment of fissile fuel in the blanket of a fusion-fission hybrid reactor. The enriched fuel produced by this means can be used in fission reactors without reprocessing. The outstanding feature of the concept is the powdered form in which UO 2 fuel is placed in the reactor blanket, where it is irradiated to the requisite enrichment for use as fuel in burner reactor, e.g. 3%. After removal from blanket, the powder is mixed to homogenize the enrichment. Fuel pellets and assemblies are then fabricated from the powder without reprocessing. The concept of irradiating UO 2 in powder eliminates the problems of spatial nonuniformity in fissile enrichment, and of radiation damage to fuel clad, encountered in attempting to enrich prefabricated fuel. Powder mixing for homogenization brings the additional benefit of removing volatile fission products. Also burnable poison can be added, as necessary, after irradiation. An extensive neutronic parameter survey showed that the optimum blanket arrangement for this enrichment concept is one presenting a fission suppressing configuration and with beryllium adopted as moderator. By this arrangement, the average 239 Pu enrichment obtained on the natural UO 2 fuel in the blanket reaches 3% after only 0.56 MW.yr/m"2 exposure. A conceptual design is presented of the blanket, together with associated fusion breeder, from which, practical application of the concept is shown to be promising. (author)

  14. Cassette blanket and vacuum building: key elements in fusion reactor maintenance

    International Nuclear Information System (INIS)

    Werner, R.W.

    1977-01-01

    The integration of two concepts important to fusion power reactors is discussed. The first concept is the vacuum building which improves upon the current fusion reactor designs. The second concept, the use of the cassette blanket within the vacuum building environment, introduces four major improvements in blanket design: cassette blanket module, zoning concept, rectangular blanket concept, and internal tritium recovery

  15. Blanket materials for DT fusion reactors

    International Nuclear Information System (INIS)

    Smith, D.L.

    1981-01-01

    This paper presents an overview of the critical materials issues that must be considered in the development of a tritium breeding blanket for a tokamak fusion reactor that operates on the D-T-Li fuel cycle. The primary requirements of the blanket system are identified and the important criteria that must be considered in the development of blanket technology are summarized. The candidate materials are listed for the different blanket components, e.g., breeder, coolant, structure and neutron multiplier. Three blanket concepts that appear to offer the most potential are: (1) liquid-metal breeder/coolant, (2) liquid-metal breeder/separate coolant, and (3) solid breeder/separate coolant. The major uncertainties associated with each of the design concepts are discussed and the key materials R and D requirements for each concept are identified

  16. Development of an engineering-scale nuclear test of a solid-breeder fusion-blanket concept

    International Nuclear Information System (INIS)

    Deis, G.A.; Bohn, T.S.; Hsu, P.Y.; Miller, L.G.; Scott, A.J.; Watts, K.D.; Welch, E.C.

    1983-08-01

    As part of the Phase I effort on Program Element-II (PE-II) of the Office of Fusion Energy/Argonne National Laboratory First Wall/Blanket/Shield Engineering Technology Program, a study has been performed to develop preconceptual hardware designs and preliminary test program descriptions for two fission-reactor-based tests of a water-cooled, solid-breeder fusion reactor blanket concept. First, a list of potentially acceptable reactor facilities is developed, based on a list of required reactor characteristics. From this set of facilities, two facilities are selected for study: the Oak Ridge Research Reactor (ORR) and the Power Burst Facility (PBF). A test which employs a cylindrical unit cell of a solid-breeder fusion reactor blanket, with pressurized-water cooling is designed for each facility. The test design is adjusted to the particular characteristics of each reactor. These two test designs are then compared on the basis of technical issues and cost. Both tests can satisfy the PE-II mission: blanket thermal hydraulic and thermomechanical issues. In addition, both reactors will produce prototypical tritium production rates and profiles and release characteristics with little or no additional modifications

  17. Benchmark calculations for fusion blanket development

    International Nuclear Information System (INIS)

    Sawan, M.E.; Cheng, E.T.

    1985-01-01

    Benchmark problems representing the leading fusion blanket concepts are presented. Benchmark calculations for self-cooled Li/sub 17/Pb/sub 83/ and helium-cooled blankets were performed. Multigroup data libraries generated from ENDF/B-IV and V files using the NJOY and AMPX processing codes with different weighting functions were used. The sensitivity of the TBR to group structure and weighting spectrum increases and Li enrichment decrease with up to 20% discrepancies for thin natural Li/sub 17/Pb/sub 83/ blankets

  18. Benchmark calculations for fusion blanket development

    International Nuclear Information System (INIS)

    Sawan, M.L.; Cheng, E.T.

    1986-01-01

    Benchmark problems representing the leading fusion blanket concepts are presented. Benchmark calculations for self-cooled Li 17 Pb 83 and helium-cooled blankets were performed. Multigroup data libraries generated from ENDF/B-IV and V files using the NJOY and AMPX processing codes with different weighting functions were used. The sensitivity of the tritium breeding ratio to group structure and weighting spectrum increases as the thickness and Li enrichment decrease with up to 20% discrepancies for thin natural Li 17 Pb 83 blankets. (author)

  19. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    International Nuclear Information System (INIS)

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-01-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  20. Li2O-pebble type tritium breeding blanket for fusion experimental reactor, 1

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Iida, Hiromasa; Tanaka, Yoshihisa

    1984-01-01

    The fusion experimental reactor is the next stage device in Japan, which is planned to be constructed following the critical plasma experimental device JT-60 being constructed at present. The breeding blanket installed in nuclear fusion reactors is one of most important structures, and it is required to satisfy the fundamental performance of producing and continuously recovering tritium as the nuclear fusion fuel, and other requirement in good coordination. The Li 2 O pebble type breeding blanket that Kawasaki Heavy Industries Ltd. has examined is the concept for resolving the problems of the mass transfer and thermal stress cracking of Li 2 O, which are important in blanket design. In this paper, the concept and characteristics of this breeding blanket are discussed from the viewpoint of the breeding and continuous recovery of tritium, the ease of manufacture and the maintenance of soundness. The breeding blanket is composed of breeding region, tritium purge region, cooling region, plasma stabilizing conductors and blanket container. Li 2 O is excellent in its tritium breeding performance and heat conductivity. The functions required for the breeding blanket, the fundamental structure, the examples of breeding blanket concept, the selection of breeding blanket concept, the characteristics of Li 2 O pebble type blanket and its future prospect are described. (Kako, I.)

  1. Applications of the Aqueous Self-Cooled Blanket concept

    International Nuclear Information System (INIS)

    Steiner, D.; Embrechts, M.J.; Varsamis, G.; Wrisley, K.; Deutch, L.; Gierszewski, P.

    1986-01-01

    In this paper a novel water-cooled blanket concept is examined. This concept, designated the Aqueous Self-Cooled Blanket (ASCB), employs water with small amounts of dissolved fertile compounds as both the coolant and the breeding medium. The ASCB concept is reviewed and its application in three different contexts is examined: (1) power reactors; (2) near-term devices such as NET; and (3) fusion-fission hybrids

  2. Fusion--fission hybrid concepts for laser-induced fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.

    1976-01-01

    Fusion-fission hybrid concepts are viewed as subcritical fission reactors driven and controlled by high-energy neutrons from a laser-induced fusion reactor. Blanket designs encompassing a substantial portion of the spectrum of different fission reactor technologies are analyzed and compared by calculating their fissile-breeding and fusion-energy-multiplying characteristics. With a large number of different fission technologies to choose from, it is essential to identify more promising hybrid concepts that can then be subjected to in-depth studies that treat the engineering safety, and economic requirements as well as the neutronic aspects. In the course of neutronically analyzing and comparing several fission blanket concepts, this work has demonstrated that fusion-fission hybrids can be designed to meet a broad spectrum of fissile-breeding and fusion-energy-multiplying requirements. The neutronic results should prove to be extremely useful in formulating the technical scope of future studies concerned with evaluating the technical and economic feasibility of hybrid concepts for laser-induced fusion

  3. Disruption problematics in segmented blanket concepts

    International Nuclear Information System (INIS)

    Crutzen, Y.; Fantechi, S.; Farfaletti-Casali, F.

    1994-01-01

    In Tokamaks, the hostile operating environment originated by plasma disruption events requires that the first wall/blanket/shield components sustain the large induced electromagnetic (EM) forces without significant structural deformation and within allowable material stresses. As a consequence there is a need to improve the safety features of the blanket design concepts satisfying the disruption problematics and to formulate guidelines on the required internal reinforcements of the blanket components. The present paper describes the recent investigations on blanket reinforcement systems needed in order to optimize the first-wall/blanket/shield structural design for next step and commercial fusion reactors in the context of ITER, DEMO and SEAFP activities

  4. Processing and waste disposal representative for fusion breeder blanket systems

    International Nuclear Information System (INIS)

    Finn, P.A.; Vogler, S.

    1987-01-01

    This study is an evaluation of the waste handling concepts applicable to fusion breeder systems. Its goal is to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under US Nuclear Regulatory regulations. The radionuclides expected in the materials used in fusion reactor blankets are described, as are plans for reprocessing and disposal of the components of different breeder blankets. An estimate of the operating costs involved in waste disposal is made

  5. Advanced high performance solid wall blanket concepts

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Malang, S.; Nishio, S.; Raffray, R.; Sagara, A.

    2002-01-01

    First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  6. Optimization of the fission--fusion hybrid concept

    International Nuclear Information System (INIS)

    Saltmarsh, M.J.; Grimes, W.R.; Santoro, R.T.

    1979-04-01

    One of the potentially attractive applications of controlled thermonuclear fusion is the fission--fusion hybrid concept. In this report we examine the possible role of the hybrid as a fissile fuel producer. We parameterize the advantages of the concept in terms of the performance of the fusion device and the breeding blanket and discuss some of the more troublesome features of existing design studies. The analysis suggests that hybrids based on deuterium--tritium (D--T) fusion devices are unlikely to be economically attractive and that they present formidable blanket technology problems. We suggest an alternative approach based on a semicatalyzed deuterium--deuterium (D--D) fusion reactor and a molten salt blanket. This concept is shown to emphasize the desirable features of the hybrid, to have considerably greater economic potential, and to mitigate many of the disadvantages of D--T-based systems

  7. On blanket concepts of the Helias reactor

    International Nuclear Information System (INIS)

    Wobig, H.; Harmeyer, E.; Herrnegger, F.; Kisslinger, J.

    1999-07-01

    The paper discusses various options for a blanket of the Helias reactor HSR22. The Helias reactor is an upgrade version of the Wendelstein 7-X device. The dimensions of the Helias reactor are: major radius 22 m, average plasma radius 1.8 m, magnetic field on axis 4.75 T, maximum field 10 T, number of field periods 5, fusion power 3000 MW. The minimum distance between plasma and coils is 1.5 m, leaving sufficient space for a blanket and shield. Three options of a breeding blanket are discussed taking into account the specific properties of the Helias configuration. Due to the large area of the first wall (2600 m 2 ) the average neutron power load on the first wall is below 1 MWm .2 , which has a strong impact on the blanket performance with respect to lifetime and cooling requirements. A comparison with a tokamak reactor shows that the lifetime of first wall components and blanket components in the Helias reactor is expected to be at least two times longer. The blanket concepts being discussed in the following are: the solid breeder concept (HCPB), the dual-coolant Pb-17Li blanket concept and the water-cooled Pb-17Li concept (WCLL). (orig.)

  8. HIP technologies for fusion reactor blankets fabrication

    International Nuclear Information System (INIS)

    Le Marois, G.; Federzoni, L.; Bucci, P.; Revirand, P.

    2000-01-01

    The benefit of HIP techniques applied to the fabrication of fusion internal components for higher performances, reliability and cost savings are emphasized. To demonstrate the potential of the techniques, design of new blankets concepts and mock-ups fabrication are currently performed by CEA. A coiled tube concept that allows cooling arrangement flexibility, strong reduction of the machining and number of welds is proposed for ITER IAM. Medium size mock-ups according to the WCLL breeding blanket concept have been manufactured. The fabrication of a large size mock-up is under progress. These activities are supported by numerical calculations to predict the deformations of the parts during HIP'ing. Finally, several HIP techniques issues have been identified and are discussed

  9. Blanket handling concepts for future fusion power plants

    International Nuclear Information System (INIS)

    Bogusch, E.; Gottfried, R.; Maisonnier, D.

    2003-01-01

    In the frame of the power plant conceptual studies (PPCS) launched by the European Commission, two main blanket handling concepts have been investigated with respect to engineering feasibility and the impact on the plant availability and on cost: the large module handling concept (LMHC) and the large sector handling concept (LSHC). The LMHC has been considered as the reference handling concept while the LSHC has been considered as an attractive alternative to the LMHC due to its potential of smaller replacement times and hence increasing the plant availability. Although no principle feasibility issue has been identified, a number of engineering issues have been highlighted for the LSHC that would require considerable efforts for their resolution. Since its availability of about 77% based on a replacement time for all the internals of about 4.2 months is slightly lower than for the LMHC, the LMHC remains the reference blanket replacement concept for a conceptual reactor

  10. EU DEMO blanket concepts safety assessment. Final report of Working Group 6a of the Blanket Concept Selection Exercise

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Porfiri, T.

    1996-06-01

    The European Union has been engaged since 1989 in a programme to develop tritium breeding blankets for application in a fusion power reactor. There are four blanket concepts under development. Two of them use lithium ceramics, the other two concepts employ an eutectic lead-lithium alloy (Pb-17Li) as breeder material. The two most promising concepts were to select in 1995 for further development. In order to prepare the selection, a Blanket Concept Selection Exercise (BCSE) has been inititated by the participating associations under the auspices of the European Commission. This BCSE has been performed in 14 working groups which, in a comparative evaluation of the four blanket concepts, addressed specific fields. The working group safety addressed the safety implications. This report describes the methodology adopted, the safety issues identified, their comparative evaluation for the four concepts, and the results and conclusions of the working group to be entered into the overall evaluation. There, the results from all 14 working groups have been combined to yield a final ranking as a basis for the selection. In summary, the safety assessment showed that the four European blanket concepts can be considered as equivalent in terms of the safety rating adopted, each concept, however, rendering safety concerns of different quality in different areas which are substantiated in this report. (orig.) [de

  11. Flibe blanket concept for transmuting transuranic elements and long lived fission products

    International Nuclear Information System (INIS)

    Gohar, Y.

    2000-01-01

    A Molten salt (Flibe) fusion blanket concept has been developed to solve the disposition problems of the spent nuclear fuel and the transuranic elements. This blanket concept can achieve the top rated solution, the complete elimination of the transuranic elements and the long-lived fission products. Small driven fusion devices with low neutron wall loading and low neutron fluence can perform this function. A 344-MW integrated fusion power from D-T plasmas for thirty years with an availability factor of 0.75 can dispose of 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. In addition, the utilization of this blanket concept eliminates the need for a geological repository site, which is a major advantage. This application provides an excellent opportunity to develop and to enhance the public acceptance of the fusion energy for the future. The energy from the transmutation process is utilized to produce revenue. Flibe, lithium-lead eutectic, and liquid lead are possible candidates. The liquid blankets have several features, which are suited for W application. It can operate at constant thermal power without interruption for refueling by adjusting the concentration of the transuranic elements and lithium-6. These liquids operate at low-pressure, which reduces the primary stresses in the structure material. Development and fabrication costs of solid transuranic materials are eliminated. Burnup limit of the transuranic elements due to radiation effects is eliminated. Heat is generated within the liquid, which simplifies the heat removal process without producing thermal stresses. These blanket concepts have large negative temperature coefficient with respect to the blanket reactivity, which enhances the safety performance. These liquids are chemically and thermally stable under irradiation conditions, which minimize the radioactive waste volume. The operational record of the Molten Salt Breeder Reactor with Flibe was very successful

  12. Self-shielding characteristics of aqueous self-cooled blankets for next generation fusion devices

    International Nuclear Information System (INIS)

    Pelloni, S.; Cheng, E.T.; Embrechts, M.J.

    1987-11-01

    The present study examines self-shielding characteristics for two aqueous self-cooled tritium producing driver blankets for next generation fusion devices. The aqueous Self-Cooled Blanket concept (ASCB) is a very simple blanket concept that relies on just structural material and coolant. Lithium compounds are dissolved in water to provide for tritium production. An ASCB driver blanket would provide a low technology and low temperature environment for blanket test modules in a next generation fusion reactor. The primary functions of such a blanket would be shielding, energy removal and tritium production. One driver blanket considered in this study concept relates to the one proposed for the Next European Torus (NET), while the second concept is indicative for the inboard shield design for the Engineering Test Reactor proposed by the USA (TIBER II/ETR). The driver blanket for NET is based on stainless steel for the structural material and aqueous solution, while the inboard shielding blanket for TIBER II/ETR is based on a tungsten/aqueous solution combination. The purpose of this study is to investigate self-shielding and heterogeneity effects in aqueous self-cooled blankets. It is found that no significant gains in tritium breeding can be achieved in the stainless steel blanket if spatial and energy self-shielding effects are considered, and the heterogeneity effects are also insignificant. The tungsten blanket shows a 5 percent increase in tritium production in the shielding blanket when energy and spatial self-shielding effects are accounted for. However, the tungsten blanket shows a drastic increase in the tritium breeding ratio due to heterogeneity effects. (author) 17 refs., 9 figs., 9 tabs

  13. Radiolysis and corrosion aspects of the aqueous self-cooled blanket concept

    International Nuclear Information System (INIS)

    Bruggeman, A.; Snykers, M.; Bogaerts, W.F.; Waeben, R.; Embrechts, M.J.; Steiner, D.

    1989-01-01

    Corrosion and radiolysis aspects of the Aqueous Self-Cooled Blanket concept, proposed as a potential shielding breeding blanket for near term fusion devices and fusion reactors, have been investigated. On the basis of preliminary results for selected aqueous solutions of lithium compounds, no particular corrosion problems have been revealed for the low-temperature concept envisaged for NET and radiolysis effects might be controlled by appropriate countermeasures. For the reactor-relevant high-temperature concept particular attention has to be paid to intergranular stress-corrosion and to the synergistic radiolysis-corrosion effects. Further information is needed from tests performed in relevant operational conditions. (orig.)

  14. Fusion technology development: first wall/blanket system and component testing in existing nuclear facilities

    International Nuclear Information System (INIS)

    Hsu, P.Y.S.; Bohn, T.S.; Deis, G.A.; Judd, J.L.; Longhurst, G.R.; Miller, L.G.; Millsap, D.A.; Scott, A.J.; Wessol, D.E.

    1980-12-01

    A novel concept to produce a reasonable simulation of a fusion first wall/blanket test environment employing an existing nuclear facility, the Engineering Test Reactor at the Idaho National Engineering Laboratory, is presented. Preliminary results show that an asymmetric, nuclear test environment with surface and volumetric heating rates similar to those expected in a fusion first wall/blanket or divertor chamber surface appears feasible. The proposed concept takes advantage of nuclear reactions within the annulus of an existing test space (15 cm in diameter and approximately 100 cm high) to provide an energy flux to the surface of a test module. The principal reaction considered involves 3 He in the annulus as follows: n + 3 He → p + t + 0.75 MeV. Bulk heating in the test module is accomplished by neutron thermalization, gamma heating, and absorption reactions involving 6 Li in the blanket breeding region. The concept can be extended to modified core configurations that will accommodate test modules of different sizes and types. It makes possible development testing of first wall/blanket systems and other fusion components on a scale and in ways not otherwise available until actual high-power fusion reactors are built

  15. Fusion-reactor blanket and coolant material compatibility

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Keough, R.F.

    1981-01-01

    Fusion reactor blanket and coolant compatibility tests are being conducted to aid in the selection and design of safe blanket and coolant systems for future fusion reactors. Results of scoping compatibility tests to date are reported for blanket material and water interactions at near operating temperatures. These tests indicate the quantitative hydrogen release, the maximum temperature and pressures produced and the rates of interactions for selected blanket materials

  16. Neutronics analysis for aqueous self-cooled fusion reactor blankets

    International Nuclear Information System (INIS)

    Varsamis, G.; Embrechts, M.J.; Jaffa, R.; Steiner, D.; Deutsch, L.; Gierszewski, P.

    1986-06-01

    The tritium breeding performance of several Aqueous Self-Cooled Blanket (ASCB) configurations for fusion reactors has been evaluated. The ASCB concept employs small amounts of lithium compound dissolved in light or heavy water to serve as both coolant and breeding medium. The inherent simplicity of this concept allows the development of blankets with minimal technological risk. The tritium breeding performance of the ASCB concept is a critical issue for this family of blankets. Contrary to conventional blanket designs there will be a significant contribution to the tritium breeding ratio (TBR) in the water coolant/breeder of duct shields, and the 3-D TBR will therefore be similar to the 1-D TBR. The tritium breeding performance of an ASCB for a MARS-like-tandem reactor and an ASCB based breeding-shield for the Next European Torus (NET) are assessed. Two design options for the MARS-like blanket are discussed. One design employs a vanadium first wall, and zircaloy for the structural material. The trade-offs between light water and heavy water cooling options for this zircaloy blanket are discussed. The second design option for MARS relies on the use of a vanadium alloy as the stuctural material, and heavy water as the coolant. It is demonstrated that both design options lead to low-activation blankets that allow class C burial. The breeder-shield for NET consists of a water-cooled stainless steel shield

  17. The fusion blanket program at Chalk River

    International Nuclear Information System (INIS)

    Hastings, I.J.

    1986-03-01

    Work on the Fusion Blanket Program commenced at Chalk River in 1984 June. Co-funded by Canadian Fusion Fuels Technology Project and Atomic Energy of Canada Limited, the Program utilizes Chalk River expertise in instrumented irradiation testing, ceramics, tritium technology, materials testing and compound chemistry. This paper gives highlights of studies to date on lithium-based ceramics, leading contenders for the fusion blanket

  18. Fusion blanket inherent safety assessment

    International Nuclear Information System (INIS)

    Sze, D.K.; Jung, J.; Cheng, E.T.

    1986-01-01

    Fusion has significant potential safety advantages. There is a strong incentive for designing fusion plants to ensure that inherent safety will be achieved. Accordingly, both the Tokamak Power Systems Studies and MINIMARS have identified inherent safety as a design goal. A necessary condition is for the blanket to maintain its configuration and integrity under all credible accident conditions. A main problem is caused by afterheat removal in an accident condition. In this regard, it is highly desirable to achieve the required level of protection of the plant capital investment and limitation of radioactivity release by systems that rely only on inherent properties of matter (e.g., thermal conductivity, specific heat, etc.) and without the use of active safety equipment. This paper assesses the conditions under which inherent safety is feasible. Three types of accident conditions are evaluated for two blankets. The blankets evaluated are a self cooled vanadium/lithium blanket and a self-cooled vanadium/Flibe blanket. The accident conditions evaluated are: (1) loss-of-flow accident; (2) loss-of-coolant accident (LOCA); and (3) partial loss-of-coolant accident

  19. Heat-pipe liquid-pool-blanket concept for the Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Hoffman, M.A.; Werner, R.W.; Johnson, G.L.

    1981-01-01

    The blanket concept for the tandem mirror reactor described in this paper was developed to produce the medium temperature heat (approx. 850 to 950 K) for the General Atomic sulfur-iodine thermochemical process for producing hydrogen. This medium temperature heat from the blanket constitutes about 81% of the total power output of the fusion reactor

  20. Thermostructural design of the first wall/blanket for the TITAN-RFP fusion reactor

    International Nuclear Information System (INIS)

    Orient, G.E.; Blanchard, J.P.; Ghoniem, N.M.

    1987-01-01

    The mass power density, which is defined as the average power per unit mass within the magnet boundary, is a rough and general measure of economic competitiveness. Conn et al. (1985) have identified a target value of 100 kW(e)/tonne as a reasonable threshold for 'compact' commercial fusion systems. In pursuit of this goal, Hagenson et al. (1984) and Najmabadi et al. (1987) have pointed out the inherent characteristics of the RFP toroidal confinement concept which allow it to exceed this target value. It is inevitable that the compactness of the fusion power core will introduce a unique set of design issues. The special design concerns stem from high thermal surface fluxes, high bulk energy deposition by neutrons, and a relatively short blanket structural lifetime. In the TITAN-RFP, study Najmabadi et al. (1987) investigate a number of blanket (B) and first wall (FW) options suitable for high power density fusion reactors. Final choices were made for two designs: A high pressure aqueous blanket and a vanadium/lithium self-cooled blanket. The first design utilizes a pressurized aqueous loop containing a lithium compound dissolved in water, while the second design is based upon a self-cooled lithium-vanadium blanket. In this paper, we consider the beginning-of-life (BOL) thermostructural design and analysis of only the second concept. (orig./GL)

  1. Neutronics design aspects of reference ARIES-I fusion blanket

    International Nuclear Information System (INIS)

    Cheng, E.T.

    1990-12-01

    A SiC composite blanket concept was recently conceived for a deuterium-tritium burning, 1000 MW(e) tokamak fusion reactor design, ARIES-I. SiC composite structural material was chosen due to its very low activation features. High blanket nuclear performance and thermal efficiency, adequate tritium breeding, and a low level of activation are important design requirements for the ARIES-I reactor. The major approaches, other than using SiC as structural material, in meeting these design requirements, are to employ beryllium, the only low activation neutron multiplying material, and isotopically tailored Li 2 ZrO 3 , a tritium breeding material stable at high temperature, as blanket materials. 5 refs., 4 figs., 2 tabs

  2. A Feasible DEMO Blanket Concept Based on Water Cooled Solid Breeder

    Energy Technology Data Exchange (ETDEWEB)

    Someya, Y.; Tobita, K.; Utoh, H.; Hoshino, K.; Asakura, N.; Nakamura, M.; Tanigawa, H.; Mikio, E.; Tanigawa, H.; Nakamichi, M.; Hoshino, T., E-mail: someya.yoji@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho (Japan)

    2012-09-15

    Full text: JAEA has conducted the conceptual design study of blanket for a fusion DEMO reactor SlimCS. Considering DEMO specific requirements, we place emphasis on a blanket concept with durability to severe irradiation, ease of fabrication for mass production, operation temperature of blanket materials, and maintainability using remote handling equipment. This paper present a promising concept satisfying these requirements, which is characterized by minimized welding lines near the front, a simplified blanket interior consisting of cooling tubes and a mixed pebble bed of breeder and neutron multiplier, and approximately the same outlet temperature for all blanket modules. Neutronics calculation indicated that the blanket satisfies a self-sufficient production of tritium. An important finding is that little decrease is seen in tritium breeding ratio even when the gap between neighboring blanket modules is as wide as 0.03 m. This means that blanket modules can be arranged with such a significant clearance gap without sacrifice of tritium production, which will facilitate the access of remote handling equipment for replacement of the blanket modules and improve the access of diagnostics. (author)

  3. Molten salt cooling/17Li-83Pb breeding blanket concept

    International Nuclear Information System (INIS)

    Sze, D.K.; Cheng, E.T.

    1985-02-01

    A description of a fusion breeding blanket concept using draw salt coolant and static 17 Li- 83 Pb is presented. 17 Li- 83 Pb has high breeding capability and low tritium solubility. Draw salt operates at low pressure and is inert to water. Corrosion, MHD, and tritium containment problems associated with the MARS design are alleviated because of the use of a static LiPb blanket. Blanket tritium recovery is by permeation toward the plasma. A direct contact steam generator is proposed to eliminate some generic problems associated with a tube shell steam generator

  4. Perspective on the fusion-fission energy concept

    International Nuclear Information System (INIS)

    Liikala, R.C.; Perry, R.T.; Teofilo, V.L.

    1978-01-01

    A concept which has potential for near-term application in the electric power sector of our energy economy is combining fusion and fission technology. The fusion-fission system, called a hybrid, is distinguished from its pure fusion counterpart by incorporation of fertile materials (uranium or thorium) in the blanket region of a fusion machine. The neutrons produced by the fusion process can be used to generate energy through fission events in the blanket or produce fuel for fission reactors through capture events in the fertile material. The performance requirements of the fusion component of hybrids is perceived as being less stringent than those for pure fusion electric power plants. The performance requirements for the fission component of hybrids is perceived as having been demonstrated or could be demonstrated with a modest investment of research and development funds. This paper presents our insights and observations of this concept in the context of why and where it might fit into the picture of meeting our future energy needs. A bibliography of hybrid research is given

  5. Neutronic performance optimization study of Indian fusion demo reactor first wall and breeding blanket

    International Nuclear Information System (INIS)

    Swami, H.L.; Danani, C.

    2015-01-01

    In frame of design studies of Indian Nuclear Fusion DEMO Reactor, neutronic performance optimization of first wall and breeding blanket are carried out. The study mainly focuses on tritium breeding ratio (TBR) and power density responses estimation of breeding blanket. Apart from neutronic efficiency of existing breeding blanket concepts for Indian DEMO i.e. lead lithium ceramic breeder and helium cooled solid breeder concept other concepts like helium cooled lead lithium and helium-cooled Li_8PbO_6 with reflector are also explored. The aim of study is to establish a neutronically efficient breeding blanket concept for DEMO. Effect of first wall materials and thickness on breeding blanket neutronic performance is also evaluated. For this study 1 D cylindrical neutronic model of DEMO has been constructed according to the preliminary radial build up of Indian DEMO. The assessment is being done using Monte Carlo based radiation transport code and nuclear cross section data file ENDF/B- VII. (author)

  6. Fusion blanket testing in MFTF-α + T

    International Nuclear Information System (INIS)

    Kleefeldt, K.

    1985-01-01

    The Mirror Fusion Test Facility-α + T (MFTF-α + T) is an upgraded version of the current MFTF-B test facility at Lawrence Livermore National Laboratory, and is designed for near-term fusion-technology-integrated tests at a neutron flux of 2 MW/m 2 . Currently, the fusion community is screening blanket and related issues to determine which ones can be addressed using MFTF-α + T. In this work, the minimum testing needs to address these issues are identified for the liquid-metal-cooled blanket and the solid-breeder blanket. Based on the testing needs and on the MFTF-α + T capability, a test plan is proposed for three options; each option covers a six to seven year testing phase. The options reflect the unresolved question of whether to place the research and development (R and D) emphasis on liquid-metal or solid-breeder blankets. In each case, most of the issues discussed can be addressed to a reasonable extent in MFTF-α+T

  7. New concepts for the recovery and isotopic separation of tritium in fusion reactors

    International Nuclear Information System (INIS)

    Dombra, A.H.; Holtslander, W.J.; Miller, A.I.; Canadian Fusion Fuels Technology Project, Toronto, Ontario)

    1986-01-01

    New concepts for the recovery of tritium from light water coolant of LiPb blankets, and high-pressure helium coolant of Li-ceramic blankets are introduced. Application of these concepts to fusion reactors is illustrated with conceptual system designs for the anticipated NET blanket requirements. (author)

  8. Blanket options for high-efficiency fusion power

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  9. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  10. Fusion blanket for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Taussig, R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperature (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by Ar) utilizing Li 2 O for tritium breeding. In this design, approx. 60% of the fusion energy is deposited in the high-temperature interior. The maximum Ar temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  11. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1981-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 deg C) of conventional structural materials such as stainless steels. In this project 'two-zone' blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 deg C leading to an overall efficiency estimate of 55 to 60% for this reference case. (author)

  12. Thermal hydraulic analyses of two fusion reactor first wall/blanket concepts

    International Nuclear Information System (INIS)

    Misra, B.; Maroni, V.A.

    1977-01-01

    A comparative study has been made of the thermal hydraulic performance of two liquid lithium blanket concepts for tokamak-type reactors. In one concept lithium is circulated through 60-cm deep cylindrical modules oriented so that the module axis is parallel to the reactor minor radius. In the other concept helium carrying channels oriented parallel to the first wall are used to cool a 60-cm thick stagnant lithium blanket. Paralleling studies were carried out wherein the thermal and structural properties of the construction materials were based on those projected for either solution-annealed 316-stainless steel or vanadium-base alloys. The effects of limitations on allowable peak structural temperature, material strength, thermal stress, coolant inlet temperature, and pumping power/thermal power ratio were evaluated. Consequences to thermal hydraulic performance resulting from the presence of or absence of a divertor were also investigated

  13. Thermal hydraulic analyses of two fusion reactor first wall/blanket concepts

    International Nuclear Information System (INIS)

    Misra, B.; Maroni, V.A.

    1978-01-01

    A comparative study has been made of the thermal hydraulic performance of two liquid lithium blanket concepts for tokamak-type reactors. In one concept lithium is circulated through 60-cm deep cylindrical modules oriented so that the module axis is parallel to the reactor minor radius. In the other concept helium carrying channels oriented parallel to the first wall are used to cool a 60-cm thick stagnant lithium blanket. Paralleling studies were carried out wherein the thermal and structural properties of the construction materials were based on those projected for either solution-annealed 316-stainless steel or vanadium-base alloys. The effects of limitations on allowable peak structural temperature, material strength, thermal stress, coolant inlet temperature, and pumping power/thermal power ratio were evaluated. Consequences to thermal hydraulic performance resulting from the presence of or absence of a divertor were also investigated

  14. Ceramic sphere-pac breeder design for fusion blankets

    International Nuclear Information System (INIS)

    Gierszewski, P.J.; Sullivan, J.D.

    1991-01-01

    Randomly packed beds of ceramic spheres are a practical approach to surrounding fusion plasmas with tritium-breeding material. This paper examines the general properties of sphere-pac beds for application in fusion breeder blankets. The design considerations and models are reviewed for packing, tritium breeding and recovery, thermal conductivity, purge-gas pressure drop, mechanical behavior and fabrication. The design correlations are compared against available fusion ceramic data. Specific conclusions are that ternary (three-size) beds are not attractive for fusion blankets, and that the fusion spheres should be as large as possible subject primarily to packing constraints. (orig.)

  15. Fusion reactor blanket-main design aspects

    International Nuclear Information System (INIS)

    Strebkov, Yu.; Sidorov, A.; Danilov, I.

    1994-01-01

    The main function of the fusion reactor blanket is ensuring tritium breeding and radiation shield. The blanket version depends on the reactor type (experimental, DEMO, commercial) and its parameters. Blanket operation conditions are defined with the heat flux, neutron load/fluence, cyclic operation, dynamic heating/force loading, MHD effects etc. DEMO/commercial blanket design is distinguished e.g. by rather high heat load and neutron fluence - up to 100 W/cm 2 and 7 MWa/m 2 accordingly. This conditions impose specific requirements for the materials, structure, maintenance of the blanket and its most loaded components - FW and limiter. The liquid Li-Pb eutectic is one of the possible breeder for different kinds of blanket in view of its advantages one of which is the blanket convertibility that allow to have shielding blanket (borated water) or breeding one (Li-Pb eutectic). Using Li-Pb eutectic for both ITER and DEMO blankets have been considered. In the conceptual ITER design the solid eutectic blanket was carried out. The liquid eutectic breeder/coolant is suggested also for the advanced (high parameter) blanket

  16. Safety and environmental impact of the dual coolant blanket concept. SEAL subtask 6.2, final report

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Dammel, F.; Gabel, K.; Jordan, T.; Schmuck, I.

    1996-03-01

    The European Union has been engaged since 1989 in a programme to develop tritium breeding blankets for application in a fusion power reactor. There are four concepts under development, namely two of the solid breeder type and two of the liquid breeder type. At the Forschungszentrum Karlsruhe one blanket concept of each line has been pursued so far with the so-called dual coolant type representing the liquid breeder line. In the dual coolant concept the breeder material (Pb-17Li) is circulated to external heat exchangers to carry away the bulk of the generated heat and to extract the tritium. Additionally, the heavily loaded first wall is cooled by high pressure helium gas. The safety and environmental impact of the dual coolant blanket concept has been assessed as part of the blanket concept selection excercise, a European concerted action, aiming at selecting the two most promising concepts for futher development. The topics investigated are: (a) Blanket materials and toxic materials inventory, (b) energy sources for mobilisation, (c) fault tolerance, (d) tritium and activation products release, and (e) waste generation and management. No insurmountable safety problems have been identified for the dual coolant blanket. The results of the assessment are described in this report. The information collected is also intended to serve as input to the EU 'Safety and Environmental Assessment of Fusion longterm Programme' (SEAL). The unresolved issues pertaining to the dual coolant blanket which would need further investigations in future programmes are outlined herein. (orig.) [de

  17. Fusion breeder sphere - PAC blanket design

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Palmer, B.J.F.

    1987-11-01

    There is a considerable world-wide effort directed toward the production of materials for fusion reactors. Many ceramic fabrication groups are working on making lithium ceramics in a variety of forms, to be incorporated into the tritium breeding blanket which will surround the fusion reactor. Current blanket designs include ceramic in either monolithic or packed sphere bed (sphere-pac) forms. The major thrust at AECL is the production of lithium aluminate spheres to be incorporated in a sphere-pac bed. Contemporary studies on breeder blanket design offer little insight into the requirements on the sizes of the spheres. This study examined the parameters which determine the properties of pressure drop and coolant requirements. It was determined that an optimised sphere-pac bed would be composed of two diameters of spheres: 75 weight % at 3 mm and 25 weight % at 0.3 mm

  18. A passively-safe fusion reactor blanket with helium coolant and steel structure

    Energy Technology Data Exchange (ETDEWEB)

    Crosswait, Kenneth Mitchell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  19. Reactor concepts for laser fusion

    International Nuclear Information System (INIS)

    Meier, W.R.; Maniscalco, J.A.

    1977-07-01

    Scoping studies were initiated to identify attractive reactor concepts for producing electric power with laser fusion. Several exploratory reactor concepts were developed and are being subjected to our criteria for comparing long-range sources of electrical energy: abundance, social costs, technical feasibility, and economic competitiveness. The exploratory concepts include: a liquid-lithium-cooled stainless steel manifold, a gas-cooled graphite manifold, and fluidized wall concepts, such as a liquid lithium ''waterfall'', and a ceramic-lithium pellet ''waterfall''. Two of the major reactor vessel problems affecting the technical feasibility of a laser fusion power plant are: the effects of high-energy neutrons and cyclical stresses on the blanket structure and the effects of x-rays and debris from the fusion microexplosion on the first-wall. The liquid lithium ''waterfall'' concept is presented here in more detail as an approach which effectively deals with these damaging effects

  20. Electric power from laser fusion: the HYLIFE concept

    International Nuclear Information System (INIS)

    Monsler, M.; Blink, J.; Hovingh, J.; Meier, W.; Walker, P.; Maniscalco, J.

    1978-06-01

    A high yield lithium injection fusion energy chamber is described which can conceptually be operated with pulsed yields of several thousand megajoules a few times a second, using less than one percent of the gross thermal power to circulate the lithium. Because a one meter thick blanket of lithium protects the structure, no first wall replacement is envisioned for the life of the power plant. The induced radioactivity is reduced by an order of magnitude over solid blanket concepts. The design calls for the use of common ferritic steels and a power density approaching that of a LWR, promising shortened development times over other fusion concepts and reactor vessel costs comparable to a LMFBR

  1. Processing and waste disposal needs for fusion breeder blankets system

    International Nuclear Information System (INIS)

    Finn, P.A.; Vogler, S.

    1988-01-01

    We evaluated the waste disposal and recycling requirements for two types of fusion breeder blanket (solid and liquid). The goal was to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under U.S. Nuclear Regulatory Commission regulations. Described in this paper are the radionuclides expected in fusion blanket materials, plans for reprocessing and disposal of blanket components, and estimates for the operating costs involved in waste disposal. (orig.)

  2. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    International Nuclear Information System (INIS)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-01-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  3. An aqueous lithium salt blanket option for fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, D.; Varsamis, G. (Rensselaer Polytechnic Inst., Troy, NY (USA). Dept. of Nuclear Engineering and Engineering Physics); Deutsch, L.; Rathke, J. (Grumman Corp., Bethpage, NY (USA). Advanced Energy Systems); Gierszewski, P. (Canadian Fusion Fuels Technology Project (CFFTP), Mississauga, ON (Canada))

    1989-04-01

    An aqueous lithium salt blanket (ALSB) concept is proposed which could be the basis for either a power reactor blanket or a test module in an engineering test reactor. The design is based on an austenitic stainless steel structure, a beryllium multiplier, and a salt breeder concentration of about 32 g LiNO/sub 3/ per 100 cm/sup 3/ of H/sub 2/O. To limit tritium release rates, the salt breeder solution is separated from the water coolant circuit. The overall tritium system cost for a 2400 MW (fusion power) reactor is estimated to be 180 million Dollar US87 installed. (orig.).

  4. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2014-01-01

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM

  5. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tariq Siddique, M.; Kim, Myung Hyun [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-05-15

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM.

  6. Fusion blanket design and optimization techniques

    International Nuclear Information System (INIS)

    Gohar, Y.

    2005-01-01

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to define the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design techniques of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art techniques and tools for performing blanket design and analysis. This report describes some of the BSDOS techniques and demonstrates its use. In addition, the use of the optimization technique of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this report, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design techniques

  7. Design study of blanket structure for tokamak experimental fusion reactor

    International Nuclear Information System (INIS)

    1979-11-01

    Design study of the blanket structure for JAERI Experimental Fusion Reactor (JXFR) has been carried out. Studied here were fabrication and testing of the blanket structure (blanket cells, blanket rings, piping and blanket modules), assembly and disassembly of the blanket module, and monitering and testing technique. Problems in design and fabrication of the blanket structure could be revealed. Research and development problems for the future were also disclosed. (author)

  8. Self-cooled liquid-metal blanket concept

    International Nuclear Information System (INIS)

    Malang, S.; Arheidt, K.; Barleon, L.

    1988-01-01

    A blanket concept for the Next European Torus (NET) where 83Pb-17Li serves both as breeder material and as coolant is described. The concept is based on the use of novel flow channel inserts for a decisive reduction of the magnetohydrodynamic (MHD) pressure drop and employs beryllium as neutron multiplier in order to avoid the need for breeding blankets at the inboard side of the torus. This study includes the design, neutronics, thermal hydraulics, stresses, MHDs, corrosion, tritium recovery, and safety of a self-cooled liquid-metal blanket. The results of the investigations indicate that the self-cooled blanket is an attractive alternative to other driver blanket concepts for NET and that it can be extrapolated to the conditions of a DEMO reactor

  9. RAMI analysis for DEMO HCPB blanket concept cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Dongiovanni, Danilo N., E-mail: danilo.dongiovanni@enea.it [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Pinna, Tonio [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Carloni, Dario [KIT, Institute of Neutron Physics and Reactor Technology (INR) – KIT (Germany)

    2015-10-15

    Highlights: • RAMI (reliability, availability, maintainability and inspectability) preliminary assessment for HCPB blanket concept cooling system. • Reliability block diagram (RBD) modeling and analysis for HCPB primary heat transfer system (PHTS), coolant purification system (CPS), pressure control system (PCS), and secondary cooling system. • Sensitivity analysis on system availability performance. • Failure models and repair models estimated on the base of data from the ENEA fusion component failure rate database (FCFRDB). - Abstract: A preliminary RAMI (reliability, availability, maintainability and inspectability) assessment for the HCPB (helium cooled pebble bed) blanket cooling system based on currently available design for DEMO fusion power plant is presented. The following sub-systems were considered in the analysis: blanket modules, primary cooling loop including pipework and steam generators lines, pressure control system (PCS), coolant purification system (CPS) and secondary cooling system. For PCS and CPS systems an extrapolation from ITER Test Blanket Module corresponding systems was used as reference design in the analysis. Helium cooled pebble bed (HCPB) system reliability block diagrams (RBD) models were implemented taking into account: system reliability-wise configuration, operating schedule currently foreseen for DEMO, maintenance schedule and plant evolution schedule as well as failure and corrective maintenance models. A simulation of plant activity was then performed on implemented RBDs to estimate plant availability performance on a mission time of 30 calendar years. The resulting availability performance was finally compared to availability goals previously proposed for DEMO plant by a panel of experts. The study suggests that inherent availability goals proposed for DEMO PHTS system and Tokamak auxiliaries are potentially achievable for the primary loop of the HCPB concept cooling system, but not for the secondary loop. A

  10. Self-cooled blanket concepts using Pb-17Li as liquid breeder and coolant

    International Nuclear Information System (INIS)

    Malang, S.; Deckers, H.; Fischer, U.; John, H.; Meyder, R.; Norajitra, P.; Reimann, J.; Reiser, H.; Rust, K.

    1991-01-01

    A blanket design concept using Pb-17Li eutectic alloy as both breeder material and coolant is described. Such a self-cooled blanket for the boundary conditions of a DEMO-reactor is under development at the Kernforschungszentrum Karlsruhe (KfK) in the frame of the European blanket development program. Results of investigations in the areas of design, neutronics, magneto-hydrodynamics, thermo-mechanics, ancillary loop systems, and safety are reported. Based on recent progress, it can be concluded that the boundary conditions of a DEMO-reactor can be met, tritium self-sufficiency can be obtained without using beryllium as an additional neutron multiplier, and tritium inventory and permeation are acceptably low. However, to complete judge the feasibility of the proposed concept, further studies are necessary to obtain a better understanding of the magneto-hydrodynamic phenomena and their effects on the thermal-hydraulic performance of a fusion reactor blanket. (orig.)

  11. US-DOE Fusion-Breeder Program: blanket design and system performance

    International Nuclear Information System (INIS)

    Lee, J.D.

    1983-01-01

    Conceptual design studies are being used to assess the technical and economic feasibility of fusion's potential to produce fissile fuel. A reference design of a fission-suppressed blanket using conventional materials is under development. Theoretically, a fusion breeder that incorporates this fusion-suppressed blanket surrounding a 3000-MW tandem mirror fusion core produces its own tritium plus 5600 kg of 233 U per year. The 233 U could then provide fissile makeup for 21 GWe of light-water reactor (LWR) power using a denatured thorium fuel cycle with full recycle. This is 16 times the net electric power produced by the fusion breeder (1.3 GWe). The cost of electricity from this fusion-fission system is estimated to be only 23% higher than the cost from LWRs that have makeup from U 3 O 8 at present costs (55 $/kg). Nuclear performance, magnetohydrodynamics (MHD), radiation effects, and other issues concerning the fission-suppressed blanket are summarized, as are some of the present and future objectives of the fusion breeder program

  12. Environmental considerations for alternative fusion reactor blankets

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Young, J.R.

    1975-01-01

    Comparisons of alternative fusion reactor blanket/coolant systems suggest that environmental considerations will enter strongly into selection of design and materials. Liquid blankets and coolants tend to maximize transport of radioactive corrosion products. Liquid lithium interacts strongly with tritium, minimizing permeation and escape of gaseous tritium in accidents. However, liquid lithium coolants tend to create large tritium inventories and have a large fire potential compared to flibe and solid blankets. Helium coolants minimize radiation transport, but do not have ability to bind the tritium in case of accidental releases. (auth)

  13. Assessment of alkali metal coolants for the ITER blanket

    International Nuclear Information System (INIS)

    Natesan, K.; Reed, C.B.; Mattas, R.F.

    1994-01-01

    The blanket system is one of the most important components of a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The Blanket Comparison and Selection Study, conducted earlier, described the overall comparative performance of different blanket concepts, including liquid metal, molten salt, water, and helium. This paper will discuss the ITER requirements for a self-cooled blanket concept with liquid lithium and for indirectly cooled concepts that use other alkali metals such as NaK. The paper will address the thermodynamics of interactions between the liquid metals (i.e., lithium and NaK) and structural materials (e.g., V-base alloys), together with associated corrosion/compatibility issues. Available experimental data will be used to assess the long-term performance of the first wall in a liquid metal environment

  14. Nuclear characteristics of D-D fusion reactor blankets, (1)

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao; Seki, Yasushi.

    1977-01-01

    Fusion reactors operating on the deuterium (D-D) cycle are considered promising for their freedom from tritium breeding in the blanket. In this paper, neutronic and photonic calculations are undertaken covering several blanket models of the D-D fusion reactor, using presently available data, with a view to comparing the nuclear characteristics of these models, in particular, the nuclear heating rates and their spatial distributions. Nine models are taken up for the study, embodying various combinations of coolant, blanket, structural and reflector materials. About 10 MeV is found to be a typical value for the total nuclear energy deposition per source neutron in the models considered here. The realization of high energy gain is contingent upon finding a favorable combination of blanket composition and configuration. The resulting implications on the thermal design aspect are briefly discussed. (auth.)

  15. Technical evaluation of major candidate blanket systems for fusion power reactor

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Seki, Masahiro; Minato, Akio

    1987-03-01

    The key functions required for tritium breeding blankets for a fusion power reactor are: (1) self-sufficient tritium breeding, (2) in-situ tritium recovery and low tritium inventory, (3) high temperature cooling giving a high efficiency of electricity generation and (4) thermo-mechanical reliability and simplified remote maintenance to obtain high plant availability. Blanket performance is substantially governed by materials selection. Major options of structure/breeder/coolant/neutron multiplier materials considered for the present design study are PCA/Li 2 O/H 2 O/Be, Mo-alloy/Li 2 O/He/Be, Mo-alloy/LiAlO 2 /He/Be, V-alloy/Li/Li/none, and Mo-alloy/Li/He/none. In addition, remote maintenance of blankets, tritium recovery system, heat transport and energy conversion have been investigated. In this report, technological problems and critical R and D issues for power reactor blanket development are identified and a comparison of major candidate blanket concepts is discussed in terms of the present materials data base, economic performance, prospects for future improvements, and engineering feasibility and difficulties based on the results obtained from individual design studies. (author)

  16. Methodology for accident analyses of fusion breeder blankets and its application to helium-cooled pebble bed blanket

    International Nuclear Information System (INIS)

    Panayotov, Dobromir; Grief, Andrew; Merrill, Brad J.; Humrickhouse, Paul; Trow, Martin; Dillistone, Michael; Murgatroyd, Julian T.; Owen, Simon; Poitevin, Yves; Peers, Karen; Lyons, Alex; Heaton, Adam; Scott, Richard

    2016-01-01

    Graphical abstract: - Highlights: • Test Blanket Systems (TBS) DEMO breeding blankets (BB) safety demonstration. • Comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena. • Development of accident analysis specifications (AAS) via the use of phenomena identification and ranking tables (PIRT). • PIRT application to identify required physical models for BB accidents analysis, code assessment and selection. • Development of MELCOR and RELAP5 codes TBS models. • Qualification of the models via comparison with finite element calculations, code-tocode comparisons, and sensitivity studies. - Abstract: ‘Fusion for Energy’ (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena while remaining consistent with the approach already applied to ITER accident analyses. The methodology phases are illustrated in the paper by its application to the EU HCPB TBS using both MELCOR and RELAP5 codes.

  17. Methodology for accident analyses of fusion breeder blankets and its application to helium-cooled pebble bed blanket

    Energy Technology Data Exchange (ETDEWEB)

    Panayotov, Dobromir, E-mail: dobromir.panayotov@f4e.europa.eu [Fusion for Energy (F4E), Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Grief, Andrew [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom); Merrill, Brad J.; Humrickhouse, Paul [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID (United States); Trow, Martin; Dillistone, Michael; Murgatroyd, Julian T.; Owen, Simon [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom); Poitevin, Yves [Fusion for Energy (F4E), Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Peers, Karen; Lyons, Alex; Heaton, Adam; Scott, Richard [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom)

    2016-11-01

    Graphical abstract: - Highlights: • Test Blanket Systems (TBS) DEMO breeding blankets (BB) safety demonstration. • Comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena. • Development of accident analysis specifications (AAS) via the use of phenomena identification and ranking tables (PIRT). • PIRT application to identify required physical models for BB accidents analysis, code assessment and selection. • Development of MELCOR and RELAP5 codes TBS models. • Qualification of the models via comparison with finite element calculations, code-tocode comparisons, and sensitivity studies. - Abstract: ‘Fusion for Energy’ (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena while remaining consistent with the approach already applied to ITER accident analyses. The methodology phases are illustrated in the paper by its application to the EU HCPB TBS using both MELCOR and RELAP5 codes.

  18. Optimization of beryllium for fusion blanket applications

    International Nuclear Information System (INIS)

    Billone, M.C.

    1993-01-01

    The primary function of beryllium in a fusion reactor blanket is neutron multiplication to enhance tritium breeding. However, because heat, tritium and helium will be generated in and/or transported through beryllium and because the beryllium is in contact with other blanket materials, the thermal, mechanical, tritium/helium and compatibility properties of beryllium are important in blanket design. In particular, tritium retention during normal operation and release during overheating events are safety concerns. Accommodating beryllium thermal expansion and helium-induced swelling are important issues in ensuring adequate lifetime of the structural components adjacent to the beryllium. Likewise, chemical/metallurgical interactions between beryllium and structural components need to be considered in lifetime analysis. Under accident conditions the chemical interaction between beryllium and coolant and breeding materials may also become important. The performance of beryllium in fusion blanket applications depends on fabrication variables and operational parameters. First the properties database is reviewed to determine the state of knowledge of beryllium performance as a function of these variables. Several design calculations are then performed to indicate ranges of fabrication and operation variables that lead to optimum beryllium performance. Finally, areas for database expansion and improvement are highlighted based on the properties survey and the design sensitivity studies

  19. A review of fusion breeder blanket technology, part 1

    International Nuclear Information System (INIS)

    Jackson, D.P.; Selander, W.N.; Townes, B.M.

    1985-01-01

    This report presents the results of a study of fusion breeder blanket technology. It reviews the role of the breeder blanket, the current understanding of the scientific and engineering bases of liquid metal and solid breeder blankets and the programs now underway internationally to resolve the uncertainities in current knowledge. In view of existing national expertise and experience, a solid breeder R and D program for Canada is recommended

  20. Neutronic Parametric Study on a Conceptual Design for a Transmutation Fusion Blanket

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2011-01-01

    Fusion energy may be the one of options of future energy. In all over the world, researchers are putting their efforts for its commercial and economical availability. Fusion-fission hybrid reactors have been studied for various applications in China. First milestone of fusion energy is expected to be the fusion fission hybrid reactors. In fusion-fission hybrid reactor the blanket design is of second prime importance after fusion source. In this study conceptual design of a fusion blanket is initiated for calculation of tritium production, transmutation of minor actinides (MA) and fission products (FP) and energy multiplication calculations

  1. Application of vanadium alloys to a fusion reactor blanket

    Energy Technology Data Exchange (ETDEWEB)

    Bethin, J.; Tobin, A. (Grumman Aerospace Corp., Bethpage, NY (USA). Research and Development Center)

    1984-05-01

    Vanadium and vanadium alloys are of interest in fusion reactor blanket applications due to their low induced radioactivity and outstanding elevated temperature mechanical properties during neutron irradiation. The major limitation to the use of vanadium is its sensitivity to oxygen impurities in the blanket environment, leading to oxygen embrittlement. A quantitative analysis was performed of the interaction of gaseous impurities in a helium coolant with vanadium and the V-15Cr-5Ti alloy under conditions expected in a fusion reactor blanket. It was shown that the use of unalloyed V would impose severe restrictions on the helium gas cleanup system due to excessive oxygen buildup and embrittlement of the metal. However, internal oxidation effects and the possibly lower terminal oxygen solubility in the alloy would impose much less severe cleanup constraints. It is suggested that V-15Cr-5Ti is a promising candidate for certain blanket applications and deserves further consideration.

  2. Thermal safety analysis for pebble bed blanket fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie

    1998-01-01

    Pebble bed blanket hybrid reactor may have more advantages than slab element blanket hybrid reactor in nuclear fuel production and nuclear safety. The thermo-hydraulic calculations of the blanket in the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor developed in China are carried out using the Code THERMIX and auxiliary code. In the calculations different fuel pebble material and steady state, depressurization and total loss of flow accident conditions are included. The results demonstrate that the conceptual design of the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor with dump tank is feasible and safe enough only if the suitable fuel pebble material is selected and the suitable control system and protection system are established. Some recommendations for due conceptual design are also presented

  3. Heat deposition, damage, and tritium breeding characteristics in thick liquid wall blanket concepts

    International Nuclear Information System (INIS)

    Youssef, M.Z.; Abdou, M.A.

    2000-01-01

    The advanced power extraction (APEX) study aims at exploring new and innovative blanket concepts that can efficiently extract power from fusion devices with high neutron wall load. Among the concepts under investigation is the free liquid FW/liquid blanket concept in which a fast flowing liquid FW (∼2-3 cm) is followed by thick flowing blanket (B) of ∼40-50 cm thickness with minimal amount of structure. The liquid FW/B are contained inside the vacuum vessel (VV) with a shielding zone (S) located either behind the VV and outside the vacuum boundary (case A) or placed after the FW/B and inside the VV (case B). In this paper we investigate the nuclear characteristics of this concept in terms of: (1) attenuation capability of the liquid FW/B/S and protection of the VV and magnet against radiation damage; (2) profiles of tritium production rate and tritium breeding ratio (TBR) for several liquid candidates; and (3) profiles of heat deposition rate and power multiplication. The candidate liquid breeders considered are Li, Flibe, Li-Sn, and Li-Pb. Parameters varied are (1) FW/B thickness, L, (2) Li-6 enrichment and (3) thickness of the shield

  4. A Li-particulate blanket concept for ITER

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, R.L.

    1989-01-01

    The Li-particulate blanket design concept the authors proposed for the International Thermonuclear Experimental Reactor (ITER) uses a dilute suspension of fine solid breeder particles in a carrier gas as the combined coolant and lithium breeder stream. This blanket concept has a simple mechanical and hydraulic configuration, low inventory of bred tritium, and simple tritium extraction system. Existing technology can be used to implement the design for ITER. The concept has the potential to be a highly reliable shield and blanket design for ITER with relatively low development and capital costs

  5. Fusion-reactor blanket-material safety-compatibility studies

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Muhlestein, L.D.; Keough, R.F.; Cohen, S.

    1982-11-01

    Blanket material selection for fusion reactors is strongly influenced by the desire to minimize safety and environmental concerns. Blanket material safety compatibility studies are being conducted to identify and characterize blanket-coolant-material interactions under postulated reactor accident conditions. Recently completed scoping compatibility tests indicate that : (1) ternary oxides (LiAlO 2 , Li 2 ZrO 3 , Li 2 SiO 3 , Li 4 SiO 4 and LiTiO 3 ) at postulated blanket operating temperatures are compatible with water coolant, while liquid lithium and Li 7 Pb 2 alloy reactions with water generate heat, aerosol and hydrogen; (2) lithium oxide and Li 17 Pb 83 alloy react mildly with water requiring special precautions to control hydrogen release; (3) liquid lithium reacts substantially, while Li 17 Pb 83 alloy reacts mildly with concrete to produce hydrogen; and (4) liquid lithium-air reactions present some major safety concerns

  6. Technical issues for beryllium use in fusion blanket applications

    International Nuclear Information System (INIS)

    McCarville, T.J.; Berwald, D.H.; Wolfer, W.; Fulton, F.J.; Lee, J.D.; Maninger, R.C.; Moir, R.W.; Beeston, J.M.; Miller, L.G.

    1985-01-01

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented

  7. Blankets for fusion reactors : materials and neutronics

    International Nuclear Information System (INIS)

    Carvalho, S.H. de.

    1980-03-01

    The studies about Fusion Reactors have lead to several problems for which there is no general agreement about the best solution. Nevertheless, several points seem to be well defined, at least for the first generation of reactors. The fuel, for example, should be a mixture of deuterium and tritium. Therefore, the reactor should be able to generate the tritium to be burned and also to transform kinetic energy of the fusion neutrons into heat in a process similar to the fission reactors. The best materials for the composition of the blanket were first selected and then the neutronics for the proposed system was developed. The neutron flux in the blanket was calculated using the discrete ordinates transport code, ANISN. All the nuclides cross sections came from the DLC-28/CTR library, that processed the ENDF/B data, using the SUPERTOG Program. (Author) [pt

  8. Liquid metal cooled blanket concept for NET

    International Nuclear Information System (INIS)

    Malang, S.; Casal, V.; Arheidt, K.; Fischer, U.; Link, W.; Rust, K.

    1986-01-01

    A blanket concept for NET using liquid lithium-lead both as breeder material and as coolant is described. The need for inboard breeding is avoided by using beryllium as neutron multiplier in the outboard blanket. Novel flow channel inserts are employed in all poloidal ducts to reduce the MHD pressure drop. The concept offers a simple mechanical design and a higher tritium breeding ratio compared to water- and gas-cooled blankets. (author)

  9. Conceptual design and neutronics analyses of a fusion reactor blanket simulation facility

    International Nuclear Information System (INIS)

    Beller, D.E.; Ott, K.O.; Terry, W.K.

    1987-01-01

    A new conceptual design of a fusion reactor blanket simulation facility has been developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBF), where experiments have resulted in the discovery of substantial deficiencies in neutronics predictions. With this design, discrepancies between calculation and experimental data can be nearly fully attributed to calculation methods because design deficiencies that could affect results are insignificant. The conceptual design of this FBBF analog, the Fusion Reactor Blanket Facility, is presented

  10. Neutron dosimetry for the TFTR Lithium-Blanket-Module program

    International Nuclear Information System (INIS)

    Harker, Y.D.; Tsang, F.Y.; Caffrey, A.J.; Homeyer, W.G.; Engholm, B.A.

    1981-01-01

    The Tokamak Fusion Test Reactor (TFTR) Lithium Blanket Module (LBM) program is a first-of-a-kind neutronics experiment involving a prototypical fusion reactor blanket module with a distributed neutron source from the plasma of the TFTR at Princeton Plasma Physics Laboratory. The objectives of the LBM program are: (1) to test the capabilities of neutron transport codes when applied to fusion test reactor blanket conditions, and (2) to obtain tritium breeding performance data on a typical design concept of a fusion-reactor blanket. This paper addresses the issues relative to the measurement of neutron fields in the LBM, presents the results of preliminary design studies concerning neutron measurements and also presents the results of blanket mockup experiments performed at the Idaho National Engineering Laboratory

  11. Evaluation of European blanket concepts for DEMO from availability and reliability point of view

    International Nuclear Information System (INIS)

    Nardi, C.

    1995-12-01

    This technical report is concerned with the ENEA activities relating to reliability and availability for the selection among two of the four European blanket concepts for the DEMO reactor. The activities on the BIT concept, the one proposed by ENEA, are emphasized. In spite of the lack of data relating to the behaviour of structures in an environment similar to that of a fusion reactor, it is evidenced that the available data are relevant to the BIT concept geometry. Moreover, it is evidenced that the qualitative reliability evaluations, compared to the quantitative ones, can lead to a better understanding of the typical problems of a structure to be used in a fusion reactor

  12. Impact of Blanket Configuration on the Design of a Fusion-Driven Transmutation Reactor

    Directory of Open Access Journals (Sweden)

    Bong Guen Hong

    2018-02-01

    Full Text Available A configuration of a fusion-driven transmutation reactor with a low aspect ratio tokamak-type neutron source was determined in a self-consistent manner by using coupled analysis of tokamak systems and neutron transport. We investigated the impact of blanket configuration on the characteristics of a fusion-driven transmutation reactor. It was shown that by merging the TRU burning blanket and tritium breeding blanket, which uses PbLi as the tritium breeding material and as coolant, effective transmutation is possible. The TRU transmutation capability can be improved with a reduced blanket thickness, and fast fluence at the first wall can be reduced.  Article History: Received: July 10th 2017; Received: Dec 17th 2017; Accepted: February 2nd 2018; Available online How to Cite This Article: Hong, B.G. (2018 Impact of Blanket Configuration on the Design of a Fusion-Driven Transmutation Reactor. International Journal of Renewable Energy Development, 7(1, 65-70. https://doi.org/10.14710/ijred.7.1.65-70

  13. Utilization of fusion neutrons in the tokamak fusion test reactor for blanket performance testing and other nuclear engineering experiments

    International Nuclear Information System (INIS)

    Caldwell, C.S.; Pettus, W.G.; Schmotzer, J.K.; Welfare, F.; Womack, R.

    1979-01-01

    In addition to developing a set of reacting-plasma/blanket-neutronics benchmark data, the TFTR fusion application experiments would provide operational experience with fast-neutron dosimetry and the remote handling of blanket modules in a tokamak reactor environment; neutron streaming and hot-spot information invaluable for the optimal design of penetrations in future fusion reactors; and the identification of the most damage-resistant insulators for a variety of fusion-reactor components

  14. Nuclear-thermal-coupled optimization code for the fusion breeding blanket conceptual design

    International Nuclear Information System (INIS)

    Li, Jia; Jiang, Kecheng; Zhang, Xiaokang; Nie, Xingchen; Zhu, Qinjun; Liu, Songlin

    2016-01-01

    Highlights: • A nuclear-thermal-coupled predesign code has been developed for optimizing the radial build arrangement of fusion breeding blanket. • Coupling module aims at speeding up the efficiency of design progress by coupling the neutronics calculation code with the thermal-hydraulic analysis code. • Radial build optimization algorithm aims at optimal arrangement of breeding blanket considering one or multiple specified objectives subject to the design criteria such as material temperature limit and available TBR. - Abstract: Fusion breeding blanket as one of the key in-vessel components performs the functions of breeding the tritium, removing the nuclear heat and heat flux from plasma chamber as well as acting as part of shielding system. The radial build design which determines the arrangement of function zones and material properties on the radial direction is the basis of the detailed design of fusion breeding blanket. For facilitating the radial build design, this study aims for developing a pre-design code to optimize the radial build of blanket with considering the performance of nuclear and thermal-hydraulic simultaneously. Two main features of this code are: (1) Coupling of the neutronics analysis with the thermal-hydraulic analysis to speed up the analysis progress; (2) preliminary optimization algorithm using one or multiple specified objectives subject to the design criteria in the form of constrains imposed on design variables and performance parameters within the possible engineering ranges. This pre-design code has been applied to the conceptual design of water-cooled ceramic breeding blanket in project of China fusion engineering testing reactor (CFETR).

  15. Nuclear-thermal-coupled optimization code for the fusion breeding blanket conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia, E-mail: lijia@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Jiang, Kecheng; Zhang, Xiaokang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China); Nie, Xingchen [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Zhu, Qinjun; Liu, Songlin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2016-12-15

    Highlights: • A nuclear-thermal-coupled predesign code has been developed for optimizing the radial build arrangement of fusion breeding blanket. • Coupling module aims at speeding up the efficiency of design progress by coupling the neutronics calculation code with the thermal-hydraulic analysis code. • Radial build optimization algorithm aims at optimal arrangement of breeding blanket considering one or multiple specified objectives subject to the design criteria such as material temperature limit and available TBR. - Abstract: Fusion breeding blanket as one of the key in-vessel components performs the functions of breeding the tritium, removing the nuclear heat and heat flux from plasma chamber as well as acting as part of shielding system. The radial build design which determines the arrangement of function zones and material properties on the radial direction is the basis of the detailed design of fusion breeding blanket. For facilitating the radial build design, this study aims for developing a pre-design code to optimize the radial build of blanket with considering the performance of nuclear and thermal-hydraulic simultaneously. Two main features of this code are: (1) Coupling of the neutronics analysis with the thermal-hydraulic analysis to speed up the analysis progress; (2) preliminary optimization algorithm using one or multiple specified objectives subject to the design criteria in the form of constrains imposed on design variables and performance parameters within the possible engineering ranges. This pre-design code has been applied to the conceptual design of water-cooled ceramic breeding blanket in project of China fusion engineering testing reactor (CFETR).

  16. The transpiration cooled first wall and blanket concept

    International Nuclear Information System (INIS)

    Barleon, Leopold; Wong, Clement

    2002-01-01

    To achieve high thermal performance at high power density the EVOLVE concept was investigated under the APEX program. The EVOLVE W-alloy first wall and blanket concept proposes to use transpiration cooling of the first wall and boiling or vaporizing lithium (Li) in the blanket zone. Critical issues of this concept are: the Magnetohydrodynamic (MHD) pressure losses of the Li circuit, the evaporation through a capillary structure and the needed superheating of the Li at the first wall and blanket zones. Application of the transpiration concept to the blanket region results in the integrated transpiration cooling concept (ITCC) with either toroidal or poloidal first wall channels. For both orientations the routing of the liquid Li and the Li vapor has been modeled and the corresponding pressure losses have been calculated by varying the width of the supplying slot and the capillary diameter. The concept works when the sum of the active and passive pumping head is higher than the total system pressure losses and when the temperature at the inner side of the first wall does not override the superheating limit of the coolant. This cooling concept has been extended to the divertor design, and the removal of a surface heat flux of up to 10 MW/m 2 appears to be possible, but this paper will focus on the transpiration cooled first wall and blanket concept assessment

  17. Two-phase-flow cooling concept for fusion reactor blankets

    International Nuclear Information System (INIS)

    Bender, D.J.; Hoffman, M.A.

    1977-01-01

    The new two-phase heat transfer medium proposed is a mixture of potassium droplets and helium which permits blanket operation at hih temperature and low pressure, while maintaining acceptable pumping power requirements, coolant ducting size, and blanket structure fractions. A two-phase flow model is described. The helium pumping power and the primary heat transfer loop are discussed

  18. Interactions of D-T neutrons in graphite and lithium blankets of fusion reactors

    International Nuclear Information System (INIS)

    Ofek, R.

    1986-05-01

    The present study deals with integral experiment and calculation of neutron energy spectra in bulks of graphite which is used as a reflector in blankets of fusion reactors, and lithium, the material of the blanket on which lithium is bred due to neutron interactions. The collimated beam configuration enables - due to the almost monoenergeticity and unidirectionality of the neutrons impinging on the target - to identify fine details in the measured spectra, and also facilitates the absolute normalization of the spectra. The measured and calculated spectra are generally in a good agreement and in a very good agreement at mesh points close to the system axis. A few conclusions may be drawn: a) the collimated beam source configuration is a sensitive tool for measuring neutron energy spectra with a high resolution, b) the method of unfolding proton-recoil spectra measured with a NE-213 scintillator should be improved, c) MCNP and DOT 4.2 may be used as complementary codes for neutron transport calculations of fusion blankets and deep-penetration problems, d) the updating of the cross-section libraries and checking by integral experiments is highly important for the design of fusion blankets. The present study may be regarded as an important course in the research and development of tools for the design of fusion blankets

  19. Beryllium data base for in-pile mockup test on blanket of fusion reactor, (1)

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hiroshi; Ishitsuka, Etsuo (Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment); Sakamoto, Naoki; Kato, Masakazu; Takatsu, Hideyuki.

    1992-11-01

    Beryllium has been used in the fusion blanket designs with ceramic breeder as a neutron multiplier to increase the net tritium breeding ratio (TBR). The properties of beryllium, that is physical properties, chemical properties, thermal properties, mechanical properties, nuclear properties, radiation effects, etc. are necessary for the fusion blanket design. However, the properties of beryllium have not been arranged for the fusion blanket design. Therefore, it is indispensable to check and examine the material data of beryllium reported previously. This paper is the first one of the series of papers on beryllium data base, which summarizes the reported material data of beryllium. (author).

  20. Design and R and D activities on ceramic breeder blanket for fusion experimental reactors in JAERI

    International Nuclear Information System (INIS)

    Kurasawa, T.; Takatsu, H.; Sato, S.; Nakahira, M.; Furuya, K.; Hashimoto, T.; Kawamura, H.; Kuroda, T.; Tsunematsu, T.; Seki, M.

    1995-01-01

    Design and R and D activities on ceramic breeder blanket of a fusion experimental reactor have been progressed in JAERI. A layered pebble bed type ceramic breeder blanket with water cooling is a prime candidate concept. Design activities have been concentrated on improvement of the design by conducting detailed analyses and also by fabrication procedure consideration based on the current technologies. A wide variety of R and Ds have also been conducted in accordance with the design activities. Development of fabrication technology of the blanket box structure and its mechanical testing, elementary testing on thermal performances of the pebble bed, and engineering-oriented material tests of breeder and beryllium pebbles are the main achievements during the last two years. (orig.)

  1. Tritium containment and blanket design challenges for a 1 GWe mirror fusion central power station

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1976-06-01

    Tritium containment and removal problems associated with the blanket and power-systems for a mirror fusion reactor are identified and conceptual process designs are devised to reduce emissions to the environment below 1 Ci/day. The blanket concept development proceeds by starting with this emission goal of 1 Ci/day and working inward to the blanket. At each decision point, worker safety, operational labor costs, and capital cost tradeoffs are contrasted. The conceptual design uses air for the reactor hall with a continuous catalytic oxidizer-molecular sieve adsorber cleanup system to maintain a 40 μCi/m 3 tritium level (5 μCi/m 3 HTO) against 180 Ci/day leakage from reactor components, energy recovery systems, and process piping. This blanket contains submodules with Li 2 Be 2 O 3 --Be for tritium breeding and submodules with Be for mostly energy production. Tritium production in both is handled by separately containing this breeding material and scavenging this container with lithium vapor-doped helium gas stream

  2. A coupled systems code-CFD MHD solver for fusion blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Wolfendale, Michael J., E-mail: m.wolfendale11@imperial.ac.uk; Bluck, Michael J.

    2015-10-15

    Highlights: • A coupled systems code-CFD MHD solver for fusion blanket applications is proposed. • Development of a thermal hydraulic systems code with MHD capabilities is detailed. • A code coupling methodology based on the use of TCP socket communications is detailed. • Validation cases are briefly discussed for the systems code and coupled solver. - Abstract: The network of flow channels in a fusion blanket can be modelled using a 1D thermal hydraulic systems code. For more complex components such as junctions and manifolds, the simplifications employed in such codes can become invalid, requiring more detailed analyses. For magnetic confinement reactor blanket designs using a conducting fluid as coolant/breeder, the difficulties in flow modelling are particularly severe due to MHD effects. Blanket analysis is an ideal candidate for the application of a code coupling methodology, with a thermal hydraulic systems code modelling portions of the blanket amenable to 1D analysis, and CFD providing detail where necessary. A systems code, MHD-SYS, has been developed and validated against existing analyses. The code shows good agreement in the prediction of MHD pressure loss and the temperature profile in the fluid and wall regions of the blanket breeding zone. MHD-SYS has been coupled to an MHD solver developed in OpenFOAM and the coupled solver validated for test geometries in preparation for modelling blanket systems.

  3. Approximated neutronic calculation for the tritium breeding ratio in fusion reactor blankets

    International Nuclear Information System (INIS)

    Santos, Raul dos

    1983-01-01

    An approximated model for the calculation of the tritium breeding ratio in conceptual thermonuclear fusion reactor blankets is presented. This model makes use of the exponential absorption concept due to the Li 6 (n, He 4 )T and Li 7 (n, n'He 4 )T reactions. The results of this approximated method are compared with reference benchmarks which were generated by the nuclear codes ANISN (discrete ordinates) and MORSE (Monte Carlo method). The maximum deviation among the results have been around 10%. (Author) [pt

  4. Evaluation of organic moderator/coolants for fusion breeder blankets

    International Nuclear Information System (INIS)

    Romero, J.B.

    1980-03-01

    Organic coolants have several attractive features for fusion breeder blanket design. Their apparent compatibility with lithium and their ideal physical and nuclear properties allows straight-forward, high performance designs. Radiolytic damage can be reduced to about the same order as comparable fission systems by using multiplier/stripper blanket designs. Tritium recovery from the organic should be straightforward, but additional data is needed to make a better assessment of the economics of the process

  5. European blanket development for a demo reactor

    International Nuclear Information System (INIS)

    Giancarli, L.; Proust, E.; Anzidei, L.

    1994-01-01

    There are four breeding blanket concepts for a fusion DEMO reactor under development within the framework of the fusion technology programme of the European Union (EU). This paper describes the design of these concepts, the accompanying R + D programme and the status of the development. (authors). 8 figs., 1 tab

  6. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Research during this report period has covered the following areas: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) MACKLIB-IV, a new library of nuclear response functions, (5) energy storage and power supply requirements for commercial fusion reactors, (6) blanket/shield design evaluation for commercial fusion reactors, and (7) cross section measurements, evaluations, and techniques

  7. A methodology for accident analysis of fusion breeder blankets and its application to helium-cooled lead–lithium blanket

    International Nuclear Information System (INIS)

    Panayotov, Dobromir; Poitevin, Yves; Grief, Andrew; Trow, Martin; Dillistone, Michael

    2016-01-01

    'Fusion for Energy' (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena while remaining consistent with the approach already applied to ITER accident analyses. Furthermore, the methodology phases are illustrated in the paper by its application to the EU HCLL TBS using both MELCOR and RELAP5 codes.

  8. Neutronic study of fusion reactor blanket

    International Nuclear Information System (INIS)

    Barre, F.

    1984-02-01

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matricies. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data [fr

  9. Neutronic study of fusion reactor blanket

    International Nuclear Information System (INIS)

    Barre, F.

    1983-06-01

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matrices. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data [fr

  10. Concept evaluation of nuclear fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    This paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders. Two different blanket types were used: metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing. All fusion-driven blankets are assumed to have spherical geometries, with a 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries. These neutronics calculations are coupled with a scenario optimization and cost analysis code. Also, the fusion burn was shaped so as to keep the blanket maximum power density below a preset value, and to improve the performance of the fusion-driven systems. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The nuclear fission breeders that were used as drivers have parameters characteristic of heterogeneous, oxide LMFBRs. They are net plutonium users - the plutonium is obtained from the discharges of LWRs - and U233 is bred in the fission breeder thorium blankets. The analyses of the symbiotic energy systems were performed at equilibrium, at maximum rate of grid expansion, and for a given nuclear power demand

  11. The second advanced lead lithium blanket concept using ODS steel as structural material and SiCf/SiC flow channel inserts as electrical and thermal insulators (Task PPA 2.5). Final report

    International Nuclear Information System (INIS)

    Norajitra, P.; Buehler, L.; Fischer, U.

    1999-12-01

    Preparatory work on the advanced dual coolant (A-DCL) blanket concept using SiC f /SiC flow channel inserts as electrical and thermal insulators has been carried out at the Forschungszentrum Karlsruhe in co-operation with CEA as a conceptual design proposal to the EU fusion power plant study planned to be launched in 2000 within the framework of the EU fusion programme with the main objective of specifying the characteristics of an attractive and viable commercial D-T fusion power plant. The basic principles and design characteristics of this A-DCL blanket concept are presented and its potential with regard to performance (neutron wall load, lifetime, availability) is discussed in this report. The results of this study show that the A-DCL blanket concept has a high potential for further development due to its high thermal efficiency and its simple concept solution. (orig.) [de

  12. Development of vanadium base alloys for fusion first-wall/blanket applications

    International Nuclear Information System (INIS)

    Smith, D.L.; Chung, H.M.; Loomis, B.A.; Matsui, H.; Votinov, S.; VanWitzenburg, W.

    1994-01-01

    Vanadium alloys have been identified as a leading candidate material for fusion first-wall/blanket applications. Certain vanadium alloys exhibit favorable safety and environmental characteristics, good fabricability, high temperature and heat load capability, good compatibility with liquid metals and resistance to irradiation damage effects. The current focus is on vanadium alloys with (3-5)% Cr and (3-5)% Ti with a V-4Cr-4Ti alloy as the leading candidate. Preliminary results indicate that the crack-growth rates of certain alloys are not highly sensitive to irradiation. Results from the Dynamic Helium Charging Experiment (DHCE) which simulates fusion relevant helium/dpa ratios are similar to results from neutron irradiated material. This paper presents an overview of the recent results on the development of vanadium alloys for fusion first wall/blanket applications

  13. Fusion Breeder Program interim report

    International Nuclear Information System (INIS)

    Moir, R.; Lee, J.D.; Neef, W.

    1982-01-01

    This interim report for the FY82 Fusion Breeder Program covers work performed during the scoping phase of the study, December, 1981-February 1982. The goals for the FY82 study are the identification and development of a reference blanket concept using the fission suppression concept and the definition of a development plan to further the fusion breeder application. The context of the study is the tandem mirror reactor, but emphasis is placed upon blanket engineering. A tokamak driver and blanket concept will be selected and studied in more detail during FY83

  14. Neutronic design analyses for a dual-coolant blanket concept: Optimization for a fusion reactor DEMO

    International Nuclear Information System (INIS)

    Palermo, I.; Gómez-Ros, J.M.; Veredas, G.; Sanz, J.; Sedano, L.

    2012-01-01

    Highlights: ► Dual-Coolant He/Pb15.7Li breeding blanket for a DEMO fusion reactor is studied. ► An iterative process optimizes neutronic responses minimizing reactor dimension. ► A 3D toroidally symmetric geometry has been generated from the CAD model. ► Overall TBR values support the feasibility of the conceptual model considered. ► Power density in TF coils is below load limit for quenching. - Abstract: The generation of design specifications for a DEMO reactor, including breeding blanket (BB), vacuum vessel (VV) and magnetic field coils (MFC), requires a consistent neutronic optimization of structures between plasma and MFC. This work targets iteratively to generate these neutronic specifications for a Dual-Coolant He/Pb15.7Li breeding blanket design. The iteration process focuses on the optimization of allowable space between plasma scrapped-off-layer and VV in order to generate a MFC/VV/BB/plasma sustainable configuration with minimum global system volumes. Two VV designs have been considered: (1) a double-walled option with light-weight stiffeners and (2) a thick massive one. The optimization process also involves VV materials, looking to warrant radiation impact operational limits on the MFC. The resulting nuclear responses: peak nuclear heating in toroidal field (TF) coil, tritium breeding ratio (TBR), power amplification factor and helium production in the structural material are provided.

  15. Packed-fluidized-bed blanket concept for a thorium-fueled commercial tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Miller, J.W.; Karbowski, J.S.; Chapin, D.L.; Kelly, J.L.

    1980-09-01

    A preliminary design of a thorium blanket was carried out as a part of the Commercial Tokamak Hybrid Reactor (CTHR) study. A fixed fuel blanket concept was developed as the reference CTHR blanket with uranium carbide fuel and helium coolant. A fixed fuel blanket was initially evaluated for the thorium blanket study. Subsequently, a new type of hybrid blanket, a packed-fluidized bed (PFB), was conceived. The PFB blanket concept has a number of unique features that may solve some of the problems encountered in the design of tokamak hybrid reactor blankets. This report documents the thorium blanket study and describes the feasibility assessment of the PFB blanket concept

  16. Status of fusion reactor blanket evaluation studies in France

    International Nuclear Information System (INIS)

    Carre, F.; Chevereau, G.; Gervaise, F.; Proust, E.

    1985-03-01

    In the frame of recent CEA studies aiming at the evaluation and at the comparison of various candidate blanket concepts in moderate power conditions (Psub(n) approximately 2 MW/m 2 ), the present work examines the neutronic and thermomechanical performances of a water cooled Li 17 Pb 83 tubular blanket and those of a helium cooled canister blanket taking advantage of the excellent breeding capability of composite Beryllium/LiAlO 2 (85/15%) breeder elements. The purpose of the following discussion is to justify the impetus for these reference concepts and to summarize the state of their evaluation studies updated by the continuous assimilation of calculations and experiments in progress

  17. Thermal-hydraulic analysis of low activity fusion blanket designs

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.; Yu, W.S.

    1977-01-01

    The heat transfer aspects of fusion blankets are considered where: (a) conduction and (b) boiling and condensation are the dominant heat transfer mechanisms. In some cases, unique heat transfer problems arise and additional heat transfer data and analyses may be required

  18. Limitations on blanket performance

    International Nuclear Information System (INIS)

    Malang, S.

    1999-01-01

    The limitations on the performance of breeding blankets in a fusion power plant are evaluated. The breeding blankets will be key components of a plant and their limitations with regard to power density, thermal efficiency and lifetime could determine to a large degree the attractiveness of a power plant. The performance of two rather well known blanket concepts under development in the frame of the European Blanket Programme is assessed and their limitations are compared with more advanced (and more speculative) concepts. An important issue is the question of which material (structure, breeder, multiplier, coatings) will limit the performance and what improvement would be possible with a 'better' structural material. This evaluation is based on the premise that the performance of the power plant will be limited by the blankets (including first wall) and not by other components, e.g. divertors, or the plasma itself. However, the justness of this premise remains to be seen. It is shown that the different blanket concepts cover a large range of allowable power densities and achievable thermal efficiencies, and it is concluded that there is a high incentive to go for better performance in spite of possibly higher blanket cost. However, such high performance blankets are usually based on materials and technologies not yet developed and there is a rather high risk that the development could fail. Therefore, it is explained that a part of the development effort should be devoted to concepts where the materials and technologies are more or less in hand in order to ensure that blankets for a DEMO reactor can be developed and tested in a given time frame. (orig.)

  19. Phase-IIC experiments of the JAERI/USDOE collaborative program on fusion blanket neutronics

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1992-12-01

    Neutronics experiments on two types of heterogeneous blankets have been performed as the Phase-IIC experiment of JAERI/USDOE collaborative program on fusion blanket neutronics. The experimental system was used in the same geometry as the previous Phase-IIA series which was a closed geometry using neutron source enclosure of lithium carbonate. The heterogeneous blankets selected here are the beryllium edge-on and the water coolant channel assemblies. In the former the beryllium and lithium-oxide layers are piled up alternately in the front part of test blanket. In the latter, the three simulated water cooling channels are settled in the Li 2 O blanket. These are producing steep gradient of neutron flux around material boundary. The calculation accuracy and measurement method for these features is a key of interest in the experiments. The measurements were performed for tritium production rate and the other nuclear parameters as well as the previous experiments. This report describes the experimental detail and the results enough to use for the benchmark data for testing the data and method of design calculation of fusion reactors. (author)

  20. Self-consistent Analysis of a Blanket and Shielding of a Fusion Reactor Concept

    International Nuclear Information System (INIS)

    Kim, Suk Kwon; Hong, B. G.; Lee, D. W.; Kim, D. H.; Lee, Y. O.

    2008-01-01

    To develop the concept of a DEMO reactor, a tokamak reactor system analysis code has been developed at KAERI (Korea Atomic Energy Research Institute). The system analysis code incorporates prospects of the development of plasma physics and the technologies in a simple mathematical model and it helps to develop the concept of a fusion reactor and to identify the necessary R and D areas for a realization of the concept. In the system code, a plant power balance equation and a plasma power balance equation are solved to find plant parameters which satisfy the plasma physics and technology constraints, simultaneously. The outcome of the system analysis is to identify which areas of plasma physics and technologies and to what extent they should be developed for a realization of given fusion reactor concepts

  1. Direct LiT Electrolysis in a Metallic Fusion Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Luke [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-30

    A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium for the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.

  2. Direct LiT Electrolysis in a Metallic Fusion Blanket

    International Nuclear Information System (INIS)

    Olson, Luke

    2016-01-01

    A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium for the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.

  3. Conceptual design and analysis of the helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Li, Min; Lv, Zhongliang; Zhou, Guangming; Liu, Qianwen; Wang, Shuai; Wang, Xiaoliang; Zheng, Jie; Ye, Minyou

    2015-10-15

    Highlights: • A helium cooled solid blanket was proposed as a candidate blanket concept for CFETR. • Material selection, basic structure and gas flow scheme of the blanket were introduced. • A series of performance analyses for the blanket were summarized. - Abstract: To bridge the gap between ITER and DEMO and to realize the fusion energy in China, a fusion device Chinese Fusion Engineering Test Reactor (CFETR) was proposed and is being designed mainly to demonstrate 50–200 MW fusion power, 30–50% duty time factor, tritium self-sustained. Because of the high demand of tritium production and the realistic engineering consideration, the design of tritium breeding blanket for CFETR is a challenging work and getting special attention. As a blanket candidate, a helium cooled solid breeder blanket has been designed with the emphasis on conservative design and realistic blanket technology. This paper introduces the basic blanket scheme, including the material selection, structural design, cooling scheme and purge gas flow path. In addition, some results of neutronics, thermal-hydraulic and stress analysis are presented.

  4. Some new ideas for Tandem Mirror blankets

    International Nuclear Information System (INIS)

    Neef, W.S. Jr.

    1981-01-01

    The Tandem Mirror Reactor, with its cylindrical central cell, has led to numerous blanket designs taking advantage of the simple geometry. Also many new applications for fusion neutrons are now being considered. To the pure fusion electricity producers and hybrids producing fissile fuel, we are adding studies of synthetic fuel producers and fission-suppressed hybrids. The three blanket concepts presented are new ideas and should be considered illustrative of the breadth of Livermore's application studies. They are not meant to imply fully analyzed designs

  5. European DEMO BOT solid breeder blanket

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1994-11-01

    The BOT (Breeder Outside Tube) Solid Breeder Blanket for a fusion DEMO reactor is presented. This is one of the four blanket concepts under development in the frame of the European fusion technology program with the aim to select in 1995 the two most promising ones for further development. In the paper the reference blanket design and external loops are described as well as the results of the theoretical and experimental work in the fields of neutronics, thermohydraulics, mechanical stresses, tritium control and extraction, development and irradiation of the ceramic breeder material, beryllium development, ferromagnetic forces caused by disruptions, safety and reliability. An outlook is given on the remaining open questions and on the required R and D program. (orig.) [de

  6. Conceptual design and neutronics analyses of a fusion reactor blanket simulation facility

    International Nuclear Information System (INIS)

    Beller, D.E.

    1986-01-01

    A new conceptual design of a fusion reactor blanket simulation facility was developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBR), because experiments conducted in it have resulted in the discovery of deficiencies in neutronics prediction methods. With this design, discrepancies between calculation and experimental data can be fully attributed to calculation methods because design deficiencies that could affect results are insignificant. Inelastic scattering cross sections are identified as a major source of these discrepancies. The conceptual design of this FBBR analog, the fusion reactor blanket facility (FRBF), is presented. Essential features are a cylindrical geometry and a distributed, cosine-shaped line source of 14-MeV neutrons. This source can be created by sweeping a deuteron beam over an elongated titanium-tritide target. To demonstrate that the design of the FRBF will not contribute significant deviations in experimental results, neutronics analyses were performed: results of comparisons of 2-dimensional to 1-dimensional predictions are reported for two blanket compositions. Expected deviations from 1-D predictions which are due to source anisotropy and blanket asymmetry are minimal. Thus, design of the FRBF allows simple and straightforward interpretation of the experimental results, without a need for coarse 3-D calculations

  7. Evaluation of potential blanket concepts for a Demonstration Tokamak Hybrid Reactor

    International Nuclear Information System (INIS)

    Chapin, D.L.; Chi, J.W.H.; Kelly, J.L.

    1978-01-01

    An evaluation has been made of several different blanket concepts for use in a near-term Demonstration Tokamak Hybrid Reactor (DTHR), whose main objective would be to produce a significant amount of fissile fuel while demonstrating the feasibility of the tokamak hybrid reactor concept. The desirability of a simple design using proven technology plus a proliferation resistant fuel cycle led to the selection of a low temperature and pressure water-cooled, zircaloy clad ThO 2 blanket concept to breed 233 U. The nuclear performance and thermal-hydraulics characteristics of the blanket were evaluated to arrive at a consistent design. The blanket was found to be feasible for producing a significant amount of fissile fuel even with the limited operating conditions and blanket coverage in the DTHR

  8. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research

    Science.gov (United States)

    Shi, Xue-Ming; Peng, Xian-Jue

    2016-09-01

    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  9. Feasibility of a laser or charged-particle-beam fusion-reactor concept with direct electric generation by magnetic-flux compression

    International Nuclear Information System (INIS)

    Lasche, G.P.

    1983-06-01

    A new concept for an inertial-confinement fusion reactor is described which, because of its fundamentally different approach to blanket geometry and energy conversion, makes possible a unique combination of high efficiency, high power density, and low radioactivity. The conventional blanket is replaced with a liquid-density mass of lithium contiguously surrounding the fusion yield. This compact blanket configuration produces the maximum shock-induced kinetic energy in liquid metal and the maximum neutron absorption per unit mass. The shock-induced kinetic energy of the liquid lithium is converted directly to electricity with high efficiency by work done against a pulsed normal-conducting magnetic field applied to the exterior of the lithium

  10. Heat transfer problems in gas-cooled solid blankets

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    In all fusion reactors using the deuterium-tritium fuel cycle, a large fraction approximately 80 percent of the fusion energy will be released as approximately 14 MeV neutrons which must be slowed down in a relatively thick blanket surrounding the plasma, thereby, converting their kinetic energy to high temperature heat which can be continuously removed by a coolant stream and converted in part to electricity in a conventional power turbine. Because of the primary goal of achieving minimum radioactivity, to date Brookhaven blanket concepts have been restricted to the use of some form of solid lithium, with inert gas-cooling and in some design cases, water-cooling of the shell structure. Aluminum and graphite have been identified as very promising structural materials for fusion blankets, and conceptual designs based on these materials have been made. Depending on the thermal loading on the ''first'' wall which surrounds the plasma as well as blanket design, heat transfer problems may be noticeably different in gas-cooled solid blankets. Approaches to solution of heat removal problems as well as explanation of: (a) the after-heat problems in blankets; (b) tritium breeding in solids; and (c) materials selection for radiation shields relative to the minimum activity blanket efforts at Brookhaven are discussed

  11. Size limitations for microwave cavity to simulate heating of blanket material in fusion reactor

    International Nuclear Information System (INIS)

    Wolf, D.

    1987-01-01

    The power profile in the blanket material of a nuclear fusion reactor can be simulated by using microwaves at 200 MHz. Using these microwaves, ceramic breeder materials can be thermally tested to determine their acceptability as blanket materials without entering a nuclear fusion environment. A resonating cavity design is employed which can achieve uniform cross sectional heating in the plane transverse to the neutron flux. As the sample size increases in height and width, higher order modes, above the dominant mode, are propagated and destroy the approximation to the heating produced in a fusion reactor. The limits at which these modes develop are determined in the paper

  12. Neutronics analysis of water-cooled energy production blanket for a fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Jiang Jieqiong; Wang Minghuang; Chen Zhong; Qiu Yuefeng; Liu Jinchao; Bai Yunqing; Chen Hongli; Hu Yanglin

    2010-01-01

    Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor (M) and tritium breeding ratio (TBR) in a fusion-fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1 GWe with self-sustaining tritium, i.e. the M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33 000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.

  13. One- and two-dimensional heating analyses of fusion synfuel blankets

    International Nuclear Information System (INIS)

    Tsang, J.S.K.; Lazareth, O.W.; Powell, J.R.

    1979-01-01

    Comparisons between one- and two-dimensional neutronics and heating analyses were performed on a Brookhaven designed fusion reactor blanket featuring synthetic fuel production. In this two temperature region blanket design, the structural shell is stainless steel. The interior of the module is a packed ball of high temperature ceramic material. The low temperature shell and the high temperature ceramic interior are separately cooled. Process steam (approx. 1500 0 C) is then produced in the ceramic core for the producion of H 2 and H 2 -based synthetic fuels by a high temperature electrolysis (HTE) process

  14. Fusion blankets for catalyzed D--D and D--He3 reactors

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1977-01-01

    Blanket designs are presented for catalyzed D-D (Cat-D) and D-He 3 fusion reactors. Because of relatively low neutron wall loads and the flexibility due to non-tritium breeding, blankets potentially should operate for reactor life-times of approximately 30 years. Unscheduled replacement of failed blanket modules should be relatively rapid, due to very low residual activity, by operators working either through access ports in the shield (option 1) or directly in the plasma chamber (option 2). Cat-D blanket designs are presented for high (approximately 30%) and low (approximately 12%) β noncircular Tokamak reactors. The blankets are thick graphite screens, operating at high temperature to anneal radiation damage; the deposited neutron and gamma energy is thermally radiated along internal cavities and conducted to a bank of internal SiC coolant tubes (approximately 4 cm. ID) containing high pressure helium. In the D-He 3 Tokamak reactor design, the blanket consists of multiple layers (e.g., three) of thin (approximately 10 cm.) high strength aluminum (e.g., SAP), modular plates, cooled by organic terphynyl coolant

  15. Fusion blankets for catalyzed D--D and D--3He reactors

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1977-01-01

    Blanket designs are presented for catalyzed D-D (Cat-D) and D-He 3 fusion reactors. Because of relatively low neutron wall loads and the flexibility due to non-tritium breeding, blankets potentially should operate for reactor life-times of approximately 30 years. Unscheduled replacement of failed blanket modules should be relatively rapid, due to very low residual activity, by operators working either through access ports in the shield (option 1) or directly in the plasma chamber (option 2). Cat-D blanket designs are presented for high (approximately 30%) and low (approximately 12%) β non-circular Tokamak reactors. The blankets are thick graphite screens, operating at high temperature to anneal radiation damage; the deposited neutron and gamma energy is thermally radiated along internal cavities and conducted to a bank of internal SiC coolant tubes (approximately 4 cm. ID) containing high pressure helium. In the D-He 3 Tokamak reactor design, the blanket consists of multiple layers (e.g., three) of thin (approximately 10 cm.) high strength aluminum (e.g., SAP), modular plates, cooled by organic terphenyl coolant

  16. Test Blanket Working Group's recent activities

    International Nuclear Information System (INIS)

    Vetter, J.E.

    2001-01-01

    The ITER Test Blanket Working Group (TBWG) has continued its activities during the period of extension of the EDA with a revised charter on the co-ordination of the development work performed by the Parties and by the JCT leading to a co-ordinated test programme on ITER for a DEMO-relevant tritium breeding blanket. This follows earlier work carried out until July 1998, which formed part of the ITER Final Design Report (FDR), completed in 1998. Whilst the machine parameters for ITER-FEAT have been significantly revised compared to the FDR, testing of breeding blanket modules remains a main objective of the test programme and the development of a reactor-relevant breeding blanket to ensure tritium fuel self-sufficiency is recognized a key issue for fusion. Design work and R and D on breeding blanket concepts, including co-operation with the other Contacting Parties of the ITER-EDA for testing these concepts in ITER, are included in the work plans of the Parties

  17. Radiolysis aspects of the aqueous self-cooled blanket concept and the problem of tritium extraction

    International Nuclear Information System (INIS)

    Bruggeman, A.; Snykers, M.; DeRegge, P.; Embrechts, M.J.

    1988-01-01

    In the Aqueous Self-Cooled Blanket (ASCB) concept, an aqueous 6 Li solution in a metallic structure is used as a fusion reactor shielding-breeding blanket. Radiolysis effects could be very important for the design and the use of an ASCB. Although many aspects of the radiation chemistry of water and dilute aqueous solutions are now reasonably well understood, it is not possible to predict the radiochemical behaviour of the concentrated candidate ASCB solutions quantitatively. However, by means of a worst case calculation for a possible ASCB for the Next European Torus (NET) it is shown that even with an important rate of water decomposition the ASCB concept is still workable. Gas bubbles and explosive mixtures can be avoided by increasing the pressure in the neutron irradiated zone and by extracting and/or recombining the radiolytically produced hydrogen and oxygen. This could require an additional inert gas loop, which could also be used as part of the tritium extraction installation

  18. Stress analysis of blanket vessel for JAERI experimental fusion reactor

    International Nuclear Information System (INIS)

    Sako, K.; Minato, A.

    1979-01-01

    A blanket structure of JAERI Experimental Fusion Reactor (JXFR) consists of about 2,300 blanket cells with round cornered rectangular cross sections (twelve slightly different shapes) and is placed in a vacuum vessel. Each blanket vessel is a double-walled thin-shell structure made of Type 316 stainless steel with a spherical domed surface at the plasma side. Ribs for coolant channel are provided between inner and outer walls. The blanket cell contains Li 2 O pebbles and blocks for tritium breeding and stainless steel blocks for neutron reflection. A coolant is helium gas at 10 kgf/cm 2 (0.98 MPa) and its inlet and outlet temperatures are 300 0 C and 500 0 C. The maxima of heat flux and nuclear heating rate at the first wall are 12 W/cm 2 and 2 W/cc. A design philosophy of the blanket structure is based on high tritium breeding ratio and more effective shielding performance. The thin-shell vessel with a rectangular cross section satisfies the design philosophy. We have designed the blanket structure so that the adjacent vessels are mutually supporting in order to decrease the large deformation and stress due to internal pressure in case of the thin-shell vessel. (orig.)

  19. Evaluation of the activity levels in fusion reactor blankets

    International Nuclear Information System (INIS)

    Gruber, J.

    1977-05-01

    The activation of a fusion reactor blanket (316 SS or V-10Cr-10Ti as structure) with a minimum lithium inventory has been calculated for 0.83 MW/m 2 wall load. The resulting radiation levels and waste problems are discussed. The dose rate near the steel structure will always be higher than 0.1 rem/h due to its niobium content. After 200 to 100,000 years of decay the potential biological hazard originating from this high level fusion reactor waste (with plutonium recyclation). (orig.) [de

  20. Low technology high tritium breeding blanket concept

    International Nuclear Information System (INIS)

    Gohar, Y.; Baker, C.C.; Smith, D.L.

    1987-10-01

    The main function of this low technology blanket is to produce the necessary tritium for INTOR operation with minimum first wall coverage. The INTOR first wall, blanket, and shield are constrained by the dimensions of the reference design and the protection criteria required for different reactor components and dose equivalent after shutdown in the reactor hall. It is assumed that the blanket operation at commercial power reactor conditions and the proper temperature for power generation can be sacrificed to achieve the highest possible tritium breeding ratio with minimum additional research and developments and minimal impact on reactor design and operation. A set of blanket evaluation criteria has been used to compare possible blanket concepts. Six areas: performance, operating requirements, impact on reactor design and operation, safety and environmental impact, technology assessment, and cost have been defined for the evaluation process. A water-cooled blanket was developed to operate with a low temperature and pressure. The developed blanket contains a 24 cm of beryllium and 6 cm of solid breeder both with a 0.8 density factor. This blanket provides a local tritium breeding ratio of ∼2.0. The water coolant is isolated from the breeder material by several zones which eliminates the tritium buildup in the water by permeation and reduces the changes for water-breeder interaction. This improves the safety and environmental aspects of the blanket and eliminates the costly process of the tritium recovery from the water. 12 refs., 13 tabs

  1. Beryllium and lithium resource requirements for solid blanket designs for fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.R.

    1975-01-01

    The lithium and beryllium requirements are analyzed for an economy of 10 6 MW(e) CTR 3 capacity using solid blanket fusion reactors. The total lithium inventory in fusion reactors is only approximately 0.2 percent of projected U. S. resources. The lithium inventory in the fusion reactors is almost entirely 6 Li, which must be extracted from natural lithium. Approximately 5 percent of natural lithium can be extracted as 6 Li. Thus the total feed of natural lithium required is approximately 20 times that actually used in fusion reactors, or approximately 4 percent of U. S. resources. Almost all of this feed is returned to the U. S. resource base after 6 Li is extracted, however. The beryllium requirements are on the order of 10 percent of projected U. S. resources. Further, the present cost of lithium and the cost of beryllium extraction could both be increased tenfold with only minor effects on CTR capital cost. Such an increase should substantially multiply the economically recoverable resources of lithium and beryllium. It is concluded that there are no lithium or beryllium resource limitations preventing large-scale implementation of solid blanket fusion reactors. (U.S.)

  2. Conceptual study on high performance blanket in a spherical tokamak fusion-driven transmuter

    International Nuclear Information System (INIS)

    Chen Yixue; Wu Yican

    2000-01-01

    A preliminary conceptual design on high performance dual-cooled blanket of fusion-driven transmuter is presented based on neutronic calculation. The dual-cooled system has some attractive advantages when utilized in transmutation of HLW (High Level Wastes). The calculation results show that this kind of blanket could safely transmute about 6 ton minor actinides (produced by 170 GW(e) Year PWRs approximately) and 0.4 ton fission products per year, and output 12 GW thermal power. In addition, the variation of power and critical factor of this blanket is relatively little during its 1-year operation period. This blanket is also tritium self-sustainable

  3. Effects of neutron source ratio on nuclear characteristics of D-D fusion reactor blankets and shields

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Nakao, Yasuyuki; Ohta, Masao

    1978-01-01

    An examination is made of the dependence shown by the nuclear characteristics of the blanket and shield of D-D fusion reactors on S sub( d d)/S sub( d t), the ratio between the 2.45 MeV neutrons resulting from the D-D reaction and those of 14.06 MeV from the D-T reaction. Also, an estimate is presented of this neutron source ratio S sub( d d)/S sub( d t) for the case of D-D reactors, taken as an example. It is shown that an increase of S sub( d d)/S sub( d t) reduces the amount of nuclear heating per unit source neutron, while at the same time improving the shielding characteristics. This is accountable to lowering of the energy and penetrability of incident neutrons into the blanket brought about by the increase of S sub( d d)/S sub( d t). The value of S sub( d d)/S sub( d t) in a steady state D-D fusioning plasma core is estimated to be 1.46 -- 1.72 for an ion temperature ranging from 60 -- 180 keV. The reductions obtained on H sub( t)sup( b) (total heating in the blanket), H sub( t)sup( m g)/H sub( t)sup( b) (shielding indicator = ratio between total heating in superconducting magnet and that in the blanket) and phi sup( m g)/phi sup( w) (ratio of fast neutron fluxes between that at the magnet inner surface and that at the first wall inner surface) brought about by increasing S sub( d d)/S sub( d t) from unity to the value cited above do not differ to any appreciable extent, whichever is adopted among the design models considered here, the differences being at most about 10, 15 and 25%, respectively, for these three parameters. These results would broaden the validity of the conclusion derived in the previous paper for the case of S sub( d d)/S sub( d t) = 1.0, that the blanket-shield concept would appear to be the most suitable for D-D fusion reactors. (author)

  4. Thermal stresses and cyclic creep-fatigue in fusion reactor blanket

    International Nuclear Information System (INIS)

    Liu, K.C.

    1977-01-01

    Thermal stresses in the first walls of fusion reactor blankets were studied in detail. ORNL multibucket modules are emphasized. Practicality of using the bucket module rather than other blanket designs is examined. The analysis shows that applying intelligent engineering judgment in design can reduce the thermal stresses significantly. Arrangement of coolant flow and distribution of temperature are reviewed. Creep-fatigue property requirements for a first wall are discussed on the basis of existing design rules and criteria. Some major questions are pointed out and experiments needed to resolve basic uncertainties relative to key design decisions are discussed

  5. Development of thermal-hydraulic analysis methodology for multiple modules of water-cooled breeder blanket in fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Im, Kihak [National Fusion Research Institute, 169-148, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2016-02-15

    Highlights: • A methodology to simulate the K-DEMO blanket system was proposed. • The results were compared with the CFD, to verify the prediction capability of MARS. • 46 Blankets in a single sector in K-DEMO were simulated using MARS-KS. • Supervisor program was devised to handle each blanket module individually. • The calculation results showed the flow rates, pressure drops, and temperatures. - Abstract: According to the conceptual design of the fusion DEMO reactor proposed by the National Fusion Research Institute of Korea, the water-cooled breeding blanket system incorporates a total of 736 blanket modules. The heat flux and neutron wall loading to each blanket module vary along their poloidal direction, and hence, thermal analysis for at least one blanket sector is required to confirm that the temperature limitations of the materials are satisfied in all the blanket modules. The present paper proposes a methodology of thermal analysis for multiple modules of the blanket system using a nuclear reactor thermal-hydraulic analysis code, MARS-KS. In order to overcome the limitations of the code, caused by the restriction on the number of computational nodes, a supervisor program was devised, which handles each blanket module separately at first, and then corrects the flow rate, considering pressure drops that occur in each module. For a feasibility test of the proposed methodology, 46 blankets in a single sector were simulated; the calculation results of the parameters, such as mass flow, pressure drops, and temperature distribution in the multiple blanket modules showed that the multi-module analysis method can be used for efficient thermal-hydraulic analysis of the fusion DEMO reactor.

  6. Fusion breeder: its potential role and prospects

    International Nuclear Information System (INIS)

    Lee, J.D.

    1981-01-01

    The fusion breeder is a concept that utilizes 14 MeV neutrons from D + T → n(14.1 MeV) + α(3.5 MeV) fusion reactions to produce more fuel than the tritium (T) needed to sustain the fusion process. This excess fuel production capacity is used to produce fissile material (Pu-239 or U-233) for subsequent use in fission reactors. We are concentrating on a class of blankets we call fission suppressed. The blanket is the region surrounding the fusion plasma in which fusion neutrons interact to produce fuel and heat. The fission-suppressed blanket uses non-fission reactions (mainly (n,2n) or (n,n't)) to generate excess neutrons for the production of net fuel. This is in contrast to the fast fission class of blankets which use (n,fiss) reactions to generate excess neutrons. Fusion reactors with fast fission blankets are commony known as fusion-fission hybrids because they combine fusion and fission in the same device

  7. Overview of principles and challenges of fusion nuclear technology

    International Nuclear Information System (INIS)

    Abdou, M.

    2007-01-01

    Fusion offers very attractive features as a sustainable, broadly available energy source: no emissions of greenhouse gases, no risk of severe accident, and no long-lived radioactive waste. Significant advances in the science and technology of fusion have been realized in the past decades. Seven countries (EU, Japan, USA, Russia, S. Korea, China, and India) comprising about half the world population are constructing a major magnetic fusion facility, called ITER, in France. The objectives of ITER are to demonstrate self-sustaining burning fusion plasma and to test fusion technologies relevant to fusion reactor. Many challenges to the practical utilization of fusion energy remain ahead. Among these challenges is the successful development of Fusion Nuclear Technology (FNT). FNT includes those fusion system components circumscribing the plasma and responsible for tritium production and processing, heat removal at high temperature and power density, and high heat flux components. FNT components face a new and more challenging environment than experienced by any previous nuclear application. Beyond plasma physics, FNT has most of the remaining feasibility and attractiveness issues in the development of fusion as an energy source. The blanket, a key FNT component, determines the critical path to DEMO. The blanket is exposed to an intense radiation environment. Radioactivity and decay heat can be produced in the structure and other blanket elements. Hence, material choices have a large impact on safety and environmental attractiveness. The unique conditions of the fusion environment include high radiation flux, high surface heat flux, strong 3-D-component magnetic field with large gradients, and ultra-low vacuum. These conditions, together with the requirements for high-temperature operation and tritium self-sufficiency, make blanket design and development challenging tasks. The blanket concepts being considered worldwide can be classified into solid breeders and liquid

  8. Collection of summaries of reports on result of research at basic experiment device for nuclear fusion reactor blanket design, 1995

    International Nuclear Information System (INIS)

    1996-07-01

    This report meeting was held on May 22, 1995 at University of Tokyo by about 40 participants. As the topics on the fusion reactor engineering research in Japan, lectures were given on the present state and future of nuclear fusion networks and on the strong magnetic field tokamak using electromagnetic force-balanced coils being planned. Thereafter, the reports of the results of the researches which were carried out by using this experimental facility were made, centering around the subject related to the future conception 'The interface properties of fusion reactor materials and particle transport control'. The publication was made on the future conception of the basic experiment setup for fusion reactor blanket design, the application of high temperature superconductors to the advancement of nuclear fusion reactors, the modeling of the dynamic irradiation behavior of fusion reactor materials, the interface particle behavior in plasma-wall interaction, the behavior of tritium on the surface of breeding materials, and breeding materials and the behavior of tritium in plasma-wall interaction. (K.I.)

  9. Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module

    Science.gov (United States)

    Deepak, SHARMA; Paritosh, CHAUDHURI

    2018-04-01

    The Indian test blanket module (TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the R&D activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices (ITER relevant and DEMO). The Indian Lead–Lithium Cooled Ceramic Breeder (LLCB) blanket concept is one of the Indian DEMO relevant TBM, to be tested in ITER as a part of the TBM program. Helium-Cooled Ceramic Breeder (HCCB) is an alternative blanket concept that consists of lithium titanate (Li2TiO3) as ceramic breeder (CB) material in the form of packed pebble beds and beryllium as the neutron multiplier. Specifically, attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions. These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.

  10. Enhanced fuel production in thorium fusion hybrid blankets utilizing uranium multipliers

    International Nuclear Information System (INIS)

    Pitulski, R.H.; Chapin, D.L.; Klevans, E.

    1979-01-01

    The multiplication of 14 MeV D-T fusion neutrons via (n,2n), (n,3n), and fission reactions by 238 U is well known and established. This study consistently evaluates the effectiveness of a depleted (tails) UO 2 multiplier on increasing the production of 233 U and tritium in a thorium/lithium fusion--fission hybrid blanket. Nuclear performance is evaluated as a function of exposure and zone thickness

  11. Corrosion characteristics of an aqueous self-cooled fusion blanket

    International Nuclear Information System (INIS)

    Bogaerts, W.F.; Embrechts, M.J.; Steiner, D.; Deutsch, L.; Jackson, D.

    1986-01-01

    A novel aqueous self-cooled blanket concept (ASCB) has recently been proposed. This blanket concept, as applied to a MARS-like tandem mirror reactor, consists of disks of spiraling tubes of Zircaloy-4 housed in a structural container of vanadium alloy (V-15 Ti-5 Cr). The Zircaloy tubes are cooled by a mixture of light and heavy water with 9 g of LiOH per 100 cm 3 of water dissolved in the coolant. A major issue for the feasibility of the integrated blanket coil concept is the chemical compatibility of the coolant and Zircaloy. Initial corrosion tests have been undertaken in order to resolve this question. Results clearly show that successful alloy heats can be prepared, for which corrosion problems will probably not be the limiting factor of the ASCB design concept. As is quite well known from fission engineering studies, small variations in the alloy compositions or in the metallurgical structure may, however, be able to cause significant alterations in the oxidation or corrosion rates. Further tests will be necessary to resolve the remaining uncertainties and to determine the behavior of successful alloy heats in the presence of trace impurities in order to address the sensitivity to localized corrosion phenomena such as pitting, stress corrosion cracking, and intergranular attack

  12. Fusion power system: technology and engineering considerations

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1976-01-01

    Engineering concepts are discussed for the following topics: (1) blanket environment, (2) blanket materials, (3) tritium breeding, (4) heat removal problems, (5) materials selection for radiation shields, (6) afterheat, and (7) fusion blanket design

  13. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  14. Proceedings of the third specialists' workshop on modeling tritium behaviour in ceramic fusion blankets

    International Nuclear Information System (INIS)

    Werle, H.

    1991-08-01

    The third specialists' workshop on modeling tritium behaviour in ceramic fusion blankets, hosted by Kernforschungszentrum Karlsruhe, was held June 10-11, 1991. The workshop was coordinated through the IEA Annex II implementing agreement on 'Radiation damage in fusion materials'. (orig./WL)

  15. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Summaries of research are included for each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) the MACK/MACKLIB system for nuclear response functions, and (5) energy storage and power supply systems for fusion reactors

  16. Preliminary study on lithium-salt aqueous solution blanket

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Naruse, Yuji; Yamaoka, Mitsuaki; Ohara, Atsushi; Ono, Kiyoshi; Kobayashi, Shigetada.

    1992-06-01

    Aqueous solution blanket using lithium salts such as LiNO 3 and LiOH have been studied in the US-TIBER program and ITER conceptual design activity. In the JAERI/LANL collaboration program for the joint operation of TSTA (Tritium Systems Test Assembly), preliminary design work of blanket tritium system for lithium ceramic blanket, aqueous solution blanket and liquid metal blanket, have been performed to investigate technical feasibility of tritium demonstration tests using the TSTA. Detail study of the aqueous solution blanket concept have not been performed in the Japanese fusion program, so that this study was carried out to investigate features of its concept and to evaluated its technical problems. The following are the major items studied in the present work: (i) Neutronics of tritium breeding ratio and shielding performance Lithium concentration, Li-60 enrichment, beryllium or lead, composition of structural material/beryllium/solution, heavy water, different lithium-salts (ii) Physicochemical properties of salts Solubility, corrosion characteristics and compatibility with structural materials, radiolysis (iii) Estimation of radiolysis in ITER aqueous solution blanket. (author)

  17. Recent developments concerning the fusion; Developpements recents sur la fusion

    Energy Technology Data Exchange (ETDEWEB)

    Jacquinot, J. [CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee, DRFC, 13 - Saint Paul lez Durance (France); Andre, M. [CEA/DAM Ile de France, 91 - Bruyeres Le Chatel (France); Aymar, R. [ITER Joint Central Team Garching, Muenchen (Germany)] [and others

    2000-09-04

    Organized the 9 march 2000 by the SFEN, this meeting on the european program concerning the fusion, showed the utility of the exploitation and the enhancement of the actual technology (JET, Tore Supra, ASDEX) and the importance of the Europe engagement in the ITER program. The physical stakes for the magnetic fusion have been developed with a presentation of the progresses in the knowledge of the stability limits. A paper on the inertial fusion was based on the LMJ (Laser MegaJoule) project. The two blanket concepts chosen in the scope of the european program on the tritium blankets, have been discussed. These concepts will be validated by irradiation tests in the ITER-FEAT and adapted for a future reactor. (A.L.B.)

  18. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Information is given on each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of CTR concepts, and (4) cross section measurements and techniques

  19. Neutronics optimization of LiPb-He dual-cooled fuel breeding blanket for the fusion-driven sub-critical system

    International Nuclear Information System (INIS)

    Zheng Shanliang; Wu Yican

    2002-01-01

    The concept of the liquid Li 17 Pb 83 and Helium gas dual-cooled Fuel Breeding Blanket (FBB) for the Fusion-Driven sub-critical System (FDS) is presented and analyzed. Taking self-sustaining tritium (TBR > 1.05) and annual output of 100 kg or more fissile 239 Pu (FBR > 0.238) as objective parameters, and based on the three-dimensional Monte Carlo neutron-photon transport code MCNP/4A, a neutronics-optimized calculation of different cases was carried out and the concept is proved feasible. In addition, the total breeding ratio (Br = Tbr + Fbr) is listed corresponding to different cases

  20. Normal operation and maintenance safety lessons from the ITER US PbLi test blanket module program for a US FNSF and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, B.J., E-mail: Brad.Merrill@inl.gov [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID (United States); Wong, C.P.C. [General Atomics, San Diego, CA 92186-5608 (United States); Cadwallader, L.C. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID (United States); Abdou, M.; Morley, N.B. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States)

    2014-10-15

    A leading power reactor breeding blanket candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual Coolant Lead Lithium (DCLL) concept. The safety hazards associated with the DCLL concept as a reactor blanket have been examined in several US design studies. These studies identify the largest radiological hazards as those associated with the dust generation by plasma erosion of plasma blanket module first walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred in or permeating through the ferritic steel structures of the blanket module and blanket support systems, and the {sup 210}Po and {sup 203}Hg produced in the PbLi breeder/coolant. What these studies lack is the scrutiny associated with a licensing review of the DCLL concept. An insight into this process was gained during the US participation in the ITER Test Blanket Module (TBM) Program. In this paper we discuss the lessons learned during this activity and make safety proposals for the design of a Fusion Nuclear Science Facility (FNSF) or a DEMO that employs a lead lithium breeding blanket.

  1. Improved structure and long-life blanket concepts for heliotron reactors

    International Nuclear Information System (INIS)

    Sagara, A.; Imagawa, S.; Mitarai, O.

    2005-01-01

    New design approaches are proposed for the LHD-type heliotron D-T demo-reactor FFHR2 to solve the key engineering issues of blanket space limitation and replacement difficulty. A major radius of over 14m is selected to permit a blanket-shield thickness of about 1m and to reduce the neutron wall loading and toroidal field, while achieving an acceptable cost of electricity. Two sets of optimization are successfully carried out. One is to reduce the magnetic hoop force on the helical coil support structures by adjustment of the helical winding coil pitch parameter and the poloidal coils design, which facilitates expansion of the maintenance ports. The other is a long-life blanket concept using carbon armour tiles that soften the neutron energy spectrum incident on the self-cooled flibe-reduced activation ferritic steel blanket. In this adaptation of the spectral-shifter and tritium breeder blanket (STB) concept a local tritium breeding ratio over 1.2 is feasible by optimized arrangement of the neutron multiplier Be in the carbon tiles, and the radiation shielding of the superconducting magnet coils is also significantly improved. Using constant cross sections of a helically winding shape, the 'screw coaster' concept is proposed to replace in-vessel components such as the STB armour tiles. The key R and D issues for developing the STB concept, such as radiation effects on carbon and enhanced heat transfer of Flibe, are elucidated. (author)

  2. Improved structure and long-life blanket concepts for heliotron reactors

    Science.gov (United States)

    Sagara, A.; Imagawa, S.; Mitarai, O.; Dolan, T.; Tanaka, T.; Kubota, Y.; Yamazaki, K.; Watanabe, K. Y.; Mizuguchi, N.; Muroga, T.; Noda, N.; Kaneko, O.; Yamada, H.; Ohyabu, N.; Uda, T.; Komori, A.; Sudo, S.; Motojima, O.

    2005-04-01

    New design approaches are proposed for the LHD-type heliotron D-T demo-reactor FFHR2 to solve the key engineering issues of blanket space limitation and replacement difficulty. A major radius of over 14 m is selected to permit a blanket-shield thickness of about 1 m and to reduce the neutron wall loading and toroidal field, while achieving an acceptable cost of electricity. Two sets of optimization are successfully carried out. One is to reduce the magnetic hoop force on the helical coil support structures by adjustment of the helical winding coil pitch parameter and the poloidal coils design, which facilitates expansion of the maintenance ports. The other is a long-life blanket concept using carbon armour tiles that soften the neutron energy spectrum incident on the self-cooled flibe-reduced activation ferritic steel blanket. In this adaptation of the spectral-shifter and tritium breeder blanket (STB) concept a local tritium breeding ratio over 1.2 is feasible by optimized arrangement of the neutron multiplier Be in the carbon tiles, and the radiation shielding of the superconducting magnet coils is also significantly improved. Using constant cross sections of a helically winding shape, the 'screw coaster' concept is proposed to replace in-vessel components such as the STB armour tiles. The key R&D issues for developing the STB concept, such as radiation effects on carbon and enhanced heat transfer of Flibe, are elucidated.

  3. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chiu, Ing L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  4. Fusion Blanket Coolant Section Criteria, Methodology, and Results

    Energy Technology Data Exchange (ETDEWEB)

    DeMuth, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meier, W. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frantoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reyes, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-02

    The focus of this LDRD was to explore potential Li alloys that would meet the tritium breeding and blanket cooling requirements but with reduced chemical reactivity, while maintaining the other attractive features of pure Li breeder/coolant. In other fusion approaches (magnetic fusion energy or MFE), 17Li- 83Pb alloy is used leveraging Pb’s ability to maintain high TBR while lowering the levels of lithium in the system. Unfortunately this alloy has a number of potential draw-backs. Due to the high Pb content, this alloy suffers from very high average density, low tritium solubility, low system energy, and produces undesirable activation products in particular polonium. The criteria considered in the selection of a tritium breeding alloy are described in the following section.

  5. An overview of dual coolant Pb-17Li breeder first wall and blanket concept development for the US ITER-TBM design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Clement; Malang, S.; Sawan, M.; Dagher, Mohamad; Smolentsev, S.; Merrill, Brad; Youssef, M.; Reyes, Susanna; Sze, Dai Kai; Morley, Neil B.; Sharafat, Shahran; Calderoni, P.; Sviatoslavsky, G.; Kurtz, Richard J.; Fogarty, Paul J.; Zinkle, Steven J.; Abdou, Mohamed A.

    2006-07-05

    An attractive blanket concept for the fusion reactor is the dual coolant Pb-17Li liquid (DCLL) breeder design. Reduced activation ferritic steel (RAFS) is used as the structural material. Helium is used to cool the first wall and blanket structure, and the self-cooled breeder Pb-17Li is circulated for power conversion and for tritium breeding. A SiCf/SiC composite insert is used as the magnetohydrodynamic (MHD) insulation to reduce the impact from the MHD pressure drop of the circulating Pb-17Li and as the thermal insulator to separate the high temperature Pb-17Li from the helium cooled RAFS structure. For the reference tokamak power reactor design, this blanket concept has the potential of satisfying the design limits of RAFS while allowing the feasibility of having a high Pb-17Li outlet temperture of 700C. We have identified critical issues for the concept, some of which inlude the first wall design, the assessment of MHD effectrs with the SiC-composite flow coolant insert, and the extraction and control of the bred tritium from the Pb-17Li breeder. R&D programs have been proposed to address these issues. At the same time, we have proposed a test plan for the DCLL ITER-Test Blanket Module program.

  6. Updated reference design of a liquid metal cooled tandem mirror fusion breeder

    International Nuclear Information System (INIS)

    Berwald, D.H.; Whitley, R.H.; Garner, J.K.

    1985-09-01

    Detailed studies of key techinical issues for liquid metal cooled fusion breeder (fusion-fission hybrid blankets) have been performed during the period 1983-4. Based upon the results of these studies, the 1982 reference liquid metal cooled tandem mirror fusion breeder blanket design was updated and is described. The updated reference blankets provides increased breeding and lower technological risk in comparison with the original reference blanket. In addition to the blanket design revisions, a plant concept, cost, and fuel cycle economics assessment is provided. The fusion breeder continues to promise an economical source of fissile fuel for the indefinite future

  7. Updated reference design of a liquid metal cooled tandem mirror fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Berwald, D.H.; Whitley, R.H.; Garner, J.K.; Gromada, R.J.; McCarville, T.J.; Moir, R.W.; Lee, J.D.; Bandini, B.R.; Fulton, F.J.; Wong, C.P.C.; Maya, I.; Hoot, C.G.; Schultz, K.R.; Miller, L.G.; Beeston, J.M.; Harris, B.L.; Westman, R.A.; Ghoniem, N.M.; Orient, G.; Wolfer, M.; DeVan, J.H.; Torterelli, P.

    1985-09-01

    Detailed studies of key techinical issues for liquid metal cooled fusion breeder (fusion-fission hybrid blankets) have been performed during the period 1983-4. Based upon the results of these studies, the 1982 reference liquid metal cooled tandem mirror fusion breeder blanket design was updated and is described. The updated reference blankets provides increased breeding and lower technological risk in comparison with the original reference blanket. In addition to the blanket design revisions, a plant concept, cost, and fuel cycle economics assessment is provided. The fusion breeder continues to promise an economical source of fissile fuel for the indefinite future.

  8. Investigation of lanthanides as neutron multipliers for hybrid and fusion reactor blankets

    International Nuclear Information System (INIS)

    Sahin, Sumer

    1982-01-01

    The neutronic performance of three lanthanides ( 149 Sm, europium, and gadolinium) as neutron multiplier for the blanket of a fusion-fission (hybrid) and a pure fusion reactor has been evaluated and compared with that of beryllium and lead. During the calculations, the fission zone is made up of UO 2 rods from the LOTUS experimental hybrid facility now under construction at the Nuclear Engineering Laboratory of the Swiss Federal Institute of Technology in Lausanne. In fusion blanket the fuel zone is replaced by pure lithium. The calculations were performed for two different boundary conditions for the left boundary: (a) reflecting, representative of a typical confinement geometry, and (b) vacuum, which represents a typical blanket experiment in plane geometry. For a vacuum left boundary, threshold reactions are reduced by a factor of about 2 while 1/v-type reactions are decreased by a factor of between 5 and 10, as a consequence of the softer spectrum produced by a reflecting left boundary. In general, the results, notably tritium breeding and energy multiplication, are comparable for the lanthanide multipliers and for beryllium and lead if the left boundary is a vacuum. The use of 149 Sm is slightly less effective than europium or gadolinium and all of the lanthanides perform better for a vacuum left boundary than for the reflecting case. The analyses presented here also illustrate the importance of potential spectral shifts that can occur as the result of experimental exigencies

  9. Structural performance of a graphite blanket in fusion reactors

    International Nuclear Information System (INIS)

    Wolfer, W.G.; Watson, R.D.

    1978-01-01

    Irradiation of graphite in a fusion reactor causes dimensional changes, enhanced creep, and changes in elastic properties and fracture strength. Temperature and flux gradients through the graphite blanket structure produce differential distortions and stress gradients. An inelastic stress analysis procedure is described which treats these variations of the graphite properties in a consistent manner as dictated by physical models for the radiation effects. Furthermore, the procedure follows the evolution of the stress and fracture strength distributions during the reactor operation as well as for possible shutdowns at any time. The lifetime of the graphite structure can be determined based on the failure criterion that the stress at any location exceeds one-half of the fracture strength. This procedure is applied to the most critical component of the blanket module in the SOLASE design

  10. Recent designs for advanced fusion reactor blankets

    International Nuclear Information System (INIS)

    Sze, D.K.

    1994-01-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-I through IV. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies. ARIES-1 investigated the use of SiC composite as the structural material to increase the blanket temperature and reduce the blanket activation. Li 2 ZrO 3 was used as the breeding material due to its high temperature stability and good tritium recovery characteristics. The ARIES-IV is a modification of ARIES-1. The plasma was in the second stability regime. Li 2 O was used as the breeding material to remove Zr. A gaseous divertor was used to replace the conventional divertor so that high Z divertor target is not required. The physics of ARIES-II was the same as ARIES-IV. The engineering design of the ARIES-II was based on a self-cooled lithium blanket with a V-alloy as the structural material. Even though it was assumed that the plasma was in the second stability regime, the plasma beta was still rather low (3.4%). The ARIES-III is an advanced fuel (D- 3 He) tokamak reactor. The reactor design assumed major advancement on the physics, with a plasma beta of 23.9%. A conventional structural material is acceptable due to the low neutron wall loading. From the radiation damage point of view, the first wall can last the life of the reactor, which is expected to be a major advantage from the engineering design and waste disposal point of view

  11. Objectives and status of EUROfusion DEMO blanket studies

    Energy Technology Data Exchange (ETDEWEB)

    Boccaccini, L.V., E-mail: lorenzo.boccaccini@kit.edu [Karlsruhe Institute of Technology (KIT) (Germany); Aiello, G.; Aubert, J. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Bachmann, C. [EUROfusion, PPPT, Garching (Germany); Barrett, T. [CCFE, Abingdon OX14 3DB (United Kingdom); Del Nevo, A. [ENEA CR Brasimone, 40032 Camugnano, BO (Italy); Demange, D. [Karlsruhe Institute of Technology (KIT) (Germany); Forest, L. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Hernandez, F.; Norajitra, P. [Karlsruhe Institute of Technology (KIT) (Germany); Porempovic, G. [Fuziotech Engineering Ltd (Hungary); Rapisarda, D. [CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Sardain, P. [CEA/IRFM, 13115 Saint-Paul-lès-Durance (France); Utili, M. [ENEA CR Brasimone, 40032 Camugnano, BO (Italy); Vala, L. [Centrum výzkumu Řež, 250 68 Husinec-Řež (Czech Republic)

    2016-11-01

    Highlights: • Short description of the new Breeding Blanket Project in the EUROfusion consortium for the design of the EU PPPT DEMO: objectives. • Presentation of the design approach used in the development of the Breeding Blanket design: requirements. • Breeding Blanket design; in particular the four blanket concepts included in the study are presented, recent results highlighted and the status discussed. • Auxiliary systems and related R&D programme: in particular the work areas addressed in the Project (Tritium Technology, Pb-Li and Solid Breeders Technology, First Wall Design and R&D, Manufacturing) are presented, recent results highlighted and the status discussed. - Abstract: The design of a DEMO reactor requires the design of a blanket system suitable of reliable T production and heat extraction for electricity production. In the frame of the EUROfusion Consortium activities, the Breeding Blanket Project has been constituted in 2014 with the goal to develop concepts of Breeding Blankets for the EU PPPT DEMO; this includes an integrated design and R&D programme with the goal to select after 2020 concepts on fusion plants for the engineering phase. The design activities are presently focalized around a pool of solid and liquid breeder blanket with helium, water and PbLi cooling. Development of tritium extraction and control technology, as well manufacturing and development of solid and PbLi breeders are part of the programme.

  12. Recent designs for advanced fusion reactor blankets

    International Nuclear Information System (INIS)

    Sze, D.K.

    1994-06-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-1 through 4 and PULSAR 1 and 2. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. Also, the requirements of engineering and physics systems for a pulsed reactor were evaluated by the PULSAR design studies. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies

  13. Conceptual design of blanket structures for fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    Conceptual design study for in-vessel components including tritium breeding blanket of FER has been carried out. The objective of this study is to obtain the engineering and technological data for selecting the reactor concept and for its construction by investigating fully and broadly. The design work covers in-vessel components (such as tritium breeding blanket, first wall, shield, divertor and blanket test module), remote handling system and tritium system. The designs of those components and systems are accomplished in consideration of their accomodation to whole reactor system and problems for furthur study are clarified. (author)

  14. Catalyzed deuterium-deuterium and deuterium-tritium fusion blankets for high temperature process heat production

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Salimi, B.

    1982-01-01

    Tritiumless blanket designs, associated with a catalyzed deuterium-deuterium (D-D) fusion cycle and using a single high temperature solid pebble or falling bed zone, for process heat production, are proposed. Neutronics and photonics calculations, using the Monte Carlo method, show that an about 90% heat deposition fraction is possible in the high temperature zone, compared to a 30 to 40% fraction if a deuterium-tritium (D-T) fusion cycle is used with separate breeding and heat deposition zones. Such a design is intended primarily for synthetic fuels manufacture through hydrogen production using high temperature water electrolysis. A system analysis involving plant energy balances and accounting for the different fusion energy partitions into neutrons and charged particles showed that plasma amplification factors in the range of 2 are needed. In terms of maximization of process heat and electricity production, and the maximization of the ratio of high temperature process heat to electricity, the catalyzed D-D system outperforms the D-T one by about 20%. The concept is thought competitive to the lithium boiler concept for such applications, with the added potential advantages of lower tritium inventories in the plasma, reduced lithium pumping (in the case of magnetic confinement) and safety problems, less radiation damage at the first wall, and minimized risks of radioactive product contamination by tritium

  15. Progress in blanket designs using SiCf/SiC composites

    International Nuclear Information System (INIS)

    Giancarli, L.; Golfier, H.; Nishio, S.; Raffray, R.; Wong, C.; Yamada, R.

    2002-01-01

    This paper summarizes the most recent design activities concerning the use of SiC f /SiC composite as structural material for fusion power reactor breeding blanket. Several studies have been performed in the past. The most recent proposals are the TAURO blanket concept in the European Union, the ARIES-AT concept in the US, and DREAM concept in Japan. The first two concepts are self-cooled lithium-lead blankets, while DREAM is an helium-cooled beryllium/ceramic blanket. Both TAURO and ARIES-AT blankets are essentially formed by a SiC f /SiC box acting as a container for the lithium-lead which has the simultaneous functions of coolant, tritium breeder, neutron multiplier and, finally, tritium carrier. The DREAM blanket is characterized by small modules using pebble beds of Be as neutron multiplier material, of Li 2 O (or other lithium ceramics) as breeder material and of SiC as shielding material. The He coolant path includes a flow through the pebble beds and a porous partition wall. For each blanket, this paper describes the main design features and performances, the most recent design improvements, and the proposed manufacturing routes in order to identify specific issues and requirements for the future R and D on SiC f /SiC

  16. Source-to-incident flux relation for a tokamak fusion test reactor blanket module

    International Nuclear Information System (INIS)

    Imel, G.R.

    1982-01-01

    The source-to-incident 14-MeV flux relation for a blanket module on the Tokamak Fusion Test Reactor is derived. It is shown that assumptions can be made that allow an analytical expression to be derived, using point kernel methods. In addition, the effect of a nonuniform source distribution is derived, again by relatively simple point kernel methods. It is thought that the methodology developed is valid for a variety of blanket modules on tokamak reactors

  17. Neutronic design for the TFTR lithium blanket module

    International Nuclear Information System (INIS)

    Cheng, E.T.; Engholm, B.A.; Su, S.D.

    1981-01-01

    The preliminary design of a lithium blanket module (LBM) to be installed and tested in the TFTR has been performed under subcontract to PPPL and EPRI. The objectives of the LBM program are calculation and measurement of neutron fluences and tritium production in a breeding blanket module using state of art techniques, comparison of calculations with measurements, and acquisition of operational experience with a fusion reactor blanket module. The neutronic design of the LBM is one of the key areas of this program in which the LBM composition and geometry are optimized and the boundary material effects on the tritium production in the blanket module are explored. The concept of employing sintered Li/sub 2/O pellets in tubes is proposed for the blanket design

  18. First-wall and blanket engineering development for magnetic-fusion reactors

    International Nuclear Information System (INIS)

    Baker, C.; Herman, H.; Maroni, V.; Turner, L.; Clemmer, R.; Finn, P.; Johnson, C.; Abdou, M.

    1981-01-01

    A number of programs in the USA concerned with materials and engineering development of the first wall and breeder blanket systems for magnetic-fusion power reactors are described. Argonne National Laboratory has the lead or coordinating role, with many major elements of the research and engineering tests carried out by a number of organizations including industry and other national laboratories

  19. Main features and potentialities of gas-blanket systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-02-01

    A review is given of the features and potentialities of cold-blanket systems, with respect to plasma equilibrium, stability, and reactor technology. The treatment is concentrated on quasi-steady magnetized plasmas confined at moderately high beta values. The cold-blanket concept has specific potentialities as a fusion reactor, e.g. in connection with the desired densities and dimensions of full-scale systems, refuelling, as well as ash and impurity removal, and stability. (author)

  20. Progress in fusion reactors blanket analysis and evaluation at CEA

    International Nuclear Information System (INIS)

    Proust, E.; Gervaise, F.; Carre, F.; Chevereau, G.; Doutriaux, D.

    1986-09-01

    In the frame of the recent CEA studies aiming at the development, evaluation and comparison of solid breeder blanket concepts in view of their adaptation to NET, the evaluation of specific questions related to the first wall design, the present paper examines first the performances of a helium cooled toroidal blanket design for NET, based on innovative Beryllium/Ceramics breeder rod elements. Neutronic and thermo-mechanical optimisation converges on a concept featured by a breeding capability in excess of 1.2, a reasonnable pumping power of 1% and a narrow breeder temperature range (470+-30 deg C of the breeder), the latter being largely independent of the power level. This design proves naturally adapted to ceramic breeder assigned to very strict working conditions, and provides for any change in the thermal and heat transfer characteristics over the blanket lifetime. The final section of the paper is devoted to the evaluation of the heat load poloidal distribution and to the irradiation effects on first wall structural materials

  1. Characterization of the effects of continuous salt processing on the performance of molten salt fusion breeder blankets

    International Nuclear Information System (INIS)

    Patterson-Hine, F.A.; Davidson, J.W.; Klein, D.E.; Lee, J.D.

    1985-01-01

    Several continuous salt processing options are available for use in molten salt fusion breeder blanket designs: fluorination only, fluorination plus reductive extraction, and fluorination, plus reductive extraction, plus metal transfer. The effects of processing on blanket performance have been assessed for these three levels of processing and various equilibrium uranium concentrations in the salt. A one-dimensional model of the blanket was used in the neutronics analysis, which incorporated transport calculations with time-dependent isotope generation and depletion calculations. The method of salt processing was found to have little affect on the level of radioactivity, toxicity, or the thermal behavior of the salt during operation of the reactor. The processing rates necessary to maintain the desired uranium concentrations in the suppressed-fission environment were quite low, which permitted only long-lived species to be removed from the salt. The effects of the processing therefore became apparent only after the radioactivity due to the short-lived species diminished. The effect of the additional processing (reductive extraction and metal transfer) could be seen after approximately 1 year of decay, but were not significant at times closer to shutdown. The reduced radioactivity and corresponding heat deposition were thus of no consequence in accident or maintenance situations. Net fissile production in the Be/MS blanket concept at a fusion power level of 3000 MW at 70% capacity ranged from 5100 kg/year to 5170 kg/year for uranium concentrations of 0.11% and 1.0% 233 U in thorium, respectively, with fluorination-only processing. The addition of processing by reductive extraction resulted in 5125 kg/year for the 0.11% 233 U case and 5225 kg/year for the 1.0% 233 U case

  2. Thermohydraulics design and thermomechanics analysis of two European breeder blanket concepts for DEMO. Pt. 1 and Pt. 2. Pt. 1: BOT helium cooled solid breeding blanket. Pt. 2: Dual coolant self-cooled liquid metal blanket

    International Nuclear Information System (INIS)

    Norajitra, P.

    1995-06-01

    Two different breeding blanket concepts are being elaborated at Forschungszentrum Karlsruhe within the framework of the DEMO breeding blanket development, the concept of a helium cooled solid breeding blanket and the concept of a self-cooled liquid metal blanket. The breeder material used in the first concept is Li 4 SiO 4 as a pebble bed arranged separate from the beryllium pebble bed, which serves as multiplier. The breeder material zone is cooled by several toroidally-radially configurated helium cooling plates which, at the same time, act as reinforcements of the blanket structures. In the liquid metal blanket concept lead-lithium is used both as the breeder material and the coolant. It flows at low velocity in poloidal direction downwards and back in the blanket front zone. In both concepts the First Wall is cooled by helium gas. This report deals with the thermohydraulics design and thermomechanics analysis of the two blanket concepts. The performance data derived from the Monte-Carlo computations serve as a basis for the design calculations. The coolant inlet and outlet temperatures are chosen with the design criteria and the economics aspects taken into account. Uniform temperature distribution in the blanket structures can be achieved by suitable branching and routing of the coolant flows which contributes to reducing decisively the thermal stress. The computations were made using the ABAQUS computer code. The results obtained of the stresses have been evaluated using the ASME code. It can be demonstrated that all maximum values of temperature and stress are below the admissible limit. (orig.) [de

  3. Overview of Fusion-Fission Hybrid Reactor Design Study in China

    International Nuclear Information System (INIS)

    Huang Jinhua; Feng Kaiming; Deng Baiquan; Deng, P.Zh.; Zhang Guoshu; Hu Gang; He Kaihui; Wu Yican; Qiu Lijian; Huang Qunying; Xiao Bingjia; Liu Xiaoping; Chen Yixue; Kong, M.H.

    2002-01-01

    The motivation for developing fusion-fission hybrid reactors is discussed in the context of electricity power requirements by 2050 in China. A detailed conceptual design of the Fusion Experimental Breeder (FEB) was developed from 1986-1995. The FEB has a subignited tokamak fusion core with a major radius of 4.0 m, a fusion power of 145 MW, and a fusion energy gain Q of 3. Based on this, an engineering outline design study of the FEB, FEB-E, has been performed. This design study is a transition from conceptual to engineering design in this research. The main results beyond that given in the detailed conceptual design are included in this paper, namely, the design studies of the blanket, divertor, test blanket, and tritium and environment issues. In-depth analyses have been performed to support the design. Studies of related advanced concepts such as the waste transmutation blanket concept and the spherical tokamak core concept are also presented

  4. Conceptual design of Blanket Remote Handling System for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jianghua, E-mail: weijh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Song, Yuntao, E-mail: songyt@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2015-11-15

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  5. Conceptual design of Blanket Remote Handling System for CFETR

    International Nuclear Information System (INIS)

    Wei, Jianghua; Song, Yuntao; Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong

    2015-01-01

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  6. Materials science problems of blankets in Russian concept of fusion reactor

    International Nuclear Information System (INIS)

    Solonin, M.I.

    1998-01-01

    Structural materials, beryllium and tritium breeding materials proposed for blanket of Russian reactor DEMO and Test Modules for ITER are discussed. Main requirements for the materials are concerned with basis current designs of blankets and modules and possibility meet of ones for presence and developed alloys and materials discussed considered. Main properties and results of test of ferrite-martensite and vanadium alloys for DEMO and Test Modules are cited. Beryllium compositions used as component of first wall and neutron multiplier are discussed. Liquid lithium and ceramic (lithium orthosilicate) are treated as tritium breeding materials. Russian development of reactor experimental unit for tritium breeding zone using beryllium, lithium ceramic and ferrite-martensite alloys for structural materials is presented. (orig.)

  7. Imploding-liner reactor nucleonic studies: the LINUS blanket

    International Nuclear Information System (INIS)

    Dudziak, D.J.

    1977-09-01

    Scoping nucleonic studies have been performed for a small imploding-liner fusion reactor concept. Tritium breeding ratio and time-dependent energy deposition rates were the primary parameters of interest in the study. Alloys of Pb and LiPb were considered for the liquid liner (blanket), and tritium breeding was found to be more than adequate with blankets less than 1 m thick. However, neutron leakages into the solid cylinder block surrounding the liquid liner are generally quite high, so considerable effort was concentrated on minimizing these values. Time-dependent calculations reveal that 89% of the energy is deposited in the blanket within 2 μs. Thus, LINUS's blanket should remain intact for the requisite neutron and gamma-ray lifetimes

  8. An overview of dual coolant Pb-17Li breeder first wall and blanket concept development for the US ITER-TBM design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)]. E-mail: wongc@fusion.gat.com; Malang, S. [Fusion Nuclear Technology Consulting, Linkenheim (Germany); Sawan, M. [University of Wisconsin, Madison, WI (United States); Dagher, M. [University of California, Los Angeles, CA (United States); Smolentsev, S. [University of California, Los Angeles, CA (United States); Merrill, B. [INEEL, Idaho Falls, ID (United States); Youssef, M. [University of California, Los Angeles, CA (United States); Reyes, S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Sze, D.K. [University of California, San Diego, CA (United States); Morley, N.B. [University of California, Los Angeles, CA (United States); Sharafat, S. [University of California, Los Angeles, CA (United States); Calderoni, P. [University of California, Los Angeles, CA (United States); Sviatoslavsky, G. [University of Wisconsin, Madison, WI (United States); Kurtz, R. [Pacific Northwest Laboratory, Richland, WA (United States); Fogarty, P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Zinkle, S. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Abdou, M. [University of California, Los Angeles, CA (United States)

    2006-02-15

    An attractive blanket concept for the fusion reactor is the dual coolant Pb-17Li liquid (DCLL) breeder design. Reduced activation ferritic steel (RAFS) is used as the structural material. Helium is used to cool the first wall and blanket structure, and the self-cooled breeder Pb-17Li is circulated for power conversion and for tritium breeding. A SiC{sub f}/SiC composite insert is used as the magnetohydrodynamic (MHD) insulation to reduce the impact from the MHD pressure drop of the circulating Pb-17Li and as the thermal insulator to separate the high temperature Pb-17Li from the helium cooled RAFS structure. For the reference tokamak power reactor design, this blanket concept has the potential of satisfying the design limits of RAFS while allowing the feasibility of having a high Pb-17Li outlet temperature of 700 deg. C. We have identified critical issues for the concept, some of which include the first wall design, the assessment of MHD effects with the SiC-composite flow coolant insert, and the extraction and control of the bred tritium from the Pb-17Li breeder. R and D programs have been proposed to address these issues. At the same time we have proposed a test plan for the DCLL ITER-Test Blanket Module program.

  9. Effect of graphite reflector on activation of fusion breeding blanket

    International Nuclear Information System (INIS)

    Lee, Cheol Woo; Lee, Young-Ouk; Lee, Dong Won; Cho, Seungyon; Ahn, Mu-Young

    2016-01-01

    Highlights: • The graphite reflector concept has been applied in the design of the Korea HCCR TBM for ITER and this concept is also a candidate design option for Korea Demo. • In the graphite reflector, C-14, B-11 and Be-10 are produced after an irradiation. Impurities in both case of beryllium and graphite is dominant in the shutdown dose after an irradiation. • Based on the evaluation, the graphite reflector is a good alternative of the beryllium multiplier in the view of induced activity and shutdown dose. But C-14 produced in the graphite reflector should be considered carefully in the view of radwaste management. - Abstract: Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. In this paper, activity analysis was performed and the effect of graphite reflector in the view of activation was compared to the beryllium multiplier. As a result, it is expected that using the graphite reflector instead of the beryllium multiplier decreases total activity very effectively. But the graphite reflector produces C-14 about 17.2 times than the beryllium multiplier. Therefore, C-14 produced in the graphite reflector is expected as a significant nuclide in the view of radwaste management.

  10. First wall fusion blanket temperature variation - slab geometry

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1978-01-01

    The first wall of a fusion blanket is approximated by a slab, with the surface facing the plasma subjected to an applied heat flux, while the rear surface is convectively cooled. The relevant parameters affecting the heat transfer during the early phases of heating as well as for large times are established. Analytical solutions for the temperature variation with time and space are derived. Numerical calculations for an aluminum and stainless steel slab are performed for a wall loading of 1 MW(th)/m 2 . Both helium and water cooling are considered. (Auth.)

  11. Structural materials for fusion reactor blanket systems

    International Nuclear Information System (INIS)

    Bloom, E.E.; Smith, D.L.

    1984-01-01

    Consideration of the required functions of the blanket and the general chemical, mechanical, and physical properties of candidate tritium breeding materials, coolants, structural materials, etc., leads to acceptable or compatible combinations of materials. The presently favored candidate structural materials are the austenitic stainless steels, martensitic steels, and vanadium alloys. The characteristics of these alloy systems which limit their application and potential performance as well as approaches to alloy development aimed at improving performance (temperature capability and lifetime) will be described. Progress towards understanding and improving the performance of structural materials has been substantial. It is possible to develop materials with acceptable properties for fusion applications

  12. Fabrication and performance of AIN insulator coatings for application in fusion reactor blankets

    International Nuclear Information System (INIS)

    Natesan, K.

    1995-09-01

    The liquid-metal blanket concept for fusion reactors requires an coating on the first-wall structural material to minimize the magnetohydrodynamic pressure drop that occurs during the flow of liquid metal in a magnetic field. Based on the thermodynamics of interactions betwen the coating and the liquid lithium on one side and the structural V-base alloy on the other side, an AIN coating was selected as a candidate. Detailed investigations were conducted on the fabrication, metallurgical microstructure, compatibility in liquid Li, and electrical characteristics of AIN material obtained from several sources. Lithium compatibility was studied in static systems by exposing AIN-coated specimens to liquid Li for several time periods. Electrical resistance was measured at room temperature on the specimens before and after exposure to liquid Li. The results obtained in this study indicate that AIN is a viable coating from the standpoint of chemical compatibility in Li, electrical insulation, and ease of fabrication; for these reasons, the coating should be examined further for fusion reactor applications

  13. Comparative analysis of a fusion reactor blanket in cylindrical and toroidal geometry using Monte Carlo

    International Nuclear Information System (INIS)

    Chapin, D.L.

    1976-03-01

    Differences in neutron fluxes and nuclear reaction rates in a noncircular fusion reactor blanket when analyzed in cylindrical and toroidal geometry are studied using Monte Carlo. The investigation consists of three phases--a one-dimensional calculation using a circular approximation to a hexagonal shaped blanket; a two-dimensional calculation of a hexagonal blanket in an infinite cylinder; and a three-dimensional calculation of the blanket in tori of aspect ratios 3 and 5. The total blanket reaction rate in the two-dimensional model is found to be in good agreement with the circular model. The toroidal calculations reveal large variations in reaction rates at different blanket locations as compared to the hexagonal cylinder model, although the total reaction rate is nearly the same for both models. It is shown that the local perturbations in the toroidal blanket are due mainly to volumetric effects, and can be predicted by modifying the results of the infinite cylinder calculation by simple volume factors dependent on the blanket location and the torus major radius

  14. Exploring novel high power density concepts for attractive fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.A. [California State Univ., Los Angeles, CA (United States). Dept. of Mechanical Engineering; APEX Team

    1999-05-01

    The advanced power extraction study is aimed at exploring innovative concepts for fusion power technology (FPT) that can tremendously enhance the potential of fusion as an attractive and competitive energy source. Specifically, the study is exploring new and `revolutionary` concepts that can provide the capability to efficiently extract heat from systems with high neutron and surface heat loads while satisfying all the FPT functional requirements and maximizing reliability, maintainability, safety, and environmental requirements. The primary criteria for measuring performance of the new concepts are: (1) high power density capability with a peak neutron wall load (NWL) of {proportional_to}10 MW m{sup -2} and surface heat flux of {proportional_to}2 MW m{sup -2}; (2) high power conversion efficiency, {proportional_to}40% net; and (3) clear potential to achieve high availability; specifically low failure rate, large design margin, and short downtime for maintenance. A requirement that MTBF{>=}43 MTTR was derived as a necessary condition to achieve the required first wall/blanket availability, where MTBF is the mean time between failures and MTTR is the mean time to recover. Highlights of innovative and promising new concepts that may satisfy these criteria are provided. (orig.) 40 refs.

  15. An overview of dual coolant Pb-17Li breeder first wall and blanket concept development for the US ITER-TBM design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Clement; Malang, S.; Sawan, M.; Dagher, Mohamad; Smolentsev, S.; Merrill, Brad; Youssef, M.; Reyes, Susanna; Sze, Dai Kai; Morley, Neil B.; Sharafat, Shahran; Calderoni, P.; Sviatoslavsky, G.; Kurtz, Richard J.; Fogarty, Paul J.; Zinkle, Steven J.; Abdou, Mohamed A.

    2006-02-01

    An attractive blanket concept for the fusion reactor is the dual coolant Pb-17Li liquid (DCLL) breeder design. Reduced activation ferritic steel (RAFS) is used as the structural material. Helium is used to cool the first wall and blanket structure, and the self-cooled breeder Pb-17LI is circulated for power conversion and for tritium breeding. A SiCf/SiC composite insert is used as the magnetohydrodynamic (MHD) insulation to reduce the impact from the MHD pressure drop of the circulating Ph-17Li and as the thermal insulator to separate the high temperature Pb-17Li from the helium cooled RAFS structure.

  16. Sensisivity and Uncertainty analysis for the Tritium Breeding Ratio of a DEMO Fusion reactor with a Helium cooled pebble bed blanket

    OpenAIRE

    Nunnenmann, Elena; Fischer, Ulrich; Stieglitz, Robert

    2016-01-01

    An uncertainty analysis was performed for the tritium breeding ratio (TBR) of a fusion power plant of the European DEMO type using the MCSEN patch to the MCNP Monte Carlo code. The breeding blanket was of the type Helium Cooled Pebble Bed (HCPB), currently under development in the European Power Plant Physics and Technology (PPPT) programme for a fusion power demonstration reactor (DEMO). A suitable 3D model of the DEMO reactor with HCPB blanket modules, as routinely used for blanket design c...

  17. Neutronic analyses of design issues affecting the tritium breeding performance in different DEMO blanket concepts

    International Nuclear Information System (INIS)

    Pereslavtsev, Pavel; Bachmann, Christian; Fischer, Ulrich

    2016-01-01

    Highlights: • Realistic 3D MCNP model based on the CAD engineering model of DEMO. • Automated procedure for the generation and arrangement of the blanket modules for different DEMO concepts: HCPB, HCLL, WCLL, DCLL. • Several parameters affecting tritium breeding ratio (TBR) were investigated. • A set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts. - Abstract: Neutronic analyses were performed to assess systematically the tritium breeding ratio (TBR) variations in the DEMO for the different blanket concepts HCPB, HCLL, WCLL and DCLL DEMOs due to modifications of the blanket configurations. A dedicated automated procedure was developed to fill the breeding modules in the common generic model in correspondence to the different concepts. The TBR calculations were carried out using the MCNP5 Monte Carlo code. The following parameters affecting the global TBR were investigated: TBR poloidal distribution, radial breeder zone depth, "6Li enrichment, steel content in the breeder modules, poloidal segmentation of the breeder blanket volume, size of gaps between blankets, thickness of the first wall and of the tungsten armour. Based on the results a set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts with the goal to achieve the required tritium breeding performance in DEMO.

  18. Neutronic analyses of design issues affecting the tritium breeding performance in different DEMO blanket concepts

    Energy Technology Data Exchange (ETDEWEB)

    Pereslavtsev, Pavel, E-mail: pavel.pereslavtsev@kit.edu [Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, Christian [EUROfusion – Programme Management Unit, Boltzmannstrasse 2, 85748 Garching (Germany); Fischer, Ulrich [Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    Highlights: • Realistic 3D MCNP model based on the CAD engineering model of DEMO. • Automated procedure for the generation and arrangement of the blanket modules for different DEMO concepts: HCPB, HCLL, WCLL, DCLL. • Several parameters affecting tritium breeding ratio (TBR) were investigated. • A set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts. - Abstract: Neutronic analyses were performed to assess systematically the tritium breeding ratio (TBR) variations in the DEMO for the different blanket concepts HCPB, HCLL, WCLL and DCLL DEMOs due to modifications of the blanket configurations. A dedicated automated procedure was developed to fill the breeding modules in the common generic model in correspondence to the different concepts. The TBR calculations were carried out using the MCNP5 Monte Carlo code. The following parameters affecting the global TBR were investigated: TBR poloidal distribution, radial breeder zone depth, {sup 6}Li enrichment, steel content in the breeder modules, poloidal segmentation of the breeder blanket volume, size of gaps between blankets, thickness of the first wall and of the tungsten armour. Based on the results a set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts with the goal to achieve the required tritium breeding performance in DEMO.

  19. Analysis of the WCLL European demo blanket concept in terms of activation and decay heat after exposure to neutron irradiation

    OpenAIRE

    Stankunas Gediminas; Tidikas Andrius

    2017-01-01

    This comparative paper describes the activation and decay heat calculations for water-cooled lithium-lead performed part of the EURO fusion WPSAE programme and specifications in comparison to other European DEMO blanket concepts on the basis of using a three-dimensional neutronics calculation model. Results are provided for a range of decay times of interest for maintenance activities, safety and waste management assessments. The study revealed that water-c...

  20. Inclusion and difusion studies of D in fusion breeding blanket candidate materials

    Energy Technology Data Exchange (ETDEWEB)

    Fan, L.

    2015-07-01

    Deuterium-Tritium (D-T) reaction is the most practical fusion reaction on the way to harness fusion energy. As tritium presents trace quantities on Earth [1], tritium fuel is essential to be generated simultaneously with the D-T reaction in a commerical fusion power plant. Tritium can be obtained in the lithium contained breeding blanket as a transmutation product of nuclear reaction 6Li (n, a)T. Li2T iO3 is considered to be one promising candidate solid tritium breeder material, due to its high lithium density, low activation, compatiblity with structure materials and high chemical stability. The tritium generated in Li2T iO3 breeding blanket needs to be collected and recycled back to the fusion reaction. Therefore, the study of the diffusion characteristic of breeder material Li2T iO3 is necessary to determine tritium mobility and tritium extraction efficiency. In order to study tritium release mechanism of Li2T iO3 breeding material in a fusion power plant environment, a fusion like neutron spectrum is essential while it is now not availble in any laboratory. One alternative is using ion accelerator or implantor to get energetic hydrogenic (H,D,T) ions impacting on breeding material, to simulate the tritium distribution situation. Because of the radioactive property of tritium which will complicate processing procedure, another isotope of hydrogen Deuterium is actually used to be studied. The defect structure in Li2T iO3, due to reactor exposure to fusion generated particles and ? ray irradiation, is achieved by energetic Ti ions. SRIM program is implemented to simulate the D ion or Ti ion distributions after bombarding, as well as the defects. X-ray diffraction technique helps to identify phase compositions. Transmission electron microscopy technique is used to observe the microstructures (Author)

  1. Prospects of the aqueous self-cooled blanket concept for NET

    International Nuclear Information System (INIS)

    Snykers, M.; Bruggeman, A.; Bogaerts, W.F.; Embrechts, M.J.; Steiner, D.; Daenner, W.

    1989-01-01

    A low-technology Aqueous Self-Cooled Blanket (ASCB) concept has been proposed for the Next European Torus (NET). This concept relies on structural material and cooling water, with small amounts of lithium compounds for tritium production. Following preliminary investigations, LiOH, LiNO 3 , LiNO 2 and Li 2 SO 4 are currently under consideration as tritium breeding materials in solution. The concept may benefit from the proven technologies from the PWRs and from the CANDU tritium extraction systems. It combines good shielding and breeding capabilities. It would serve as a reliable environment for experimenting with several DEMOnstration reactor-relevant blanket modules in NET. Since net tritium breeding is not a design requirement for NET, sufficient tritium breeding can be obtained without the application of external neutron multipliers if enrichment in 6 Li is utilized. For a DEMOnstration reactor ASCB-based blanket, neutron multipliers have to be incorporated and temperature and pressure have to be increased. Radiolysis and corrosion aspects are of particular concern and need further investigation. (orig.)

  2. Neutronic investigations on the application of lithium aluminates in the tritium breeding blanket of future fusion reactors

    International Nuclear Information System (INIS)

    Mohsin, A.

    1981-02-01

    A survey is given about the state of development work at the blanket. It shows that present designs aim at a fusion reactor with low tritium inventory. This aim can be achieved with a solid blanket. In this paper this concept is described and the selection of appropriate materials for the solid blanket is discussed. The lithium aluminates turned out to be the most suitable materials. Comparing the different lithium aluminates the compounds Li 5 AlO 4 and LiAlO 2 proved to be the most favourable. The improvement of the breeding ratio when using lead as neutron multiplier was investigated. Employing, for example, a lead zone of 15 cm thickness in front of a 60 cm thick breeding zone, the tritium breeding ratio is raised to 1.65 for Li 5 Al 4 and to 1.48 for LiAlO 2 - The originally higher breeding ratio of the Li 5 AlO 4 in contrary to the LiAlO 2 is compensated hereby. By this LiAlO 2 becomes a very interesting material for a solid blanket since it furthermore exhibits a higher melting point and higher phase transition temperature. For experimental check of the nuclear data of this material and the computational techniques used, a test model was designed and built. This blanket model was used for measuring the space-dependent tritium production rate, which could be compared to corresponding computations. The assembly was made of a lead zone as neutron multiplier, LiAlO 2 as breeding material, and polyethylene as neutron reflector. (orig.) [de

  3. Magnetoconvection in HCLL blankets

    International Nuclear Information System (INIS)

    Mistrangelo, C.; Buehler, L.

    2014-01-01

    In the present work we consider magneto-convective flows in one of the proposed European liquid metal blankets that will be tested in the experimental fusion reactor ITER. Here the PbLi alloy is used as breeder material and helium as coolant. In order to finalize the design of the helium cooled lead lithium (HCLL) blanket, studies are still required to fully understand the behavior of the electrically conducting breeder under the influence of the intense magnetic field that confines the fusion plasma and in case of non-uniform thermal conditions. Liquid metal HCLL blanket flows are expected to be mainly driven by buoyancy forces caused by non-isothermal operating conditions due to neutron volumetric heating and cooling of walls, since only a weak forced ow is foreseen for tritium extraction in external ancillary systems. Buoyancy can therefore become very important and modify the velocity distribution and related heat transfer performance of the blanket. The present numerical study aims at clarifying the influence of electromagnetic and thermal coupling of neighboring fluid domains on magneto-convective flows in geometries relevant for the HCLL blanket concept. According to the last design review two internal cooling plates subdivide the fluid domain into three slender flow regions, which are thermally and electrically coupled through common walls. First a uniform volumetric heat source is considered to identify the basic convective patterns that establish in the liquid metal. Results are then compared with those obtained by applying a realistic radial distribution of the power density as obtained from a neutronic analysis. Velocity and temperature distributions are discussed for various volumetric heat sources and magnetic field strengths.

  4. Characterization of the effects of continuous salt processing on the performance of molten salt fusion breeder blankets

    International Nuclear Information System (INIS)

    Patterson-Hine, F.A.

    1984-05-01

    Several continuous salt processing options are available for use in molten salt fusion breeder blanket designs. The effects of processing on blanket performance have been assessed for three levels of processing and various equilibrium uranium concentrations in the salt. A one-dimensional model of the blanket was used in the neutronics analysis which incorporated transport calculations with time-dependent isotope generation and depletion calculations. The level of salt processing was found to have little effect on the behavior of the blanket during reactor operation; however, significant effects were observed during the decay period after reactor shutdown

  5. Material Issues of Blanket Systems for Fusion Reactors - Compatibility with Cooling Water -

    Science.gov (United States)

    Miwa, Yukio; Tsukada, Takashi; Jitsukawa, Shiro

    Environmental assisted cracking (EAC) is one of the material issues for the reactor core components of light water power reactors(LWRs). Much experience and knowledge have been obtained about the EAC in the LWR field. They will be useful to prevent the EAC of water-cooled blanket systems of fusion reactors. For the austenitic stainless steels and the reduced-activation ferritic/martensitic steels, they clarifies that the EAC in a water-cooled blanket does not seem to be acritical issue. However, some uncertainties about influences on water temperatures, water chemistries and stress conditions may affect on the EAC. Considerations and further investigations elucidating the uncertainties are discussed.

  6. Recent developments in engineering and technology concepts for prospective tokamak fusion reactors

    International Nuclear Information System (INIS)

    Ford, G.W.K.

    1987-01-01

    The tokamak has become the most developed magnetic fusion system and it appears likely that break-even and possibly ignition will first be demonstrated in existing machines of this type. Yet larger tokamaks could also demonstrate the essential technologies for the production of useful power. World-wide, well over a hundred tritium-breeder/heat-removal blanket concepts have been devised and preliminary engineering design studies undertaken, but the effort deployed on breeding and power recovery systems has been very small compared with that assigned to plasma research and development. The European Communities' NET (Next European Torus) project may offer an opportunity to redress this imbalance. The NET pre-design stage now in progress for some three years has selected many of the best features of plasma and nuclear design from the world's total efforts in these fields, and the NET concept is described in this paper as exemplifying where magnetic fusion power reactor technology stands today. It is concluded that although there are numerous more advanced types of magnetic confinement fusion reactor at early stages of their physics development, the tokamak offers the best opportunity for the early demonstration of fusion power

  7. Two-dimensional cross-section sensitivity and uncertainty analysis for fusion reactor blankets

    International Nuclear Information System (INIS)

    Embrechts, M.J.

    1982-02-01

    A two-dimensional sensitivity and uncertainty analysis for the heating of the TF coil for the FED (fusion engineering device) blanket was performed. The uncertainties calculated are of the same order of magnitude as those resulting from a one-dimensional analysis. The largest uncertainties were caused by the cross section uncertainties for chromium

  8. Neutronic performance issues of the breeding blanket options for the European DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U., E-mail: ulrich.fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, C. [EUROfusion—Programme Management Unit, Boltzmannstr. 2, 85748 Garching (Germany); Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, SERMA, LPEC, 91191 Gif-sur-Yvette (France); Moro, F. [ENEA, Dipartimento Fusione e tecnologie per la Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Rome (Italy); Palermo, I. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Pereslavtsev, P. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Villari, R. [ENEA, Dipartimento Fusione e tecnologie per la Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Rome (Italy)

    2016-11-01

    Highlights: • Breeder blanket concepts for DEMO—design features. • Neutronic characteristics of breeder blankets. • Evaluation of Tritium breeding potential. • Evaluation of shielding performance. - Abstract: This paper presents nuclear performance issues of the HCPB, HCLL, DCLL and WCLL breeder blankets, which are under development within the PPPT (Power Plant Physics and Technology) programme of EUROfusion, with the objective to assess the potential and suitability of the blankets for the application to DEMO. The assessment is based on the initial design versions of the blankets developed in 2014. The Tritium breeding potential is considered sufficient for all breeder blankets although the initial design versions of the HCPB, HCLL and DCLL blankets were shown to require further design improvements. Suitable measures have been proposed and proven to be sufficient to achieve the required Tritium Breeding Ratio (TBR) ≥ 1.10. The shielding performance was shown to be sufficient to protect the super-conducting toroidal field coil provided that efficient shielding material mixtures including WC or borated water are utilized. The WCLL blanket does not require the use of such shielding materials due to a very compact blanket support structure/manifold configuration which yet requires design verification. The vacuum vessel can be safely operated over the full anticipated DEMO lifetime of 6 full power years for all blanket concepts considered.

  9. Low cost, high yield IFE reactors: Revisiting Velikhov's vaporizing blankets

    International Nuclear Information System (INIS)

    Logan, B.G.

    1992-01-01

    The performance (efficiency and cost) of IFE reactors using MHD conversion is explored for target blanket shells of various materials vaporized and ionized by high fusion yields (5 to 500 GJ). A magnetized, prestressed reactor chamber concept is modeled together with previously developed models for the Compact Fusion Advanced Rankine II (CFARII) MHD Balance-of-Plant (BoP). Using conservative 1-D neutronics models, high fusion yields (20 to 80 GJ) are found necessary to heat Flibe, lithium, and lead-lithium blankets to MHD plasma temperatures, at initial solid thicknesses sufficient to capture most of the fusion yield. Advanced drivers/targets would need to be developed to achieve a ''Bang per Buck'' figure-of-merit approx-gt 20 to 40 joules yield per driver $ for this scheme to be competitive with these blanket materials. Alternatively, more realistic neutronics models and better materials such as lithium hydride may lower the minimum required yields substantially. The very low CFARII BoP costs (contributing only 3 mills/kWehr to CoE) allows this type of reactor, given sufficient advances that non-driver costs dominate, to ultimately produce electricity at a much lower cost than any current nuclear plant

  10. Modeling of liquid-metal corrosion/deposition in a fusion reactor blanket

    International Nuclear Information System (INIS)

    Malang, S.; Smith, D.L.

    1984-04-01

    A model has been developed for the investigation of the liquid-metal corrosion and the corrosion product transport in a liquid-metal-cooled fusion reactor blanket. The model describes the two-dimensional transport of wall material in the liquid-metal flow and is based on the following assumptions: (1) parallel flow in a straight circular tube; (2) transport of wall material perpendicular to the flow direction by diffusion and turbulent exchange; in flow direction by the flow motion only; (3) magnetic field causes uniform velocity profile with thin boundary layer and suppresses turbulent mass exchange; and (4) liquid metal at the interface is saturated with wall material. A computer code based on this model has been used to analyze the corrosion of ferritic steel by lithium lead and the deposition of wall material in the cooler part of a loop. Three cases have been investigated: (1) ANL forced convection corrosion experiment (without magnetic field); (2) corrosion in the MARS liquid-metal-cooled blanket (with magnetic field); and (3) deposition of wall material in the corrosion product cleanup system of the MARS blanket loop

  11. Thermalhydraulics of flowing particle-bed-type fusion reactor blankets

    International Nuclear Information System (INIS)

    Nietert, R.E.; Abdelk-Khalik, S.I.

    1982-01-01

    An experimental investigation has been conducted to determine the heat transfer characteristics of gravity-flowing particle beds using a special heat transfer loop. Glass microspheres were allowed to flow by gravity at controlled rates through an electrically heated stainless steel tubular test section. Values of the local and average convective heat transfer coefficient as a function of the average bed velocity, particle size and heat flux were determined. Such information is necessary for the design of gravity-flowing particle-bed type fusion reactor-blankets and associated tritium recovery systems. (orig.)

  12. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1985-10-01

    KfK is involved in the European Fusion Programme predominantly in the NET and Fusion Technology part. The following fields of activity are covered: Studies for NET, alternative confinement concepts, and needs and issues of integral testing. Research on structural materials. Development of superconducting magnets. Gyrotron development (part of the Physics Programme). Nuclear technology (breeding materials, blanket design, tritium technology, safety and environmental aspects of fusion, remote maintenance). Reported here are status and results of work under contracts with the CEC within the NET and Technology Programme. The aim of the major part of this R and D work is the support of NET, some areas (e.g. materials, safety and environmental impact, blanket design) have a wider scope and address problems of a demonstration reactor. In the current working period, several new proposals have been elaborated to be implemented into the 85/89 Euratom Fusion Programme. New KfK contributions relate to materials research (dual beam and fast reactor irradiations, ferritic steels), to blanket engineering (MHD-effects) and to safety studies (e.g. magnet safety). (orig./GG)

  13. Extension of the AUS reactor neutronics system for application to fusion blanket neutronics

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1984-03-01

    The AUS modular code scheme for reactor neutronics computations has been extended to apply to fusion blanket neutronics. A new group cross-section library with 200 neutron groups, 37 photon groups and kerma factor data has been generated from ENDF/B-IV. The library includes neutron resonance subgroup parameters and temperature-dependent data for thermal neutron scattering matrices. The validity of the overall calculation system for fusion applications has been checked by comparison with a number of published conceptual design studies

  14. The blanket interface to TSTA

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Finn, P.A.; Grimm, T.L.; Sze, D.K.; Anderson, J.L.; Bartlit, J.R.; Naruse, Y.; Yoshida, H.

    1988-01-01

    The requirements of tritium technology are centered in three main areas, (1) fuel processing, (2) breeder tritium extraction, and (3) tritium containment. The Tritium Systems Test Assembly (TSTA) now in operation at Los Alamos National Laboratory (LANL) is dedicated to developing and demonstrating the tritium technology for fuel processing and containment. TSTA is the only fusion fuel processing facility that can operate in a continuous closed-loop mode. The tritium throughput of TSTA is 1000 g/d. However, TSTA does not have a blanket interface system. The authors have initiated a study to define a Breeder Blanket Interface (BBIO) for TSTA. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. Various methods of tritium recovery from liquid lithium were assessed: yttrium gettering, permeation windows, and molten salt extraction. The authors' evaluation concluded that the best method was molten salt extraction

  15. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-22

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers excellent heat transfer and corrosion properties, and most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. For this reason, over the years numerous blanket concepts have been proposed with the scope of reducing concerns associated with lithium. The European helium cooled pebble bed breeding blanket (HCPB) physically confines lithium within ceramic pebbles. The pebbles reside within a low activation martensitic ferritic steel structure and are cooled by helium. The blanket is composed of the tritium breeding lithium ceramic pebbles and neutron multiplying beryllium pebbles. Other blanket designs utilize lead to lower chemical reactivity; LiPb alone can serve as a breeder, coolant, neutron multiplier, and tritium carrier. Blankets employing LiPb coolants alongside silicon carbide structural components can achieve high plant efficiency, low afterheat, and low operation pressures. This alloy can also be used alongside of helium such as in the dual-coolant lead-lithium concept (DCLL); helium is utilized to cool the first wall and structural components made up of low-activation ferritic steel, whereas lithium-lead (LiPb) acts as a self-cooled breeder in the inner channels of the blanket. The helium-cooled steel and lead-lithium alloy are separated by flow channel inserts (usually made out of silicon carbide) which thermally insulate the self-cooled breeder region from the helium cooled steel walls. This creates a LiPb breeder with a much higher exit temperature than the steel which increases the power cycle efficiency and also lowers the magnetohydrodynamic (MHD) pressure drop [6]. Molten salt blankets with a mixture of lithium, beryllium, and fluorides (FLiBe) offer good tritium breeding

  16. Fusion and technology: An introduction to the physics and technology of magnetic confinment fusion

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1984-01-01

    This book is an introduction covering all aspects of magnetic fusion and magnetic fusion technology. Physical property data relevant to fusion technology and a summary of fusion reactor design parameters are provided. Topics covered include: basic properties; equilibrium and transport confinement concepts; plasma heating; plasma wall interaction; magnetics; energy storage and transfer; interaction of radiation with matter; primary energy conversion and tritium breeding blanket; tritium and vacuum; and Fusion Reactor Design

  17. Neutron streaming analysis of an aqueous self-cooled blanket applied to MARS

    International Nuclear Information System (INIS)

    Varsamis, G.L.; Embrechts, M.J.; Steiner, D.

    1987-01-01

    A novel fusion reactor blanket concept, the Aqueous Self Cooled Blanket concept (ASCB), has recently been proposed. One of the first applications of this concept was to a MARS-like tandem mirror reactor. The design employs spiraling tubes of zircaloy-4 housed in a structural casing made of a vanadium alloy (V-15Cr-5Tl). One potential problem area for this design is the possibility for neutron streaming between the zircaloy tubes. This work examines this potential streaming path using the MCNP Monte Carlo code. The results of the total and the uncollided flux indicate a noticeable streaming effect on the uncollided flux only. An analysis of the energy deposition behind the blanket indicates that this effect is small, and therefore design modifications due to this streaming effect are not anticipated

  18. Applications of the aqueous self-cooled blanket (ASCB) concept to the Next European Torus (NET)

    International Nuclear Information System (INIS)

    Embrechts, M.J.; Bogaerts, W.; Cardella, A.; Chazalon, M.; Danner, W.; Dinner, P.; Libin, B.

    1987-01-01

    The Aqueous Self-Cooled Blanket Concept (ASCB) leads to a low-technology blanket design that relies on just structural material and coolant with small amounts of lithium compound dissolved in the coolant to provide for tritium production. The application of the ASCB concept in NET is being considered as a driver blanket that would operate at low temperature and low pressure and provide a reliable environment for machine operation during the technology phase. Shielding and tritium production are the primary objectives for such a low-technology blanket. Net tritium breeding is not a design requirement per se for a driver blanket for NET. A DEMO relevant ASCB based blanket test module with (local) tritium self-sufficiency and energy recovery as primary objectives might also be tested in NET if future developments confirm their viability

  19. Investigation of aqueous slurries as fusion reactor blankets

    International Nuclear Information System (INIS)

    Schuller, M.J.

    1985-01-01

    Numerical and experimental studies were carried out to assess the feasibility of using an aqueous slurry, with lithium in its solid component, to meet the tritium breeding, cooling, and shielding requirements of a controlled thermonuclear reactor (CTR). The numerical studies were designed to demonstrate the theoretical ability of a conceptual slurry blanket to breed adequate tritium to sustain the CTR. The experimental studies were designed to show that the tritium retention characteristics of likely solid components for the slurry were conducive to adequate tritium recovery without the need for isotopic separation. The numerical portion of this work consisted in part of using ANISN, a one-dimensional finite difference neutron transport code, to model the neutronic performance of the slurry blanket concept. The parameters governing tritium production and retention in a slurry were computed and used to modify the results of the ANISN computer runs. The numerical work demonstrated that the slurry blanket was only marginally capable of breeding sufficient tritium without the aid of a neutron multiplying region. The experimental portion of this work consisted of several neutron irradiation experiments, which were designed to determine the retention abilities of LiF particles

  20. First wall and blanket stresses induced by cyclic fusion core operations

    International Nuclear Information System (INIS)

    Bohachevsky, I.O.; Kostoff, R.N.

    1981-01-01

    An analysis is made of cyclic thermal loads and stresses for the complete range of operating conditions. Two critical components were examined; the solid wall adjacent to the fusion plasma (first wall) and the fuel elements in the high power density region of the blanket. Simple closed form expressions were derived for temperature increases and thermal stresses that may be evaluated conveniently and rapidly and the values compared for different systems

  1. Rotating liquid blanket for a toroidal fusion reator

    International Nuclear Information System (INIS)

    Moir, R.W.

    1987-01-01

    A novel blanket concept is presented for toroidal geometry in which many of the limitations imposed by a first wall are avoided by not having a first wall in the usual sense. The blanket consists of a rapidly rotating, low-vapor-pressure liquid that has a sharp boundary with the vacuum region. Nozzles inject ja continuous layer of cool liquid on the inner surface. The noncentricity of the plasma is maintained so that the plasma scrape-off region intersects the rotating liqid in a localized region. This noncentricity allows sufficient space so that the scrape-off plasma layer will not bombard the nozzles, whch penetrate through the rotating liquid. This liquid ''first wall'' is bombarded by the plasma, resulting in heat deposition, sputtering, and evaporation during the short time before the exposed liquid is covered by fresh, cool liquid from the nozzles. The advantages of this reactor concept appear to be very high wall loadings (speculated to be over 10 MW/m 2 ) and long component lifetime, both crucial economic factors. The nozzles are designed for easy replacement. The reactor's disatvantage is its enormous potential for plasma contamination by impurities. (orig.)

  2. High temperature blankets for non-electrical/electrical applications of fusion reactors: Progress report, July 15, 1983--November 30, 1984

    International Nuclear Information System (INIS)

    Ribe, F.L.; Woodruff, G.L.

    1988-01-01

    We report a continuation of work done in collaboration with the Lawrence Livermore National Laboratory (LLNL) on design studies of the tandem-mirror fusion reactor (TMR) coupled to the General Atomic (GA) sulfur-iodine thermochemical process for producing hydrogen. During this report period the emphasis was on a solid-breeder gas cooled ''cannister'' blanket for TMR-based hydrogen production. This work was integrated with the Department of Energy (DOE), Office of Fusion Energy (OFE) Blanket Comparison and Selection Study, coordinated by the Argonne National Laboratory (ANL). The areas investigated by the two principal investigators and their students were the following: Plasma engineering of the TMR, including the magnets. Neutronics transport support for the synfuel blanket and shield. Completion of studies of the GA sulfur-iodine process. Under subcontract D.S. Rowe of Rowe and Associates worked with both UW and LLNL personnel on Mechanical design and thermal hydraulics of a high temperature, solid breeder blanket. 2 refs., 3 figs

  3. Comparison of different fusion nuclear data libraries using the European INTOR blanket design

    International Nuclear Information System (INIS)

    Pelloni, S.; Stepanek, J.; Dudziak, D.

    1982-12-01

    The European Community International Tokamak Reactor (INTOR-EC) was used to investigate the influence of different cross-section libraries on the tritium breeding ratio. Nucleonic analyses were performed using the discrete-ordinates transport codes ANISN and ONEDANT, and the recently developed Swiss surface-flux code SURCU, for the Li 17 Pb 83 and Li 2 SiO 3 blanket designs. Nuclear data considered were from the DLC-37, VITAMIN-C (DLC-41) and Los Alamos-NJOY fusion libraries. In addition the reaction rates were estimated using the MACKLIB-IV response library. It is shown that very good agreement (within 0.5%) between the breeding ratios obtained using the VITAMIN-C and Los Alamos libraries could be obtained, whereas the corresponding values calculated using VITAMIN-C and MACKLIB-IV data sets collapsed into 25 neutron and 21 gamma groups differ up to 23%. It is found that this large discrepancy is due to the 6 Li(n, α) reaction cross sections in the low energy range between 4 and 0.03 eV. Furthermore, the collapsed DLC-37 library is not adequate for fusion blankets with a soft spectrum. It is important that greater care be given to preparation of broad group cross section sets, especially in the thermal energy region for blankets containing highly moderating materials. (Auth.)

  4. Progress of nuclear fusion research and review on development of fusion reactors

    International Nuclear Information System (INIS)

    1976-01-01

    Set up in October 1971, the ad hoc Committee on Survey of Nuclear Fusion Reactors has worked on overall fusion reactor aspects and definition of the future problems under four working groups of core, nuclear heat, materials and system. The presect volume is intended to provide reference materials in the field of fusion reactor engineering, prepared by members of the committee. Contents are broadly the following: concept of the nuclear fusion reactor, fusion core engineering, fusion reactor blanket engineering, fusion reactor materials engineering, and system problems in development of fusion reactors. (Mori, K.)

  5. JAERI/U.S. collaborative program on fusion blanket neutronics

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Mori, Takamasa; Kosako, Kazuaki; Oyama, Yukio; Nakamura, Tomoo

    1989-10-01

    Phase IIa and IIb experiments of JAERI/U.S. Collaborative Program on Fusion Blanket Neutronics have been performed using the FNS facility at JAERI. The phase IIa experimental systems consist of the Li 2 O test region, the rotating neutron target and the Li 2 CO 3 container. In phase IIb, a beryllium layer is added to the inner wall to investigate a multiplier effect. Measured parameters are source characteristics by a foil activation method and spectrum measurements using both NE-213 and proton recoil counters. The measurements inside the Li 2 O region included tritium production rates, reaction rate by foil activation and neutron spectrum measurements. Analysis for these parameters was performed by using two dimensional discrete ordinate codes DOT3.5 and DOT-DD, and a Monte Carlo code MORSE-DD. The nuclear data used were based on JENDL3/PR1 and PR2. ENDF/B-IV, V and the FNS file were used as activation cross sections. The configurations analysed for the test region were a reference, a beryllium front and a beryllium sandwiched systems in phase IIa, and a reference and a beryllium front with first wall systems in phase IIb. This document describes the results of analysis and comparison between the calculations and the measurements. The prediction accuracy of key parameters in a fusion reactor blanket are examined. The tritium production rates can be well predicted in the reference systems but are fairly underestimated in the system with a beryllium multiplier. Details of experiments and the experimental techniques are described separately in the another report. (author)

  6. Advanced nuclear fuel production by using fission-fusion hybrid reactor

    International Nuclear Information System (INIS)

    Al-Kusayer, T.A.; Sahin, S.; Abdulraoof, M.

    1993-01-01

    Efforts are made at the College of Engineering, King Saud University, Riyadh to lay out the main structure of a prototype experimental fusion and fusion-fission (hybrid) reactor blanket in cylindrical geometry. The geometry is consistent with most of the current fusion and hybrid reactor design concepts in respect of the neutronic considerations. Characteristics of the fusion chamber, fusion neutrons and the blanket are provided. The studies have further shown that 1 GWe fission-fusion reactor can produce up to 957 kg/year which is enough to fuel five light water reactors of comparable power. Fuel production can be increased further. 29 refs

  7. Status of EC solid breeder blanket designs and R and D for demo fusion reactors

    International Nuclear Information System (INIS)

    Proust, E.; Anzidei, L.; Moons, F.

    1994-01-01

    Within the European Community Fusion Technology Program two solid breeder blankets for a DEMO reactor are being developed. The two blankets have various features in common: helium as coolant and as tritium purge gas, the martensitic steel MANET as structural material and beryllium as neutron multiplier. The configurations of the two blankets are however different: in the B.I.T. (Breeder Inside Tube) concept the breeder materials are LiAlO 2 or Li 2 ZrO 3 in the form of annular pellets contained in tubes surrounded by beryllium blocks, the coolant helium being outside the tubes, whereas in the B.O.T. (Breeder out of Tube) the breeder and multiplier material are Li 4 SiO 4 and beryllium pebbles forming a mixed bed placed outside the tubes containing the coolant helium. The main critical issues for both blankets are the behavior of the breeder ceramics and of beryllium under irradiation and the tritium control. Other issues are the low temperature irradiation induced embrittlement of MANET, the mechanical effects caused by major plasma disruptions, and safety and reliability. The R and D work concentrate on these issues. The development of martensitic steels including MANET is part of a separate program. Breeder ceramics and beryllium irradiations have been so far performed for conditions which do not cover the peak values injected in the DEMO blankets. Further irradiations in thermal reactors and in fast reactors, especially for beryllium, are required. An effective tritium control requires the development of permeation barriers and/or of methods of oxidation of the tritium in the main helium cooling systems. First promising results have been obtained also in field of mechanical effects from plasma disruptions and safety and reliability, however further work is required in the reliability field and to validate the codes for the calculations of the plasma disruption effects. (authors). 8 figs., 2 tabs., 53 refs

  8. Hydrogen production in early generation fusion power plant and its socio-economic implication

    International Nuclear Information System (INIS)

    Konishi, S.; Yamamoto, Y.

    2007-01-01

    Full text: This paper describes technical possibility of high temperature blanket for the early generation of fusion power plant and its application to hydrogen production. Its anticipated implication and strategy from the socio-economic aspects will be also discussed. Material and energy balances, such as fuel supply and delivery of product energy from fusion plants, as well as waste discharge and accident scenario that lead to environmental impact, are characterized by blanket concepts. Thus blankets are considered to dominate the feature of fusion energy that should respond to the requirements of the sponsors, i.e., public and future market. Fusion blanket concept based on the combinations of LiPb and SiC materials are regarded as a candidate for ITER/TBM, and at the same time, applied in various DEMO designs encompassing high temperature output. Recent developments of SiC-LiPb blanket in Japan, EU, US or China suggests staged development paths starting from TBMs and targeting high temperature blanket and efficient energy output from early generation plants. These strategies are strongly affected by the views of these parties on fusion energy, from the aspects of socio-economics. Hydrogen production process with the high temperature blanket is one of the most important issues, because temperature range much higher than is possible with current or near future fission plants are needed, suggesting market possibility different from that of fission. Fuel cycles, particularly lithium supply and TBR control will be also important. Self-sustained fusion fuel cycle requires technical capability to maintain the lithium contents. Liquid blanket has an advantage in continuous and real-time control TBR in a plant, but large amount of lithium-6 and initial tritium supply remains as issues. As for the environmental effect, normal operation release, assumed accidental scenario, and rad-waste will be the key issue to dominate social acceptance of fusion. (author)

  9. Hydrogen production in early generation fusion power plant and its socio-economic implication

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Yamamoto, Yasushi

    2008-01-01

    This paper describes technical possibility of high temperature blanket for the early generation of fusion power plant and its application to hydrogen production. Its anticipated implication and strategy from the socio-economic aspects will be also discussed. Material and energy balances, such as fuel supply and delivery of product energy from fusion plants, as well as waste discharge and accident scenario that lead to environmental impact, are characterized by blanket concepts. Thus blankets are considered to dominate the feature of fusion energy that should respond to the requirements of the sponsors, i.e., public and future market. Fusion blanket concept based on the combinations of LiPb and SiC materials are regarded as a candidate for ITER/TBM, and at the same time, applied in various DEMO designs encompassing high temperature output. Recent developments of SiC-LiPb blanket in Japan, EU, US or China suggests staged development paths starting from TBMs and targeting high temperature blanket and efficient energy output from early generation plants. These strategies are strongly affected by the views of these parties on fusion energy, from the aspects of socio-economics. Hydrogen production process with the high temperature blanket is one of the most important issues, because temperature range much higher than is possible with current or near future fission plants are needed, suggesting market possibility different from that of fission. Fuel cycles, particularly lithium supply and TBR control will be also important. Self-sustained fusion fuel cycle requires technical capability to maintain the lithium contents. Liquid blanket has an advantage in continuous and real-time control TBR in a plant, but large amount of lithium-6 and initial tritium supply remains as issues. As for the environmental effect, normal operation release, assumed accidental scenario, and rad-waste will be the key issue to dominate social acceptance of fusion. (author)

  10. Target/blanket conceptual design for the Los Alamos ATW concept

    International Nuclear Information System (INIS)

    Ames, K.; Cappiello, M.; Ireland, J.; Sapir, J.; Farnum, G.

    1992-01-01

    The Los Alamos Accelerator Transmutation of Waste (ATW) concept has many potential applications that include defense waste transmutation, defense material production (i.e., tritium and 238 Pu), and the transmutation of hazardous nuclear wastes from commercial nuclear reactors (fission products and actinides). A more advanced long-term Los Alamos effort is investigating the potential of an accelerator- driven system to produce fission energy with a minimal nuclear waste stream. All applications employ a high-energy (800- to 1600-MeV), high-current (25--250 mA) proton linear accelerator as the driver. In this report, we discuss only the target/blanket conceptual design for the commercial nuclear waste application. A conceptual design for the target/blanket of the Los Alamos ATW concept has been presented. The neutronics, mechanical design, and heat transfer have been investigated in some detail for the base-case design. Much more work needs to be done, but at this point it appears that the design is feasible and will approach the design goal of supporting two commercial power reactors with each target/blanket module

  11. The effect of optimal wall loads and blanket technologies on the cost of fusion electricity

    International Nuclear Information System (INIS)

    Knight, P.J.; Ward, D.J.

    2000-01-01

    This paper presents a discussion of trends in fusion economics based on technology, as well as, physics arguments. Based on relatively simple physics considerations, supported by detailed systems code calculations, it is shown that optimal wall loads are not high. The results of systems code calculations, focussing on the economic impact of different blanket technologies, are described. These suggest that the economically favourable thermodynamic efficiencies of some blankets capable of operating at higher temperatures may be counterbalanced by the economic penalties of shorter lifetimes

  12. Fusion materials: Technical evaluation of the technology of vandium alloys for use as blanket structural materials in fusion power systems

    International Nuclear Information System (INIS)

    1993-01-01

    The Committee's evaluation of vanadium alloys as a structural material for fusion reactors was constrained by limited data and time. The design of the International Thermonuclear Experimental Reactor is still in the concept stage, so meaningful design requirements were not available. The data on the effect of environment and irradiation on vanadium alloys were sparse, and interpolation of these data were made to select the V-5Cr-5Ti alloy. With an aggressive, fully funded program it is possible to qualify a vanadium alloy as the principal structural material for the ITER blanket in the available 5 to 8-year window. However, the data base for V-5Cr-5Ti is United and will require an extensive development and test program. Because of the chemical reactivity of vanadium the alloy will be less tolerant of system failures, accidents, and off-normal events than most other candidate blanket structural materials and will require more careful handling during fabrication of hardware. Because of the cost of the material more stringent requirements on processes, and minimal historical worlding experience, it will cost an order of magnitude to qualify a vanadium alloy for ITER blanket structures than other candidate materials. The use of vanadium is difficult and uncertain; therefore, other options should be explored more thoroughly before a final selection of vanadium is confirmed. The Committee views the risk as being too high to rely solely on vanadium alloys. In viewing the state and nature of the design of the ITER blanket as presented to the Committee, h is obvious that there is a need to move toward integrating fabrication, welding, and materials engineers into the ITER design team. If the vanadium allay option is to be pursued, a large program needs to be started immediately. The commitment of funding and other resources needs to be firm and consistent with a realistic program plan

  13. Liquid metal magnetohydrodynamic flows in manifolds of dual coolant lead lithium blankets

    Energy Technology Data Exchange (ETDEWEB)

    Mistrangelo, C., E-mail: chiara.mistrangelo@kit.edu; Bühler, L.

    2014-10-15

    Highlights: • MHD flows in model geometries of DCLL blanket manifolds. • Study of velocity, pressure distributions and flow partitioning in parallel ducts. • Flow partitioning affected by 3D MHD pressure drop and velocity distribution in the expanding zone. • Reduced pressure drop in a continuous expansion compared to a sudden expansion. - Abstract: An attractive blanket concept for a fusion reactor is the dual coolant lead lithium (DCLL) blanket where reduced activation steel is used as structural material and a lead lithium alloy serves both to produce tritium and to remove the heat in the breeder zone. Helium is employed to cool the first wall and the blanket structure. Some critical issues for the feasibility of this blanket concept are related to complex induced electric currents and 3D magnetohydrodynamic (MHD) phenomena that occur in distributing and collecting liquid metal manifolds. They can result in large pressure drop and undesirable flow imbalance in parallel poloidal ducts forming blanket modules. In the present paper liquid metal MHD flows are studied for different design options of a DCLL blanket manifold with the aim of identifying possible sources of flow imbalance and to predict velocity and pressure distributions.

  14. Test module in NET for a self-cooled liquid metal blanket concept

    International Nuclear Information System (INIS)

    Malang, S.; Arheidt, K.; Fischer, U.

    1989-01-01

    The application of a self-cooled liquid metal blanket concept to the condition of a DEMO-reactor and its testing in NET is described. The neutronics analysis shows that tritium self-sufficiency can be achieved without beryllium multiplier if breeding blankets are arranged at both outboard and inboard side of the torus or, using beryllium as multiplier, with outboard breeding only. First estimates indicate that it should be possible to test all relevant features of the concept in one of the horizontal plug positions of NET. (author). 6 refs.; 7 figs.; 1 tab

  15. Thermal Hydraulic Analysis of K-DEMO Single Blanket Module for Preliminary Accident Analysis using MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Bo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    To develop the Korean fusion commercial reactor, preliminary design concept for K-DEMO (Korean fusion demonstration reactor) has been announced by NFRI (National Fusion Research Institute). This pre-conceptual study of K-DEMO has been introduced to identify technical details of a fusion power plant for the future commercialization of fusion reactor in Korea. Before this consideration, to build the K-DEMO, accident analysis is essential. Since the Fukushima accident, which is severe accident from unexpected disaster, safety analysis of nuclear power plant has become important. The safety analysis of both fission and fusion reactors is deemed crucial in demonstrating the low radiological effect of these reactors on the environment, during severe accidents. A risk analysis of K-DEMO should be performed, as a prerequisite for the construction of a fusion reactor. In this research, thermal-hydraulic analysis of single blanket module of K-DEMO is conducted for preliminary accident analysis for K-DEMO. Further study about effect of flow distributer is conducted. The normal K-DEMO operation condition is applied to the boundary condition and simulated to verify the material temperature limit using MELCOR. MELCOR is fully integrated, relatively fast-running code developed by Sandia National Laboratories. MELCOR had been used for Light Water Reactors and fusion reactor version of MELCOR was developed for ITER accident analysis. This study shows the result of thermal-hydraulic simulation of single blanket module with MELCOR which is severe accident code for nuclear fusion safety analysis. The difference of mass flow rate for each coolant channel with or without flow distributer is presented. With flow distributer, advantage of broadening temperature gradient in the K-DEMO blanket module and increase mass flow toward first wall is obtained. This can enhance the safety of K-DEMO blanket module. Most 13 .deg. C temperature difference in blanket module is obtained.

  16. Modeling and experiments on tritium permeation in fusion reactor blankets

    Science.gov (United States)

    Holland, D. F.; Longhurst, G. R.

    The determination of tritium loss from helium-cooled fusion breeding blankets are discussed. The issues are: (1) applicability of present models to permeation at low tritium pressures; (2) effectiveness of oxide layers in reducing permeation; (3) effectiveness of hydrogen addition as a means to lower tritium permeation; and (4) effectiveness of conversion to tritiated water and subsequent trapping to reduce permeation. Theoretical models applicable to these issues are discussed, and results of experiments in two areas are presented; permeation of mixtures of hydrogen isotopes and conversion to tritiated water.

  17. Modeling and experiments on tritium permeation in fusion reactor blankets

    International Nuclear Information System (INIS)

    Holland, D.F.; Longhurst, G.R.

    1985-01-01

    Issues are discussed that are critical in determining tritium loss from helium-cooled fusion breeding blankets. These issues are: (a) applicability of present models to permeation at low tritium pressures, (b) effectiveness of oxide layers in reducing permeation, (c) effectiveness of hydrogen addition as a means to lower tritium permeation, and (d) effectiveness of conversion to tritiated water and subsequent trapping as a means to reduce permeation. The paper discusses theoretical models applicable to these issues, and presents results of experiments in two areas: permeation of mixtures of hydrogen isotopes and conversion to tritiated water

  18. Achievements of element technology development for breeding blanket

    International Nuclear Information System (INIS)

    Enoeda, Mikio

    2005-03-01

    Japan Atomic Energy Research Institute (JAERI) has been performing the development of breeding blanket for fusion power plant, as a leading institute of the development of solid breeder blankets, according to the long-term R and D program of the blanket development established by the Fusion Council of Japan in 1999. This report is an overview of development plan, achievements of element technology development and future prospect and plan of the development of the solid breeding blanket in JAERI. In this report, the mission of the blanket development activity in JAERI, key issues and roadmap of the blanket development have been clarified. Then, achievements of the element technology development were summarized and showed that the development has progressed to enter the engineering testing phase. The specific development target and plan were clarified with bright prospect. Realization of the engineering test phase R and D and completion of ITER test blanket module testing program, with universities/NIFS cooperation, are most important steps in the development of breeding blanket of fusion power demonstration plant. (author)

  19. The current status of fusion reactor blanket thermodynamics

    International Nuclear Information System (INIS)

    Veleckis, E.; Yonco, R.M.; Maroni, V.A.

    1980-01-01

    The available thermodynamic information is reviewed for three categories of materials that meet essential criteria for use as breeding blankets in D-T fuelled fusion reactors: liquid lithium, solid lithium alloys, and lithium-containing ceramics. The leading candidate, liquid lithium, which also has potential for use as a coolant, has been studied more extensively than have the solid alloys or ceramics. Recent studies of liquid lithium have concentrated on its sorption characteristics for hydrogen isotopes and its interaction with common impurity elements. Hydrogen isotope sorption data (P-C-T relations, activity coefficients, Sieverts' constants, plateau pressures, isotope effects, free energies of formation, phase boundaries, etc.) are presented in a tabular form that can be conveniently used to extract thermodynamic information for the α-phases of the Li-LiH, Li-LiD and Li-LiT systems and to construct complete phase diagrams. Recent solubility data for Li 3 N, Li 2 O, and Li 2 C 2 in liquid lithium are discussed with emphasis on the prospects for removing these species by cold-trapping methods. Current studies on the sorption of hydrogen in solid lithium alloys (e.g. Li-Al and Li-Pb), made using a new technique (the hydrogen titration method), have shown that these alloys should lead to smaller blanket-tritium inventories than are attainable with liquid lithium and that the P-C-T relationships for hydrogen in Li-M alloys can be estimated from lithium activity data for these alloys. There is essentially no refined thermodynamic information on the prospective ceramic blanket materials. The kinetics of tritium release from these materials is briefly discussed. Research areas are pointed out where additional thermodynamic information is needed for all three material categories. (author)

  20. Magnetohydrodynamic research in fusion blanket engineering and metallurgical processing

    International Nuclear Information System (INIS)

    Tokuhiro, A.

    1991-11-01

    A review of recent research activities in liquid metal magnetohydrodynamics (LM-MHDs) is presented in this article. Two major reserach areas are discussed. The first topic involves the thermomechanical design issues in a proposed tokamak fusion reactor. The primary concerns are in the magneto-thermal-hydraulic performance of a self-cooled liquid metal blanket. The second topic involves the application of MHD in material processing in the metallurgical and semiconductor industries. The two representative applications are electromagnetic stirring (EMS) of continuously cast steel and the Czochralski (CZ) method of crystal growth in the presence of a magnetic field. (author) 24 figs., 10 tabs., 136 refs

  1. Tritium transport in the water cooled Pb-17Li blanket concept of DEMO

    International Nuclear Information System (INIS)

    Reiter, F.; Tominetti, S.; Perujo, A.

    1992-01-01

    The code TIRP has been used to calculate the time dependence of tritium inventory and tritium permeation into the coolant and into the first wall boxes in the water cooled Pb-17Li blanket concept of DEMO. The calculations have been performed for the martensitic steel MANET and the austenitic steel AISI 316L as blanket structure materials, for water or helium cooling and for convective or no motion of the liquid breeder in the blanket. Tritium inventories are rather low in blankets with MANET structure and higher in those with AISI 316L structure. Tritium permeation rates are too high in both blankets. Further calculations on tritium inventory and permeation are therefore presented for blankets with TiC permeation barriers of 1 μm thickness on various surfaces of the blanket structure and for blankets with any permeation barriers in function of their thickness, tritium diffusivities, tritium surface recombination rates and atomic densities. These last calculations have been performed for a blanket with coatings on the outer surfaces of the blanket and with a tritium residence time of 10 4 s and for a blanket with coatings on both sides of the cooling tubes and stagnant Pb-17Li in the blanket. The second case for a blanket with MANET structure presents a very interesting solution for tritium recovery by permeation into and pumping from the first wall boxes. (orig.)

  2. Safety and environmental impact of the BOT helium cooled solid breeder blanket for DEMO. SEAL subtask 6.2, final report

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Dammel, F.; Gabel, K.

    1996-03-01

    The European Union has been engaged since 1989 in a programme to develop tritium breeding blankets for application in a fusion power reactor. There are four concepts under development, namely two of the solid breeder type and two of the liquid breeder type. At the Forschungszentrum Karlsruhe one blanket concept of each line has been pursued so far with the so-called breeder outside tube (BOT) type representing the solid breeder line. In the BOT concept, Li 4 SiO 4 is used as ceramic breeding material in the form of pebble beds in combination with beryllium pebbles serving as neutron multiplier. Breeder and multiplier materials are arranged in radial-toroidal layers, separated by cooling plates. The coolant is high pressure helium which is circulated in series, at first through the first wall structure and subsequently through the cooling plates. The safety and environmental impact of the BOT blanket concept has been assessed as part of the blanket concept selection exercise, a European concerted action aiming at selecting the two most promising concepts for further development. The topics investigated are: (a) Blanket materials and toxic materials inventory, (b) energy sources for mobilisation, (c) fault tolerance, (d) tritium and activation product release, and (e) waste generation. No insurmountable safety problems have been identified for the BOT concept. The results of the assessment are described in this report. The information collected is also intended to serve as input to the EU 'Safety and Environmental Assessment of Fusion long-term Programme' (SEAL). The unresolved issues pertaining to the BOT blanket which need further investigations in future programmes are outlined herein. (orig.) [de

  3. Phase IIA and IIB experiments of JAERI/U.S.DOE collaborative program on fusion blanket neutronics

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1989-12-01

    Phase IIA and IIB experiments on fusion blanket neutronics has been performed on a basis of JAERI/USDOE collaborative program. In the Phase II experimental series, a D-T neutron source and a test blanket were contained by a lithium-carbonate enclosure to adjust the incident neutron spectrum to the test blanket so as to simulate that of a fusion reactor. First two series of the Phase II, IIA and IIB, focused especially on influences of beryllium configurations for neutron multiplying zone to neutronic parameters. Measured parameters were tritium production rate using Li-glass and NE213 scintillators, and Li-metal foil and Lithium-oxide block with liquid scintillation technique; neutron spectrum using NE213 scintillator and proton recoil proportional counter; reaction rate using foil activation technique. These parameters were compared among six different beryllium configurations of the experimental system. Consistency between different techniques for each measured parameter was also tested among different experimental systems and confirmed to be within experimental errors. This report describes, in detail, experimental conditions, assemblies, equipments and neutron source in Part I. The part II compiles all information required for a calculational analysis of this experiment, e.g., dimensions of the target room, target assembly, experimental assembly, their material densities and numerical data of experimental results. This compilation provides benchmark data to test calculation models and computing code systems used for a nuclear design of a fusion reactor. (author)

  4. Feasibility study of LiF-BeF2 and chloride salts as blanket coolants for fusion power reactors

    International Nuclear Information System (INIS)

    Imamura, Y.

    1977-09-01

    The feasibility of using molten salts, in particular, nonberyllium-bearing chloride salts, as blanket coolants for Tokamak fusion reactors has been examined for the nucleonic and thermal/hydraulic aspects. It is concluded that the chloride salts, i.e., LiCl--KCl, LiCl--PbCl 2 and LiCl--SnCl 2 , can be used as the blanket coolant for a static lithium metal blanket provided that large blanket thickness can be tolerated, along with the use of U-238 for neutron multiplication in the cases of LiCl--KCl or LiCl--SnCl 2 cooled blankets. However, to make the appraisal complete, the tritium recovery and corrosion problems must be examined extensively, based on data not yet at hand. As for LiF--BeF 2 , it is observed that although the salt mixture can be used for a single fluid blanket with satisfactory nuclear performance, careful attention should be paid to the cooling capability

  5. Fusion-driven sub-critical dual-cooled waste transmutation blanket: design and analysis

    International Nuclear Information System (INIS)

    Wang Weihua; Wu Yican; Ke Yan; Kang Zhicheng; Wang Hongyan; Huang Qunying

    2003-01-01

    The Fusion-Driven Sub-critical System (FDS) is one of the Chinese programs to be further developed for fusion application. Its Dual-cooled Waste Transmutation Blanket (DWTB), as one the most important part of the FDS is cooled by helium and liquid metal, and have the features of safety, tritium self-sustaining, high efficiency and feasibility. Its conceptual design has been finished. This paper is mainly involved with the basic structure design and thermal-hydraulics analysis of DWTB. On the basis of a three-dimensional (3-D) model of radial-toroidal sections of the segment box, thermal temperature gradients and structure analysis made with a comprehensive finite element method (FEM) have been performed with the computer code ANSYS5.7 and computational fluid dynamic finite element codes. The analysis refers to the steady-state operating condition of an outboard blanket segment. Furthermore, the mechanical loads due to coolant pressure in normal operating conditions have been also taken into account. All the above loads have been combined as an input for a FEM stress analysis and the resulting stress distribution has been evaluated. Finally, the structure design and Pb-17Li flow velocity has been optimized according to the calculations and analysis

  6. Status of the European R and D on beryllium as multiplier material for breeder blankets

    International Nuclear Information System (INIS)

    Moeslang, A.; Boccaccini, L.V.; Rabaglino, E.; Piazza, G.; Cardella, A.; Sannen, L.; Scibetta, M.; Laan, J. van der; Hegeman, J.B.J.W.

    2004-01-01

    Within the international fusion community a variety of breeding blanket concepts are being considered, ranging from more conservative concepts to higher-risk concepts for fusion power reactors. In Europe, the Helium Cooled Pebble Bed (HCPB) blanket is one of the two reference concepts which will also be tested as Test Blanket Module (TBM) in ITER. In addition to the R and D for structural parts of the HCPB blanket, a considerable effort is devoted to the production and qualification of ceramic breeder and neutron multiplier (beryllium or beryllide) pebble beds. Since in the HCPB blanket pebbles made of lithium ceramics are foreseen, a high volume fraction of beryllium as a neutron multiplier to Li-based ceramic of about 4: l is needed. The typical loading conditions for beryllium are, with a neutron wall load of ∼12.5 MWa/m 2 and in ∼5 years lifetime: T min ∼300degC, T max ∼600-900degC, displacement damage ∼80 dpa, peak 4 He production ∼26000 appm and peak 3 H production ∼700 appm at the End-Of-Life. The behaviour of beryllium under irradiation is considered to be a key issue of the HCPB blanket, because of swelling due to helium bubbles and tritium retention. A large R and D programme on beryllium has been implemented in Europe, aimed at characterising and predicting the material behaviour before and under irradiation. An overview on experimental and modelling activities performed during the past 2 years is given with typical results on non-irradiated and irradiated Beryllium materials and pebble beds and the relevance of major results on future beryllium R and D is addressed. (author)

  7. Blanket safety by GEMSAFE methodology

    International Nuclear Information System (INIS)

    Sawada, Tetsuo; Saito, Masaki

    2001-01-01

    General Methodology of Safety Analysis and Evaluation for Fusion Energy Systems (GEMSAFE) has been applied to a number of fusion system designs, such as R-tokamak, Fusion Experimental Reactor (FER), and the International Thermonuclear Experimental Reactor (ITER) designs in the both stages of Conceptual Design Activities (CDA) and Engineering Design Activities (EDA). Though the major objective of GEMSAFE is to reasonably select design basis events (DBEs) it is also useful to elucidate related safety functions as well as requirements to ensure its safety. In this paper, we apply the methodology to fusion systems with future tritium breeding blankets and make clear which points of the system should be of concern from safety ensuring point of view. In this context, we have obtained five DBEs that are related to the blanket system. We have also clarified the safety functions required to prevent accident propagations initiated by those blanket-specific DBEs. The outline of the methodology is also reviewed. (author)

  8. Evaluation of alternative methods of simulating asymmetric bulk heating in fusion reactor blanket/shield components

    International Nuclear Information System (INIS)

    Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Wadkins, R.P.; Wessol, D.E.

    1981-10-01

    As a part of Phase O, Test Program Element-II of the Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program, a study was conducted by EG and G Idaho, Inc., to identify, characterize, and recommend alternative approaches for simulating fusion bulk heating in blanket/shield components. This is the report on that effort. Since the usefulness of any simulation approach depends upon the particular experiment considered, classes of problem types (thermal-hydraulic, thermomechanical, etc.) and material types (structure, solid breeder, etc.) are developed. The evaluation of the various simulation approaches is performed for the various significant combinations of problem class and material class. The simulation approaches considered are discrete-source heating, direct resistance, electromagnetic induction, microwave heating, and nuclear heating. From the evaluations performed for each experiment type, discrete - source heating emerges as a good approach for bulk heating simulation in thermal - hydraulics experiments, and nuclear heating appears to be a good approach in experiments addressing thermomechanics and combined thermal-hydraulic/thermomechanics

  9. Novel blanket design for ICTR's

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.; Conn, R.W.; Wolfer, W.G.; Larsen, E.N.; Sviatoslavsky, I.N.

    1978-01-01

    A novel blanket design for ICTRs is described. This blanket is used in SOLASE, the conceptual laser fusion reactor of the University of Wisconsin. The blanket to be described offers numerous advantages, including low cost, low weight, low induced radioactivity levels, the potential for hands-on maintenance, modular construction, low pressure, ability to decouple first wall and blanket coolant temperatures, adequate breeding, low tritium inventory and leakage, and sufficiently long life

  10. Basic principles of lead and lead-bismuth eutectic application in blanket of fusion reactors

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Pinaev, S.S.; Muraviev, E.V.; Romanov, P.V.

    2005-01-01

    High magnetohydrodynamic pressure drop is an important issue for liquid metal blanket concepts. To decrease magnetohydrodynamic resistance authors propose to form insulating coatings on internal surface of blanket ducts at any moment of fusion reactor exploitation. It may be achieved easily if lead or lead-bismuth eutectic is used and technology of oxidative potential handling is applied. A number of experiments carried out in NNSTU show the availability of the proposed technology. It bases on formation of the insulating coatings that consist of the oxides of components of the structural materials and of the coolant components. In-situ value of the insulating coatings characteristics ρδ is ∼ 10 -5 Ohm·m 2 for steels and 5,0x10 -6 - 5,0x10 -5 Ohm·m 2 for vanadium alloys. Thermal cycling is possible during exploitation of a blanket. The experimental research of the insulating coatings properties during thermal cycling have shown that the coatings formed into the lead and lead-bismuth coolants save there insulating properties. Experience of many years is an undoubted advantage of the lead-bismuth coolant and less of the lead coolant in comparison with lithium. Russian Federation possesses of experience of exploitation of the research and industrial facilities, of experience of creation of the pumps, steamgenerators and equipment with heavy liquid metal coolants. The unique experience of designing, assembling and exploitation of the fission reactors with lead-bismuth coolant is also available. The problem of technology of lead and lead-bismuth coolants for power high temperature radioactive facilities has been solved. Accidents, emergency situations such as leakage of steamgenerators or depressurization of gas system in facilities with lead and lead-bismuth coolants have been explored and suppressed. (author)

  11. Comparison of the leading candidate combinations of blanket materials, thermodynamic cycles, and tritium systems for full scale fusion power plants

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1975-01-01

    The many possible combinations of blanket materials, tritium generation and recovery systems, and power conversion systems were surveyed and a comprehensive set of designs were generated by using a common set of ground rules that include all of the boundary conditions that could be envisioned for a full-scale commercial fusion power plant. Particular attention was given to the effects of blanket temperature on power plant cycle efficiency and economics, the interdependence of the thermodynamic cycle and the tritium recovery system, and to thermal and pressure stresses in the blanket structure. The results indicate that, of the wide variety of systems that have been considered, the most promising employs lithium recirculated in a closed loop within a niobium blanket structure and cooled with boiling potassium or cesium. This approach gives the simplest and lowest cost tritium recovery system, the lowest pressure and thermal stresses, the simplest structure with the lowest probability of a leak, the greatest resistance to damage from a plasma energy dump, and the lowest rate of plasma contamination by either outgassing or sputtering. The only other blanket materials combination that appears fairly likely to give a satisfactory tritium generation and recovery system is a lithium-beryllium fluoride-Incoloy blanket, and even this system involves major uncertainties in the effectiveness, size, and cost of the tritium recovery system. Further, the Li 2 BeF 4 blanket system has the disadvantage that the world reserves of beryllium are too limited to support a full-blown fusion reactor economy, its poor thermal conductivity leads to cooling difficulties and a requirement for a complex structure with intricate cooling passages, and this inherently leads to an expansive blanket with a relatively high probability of leaks. The other blanket materials combinations yield even less attractive systems

  12. Nuclear and thermal analyses of supercritical-water-cooled solid breeder blanket for fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yanagi, Yoshihiko; Sato, Satoshi; Enoeda, Mikio; Hatano, Toshihisa; Kikuchi, Shigeto; Kuroda, Toshimasa; Kosaku, Yasuo; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-11-01

    Within a design study of a fusion DEMO reactor aiming at demonstrating technologies of fusion power plant, supercritical water is applied as a coolant of solid breeder blanket to attain high thermal efficiency. The blanket has multi-layer composed of solid breeder pebbles (Li{sub 2}O) and neutron multiplier pebbles (Be) which are radially separated by cooling panels. The first wall and the breeding region are cooled by supercritical water below and above the pseudo-critical temperature, respectively. Temperature distribution and tritium breeding ratio (TBR) have been estimated by one-dimensional nuclear and thermal calculations. The local TBR as high as 1.47 has been obtained after optimization of temperature distribution in the breeder region under the following conditions: neutron wall loading of 5 MW/m{sup 2}, {sup 6}Li enrichment of 30% and coolant temperature at inlet of breeder region of 380degC. In the case of the higher coolant temperature 430degC of the breeder region the local TBR was reduced to be 1.40. This means that the net TBR higher than 1.0 could be expected with the supercritical-water-cooled blanket, whose temperature distribution in the breeder region would be optimized by following the coolant temperature, and where a coverage of the breeder region is assumed to be 70%. (author)

  13. Analysis of the WCLL European demo blanket concept in terms of activation and decay heat after exposure to neutron irradiation

    Directory of Open Access Journals (Sweden)

    Stankunas Gediminas

    2017-01-01

    Full Text Available This comparative paper describes the activation and decay heat calculations for water-cooled lithium-lead performed part of the EURO fusion WPSAE programme and specifications in comparison to other European DEMO blanket concepts on the basis of using a three-dimensional neutronics calculation model. Results are provided for a range of decay times of interest for maintenance activities, safety and waste management assessments. The study revealed that water-cooled lithium-lead has the highest total decay heat at longer decay times in comparison to the helium-cooled design which has the lowest total decay heat. In addition, major nuclides were identified for water-cooled lithium-lead in W armour, Eurofer, and LiPb. In addition, great attention has been dedicated to the analysis of the decay heat and activity both from the different water-cooled lithium-lead blanket modules for the entire reactor and from each water-cooled lithium-lead blanket module separately. The neutron induced activation and decay heat at shutdown were calculated by the FISPACT code, using the neutron flux densities and spectra that were provided by the preceding MCNP neutron transport calculations.

  14. Concept for a vertical maintenance remote handling system for multi module blanket segments in DEMO

    International Nuclear Information System (INIS)

    Coleman, M.; Sykes, N.; Cooper, D.; Iglesias, D.; Bastow, R.; Loving, A.; Harman, J.

    2014-01-01

    Highlights: •A conceptual architectural model for a vertical maintenance DEMO is presented. •Novel concepts for a set of DEMO remote handling equipment are put forward. •Remote maintenance of a multi module segment blanket is found to be feasible. •The criticality of space in the vertical port is highlighted. -- Abstract: The anticipated high neutron flux, and the consequent damage to plasma-facing components in DEMO, results in the need to regularly replace the tritium breeding and radiation shielding blanket. The current European multi module segment (MMS) blanket concept favours a less invasive small port entry maintenance system over large sector transport concepts, because of the reduced impact on other tokamak systems – particularly the magnetic coils. This paper presents a novel conceptual remote maintenance strategy for a Vertical Maintenance Scheme DEMO, incorporating substantiated designs for an in-vessel mover, to detach and attach the blanket segments, and cask-housed vertical maintenance devices to open and close access ports, cut and join service connections, and extract blanket segments from the vessel. In addition, a conceptual architectural model for DEMO was generated to capture functional and spatial interfaces between the remote maintenance equipment and other systems. Areas of further study are identified in order to comprehensively establish the feasibility of the proposed maintenance system

  15. Cost study of the ESPRESSO blanket for a Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Raffray, A.R.; Hoffman, M.A.; Gaskins, T.

    1986-02-01

    A detailed cost study of the ESPRESSO blanket concept for the Tandem Mirror Fusion Reactor (TMR) has been performed to complement the thermal-hydraulic parametric study and to help narrow down the choice of parameters for the final design. The ESPRESSO blanket consists of a number of structurally independent ring modules. Each ring module is made up of a number of mutually pressure-supporting canisters containing arrays of breeder tubes. Two separate helium coolant flows are used: a main flow to cool the tube bank and a cooler first wall flow

  16. Trade-off study of liquid metal self-cooled blankets

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-01-01

    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of this study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. The primary results of the study are as follows: a) the lithium-lead blanket achieves a higher TBR with a smaller blanket thickness relative to the lithium blanket; b) the lithium blanket generates more energy per fusion neutron relative to the lithium-lead blanket; c) among the possible reflector materials, the carbon reflector produces the highest TBR; d) the high-Z reflector materials (Mo, Cu, W, or steel) generate more energy per fusion neutron and produce smaller TBRs relative to the carbon reflector; e) lithium-6 enrichment is required for the lithium-lead blanket to reduce the total blanket thickness; and f) the energy deposition per fusion neutron reaches a saturation as the blanket thickness, the fraction of the high-Z material in the reflector, or the reflector zone thickness increases (this allows one to design the blanket for a specific TBR without reducing the energy production)

  17. Fusion blankets for high efficiency power cycles

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Usher, J.L.

    1980-04-01

    Definitions are given of 10 generic blanket types and the specific blanket chosen to be analyzed in detail from each of the 10 types. Dimensions, compositions, energy depositions and breeding ratios (where applicable) are presented for each of the 10 designs. Ultimately, based largely on neutronics and thermal hyraulics results, breeding an nonbreeding blanket options are selected for further design analysis and integration with a suitable power conversion subsystem

  18. Self-sustaining nuclear pumped laser-fusion reactor experiment

    International Nuclear Information System (INIS)

    Boody, F.P.; Choi, C.K.; Miley, G.H.

    1977-01-01

    The features of a neutron feedback nuclear pumped (NFNP) laser-fusion reactor equipment were studied with the intention of establishing the feasibility of the concept. The NFNP laser-fusion concept is compared schematically to electrically pumped laser fusion. The study showed that, once a method of energy storage has been demonstrated, a self-sustaining fusion-fission hybrid reactor with a ''blanket multiplication'' of two would be feasible using nuclear pumped Xe F* excimer lasers having efficiencies of 1 to 2 percent and D-D-T pellets with gains of 50 to 100

  19. ITER convertible blanket evaluation

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.

    1995-01-01

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate

  20. Japanese contributions to the Japan-US workshop on blanket design/technology

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Seki, Yasushi; Minato, Akio; Kobayashi, Takeshi; Mori, Seiji; Kawasaki, Hiromitsu; Sumita, Kenji.

    1983-02-01

    This report describes Japanese papers presented at the Japan-US Workshop on Blanket Design/Technology which was held at Argonne National Laboratory, November 10 - 11, 1982. Overview of Fusion Experimental Reactor (FER), JAERI's activities related to first wall/blanket/shield, summary of FER blanket and its technology development issues and summary of activities at universities on fusion reactor blanket engineering are covered. (author)

  1. Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR

    Science.gov (United States)

    Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin

    2016-08-01

    Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)

  2. Present status of irradiation tests on tritium breeding blanket for fusion reactor

    International Nuclear Information System (INIS)

    Futamura, Yoshiaki; Sagawa, Hisashi; Shimakawa, Satoshi; Tsuchiya, Kunihiko; Kuroda, Toshimasa; Kawamura, Hiroshi.

    1994-01-01

    To develop a tritium breeding blanket for a fusion reactor, irradiation tests in fission reactors are indispensable for obtaining data on irradiation effects on materials, and neutronics/thermal characteristics and tritium production/recovery performance of the blanket. Various irradiation tests have been conducted in the world, especially to investigate tritium release characteristics from tritium breeding and neutron multiplier materials, and materials integrity under irradiation. In Japan, VOM experiments at JRR-2 for ceramic breeders and experiments at JMTR for ceramic breeders and beryllium as a neutron multiplier have been performed. Several universities have also investigated ceramic breeders. In the EC, the EXOTIC experiments at HFR in the Netherlands and the SIBELIUS, the LILA, the LISA and the MOZART experiments for ceramic breeders have carried out. In Canada, NRU has been used for the CRITIC experiments. The TRIO experiments at ORR(ORNL), experiments at RTNS-II, FUBR and ATR have been conducted in the USA. The last two are experiments with high neutron fluence aiming at investigating materials integrity under irradiation. The BEATRIX-I and -II experiments have proceeded under international collaboration of Japan, Canada, the EC and the USA. This report shows the present status of these irradiation tests following a review of the blanket design in the ITER CDA(Conceptual Design Activity). (author)

  3. First wall and blanket module safety enhancement by material selection and design decision

    International Nuclear Information System (INIS)

    Merrill, B.J.

    1980-01-01

    A thermal/mechanical study has been performed which illustrates the behavior of a fusion reactor first wall and blanket module during a loss of coolant flow event. The relative safety advantages of various material and design options were determined. A generalized first wall-blanket concept was developed to provide the flexibility to vary the structural material (stainless steel vs titanium), coolant (helium vs water), and breeder material (liquid lithium vs solid lithium aluminate). In addition, independent vs common first wall-blanket cooling and coupled adjacent module cooling design options were included in the study. The comparative analyses were performed using a modified thermal analysis code to handle phase change problems

  4. Peaceful fusion

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Matthias [IANUS, TU Darmstadt (Germany)

    2014-07-01

    Like other intense neutron sources fusion reactors have in principle a potential to be used for military purposes. Although the use of fissile material is usually not considered when thinking of fusion reactors (except in fusion-fission hybrid concepts) quantitative estimates about the possible production potential of future commercial fusion reactor concepts show that significant amounts of weapon grade fissile materials could be produced even with very limited amounts of source materials. In this talk detailed burnup calculations with VESTA and MCMATH using an MCNP model of the PPCS-A will be presented. We compare different irradiation positions and the isotopic vectors of the plutonium bred in different blankets of the reactor wall with the liquid lead-lithium alloy replaced by uranium. The technical, regulatory and policy challenges to manage the proliferation risks of fusion power will be addressed as well. Some of these challenges would benefit if addressed at an early stage of the research and development process. Hence, research on fusion reactor safeguards should start as early as possible and accompany the current research on experimental fusion reactors.

  5. Blanket/first wall challenges and required R&D on the pathway to DEMO

    International Nuclear Information System (INIS)

    Abdou, Mohamed; Morley, Neil B.; Smolentsev, Sergey; Ying, Alice; Malang, Siegfried; Rowcliffe, Arthur; Ulrickson, Mike

    2015-01-01

    The breeding blanket with integrated first wall (FW) is the key nuclear component for power extraction, tritium fuel sustainability, and radiation shielding in fusion reactors. The ITER device will address plasma burn physics and plasma support technology, but it does not have a breeding blanket. Current activities to develop “roadmaps” for realizing fusion power recognize the blanket/FW as one of the principal remaining challenges. Therefore, a central element of the current planning activities is focused on the question: what are the research and major facilities required to develop the blanket/FW to a level which enables the design, construction and successful operation of a fusion DEMO? The principal challenges in the development of the blanket/FW are: (1) the Fusion Nuclear Environment – a multiple-field environment (neutrons, heat/particle fluxes, magnetic field, etc.) with high magnitudes and steep gradients and transients; (2) Nuclear Heating in a large volume with sharp gradients – the nuclear heating drives most blanket phenomena, but accurate simulation of this nuclear heating can be done only in a DT-plasma based facility; and (3) Complex Configuration with blanket/first wall/divertor inside the vacuum vessel – the consequence is low fault tolerance and long repair/replacement time. These blanket/FW development challenges result in critical consequences: (a) non-fusion facilities (laboratory experiments) need to be substantial to simulate multiple fields/multiple effects and must be accompanied by extensive modeling; (b) results from non-fusion facilities will be limited and will not fully resolve key technical issues. A DT-plasma based fusion nuclear science facility (FNSF) is required to perform “multiple effects” and “integrated” experiments in the fusion nuclear environment; and (c) the Reliability/Availability/Maintainability/Inspectability (RAMI) of fusion nuclear components is a major challenge and is one of the primary reasons

  6. Blanket/first wall challenges and required R&D on the pathway to DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, Mohamed, E-mail: abdou@fusion.ucla.edu; Morley, Neil B.; Smolentsev, Sergey; Ying, Alice; Malang, Siegfried; Rowcliffe, Arthur; Ulrickson, Mike

    2015-11-15

    The breeding blanket with integrated first wall (FW) is the key nuclear component for power extraction, tritium fuel sustainability, and radiation shielding in fusion reactors. The ITER device will address plasma burn physics and plasma support technology, but it does not have a breeding blanket. Current activities to develop “roadmaps” for realizing fusion power recognize the blanket/FW as one of the principal remaining challenges. Therefore, a central element of the current planning activities is focused on the question: what are the research and major facilities required to develop the blanket/FW to a level which enables the design, construction and successful operation of a fusion DEMO? The principal challenges in the development of the blanket/FW are: (1) the Fusion Nuclear Environment – a multiple-field environment (neutrons, heat/particle fluxes, magnetic field, etc.) with high magnitudes and steep gradients and transients; (2) Nuclear Heating in a large volume with sharp gradients – the nuclear heating drives most blanket phenomena, but accurate simulation of this nuclear heating can be done only in a DT-plasma based facility; and (3) Complex Configuration with blanket/first wall/divertor inside the vacuum vessel – the consequence is low fault tolerance and long repair/replacement time. These blanket/FW development challenges result in critical consequences: (a) non-fusion facilities (laboratory experiments) need to be substantial to simulate multiple fields/multiple effects and must be accompanied by extensive modeling; (b) results from non-fusion facilities will be limited and will not fully resolve key technical issues. A DT-plasma based fusion nuclear science facility (FNSF) is required to perform “multiple effects” and “integrated” experiments in the fusion nuclear environment; and (c) the Reliability/Availability/Maintainability/Inspectability (RAMI) of fusion nuclear components is a major challenge and is one of the primary reasons

  7. Remote assembly and maintenance of fusion reactors

    International Nuclear Information System (INIS)

    Becquet, M.C.; Farfaletti-Casali, F.

    1991-01-01

    This paper intend to present the state of the art in the field of remote assembly and maintenance, including system analysis design and operation for controlled fusion device such as JET, and the next NET and ITER reactors. The operational constraints of fusion reactors with respect to temperature, radiations dose rates and cumulated doses are considered with the resulting design requirements. Concepts like articulated boom, in-vessel vehicle and blanket handling device are presented. The close relations between computer simulations and experimental validation of those concepts are emphasized to ensure reliability of the operational behavior. Mockups and prototypes in reduced and full scale, as operating machines are described to illustrate the progress in remote operations for fusion reactors. The developments achieved at the Institute for System Engineering and Informatics of the Joint Research Center, in the field of remote blanket maintenance, reliability assessment of RH systems and remote cut and welding of lips joints are considered. (author)

  8. Probabilistic safety assessment of the dual-cooled waste transmutation blanket for the FDS-I

    International Nuclear Information System (INIS)

    Hu, L.; Wu, Y.

    2006-01-01

    The subcritical dual-cooled waste transmutation (DWT) blanket is one of the key components of fusion-driven subcritical system (FDS-I). The probabilistic safety assessment (PSA) can provide valuable information on safety characteristics of FDS-I to give recommendations for the optimization of the blanket concepts and the improvement of the design. Event tree method has been adopted to probabilistically analyze the safety of the DWT blanket for FDS-I using the home-developed PSA code RiskA. The blanket melting frequency has been calculated and compared with the core melting frequencies of PWRs and a fast reactor. Sensitivity analysis of the safety systems has been performed. The results show that the current preliminary design of the FDS-I is very attractive in safety

  9. Design and technology development of solid breeder blanket cooled by supercritical water in Japan

    Science.gov (United States)

    Enoeda, M.; Kosaku, Y.; Hatano, T.; Kuroda, T.; Miki, N.; Honma, T.; Akiba, M.; Konishi, S.; Nakamura, H.; Kawamura, Y.; Sato, S.; Furuya, K.; Asaoka, Y.; Okano, K.

    2003-12-01

    This paper presents results of conceptual design activities and associated R&D of a solid breeder blanket system for demonstration of power generation fusion reactors (DEMO blanket) cooled by supercritical water. The Fusion Council of Japan developed the long-term research and development programme of the blanket in 1999. To make the fusion DEMO reactor more attractive, a higher thermal efficiency of more than 40% was strongly recommended. To meet this requirement, the design of the DEMO fusion reactor was carried out. In conjunction with the reactor design, a new concept of a solid breeder blanket cooled by supercritical water was proposed and design and technology development of a solid breeder blanket cooled by supercritical water was performed. By thermo-mechanical analyses of the first wall, the tresca stress was evaluated to be 428 MPa, which clears the 3Sm value of F82H. By thermal and nuclear analyses of the breeder layers, it was shown that a net TBR of more than 1.05 can be achieved. By thermal analysis of the supercritical water power plant, it was shown that a thermal efficiency of more than 41% is achievable. The design work included design of the coolant flow pattern for blanket modules, module structure design, thermo-mechanical analysis and neutronics analysis of the blanket module, and analyses of the tritium inventory and permeation. Preliminary integration of the design of a solid breeder blanket cooled by supercritical water was achieved in this study. In parallel with the design activities, engineering R&D was conducted covering all necessary issues, such as development of structural materials, tritium breeding materials, and neutron multiplier materials; neutronics experiments and analyses; and development of the blanket module fabrication technology. Upon developing the fabrication technology for the first wall and box structure, a hot isostatic pressing bonded F82H first wall mock-up with embedded rectangular cooling channels was

  10. Fusion fuel cycle: material requirements and potential effluents

    International Nuclear Information System (INIS)

    Teofilo, V.L.; Bickford, W.E.; Long, L.W.; Price, B.A.; Mellinger, P.J.; Willingham, C.E.; Young, J.K.

    1980-10-01

    Environmental effluents that may be associated with the fusion fuel cycle are identified. Existing standards for controlling their release are summarized and anticipated regulatory changes are identified. The ability of existing and planned environmental control technology to limit effluent releases to acceptable levels is evaluated. Reference tokamak fusion system concepts are described and the principal materials required of the associated fuel cycle are analyzed. These materials include the fusion fuels deuterium and tritium; helium, which is used as a coolant for both the blanket and superconducting magnets; lithium and beryllium used in the blanket; and niobium used in the magnets. The chemical and physical processes used to prepare these materials are also described

  11. Fusion fuel cycle: material requirements and potential effluents

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Bickford, W.E.; Long, L.W.; Price, B.A.; Mellinger, P.J.; Willingham, C.E.; Young, J.K.

    1980-10-01

    Environmental effluents that may be associated with the fusion fuel cycle are identified. Existing standards for controlling their release are summarized and anticipated regulatory changes are identified. The ability of existing and planned environmental control technology to limit effluent releases to acceptable levels is evaluated. Reference tokamak fusion system concepts are described and the principal materials required of the associated fuel cycle are analyzed. These materials include the fusion fuels deuterium and tritium; helium, which is used as a coolant for both the blanket and superconducting magnets; lithium and beryllium used in the blanket; and niobium used in the magnets. The chemical and physical processes used to prepare these materials are also described.

  12. Advanced fusion concepts program

    International Nuclear Information System (INIS)

    Dove, W.F.

    1978-01-01

    While the prospects for the eventual development of a tokamak-based fusion reactor appear promising at the present time, the Department of Energy maintains a vigorous program in alternate magnetic fusion concepts. Several of the concepts presently supported include the toroidal reversed field pinch, Tormac, Elmo Bumpy Torus, and various linear options. Recent technical accomplishments and program evaluations indicate that the possibility now exists for undertaking the next development stage, a proof-of-principle experiment, for a few of the most promising alternate concepts

  13. The preliminary thermal-hydraulic design of one superheated steam water cooled blanket concept based on RELAP5 and MELCOR codes - 15147

    International Nuclear Information System (INIS)

    Guo, Y.; Wang, G.; Cheng, Y.; Peng, C.

    2015-01-01

    Water Cooled Blanket (WCB) is very important in the concept design and energy transfer in future fusion power plant. One concept design of WCB is under computational testing. RELAP5 and MELCOR codes, which are mature and often used in nuclear engineering, are selected as simulation tools. The complex inner flow channels and heat sources are simplified according to its thermal-hydraulic characteristics. Then the nodal models for RELAP5 and MELCOR are built for approximating the concept design. The superheated steam scheme is analyzed by two codes separately under different power levels. After some adjustments of the inlet flow resistance coefficients of some flow channels, the reasonable stable conditions can be obtained. The stable fluid and wall temperature distributions and pressure drops are studied. The results of two codes are compared and some advices are given. (authors)

  14. The evolution of US helium-cooled blankets

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Schultz, K.R.; Cheng, E.T.

    1991-01-01

    This paper reviews and compares four helium-cooled fusion reactor blanket designs. These designs represent generic configurations of using helium to cool fusion reactor blankets that were studied over the past 20 years in the United States of America (US). These configurations are the pressurized module design, the pressurized tube design, the solid particulate and gas mixture design, and the nested shell design. Among these four designs, the nested shell design, which was invented for the ARIES study, is the simplest in configuration and has the least number of critical issues. Both metallic and ceramic-composite structural materials can be used for this design. It is believed that the nested shell design can be the most suitable blanket configuration for helium-cooled fusion power and experimental reactors. (orig.)

  15. First Wall, Blanket, Shield Engineering Technology Program

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1982-01-01

    The First Wall/Blanket/Shield Engineering Technology Program sponsored by the Office of Fusion Energy of DOE has the overall objective of providing engineering data that will define performance parameters for nuclear systems in advanced fusion reactors. The program comprises testing and the development of computational tools in four areas: (1) thermomechanical and thermal-hydraulic performance of first-wall component facsimiles with emphasis on surface heat loads; (2) thermomechanical and thermal-hydraulic performance of blanket and shield component facsimiles with emphasis on bulk heating; (3) electromagnetic effects in first wall, blanket, and shield component facsimiles with emphasis on transient field penetration and eddy-current effects; (4) assembly, maintenance and repair with emphasis on remote-handling techniques. This paper will focus on elements 2 and 4 above and, in keeping with the conference participation from both fusion and fission programs, will emphasize potential interfaces between fusion technology and experience in the fission industry

  16. The restructured fusion program and the role of alternative fusion concepts

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1996-01-01

    This testimony to the subcommittee on Energy and the Environment of the U.S. House of Representatives's Committee on Science pushes for about 25% of the fusion budget to go to alternative fusion concepts. These concepts are: low density magnetic confinement, inertial confinement fusion, high density magnetic confinement, and non- thermonuclear and miscellaneous programs. Various aspects of each of these concepts are outlined

  17. Effect of electromagnetic coupling on MHD flow in the manifold of fusion liquid metal blanket

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Meng, Zi; Feng, Jingchao; He, Qingyun

    2014-10-15

    In fusion liquid metal (LM) blanket, magnetohydrodynamics (MHD) effects will dominate the flow patterns and the heat transfer characteristics of the liquid metal flow. Manifold is a key component in LM blanket in charge of distributing or collecting the liquid metal coolant. In this region, the complex three dimensional MHD phenomena will be occurred, and the velocity, pressure and flow rate distributions may be dramatically influenced. One important aspect is the electromagnetic coupling effect resulting from an exchange of electric currents between two neighboring fluid domains that can lead to modifications of flow distribution and pressure drop compared to that in electrical separated channels. Understanding the electromagnetic coupling effect in manifold is necessary to optimize the liquid metal blanket design. In this work, a numerical study was carried out to investigate the effect of electromagnetic coupling on MHD flow in a manifold region. The typical manifold geometry in LM blanket was considered, a rectangular supply duct entering a rectangular expansion area, finally feeding into 3 rectangular parallel channels. This paper investigated the effect of electromagnetic coupling on MHD flow in a manifold region. Different electromagnetic coupling modes with different combinations of electrical conductivity of walls were studied numerically. The flow distribution and pressure drop of these modes have been evaluated.

  18. Materials compatibility considerations for a fusion-fission hybrid reactor design

    International Nuclear Information System (INIS)

    DeVan, J.H.; Tortorelli, P.F.

    1983-01-01

    The Tandem Mirror Hybrid Reactor is a fusion reactor concept that incorporates a fission-suppressed breeding blanket for the production of 233 U to be used in conventional fission power reactors. The present paper reports on compatibility considerations related to the blanket design. These considerations include solid-solid interactions and liquid metal corrosion. Potential problems are discussed relative to the reference blanket operating temperature (490 0 C) and the recycling time of breeding materials (<1 year)

  19. Fusion transmutation of waste: design and analysis of the in-zinerator concept.

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, S. M.; Cipiti, Benjamin B.; Olson, Craig Lee; Guild-Bingham, Avery (Texas A& M University, College Station, TX); Venneri, Francesco (General Atomics, San Diego, CA); Meier, Wayne (LLNL, Livermore, CA); Alajo, A.B. (Texas A& M University, College Station, TX); Johnson, T. R. (Argonne Mational Laboratory, Argonne, IL); El-Guebaly, L. A. (University of Wisconsin, Madison, WI); Youssef, M. E. (University of California, Los Angeles, CA); Young, Michael F.; Drennen, Thomas E. (Hobart & William Smith College, Geneva, NY); Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Morrow, Charles W.; Turgeon, Matthew C.; Wilson, Paul (University of Wisconsin, Madison, WI); Phruksarojanakun, Phiphat (University of Wisconsin, Madison, WI); Grady, Ryan (University of Wisconsin, Madison, WI); Keith, Rodney L.; Smith, James Dean; Cook, Jason T.; Sviatoslavsky, Igor N. (University of Wisconsin, Madison, WI); Willit, J. L. (Argonne Mational Laboratory, Argonne, IL); Cleary, Virginia D.; Kamery, William (Hobart & William Smith College, Geneva, NY); Mehlhorn, Thomas Alan; Rochau, Gary Eugene

    2006-11-01

    Due to increasing concerns over the buildup of long-lived transuranic isotopes in spent nuclear fuel waste, attention has been given in recent years to technologies that can burn up these species. The separation and transmutation of transuranics is part of a solution to decreasing the volume and heat load of nuclear waste significantly to increase the repository capacity. A fusion neutron source can be used for transmutation as an alternative to fast reactor systems. Sandia National Laboratories is investigating the use of a Z-Pinch fusion driver for this application. This report summarizes the initial design and engineering issues of this ''In-Zinerator'' concept. Relatively modest fusion requirements on the order of 20 MW can be used to drive a sub-critical, actinide-bearing, fluid blanket. The fluid fuel eliminates the need for expensive fuel fabrication and allows for continuous refueling and removal of fission products. This reactor has the capability of burning up 1,280 kg of actinides per year while at the same time producing 3,000 MWth. The report discusses the baseline design, engineering issues, modeling results, safety issues, and fuel cycle impact.

  20. Fusion transmutation of waste: design and analysis of the In-Zinerator concept

    International Nuclear Information System (INIS)

    Durbin, S. M.; Cipiti, Benjamin B.; Olson, Craig Lee; Guild-Bingham, Avery; Venneri, Francesco; Meier, Wayne; Alajo, A.B.; Johnson, T. R.; El-Guebaly, L. A.; Youssef, M. E.; Young, Michael F.; Drennen, Thomas E.; Tsvetkov, Pavel Valeryevich; Morrow, Charles W.; Turgeon, Matthew C.; Wilson, Paul; Phruksarojanakun, Phiphat; Grady, Ryan; Keith, Rodney L.; Smith, James Dean; Cook, Jason T.; Sviatoslavsky, Igor N.; Willit, J. L.; Cleary, Virginia D.; Kamery, William; Mehlhorn, Thomas Alan; Rochau, Gary Eugene

    2006-01-01

    Due to increasing concerns over the buildup of long-lived transuranic isotopes in spent nuclear fuel waste, attention has been given in recent years to technologies that can burn up these species. The separation and transmutation of transuranics is part of a solution to decreasing the volume and heat load of nuclear waste significantly to increase the repository capacity. A fusion neutron source can be used for transmutation as an alternative to fast reactor systems. Sandia National Laboratories is investigating the use of a Z-Pinch fusion driver for this application. This report summarizes the initial design and engineering issues of this ''In-Zinerator'' concept. Relatively modest fusion requirements on the order of 20 MW can be used to drive a sub-critical, actinide-bearing, fluid blanket. The fluid fuel eliminates the need for expensive fuel fabrication and allows for continuous refueling and removal of fission products. This reactor has the capability of burning up 1,280 kg of actinides per year while at the same time producing 3,000 MWth. The report discusses the baseline design, engineering issues, modeling results, safety issues, and fuel cycle impact

  1. Reducing beryllium content in mixed bed solid-type breeder blankets

    Energy Technology Data Exchange (ETDEWEB)

    Shimwell, J., E-mail: mail@jshimwell.com [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Lilley, S.; Morgan, L.; Packer, L.; Kovari, M.; Zheng, S. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); McMillan, J. [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2016-11-01

    Highlights: • The ratio of breeder ceramic to neutron multiplier of breeder blankets was varied linearly with depth. • Blankets with varying composition were found to perform better than uniform composition breeder blankets. • It was also possible to reduce the amount of beryllium required by the blanket. - Abstract: Beryllium (Be) is a precious resource with many high value uses, the low energy threshold (n,2n) reaction makes Be an excellent neutron multiplier for use in fusion breeder blankets. Estimates of Be requirements and available resources suggest that this could represent a major supply difficulty for solid-type blanket concepts. Reducing the quantity of Be required by breeder blankets would help to alleviate the problem to some extent. In addition, it is important that the reduction in the Be quantity does not diminish the blanket's performance in key aspects such as the tritium breeding ratio (TBR), energy multiplication and peak nuclear heating. Mixed pebble bed designs allow for the multiplier fraction to be varied throughout the blanket. This neutronics study used MCNP 6 to investigate linear variations of the multiplier fraction in relation to blanket depth, in order to better utilise the important multiplying Be(n,2n) and breeding reactions. Blankets with a uniform multiplier fraction showed little scope for reduction in Be mass. Blankets with varying multiplier fractions were able to simultaneously use 10% less Be, increase the energy amplification by 1%, reduce the peak heating by 7% and maintaining a sufficient TBR when compared to the performance achievable using a uniform composition.

  2. Multiple Module Simulation of Water Cooled Breeding Blankets in K-DEMO Using Thermal-Hydraulic Analysis Code MARS-KS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A preliminary concept for the Korean fusion demonstration reactor (K-DEMO) has been studied by the National Fusion Research Institute (NFRI) based on the National Fusion Roadmap of Korea. The feasibility studies have been performed in order to establish the conceptual design guidelines of the breeding blanket. As a part of the NFRI research, Seoul National University (SNU) is conducting thermal design, evaluation and validation of the water-cooled breeding blanket for the K-DEMO reactor. The purpose of this study is to extend the capability of MARS-KS to the overall blanket system analysis which includes 736 blanket modules in total. The strategy for the multi-module blanket system analysis using MARS-KS is introduced and the analysis result of the 46 blanket modules of single sector was summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for thermal analysis of the conceptual design of the K-DEMO breeding blanket. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering the pressure drop that occurs in each module. For a feasibility test of the proposed methodology, 46 blankets in a sector, which are connected with each other through the common headers for the sector inlet and outlet, were simulated. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation. Because of parallelization using the MPI system, the computational time could be reduced significantly. In future, this methodology will be extended to an efficient simulation of multiple sectors, and further validation for transient simulation will be carried out for more practical applications.

  3. Chemical processing of liquid lithium fusion reactor blankets

    International Nuclear Information System (INIS)

    Weston, J.R.; Calaway, W.F.; Yonco, R.M.; Hines, J.B.; Maroni, V.A.

    1979-01-01

    A 50-gallon-capacity lithium loop constructed mostly from 304L stainless steel has been operated for over 6000 hours at temperatures in the range from 360 to 480 0 C. This facility, the Lithium Processing Test Loop (LPTL), is being used to develop processing and monitoring technology for liquid lithium fusion reactor blankets. Results of tests of a molten-salt extraction method for removing impurities from liquid lithium have yielded remarkably good distribution coefficients for several of the more common nonmetallic elements found in lithium systems. In particular, the equilibrium volumetric distribution coefficients, D/sub v/ (concentration per unit volume of impurity in salt/concentration per unit volume of impurity in lithium), for hydrogen, deuterium, nitrogen and carbon are approx. 3, approx. 4, > 10, approx. 2, respectively. Other studies conducted with a smaller loop system, the Lithium Mini-Test Loop (LMTL), have shown that zirconium getter-trapping can be effectively used to remove selected impurities from flowing lithium

  4. Thermal conductivity of fusion solid breeder materials

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tam, S.W.

    1986-06-01

    Several simple and useful formulae for estimating the thermal conductivity of lithium-containing ceramic tritium breeder materials for fusion reactor blankets are given. These formulae account for the effects of irradiation, as well as solid breeder configuration, i.e., monolith or a packed bed. In the latter case, a coated-sphere concept is found more attractive in incorporating beryllia (a neutron multiplier) into the blanket than a random mixture of solid breeder and beryllia spheres

  5. Conceptual design study of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1986-11-01

    Since 1980 the design study has been conducted at JAERI for the Fusion Experimental Reactor (FER) which has been proposed to be the next machine to JT-60 in the Japanese long term program of fusion reactor development. During two years from 1984 to 1985 FER concept was reviewed and redesigned. This report is the summary of the results obtained in the review and redesign activities in 1984 and 85. In the first year FER concept was discussed again and its frame work was reestablished. According to the new frame work the major reactor components of FER were designed. In the second year the whole plant system design including plant layout plan was conducted as well as the more detailed design analysis of the reactor conponents. The newly established frame for FER design is as follows: 1) Plasma : Self-ignition. 2) Operation scenario : Quasi-steady state operation with long burn pulse. 3) Neutron fluence on the first wall : 0.3 MWY/M 2 . 4) Blanket : Non-tritium breeding blanket with test modules for breeding blanket development. 5) Magnets : Superconducting Magnets. (author)

  6. Fusion blanket high-temperature heat transfer

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  7. Conceptual design of a fast-ignition laser fusion reactor FALCON-D

    International Nuclear Information System (INIS)

    Goto, T.; Ogawa, Y.; Okano, K.; Hiwatari, R.; Asaoka, Y.; Someya, Y.; Sunahara, A.; Johzaki, T.

    2008-10-01

    A new conceptual design of the laser fusion power plant FALCON-D (Fast ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast ignition method can achieve the sufficient fusion gain for a commercial operation (∼100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5 - 6 m radius). 1-D/2-D hydrodynamic simulations showed the possibility of the sufficient gain achievement with a 40 MJ target yield. The design feasibility of the compact dry wall chamber and solid breeder blanket system was shown through the thermomechanical analysis of the dry wall and neutronics analysis of the blanket system. A moderate electric output (∼400 MWe) can be achieved with a high repetition (30 Hz) laser. This dry wall concept not only reduces some difficulties accompanied with a liquid wall but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance time. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R and D issues required for this design are also discussed. (author)

  8. Blanket maintenance by remote means using the cassette blanket approach

    International Nuclear Information System (INIS)

    Werner, R.W.

    1978-01-01

    Induced radioactivity in the blanket and other parts of a fusion reactor close to the plasma zone will dictate remote assembly, disassembly, and maintenance procedures. Time will be of the essence in these procedures. They must be practicable and certain. This paper discusses the reduction of a complicated Tokamak reactor to a simpler assembly via the use of a vacuum building in which to house the reactor and the introduction in this new model of cassette blanket modules. The cassettes significantly simplify remote handling

  9. Convertible shielding to ceramic breeding blanket

    International Nuclear Information System (INIS)

    Furuya, Kazuyuki; Kurasawa, Toshimasa; Sato, Satoshi; Nakahira, Masataka; Togami, Ikuhide; Hashimoto, Toshiyuki; Takatsu, Hideyuki; Kuroda, Toshimasa.

    1995-05-01

    Four concepts have been studied for the ITER convertible blanket: 1)Layered concept 2)BIT(Breeder-Inside-Tube)concept 3)BOT(Breeder-Out of-Tube)concept 4)BOT/mixed concept. All concepts use ceramic breeder and beryllium neutron multiplier, both in the shape of small spherical pebbles, 316SS structure, and H 2 O coolant (inlet/outlet temperatures : 100/150degC, pressure : 2 MPa). During the BPP, only beryllium pebbles (the primary pebble in case of BOT/mixed concept) are filled in the blanket for shielding purpose. Then, before the EPP operation, breeder pebbles will be additionally inserted into the blanket. Among possible conversion methods, wet method by liquid flow seems expecting for high and homogeneous pebble packing. Preliminary 1-D neutronics calculation shows that the BOT/mixed concept has the highest breeding and shielding performance. However, final selection should be done by R and D's and more detail investigation on blanket characteristics and fabricability. Required R and D's are also listed. With these efforts, the convertible blanket can be developed. However, the following should be noted. Though many of above R and D's are also necessary even for non-convertible blanket, R and D's on convertibility will be one of the most difficult parts and need significant efforts. Besides the installation of convertible blanket with required structures and lines for conversion will make the ITER basic machine more complicated. (author)

  10. Fusion Concept Exploration Experiments at PPPL

    International Nuclear Information System (INIS)

    Stewart Zweben; Samuel Cohen; Hantao Ji; Robert Kaita; Richard Majeski; Masaaki Yamada

    1999-01-01

    Small ''concept exploration'' experiments have for many years been an important part of the fusion research program at the Princeton Plasma Physics Laboratory (PPPL). this paper describes some of the present and planned fusion concept exploration experiments at PPPL. These experiments are a University-scale research level, in contrast with the larger fusion devices at PPPL such as the National Spherical Torus Experiment (NSTX) and the Tokamak Fusion Test Reactor (TFTR), which are at ''proof-of-principle'' and ''proof-of-performance'' levels, respectively

  11. Study on the temperature control mechanism of the tritium breeding blanket for CFETR

    Science.gov (United States)

    Liu, Changle; Qiu, Yang; Zhang, Jie; Zhang, Jianzhong; Li, Lei; Yao, Damao; Li, Guoqiang; Gao, Xiang; Wu, Songtao; Wan, Yuanxi

    2017-12-01

    The Chinese fusion engineering testing reactor (CFETR) will demonstrate tritium self- sufficiency using a tritium breeding blanket for the tritium fuel cycle. The temperature control mechanism (TCM) involves the tritium production of the breeding blanket and has an impact on tritium self-sufficiency. In this letter, the CFETR tritium target is addressed according to its missions. TCM research on the neutronics and thermal hydraulics issues for the CFETR blanket is presented. The key concerns regarding the blanket design for tritium production under temperature field control are depicted. A systematic theory on the TCM is established based on a multiplier blanket model. In particular, a closed-loop method is developed for the mechanism with universal function solutions, which is employed in the CFETR blanket design activity for tritium production. A tritium accumulation phenomenon is found close to the coolant in the blanket interior, which has a very important impact on current blanket concepts using water coolant inside the blanket. In addition, an optimal tritium breeding ratio (TBR) method based on the TCM is proposed, combined with thermal hydraulics and finite element technology. Meanwhile, the energy gain factor is adopted to estimate neutron heat deposition, which is a key parameter relating to the blanket TBR calculations, considering the structural factors. This work will benefit breeding blanket engineering for the CFETR reactor in the future.

  12. Thermal analysis of a helium-cooled, tube-bank blanket module for a tandem mirror fusion reactor

    International Nuclear Information System (INIS)

    Werner, R.W.

    1983-01-01

    A blanket module concept for the central cell of a tandem mirror reactor is described which takes advantage of the excellent heat transfer and low pressure drop characteristics of tube banks in cross-flow. The blanket employs solid Li 2 O as the tritium breeding material and helium as the coolant. The lithium oxide is contained in tubes arranged within the submodules as a two-pass, cross-flow heat exchanger. Primarily, the heat transfer and thermal-hydraulic aspects of the blanket design study are described in this paper. In particular, the analytical model used for selection of the best tube-bank design parameters is discussed in some detail

  13. Thermal analysis of a helium-cooled, tube-bank blanket module for a tandem-mirror fusion reactor

    International Nuclear Information System (INIS)

    Werner, R.W.; Hoffman, M.A.; Johnson, G.L.

    1983-01-01

    A blanket module concept for the central cell of a tandem mirror reactor is described which takes advantage of the excellent heat transfer and low pressure drop characteristics of tube banks in cross-flow. The blanket employs solid Li 2 O as the tritium breeding material and helium as the coolant. The lithium oxide is contained in tubes arranged within the submodules as a two-pass, cross-flow heat exchanger. Primarily, the heat transfer and thermal-hydraulic aspects of the blanket design study are described in this paper. In particular, the analytical model used for selection of the best tube-bank design parameters is discussed in some detail

  14. A solid-breeder blanket and power conversion system for the Mirror Advanced Reactor Study (MARS)

    International Nuclear Information System (INIS)

    Bullis, R.; Clarkson, I.

    1983-01-01

    A solid-breeder blanket has been designed for a commercial fusion power reactor based on the tandem mirror concept (MARS). The design utilizes lithium oxide, cooled by helium which powers a conventional steam electric generating cycle. Maintenance and fabricability considerations led to a modular configuration 6 meters long which incorporates two magnets, shield, blanket and first wall. The modules are arranged to form the 150 meter long reactor central cell. Ferritic steel is used for the module primary structure. The lithium oxide is contained in thin-walled vanadium alloy tubes. A tritium breeding ratio of 1.25 and energy multiplication of 1.1 is predicted. The blanket design appears feasible with only a modest advance in current technology

  15. Japanese contributions to ITER testing program of solid breeder blankets for DEMO

    International Nuclear Information System (INIS)

    Kuroda, Toshimasa; Yoshida, Hiroshi; Takatsu, Hideyuki; Maki, Koichi; Mori, Seiji; Kobayashi, Takeshi; Suzuki, Tatsushi; Hirata, Shingo; Miura, Hidenori.

    1991-04-01

    ITER Conceptual Design Activity (CDA), which has been conducted by four parties (Japan, EC, USA and USSR) since May 1988, has been finished on December 1990 with a great achievement of international design work of the integrated fusion experimental reactor. Numerous issues of physics and technology have been clarified for providing a framework of the next phase of ITER (Engineering Design Activity; EDA). Establishment of an ITER testing program, which includes technical test issues of neutronics, solid breeder blankets, liquid breeder blankets, plasma facing components, and materials, has been one of the goals of the CDA. This report describes Japanese proposal for the testing program of DEMO/power reactor blanket development. For two concepts of solid breeder blanket (helium-cooled and water-cooled), identification of technical issues, scheduling of test program, and conceptual design of test modules including required test facility such as cooling and tritium recovery systems have been carried out as the Japanese contribution to the CDA. (author)

  16. ITER shielding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Strebkov, Yu [ENTEK, Moscow (Russian Federation); Avsjannikov, A [ENTEK, Moscow (Russian Federation); Baryshev, M [NIAT, Moscow (Russian Federation); Blinov, Yu [ENTEK, Moscow (Russian Federation); Shatalov, G [KIAE, Moscow (Russian Federation); Vasiliev, N [KIAE, Moscow (Russian Federation); Vinnikov, A [ENTEK, Moscow (Russian Federation); Chernjagin, A [DYNAMICA, Moscow (Russian Federation)

    1995-03-01

    A reference non-breeding blanket is under development now for the ITER Basic Performance Phase for the purpose of high reliability during the first stage of ITER operation. More severe operation modes are expected in this stage with first wall (FW) local heat loads up to 100-300Wcm{sup -2}. Integration of a blanket design with protective and start limiters requires new solutions to achieve high reliability, and possible use of beryllium as a protective material leads to technologies. The rigid shielding blanket concept was developed in Russia to satisfy the above-mentioned requirements. The concept is based on a copper alloy FW, austenitic stainless steel blanket structure, water cooling. Beryllium protection is integrated in the FW design. Fabrication technology and assembly procedure are described in parallel with the equipment used. (orig.).

  17. U.S. technical report for the ITER blanket/shield: A. blanket: Topical report, July 1990--November 1990

    International Nuclear Information System (INIS)

    1995-01-01

    Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li 2 O) and lithium zirconate (Li 2 ZrO 3 ) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequently the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers

  18. ITER blanket designs

    International Nuclear Information System (INIS)

    Gohar, Y.; Parker, R.; Rebut, P.H.

    1995-01-01

    The ITER first wall, blanket, and shield system is being designed to handle 1.5±0.3 GW of fusion power and 3 MWa m -2 average neutron fluence. In the basic performance phase of ITER operation, the shielding blanket uses austenitic steel structural material and water coolant. The first wall is made of bimetallic structure, austenitic steel and copper alloy, coated with beryllium and it is protected by beryllium bumper limiters. The choice of copper first wall is dictated by the surface heat flux values anticipated during ITER operation. The water coolant is used at low pressure and low temperature. A breeding blanket has been designed to satisfy the technical objectives of the Enhanced Performance Phase of ITER operation for the Test Program. The breeding blanket design is geometrically similar to the shielding blanket design except it is a self-cooled liquid lithium system with vanadium structural material. Self-healing electrical insulator (aluminum nitride) is used to reduce the MHD pressure drop in the system. Reactor relevancy, low tritium inventory, low activation material, low decay heat, and a tritium self-sufficiency goal are the main features of the breeding blanket design. (orig.)

  19. Inertial confinement fusion with direct electric generation by magnetic flux comparession

    International Nuclear Information System (INIS)

    Lasche, G.P.

    1983-01-01

    A high-power-density laser-fusion-reactor concept in investigated in which directed kinetic enery imparted to a large mass of liquid lithium--in which the fusion target is centrally located--is maximized. In turn, this kinetic energy is converted directly to electricity with, potentially, very high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the concept maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall can be many orders of magnitude less than is typical of D-T fusion reactor concepts

  20. Pressurizing Behavior on Ingress of Coolant into Pebble Bed of Blanket of Fusion DEMO Reactor

    International Nuclear Information System (INIS)

    Daigo Tsuru; Mikio Enoeda; Masato Akiba

    2006-01-01

    Solid breeder blankets are being developed as candidate blankets for the Fusion DEMO reactor in Japan. JAEA is performing the development of the water cooled and helium cooled solid breeder blankets. The blanket utilizes ceramic breeder pebbles and multiplier pebbles beds cooled by high pressure water or high pressure helium in the cooling tubes placed in the blanket box structure. In the development of the blanket, it is very important to incorporate the safety technology as well as the performance improvement on tritium production and energy conversion. In the safety design and technology, coolant ingress in the blanket box structure is one of the most important events as the initiators. Especially the thermal hydraulics in the pebble bed in the case of the high pressure coolant ingress is very important to evaluate the pressure propagation and coolant flow behavior. This paper presents the preliminary results of the pressure loss characteristics by the coolant ingress in the pebble bed. Experiments have been performed by using alumina pebble bed (4 litter maximum volume of the pebble bed) and nitrogen gas to simulate the helium coolant ingress into breeder and multiplier pebble beds. Reservoir tank of 10 liter is filled with 1.0 MPa nitrogen. The nitrogen gas is released at the bottom part of the alumina pebble bed whose upper part is open to the atmosphere. The pressure change in the pebble bed is measured to identify the pressure loss. The measured values are compared with the predicted values by Ergun's equation, which is the correlation equation on pressure loss of the flow through porous medium. By the results of the experiments with no constraint on the alumina pebble bed, it was clarified that the measured value agreed in the lower flow rate. However, in the higher flow rate where the pressure loss is high, the measured value is about half of the predicted value. The differences between the measured values and the predicted values will be discussed from

  1. Common views of potentially attractive fusion concepts

    International Nuclear Information System (INIS)

    Piet, S.J.

    1986-01-01

    Several innovative fusion concepts have recently been proposed with the intent of improving radically the attractiveness of fusion energy. Before their assessment is complete, however, the question of what constitutes an especially attractive fusion product should be examined from multiple viewpoints. The primary purpose of this paper is to examine views of potentially attractive fusion concepts from three perspectives, trying to determine commonalities. These viewpoints are (a) economics, (b) maintenance and reliability, and (c) safety and environment. The secondary purpose of the paper is to review some innovative concepts from these viewpoints

  2. Blanket comparison and selection study. Volume I

    International Nuclear Information System (INIS)

    1983-10-01

    The objectives of the Blanket Comparison and Selection Study (BCSS) can be stated as follows: (1) Define a small number (approx. 3) of blanket design concepts that should be the focus of the blanket R and D program. A design concept is defined by the selection of all materials (e.g., breeder, coolant, structure and multiplier) and other major characteristics that significantly influence the R and D requirements. (2) Identify and prioritize the critical issues for the leading blanket concepts. (3) Provide the technical input necessary to develop a blanket R and D program plan. Guidelines for prioritizing the R and D requirements include: (a) critical feasibility issues for the leading blanket concepts will receive the highest priority, and (b) for equally important feasibility issues, higher R and D priority will be given to those that require minimum cost and short time

  3. Preconceptual engineering design for the APT 3He Target/Blanket concept

    International Nuclear Information System (INIS)

    Mensink, D.L.

    1994-01-01

    A preconceptual engineering design has been developed for the 3 He Target/Blanket (T/B) System for the Accelerator Production of Tritium Project. This concept uses an array of pressure tubes containing tungsten rods for the neutron spallation source and 3 He gas contained in a metal tank and blanket tubes as the tritium production material. The engineering design is based on a physics model optimized for efficient tritium production. Principle engineering consideration were: provisions for cooling all materials including the 3 He gas; containment of the gas and radionuclides; remote handling; material compatibility; minimization of 3 He, D 2 O, and activated waste; modularity; and manufacturability. The design provides a basis for estimating the cost to implement the system

  4. Overview of the Last Progresses for the European Test Blanket Modules Projects

    International Nuclear Information System (INIS)

    Salavy, J.-F.; Rampal, G.; Boccaccini, L.V.; Meyder, R.; Neuberger, H.; Laesser, R.; Poitevin, Y.; Zmitko, M.; Rigal, E.

    2006-01-01

    The long-term objective of the EU Breeding Blankets programme is the development of DEMO breeding blankets, which shall assure tritium self-sufficiency, an economically attractive use of the heat produced inside the blankets for electricity generation and a sufficiently high shielding of the superconducting magnets for long time operation. In the short-term so-called DEMO relevant Test Blanket Modules (TBMs) of these breeder blanket concepts shall be designed, manufactured, tested, installed, commissioned and operated in ITER for first tests in a fusion environment. The Helium Cooled Lithium-Lead (HCLL) breeder blanket and the Helium Cooled Pebble Bed (HCPB) concepts are the two breeder blanket lines presently developed by the EU. The main objective of the EU test strategy related to TBMs in ITER is to provide the necessary information for the design and fabrication of breeding blankets for a future DEMO reactor. EU TBMs shall therefore use the same structural and functional materials, apply similar fabrication technologies, and test adequate processes and components. This paper gives an overview of the last progresses in terms of system design, calculations, test program, safety and R-and-D done these last two years in order to cope with the ambitious objective to introduce two EU TBM systems for day-1 of ITER operation. The engineering design of the two systems is mostly concluded and the priority is now on the development and qualification of the fabrication technologies. From calculations point of view, the last modelling efforts related to the thermal-hydraulic of the first wall, the tritium behaviour, and the box thermal and mechanical resistance in accidental conditions are presented. Last features of the TBM and cooling system designs and integration in ITER reactor are highlighted. In particular, this paper also describes the safety and licensing analyses performed for each concept to be able to include the TBM systems in the ITER preliminary safety report

  5. Conceptual design of China fusion power plant FDS-II

    International Nuclear Information System (INIS)

    Wu, Y.; Liu, S.; Chen, H.

    2007-01-01

    As one of the series of fusion system design concepts developed by the FDS Team of China, FDS-II is designated to exploit and evaluate potential attractiveness of fusion energy application for the generation of electricity on the basis of conservatively advanced plasma parameters, which can be limitedly extrapolated from the successful operation of ITER. The principle of the blanket design is established in both the feasibility and potential attractiveness of technology to meet the requirement for tritium self-sufficiency, safety margin, operation economy and environment protection etc. The plasma physics and engineering parameters of FDS-II are selected on the basis of the progress in recent experiments and associated theoretical studies of magnetic confinement fusion plasma with a fusion power of 2∝3 GW. The neutron wall load of 2∝3 MW/m 2 and the surface heat flux of 0.5∝1 MW/m 2 are considered for high effective power conversion. The ''multi-modules'' scenario is adopted in the FDS-II blanket design to reduce thermal stress and electromagnetic forces under plasma disruption, with liquid metal lithium lead (LiPb) as tritium breeder, the Reduced Activation Ferritic/Martensitic (RAFM) steel as structural material. Two options of specific liquid LiPb blanket concepts have been proposed, named the Dual-cooled Lithium Lead (DLL) breeder blanket and the Quasi-Static Lithium Lead (SLL) breeder blanket. The DLL blanket is a dual-cooled LiPb breeder system with helium gas to cool the first wall and main structure and LiPb eutectic to be self-cooled. The flow channel inserts (FCIs), e.g. SiCf/SiC composites, are designed as the thermal and electrical insulators inside the LiPb flow channels to reduce the magnetohydrodynamic (MHD) pressure drop and to allow the coolant LiPb outlet temperature up to 700 C for high thermal efficiency. The SLL blanket is another option of the FDS-II blanket with the technology developed relatively easily. To avoid or mitigate the

  6. Tritium breeding blanket

    International Nuclear Information System (INIS)

    Smith, D.; Billone, M.; Gohar, Y.; Baker, C.; Mori, S.; Kuroda, T.; Maki, K.; Takatsu, H.; Yoshida, H.; Raffray, A.; Sviatoslavsky, I.; Simbolotti, G.; Shatalov, G.

    1991-01-01

    The terms of reference for ITER provide for incorporation of a tritium breeding blanket with a breeding ratio as close to unity as practical. A breeding blanket is required to assure an adequate supply of tritium to meet the program objectives. Based on specified design criteria, a ceramic breeder concept with water coolant and an austenitic steel structure has been selected as the first option and lithium-lead blanket concept has been chosen as an alternate option. The first wall, blanket, and shield are integrated into a single unit with separate cooling systems. The design makes extensive use of beryllium to enhance the tritium breeding ratio. The design goals with a tritium breeding ratio of 0.8--0.9 have been achieved and the R ampersand D requirements to qualify the design have been identified. 4 refs., 8 figs., 2 tabs

  7. Fusion option to dispose of spent nuclear fuel and transuranic elements

    International Nuclear Information System (INIS)

    Gohar, Y.

    2000-01-01

    The fusion option is examined to solve the disposition problems of the spent nuclear fuel and the transuranic elements. The analysis of this report shows that the top rated solution, the elimination of the transuranic elements and the long-lived fission products, can be achieved in a fusion reactor. A 167 MW of fusion power from a D-T plasma for sixty years with an availability factor of 0.75 can transmute all the transuranic elements and the long-lived fission products of the 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. The operating time can be reduced to thirty years with use of 334 MW of fusion power, a system study is needed to define the optimum time. In addition, the fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future. Fusion blankets with a liquid carrier for the transuranic elements can achieve a transmutation rate for the transuranic elements up to 80 kg/MW.y of fusion power with k eff of 0.98. In addition, the liquid blankets have several advantages relative to the other blanket options. The energy from this transmutation is utilized to produce revenue for the system. Molten salt (Flibe) and lithium-lead eutectic are identified as the most promising liquids for this application, both materials are under development for future fusion blanket concepts. The Flibe molten salt with transuranic elements was developed and used successfully as nuclear fuel for the molten salt breeder reactor in the 1960's

  8. Review: BNL Tokamak graphite blanket design concepts

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    The BNL minimum activity graphite blanket designs are reviewed, and three are discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a 30 cm or thicker graphite screen. Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy, which is then radiated to a secondary blanket with coolant tubes, as in types A and B, or removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma. (Auth.)

  9. Transmutation and activation of stainless steel 316 SS in a thermal fusion reactor blanket

    International Nuclear Information System (INIS)

    Gruber, J.; Schneider, J.

    1977-10-01

    Using the program MATEXP (matrix exponential method) the influence of neutron flux is calculated for stainless steel 3s16 SS which is used as a structural material in a fusion reactor blanket (CTRD-I). The transmutations, activations and γ-dose rates are determined for an operation time of 20 years. Investigating the decay behaviour after operation time, we found that the long term activity and dose rate was mainly influenced by five nuclides: Fe55, Ni63, Ni59, Co60 and Nb94. (orig.) [de

  10. Materials for breeding blankets

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.C.

    1995-09-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified

  11. Materials for breeding blankets

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.C.

    1996-01-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as primary blanket materials, which have the greatest influence in determining the overall design and performance, and secondary blanket materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified. (orig.)

  12. U.S. technical report for the ITER blanket/shield: A. blanket: Topical report, July 1990--November 1990

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li{sub 2}O) and lithium zirconate (Li{sub 2}ZrO{sub 3}) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequently the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers.

  13. Alternative fusion concepts

    International Nuclear Information System (INIS)

    Rostagni, G.

    1981-01-01

    The paper reports the discussions and statements made by the participants on the actual state and future of five different approaches on the fusion concept; they are the following: bumpy torus, reversed-field pinch, open-ended configurations, compact toroids and stellarators. Tables show for each concept parameters that represent the achieved results; data expected for future devices and extrapolations on reactor requirements are included

  14. The role of improved fusion concepts

    International Nuclear Information System (INIS)

    Nelson, D.B.; Linford, R.K.; Liu, C.S.; Logan, B.G.; Rose, P.H.

    1985-01-01

    The U.S. Dept. of Energy discusses concept improvement in the tokamak and concept improvement in the mirror. Controlled Thermonuclear Research comments on what constitutes an attractive fusion reactor, and provides a table of achieved parameters of RFP, FRC and the spheromak experiments. GA Technologies Inc. remarks on the direction which industry must take in the fusion program. The Lawrence Livermore National Laboratory concentrates on commercial reactor studies. Spectra Technology focuses on problems dealing with fusion proponents making a convincing and clear economic argument for fusion based on a mils per kilowat basis, and the large costs of flagship experiments. The Oak Ridge National Laboratory remarks on the need for an economic energy source for fusion. A table of cost of electricity contours is shown

  15. The role of improved fusion concepts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, D.B.; Linford, R.K.; Liu, C.S.; Logan, B.G.; Rose, P.H.

    1985-06-01

    The U.S. Dept. of Energy discusses concept improvement in the tokamak and concept improvement in the mirror. Controlled Thermonuclear Research comments on what constitutes an attractive fusion reactor, and provides a table of achieved parameters of RFP, FRC and the spheromak experiments. GA Technologies Inc. remarks on the direction which industry must take in the fusion program. The Lawrence Livermore National Laboratory concentrates on commercial reactor studies. Spectra Technology focuses on problems dealing with fusion proponents making a convincing and clear economic argument for fusion based on a mils per kilowat basis, and the large costs of flagship experiments. The Oak Ridge National Laboratory remarks on the need for an economic energy source for fusion. A table of cost of electricity contours is shown.

  16. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  17. Overview of the TFTB lithium blanket module program

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1986-01-01

    The Lithium Blanket Module (LBM) is an ∼ 80-cm 3 module, representative of a helium-cooled lithium oxide fusion reactor blanket module. This paper summarizes the design, development, and construction of the LBM, and indicates the present status of the LBM program

  18. Electric breeding of fissile materials with low Q, non-mainline fusion drivers

    International Nuclear Information System (INIS)

    Benford, J.; Bailey, V.; Oliver, D.; DiCapua, M.; Cooper, R.; Lopez, O.; Lindsey, H.

    1977-10-01

    The application of two novel fusion reactor concepts to the production of fissile fuel for existing and planned fission reactors has been shown to be technically feasible and potentially economically competitive. The performance required of fusion based breeders has been derived in terms of the fusion gain, blanket neutron and energy multiplication, and the performance and economic parameters of the fission reactors. Electron beam heated, linear solenoid confined plasmas were one concept which showed the most promise. A shock heated, wall confined reactor also appeared attractive for breeding

  19. A spheromak ignition experiment reusing Mirror Fusion Test Facility (MFTF) equipment

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1993-01-01

    Based on available experimental results and theory, a scenario is presented to achieve ohmic ignition in a spheromak by slow (∼ 10 sec.) helicity injection using power from the Mirror Fusion Test Facility (MFTF) substation. Some of the other parts needed (vacuum vessel, coils, power supplies, pumps, shielded building space) might also be obtained from MFTF or other salvage, as well as some components needed for intermediate experiments for additional verification of the concept (especially confinement scaling). The proposed ignition experiment would serve as proof-of-principle for the spheromak DT fusion reactor design published by Hagenson and Krakowski, with a nuclear island cost about ten times less than a tokamak of comparable power. Designs at even higher power density and lower cost might be possible using Christofilos' concept of a liquid lithium blanket. Since all structures would be protected from neutrons by the lithium blanket and the tritium inventory can be reduced by continuous removal from the liquid blanket, environmental and safety characteristics appear to be favorable

  20. Review of tokamak power reactor and blanket designs in the United States

    International Nuclear Information System (INIS)

    Baker, C.; Brooks, J.; Ehst, D.; Gohar, Y.; Smith, D.; Sze, D.

    1986-01-01

    The last major conceptual design study of a tokamak power reactor in the United States was STARFIRE which was carried out in 1979-1980. Since that time US studies have concentrated on engineering test reactors, demonstration reactors, parametric systems studies, scoping studies, and studies of selected critical issues such as pulsed vs. steady-state operation and blanket requirements. During this period, there have been many advancements in tokamak physics and reactor technology, and there has also been a recognition that it is desirable to improve the tokamak concept as a commercial power reactor candidate. During 1984-1985 several organizations participated in the Tokamak Power Systems Study (TPSS) with the objective of developing ideas for improving the tokamak as a power reactor. Also, the US completed a comprehensive Blanket Comparison and Selection Study which formed the basis for further studies on improved blankets for fusion reactors

  1. Development of advanced blanket materials for solid breeder blanket of fusion reactor

    International Nuclear Information System (INIS)

    Ishitsuka, E.

    2002-01-01

    Advanced solid breeding blanket design in the DEMO reactor requires the tritium breeder and neutron multiplier that can withstand the high temperature and high dose of neutron irradiation. Therefore, the development of such advanced blanket materials is indispensable. In this paper, the cooperation activities among JAERI, universities and industries in Japan on the development of these advanced materials are reported. Advanced tritium breeding material to prevent the grain growth in high temperature had to be developed because the tritium release behavior degraded by the grain growth. As one of such materials, TiO 2 -doped Li 2 TiO 3 has been studied, and TiO 2 -doped Li 2 TiO 3 pebbles was successfully fabricated. For the advanced neutron multiplier, the beryllium intermetallic compounds that have high melting point and good chemical stability have been studied. Some characterization of Be 12 Ti was studied. The pebble fabrication study for Be 12 Ti was also performed and Be 12 Ti pebbles were successfully fabricated. From these activities, the bright prospect to realize the DEMO blanket by the application of TiO 2 -doped Li 2 TiO 3 and beryllium intermetallic compounds was obtained. (author)

  2. Liquid metal blanket module testing and design for ITER/TIBER II

    International Nuclear Information System (INIS)

    Mattas, R.F.; Cha, Y.; Finn, P.A.; Majumdar, S.; Picologlou, B.; Stevens, H.; Turner, L.

    1988-05-01

    A major goal for ITER is the testing of nuclear components to demonstrate the integrated performance of the most attractive concepts that can lead to a commercial fusion reactor. As part of the ITER/TIBER II study, the test program and design of test models were examined for a number of blanket concepts. The work at Argonne National Laboratory focused on self-cooled liquid metal blankets. A test program for liquid metal blankets was developed based upon the ITER/TIBER II operating schedule and the specific data needs to resolve the key issues for liquid metals. Testing can begin early in reactor operation with liquid metal MHD tests to confirm predictive capability. Combined heat transfer/MHD tests can be performed during initial plasma operation. After acceptable heat transfer performance is verified, tests to determine the integrated high temperature performance in a neutron environment can begin. During the high availability phase operation, long term performance and reliability tests will be performed. It is envisioned that a companion test program will be conducted outside ITER to determine behavior under severe accident conditions and upper performance limits. A detailed design of a liquid metal test module and auxiliary equipment was also developed. The module followed the design of the TPSS blanket. Detailed analysis of the heat transfer and tritium systems were performed, and the overall layout of the systems was determined. In general, the blanket module appears to be capable of addressing most of the testing needs. 8 refs., 27 figs., 11 tabs

  3. Review of alternative concepts for magnetic fusion

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1980-01-01

    Although the Tokamak represents the mainstay of the world's quest for magnetic fusion power, with the tandem mirror serving as a primary backup concept in the US fusion program, a wide range of alternative fusion concepts (AFC's) have been and are being pursued. This review presents a summary of past and present reactor projections of a majority of AFC's. Whenever possible, quantitative results are given

  4. Divertor conceptual designs for a fusion power plant

    International Nuclear Information System (INIS)

    Norajitra, P.; Ihli, T.; Janeschitz, G.; Abdel-Khalik, S.; Mazul, I.; Malang, S.

    2007-01-01

    The development of a divertor concept for post-ITER fusion power plants is deemed to be an urgent task to meet the EU Fast Track scenario. Developing a divertor is particularly challenging due to the wide range of requirements to be met including the high incident peak heat flux, the blanket design with which the divertor has to be integrated, sputtering erosion of the plasma-facing material caused by the incident a particles, radiation effects on the properties of structural materials, and efficient recovery and conversion of the divertor thermal power (∝15% of the total fusion thermal power) by maximizing the coolant operating temperature while minimizing the pumping power. In the course of the EU PPCS, three near-term (A, B and AB) and two advanced power plant models (C, D) were investigated. Model A utilizes a water-cooled lead-lithium (WCLL) blanket and a water-cooled divertor with a peak heat flux of 15 MW/m 2 . Model B uses a He-cooled ceramics/beryllium pebble bed (HCPB) blanket and a He-cooled divertor concept (10 MW/m 2 ). Model AB uses a He-cooled lithium-lead (HCLL) blanket and a He-cooled divertor concept (10 MW/m 2 ). Model C is based on a dual-coolant (DC) blanket (lead/lithium self-cooled bulk and He-cooled structures) and a He-cooled divertor (10 MW/m 2 ). Model D employs a self-cooled lead/lithium (SCLL) blanket and lead-lithiumcooled divertor (5 MW/m 2 ). The values in parenthesis correspond to the maximum peak heat fluxes required. It can be noted that the helium-cooled divertor is used in most of the EU plant models; it has also been proposed for the US ARIES-CS reactor study. Since 2002, it has been investigated extensively in Europe under the PPCS with the goal of reaching a maximum heat flux of at least 10 MW/m2. Work has covered many areas including conceptual design, analysis, material and fabrication issues, and experiments. Generally, the helium-cooled divertor is considered to be a suitable solution for fusion power plants, as it

  5. ARIES-IV Nested Shell Blanket Design

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Redler, K.; Reis, E.E.; Will, R.; Cheng, E.; Hasan, C.M.; Sharafat, S.

    1993-11-01

    The ARIES-IV Nested Shell Blanket (NSB) Design is an alternate blanket concept of the ARIES-IV low activation helium-cooled reactor design. The reference design has the coolant routed in the poloidal direction and the inlet and outlet plena are located at the top and bottom of the torus. The NSB design has the high velocity coolant routed in the toroidal direction and the plena are located behind the blanket. This is of significance since the selected structural material is SiC-composite. The NSB is designed to have key high performance components with characteristic dimensions of no larger than 2 m. These components can be brazed to form the blanket module. For the diverter design, we eliminated the use of W as the divertor coating material by relying on the successful development of the gaseous divertor concept. The neutronics and thermal-hydraulic performance of both blanket concepts are similar. The selected blanket and divertor configurations can also meet all the projected structural, neutronics and thermal-hydraulics design limits and requirements. With the selected blanket and divertor materials, the design has a level of safety assurance rate of I (LSA-1), which indicates an inherently safe design

  6. Thermo-hydraulic and structural analysis for finger-based concept of ITER blanket first wall

    International Nuclear Information System (INIS)

    Kim, Byoung-Yoon; Ahn, Hee-Jae

    2011-01-01

    The blanket first wall is one of the main plasma facing components in ITER tokamak. The finger-typed first wall was proposed through the current design progress by ITER organization. In this concept, each first wall module is composed of a beam and twenty fingers. The main function of the first wall is to remove efficiently the high heat flux loading from the fusion plasma during its operation. Therefore, the thermal and structural performance should be investigated for the proposed finger-based design concept of first wall. The various case studies were performed for a unit finger model considering different loading conditions. The finite element model was made for a half of a module using symmetric boundary conditions to reduce the computational effort. The thermo-hydraulic analysis was performed to obtain the pressure drop and temperature profiles. Then the structural analysis was carried out using the maximum temperature distribution obtained in thermo-hydraulic analysis. Finally, the transient thermo-hydraulic analysis was performed for the generic first wall module to obtain the temperature evolution history considering cyclic heat flux loading with nuclear heating. After that, the thermo-mechanical analysis was performed at the time step when the maximum temperature gradient was occurred. Also, the stress analysis was performed for the component with a finger and a beam to check the residual stress of the component after thermal shrinkage assembly.

  7. ITER driver blanket, European Community design

    International Nuclear Information System (INIS)

    Simbolotti, G.; Zampaglione, V.; Ferrari, M.; Gallina, M.; Mazzone, G.; Nardi, C.; Petrizzi, L.; Rado, V.; Violante, V.; Daenner, W.; Lorenzetto, P.; Gierszewski, P.; Grattarola, M.; Rosatelli, F.; Secolo, F.; Zacchia, F.; Caira, M.; Sorabella, L.

    1993-01-01

    Depending on the final decision on the operation time of ITER (International Thermonuclear Experimental Reactor), the Driver Blanket might become a basic component of the machine with the main function of producing a significant fraction (close to 0.8) of the tritium required for the ITER operation, the remaining fraction being available from external supplies. The Driver Blanket is not required to provide reactor relevant performance in terms of tritium self-sufficiency. However, reactor relevant reliability and safety are mandatory requirements for this component in order not to significantly afftect the overall plant availability and to allow the ITER experimental program to be safely and successfully carried out. With the framework of the ITER Conceptual Design Activities (CDA, 1988-1990), a conceptual design of the ITER Driver Blanket has been carried out by ENEA Fusion Dept., in collaboration with ANSALDO S.p.A. and SRS S.r.l., and in close consultation with the NET Team and CFFTP (Canadian Fusion Fuels Technology Project). Such a design has been selected as EC (European Community) reference design for the ITER Driver Blanket. The status of the design at the end of CDA is reported in the present paper. (orig.)

  8. Breeding blanket for Demo

    International Nuclear Information System (INIS)

    Proust, E.; Giancarli, L.

    1992-01-01

    This paper presents the main design features, their rationale, and the main critical issues for the development, of the four DEMO-relevant blanket concepts presently investigated within the framework of the European Test-Blanket Development Programme

  9. RF DEMO ceramic helium cooled blanket, coolant and energy transformation systems

    International Nuclear Information System (INIS)

    Kovalenko, V.; Leshukov, A.; Poliksha, V.; Popov, A.; Strebkov, Yu.; Borisov, A.; Shatalov, G.; Demidov, V.; Kapyshev, V.

    2004-01-01

    RF DEMO-S reactor is a prototype of commercial fusion reactors for further generation. A blanket is the main element unit of the reactor design. The segment structure is the basis of the ceramic blanket. The segments mounting/dismounting operations are carried out through the vacuum vessel vertical port. The inboard/outboard blanket segment is the modules welded design, which are welded by back plate. The module contains the back plate, the first wall, lateral walls and breeding zone. The 9CrMoVNb steel is used as structural material. The module internal space formed by the first wall, lateral walls and back plate is used for breeding zone arrangement. The breeding zone design based upon the poloidal BIT (Breeder Inside Tube) concept. The beryllium is used as multiplier material and the lithium orthosilicate is used as breeder material. The helium at 0.1 MPa is used as purge gas. The cooling is provided by helium at 10 MPa. The coolant supply/return to the blanket modules are carrying out on the two independent circuits. The performed investigations of possible transformation schemes of DEMO-S blanket heat power into the electricity allowed to make a conclusion about the preferable using of traditional steam-turbine facility in the secondary circuit. (author)

  10. Computer aided design of operational units for tritium recovery from Li17Pb83 blanket of a DEMO fusion reactor

    International Nuclear Information System (INIS)

    Malara, C.; Viola, A.

    1995-01-01

    The problem of tritium recovery from Li 17 Pb 83 blanket of a DEMO fusion reactor is analyzed with the objective of limiting tritium permeation into the cooling water to acceptable levels. To this aim, a mathematical model describing the tritium behavior in blanket/recovery unit circuit has been formulated. By solving the model equations, tritium permeation rate into the cooling water and tritium inventory in the blanket are evaluated as a function of dimensionless parameters describing the combined effects of overall resistance for tritium transfer from Li 17 Pb 83 alloy to cooling water, circulating rate of the molten alloy in blanket/recovery unit circuit and extraction efficiency of tritium recovery unit. The extraction efficiency is, in turn, evaluated as a function of the operating conditions of recovery unit. The design of tritium recovery unit is then optimized on the basis of the above parametric analysis and the results are herein reported and discussed for a tritium permeation limit of 10 g/day into the cooling water. 14 refs., 9 figs., 2 tabs

  11. Status on DEMO Helium Cooled Lithium Lead breeding blanket thermo-mechanical analyses

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Aiello, G.; Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Kiss, B. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Morin, A. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France)

    2016-11-01

    Highlights: • CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. The DEMO HCLL breeding blanket design capitalizes on the experience acquired on the HCLL Test Blanket Module designed for ITER. Design improvements are being implemented to adapt the design to DEMO specifications and performance objectives. • Thermal and mechanical analyses have been carried out in order to justify the design of the HCLL breeding blanket showing promising results for tie rods modules’ attachments system and relatively good behavior of the box in case of LOCA when comparing to RCC-MRx criteria. • CFD thermal analyses on generic breeding unit have enabled the consolidation of the results obtained with previous FEM design analyses. - Abstract: The EUROfusion Consortium develops a design of a fusion power demonstrator (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the breeding blanket surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. The Helium Cooled Lithium Lead (HCLL) blanket is one of the concepts which is investigated for DEMO. It is made of a Eurofer structure and uses the eutectic liquid lithium–lead as tritium breeder and neutron multiplier, and helium gas as coolant. Within the EUROfusion organization, CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. This paper presents the status of the thermal and mechanical analyses carried out on the HCLL breeding blanket in order to justify the design. CFD thermal analyses on generic breeding unit including stiffening plates and cooling plates have been performed with ANSYS in order to consolidate results obtained with previous FEM design analyses. Moreover in order to expand the justification of the HCLL Breeding blanket design, the most loaded area of

  12. Review of the safety concept for fusion reactor concepts and transferability of the nuclear fission regulation to potential fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Juergen; Weller, Arthur; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik (IPP), Garching (Germany); Jin, Xue Zhou; Boccaccini, Lorenzo V.; Stieglitz, Robert; Carloni, Dario [Karlsruher Institute fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany); Pistner, Christoph [Oeko-Institut e.V., Darmstadt (Germany); Herb, Joachim [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany)

    2016-01-15

    This paper summarizes the current state of the art in science and technology of the safety concept for future fusion power plants (FPPs) and examines the transferability of the current nuclear fission regulation to the concepts of future fusion power plants. At the moment there exist only conceptual designs of future fusion power plants. The most detailed concepts with regards to safety aspects were found in the European Power Plant Conceptual Study (PPCS). The plant concepts discussed in the PPCS are based on magnetic confinement of the plasma. The safety concept of fusion power plants, which has been developed during the last decades, is based on the safety concepts of installations with radioactive inventories, especially nuclear fission power plants. It applies the concept of defence in depth. However, there are specific differences between the implementations of the safety concepts due to the physical and technological characteristics of fusion and fission. It is analysed whether for fusion a safety concept is required comparable to the one of fission. For this the consequences of a purely hypothetical release of large amounts of the radioactive inventory of a fusion power plant and a fission power plant are compared. In such an event the evacuation criterion outside the plant is exceeded by several orders of magnitude for a fission power plant. For a fusion power plant the expected radiological consequences are of the order of the evacuation criterion. Therefore, a safety concept is also necessary for fusion to guarantee the confinement of the radioactive inventory. The comparison between the safety concepts for fusion and fission shows that the fundamental safety function ''confinement of the radioactive materials'' can be transferred directly in a methodical way. For a fusion power plant this fundamental safety function is based on both, physical barriers as well as on active retention functions. After the termination of the fusion

  13. Overview of the TFTR Lithium Blanket Module program

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1986-01-01

    The LBM (Lithium Blanket Module) is an approximately cubic module, about 80 cm on each side, with construction representative of a helium-cooled lithium oxide fusion reactor blanket module. Measurements of neutron transport and tritium breeding in the LBM will be made in irradiation programs first with a point-neutron source, and subsequently with the D-D and D-T fusion-neutron sources of the TFTR. This paper summarizes the objectives of the LBM program, the design, development and construction of the LBM, and progress in the experimental tests

  14. Initial progress in the first wall, blanket, and shield Engineering Test Program for magnetically confined fusion-power reactors

    International Nuclear Information System (INIS)

    Herman, H.; Baker, C.C.; Maroni, V.A.

    1981-10-01

    The first wall/blanket/shield (FW/B/S) Engineering Test Program (ETP) progressed from the planning stage into implementation during July, 1981. The program, generic in nature, comprises four Test Program Elements (TPE's), the emphasis of which is on defining the performance parameters for the Fusion Engineering Device (FED) and the major fusion device to follow FED. These elements are: (1) nonnuclear thermal-hydraulic and thermomechanical testing of first wall and component facsimiles with emphasis on surface heat loads and heat transient (i.e., plasma disruption) effects; (2) nonnuclear and nuclear testing of FW/B/S components and assemblies with emphasis on bulk (nuclear) heating effects, integrated FW/B/S hydraulics and mechanics, blanket coolant system transients, and nuclear benchmarks; (3) FW/B/S electromagnetic and eddy current effects testing, including pulsed field penetration, torque and force restraint, electromagnetic materials, liquid metal MHD effects and the like; and (4) FW/B/S Assembly, Maintenance and Repair (AMR) studies focusing on generic AMR criteria, with the objective of preparing an AMR designers guidebook; also, development of rapid remote assembly/disassembly joint system technology, leak detection and remote handling methods

  15. On the use of tin-lithium alloys as breeder material for blankets of fusion power plants

    International Nuclear Information System (INIS)

    Fuetterer, M.A.; Aiello, G.; Barbier, F.; Giancarli, L.; Poitevin, Y.; Sardain, P.; Szczepanski, J.; Li Puma, A.; Ruvutuso, G.; Vella, G.

    2000-01-01

    Tin-lithium alloys have several attractive thermo-physical properties, in particular high thermal conductivity and heat capacity, that make them potentially interesting candidates for use in liquid metal blankets. This paper presents an evaluation of the advantages and drawbacks caused by the substitution of the currently employed alloy lead-lithium (Pb-17Li) by a suitable tin-lithium alloy: (i) for the European water-cooled Pb-17Li (WCLL) blanket concept with reduced activation ferritic-martensitic steel as the structural material; (ii) for the European self-cooled TAURO blanket with SiC f /SiC as the structural material. It was found that in none of these blankets Sn-Li alloys would lead to significant advantages, in particular due to the low tritium breeding capability. Only in forced convection cooled divertors with W-alloy structure, Sn-Li alloys would be slightly more favorable. It is concluded that Sn-Li alloys are only advantageous in free surface cooled reactor internals, as this would make maximum use of the principal advantage of Sn-Li, i.e., the low vapor pressure

  16. LMFBR blanket physics project progress report No. 4

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Lanning, D.D.; Kaplan, I.; Supple, A.T.

    1973-01-01

    During the period covered by the report, July 1, 1972, through June 30, 1973, work was devoted to completion of experimental measurements and data analysis on Blanket Mockup No. 3, a graphite-reflected blanket, and to initiation of experimental work on Blanket Mockup No. 4, a steel-reflected assembly designed to mock up a demonstration plant blanket. Work was also carried out on the analysis of a number of advanced blanket concepts, including the use of high-albedo reflectors, the use of thorium in place of uranium in the blanket region, and the ''parfait'' or completely internal blanket concept. Finally, methods development work was initiated to develop the capability for making gamma heating measurements in the blanket mockups. (U.S.)

  17. Muon catalyzed fusion - fission reactor driven by a recirculating beam

    International Nuclear Information System (INIS)

    Eliezer, S.; Tajima, T.; Rosenbluth, M.N.

    1986-01-01

    The recent experimentally inferred value of multiplicity of fusion of deuterium and tritium catalyzed by muons has rekindled interest in its application to reactors. Since the main energy expended is in pion (and consequent muon) productions, we try to minimize the pion loss by magnetically confining pions where they are created. Although it appears at this moment not possible to achieve energy gain by pure fusion, it is possible to gain energy by combining catalyzed fusion with fission blankets. We present two new ideas that improve the muon fusion reactor concept. The first idea is to combine the target, the converter of pions into muons, and the synthesizer into one (the synergetic concept). This is accomplished by injecting a tritium or deuterium beam of 1 GeV/nucleon into DT fuel contained in a magnetic mirror. The confined pions slow down and decay into muons, which are confined in the fuel causing little muon loss. The necessary quantity of tritium to keep the reactor viable has been derived. The second idea is that the beam passing through the target is collected for reuse and recirculated, while the strongly interacted portion of the beam is directed to electronuclear blankets. The present concepts are based on known technologies and on known physical processes and data. 29 refs., 6 figs., 4 tabs

  18. Pre-conceptual design study on K-DEMO ceramic breeder blanket

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Sung, E-mail: jspark@nfri.re.kr [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kwon, Sungjin; Im, Kihak; Kim, Keeman [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Brown, Thomas; Neilson, George [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2015-11-15

    A pre-conceptual design study has been carried out for the Korean fusion demonstration reactor (K-DEMO) tokamak featured by high magnetic field (B{sub T0} = 7.4 T), R = 6.8 m, a = 2.1 m, and a steady-state operation. The design concepts of the K-DEMO blanket system considering the cooling in-vessel components with pressurized water and a solid pebble breeder are described herein. The structure of the K-DEMO blanket is toroidally subdivided into 16 inboard and 32 outboard sectors, in order to allow the vertical maintenance. Each blanket module is composed of plasma-facing first wall, layers of breeding parts, shielding and manifolds. A ceramic breeder using Li{sub 4}SiO{sub 4} pebbles with Be{sub 12}Ti as neuron multiplier is employed for study. MCNP neutronic simulations and thermo-hydraulic analyses are interactively performed in order to satisfy two key aspects: achieving a global Tritium Breeding Ratio (TBR) >1.05 and operating within the maximum allowable temperature ranges of materials.

  19. Irradiaiton facilities for testing solid and liquid blanket breeder materials with in-situ tritium release measurements in the HFR Petten

    International Nuclear Information System (INIS)

    Conrad, R.; Debarberis, L.

    1991-01-01

    Lithium-based tritium breeder materials for solid and liquid fusion reactor blanket concepts are being tested in the High Flux Reactor (HFR) Petten with in-situ tritium release measurements since 1985, within the European Fusion Technology Programme and the BEATRIX-I programme. Ceramic breeder materials are being tested in the EXOTIC and COMPLIMENT experimental programmes and the liquid breeder material, Pb-17Li, is being tested in the LIBRETTO experimental programme. The in-pile experiments are performed with irradiation facilities developed by the Joint Research Centre (JRC) Petten. The irradiation vehicles are multi-channel rigs. The sample holders consist of independent, fully instrumented and triple contained capsules. The out-of-pile experimental equipment consist of twelve independent circuits for on-line tritium release and tritium permeation measurements and eight independent circuits for temperature control. The experimental achievements obtained so far contribute to the selection of candidate tritium breeder materials for blanket concepts of near future machines like NET, ITER and DEMO. (orig.)

  20. Nuclear Analyses of Indian LLCB Test Blanket System in ITER

    Science.gov (United States)

    Swami, H. L.; Shaw, A. K.; Danani, C.; Chaudhuri, Paritosh

    2017-04-01

    Heading towards the Nuclear Fusion Reactor Program, India is developing Lead Lithium Ceramic Breeder (LLCB) tritium breeding blanket for its future fusion Reactor. A mock-up of the LLCB blanket is proposed to be tested in ITER equatorial port no.2, to ensure the overall performance of blanket in reactor relevant nuclear fusion environment. Nuclear analyses play an important role in LLCB Test Blanket System design & development. It is required for tritium breeding estimation, thermal-hydraulic design, coolants process design, radioactive waste management, equipment maintenance & replacement strategies and nuclear safety. The nuclear behaviour of LLCB test blanket module in ITER is predicated in terms of nuclear responses such as tritium production, nuclear heating, neutron fluxes and radiation damages. Radiation shielding capability of LLCB TBS inside and outside bio-shield was also assessed to fulfill ITER shielding requirements. In order to supports the rad-waste and safety assessment, nuclear activation analyses were carried out and radioactivity data were generated for LLCB TBS components. Nuclear analyses of LLCB TBS are performed using ITER recommended nuclear analyses codes (i.e. MCNP, EASY), nuclear cross section data libraries (i.e. FENDL 2.1, EAF) and neutronic model (ITER C-lite v.l). The paper describes a comprehensive nuclear performance of LLCB TBS in ITER.

  1. Tritium-assisted fusion breeders

    International Nuclear Information System (INIS)

    Greenspan, E.; Miley, G.H.

    1983-08-01

    This report undertakes a preliminary assessment of the prospects of tritium-assisted D-D fuel cycle fusion breeders. Two well documented fusion power reactor designs - the STARFIRE (D-T fuel cycle) and the WILDCAT (Cat-D fuel cycle) tokamaks - are converted into fusion breeders by replacing the fusion electric blankets with 233 U producing fission suppressed blankets; changing the Cat-D fuel cycle mode of operation by one of the several tritium-assisted D-D-based modes of operation considered; adjusting the reactor power level; and modifying the resulting plant cost to account for the design changes. Three sources of tritium are considered for assisting the D-D fuel cycle: tritium produced in the blankets from lithium or from 3 He and tritium produced in the client fission reactors. The D-D-based fusion breeders using tritium assistance are found to be the most promising economically, especially the Tritium Catalyzed Deuterium mode of operation in which the 3 He exhausted from the plasma is converted, by neutron capture in the blanket, into tritium which is in turn fed back to the plasma. The number of fission reactors of equal thermal power supported by Tritium Catalyzed Deuterium fusion breeders is about 50% higher than that of D-T fusion breeders, and the profitability is found to be slightly lower than that of the D-T fusion breeders

  2. Evaluation of compatibility of flowing liquid lithium curtain for blanket with core plasma in fusion reactors

    International Nuclear Information System (INIS)

    Deng Baiquan; Huang Jinhua; Peng Lilin; Yan Jiancheng

    2003-01-01

    A global model analysis of the compatibility of flowing liquid lithium curtain for blanket with core plasma has been performed. The relationships between the surface temperature of lithium curtain and mean effective plasma charges, fuel dilution and produced fusion power have been obtained. Results show that under normal circumstances, the evaporation of liquid lithium does not affect Z eff seriously, but affects fuel dilution and fusion power sensitively. The authors have investigated the relationships between the flow velocity of liquid lithium and its surface temperature rise based on the conditions of the option II of the fusion experimental breeder (FEB-E) design with reversed shear configuration and fairly high power density. The authors concluded that the effects of evaporation from liquid lithium curtain for FEB-E on plasma are negligible even if the flow velocity of liquid lithium is as low as 0.5 m·s -1 . Finally, the sputtering yield of liquid lithium saturated by hydrogen isotopes is briefly discussed

  3. Activation analysis and waste management for dual-cooled lithium lead breeder (DLL) blanket of the fusion power reactor FDS-II

    International Nuclear Information System (INIS)

    Chen Mingliang; Huang Qunying; Li Jingjing; Zeng Qin; Wu Yican

    2005-01-01

    The calculation and analysis on the activation levels of the different regions of dual-cooled lithium-lead (DLL) breeder blanket of FDS-II, including afterheat, dose rate, activity and biological hazard potential after shutdown, were carried out with the neutronics code system VisualBUS and multi-group working library HENDL1.0/MG. The safety and environment assessment of fusion power (SEAFP) strategy for the management of activated material is here applied to the DLL blanket, to define the suitable recycling (reuse of activated material) procedure and the possibility of clearance (declassification of the material with low activity level to non-active waste). (authors)

  4. Project Icarus: Nuclear Fusion Propulsion Concept Comparison

    Science.gov (United States)

    Stanic, M.

    Project Icarus will use nuclear fusion as the primary propulsion, since achieving breakeven is imminent within the next decade. Therefore, fusion technology provides confidence in further development and fairly high technological maturity by the time the Icarus mission would be plausible. Currently there are numerous (over 2 dozen) different fusion approaches that are simultaneously being developed around the World and it is difficult to predict which of the concepts is going to be the most successful one. This study tried to estimate current technological maturity and possible technological extrapolation of fusion approaches for which appropriate data could be found. Figures of merit that were assessed include: current technological state, mass and volume estimates, possible gain values, main advantages and disadvantages of the concept and an attempt to extrapolate current technological state for the next decade or two. Analysis suggests that Magnetic Confinement Fusion (MCF) concepts are not likely to deliver sufficient performance due to size, mass, gain and large technological barriers of the concept. However, ICF and PJMIF did show potential for delivering necessary performance, assuming appropriate techno- logical advances. This paper is a submission of the Project Icarus Study Group.

  5. Safety and environmental advantages of breeding blanketless fusion reactors

    International Nuclear Information System (INIS)

    Zucchetti, M.; Merola, M.; Matera, R.

    1994-01-01

    Next-step reactors will use DT cycle. However, environmental advantage will be the main chance for fusion to compete with other energy sources. The environmental problems of DT cycle due to tritium and neutron activation, are examined. Fusion commercial reactors could be based on alternative fuel cycles like D-He3. Advantages and disadvantages of this fuel cycle are outlined. All the technologies related with the self-breeding of tritium and the concept of breeding blanket itself may be not reactor relevant. In the frame of the Next-step studies, the potential advantages of intermediate DT devices without breeding blanket are discussed. Simplified design, lower cost, higher safety are the main ones. The problem of the source of tritium is examined. (author)

  6. Primary heat transfer loop design for the Cascade inertial confinement fusion reactor

    International Nuclear Information System (INIS)

    Murray, K.A.; McDowell, M.W.

    1984-05-01

    This study investigates a heat exchanger and balance of plant design to accompany the Cascade inertial confinement fusion reaction chamber concept. The concept uses solid Li 2 O or other lithium-ceramic granules, held to the wall of a rotating reaction chamber by centrifugal action, as a tritium breeding blanket and first wall protection. The Li 2 O granules enter the chamber at 800 K and exit at 1200 K after absorbing the thermal energy produced by the fusion process

  7. Analysis of in-situ tritium recovery from solid fusion-reactor blankets

    International Nuclear Information System (INIS)

    Smith, D.L.; Clemmer, R.G.; Jankus, V.Z.; Rest, J.

    1980-01-01

    The proposed concept for in-situ tritium recovery from the STARFIRE blanket involves circulation of a low pressure (approx. 0.05 MPa) helium through formed channels in the highly porous solid breeding material. Tritium generated within the grains must diffuse to the grain boundaries, migrate through the grain boundaries to the particle surface and then percolate through the packed bed to the helium purge channel. Highly porous α-LiAlO 2 with a bimodal pore distribution is proposed for the breeding material to facilitate the tritium release

  8. A cross-section sensitivity and uncertainty analysis on fusion reactor blankets with SAD/SED effect

    International Nuclear Information System (INIS)

    Furuta, Kazuo; Oka, Yoshiaki; Kondo, Shunsuke

    1986-01-01

    A cross-section sensitivity and uncertainty analysis on four types of fusion reactor blankets has been performed, based on cross-section covariance matrices. The design parameters investigated in the analysis include the tritium breeding ratio, the neutron heating and the fast neutron leakage flux from the inboard shield. Uncertainities in Secondary Angular Distribution (SAD) and Secondary Energy Distribution (SED) of scattered neutrons have been considered for lithium. The collective standard deviation, due to uncertainties in the evaluated cross-section data presently available, is 2-4% in the tritium breeding ratio, 2-3% in the neutron heating, and 10-20% in the fast neutron leakage flux. Contributions from SAD/SED uncertainties are significant for some parameters, such as those investigated in the present study. SAD/SED uncertainties should be considered in the sensitivity and uncertainty analysis on nuclear design of fusion reactors. (orig.)

  9. Economic evaluation of the Blanket Comparison and Selection Study

    International Nuclear Information System (INIS)

    Waganer, L.M.

    1985-01-01

    The economic impact of employing the highly ranked blankets in the Blanket Comparison and Selection Study (BCSS) was evaluated in the context of both a tokamak and a tandem mirror power reactor (TMR). The economic evaluation criterion was determined to be the cost of electricity. The influencing factors that were considered are the direct cost of the blankets and related systems; the annual cost of blanket replacement; and the performance of the blanket, heat transfer, and energy conversion systems. The technical and cost bases for comparison were those of the STARFIRE and Mirror Advanced Reactor Study conceptual design power plants. The economic evaluation results indicated that the nitrate-salt-cooled blanket concept is an economically attractive concept for either reactor type. The water-cooled, solid breeder blanket is attractive for the tokamak and somewhat less attractive for the TMR. The helium-cooled, liquidlithium breeder blanket is the least economically desirable of higher ranked concepts. The remaining self-cooled liquid-metal and the helium-cooled blanket concepts represent moderately attractive concepts from an economic standpoint. These results are not in concert with those found in the other BCSS evaluation areas (engineering feasibility, safety, and research and development (R and D) requirements). The blankets faring well economically had generally lower cost components, lower pumping power requirements, and good power production capability. On the other hand, helium- and lithium-cooled systems were preferred from the standpoints of safety, engineering feasibility, and R and D requirements

  10. Energy by nuclear fusion

    International Nuclear Information System (INIS)

    Buende, R.; Daenner, W.; Herold, H.; Raeder, J.

    1976-12-01

    This report reviews the state of knowledge in a number of fields of fusion research up to autumn 1976. Section 1 gives a very brief presentation of the elementary fusion reactions, the energies delivered by them and the most basic energy balances leading to Lawson-type diagrams. Section 2 outlines the reserves and cost of lithium and deuterium, gives estimates of the total energy available from DT fusion and comments on production technology, availlability and handling of the fuels. In section 3 a survey is given of the different concepts of magnetic confinement (stellarators, tokamaks, toroidal pinches, mirror machines, two-component plasmas), of confinement by walls, gas blankets and imploding liners and, finally, of the concepts of interial confinement (laser fusion, beam fusion). The reactors designed or outlined on the basis of the tokamak, high-β, mirror, and laser fusion concepts are presented in section 4, which is followed in section 5 by a discussion of the key problems of fusion power plants. The present-day knowledge of the cost structure of fusion power plants and the sensitivity of this structure with respect to the physical and technical assumptions made is analysed in section 6. Section 7 and 8 treat the aspects of safety and environment. The problems discussed include the hazard potentials of different designs (radiological, toxicological, and with respect to stored energies), release of radioactivity, possible kinds of malfunctioning, and the environmental impact of waste heat, radiation and radioactive waste (orig.) [de

  11. Nuclear design of a very-low-activation fusion reactor

    International Nuclear Information System (INIS)

    Cheng, E.T.; Hopkins, G.R.

    1983-06-01

    An investigation was conducted to study the nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE tokamak reactor design

  12. (D,T) Driven thorium hybrid blankets

    International Nuclear Information System (INIS)

    Al-Kusayer, T.A.; Khan, S.; Sahin, S.

    1983-01-01

    Recently, a project has started, with the aim to establish the neutronic performance and the basic design of an experimental fusionfission (hybrid) reactor facility, called AYMAN, in cylinderical geometry. The fusion reactor will have to be simulated by a (D,T) neutron generator. Fissile and fertile fuel will have to surround the neutron generator as a cylinderical blanket to simulate the boundary conditions of the hybrid blanket in a proper way. This geometry is consistent with Tandem Mirror Hybrid Blanket design and with most of the ICF blanket designs. A similar experimental installation will become operational around 1984 at the Swiss Federal Institute of Technology in Lausanne, Switzerland known under the project LOTUS. Due to the limited dimensions of the experimental cavity of the LOTUS-hybrid reactor, the LOTUS blankets have to be designed in plane geometry. Also, the bulky form of the Haefely neutron generator of the LOTUS facility obliges one to design a blanket in the plane geometry. This results in a vacuum left boundary conditions for the LOTUS blanket. The importance of a reflecting left boundary condition on the overall neutronic performance of a hybrid blanket has been analyzed in previous work in detail

  13. Phase IIC experiments of the USDOE/JAERI collaborative program on fusion blanket neutronics

    International Nuclear Information System (INIS)

    Youssef, M.Z.

    1992-12-01

    Effort in Phase IIC of the US/JAERI Collaborative Program on Fusion Neutronics was focused on performing integral experiments and post analyses on blankets that include the actual heterogeneities found in several blanket designs. Two geometrical arrangements were considered for the blanket assembly, namely multi-layers of Li 2 O and beryllium in an edge-on, horizontally alternating configuration for a front depth of 30 cm, followed by the Li 2 O breeding zone (Be edge-on, BEO, experiment), and vertical water coolant channels arrangement (WCC experiment). The objectives are to examine the accuracy of predicting tritium production. In the BEO system, it was shown that, with the zonal method to measure tritium production from natural lithium (Tn), the calculated-to-measured values (C/E) are 0.95-1.05 (JAERI) and 0.98-0.9 (U.S.), which is consistent with the results obtained in other Phases of the Program (Phases IIA and IIb)). In the WCC experiment, there is a noticeable change in C/E values for T 6 near the coolant channels where steep gradients in T 6 production are observed. The C/E values obtained with the Li-foil detectors are on the average closer to unity than those obtained by the Li-glass method. As for T 7 , the values obtained by NE213 method are within ±15% in JAERI's calculations, but larger values (∼20-25%) are obtained in the U.S. calculations due to the differences of cross-sections data files. Around heterogeneities, the prediction accuracy for T 7 is better than for T 6 . (J.P.N.)

  14. Collection of Summaries of reports on result of research at basic experiment device for nuclear fusion reactor blanket design, 1994

    International Nuclear Information System (INIS)

    1995-07-01

    The development of nuclear fusion reactors reached such stage that the generation of fusion power output comparable with the input power into core plasma is possible. At present, the engineering design of the international thermonuclear fusion experimental reactor, ITER, is advanced by the cooperation of Japan, USA, Europe and Russia, aiming at the start of operation at the beginning of 21st century. This meeting for reporting the results has been held every year, and this time, it was held on May 19, 1995 at University of Tokyo with the theme ''The interface properties of fusion reactor materials and the control of particle transport''. About 50 participants from academic, governmental and industrial circles discussed actively on the theme. Three lectures on the topics of fusion reactor engineering and materials and seven lectures on the basic experiment of fusion reactor blanket design related to the next period project were given at the meeting. (K.I.)

  15. Blanket testing in NET

    International Nuclear Information System (INIS)

    Chazalon, M.; Daenner, W.; Libin, B.

    1989-01-01

    The testing stages in NET for the performance assessment of the various breeding blanket concepts developed at the present time in Europe for DEMO (LiPb and ceramic blankets) and the requirements upon NET to perform these tests are reviewed. Typical locations available in NET for blanket testing are the central outboard segments and the horizontal ports of in-vessel sectors. These test positions will be connectable with external test loops. The number of test loops (helium, water, liquid metal) will be such that each major class of blankets can be tested in NET. The test positions, the boundary conditions and the external test loops are identified and the requirements for test blankets are summarized (author). 6

  16. Trends and developments in magnetic confinement fusion reactor concepts

    International Nuclear Information System (INIS)

    Baker, C.C.; Carlson, G.A.; Krakowski, R.A.

    1981-01-01

    An overview is presented of recent design trends and developments in reactor concepts for magnetic confinement fusion. The paper emphasizes the engineering and technology considerations of commercial fusion reactor concepts. Emphasis is placed on reactors that operate on the deuterium/tritium/lithium fuel cycle. Recent developments in tokamak, mirror, and Elmo Bumpy Torus reactor concepts are described, as well as a survey of recent developments on a wide variety of alternate magnetic fusion reactor concepts. The paper emphasizes recent developments of these concepts within the last two to three years

  17. An alternative high breeding radio design concept with liquid breeder for the NET/INTOR blanket

    International Nuclear Information System (INIS)

    Avanzini, P.G.; Cardella, A.; Raia, G.; Rosatelli, F.; Farfaletti-Casali, F.

    1984-01-01

    A liquid lithium tubolar breeding blanket concept has been studied which could be applied to NET/INTOR or other next generation Tokamak reactors. A high breeding ratio can be achieved using a moderator medium, without enriching lithium in the Li6 percentage. Preliminary neutron and gamma flux and thermohydraulics calculations have shown the feasibility and efficiency of our concept. (author)

  18. Common views of potentially attractive fusion concepts

    International Nuclear Information System (INIS)

    Piet, S.J.

    1986-01-01

    Fusion is viewed through three windows to help determine what constitutes a very attractive fusion concept. These windows are economics, maintenance and reliability, and safety and environment. Achievement of many desired features cannot yet be quantified. Although these differing perspectives can lead to some conflicting desires, five common desired features are apparent - (a) minimum failure rates, (b) minimum failure effects, (c) minimum complexity, (d) minimum short-term radioactivity, and (e) maximum mass power density. Some innovative fusion concepts are briefly examined in the light of these commonalities

  19. Blanket design study for a Commercial Tokamak Hybrid Reactor (CTHR)

    International Nuclear Information System (INIS)

    Chapin, D.L.; Green, L.; Lee, A.Y.; Culbert, M.E.; Kelly, J.L.

    1979-09-01

    The results are presented of a study on two blanket design concepts for application in a Commercial Tokamak Hybrid Reactor (CTHR). Both blankets operate on the U-Pu cycle and are designed to achieve tritium self-sufficiency while maximizing the fissile fuel production within thermal and mechanical design constraints. The two blanket concepts that were evaluated were: (1) a UC fueled, stainless steel clad and structure, helium cooled blanket; and (2) a UO 2 fueled, zircaloy clad, stainless steel structure, boiling water cooled blanket. Two different tritium breeding media, Li 2 O and LiH, were evaluated for use in both blanket concepts. The use of lead as a neutron multiplier or reflector and graphite as a reflector was also considered for both blankets

  20. European development of He-cooled divertors for fusion power plants

    International Nuclear Information System (INIS)

    Norajitra, P.; Giniyatulin, R.; Kuznetsov, V.; Mazul, I.; Ovchinnikov, I.; Ihli, T.; Janeschitz, G.; Krauss, W.; Kruessmann, R.; Karditsas, P.; Maisonnier, D.; Sardain, P.; Nardi, C.; Papastergiou, S.; Pizzuto, A.

    2005-01-01

    Helium-cooled divertor concepts are considered suitable for use in fusion power plants for safety reasons, as they enable the use of a coolant compatible with any blanket concept, since water would not be acceptable e.g. in connection with ceramic breeder blankets using large amounts of beryllium. Moreover, they allow for a high coolant exit temperature for increasing the efficiency of the power conversion system. Within the framework of the European power plant conceptual study (PPCS), different helium-cooled divertor concepts based on different heat transfer mechanisms are being investigated at ENEA Frascati, Italy, and Forschungszentrum Karlsruhe, Germany. They are based on a modular design which helps reduce thermal stresses. The design goal is to withstand a high heat flux of about 10-15 MW/m 2 , a value which is considered relevant to future fusion power plants to be built after ITER. The development and optimisation of the divertor concepts require an iterative design approach with analyses, studies of materials and fabrication technologies, and the execution of experiments. These issues and the state of the art of divertor development shall be the subject of this report. (author)

  1. A conceptual design of LIB fusion reactor: UTLIF(2)

    International Nuclear Information System (INIS)

    Madarame, Haruki; Kondo, Shunsuke; Iwata, Shuichi; Oka, Yoshiaki; Miya, Kenzo.

    1984-01-01

    UTLIF(2) is a conceptual design study on a light ion beam driven fusion reactor based on a concept of rod-bundle blanket. Survivability and maintainability of the first wall and the blanket are regarded as of major importance in the design. The blanket rod is composed of a thick tube which has enough stiffness, a thin wrapping wall which receives high heat flux, and liquid lithium which breeds tritium and removes generated heat. The rod can be pulled out from the outside of the reactor vessel, hence the replacement is very easy. Nuclear and thermal analysis have been made and the performance of the reactor has been shown to be satisfactory. (author)

  2. Heat transfer in the lithium-cooled blanket of a pulsed fusion reactor

    International Nuclear Information System (INIS)

    Cort, G.E.; Krakowski, R.A.

    1978-01-01

    The transient temperature distribution in the lithium-cooled blanket of a pulsed fusion reactor has been calculated using a finite-element heat-conduction computer program. An auxiliary program was used to predict the coolant transient velocity in a network of parallel and series flow passages with constant driving pressure and varying magnetic field. The coolant velocity was calculated by a Runge-Kutta numerical integration of the conservation equations. The lithium coolant was part of the finite-element heat-conduction mesh with the velocity terms included in the total matrix. The matrix was solved implicitly at each time step for the nodal point temperatures. Slug flow was assumed in the coolant passages and the Boussinesq analogy was used to calculate turbulent heat transfer when the magnetic field was not present

  3. Controlled nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, B.

    1982-01-01

    A fusion power generating device is disclosed having a relatively small and inexpensive core region which may be contained within an energy absorbing blanket region. The fusion power core region contains apparatus of the toroidal type for confining a high density plasma. The fusion power core is removable from the blanket region and may be disposed and/or recycled for subsequent use within the same blanket region. Thermonuclear ignition of the plasma is obtained by feeding neutral fusible gas into the plasma in a controlled manner such that charged particle heating produced by the fusion reaction is utilized to bootstrap the device to a region of high temperatures and high densities wherein charged particle heating is sufficient to overcome radiation and thermal conductivity losses. The high density plasma produces a large radiation and particle flux on the first wall of the plasma core region thereby necessitating replacement of the core from the blanket region from time to time. A series of potentially disposable and replaceable central core regions are disclosed for a large-scale economical electrical power generating plant

  4. Development of welding technologies for the manufacturing of European Tritium Breeder blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Poitevin, Y., E-mail: yves.poitevin@f4e.europa.eu [Fusion for Energy (F4E), Barcelona (Spain); Aubert, Ph. [CEA Saclay, DEN/DM2S and DEN/DMN, F-91191 Gif-sur-Yvette (France); Diegele, E. [Fusion for Energy (F4E), Barcelona (Spain); Dinechin, G. de [CEA Saclay, DEN/DM2S and DEN/DMN, F-91191 Gif-sur-Yvette (France); Rey, J. [Institut fuer Neutronenphysik und Reaktortechnik, FZK, Karlsruhe (Germany); Rieth, M. [Institut fuer Materialforschung I, FZK, Karlsruhe (Germany); Rigal, E. [CEA Grenoble, DRT/DTH, F-38000 Grenoble (France); Weth, A. von der [Institut fuer Neutronenphysik und Reaktortechnik, FZK, Karlsruhe (Germany); Boutard, J.-L. [European Fusion Development Agreement (EFDA), Garching (Germany); Tavassoli, F. [CEA Saclay, DEN/DM2S and DEN/DMN, F-91191 Gif-sur-Yvette (France)

    2011-10-01

    Europe has developed two reference Tritium Breeder Blankets concepts for a DEMO fusion reactor: the Helium-Cooled Lithium-Lead and the Helium-Cooled Pebble-Bed. Both are using the reduced-activation ferritic-martensitic EUROFER-97 steel as structural material and will be tested in ITER under the form of test blanket modules. The fabrication of their EUROFER structures requires developing welding processes like laser, TIG, EB and diffusion welding often beyond the state-of-the-art. The status of European achievements in this area is reviewed, illustrating the variety of processes and key issues behind retained options, in particular with respect to metallurgical aspects and mechanical properties. Fabrication of mock-ups is highlighted and their characterization and performances with respect to design requirements are reviewed.

  5. Enhanced fuel production in thorium/lithium hybrid blankets utilizing uranium multipliers

    International Nuclear Information System (INIS)

    Pitulski, R.H.

    1979-10-01

    A consistent neutronics analysis is performed to determine the effectiveness of uranium bearing neutron multiplier zones on increasing the production of U 233 in thorium/lithium blankets for use in a tokamak fusion-fission hybrid reactor. The nuclear performance of these blankets is evaluated as a function of zone thicknesses and exposure by using the coupled transport burnup code ANISN-CINDER-HIC. Various parameters such as U 233 , Pu 239 , and H 3 production rates, the blanket energy multiplication, isotopic composition of the fuels, and neutron leakages into the various zones are evaluated during a 5 year (6 MW.y.m -2 ) exposure period. Although the results of this study were obtained for a tokomak magnetic fusion device, the qualitative behavior associated with the use of the uranium bearing neutron multiplier should be applicable to all fusion-fission hybrids

  6. Conception of divertorless tokamak reactor with turbulent plasma blanket

    International Nuclear Information System (INIS)

    Nedospasov, A.V.; Tokar, M.Z.

    1980-01-01

    The results of the calculations presented here demonstrate that, with technically reasonable degree of the magnetic field stochastisation, the turbulent plasma blanket can take the place of a divertor. It performs the three main functions of the divertor: (a) the exhaust of the helium and unburned fuel; (b) weakening of the fast particle flux to the wall surface; and (c) essential reduction of the impurity content in the active zone of the reactor. Taking into account that plasma flows to the first wall along field lines, we may figuratively say that the first wall plays the role of a divertor in our conception. (orig.)

  7. Proceedings of the eleventh international workshop on ceramic breeder blanket interactions

    International Nuclear Information System (INIS)

    Enoeda, Mikio

    2004-07-01

    This report is the Proceedings of 'the Eleventh International Workshop on Ceramic Breeder Blanket Interactions' which was held as a workshop on ceramic breeders Under the IEA Implementing Agreement on the Nuclear Technology of Fusion Reactors, and the Japan-US Fusion Collaboration Framework. This workshop was held in Tokyo, Japan on December 15-17, 2003. About thirty experts from China, EU, Japan, Korea, Latvia, Russia and USA attended the workshop. The scope of the workshop included 1) evolutions in ceramic breeder blanket design, 2) progress in ceramic breeder material development, 3) irradiation testing, 4) breeder material properties, 5) out-of-pile pebble bed experiment, 6) modeling of the thermal, mechanical and tritium transfer behavior of pebble beds and 7) interfacing issues of solid breeder blanket. In the workshop, information exchange was performed for designs of solid breeder blankets and test blankets in EU, Russia and Japan, recent results of irradiation tests, HICU, EXOTIC-8 and the irradiation tests by IVV-2M, modeling study on tritium release behavior of Li 2 TiO 3 and so on, fabrication technology developments and characterization of the Li 2 TiO 3 and Li 4 SiO 4 pebbles, research on measurements and modeling of thermo-mechanical behaviors of Li 2 TiO 3 and Li 4 SiO 4 pebbles, and interfacing issues, such as, fabrication technology for blanket box structure, neutronics experiments of blanket mockups by fusion neutron source and tritium recovery system. The 26 of the presented papers are indexed individually. (J.P.N.)

  8. Advanced fusion concepts: project summaries

    International Nuclear Information System (INIS)

    1980-12-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac

  9. Tritium systems for the TITAN reversed-field pinch fusion reactor design

    International Nuclear Information System (INIS)

    Martin, R.C.; Sze, D.K.; Bartlit, J.R.; Gierszewski, P.J.

    1987-01-01

    Tritium systems for the TITAN reversed-field pinch (RFP) fusion reactor study have been designed for two blanket concepts. The TITAN-1 design uses a self-cooled liquid-lithium blanket. The TITAN-2 design uses a self-cooled aqueous-solution blanket, with lithium nitrate dissolved in the water for tritium breeding. Tritium inventory, release, and safety margins are within regulatory limits, at acceptable costs. Major issues for TITAN-1 are plasma-driven permeation, the need for a secondary coolant loop, tritium storage requirements, redundancy in the plasma exhaust system, and minimal isotopic distillation of the exhaust. TITAN-1 fuel cleanup, reprocessing, and air detritiation systems are described in detail

  10. Thermochemical hydrogen production based on magnetic fusion

    International Nuclear Information System (INIS)

    Krikorian, O.H.; Brown, L.C.

    1982-01-01

    Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO 3 decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars

  11. Mechanical and thermal design of hybrid blankets

    International Nuclear Information System (INIS)

    Schultz, K.R.

    1978-01-01

    The thermal and mechanical aspects of hybrid reactor blanket design considerations are discussed. This paper is intended as a companion to that of J. D. Lee of Lawrence Livermore Laboratory on the nuclear aspects of hybrid reactor blanket design. The major design characteristics of hybrid reactor blankets are discussed with emphasis on the areas of difference between hybrid reactors and standard fusion or fission reactors. Specific examples are used to illustrate the design tradeoffs and choices that must be made in hybrid reactor design. These examples are drawn from the work on the Mirror Hybrid Reactor

  12. INDRA: a program system for calculating the neutronics and photonics characteristics of a fusion reactor blanket

    International Nuclear Information System (INIS)

    Perry, R.T.; Gorenflo, H.; Daenner, W.

    1976-01-01

    INDRA is a program system for calculating the neutronics and photonics characteristics of fusion reactor blankets. It incorporates a total of 19 different codes and 5 large data libraries. 10 of the codes are available from the code distribution organizations. Some of them, however, have been slightly modified in order to permit a convenient transfer of information from one program module to the next. The remaining 9 programs have been prepared by the authors to complete the system with respect to flexibility and to facilitate the handling of the results. (orig./WBU) [de

  13. Progress on the European Safety and Environmental Assessment of Fusion Power (SEAFP)

    International Nuclear Information System (INIS)

    Cook, I.

    1994-01-01

    The Safety and Environmental Assessment of Fusion Power (SEAFP) project was set up by the European Community Fusion Programme in response to recommendations made by a high level Fusion Programme Evaluation Board. The Evaluation Board stated that fusion potentially possesses ''inherent environmental and safety advantages over all current alternatives for base load electricity generation'', but that a ''convincing demonstration'' of these potential advantages is necessary. SEAFP is undertaken by three main participants: the NET Team, The Euratom/UKAEA Association, and European industry. Other EC fusion laboratories also participate. The work embraces the outline design of fusion power stations, the safety and environmental assessment of those designs, and interactions between design and assessment to improve the design. The project began in April 1992 and will report in December 1994. In the first year of the project, five candidate blanket concepts were developed in parallel. Other aspects of design were developed as far as possible independently of the blanket designs. Assessments were made of the technical merits of the candidate designs, and scoping calculations were used to provide preliminary assessments of their accident and waste management characteristics. Accident identification studies were used to select the bounding sequences to be analysed later in detail. Targets for safety and environmental performance were developed. This phase of the study culminated, in August 1993, in the selection of two plant models, one based on a water/martensitic steel/lithium-lead blanket, the other based on a helium/vanadium alloy/lithium oxide blanket, to be developed and assessed in more detail. Other design variants will be assessed through sensitivity studies. ((orig.))

  14. Tritium transport analysis for CFETR WCSB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn; Yang, Wanli; Li, Yuanjie; Ge, Zhihao; Nie, Xingchen; Gao, Zhongping

    2017-01-15

    Highlights: • A simplified tritium transport model for CFETR WCSB blanket was developed. • Tritium transport process in CFETR WCSB blanket was analyzed. • Sensitivity analyses of tritium transport parameters were carried out. - Abstract: Water Cooled Solid Breeder (WCSB) blanket was put forward as one of the breeding blanket candidate schemes for Chinese Fusion Engineering Test Reactor (CFETR). In this study, a simplified tritium transport model was developed. Based on the conceptual engineering design, neutronics and thermal-hydraulic analyses of CFETR WCSB blanket, tritium transport process was analyzed. The results show that high tritium concentration and inventory exist in primary water loop and total tritium losses exceed CFETR limits under current conditions. Conducted were sensitivity analyses of influential parameters, including tritium source, temperature, flow-rate capacity and surface condition. Tritium performance of WCSB blanket can be significantly improved under a smaller tritium impinging rate, a larger flow-rate capacity or a better surface condition. This work provides valuable reference for the enhancement of tritium transport behavior in CFETR WCSB blanket.

  15. Neutron induced displacement damage in beryllium in the blanket of a (d,t)-fusion reactor

    International Nuclear Information System (INIS)

    Hermanutz, D.

    1995-09-01

    Beryllium is a favoured candidate for a neutron multiplier in solid breeder blankets of fusion reactors. This is mainly due to its low (n, 2n)-reaction threshold and because of its good thermal and mechanical properties. Its behaviour under intense neutron irradiation, however, is a crucial issue for its use in future fusion reactors. Displacement damage in beryllium so far has been calculated both with data related and methodological deficiencies. First of all, there is a need to have accurate cross-section data in order to obtain reliable spectra of primary knock-on atoms (PKA's). Furthermore, there are principal restrictions of the NRT-model in general used to calculate secondary displacements initiated by PKA's. The underlying theory of damage-energy (part of kinetic energy of PKA transferred elastically to matrix atoms) according to Lindhard is strictly valid only for medium and heavy mass ions with moderate energies in targets of the same element. In this work improved damage cross-sections and displacement rates (dpa/s) in beryllium have been calculated based on cross-section data from ENDF/B-VI (with a significantly improved (n, 2n)-evaluation) and on an appropriate treatment of damage-energy that is suitable for fusion relevant damage of light mass materials. ''This work has been performed in the framework of the Nuclear Fusion Project of the Forschungszentrum Karlsruhe and is supported by the European Communities within the European Fusion Technology Program''. (orig.)

  16. Advanced Fusion Concepts project summaries. FY 1983

    International Nuclear Information System (INIS)

    1983-06-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate studients, graduates, other professional staff, and recent publications. The individual project summaries are prepared by the principle investigators in collaboration with the Advanced Fusion Concepts (AFC) Branch. In addition to the project summaries, statements of branch objectives, and budget summaries are also provided

  17. Enhanced fuel production in thorium/lithium hybrid blankets utilizing uranium multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Pitulski, R.H.

    1979-10-01

    A consistent neutronics analysis is performed to determine the effectiveness of uranium bearing neutron multiplier zones on increasing the production of U/sup 233/ in thorium/lithium blankets for use in a tokamak fusion-fission hybrid reactor. The nuclear performance of these blankets is evaluated as a function of zone thicknesses and exposure by using the coupled transport burnup code ANISN-CINDER-HIC. Various parameters such as U/sup 233/, Pu/sup 239/, and H/sup 3/ production rates, the blanket energy multiplication, isotopic composition of the fuels, and neutron leakages into the various zones are evaluated during a 5 year (6 MW.y.m/sup -2/) exposure period. Although the results of this study were obtained for a tokomak magnetic fusion device, the qualitative behavior associated with the use of the uranium bearing neutron multiplier should be applicable to all fusion-fission hybrids.

  18. Advanced concepts in the United States fusion program

    International Nuclear Information System (INIS)

    Dove, W.F.

    1985-01-01

    The goal of the magnetic fusion program is to establish the scientific and technological base for fusion energy. Development of a variety of magnetic confinement systems is essential to achieving that goal. The role of the advanced concepts program is to conduct experimental investigations of confinement concepts other than the tokamaks and tandem mirror concepts. The present advanced concepts program consists of the reversed-field-pinch (RFP), the spheromak and the field-reversed configuration (FRC). Significant new experiments in the RFP and FRC concepts have been approved and are described

  19. Blanket comparison and selection study. Volume II

    International Nuclear Information System (INIS)

    1983-10-01

    This volume contains extensive data for the following chapters: (1) solid breeder tritium recovery, (2) solid breeder blanket designs, (3) alternate blanket concept screening, and (4) safety analysis. The following appendices are also included: (1) blanket design guidelines, (2) power conversion systems, (3) helium-cooled, vanadium alloy structure blanket design, (4) high wall loading study, and (5) molten salt safety studies

  20. High temperature blankets for the production of synthetic fuels

    International Nuclear Information System (INIS)

    Powell, J.R.; Steinberg, M.; Fillo, J.; Makowitz, H.

    1977-01-01

    The application of very high temperature blankets to improved efficiency of electric power generation and production of H 2 and H 2 based synthetic fuels is described. The blanket modules have a low temperature (300 to 400 0 C) structure (SS, V, Al, etc.) which serves as the vacuum/coolant pressure boundary, and a hot (>1000 0 C) thermally insulated interior. Approximately 50 to 70% of the fusion energy is deposited in the hot interior because of deep penetration by high energy neutrons. Separate coolant circuits are used for the two temperature zones: water for the low temperature structure, and steam or He for the hot interior. Electric generation efficiencies of approximately 60% and H 2 production efficiencies of approximately 50 to 70%, depending on design, are projected for fusion reactors using these high temperature blankets

  1. Thorium--uranium cycle ICF hybrid concept

    International Nuclear Information System (INIS)

    Frank, T.G.

    1978-01-01

    The results of preliminary studies of a laser-driven fusion-fission hybrid concept utilizing the 232 Th- 233 U breeding cycle are reported. Neutron multiplication in the breeding blanket is provided by a region containing 238 UO 2 and the equilibrium concentration of 239 PuO 2 . Established fission reactor technology is utilized to determine limits on operating conditions for high-temperature fuels and structures. The implications of nonproliferation policies for the operation of fusion-fission hybrid reactors are discussed

  2. Preconceptual design and analysis of a solid-breeder blanket test in an existing fission reactor

    International Nuclear Information System (INIS)

    Deis, G.A.; Hsu, P.Y.; Watts, K.D.

    1983-01-01

    Preconceptual design and analysis have been performed to examine the capabilities of a proposed fission-based test of a water-cooled Li 2 O blanket concept. The mechanical configuration of the test piece is designed to simulate a unit cell of a breeder-outside-tube concept. This test piece will be placed in a fission test reactor, which provides an environment similar to that in a fusion reactor. The neutron/gamma flux from the reactor produces prototypical power density, tritium production rates, and operating temperatures and stresses. Steady-state tritium recovery from the test piece can be attained in short-duration (5-to-6-day) tests. The capabilities of this test indicate that fission-based testing can provide important near-term engineering information to support the development of fusion technology

  3. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    International Nuclear Information System (INIS)

    Powers, J.

    2008-01-01

    looking at fast ignition and hot spot ignition fusion options are documented, along with limited scoping studies performed to investigate other options of interest that surfaced during the main design effort. Lastly, side studies that were not part of the main design effort but may alter future work performed on LIFE engine designs are shown. The majority of all work reported in this document was performed during the Molten Salt Fast Ignition Moderator Study (MSFIMS) which sought to optimize the amount of moderator mixed into the molten salt region in order to produce the most compelling design. The studies in this report are of a limited scope and are intended to provide a preliminary neutronics analysis of the design concepts described herein to help guide decision processes and explore various options that a LIFE engine with a molten salt blanket might enable. None of the designs shown in this report, even reference cases selected for detailed description and analysis, have been fully optimized. The analyses were performed primarily as a neutronics study, though some consultation was made regarding thermal-hydraulic and structural concerns during both scoping out an initial model and subsequent to identifying a neutronics-based reference case to ensure that the design work contained no glaring mechanical or thermal issues that would preclude its feasibility. Any analyses and recommendations made in this report are either primarily or solely from the point of view of LIFE neutronics and ignore other fundamental issues related to molten salt fuel blankets such as chemical processing feasibility and political feasibility of a molten salt system

  4. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J

    2008-10-23

    . Preliminary design studies looking at fast ignition and hot spot ignition fusion options are documented, along with limited scoping studies performed to investigate other options of interest that surfaced during the main design effort. Lastly, side studies that were not part of the main design effort but may alter future work performed on LIFE engine designs are shown. The majority of all work reported in this document was performed during the Molten Salt Fast Ignition Moderator Study (MSFIMS) which sought to optimize the amount of moderator mixed into the molten salt region in order to produce the most compelling design. The studies in this report are of a limited scope and are intended to provide a preliminary neutronics analysis of the design concepts described herein to help guide decision processes and explore various options that a LIFE engine with a molten salt blanket might enable. None of the designs shown in this report, even reference cases selected for detailed description and analysis, have been fully optimized. The analyses were performed primarily as a neutronics study, though some consultation was made regarding thermal-hydraulic and structural concerns during both scoping out an initial model and subsequent to identifying a neutronics-based reference case to ensure that the design work contained no glaring mechanical or thermal issues that would preclude its feasibility. Any analyses and recommendations made in this report are either primarily or solely from the point of view of LIFE neutronics and ignore other fundamental issues related to molten salt fuel blankets such as chemical processing feasibility and political feasibility of a molten salt system.

  5. Neutronic design and analysis on dual-cooled waste transmutation blanket for the fusion driven sub-critical system

    International Nuclear Information System (INIS)

    Zheng Shanliang; Wu Yican; Gao Chunjing; Xu Dezheng; Li Jingjing; Zhu Xiaoxiang

    2004-01-01

    Neutronics design and analysis of dual-cooled multi-functional waste transmutation blanket (DWTB) for the fusion driven sub-critical system (FDS) are performed to ensure the system be able to meet the requirements of fuel-sufficiency and more waste transmutation ratio with low initial loading fuel inventory, which is based on 1-D burn-up calculations with home-developed code Visual BUS and the multi-group (175 neutron groups-42 Gamma groups coupled) data library HENDL1.0/MG (Hybrid Evaluated Nuclear Data Library). (authors)

  6. The requirements for processing tritium recovered from liquid lithium blankets: The blanket interface

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Finn, P.A.; Greenwood, L.R.; Grimm, T.L.; Sze, D.K.; Bartlit, J.R.; Anderson, J.L.; Yoshida, H.; Naruse.

    1988-03-01

    We have initiated a study to define a blanket processing mockup for Tritium Systems Test Assembly. Initial evaluation of the requirements of the blanket processing system have been started. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. The key discoveries are: the throughput of the blanket gas stream (including the helium carrier gas) is about two orders of magnitude higher than the plasma exhaust stream;the protium to tritium ratio is about 1, the deuterium to tritium ratio is about 0.003;the corrosion chemicals are dominated by halides;the radionuclides are dominated by C-14, P-32, and S-35;their is high level of nitrogen contamination in the blanket stream. 77 refs., 6 figs., 13 tabs

  7. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. 12-month progress report, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Schultz, K.R.; Baxi, C.B.; Rao, R.

    1976-01-01

    This report presents the conceptual design and preliminary feasibility assessment for the hybrid blanket and power conversion system of the Mirror Hybrid Fusion-Fission Reactor. Existing gas-cooled fission reactor technology is directly applicable to the Mirror Hybrid Reactor. There are a number of aspects of the present conceptual design that require further design and analysis effort. The blanket and power conversion system operating parameters have not been optimized. The method of supporting the blanket modules and the interface between these modules and the primary loop helium ducting will require further design work. The means of support and containment of the primary loop components must be studied. Nevertheless, in general, the conceptual design appears quite feasible

  8. Engineering studies of tritium recovery from CTR blankets and plasma exhaust

    International Nuclear Information System (INIS)

    Watson, J.S.

    1975-01-01

    Engineering studies on tritium handling problems in fusion reactors have included conceptual and experimental studies of techniques for recovery of tritium bred in the reactor blanket and conceptual designs for recovery and processing of tritium from plasma exhausts. The process requirements and promising techniques for the blanket system depend upon the materials used for the blanket, coolant, and structure and on the operating temperatures. Process requirements are likely to be set in some systems by allowable loss rates to the steam system or by inventory considerations. Conceptual studies have also been made for tritium handling equipment for fueling, recovery, and processing in plasma recycle systems of fusion reactors, and a specific design has been prepared for ''near-term'' Tokamak experiments. (auth)

  9. Progress on DEMO blanket attachment concept with keys and pins

    International Nuclear Information System (INIS)

    Vizvary, Zsolt; Iglesias, Daniel; Cooper, David; Crowe, Robert; Riccardo, Valeria

    2015-01-01

    Highlights: • DEMO blanket attachment system with keys and pins (without using bolts). • Blanket segments are preloaded by progressively designed springs. • Blanket back plate flexibility has a major impact on spring design. • Mechanical analysis of other components indicates no unresolvable issues. • Thermal analysis indicates acceptable temperatures for the support system. - Abstract: The blanket attachment has to cope with gravity, thermal and electromagnetic loads, also it has to be installed and serviced by remote handling. Pre-stressed components suffer from stress relaxation in irradiated environments such as DEMO. To circumvent this problem pre-stressed component should be either avoided or shielded, and where possible keys and pins should be used. This strategy has been proposed for the DEMO multi-module segments (MMS). The blanket segments are held by two tapered keys each, designed to allow thermal expansions while providing contact with the vacuum vessel and to resist the poloidal and radial moments the latter being dominant at 9.1 MNm inboard and 15 MNm outboard. On the top of the blanket segment there is a pin which provides vertical support. At the bottom another vertical support has to lock them in position after installation and manage the pre-load on the segments. The pre-load is required to deal with the electromagnetic loads during disruption. This is provided by a set of springs, which require shielding as they are preloaded. These are sized to cope with the force (3 MN inboard, 1.4 MN outboard) due to halo currents and the toroidal moment which can reverse. Calculations show that the flexibility of the blanket segment itself plays a significant role in defining the required support system. The blanket segment acts as a preloaded spring and it has to be part of the attachment design as well.

  10. The ORNL fusion power demonstration study

    International Nuclear Information System (INIS)

    Shannon, T.E.; Steiner, D.

    1978-01-01

    In this paper, we review the design approach developed in the ORNL Fusion Power Demonstration Study [1]. The major emphasis of this study is in the application of current and near-term technology as the most logical path to near-term demonstration of tokamak fusion power. In addition we are pursuing a number of concepts to simplify the tokamak reactor to be more acceptable to the utility industry as a future source of energy. The discussion will focus on the areas having the greatest overall impact on reactor feasibility: 1) overall size and power output, 2) remote maintenance considerations, 3) electrical power supplies, 4) blanket design; and 5) economics. The tokamak device, by nature of its configuration and pulsed operation, is an exceptionally complex engineering design problem. We have concluded that innovative design concepts are essential to cope with this basic complexity. We feel that the feasibility of tokamak fusion power has been significantly improved by these design approaches. (author)

  11. Advanced fusion concepts project summaries, FY 1988

    International Nuclear Information System (INIS)

    1988-04-01

    This report summarizes all the projects supported by the Advanced Fusion Concepts Branch of the Applied Plasma Physics Division of the Office of Fusion Energy, US Department of Energy. Each project summary was written by the respective principal investigator using the format: title, principal investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. This report is organized into three sections: Section one contains five summaries describing work in the reversed-field pinch program being performed by a diversified group of contractors, these include a national laboratory, a private company, and several universities. Section two contains eight summaries of work from the compact toroid area which encompasses field-reversed configurations, spheromaks, and heating and formation experiments. Section three contains summaries from two other programs, a density Z-pinch experiment and high-beta Q machine experiment. The intent of this collection of project summaries is to help the contractors of the Advanced Fusion Concepts Branch understand their relationship with the rest of the branch's activities. It is also meant to provide background to those outside the program by showing the range of activities of interest of the Advanced Fusion Concepts Branch

  12. Neutronic analysis of a dual He/LiPb coolant breeding blanket for DEMO

    International Nuclear Information System (INIS)

    Catalan, J.P.; Ogando, F.; Sanz, J.; Palermo, I.; Veredas, G.; Gomez-Ros, J.M.; Sedano, L.

    2011-01-01

    A conceptual design of a DEMO fusion reactor is being developed under the Spanish Breeding Blanket Technology Programme: TECNO F US based on a He/LiPb dual coolant blanket as reference design option. The following issues have been analyzed to address the demonstration of the neutronic reliability of this conceptual blanket design: power amplification capacity of the blanket, tritium breeding capability for fuel self-sufficiency, power deposition due to nuclear heating in superconducting coils and material damage (dpa, gas production) to estimate the operational life of the steel-made structural components in the blanket and vacuum vessel (VV). In order to optimize the shielding of the coils different combinations of water and steel have been considered for the gap of the VV. The used neutron source is based on an axi-symmetric 2D fusion reaction profile for the given plasma equilibrium configuration. MCNPX has been used for transport calculations and ACAB has been used to handle gas production and damage energy cross sections.

  13. Comparative study of the more promising combinations of blanket materials, power conversion systems, and tritium recovery and containment systems for fusion reactors

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1975-11-01

    The many possible combinations of blanket materials, tritium generation and recovery systems, and power conversion systems were surveyed first by reviewing the principal design studies that have been prepared and then by examining a comprehensive set of designs generated by using a common set of ground rules that included all of the boundary conditions that could be envisioned. The results indicate that, of the wide variety of systems that have been considered, by far the most promising employs lithium recirculated in a closed loop within a niobium blanket structure and cooled with boiling potassium or cesium. This approach gives the simplest and lowest cost tritium recovery system, the lowest pressure and thermal stresses, the simplest structure with the lowest probability of a leak, the greatest resistance to damage from a plasma energy dump, and the lowest rate of plasma contamination by either outgassing or sputtering. The only other blanket materials combination that appears fairly likely to give a satisfactory tritium generation and recovery system is an Li 2 BeF 4 -Incoloy blanket, and even this system involves major uncertainties in the effectiveness, size, and cost of the tritium recovery system. Further, the Li 2 BeF 4 blanket system has the disadvantage that the world reserves of beryllium are too limited to support a full-blown fusion reactor economy, its poor thermal conductivity leads to cooling difficulties and a requirement for a complex structure with intricate cooling passages, and this inherently leads to an expensive blanket with a relatively high probability of leaks. The other blanket materials combinations yield even less attractive systems

  14. Blanket Manufacturing Technologies : Thermomechanical Tests on HCLL Blanket Mocks Up

    International Nuclear Information System (INIS)

    Laffont, G.; Cachon, L.; Taraud, P.; Challet, F.; Rampal, G.; Salavy, J.F.

    2006-01-01

    In the Helium Cooled Lithium Lead (HCLL) Blanket concept, the lithium lead plays the double role of breeder and multiplier material, and the helium is used as coolant. The HCCL Blanket Module are made of steel boxes reinforced by stiffening plates. These stiffening plates form cells in which the breeder is slowly flowing. The power deposited in the breeder material is recovered by the breeder cooling units constituted by 5 parallel cooling plates. All the structures such as first wall, stiffening and cooling plates are cooled by helium. Due to the complex geometry of these parts and the high level of pressure and temperature loading, thermo-mechanical phenomena expected in the '' HCLL blanket concept '' have motivated the present study. The aim of this study, carried out in the frame of EFDA Work program, is to validate the manufacturing technologies of HCLL blanket module by testing small scale mock-up under breeder blanket representative operating conditions.The first step of this experimental program is the design and manufacturing of a relevant test section in the DIADEMO facility, which was recently upgraded with an He cooling loop (pressure of 80 bar, maximum temperature of 500 o C,flow rate of 30 g/s) taking the opportunity of synergies with the gas-cooled fission reactor R-and-D program. The second step will deal with the thermo-mechanical tests. This paper focuses on the program made to support the cooling plate mock up tests which will be carried out on the DIADEMO facility (CEA) by thermo-mechanical calculations in order to define the relevant test conditions and the experimental parameters to be monitored. (author)

  15. Low activity blanket designs and heat transfer for experimental power reactors

    International Nuclear Information System (INIS)

    Fillo, J.; Tichler, P.; Lazareth, O.; Powell, J.

    1976-01-01

    Two minimum activity blanket designs are described, based on the ANL TEPR circular design parameters. A first wall loading (plasma on) of 1.0 MW(th)/m 2 has been assumed. The first option is composed of SAP (sintered aluminum product) modules. The oval shaped SAP shell, in which approximately 45 percent of the fusion energy is removed, is maintained at a temperature of approximately 400 0 C by a He coolant stream. The remaining 55 percent of the fusion energy is deposited in a thermally insulated hot interior (SiC and B 4 C) and removed by a separate He coolant, with exit temperature of 800 0 C. In the second option, the blanket is a thick graphite block structure (approximately 50 cm thickness) with SAP coolant tubes carrying He (50 atm) embedded deep within the graphite to minimize radiation damage. The neutron and gamma energy deposited in the graphite is radiated along internal slots and conducted through the graphite to the coolant tubes. To reduce surface evaporation above 2000 0 C, the blanket surface is radiatively cooled to a low temperature radiation sink, a bank of He cooled SAP tubes. Approximately 20 percent of the fusion energy is removed in this region, the remaining 80 percent in the primary graphite-aluminum blanket. Both blanket options are mounted on heavy Al backing plates, cooled by He, which are in turn supported from the fixed shield

  16. The LOFA analysis of fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Yu, Z.-C.; Xie, H.

    2014-01-01

    The fusion-fission hybrid energy reactor can produce energy, breed nuclear fuel, and handle the nuclear waste, etc, with the fusion neutron source striking the subcritical blanket. The passive safety system, consisting of passive residual heat removal system, passive safety injection system and automatic depressurization system, was adopted into the fusion-fission hybrid energy reactor in this paper. Modeling and nodalization of primary loop, passive core cooling system and partial secondary loop of the fusion-fission hybrid energy reactor using RELAP5 were conducted and LOFA (Loss of Flow Accident) was analyzed. The results of key transient parameters indicated that the PRHRs could mitigate the accidental consequence of LOFA effectively. It is also concluded that it is feasible to apply the passive safety system concept to fusion-fission hybrid energy reactor. (author)

  17. Sensitivity and uncertainty analysis for the tritium breeding ratio of a DEMO fusion reactor with a helium cooled pebble bed blanket

    Directory of Open Access Journals (Sweden)

    Nunnenmann Elena

    2017-01-01

    Full Text Available An uncertainty analysis was performed for the tritium breeding ratio (TBR of a fusion power plant of the European DEMO type using the MCSEN patch to the MCNP Monte Carlo code. The breeding blanket was of the type Helium Cooled Pebble Bed (HCPB, currently under development in the European Power Plant Physics and Technology (PPPT programme for a fusion power demonstration reactor (DEMO. A suitable 3D model of the DEMO reactor with HCPB blanket modules, as routinely used for blanket design calculations, was employed. The nuclear cross-section data were taken from the JEFF-3.2 data library. For the uncertainty analysis, the isotopes H-1, Li-6, Li-7, Be-9, O-16, Si-28, Si-29, Si-30, Cr-52, Fe-54, Fe-56, Ni-58, W-182, W-183, W-184 and W-186 were considered. The covariance data were taken from JEFF-3.2 where available. Otherwise a combination of FENDL-2.1 for Li-7, EFF-3 for Be-9 and JENDL-3.2 for O-16 were compared with data from TENDL-2014. Another comparison was performed with covariance data from JEFF-3.3T1. The analyses show an overall uncertainty of ± 3.2% for the TBR when using JEFF-3.2 covariance data with the mentioned additions. When using TENDL-2014 covariance data as replacement, the uncertainty increases to ± 8.6%. For JEFF-3.3T1 the uncertainty result is ± 5.6%. The uncertainty is dominated by O-16, Li-6 and Li-7 cross-sections.

  18. Advanced fusion concepts project summaries: 1981

    International Nuclear Information System (INIS)

    1982-03-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications

  19. A new combination of membranes and membrane reactors for improved tritium management in breeder blanket of fusion machines

    International Nuclear Information System (INIS)

    Demange, D.; Staemmler, S.; Kind, M.

    2011-01-01

    Tritium used as fuel in future fusion machines will be produced within the breeder blanket. The tritium extraction system recovers the tritium to be routed into the inner-fuel cycle of the machine. Accurate and precise tritium accountancy between both systems is mandatory to ensure a reliable operation. Handling in the blanket huge helium flow rates containing tritium as traces in molecular and oxide forms is challenging both for the process and the accountancy. Alternative tritium processes based on combinations of membranes and membrane reactors are proposed to facilitate the tritium management. The PERMCAT process is based on counter-current isotope swamping in a palladium membrane reactor. It allows recovering tritium efficiently from any chemical species. It produces a pure hydrogen stream enriched in tritium of advantage for integration upstream of the accountancy stage. A pre-separation and pre-concentration stage using new zeolite membranes has been studied to optimize the whole process. Such a combination could improve the tritium processes and facilitate accountancy in DEMO.

  20. Improved thermal/MHD design of self-cooled blankets for high-power-density fusion reactors

    International Nuclear Information System (INIS)

    Sedehi, S.; Lund, K.O.

    1986-01-01

    In this work, an improved self-cooled blanket design is conceived that seeks to minimize the induced current and pressure loss, while maintaining effective cooling and power output. Standard solutions for fully developed MHD flows in rectangular ducts are utilized to describe the magnetic pressure drop in rectangular ducts in terms of the duct aspects ratio. A newly available analytical result for developing and fully developed temperatures is utilized in determining the maximum wall temperature and outlet temperature. Based on results from rectangular ducts, improved annular-type duct designs are proposed and evaluated. The results from the rectangular duct analysis indicate reduced pressure drop and increased thermal performance for large aspect ratio (ratio of duct width in the toroidal B-field direction to width normal to B-field). An infinite aspect ratio occurs for the annular duct design and it is shown that this configuration has superior characteristics as a self-cooled blanket design concept

  1. LIBRA-LiTE: A commercial size light ion fusion power plant

    International Nuclear Information System (INIS)

    Badger, B.; Choi, B.; Engelstad, R.L.; Kulcinski, G.L.; Lovell, E.G.; MacFarlane, J.J.; Mogehed, E.A.; Moses, G.A.; Peterson, R.R.; Rutledge, S.; Sawan, M.E.; Sviatoslavsky, G.; Sviatoslavsky, I.N.; Wittenberg, L.J.

    1992-05-01

    LIBRA-LiTE is a concept study for future 1000 MWe nuclear fusion reactors operating on the principle of inertial confinement. Light ions, e.g. lithium ions, are given an energy of 25-35 MeV in an accelerator and focused symmetrically onto a target (deuterium-tritium filled sphere of 7 mm diameter) in a reactor chamber. The fusion reaction is ignited by shock wave induced compression of the target. The radiation (photons, neutrons, ions) is absorbed in a blanket where the thermal power is removed by a coolant and tritium is rebred. The LIBRA-LiTE concept study is the continuation of the earlier LIBRA study (330 MWe) with a modified concept of light ion beam focusing. Starting from an ion source (diode), the lithium ion beams are focused ballistically onto the target. For this to be achieved, lithium must be used as the coolant in the reactor chamber and the blanket concept must be slightly modified by providing steel tubes (HT-9) as guiding tubes for the coolant flow. A particular engineering problem to be solved are the ion beam focusing magnets, which have to extend rather closely up to the center of the reactor chamber. (orig.) [de

  2. Light ion driven inertial fusion reactor concepts

    International Nuclear Information System (INIS)

    Cook, D.L.; Sweeney, M.A.; Buttram, M.T.; Prestwich, K.R.; Moses, G.A.; peterson, R.R.; Lovell, E.G.; Englestad, R.L.

    1980-01-01

    The possibility of designing fusion reactor systems using intense beams of light ions has been investigated. concepts for beam production, transport, and focusing on target have been analyzed in light of more conservative target performance estimates. Analyses of the major criteria which govern the design of the beam-target-cavity tried indicate the feasibility of designing power systems at the few hundred megawatt (electric) level. This paper discusses light ion fusion reactor (LIFR) concepts and presents an assessment of the design limitations through quantitative examples

  3. Drucker-Prager-Cap creep modelling of pebble beds in fusion blankets

    International Nuclear Information System (INIS)

    Hofer, D.; Kamlah, M.

    2005-01-01

    Modelling of thermal and mechanical behaviour of pebble beds for fusion blankets is an important issue to understand the interaction of solid breeder and beryllium pebble beds with the surrounding structural material. Especially the differing coefficients of thermal expansion of these materials cause high stresses and strains during irradiation induced volumetric heating. To describe this process, the coupled thermomechanical behaviour of both pebble bed materials has to be modelled. Additionally, creep has to be considered contributing to bed deformations and stress relaxation. Motivated by experiments, we use a continuum mechanical approach called Drucker-Prager/Cap theory to model the macroscopic pebble bed behaviour. The model accounts for pressure dependent shear failure, inelastic hardening, and volumetric creep. The elastic part is described by a nonlinear elasticity law. The model has been implemented by user-defined routines in the commercial finite-element code ABAQUS. To check the numerics, the implementation is compared to an analytical solution. Furthermore, the Drucker-Prager/Cap tool is applied to a single ceramic breeder bed subject to creep under volumetric heating

  4. Study of MHD problems in liquid metal blankets of fusion reactors

    International Nuclear Information System (INIS)

    Michael, I.

    1984-12-01

    This study describes in a concise form the state of knowledge regarding MHD problems to be expected in case of use of liquid metal in the blankets of fusion reactors with magnetic confinement. MHD pressure losses and MHD friction coefficients in the straight channel, in bent sections and in case of variation of the channel cross section play a major role because the high MHD flow resistances call for high pumping powers. Influencing the velocity profile transverse to the main flow direction of the liquid metal by application of an external, strong magnetic field bears consequences on the release and transport of corrosion products in the liquid metal circuit and on the heat transfer. Possibilities of reducing the MHD effects are discussed. However, it becomes obvious that an account of the lack of experimental results there are still major gaps in the knowledge of MHD effects occurring in strong magnetic fields. These gaps can be greatly reduced by implementation of an experimental program as proposed in this report. (orig.) [de

  5. The TFTR lithium blanket module program

    International Nuclear Information System (INIS)

    Jassby, D.L.; Bertone, P.C.; Creedon, R.L.; File, J.; Graumann, D.W.

    1985-01-01

    The Lithium Blanket Module (LBM) is an approximately 80X80X80 cm cubic module, representative of a helium-cooled lithium oxide fusion reactor blanket module, that will be installed on the TFTR (Tokamak Fusion Test Reactor) in late 1986. The principal objective of the LBM Program is to perform a series of neutron transport and tritium-breeding measurements throughout the LBM when it is exposed to the TFTR toroidal fusion neutron source, and to compare these data with the predictions of Monte Carlo (MCNP) neutronics codes. The LBM consists of 920 2.5-cm diameter breeder rods constructed of lithium oxide (Li 2 O) pellets housed in thin-walled stainless steel tubes. Procedures for mass-producing 25,000 Li 2 O pellets with satisfactory reproducibility were developed using purified Li 2 O powder, and fabrication of all the breeder rods was completed in early 1985. Tritium assay methods were investigated experimentally using both small lithium metal samples and LBM-type pellets. This work demonstrated that the thermal extraction method will be satisfactory for accurate evaluation of the minute concentrations of tritium expected in the LBM pellets (0.1-1nCi/g)

  6. New types of nuclear energy concepts

    International Nuclear Information System (INIS)

    Ledinegg, E.; Heindler, M.

    1978-10-01

    The article summarises the results of a conference on new concepts of nuclear energy, held from 29 - 31 March 1978. Principles of known systems are briefly outlined, mainly from the standpoint of neutron formation by fission, blanket breeding etc, and power production by plasma focussing and thermonuclear fusion. The new concepts include the Migma system and micro-explosions. A section is included on 'hybrid' reactors using a electronuclear source (ENQ) as neutron supply, and 'symbiotic' reactors using ENQ for fuel supply. (G.C.)

  7. Design and analysis of breeding blanket with helium cooled solid breeder for ITER-TBM

    International Nuclear Information System (INIS)

    Yuan Tao; Feng Kaiming; Chen Zhi; Wang Xiaoyu

    2007-01-01

    Test blanket module (TBM) is one of important components in ITER. Some of related blanket technologies of future fusion, such as tritium self-sufficiency, the exaction of high-grade heat, design criteria and safety requirements and environmental impacts, will be demonstrated in ITER-TBM. In ITER device, the three equatorial ports have allocated for TBM testing. China had proposed to develop independently the ITER-TBM with helium cooled solid breeder in 12th meeting of test blanket workgroup (TBWG-12). In this work, the preliminary design and analysis for Chinese HCSB TBM will be carried out. The TBM must be contains the function of the first wall, breeding blanket, shield and structure. Finally, in the period of preliminary investigation, HCSB TBM design adopt modularization concept which is helium as coolant and tritium purge gas, ferritic/martensitic steel as structural material, Lithium orthosilicate (Li 4 SiO 4 ) as tritium breeder, beryllium pebble as neutron multiplier. TBM is allocated in standard vertical frame port. HCSB TBM consist of first wall, backplate, breeding sub-modules, caps, grid and support plate, and breeding sub-modules is arranged by layout of 2 x 6 in blanket box. In this paper, main components of HCSB TBM will be described in detail, also performance analysis of main components have been completed. (authors)

  8. Neutronic calculation and cross section sensitivity analysis of the Livermore mirror fusion/fission hybrid reactor blanket

    International Nuclear Information System (INIS)

    Ku, L.P.; Price, W.G. Jr.

    1977-08-01

    The neutronic calculation for the Livermore mirror fusion/fission hybrid reactor blanket was performed using the PPPL cross section library. Significant differences were found in the tritium breeding and plutonium production in comparison to the results of the LLL calculation. The cross section sensitivity study for tritium breeding indicates that the response is sensitive to the cross section of 238 U in the neighborhood of 14 MeV and 1 MeV. The response is also sensitive to the cross sections of iron in the vicinity of 14 MeV near the first wall. Neutron transport in the resonance region is not important in this reactor model

  9. Workshop on cold-blanket research

    International Nuclear Information System (INIS)

    1977-05-01

    The objective of the workshop was to identify and discuss cold-plasma blanket systems. In order to minimize the bombardment of the walls by hot neutrals the plasma should be impermeable. This requires a density edge-thickness product of nΔ > 10 15 cm -2 . An impermeable cold plasma-gas blanket surrounding a hot plasma core reduces the plasma wall/limiter interaction. Accumulation of impurities in this blanket can be expected. Fuelling from a blanket may be possible as shown by experimental results, though not fully explained by classical transport of neutrals. Refuelling of a reacting plasma had to be ensured by inward diffusion. Experimental studies of a cold impermeable plasma have been done on the tokamak-like Ringboog device. Simulation calculations for the next generation of large tokamaks using a particular transport model, indicate that the plasma edge profile can be controlled to reduce the production of sputtered impurities to an acceptable level. Impurity control requires a small fraction of the radial space to accomodate the cold-plasma layer. The problem of exhaust is, however, more complicated. If the cold-blanket scheme works as predicted in the model calculations, then α-particles generated by fusion will be transported to the cold outside layer. The Communities' experimental programme of research has been discussed in terms of the tokamaks which are available and planned. Two options present themselves for the continuation of cold-blanket research

  10. Managing the fusion burn to improve symbiotic system performance

    International Nuclear Information System (INIS)

    Renier, J.P.; Martin, J.G.

    1979-01-01

    Symbiotic power systems, in which fissile fuel is produced in fusion-powered factories and burned in thermal reactors characterized by high conversion ratios, constitute an interesting near-term fusion application. It is shown that the economic feasibility of such systems depend on adroit management of the fusion burn. The economics of symbiotes is complex: reprocessing and fabrication of the fusion reactor blankets are important components of the production cost of fissile fuel, but burning fissile material in the breeder blanket raises overall costs and lowers the support ratio. Analyses of factories which assume that the fusion power is constant during an irradiation cycle underestimate their potential. To illustrate the effect of adroit engineering of the fusion burn, this paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U-233 breeders. To make the D-T symbiote self-sufficient, tritium is bred in separate lithium blankets designed so as to minimize overall costs. All blankets are assumed to have spherical geometry, with 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries

  11. Overview of EU activities on DEMO liquid metal breeder blanket

    International Nuclear Information System (INIS)

    Giancarli, L.; Proust, E.; Malang, S.; Reimann, J.; Perujo, A.

    1994-01-01

    The present paper gives an overview of both design and experimental activities within the European Union (EU) concerning the development of liquid metal breeder blankets for DEMO. After several years of studies on breeding blankets, two blanket concepts are presently considered, both using the eutectic Pb-17Li: the dual-coolant concept and the water-cooled concept. The analysis of such concepts has permitted to identify the experimental areas where further data are required. Tritium control and MHD-issues are, at present, the activities on which is devoted the greatest effort within the EU. (authors). 4 figs., 4 tabs., 39 refs

  12. Nuclear fusion project. Annual report of the Association Forschungszentrum Karlsruhe/EURATOM. October 1994 - September 1995

    International Nuclear Information System (INIS)

    Kast, G.

    1996-01-01

    Today about fifty percent of FZK's fusion programme is contracted to ITER via the contribution of the European home team. With the recent selection of blanket concepts in the European frame, a concentration process has been initiated which will result in some restructuring of the blanket programme. The results are documented. Closely related to blanket development is the long term materials programme. FZK has concentrated on reduced activation ferritic-martensitic steels. Important project resources for irradiation and hot cell work are devoted to characterize and improve the performance of suitable structural materials. ITER references are given in the nomenclature. The annexes provide with some information on departments and project management. (DG)

  13. Tritium breeding experiments in a fusion blanket assembly using a low-intensity neutron generator

    International Nuclear Information System (INIS)

    Dalton, A.W.; Woodley, H.J.; McGregor, B.J.

    1987-01-01

    Experiments have been carried out to determine the accuracy with which tritium production rates (TPRs) can be measured in a fusion blanket assembly of non-spherical geometry by a non-central low intensity D-T neutron source (2x10 10 neutrons per second). The tritium production was determined for samples of lithium carbonate containing high enrichments of 6 Li(96%) and 7 Li(99.9%). The measured data were used to check the accuracy with which the TPRs could be numerically predicted using current nuclear data and calculational methods. The numerical predictions from tritium production from the 7 Li samples agreed within the experimental errors of the measurements, but 6 Li measurements which differ by more than 20 per cent from the predicted values were observed in the lower half of the assembly

  14. MHD considerations for poloidal-toroidal coolant ducts of self-cooled blankets

    International Nuclear Information System (INIS)

    Hua, T.Q.; Walker, J.S.

    1990-01-01

    Magnetohydrodynamic flows of liquid metals through sharp elbow ducts with rectangular cross sections and with thin conducting walls in the presence of strong uniform magnetic fields are examined. The geometries simulate the poloidaltoroidal coolant channels in fusion tokamak blankets. Analysis for obtaining the three-dimensional numerical solutions are described. Results for pressure drop, velocity profiles and flow distribution are predicted for the upcoming joint ANL/KfK sharp elbow experiment. Results from a parametric study using fusion relevant parameters to investigate the three-dimensional pressure drop are presented for possible applications to blanket designs. 10 refs., 9 refs

  15. Recent developments in fusion first wall, blanket, and shield technology

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1983-01-01

    This brief overview of first wall, blanket and shield technology reviews the changes and trends in important design issues in first wall, blanket and shield design and related technology from the 1970's to the 1980's. The emphasis is on base technology rather than either systems engineering or materials development. The review is limited to the two primary confinement systems, tokamaks and mirrors, and production of electricity as the primary goal for development

  16. Remote handling of the blanket segments: testing of 1/3 scale mock-ups at the Robertino facility

    International Nuclear Information System (INIS)

    Maisonnier, D.; Amelotti, F.; Chiasera, A.; Gaggini, P.; Damiani, C.; Degli Esposti, L.; Gatti, G.; Castillo, E.; Caravati, D.; Farfalletti-Casali, F.; Gritzmann, P.; Ruiz, E.

    1995-01-01

    The remote replacement of blanket segments inside the vacuum vessel of a fusion reactor is probably the most complex task from the maintenance standpoint. Its success will rely on the definition of appropriate handling concepts and equipment, but also on a ''maintenance friendly'' reactor layout and blanket design. The key difficulty is the lack of rigidity of the segments which results in considerable deformations since they cannot be gripped above their centre of gravity. These deformations may be up to five times greater than the assembly clearance and one order of magnitude larger than the required positioning accuracy. Experimental activities have been undertaken to select appropriate handling devices and procedures, to assess the design of the components handled, and to review specific technical issues such as kinematics and dynamics performance, trajectory planning and control and sensors requirement for the handling devices. Work was performed in the Robertino facility where two handling concepts have been tested at a 1/3 scale. (orig.)

  17. Status and strategy of fusion materials development in China

    International Nuclear Information System (INIS)

    Huang, Q.Y.; Wu, Y.C.; Li, J.G.; Wan, F.R.; Chen, J.L.; Luo, G.N.; Liu, X.; Chen, J.M.; Xu, Z.Y.; Zhou, X.G.; Ju, X.; Shan, Y.Y.; Yu, J.N.; Zhu, S.Y.; Zhang, P.Y.; Yang, J.F.; Chen, X.J.; Dong, S.M.

    2009-01-01

    The liquid metal and solid ceramic pebble breeder blankets have become the most promising blankets for ITER-TBMs or DEMO reactors in China and the world due to their potential advantages. In recent years the corresponding research work on fusion reactor materials mainly focuses on structural materials, plasma facing materials and the functional materials for the blanket such as breeder, coating and flow channel insert etc. for the successful application of fusion energy in the near future. The R and D on those materials in the two kinds of blankets is being carried out widely in China, including fabrication and manufacturing techniques, physical/mechanical properties assessment before and after irradiation, joining techniques for structural materials, compatibility evaluation, and the development and verification of the criteria for fusion material designs. The progress on main R and D activities of fusion reactor materials in China is introduced and prospected in the paper.

  18. Activation analysis and waste management for blanket materials of multi-functional experimental fusion–fission hybrid reactor (FDS-MFX)

    International Nuclear Information System (INIS)

    Jiang, Jieqiong; Yuan, Baoxin; Zou, Jun; Wu, Yican

    2014-01-01

    The preliminary studies of the activation analysis and waste management for blanket materials of the multi-functional experimental fusion–fission hybrid reactor, i.e. Multi-Functional eXperimental Fusion Driven Subcritical system named FDS-MFX, were performed. The neutron flux of the FDS-MFX blanket was calculated using VisualBUS code and Hybrid Evaluated Nuclear Data Library (HENDL) developed by FDS Team. Based on these calculated neutron fluxes, the activation properties of blanket materials were analyzed by the induced radioactivity, the decay heat and the contact dose rate for different regions of the FDS-MFX blanket. The safety and environment assessment of fusion power (SEAFP) strategy, which was developed in Europe, was applied to FDS-MFX blanket for the management of activated materials. Accordingly, the classification and management strategy of activated materials after different cooling time were proposed for FDS-MFX blanket

  19. Magnetic fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The efforts of the Chemical Technology Division in the area of fusion energy include fuel handling, processing, and containment. These studies are closely coordinated with the ORNL Fusion Energy Division. Current experimental studies are concerned with the development of vacuum pumps for fusion reactors, the evaluation and development of techniques for recovering tritium (fuel) from either solid or liquid lithium containing blankets, and the use of deep beds of sorbents as roughing pumps and/or transfer operations. In addition, a small effort is devoted to the support of the ORNL design of The Next Step (TNS) in tokamak reactor development. The more applied studies--vacuum pump development and TNS design--are funded by the DOE/Magnetic Fusion Energy, and the more fundamental studies--blanket recovery and sorption in deep beds--are funded by the DOE/Basic Energy Sciences

  20. Structural effects on fusion reactor blankets due to liquid metals in magnetic fields

    International Nuclear Information System (INIS)

    Lehner, J.R.; Reich, M.; Powell, J.R.

    1976-01-01

    The transient stress distribution caused in the blanket structure when the plasma current suddenly switches off in a time short compared to the L/R decay time of the liquid metal blanket was studied. Poloidal field of the plasma will induce a current to flow in the liquid metal and blanket walls. Since the resistance of the liquid lithium will be much less than that of the metal walls, the current can be considered as flowing around the blanket near the cross section perimeter, but in the lithium

  1. TBM/MTM for HTS-FNSF: An Innovative Testing Strategy to Qualify/Validate Fusion Technologies for U.S. DEMO

    Directory of Open Access Journals (Sweden)

    Laila El-Guebaly

    2016-08-01

    Full Text Available The qualification and validation of nuclear technologies are daunting tasks for fusion demonstration (DEMO and power plants. This is particularly true for advanced designs that involve harsh radiation environment with 14 MeV neutrons and high-temperature operating regimes. This paper outlines the unique qualification and validation processes developed in the U.S., offering the only access to the complete fusion environment, focusing on the most prominent U.S. blanket concept (the dual cooled PbLi (DCLL along with testing new generations of structural and functional materials in dedicated test modules. The venue for such activities is the proposed Fusion Nuclear Science Facility (FNSF, which is viewed as an essential element of the U.S. fusion roadmap. A staged blanket testing strategy has been developed to test and enhance the DCLL blanket performance during each phase of FNSF D-T operation. A materials testing module (MTM is critically important to include in the FNSF as well to test a broad range of specimens of future, more advanced generations of materials in a relevant fusion environment. The most important attributes for MTM are the relevant He/dpa ratio (10–15 and the much larger specimen volumes compared to the 10–500 mL range available in the International Fusion Materials Irradiation Facility (IFMIF and European DEMO-Oriented Neutron Source (DONES.

  2. Controlled thermonuclear fusion power apparatus and method

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, B.

    1982-01-01

    This invention provides a modular fusion reactor system containing several fusion power cores, each of relatively small size and low cost. Energy from the cores is absorbed in the core structure and within a surrounding blanket, and the cores themselves may be individually removed from the blanket and replaced as they deteriorate from high radiation flux damage

  3. Present development status of EUROFER and ODS-EUROFER for application in blanket concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lindau, R. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany)]. E-mail: rainer.lindau@imf.fzk.de; Moeslang, A. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany); Rieth, M. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany); Klimiankou, M. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany); Materna-Morris, E. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany); Alamo, A. [CEA-Saclay, SRMA/SMPX, 91191 Gif-sur-Yvette Cedex (France); Tavassoli, A.-A. F. [CEA-Saclay, SRMA/SMPX, 91191 Gif-sur-Yvette Cedex (France); Cayron, C. [CEA-Grenoble, DRT/DTEN/SMP/LS2M, 17, rue des Martyrs, 38054 Grenoble Cedex 9 (France); Lancha, A.-M. [CIEMAT, Avda. Complutense no. 22, 28040 Madrid (Spain); Fernandez, P. [CIEMAT, Avda. Complutense no. 22, 28040 Madrid (Spain); Baluc, N. [CRPP-EPFL, 5232 Villigen PSI (Switzerland); Schaeublin, R. [CRPP-EPFL, 5232 Villigen PSI (Switzerland); Diegele, E. [EFDA Close Support Unit, Boltzmannstr. 2, 85748 Garching (Germany); Filacchioni, G. [ENEA CR Casaccia, Via Anguillarese 301, 00100 S. Maria di Galeria, Rome (Italy); Rensman, J.W. [NRG, MM and I, Westerduinweg 3, P.O. Box 25, 1755 ZG Petten (Netherlands); Schaaf, B. van der [NRG, MM and I, Westerduinweg 3, P.O. Box 25, 1755 ZG Petten (Netherlands); Lucon, E. [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Dietz, W. [MECS, Schoenenborner Weg 15, 51789 Lindlar (Germany)

    2005-11-15

    Within the European Union, the two major breeding blanket concepts presently being developed are the helium cooled pebble bed (HCPB), and the helium cooled lithium lead (HCLL) blankets. For both concepts, different conceptual designs are being discussed with temperature windows in the range 250-550 deg. C for conservative approaches based on reduced activation ferritic-martensitic (RAFM) steels, and in the range 250-650 deg. C for more advanced versions, taking into account oxide dispersion strengthened (ODS) steels. As a final result of a systematic development of RAFM-steels in Europe, the 9% CrWVTa alloy EUROFER was specified and produced in an industrial scale with a variety of product forms. A large characterisation program is being performed including irradiation in materials test reactors between 60 and 450 deg. C ({<=}15 dpa), and in a fast breeder reactor at 330 deg. C up to 30 dpa. EUROFER is resistant to high temperature ageing, and the existing creep-rupture data ({approx}30,000 h, 450-600 deg. C) indicate long-term stability and predictability. The ODS variant of EUROFER shows superior tensile and creep properties compared to EUROFER. Applying a new production route has diminished the problem of lower ductility and inferior impact properties. A reliable joining technique for ODS and RAFM steels employing diffusion welding was successfully developed.

  4. Limiter and first wall of the fusion reactor blanket

    International Nuclear Information System (INIS)

    Danilov, I.; Skladnov, K.; Kolganov, V.

    1994-01-01

    Previous designing of the first wall and limiter has allowed to determine their possible embodiment depending on the parameters and operation conditions of the blanket. As a rule limiter is a separate structure located on the plasma facing surface of the blanket assembly. Possible versions of the limiter/FW which may be considered: (1) limiters with mechanical attachment of the protective part; (2) limiters with the attachment with brazing; (3) limiters with common/separate cooling system; (4) limiter as a substitute of the FW. Generally the FW/limiter structure includes protective shield and its cooling system which consist of protective coating, heat accumulator, conductive layer and attachment locks

  5. Review of the current status of linear hybrid reactor concepts

    International Nuclear Information System (INIS)

    Schultz, K.R.

    1977-07-01

    A review was made of the current status of linear fusion-fission hybrid reactor design studies in the USA. The linear hybrid reactor concepts reviewed include the linear theta-pinch hybrid reactor being studied at Los Alamos Scientific Laboratory, the electron beam-heated solenoid hybrid reactor under development at Physics International Co., the laser-heated solenoid hybrid reactor being investigated at Mathematical Sciences Northwest, Inc., and the linear fusion waste burning reactor being studied at General Atomic Company. The discussion addresses confinement and heating mechanisms for each concept, as well as the hybrid blanket designs. The current state of the four reactor designs is summarized and the performance of the various concepts compared

  6. Scoping studies of 233U breeding fusion fission hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.; Allen, W.O.

    1978-05-01

    Neutronic calculations have been carried out in order to design a laser fusion driven hybrid blanket which maximizes 233 U production per unit of thermal energy (greater than or equal to 1 kg/MW/sub T/-year) with acceptable fusion energy multiplication (M/sub F/ approximately 4). Two hybrid blankets, a thorium and a uranium-thorium blanket, are discussed in detail and their performance is evaluated by incorporating them into an existing hybrid design (the LLL/Bechtel design). The overall performance of the two laser fusion driven 233 U producers is discussed and estimates are given of (1) the number of equivalent thermal power fission reactors (LWR, HWR, SSCR and HTGR) that these fusion breeders can fuel, (2) their capital cost, and (3) the cost of electricity in the combined fusion breder-converter reactor scenario

  7. Scoping studies of 233U breeding fusion fission hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.; Allen, W.O.

    1978-01-01

    Neutronic calculations have been carried out in order to design a laser fusion driven hybrid blanket which maximizes 233 U production per unit of thermal energy (greater than or equal to 1 kg/MW/sub T/-year) with acceptable fusion energy multiplication (M/sub F/ approx. 4). Two hybrid blankets, a thorium and a uranium--thorium blanket, are discussed in detail and their performance is evaluated by incorporating them into an existing hybrid design (the LLL/Bechtel design). The overall performance of the two laser fusion driven 233 U producers is discussed and estimates are given of (1) the number of equivalent thermal power fission reactors (LWR, HWR, SSCR and HTGR) that these fusion breeders can fuel, (2) their capital cost, and (3) the cost of electricity in the combined fusion breeder-converter reactor scenario

  8. Mirror hybrid reactor blanket and power conversion system conceptual design

    International Nuclear Information System (INIS)

    Schultz, K.R.; Backus, G.A.; Baxi, C.B.; Dee, J.B.; Estrine, E.A.; Rao, R.; Veca, A.R.

    1976-01-01

    The conceptual design of the blanket and power conversion system for a gas-cooled mirror hybrid fusion-fission reactor is presented. The designs of the fuel, blanket module and power conversion system are based on existing gas-cooled fission reactor technology that has been developed at General Atomic Company. The uranium silicide fuel is contained in Inconel-clad rods and is cooled by helium gas. The fuel is contained in 16 spherical segment modules which surround the fusion plasma. The hot helium is used to raise steam for a conventional steam cycle turbine generator. The details of the method of support for the massive blanket modules and helium ducts remain to be determined. Nevertheless, the conceptual design appears to be technically feasible with existing gas-cooled technology. A preliminary safety analysis shows that with the development of a satisfactory method of primary coolant circuit containment and support, the hybrid reactor could be licensed under existing Nuclear Regulatory Commission regulations

  9. Activation and afterheat analyses for the HCPB test blanket

    International Nuclear Information System (INIS)

    Pereslavtsev, P.; Fischer, U.

    2007-01-01

    The Helium-Cooled Pebble Bed (HCPB) blanket is one of two breeder blanket concepts developed in the framework of the European Fusion Technology Programme for performance tests in ITER. The recent development programme focussed on the detailed engineering design of the Test Blanket Module (TBM) and associated systems including the assessment of safety and licensing related issues with the objective to prepare for a preliminary Safety Report. To provide a sound data basis for the safety analyses of the HCPB TBM system in ITER, the afterheat and activity inventories were assessed making use of a code system that allows performing 3D activation calculations by linking the Monte Carlo transport code MCNP and the fusion inventory code FISPACT through an appropriate interface. A suitable MCNP model of a 20 degree ITER torus sector with an integrated TBM of the HCPB PI (Plant Integration) type in the horizontal test blanket port was developed and adapted to the requirements for coupled 3D neutron transport and activation calculations. Two different irradiation scenarios were considered in the coupled 3D neutron transport and activation calculations. The first one is representative for the TBM irradiation in ITER with a total of 9000 neutron pulses over a three (calendar) years period. It was simulated by a continuous irradiation for 3 years minus the last month and a discontinuous irradiation with 250 pulses (420 s pulse length, 1200 s power-off in between) over the last month. The second (conservative) irradiation scenario assumes an extended irradiation time over the full anticipated lifetime of ITER according to the M-DRG-1 irradiation scenario with a total first wall fluence of 0.3 MWa/m 2 . For both irradiation scenarios the radioactivity inventories, the afterheat and the contact gamma dose were calculated as function of the decay time. Data were processed for the total activity and afterheat of the TBM, its constituting components and materials including their

  10. First wall and blanket design for the STARFIRE commercial tokamak power reactor

    International Nuclear Information System (INIS)

    Morgan, G.D.; Trachsel, C.A.; Cramer, B.A.; Bowers, D.A.; Smith, D.L.

    1979-01-01

    The first wall and blanket design concepts being evaluated for the STARFIRE commercial tokamak reactor study are presented. The two concepts represent different approaches to the mechanical design of a tritium breeding blanket using the reference materials options. Each concept has a separate ferritic steel first wall cooled by heavy water (D 2 O), and a ferritic steel blanket with solid lithium oxide breeder cooled by helium. A separate helium purge system is used in both concepts to extract tritium. The two concepts are compared and relative advantages and disadvantages for each are discussed

  11. Heating performances of a IC in-blanket ring array

    Energy Technology Data Exchange (ETDEWEB)

    Bosia, G., E-mail: gbosia@to.infn.it [Department of Physics, University of Turin (Italy); Ragona, R. [Laboratory for Plasma Physics-LPP-ERM/KMS, Brussels (Belgium)

    2015-12-10

    An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) based on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.

  12. Tritium problems in fusion reactor systems

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1975-01-01

    A brief introduction is given to the role tritium will play in the development of fusion power. The biological and worldwide environmental behavior of tritium is reviewed. The tritium problems expected in fusion power reactors are outlined. A few thoughts on tritium permeation and recent results for tritium cleanup and CT 4 accumulation are presented. Problems involving the recovery of tritium from the breeding blanket in fusion power reactors are also considered, including the possible effect of impurities in lithium blankets and the use of lithium as a regenerable getter pump. (auth)

  13. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    A conceptual design study (option C) has been carried out for the fusion experimental reactor (FER). In addition to design of the tokamak reactor and associated systems based on the reference design specifications, feasibility of a water-shield reactor concept was examined as a topical study. The design study for the reference tokamak reactor has produced a reactor concept for the FER, along with major R D items for the concept, based on close examinations on thermal design, electromagnetics, neutronics and remote maintenance. Particular efforts have been directed to the area of electromagnetics. Detailed analyses with close simulation models have been performed on PF coil arrangements and configurations, shell effects of the blanket for plasma position unstability, feedback control, and eddy currents during disruptions. The major design specifications are as follows; Peak fusion power 437 MW Major radius 5.5 m Minor radius 1.1 m Plasma elongation 1.5 Plasma current 5.3 MA Toroidal beta 4 % Field on axis 5.7 T (author)

  14. Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR

    Science.gov (United States)

    Xiaokang, ZHANG; Songlin, LIU; Xia, LI; Qingjun, ZHU; Jia, LI

    2017-11-01

    The water cooled ceramic breeder (WCCB) blanket employing pressurized water as a coolant is one of the breeding blanket candidates for the China Fusion Engineering Test Reactor (CFETR). Some updating of neutronics analyses was needed, because there were changes in the neutronics performance of the blanket as several significant modifications and improvements have been adopted for the WCCB blanket, including the optimization of radial build-up and customized structure for each blanket module. A 22.5 degree toroidal symmetrical torus sector 3D neutronics model containing the updated design of the WCCB blanket modules was developed for the neutronics analyses. The tritium breeding capability, nuclear heating power, radiation damage, and decay heat were calculated by the MCNP and FISPACT code. The results show that the packing factor and 6Li enrichment of the breeder should both be no less than 0.8 to ensure tritium self-sufficiency. The nuclear heating power of the blanket under 200 MW fusion power reaches 201.23 MW. The displacement per atom per full power year (FPY) of the plasma-facing component and first wall reach 0.90 and 2.60, respectively. The peak H production rate reaches 150.79 appm/FPY and the peak He production reaches 29.09 appm/FPY in blanket module #3. The total decay heat of the blanket modules is 2.64 MW at 1 s after shutdown and the average decay heat density can reach 11.09 kW m-3 at that time. The decay heat density of the blanket modules slowly decreases to lower than 10 W m-3 in more than ten years.

  15. FW/Blanket and vacuum vessel for RTO/RC ITER

    International Nuclear Information System (INIS)

    Ioki, K.; Barabash, V.; Cardella, A.; Elio, F.; Iida, H.; Johnson, G.; Kalinin, G.; Miki, N.; Onozuka, M.; Sannazzaro, G.; Utin, Y.; Yamada, M.

    2000-01-01

    The design has progressed on the vacuum vessel and First Wall (FW)/blanket for the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER. The basic functions and structures are the same as for the 1998 ITER design. The design has been improved to achieve, along with the size reduction, ∼50% target reduction of the fabrication cost. The number of blanket modules has been minimized according to smaller dimensions of the machine and a higher payload capacity of the blanket Remote Handling tool. A concept without the back plate has been designed and assessed. The blanket module concept with flat separable FW panels has been developed to reduce the fabrication cost and future radioactive waste

  16. FW/Blanket and vacuum vessel for RTO/RC ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K. E-mail: iokik@itereu.de; Barabash, V.; Cardella, A.; Elio, F.; Iida, H.; Johnson, G.; Kalinin, G.; Miki, N.; Onozuka, M.; Sannazzaro, G.; Utin, Y.; Yamada, M

    2000-11-01

    The design has progressed on the vacuum vessel and First Wall (FW)/blanket for the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER. The basic functions and structures are the same as for the 1998 ITER design. The design has been improved to achieve, along with the size reduction, {approx}50% target reduction of the fabrication cost. The number of blanket modules has been minimized according to smaller dimensions of the machine and a higher payload capacity of the blanket Remote Handling tool. A concept without the back plate has been designed and assessed. The blanket module concept with flat separable FW panels has been developed to reduce the fabrication cost and future radioactive waste.

  17. A conceptual fusion reactor based on the high-plasma-density Z-pinch

    International Nuclear Information System (INIS)

    Hartman, C.W.; Carlson, G.; Hoffman, M.; Werner, R.

    1977-01-01

    Conceptual DT and DD fusion reactors are discussed based on magnetic confinement with the high-plasma-density Z-pinch. The reactor concepts have no ''first wall'', the fusion neutrons and plasma energy being absorbed directly into a surrounding lithium vortex blanket. Efficient systems with low re-circulated power are projected, based on a flow-through pinch cycle for which overall Q values can approach 10. The conceptual reactors are characterized by simplicity, small minimum size (100MW(e)) and by the potential for minimal radioactivity hazards. (author)

  18. Ferritic steels for the first generation of breeder blankets

    International Nuclear Information System (INIS)

    Diegele, E.

    2009-01-01

    Materials development in nuclear fusion for in-vessel components, i.e. for breeder blankets and divertors, has a history of more than two decades. It is the specific in-service and loading conditions and the consequentially required properties in combination with safety standards and social-economic demands that create a unique set of specifications. Objectives of Fusion for Energy (F4E) include: 1) To provide Europe's contribution to the ITER international fusion energy project; 2) To implement the Broader Approach agreement between Euratom and Japan; 3) To prepare for the construction and demonstration of fusion reactors (DEMO). Consequently, activities in F4E focus on structural materials for the first generations of breeder blankets, i.e. ITER Test Blanket Modules (TBM) and DEMO, whereas a Fusion Materials Topical Group implemented under EFDA coordinates R and D on physically based modelling of irradiation effects and R and D in the longer term (new and /or higher risk materials). The paper focuses on martensitic-ferritic steels and (i) reviews briefly the challenges and the rationales for the decisions taken in the past, (ii) analyses the status of the main activities of development and qualification, (iii) indicates unresolved issues, and (iv) outlines future strategies and needs and their implications. Due to the exposure to intense high energy neutron flux, the main issue for breeder materials is high radiation resistance. The First Wall of a breeder blanket should survive 3-5 full power years or, respectively in terms of irradiation damage, typically 50-70 dpa for DEMO and double figures for a power plant. Even though the objective is to have the materials and key fabrication technologies needed for DEMO fully developed and qualified within the next two decades, a major part of the task has to be completed much earlier. Tritium breeding test blanket modules will be installed in ITER with the objective to test DEMO relevant technologies in fusion

  19. Conceptual design of the SlimCS fusion DEMO reactor

    International Nuclear Information System (INIS)

    Tobita, Kenji; Nishio, Satoshi; Enoeda, Mikio; Nakamura, Hirofumi; Hayashi, Takumi; Asakura, Nobuyuki; Utoh, Hiroyasu; Tanigawa, Hiroyasu; Nishitani, Takeo; Isono, Takaaki; Sakurai, Shinji; Kurita, Genichi; Hayashi, Takao; Oyama, Naoyuki; Liu Changle; Hamamatsu, Kiyotaka; Inoue, Takashi; Ozeki, Takahisa; Sato, Masayasu; Suzuki, Satoshi; Kawashima, Hisato; Ezato, Koichiro; Tsuru, Daigo; Koizumi, Norikiyo; Sakamoto, Keiji; Ando, Masami; Sakamoto, Yoshiteru; Shibama, Yusuke; Suzuki, Takahiro; Takechi, Manabu; Takahashi, Koji; Hirose, Takanori; Sato, Satoru; Nozawa, Takashi; Tanigawa, Hisashi; Kakudate, Satoshi; Kawamura, Yoshinori; Yamanishi, Toshihiko; Hoshino, Tsuyoshi; Ochiai, Kentaro; Ide, Shunsuke; Aiba, Nobuyuki; Shimizu, Katsuhiro; Honda, Mitsuru; Nakamichi, Masaru; Nishi, Hiroshi; Seki, Yoji; Nakamura, Yukiharu; Tsuchiya, Kunihiko; Yoshida, Tohru; Song Yuntao

    2010-08-01

    This report describes the results of the conceptual design study of the SlimCS fusion DEMO reactor aiming at demonstrating fusion power production in a plant scale and allowing to assess the economic prospects of a fusion power plant. The design study has focused on a compact and low aspect ratio tokamak reactor concept with a reduced-sized central solenoid, which is novel compared with previous tokamak reactor concept such as SSTR (Steady State Tokamak Reactor). Owing to low aspect ratio, the reactor will be capable of having comparatively high beta limit and high elongation (which can elevate the Greenwald density limit), having potential for high power density. The reactor has the main parameters of a major radius of 5.5 m, aspect ratio of 2.6, elongation of 2.0, normalized beta of 4.3, fusion out put of 2.95 GW and average neutron wall load of 3 MW/m 2 . This report covers various aspects of design study including systematic design, physics design, torus configuration, blanket, superconducting magnet, maintenance and building, which were carried out increase the engineering feasibility of the concept. (author)

  20. Impact analysis of the time trend of TBR and irradiation damage assessment of HCSB blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Qin, E-mail: zengqin@ustc.edu.cn; Chen, Hongli; Lv, Zhongliang; Pan, Lei; Zhang, Haoran; Shi, Wei

    2017-01-15

    Chinese Fusion Engineering Testing Reactor (CFETR) is a test tokamak reactor to bridge the gap between ITER and future fusion power plants and to demonstrate generation of fusion power in China. In fusion power plants, tritium is generated from the reaction of neutron and Lithium. One of the missions of CFETR is the full cycle of tritium self-sufficiency. For the mission, a Helium Cooled Solid Breeder blanket (HCSB) was proposed for CFETR and its conceptual design has been carried out. In order to assess the capacity of the tritium breeding and irradiation damage of first wall of the HCSB blanket during the 8 years’ engineering test stage, this paper presents the time trend of TBR analysis and irradiation damage assessment of HCSB blanket based on the three-dimensional (3D) neutronics model which is created by McCad. In the 3D neutronics model, the outboard blanket on equatorial plane is described based on the detailed 3D engineering model. The calculations were performed by MCNP and FISPACT with FENDL/2.1 data library. The impact analysis of the thickness of coolant plates (CP) and the structural material content in CPs to the TBR is assessment.

  1. Advanced Fusion Concepts project summaries, FY 1982

    International Nuclear Information System (INIS)

    1982-10-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, U.S. Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications

  2. Thermo-mechanical characterization of ceramic pebbles for breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, Rosa, E-mail: rosa.lofrano@ing.unipi.it; Aquaro, Donato; Scaletti, Luca

    2016-11-01

    Highlights: • Experimental activities to characterize the Li{sub 4}SiO{sub 4}. • Compression tests of pebbles. • Experimental evaluation of thermal conductivity of pebbles bed at different temperatures. • Experimental test with/without compression load. - Abstract: An open issue for fusion power reactor is to design a suitable breeding blanket capable to produce the necessary quantity of the tritium and to transfer the energy of the nuclear fusion reaction to the coolant. The envisaged solution called Helium-Cooled Pebble Bed (HCPB) breeding blanket foresees the use of lithium orthosilicate (Li{sub 4}SiO{sub 4}) or lithium metatitanate (Li{sub 2}TiO{sub 3}) pebble beds. The thermal mechanical properties of the candidate pebble bed materials are presently extensively investigated because they are critical for the feasibility and performances of the numerous conceptual designs which use a solid breeder. This study is aimed at the investigation of mechanical properties of the lithium orthosilicate and at the characterization of the main chemical, physical and thermo-mechanical properties taking into account the production technology. In doing that at the Department of Civil and Industrial Engineering (DICI) of the University of Pisa adequate experiments were carried out. The obtained results may contribute to characterize the material of the pebbles and to optimize the design of the envisaged fusion breeding blankets.

  3. Toroidal field coil design concept and structural support system for CTHR

    Energy Technology Data Exchange (ETDEWEB)

    Chianese, R. B.; Kelly, J. L.; Ruck, G. W.

    1980-09-01

    The CTHR conceptual design consists of a magnetically confined (tokamak) fusion reactor fitted with a fertile uranium blanket. The fusion driver concept was based on an ignited plasma. All concepts and parameters were selected on the basis that technical feasibility would be achieved by 1995 to assure a viable commercial operation in the early to mid-21st century. The reactor was designed to achieve good fissile fuel production, with electricity production being a second order priority. However, the resulting concepts that evolved were all excellent power producers which significantly improved the economic performance. The subsystems discussed in the following paragraphs provide a background of the application for the TF coil design described in this report.

  4. Toroidal field coil design concept and structural support system for CTHR

    International Nuclear Information System (INIS)

    Chianese, R.B.; Kelly, J.L.; Ruck, G.W.

    1980-09-01

    The CTHR conceptual design consists of a magnetically confined (tokamak) fusion reactor fitted with a fertile uranium blanket. The fusion driver concept was based on an ignited plasma. All concepts and parameters were selected on the basis that technical feasibility would be achieved by 1995 to assure a viable commercial operation in the early to mid-21st century. The reactor was designed to achieve good fissile fuel production, with electricity production being a second order priority. However, the resulting concepts that evolved were all excellent power producers which significantly improved the economic performance. The subsystems discussed in the following paragraphs provide a background of the application for the TF coil design described in this report

  5. Current fusion power plant design concepts

    International Nuclear Information System (INIS)

    Gore, B.F.; Murphy, E.S.

    1976-09-01

    Nine current U.S. designs for fusion power plants are described in this document. Summary tabulations include a tenth concept, for which the design document was unavailable during preparation of the descriptions. The information contained in the descriptions was used to define an envelope of fusion power plant characteristics which formed the basis for definition of reference first commercial fusion power plant design. A brief prose summary of primary plant features introduces each of the descriptions contained in the body of this document. In addition, summary tables are presented. These tables summarize in side-by-side fashion, plant parameters, processes, combinations of materials used, requirements for construction materials, requirements for replacement materials during operation, and production of wastes

  6. Helium cooling of fusion reactors

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Baxi, C.; Bourque, R.; Dahms, C.; Inamati, S.; Ryder, R.; Sager, G.; Schleicher, R.

    1994-01-01

    On the basis of worldwide design experience and in coordination with the evolution of the International Thermonuclear Experimental Reactor (ITER) program, the application of helium as a coolant for fusion appears to be at the verge of a transition from conceptual design to engineering development. This paper presents a review of the use of helium as the coolant for fusion reactor blanket and divertor designs. The concept of a high-pressure helium cooling radial plate design was studied for both ITER and PULSAR. These designs can resolve many engineering issues, and can help with reaching the goals of low activation and high performance designs. The combination of helium cooling, advanced low-activation materials, and gas turbine technology may permit high thermal efficiency and reduced costs, resulting in the environmental advantages and competitive economics required to make fusion a 21st century power source. ((orig.))

  7. Concept of a demonstrational hybrid reactor—a tokamak with molten-salt blanket for {sup 233}U fuel production: 1. Concept of a stationary Tokamak as a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Azizov, E. A.; Gladush, G. G., E-mail: gladush@triniti.ru; Dokuka, V. N.; Khayrutdinov, R. R. [State Research Center of the Russian Federation, Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2015-12-15

    On the basis of current understanding of physical processes in tokamaks and taking into account engineering constraints, it is shown that a low-cost facility of a moderate size can be designed within the adopted concept. This facility makes it possible to achieve the power density of neutron flux which is of interest, in particular, for solving the problem of {sup 233}U fuel production from thorium. By using a molten-salt blanket, the important task of ensuring the safe operation of such a reactor in the case of possible coolant loss is accomplished. Moreover, in a hybrid reactor with the blanket based on liquid salts, the problem of periodic refueling that is difficult to perform in solid blankets can be solved.

  8. Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume I. Summary, objectives and management. Revision 2

    International Nuclear Information System (INIS)

    1982-08-01

    This document defines a plan for conducting selected aspects of the engineering testing required for magnetic fusion reactor FWBS components and systems. The ultimate product of this program is an established data base that contributes to a functional, reliable, maintainable, economically attractive, and environmentally acceptable commercial fusion reactor first wall, blanket, and shield system. This program plan updates the initial plan issued in November of 1980 by the DOE/Office of Fusion Energy (unnumbered report). The plan consists of two parts. Part I is a summary of activities, responsibilities and program management including reporting and interfaces with other programs. Part II is a compilation of the Detailed Technical Plans for Phase I (1982 to 1984) developed by the participants during Phase 0 of the program

  9. Preliminary analyses of neutronics schemes for three kinds waste transmutation blankets of fusion-fission hybrid

    International Nuclear Information System (INIS)

    Zhang Mingchun; Feng Kaiming; Li Zaixin; Zhao Fengchao

    2012-01-01

    The neutronics schemes of the helium-cooled waste transmutation blanket, sodium-cooled waste transmutation blanket and FLiBe-cooled waste transmutation blanket were preliminarily calculated and analysed by using the spheroidal tokamak (ST) plasma configuration. The neutronics properties of these blankets' were compared and analyzed. The results show that for the transmutation of "2"3"7Np, FLiBe-cooled waste transmutation blanket has the most superior transmutation performance. The calculation results of the helium-cooled waste transmutation blanket show that this transmutation blanket can run on a steady effective multiplication factor (k_e_f_f), steady power (P), and steady tritium production rate (TBR) state for a long operating time (9.62 years) by change "2"3"7Np's initial loading rate of the minor actinides (MA). (authors)

  10. Summary of the target-blanket breakout group

    Energy Technology Data Exchange (ETDEWEB)

    Capiello, M.; Bell, C. [Los Alamos National Laboratory, NM (United States); Barthold, W.

    1995-10-01

    This breakout group discussed a number of topics and issues pertaining to target and blanket concepts for accelerator-driven systems. This major component area is one marked by a broad spectrum of technical approaches. It is therefore less defined than other major component areas such as the accelerator and is at an earlier stage of technical needs and task specification. The working group did reach a number of general conclusions and recommendations that are summarized. The Conference and the Target/Blanket Breakout Group provided a first opportunity for people working on a variety of missions and concepts to get together and exchange information. A number of subcritical systems applicable for a spectrum of missions were proposed at the Conference and discussed in the Breakout Group. Missions included plutonium disposition, energy production, waste destruction, isotope production, and neutron scattering. The Target/Blanket Breakout Group also defined areas where parameters and data should be addressed as target/blanket design activities become more detailed and sophisticated.

  11. Conceptual design of an electricity generating tritium breeding blanket sector for INTOR/NET

    International Nuclear Information System (INIS)

    Bond, A.

    1984-01-01

    A study is made of a fusion reactor power blanket and its associated equipment with the objective of producing a conceptual design for a blanket sector of INTOR, or one of its national variants (e.g. NET), from which electricity could be generated simultaneously with the breeding of tritium. (author)

  12. Solid breeder test blanket module design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ying, A. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States)]. E-mail: ying@fusion.ucla.edu; Abdou, M. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Calderoni, P. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Sharafat, S. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Youssef, M. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); An, Z. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Abou-Sena, A. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Kim, E. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Reyes, S. [LANL, Livermore, CA (United States); Willms, S. [LANL, Los Alamos, NM (United States); Kurtz, R. [PNNL, Richland, WA (United States)

    2006-02-15

    This paper presents the design and analysis for the US ITER solid breeder blanket test articles. Objectives of solid breeder blanket testing during the first phase of the ITER operation focus on exploration of fusion break-in phenomena and configuration scoping. Specific emphasis is placed on first wall structural response, evaluation of neutronic parameters, assessment of thermomechanical behavior and characterization of tritium release. The tests will be conducted with three unit cell arrays/sub-modules. The development approach includes: (1) design the unit cell/sub-module for low temperature operations and (2) refer to a reactor blanket design and use engineering scaling to reproduce key parameters under ITER wall loading conditions, so that phenomena under investigation can be measured at a reactor-like level.

  13. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    International Nuclear Information System (INIS)

    Latkowski, J.F.; Kramer, K.J.; Abbott, R.P.; Morris, K.R.; DeMuth, J.; Divol, L.; El-Dasher, B.; Lafuente, A.; Loosmore, G.; Reyes, S.; Moses, G.A.; Fratoni, M.; Flowers, D.; Aceves, S.; Rhodes, M.; Kane, J.; Scott, H.; Kramer, R.; Pantano, C.; Scullard, C.; Sawicki, R.; Wilks, S.; Mehl, M.

    2010-01-01

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  14. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  15. Organic coolants and their applications to fusion reactors

    International Nuclear Information System (INIS)

    Gierszewski, P.; Hollies, B.

    1986-08-01

    Organic coolants offer a unique set of characteristics for fusion applications. Their advantages include high-temperature (670 K or 400 degrees C) but low-pressure (2 MPa) operation, limited reactivity with lithium and lithium-lead, reduced corrosion and activation, good heat-transfer capabilities, no magnetohydrodynamic (MHD) effects, and an operating temperature range that extends to room temperature. The major disadvantages are decomposition and flammability. However, organic coolants have been extensively studied in Canada, including nineteen years with an operating 60-MW organic-cooled reactor. Proper attention to design and coolant chemistry controlled these potential problems to acceptable levels. This experience provides an extensive data base for design under fusion conditions. The organic fluid characteristics are described in sufficient detail to allow fusion system designers to evaluate organic coolants for specific applications. To illustrate and assess the potential applications, analyses are presented for organic-cooled blankets, first walls, high heat flux components and thermal power cycles. Designs are identified that take advantage of organic coolant features, yet have fluid decomposition related costs that are a small fraction of the overall cost of electricity. For example, organic-cooled first walls make lithium/ferritic steel blankets possible in high-field, high-surface-heat-flux tokamaks, and organic-cooled limiters (up to about 8 MW/m 2 surface heating) are a safer alternative to water cooling for liquid metal blanket concept. Organics can also be used in intermediate heat exchanger loops to provide efficient heat transfer with low reactivity and a large tritium barrier. 55 refs

  16. Design of self-cooled, liquid-metal blankets for tokamak and tandem mirror reactors

    International Nuclear Information System (INIS)

    Cha, Y.S.; Gohar, Y.; Hassanein, A.M.; Majumdar, S.; Picologlou, B.F.; Smith, D.L.; Szo, D.K.

    1985-01-01

    Results of the self-cooled, liquid-metal blanket design from the Blanket Comparison and Selection Study (BCSS) are summarized. The objectives of the BCSS project are to define a small number (about three) of blanket concepts that should be the focus of the blanket research and development (RandD) program, identify and prioritize the critical issues for the leading blanket concepts, and provide technical input necessary to develop a blanket RandD program plan. Two liquid metals (lithium and lithium-lead (17Li-83Pb)) and three structural materials (primary candidate alloy (PCA), ferritic steel (FS) (HT-9), and vanadium alloy (V-15 Cr-5 Ti)) are included in the evaluations for both tokamaks and tandem mirror reactors (TMRs). TMR is of the tube configuration similar to the Mirror Advanced Reactor Study design. Analyses were performed in the following generic areas for each blanket concept: MHD, thermal hydraulics, stress, neutronics, and tritium recovery. Integral analyses were performed to determine the design window for each blanket design. The Li/Li/V blanket for tokamak and the Li/Li/V, LiPb/LiPb/V, and Li/Li/HT-9 blankets for the TMR are judged to be top-rated concepts. Because of its better thermophysical properties and more uniform nuclear heating profile, liquid lithium is a better coolant than liquid 17Li83Pb. From an engineering point of view, vanadium alloy is a better structural material than either FS or PCA since the former has both a higher allowable structural temperature and a higher allowable coolant/structure interface temperature than the latter. Critical feasibility issues and design constraints for the self-cooled, liquid-metal blanket concepts are identified and discussed

  17. Flow balancing in liquid metal blankets

    International Nuclear Information System (INIS)

    Tillack, M.S.; Morley, N.B.

    1995-01-01

    Non-uniform flow distribution between parallel channels is one of the most serious concerns for self-cooled liquid metal blankets with electrically insulated walls. We show that uncertainties in flow distribution can be dramatically reduced by relatively simple design modifications. Several design features which impose flow uniformity by electrically coupling parallel channels are surveyed. Basic mechanisms for ''flow balancing'' are described, and a particular self-regulating concept using discrete passive electrodes is proposed for the US ITER advanced blanket concept. Scoping calculations suggest that this simple technique can be very powerful in equalizing the flow, even with massive insulator failures in individual channels. More detailed analyses and experimental verification will be required to demonstrate this concept for ITER. (orig.)

  18. Economic analysis of fusion breeders. Supplement

    International Nuclear Information System (INIS)

    Delene, J.G.

    1985-01-01

    Three fusion/fission hybrids and three converter reactors were considered in combination: (1) Li-Be (Opt-Li) blanket, (2) molten salt blanket (1.6 blanket energy multiplier), and (3) molten salt blanket (2.5 blanket energy multiplier). The following converter (fission) reactors were considered: (1) LWR, (2) HTGR, and (3) molten salt. In order to provide some perspective on the results of the hybrid analysis, LMFBRs were also examined: (1) methods applied consistently, and (2) range of LMFBR costs consistent with current thought on advanced designs

  19. IFMIF suitability for evaluation of fusion functional materials

    International Nuclear Information System (INIS)

    Casal, N.; Sordo, F.; Mota, F.; Jordanova, J.; Garcia, A.; Ibarra, A.; Vila, R.; Rapisarda, D.; Queral, V.; Perlado, M.

    2011-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is a future neutron source based on the D-Li stripping reaction, planned to test candidate fusion materials at relevant fusion irradiation conditions. During the design of IFMIF special attention was paid to the structural materials for the blanket and first wall, because they will be exposed to the most severe irradiation conditions in a fusion reactor. Also the irradiation of candidate materials for solid breeder blankets is planned in the IFMIF reference design. This paper focuses on the assessment of the suitability of IFMIF irradiation conditions for testing functional materials to be used in liquid blankets and diagnostics systems, since they are been also considered within IFMIF objectives. The study has been based on the analysis and comparison of the main expected irradiation parameters in IFMIF and DEMO reactor.

  20. Breeding blanket design for ITER and prototype (DEMO) fusion reactors and breeding materials issues

    Energy Technology Data Exchange (ETDEWEB)

    Takatsu, H; Enoeda, M [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    Current status of the designs of the ITER breeding blanket and DEMO blankets is introduced placing emphasis on the breeding materials selection and related issues. The former design is based on the up-to-date design activities, as of October 1997, being performed jointly by Joint Central Team (JCT) and Home Teams (HT`s), while the latter is based on the DEMO blanket test module designs being proposed by each Party at the TBWG (Test Blanket Working Group) meetings. (J.P.N.)

  1. Overview of the European Union fusion nuclear technologies development and essential elements on the way to DEMO

    International Nuclear Information System (INIS)

    Andreani, R.; Diegele, E.; Gulden, W.; Laesser, R.; Maisonnier, D.; Murdoch, D.; Pick, M.; Poitevin, Y.

    2006-01-01

    EU is strongly preparing ITER construction involving the system of EU Associations, universities and industry. The European programme has been steered to be in line with the present conception of a future power reactor. Thirty percent of the fusion research budget has been spent on long-term related activities managed by EFDA. These include Power Plant Conceptual Studies (PPCS), the recently undertaken DEMO Conceptual Studies, design and R and D for breeder blankets, low activation materials and IFMIF. Developments on fuel cycle, neutronics, safety and socio-economics complement those specifically performed for ITER. Two EU helium-cooled DEMO blankets will be tested in ITER, using liquid lithium-lead and solid ceramics as breeders. The blanket structures will use EUROFER. Irradiations to 70-80 dpa will qualify EUROFER for DEMO. Advanced materials, in particular SiC f /SiC, under development, could provide more thermodynamically efficient blankets. Even with a fully successful ITER, a number of issues will remain open in technology. The application of high temperature superconductors, essential progress in materials, blanket design and remote handling, are required to produce environmentally safe and economically competitive fusion. A fully integrated world wide international programme is the best way to efficiently progress in these fields

  2. Design and safety analysis of the helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuai; Zhou, Guangming; Lv, Zhongliang; Jin, Cheng; Chen, Hongli [University of Science and Technology of China, Anhui (China). School of Nuclear Science and Technology

    2016-05-15

    This paper reports the design and safety analysis results of the helium cooled solid breeder blanket of the Chinese Fusion Engineering Test Reactor (CFETR). Materials selection and basic structure of the blanket have been presented. Performance analysis including neutronics analysis and thermo-mechanical analysis has shown good results. And the safety analysis of the blanket under Loss Of Coolant Accident (LOCA) conditions has been described. Results showed the current design can deal well with the selected accident scenarios.

  3. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 1: Self-cooled liquid metal breeder blanket. Vol. 1

    International Nuclear Information System (INIS)

    Malang, S.; Reimann, J.; Sebening, H.; Barleon, L.; Bogusch, E.; Bojarsky, E.; Borgstedt, H.U.; Buehler, L.; Casal, V.; Deckers, H.; Feuerstein, H.; Fischer, U.; Frees, G.; Graebner, H.; John, H.; Jordan, T.; Kramer, W.; Krieg, R.; Lenhart, L.; Malang, S.; Meyder, R.; Norajitra, P.; Reimann, J.; Schwenk-Ferrero, A.; Schnauder, H.; Stieglitz, R.; Oschinski, J.; Wiegner, E.

    1991-12-01

    A self-cooled liquid metal breeder blanket for a fusion DEMO-reactor and the status of the development programme is described as a part of the European development programme of DEMO relevant test blankets for NET/ITER. Volume 1 (KfK 4907) contains a summary, Volume 2 (KfK 4908) a more detailed version of the report. Both volumes contain sections on previous studies on self-cooled liquid metal breeder blankets, the reference blanket design for a DEMO-reactor, a typical test blanket design including the ancillary loop system and the building requirements for NET/ITER together with the present status of the associated R and D-programme in the fields of neutronics, magnetohydrodynamics, tritium removal and recovery, liquid metal compatibility and purification, ancillary loop system, safety and reliability. An outlook is given regarding the required R and D-programme for the self-cooled liquid metal breeder blanket prior to tests in NET/ITER and the relevant test programme to be performed in NET/ITER. (orig.) [de

  4. An Analysis of Ripple and Error Fields Induced by a Blanket in the CFETR

    Science.gov (United States)

    Yu, Guanying; Liu, Xufeng; Liu, Songlin

    2016-10-01

    The Chinese Fusion Engineering Tokamak Reactor (CFETR) is an important intermediate device between ITER and DEMO. The Water Cooled Ceramic Breeder (WCCB) blanket whose structural material is mainly made of Reduced Activation Ferritic/Martensitic (RAFM) steel, is one of the candidate conceptual blanket design. An analysis of ripple and error field induced by RAFM steel in WCCB is evaluated with the method of static magnetic analysis in the ANSYS code. Significant additional magnetic field is produced by blanket and it leads to an increased ripple field. Maximum ripple along the separatrix line reaches 0.53% which is higher than 0.5% of the acceptable design value. Simultaneously, one blanket module is taken out for heating purpose and the resulting error field is calculated to be seriously against the requirement. supported by National Natural Science Foundation of China (No. 11175207) and the National Magnetic Confinement Fusion Program of China (No. 2013GB108004)

  5. Compact magnetic fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.

    1983-12-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak/sup 1/ and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics.

  6. Compact magnetic fusion systems

    International Nuclear Information System (INIS)

    Linford, R.K.

    1983-01-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak 1 and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics

  7. Waste management procedures for fusion-based central power stations

    International Nuclear Information System (INIS)

    Botts, T.E.; Powell, J.R.

    1977-08-01

    Several early conceptual designs of fusion demonstration and commercial reactors are used in a discussion of radioactive waste streams, methods of handling these wastes, and their possible environmental effects. Comparisons are made between these waste streams and the fuel cycles of the light water reactor and the liquid metal fast breeder reactor. Most radioactive waste in fusion reactors is generated through replacement of the inner blanket region. Because there is a high degree of uncertainty with regard to blanket lifetimes, there is some uncertainty concerning the activity levels that must be handled. However, in general, fusion reactors are expected to create larger physical amounts of radioactive waste with lower and shorter-lived activity than do fission plants. Material recycling of fusion blanket waste, for nuclear applications, seems feasible after a 100-yr holding time

  8. Fusion technologies for Laser Inertial Fusion Energy (LIFE∗

    Directory of Open Access Journals (Sweden)

    Kramer K.J.

    2013-11-01

    Full Text Available The Laser Inertial Fusion-based Energy (LIFE engine design builds upon on going progress at the National Ignition Facility (NIF and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant.

  9. 3D-printed fusion components concepts and validation for the UST-2 stellarator

    International Nuclear Information System (INIS)

    Queral, V.

    2015-01-01

    Highlights: • A fabrication method for fusion components is developed and validated. • Synergies obtained from additive manufacturing and non-metal casting. • 3D-printed polyamide hollow truss structure and casting of acrylic resin tested. • UST- 2 stellarator coil frame fabricated to validate the method performance. - Abstract: The geometric complexity and high accuracy simultaneously required in magnetic fusion devices, particularly stellarators and tokamaks, hampers the production of fusion components and devices. Rapid manufacturing construction methods, particularly enhanced for fusion, may contribute to a faster cycle and lower cost production of certain components for tokamaks and stellarators. Casting, cutting, forming, welding and mechanising are conventional production techniques for major fusion components, i.e. coil casings, coil frames, vacuum vessels and blankets. Synergies may emerge by combination of additive manufacturing (3D printing) with conventional manufacturing methods. 3D printing combined with resin moulding is tested by construction of the coil frame and the vacuum vessel of a small stellarator, UST-2. Satisfactory coil frames have been obtained by moulding acrylic resin in a special 3D printed polyamide hollow three-dimensional structure. The conceptual engineering design, construction process and validation of the components are described. The presented manufacturing method might contribute to advance the future 3D printing of larger metallic components for fusion.

  10. 3D-printed fusion components concepts and validation for the UST-2 stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Queral, V., E-mail: vicentemanuel.queral@ciemat.es

    2015-10-15

    Highlights: • A fabrication method for fusion components is developed and validated. • Synergies obtained from additive manufacturing and non-metal casting. • 3D-printed polyamide hollow truss structure and casting of acrylic resin tested. • UST- 2 stellarator coil frame fabricated to validate the method performance. - Abstract: The geometric complexity and high accuracy simultaneously required in magnetic fusion devices, particularly stellarators and tokamaks, hampers the production of fusion components and devices. Rapid manufacturing construction methods, particularly enhanced for fusion, may contribute to a faster cycle and lower cost production of certain components for tokamaks and stellarators. Casting, cutting, forming, welding and mechanising are conventional production techniques for major fusion components, i.e. coil casings, coil frames, vacuum vessels and blankets. Synergies may emerge by combination of additive manufacturing (3D printing) with conventional manufacturing methods. 3D printing combined with resin moulding is tested by construction of the coil frame and the vacuum vessel of a small stellarator, UST-2. Satisfactory coil frames have been obtained by moulding acrylic resin in a special 3D printed polyamide hollow three-dimensional structure. The conceptual engineering design, construction process and validation of the components are described. The presented manufacturing method might contribute to advance the future 3D printing of larger metallic components for fusion.

  11. Conceptual design strategy for liquid-metal-wall inertial-fusion reactors

    International Nuclear Information System (INIS)

    Monsler, M.J.; Meier, W.R.

    1981-02-01

    The liquid-metal-wall chamber has emerged as an attractive reactor concept for inertial fusion energy conversion. The principal feature of this concept is a thick, free-flowing blanket of liquid metal used to protect the structure of the reactor. The development and design of liquid-metal-wall chambers over the past decade provides a basis for formulating a conceptual design strategy for such chambers. Both the attractive and unattractive features of a LMW chamber are enumerated, and a design strategy is formulated which accommodates the engineering constraints while minimizing the liquid-metal flow rate

  12. Conceptual design strategy for liquid-metal-wall inertial-fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Monsler, M.J.; Meier, W.R.

    1981-02-01

    The liquid-metal-wall chamber has emerged as an attractive reactor concept for inertial fusion energy conversion. The principal feature of this concept is a thick, free-flowing blanket of liquid metal used to protect the structure of the reactor. The development and design of liquid-metal-wall chambers over the past decade provides a basis for formulating a conceptual design strategy for such chambers. Both the attractive and unattractive features of a LMW chamber are enumerated, and a design strategy is formulated which accommodates the engineering constraints while minimizing the liquid-metal flow rate.

  13. Fusion technology annual report of the association EURATOM/CEA 1998; Technologie de la fusion Rapport annuel 1998 Association EURATOM/CEA 1998

    Energy Technology Data Exchange (ETDEWEB)

    Magaud, P; Le vagueres, F

    1998-07-01

    In this book are found technical and scientific papers on the main works carried out in the frame of the european program of fusion technology, during 1998. The presented activities are: plasma facing components, vacuum vessel and shield, magnets, remote handling, safety (short and long term), european blanket project (long term) with water cooled lithium lead and helium cooled pebble bed blanket, materials for fusion power plant, socio-economic research on fusion, plasma facing components, fuel cycle, inertial confinement. (A.L.B.)

  14. EU contribution to the procurement of the ITER blanket first wall

    International Nuclear Information System (INIS)

    Lorenzetto, Patrick; Banetta, Stefano; Bellin, Boris; Boireau, Bruno; Bucci, Philippe; Cicero, Tindaro; Conchon, Denis; Dellopoulos, Georges; Hardaker, Stephen; Marshall, Paul; Nogué, Patrice; Pérez, Marcos; Gutierrez, Leticia Ruiz; Samaniego, Fernando; Sherlock, Paul; Zacchia, Francesco

    2016-01-01

    Highlights: • Presentation of the blanket first wall design concept to be procured by Europe. • Presentation of the main outcome of the R&D programme with the resulting FW fabrication route. • Presentation of the ITER first wall pre-qualification programme with the results achieved so far. • Presentation of the on-going irradiation experiments. • Presentation of the EU procurement strategy. - Abstract: Fusion for Energy (F4E), the European Union’s Domestic Agency for ITER, is responsible for the procurement of about 50% of the ITER blanket first wall (FW), called normal heat flux FW. A procurement strategy has been implemented by the In-Vessel Project Team at F4E aimed at mitigating technical and commercial risks for the procurement of ITER blanket FW panels, promoting as far as possible competition among industrial partners. This procurement strategy has been supported by an extensive Research and Development (R&D) programme, implemented over more than 15 years in Europe, to develop various fabrication technologies. It includes in particular the manufacture and testing of small-scale, medium-scale mock-ups and full-scale prototypes of blanket FW panels. In this R&D programme, significant efforts have been devoted to the development of a reliable materials joining technique. Hot Isostatic Pressing was selected for the manufacture of the FW panels made from beryllium, copper–chromium–zirconium alloy and 316L(N)-IG austenitic stainless steel. This paper presents the main outcome of the on-going R&D programme, the latest results of the FW qualification programme together with the procurement strategy implemented by F4E for the supply of the European contribution to the procurement of the ITER blanket FW.

  15. EU contribution to the procurement of the ITER blanket first wall

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzetto, Patrick, E-mail: Patrick.Lorenzetto@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Banetta, Stefano; Bellin, Boris [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Boireau, Bruno [AREVA NP, Centre Technique, 71200 Le Creusot (France); Bucci, Philippe [Atmostat, rue René Hamon 31, 94815 Villejuif Cedex (France); Cicero, Tindaro [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Conchon, Denis [Atmostat, rue René Hamon 31, 94815 Villejuif Cedex (France); Dellopoulos, Georges [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Hardaker, Stephen [Amec Foster Wheeler plc, Booths Park, Chelford Road, Knutsford WA16 8QZ (United Kingdom); Marshall, Paul [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Nogué, Patrice [AREVA NP, Centre Technique, 71200 Le Creusot (France); Pérez, Marcos [Leading Enterprises SL, Pasaje de La Agüera, 39409 San Felices de Buelna (Spain); Gutierrez, Leticia Ruiz [Iberdrola Ingeniería y Construcción S.A.U., Avenida Manoteras 20, 28050 Madrid (Spain); Samaniego, Fernando [Leading Enterprises SL, Pasaje de La Agüera, 39409 San Felices de Buelna (Spain); Sherlock, Paul [Amec Foster Wheeler plc, Booths Park, Chelford Road, Knutsford WA16 8QZ (United Kingdom); Zacchia, Francesco [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain)

    2016-11-01

    Highlights: • Presentation of the blanket first wall design concept to be procured by Europe. • Presentation of the main outcome of the R&D programme with the resulting FW fabrication route. • Presentation of the ITER first wall pre-qualification programme with the results achieved so far. • Presentation of the on-going irradiation experiments. • Presentation of the EU procurement strategy. - Abstract: Fusion for Energy (F4E), the European Union’s Domestic Agency for ITER, is responsible for the procurement of about 50% of the ITER blanket first wall (FW), called normal heat flux FW. A procurement strategy has been implemented by the In-Vessel Project Team at F4E aimed at mitigating technical and commercial risks for the procurement of ITER blanket FW panels, promoting as far as possible competition among industrial partners. This procurement strategy has been supported by an extensive Research and Development (R&D) programme, implemented over more than 15 years in Europe, to develop various fabrication technologies. It includes in particular the manufacture and testing of small-scale, medium-scale mock-ups and full-scale prototypes of blanket FW panels. In this R&D programme, significant efforts have been devoted to the development of a reliable materials joining technique. Hot Isostatic Pressing was selected for the manufacture of the FW panels made from beryllium, copper–chromium–zirconium alloy and 316L(N)-IG austenitic stainless steel. This paper presents the main outcome of the on-going R&D programme, the latest results of the FW qualification programme together with the procurement strategy implemented by F4E for the supply of the European contribution to the procurement of the ITER blanket FW.

  16. Automated laser fusion target production concept

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1977-01-01

    A target production concept is described for the production of multilayered cryogenic spherical inertial confinement fusion targets. The facility is to deliver targets to the reactor chamber at rates up to 10 per second and at costs consistent with economic production of power

  17. Neutronics design for a spherical tokamak fusion-transmutation reactor

    International Nuclear Information System (INIS)

    Deng Meigen; Feng Kaiming; Yang Bangchao

    2002-01-01

    Based on studies of the spherical tokamak fusion reactors, a concept of fusion-transmutation reactor is put forward. By using the one-dimension transport and burn-up code BISON3.0 to process optimized design, a set of plasma parameters and blanket configuration suitable for the transmutation of MA (Minor Actinides) nuclear waste is selected. Based on the one-dimension calculation, two-dimension calculation has been carried out by using two-dimension neutronics code TWODANT. Combined with the neutron flux given by TWODANT calculation, burn-up calculation has been processed by using the one-dimension radioactivity calculation code FDKR and some useful and reasonable results are obtained

  18. Scoping of oil shale retorting with nuclear fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1983-01-01

    An engineering scoping study was conducted at the U.S. Department of Energy's request to see if a feasible concept could be developed for using nuclear fusion heat to improve in situ extraction by retorting of underground oil shale. It was found that a fusion heated, oxygen-free inert gas could be used for driving modified, in situ retorts at a higher yield, using lower grade shale and producing less environmental problems than present-day processes. It was also found to be economically attractive with return on investments of 20 to 30%. Fusion blanket technology required was found to be reasonable at hot gas delivery temperatures of about650 0 C (920 K). The scale of a fusion reactor at 2.8 GW(thermal) producing 45 000 Mg/day (335 000 barrel/day) was also found to be reasonable

  19. Burn-up calculation of fusion-fission hybrid reactor using thorium cycle

    International Nuclear Information System (INIS)

    Shido, S.; Matsunaka, M.; Kondo, K.; Murata, I.; Yamamoto, Y.

    2006-01-01

    A burn-up calculation system has been developed to estimate performance of blanket in a fusion-fission hybrid reactor which is a fusion reactor with a blanket region containing nuclear fuel. In this system, neutron flux is calculated by MCNP4B and then burn-up calculation is performed by ORIGEN2. The cross-section library for ORIGEN2 is made from the calculated neutron flux and evaluated nuclear data. The 3-dimensional ITER model was used as a base fusion reactor. The nuclear fuel (reprocessed plutonium as the fission materials mixed with thorium as the fertile materials), transmutation materials (minor actinides and long-lived fission products) and tritium breeder were loaded into the blanket. Performances of gas-cooled and water-cooled blankets were compared with each other. As a result, the proposed reactor can meet the requirement for TBP and power density. As far as nuclear waste incineration is concerned, the gas-cooled blanket has advantages. On the other hand, the water cooled-blanket is suited to energy production. (author)

  20. Alternative fusion concepts: engineering and utility considerations

    International Nuclear Information System (INIS)

    Gough, W.C.; Amherd, N.A.

    1978-01-01

    Alternative systems are described to be an integral part of the total fusion effort, making use of many developments of the mainline efforts but also contributing on a broad scale to improved understanding of fusion plasmas, technology and engineering. We hypothesize that the rationale for supporting alternative concepts will shift from physics related justifications to the perceived benefits for commercial use. Three principal factors are used to describe the commercialization potential of energy systems: technological risk, perceived benefit, and capital requirements. R and D can reduce the risk of a technology option, but perceived benefit and capital availability are largely governed by non-R and D elements. Hence, power station decision criteria as determined by electric-utility executives are presented, and a balance among the three commercialization factors described. An outline of past and on-going alternative concept reactor study endeavors is given and a suggestion for rapidly developing the physics base of the concepts is described

  1. DEMO concepts and their roles within the fusion programme

    International Nuclear Information System (INIS)

    Tran, Minh Quang

    2007-01-01

    In the past years, the international fusion community has developed models of fusion power plants, which were extremely useful in showing the key advantages of fusion energy and pointing out he areas of development. The present view is that between ITER and such power plants (even of ''first of kind'' type), there is a need for one or two intermediate steps. The need to have a ''fast rack'' towards such a fusion reactor, suggested that the steps after ITER, which are usually considered to be a Demonstration power plant followed by a Prototypical one, could be combines into one known as a DEMO. DEMO would then be a device capable of producing electricity, paving the way towards fusion power plants which would be economically viable. This talk outlines the DEMO concepts as the necessary physics and technological extrapolation from the envisaged future steps (ITER, IFMIF) are discussed. It attempts to provide a coverage of the different concepts developed by various countries, The key issues, as foreseen today, and their implications for the programme are highlighted. (orig.)

  2. Remote handling assessment of attachment concepts for DEMO blanket segments

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, Daniel, E-mail: daniel.iglesias@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Bastow, Roger; Cooper, Dave; Crowe, Robert; Middleton-Gear, Dave [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sibois, Romain [VTT, Technical Research Centre of Finland, Industrial Systems, ROViR, Tampere (Finland); Carloni, Dario [Institute of Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT) (Germany); Vizvary, Zsolt; Crofts, Oliver [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Harman, Jon [EFDA Close Support Unit Garching, Boltzmannstaße 2, D-85748 Garching bei München (Germany); Loving, Antony [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2015-10-15

    Highlights: • Challenges are identified for the remote handling of blanket segments’ attachments. • Two attachment design approaches are assessed for remote handling (RH) feasibility. • An alternative is proposed, which potentially simplifies and speeds-up RH operations. • Up to three different assemblies are proposed for the remote handling of the attachments. • Proposed integrated design of upper port is compatible with the attachment systems. - Abstract: The replacement strategy of the massive Multi-Module Blanket Segments (MMS) is a key driver in the design of several DEMO systems. These include the blankets themselves, the vacuum vessel (VV) and its ports and the Remote Maintenance System (RMS). Common challenges to any blanket attachment system have been identified, such as the need for applying a preload to the MMS manifold, the effects of the decay heat and several uncertainties related to permanent deformations when removing the blanket segments after service. The WP12 kinematics of the MMS in-vessel transportation was adapted to the requirements of each of the supports during 2013 and 2014 design activities. The RM equipment envisaged for handling attachments and earth connections may be composed of up to three different assemblies. An In-Vessel Mover at the divertor level handles the lower support and earth bonding, and could stabilize the MMS during transportation. A Shield Plug crane with a 6 DoF manipulator operates the upper attachment and earth straps. And a Vertical Maintenance Crane is responsible for the in-vessel MMS transportation and can handle the removable upper support pins. A final proposal is presented which can potentially reduce the number of required systems, at the same time that speeds-up the RMS global operations.

  3. A system dynamics model for stock and flow of tritium in fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kwon, Saerom [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Sakamoto, Yoshiteru; Yamanishi, Toshihiko; Tobita, Kenji [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori-ken 039-3212 (Japan)

    2015-10-15

    Highlights: • System dynamics model of tritium fuel cycle was developed for analyzing stock and flow of tritium in fusion power plants. • Sensitivity of tritium build-up to breeding ratio parameters has been assessed to two plant concepts having 3 GW and 1.5 GW fusion power. • D-D start-up absolutely without initial loading of tritium is possible for both of the 3 GW and 1.5 GW fusion power plant concepts. • Excess stock of tritium is generated by the steady state operation with the value of tritium breeding ratio over unity. - Abstract: In order to analyze self-efficiency of tritium fuel cycle (TFC) and share the systems thinking of TFC among researchers and engineers in the vast area of fusion reactor technology, we develop a system dynamics (SD) TFC model using a commercial software STELLA. The SD-TFC model is illustrated as a pipe diagram which consists of tritium stocks, such as plasma, fuel clean up, isotope separation, fueling with storage and blanket, and pipes connecting among them. By using this model, we survey a possibility of D-D start-up without initial loading of tritium on two kinds of fusion plant having different plasma parameters. The D-D start-up scenario can reduce the necessity of initial loading of tritium through the production in plasma by D-D reaction and in breeding blanket by D-D neutron. The model is also used for considering operation scenario to avoid excess stock of tritium which must be produced at tritium breeding ratio over unity.

  4. Systematic methodology for estimating direct capital costs for blanket tritium processing systems

    International Nuclear Information System (INIS)

    Finn, P.A.

    1985-01-01

    This paper describes the methodology developed for estimating the relative capital costs of blanket processing systems. The capital costs of the nine blanket concepts selected in the Blanket Comparison and Selection Study are presented and compared

  5. Assessment of the slowly-imploding liner (LINUS) fusion reactor concept

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1980-01-01

    Prospects for the slowly-imploding liner (LINUS) fusion reactor concept are reviewed. The concept envisages the nondestructive, repetitive and reversible implosion of a liquid-metal cylindrical annulus (liner) onto field-reversed DT plasmoids. Adiabatic heating of the plasmoid to ignition at ultra-high magnetic fields results in a compact, high power density fusion reactor with unique solutions to several technological problems and potentially favorable economics

  6. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 1: Self-cooled liquid metal breeder blanket. Vol. 2. Detailed version

    International Nuclear Information System (INIS)

    John, H.; Malang, S.; Sebening, H.

    1991-12-01

    A self-cooled liquid metal breeder blanket for a fusion DEMO-reactor and the status of the development programme is described as a part of the European development programme of DEMO relevant test blankets for NET/ITER. Volume 1 (KfK 4907) contains a summary. Volume 2 (KfK 4908) a more detailed version of the report. Both volumes contain sections on previous studies on self-cooled liquid metal breeder blankets, the reference blanket design for a DEMO-reactor, a typical test blanket design including the ancillary loop system and the building requirements for NET/ITER together with the present status of the associated RandD-programme in the fields of neutronics, magnetohydrodynamics, tritium removal and recovery, liquid metal compatibility and purification, ancillary loop system, safety and reliability. An outlook is given regarding the required RandD-programme for the self-cooled liquid metal breeder blanket prior to tests in NET/ITER and the relevant test programme to be performed in NET/ITER. (orig.) [de

  7. Nuclear fusion and neutron processes

    International Nuclear Information System (INIS)

    Orlov, V.V.; Shatalov, G.E.; Sherstnev, K.E.

    1984-01-01

    Problems of providing development of the design of an experimental fusion reactor with necessary neutron-physical data are discussed. Isotope composition of spent fuel in the blanket of a hybride fusion reactor (HFR) is given. Neutron balance of the reactor with Li-blanket and neutron balance of the reactor with Pb-multiplier are disclosed. A simplified scheme of neutron and energy balance in the HFR blanket is given. Development and construction of the experimental power reactor is shown to become the nearest problem of the UTS program. Alongside with other complex physical and technical problems solution of this problem requires realization of a wide program of neutron-physical investigations including measurements with required accuracy of neutron cross sections, development of methodical, program and constant basis of neutron calculations and macroscopic experiments on neutron sources

  8. A helium-cooled blanket design of the low aspect ratio reactor

    International Nuclear Information System (INIS)

    Wong, C.P.; Baxi, C.B.; Reis, E.E.; Cerbone, R.; Cheng, E.T.

    1998-03-01

    An aggressive low aspect ratio scoping fusion reactor design indicated that a 2 GW(e) reactor can have a major radius as small as 2.9 m resulting in a device with competitive cost of electricity at 49 mill/kWh. One of the technology requirements of this design is a high performance high power density first wall and blanket system. A 15 MPa helium-cooled, V-alloy and stagnant LiPb breeder first wall and blanket design was utilized. Due to the low solubility of tritium in LiPb, there is the concern of tritium migration and the formation of V-hydride. To address these issues, a lithium breeder system with high solubility of tritium has been evaluated. Due to the reduction of blanket energy multiplication to 1.2, to maintain a plant Q of > 4, the major radius of the reactor has to be increased to 3.05 m. The inlet helium coolant temperature is raised to 436 C in order to meet the minimum V-alloy temperature limit everywhere in the first wall and blanket system. To enhance the first wall heat transfer, a swirl tape coolant channel design is used. The corresponding increase in friction factor is also taken into consideration. To reduce the coolant system pressure drop, the helium pressure is increased from 15 to 18 MPa. Thermal structural analysis is performed for a simple tube design. With an inside tube diameter of 1 cm and a wall thickness of 1.5 mm, the lithium breeder can remove an average heat flux and neutron wall loading of 2 and 8 MW/m(2), respectively. This reference design can meet all the temperature and material structural design limits, as well as the coolant velocity limits. Maintaining an outlet coolant temperature of 650 C, one can expect a gross closed cycle gas turbine thermal efficiency of 45%. This study further supports the use of helium coolant for high power density reactor design. When used with the low aspect ratio reactor concept a competitive fusion reactor can be projected at 51.9 mill/kWh

  9. Joining of SiC/SiCf ceramic matrix composites for fusion reactor blanket applications

    International Nuclear Information System (INIS)

    Colombo, P.; Riccardi, B.; Donato, A.; Scarinci, G.

    2000-01-01

    Using a preceramic polymer, joints between SiC/SiC f ceramic matrix composites were obtained. The polymer, upon pyrolysis at high temperature, transforms into a ceramic material and develops an adhesive bonding with the composite. The surface morphology of 2D and 3D SiC/SiC f composites did not allow satisfactory results to be obtained by a simple application of the method initially developed for monolithic SiC bodies, which employed the use of a pure silicone resin. Thus, active or inert fillers were mixed with the preceramic polymer, in order to reduce its volumetric shrinkage which occurs during pyrolysis. In particular, the joints realized using the silicone resin with Al-Si powder as reactive additive displayed remarkable shear strength (31.6 MPa maximum). Large standard deviation for the shear strength has nevertheless been measured. The proposed joining method is promising for the realization of fusion reactor blanket structures, even if presently the measured strength values are not fully satisfactory

  10. Composition Optimization of Lithium-Based Ternary Alloy Blankets for Fusion Reactors

    Science.gov (United States)

    Jolodosky, Alejandra

    The goal of this dissertation is to examine the neutronic properties of a novel type of fusion reactor blanket material in the form of lithium-based ternary alloys. Pure liquid lithium, first proposed as a blanket for fusion reactors, is utilized as both a tritium breeder and a coolant. It has many attractive features such as high heat transfer and low corrosion properties, but most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns including degradation of the concrete containment structure. The work of this thesis began as a collaboration with Lawrence Livermore National Laboratory in an effort to develop a lithium-based ternary alloy that can maintain the beneficial properties of lithium while reducing the reactivity concerns. The first studies down-selected alloys based on the analysis and performance of both neutronic and activation characteristics. First, 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and energy multiplication factor (EMF). Alloys with adequate results based on TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). The straightforward approach to obtain Monte Carlo TBR and EMF results required 231 simulations per alloy and became computationally expensive, time consuming, and inefficient. Consequently, alternate methods were pursued. A collision history-based methodology recently developed for the Monte Carlo code Serpent, calculates perturbation effects on practically

  11. Progress in the development of the blanket structural material for fusion reactors

    International Nuclear Information System (INIS)

    Scott, J.L.; Bloom, E.E.; Grossbeck, M.L.; Maziasz, P.J.; Wiffen, F.W.; Gold, R.E.; Holmes, J.J.; Reuther, P.C. Jr.; Rosenwasser, S.N.

    1981-01-01

    The Alloy Development for Irradiation Performance Program has become more focused since the last Fusion Reactor Technology Conference two years ago. Since austenitic stainless steels and ferritic steels are candidate structural materials for the near-term reactors ETF and INTOR and austenitic stainless steel is also the preferred structural material for the steady-state commercial fusion reactor, STARFIRE, a vigorous experimental program is under way to identify the best alloy from each of these alloy classes and to provide the engineering data base in a timely manner. In addition the comprehensive program that includes high-strength Fe-Ni-Cr alloys, reactive and refractory metals, and advanced concepts continues in an orderly fashion

  12. APT target-blanket fabrication development

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.L.

    1997-06-13

    Concepts for producing tritium in an accelerator were translated into hardware for engineering studies of tritium generation, heat transfer, and effects of proton-neutron flux on materials. Small-scale target- blanket assemblies were fabricated and material samples prepared for these performance tests. Blanket assemblies utilize composite aluminum-lead modules, the two primary materials of the blanket. Several approaches are being investigated to produce large-scale assemblies, developing fabrication and assembly methods for their commercial manufacture. Small-scale target-blanket assemblies, designed and fabricated at the Savannah River Site, were place in Los Alamos Neutron Science Center (LANSCE) for irradiation. They were subjected to neutron flux for nine months during 1996-97. Coincident with this test was the development of production methods for large- scale modules. Increasing module size presented challenges that required new methods to be developed for fabrication and assembly. After development, these methods were demonstrated by fabricating and assembling two production-scale modules.

  13. Inertial Fusion Power Plant Concept of Operations and Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Anklam, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knutson, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunne, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kasper, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sheehan, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lang, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mau, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  14. Liquid metal flows in insulating elements of self-cooled blankets

    International Nuclear Information System (INIS)

    Molokov, S.

    1995-01-01

    Liquid metal flows in insulating rectangular ducts in strong magnetic fields are considered with reference to poloidal concepts of self-cooled blankets. Although the major part of the flow in poloidal blanket concepts is close to being fully developed, manifolds, expansions, contractions, elbows, etc., which are necessary elements in blanket designs, cause three-dimensional effects. The present investigation demonstrates the flow pattern in basic insulating geometries for actual and more advanced liquid metal blanket concepts and discusses the ways to avoid pressure losses caused by flow redistribution. Flows in several geometries, such as symmetric and non-symmetric 180 turns with and without manifolds, sharp and linear expansions with and without manifolds, etc., have been considered. They demonstrate the attractiveness of poloidal concepts of liquid metal blankets, since they guarantee uniform conditions for heat transfer. If changes in the duct cross-section occur in the plane perpendicular to the magnetic field (ideally a coolant should always flow in the radial-poloidal plane), the disturbances are local and the slug velocity profile is reached roughly at a distance equivalent to one duct width from the manifolds, expansions, etc. The effects of inertia in these flows are unimportant for the determination of the pressure drop and velocity profiles in the core of the flow but may favour heat transfer characteristics via instabilities and strongly anisotropic turbulence. (orig.)

  15. Trade-off study of liquid-metal self-cooled blankets

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-01-01

    A trade-off study of liquid-metal self-cooled blankets was carried out to define the performance of these blankets with respect to the main functions in a fusion reactor, and to determine the potential to operate at the maximum possible values of the performance parameters. The main purpose is to improve the reactor economics by maximizing the blanket energy multiplication factor, reduce the capital cost of the reactor, and satisfy the design requirements. The main parameters during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the 6 Li enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, the impact of different reactor design choices on the performance parameters was analyzed. The effect of the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, the coolant choice for the nonbreeding inboard blanket, and the neutron source distribution were part of the trade-off study. In addition, tritium breeding benchmark calculations were performed to study the impact of the use of different transport codes and nuclear data libraries. The importance and the negative effect of high TBR on the energy multiplication motivated the benchmark calculations

  16. A conceptual design study of a reversed field pinch fusion reactor

    International Nuclear Information System (INIS)

    Kondo, S.; Tanaka, S.; Terai, T.; Hashizume, H.

    1989-01-01

    A conceptual design of a Reversed-Field Pinch (RFP) fusion reactor with a solid breeder blanket REPUTER-1 has been studied through parametric system studies and detailed design and analysis in order to clarify the technical feasibility of a compact fusion reactor. F-θ pumping is used for driving the plasma current necessary for steady state operation. A maintenance policy of replacing a whole fusion power core including TF coils is proposed to cope with the requirements of high wall loading and high mass power density. For the same reason a normal conductor is selected for most of the coils. The first wall is structurally independent of the blanket. The blanket module is composed of SiC reinforced blocks which form a stable arch so as to keep the stresses in SiC basically compressive. The coolant for the first wall and the limiter is pressurized water, while the coolant for the blanket is helium gas. A number of thin Li 2 O and thick beryllium tiles are packed into the blanket block so as to obtain a proper tritium breeding ratio. A pumped limiter is chosen for the plasma exhaust system. The study has shown the technical feasibility of a high power density fusion power reactor (330 kWe/tonne) with solid breeder blanket and many key physics and engineering issues are also clarified. (orig.)

  17. Mechanical design of a magnetic fusion production reactor

    International Nuclear Information System (INIS)

    Neef, W.S.; Jassby, D.L.

    1986-01-01

    The mechanical aspects of a tandem mirror and tokamak concepts for the tritium production mission are compared, and a proposed breeding blanket configuration for each type of reactor is presented in detail, along with a design outline of the complete fusion reaction system. In both cases, the reactor design is developed sufficiently to permit preliminary cost estimates of all components. A qualitative comparison is drawn between both concepts from the view of mechanical design and serviceability, and suggestions are made for technology proof tests on unique mechanical features. Detailed cost breakdowns indicate less than 10% difference in the overall costs of the two reactors

  18. Prospects for improved fusion reactors

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1986-01-01

    Ideally, a new energy source must be capable of displacing old energy sources while providing both economic opportunities and enhanced environmental benefits. The attraction of an essentially unlimited fuel supply has generated a strong impetus to develop advanced fission breeders and, even more strongly, the exploitation of nuclear fusion. Both fission and fusion systems trade a reduced fuel charge for a more capital-intensive plant needed to utilize a cheaper and more abundant fuel. Results from early conceptual designs of fusion power plants, however, indicated a capital intensiveness that could override cost savings promised by an inexpensive fuel cycle. Early warnings of these problems appeared, and generalized routes to more economically attractive systems have been suggested; specific examples have also recently been given. Although a direct reduction in the cost (and mass) of the fusion power core (FPC, i.e., plasma chamber, first wall, blanket, shield, coils, and primary structure) most directly reduces the overall cost of fusion power, with the mass power density (MPD, ratio of net electric power to FPC mass, kWe/tonne) being suggested as a figure-of-merit in this respect, other technical, safety/environmental, and institutional issues also enter into the definition of and direction for improved fusion concepts. These latter issues and related tradeoffs are discussed

  19. Blanket comparison and selection study. Final report. Volume 1

    International Nuclear Information System (INIS)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li 2 O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N 2 ) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li 2 O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue

  20. Blanket comparison and selection study. Final report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concepts are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.