WorldWideScience

Sample records for fusarium oxysporum root

  1. Root rot symptoms in sugar beet lines caused by Fusarium oxysporum f. sp. betae

    Science.gov (United States)

    The soil-borne fungus Fusarium oxysporum may cause both Fusarium yellows and Fusarium root rot diseases with severe yield losses in cultivated sugar beet worldwide. These two diseases cause similar foliar symptoms but different root response and have been proposed to be due to two distinct F. oxyspo...

  2. Root Rot of Balloon Flower (Platycodon grandiflorum) Caused by Fusarium solani and Fusarium oxysporum.

    Science.gov (United States)

    Jeon, Chi Sung; Kim, Gyoung Hee; Son, Kyeong In; Hur, Jae-Seoun; Jeon, Kwon-Seok; Yoon, Jun-Hyuck; Koh, Young Jin

    2013-12-01

    Balloon flower (Platycodon grandiflorum) is a kind of mountain herbs whose roots have restorative properties and the cultivating acreage of balloon flower has been steadily increasing in Korea. More frequent rain and high amount of rainfalls as a result of climate changes predisposed balloon flower to the outbreaks of root rot at high-density cultivation area in recent years. Root crowns were usually discolored into brown to blackish brown at first and the infected plants showed slight wilting symptom at early infection stage. Severely infected roots were entirely rotted and whole plants eventually died at late infection stage. The overall disease severities of root rot of balloon flower were quite variable according to the surveyed fields in Jeonnam, Gyeongnam and Jeju Provinces, which ranged from 0.1% to 40%. The root rot occurred more severely at the paddy or clay soils than the sandy soils and their severities were much higher at lowland than upland in the same localty. The disease increased with aging of the balloon flower. The causal fungi were identified as Fusarium solani and F. oxysporum on the basis of their mycological characteristics. The optimum temperature ranges of their mycelial growths was found to be 24°C. The pathogenic characters of F. solani and F. oxysporum treated by artificial wounding inoculation on healthy roots of balloon flower revealed that F. solani was more virulent than F. oxysporum. This study identified the causal agents of root rot of balloon flower as Fusarium solani and F. oxysporum, probably for the first time.

  3. Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance

    OpenAIRE

    Chen, Yi Chung; Wong, Chin Lin; Muzzi, Frederico; Vlaardingerbroek, Ido; Kidd, Brendan N; Peer M Schenk

    2014-01-01

    Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including Arabidopsis thaliana. Investigation of the defense response against this pathogen had primarily been conducted using leaf tissue and little was known about the root defense response. In this study, we profiled the expression of root genes after infection with F. oxysporum by microarray analysis. In contrast to the leaf response, root tissue did not show a strong inducti...

  4. Fusarium oxysporum and Its Biocontrol

    National Research Council Canada - National Science Library

    D. Fravel; C. Olivain; C. Alabouvette

    2003-01-01

    Fusarium oxysporum is well represented among the rhizosphere microflora. While all strains exist saprophytically, some are well-known for inducing wilt or root rots on plants whereas others are considered as nonpathogenic...

  5. Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots.

    Science.gov (United States)

    Gupta, Kapuganti J; Mur, Luis A J; Brotman, Yariv

    2014-04-01

    Inoculations with saprophytic fungus Trichoderma spp. are now extensively used both to promote plant growth and to suppress disease development. The underlying mechanisms for both roles have yet to be fully described so that the use of Trichoderma spp. could be optimized. Here, we show that Trichoderma asperelloides effects include the manipulation of host nitric oxide (NO) production. NO was rapidly formed in Arabidopsis roots in response to the soil-borne necrotrophic pathogen Fusarium oxysporum and persisted for about 1 h but is only transiently produced (approximately 10 min) when roots interact with T. asperelloides (T203). However, inoculation of F. oxysporum-infected roots with T. asperelloides suppressed F. oxysporum-initiated NO production. A transcriptional study of 78 NO-modulated genes indicated most genes were suppressed by single and combinational challenge with F. oxysporum or T. asperelloides. Only two F. oxysporum-induced genes were suppressed by T. asperelloides inoculation undertaken either 10 min prior to or after pathogen infection: a concanavlin A-like lectin protein kinase (At4g28350) and the receptor-like protein RLP30. Thus, T. asperelloides can actively suppress NO production elicited by F. oxysporum and impacts on the expression of some genes reported to be NO-responsive. Of particular interest was the reduced expression of receptor-like genes that may be required for F. oxysporum-dependent necrotrophic disease development.

  6. Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance

    Science.gov (United States)

    Chen, Yi Chung; Wong, Chin Lin; Muzzi, Frederico; Vlaardingerbroek, Ido; Kidd, Brendan N.; Schenk, Peer M.

    2014-01-01

    Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including Arabidopsis thaliana. Investigation of the defense response against this pathogen had primarily been conducted using leaf tissue and little was known about the root defense response. In this study, we profiled the expression of root genes after infection with F. oxysporum by microarray analysis. In contrast to the leaf response, root tissue did not show a strong induction of defense-associated gene expression and instead showed a greater proportion of repressed genes. Screening insertion mutants from differentially expressed genes in the microarray uncovered a role for the transcription factor ETHYLENE RESPONSE FACTOR72 (ERF72) in susceptibility to F. oxysporum. Due to the role of ERF72 in suppressing programmed cell death and detoxifying reactive oxygen species (ROS), we examined the pub22/pub23/pub24 U-box type E3 ubiquitin ligase triple mutant which is known to possess enhanced ROS production in response to pathogen challenge. We found that the pub22/23/24 mutant is more resistant to F. oxysporum infection, suggesting that a heightened innate immune response provides protection against F. oxysporum. We conclude that root-mediated defenses against soil-borne pathogens can be provided at multiple levels. PMID:24998294

  7. Molecular variability among isolates of Fusarium oxysporum associated with root rot disease of Agave tequilana.

    Science.gov (United States)

    Vega-Ramos, Karla L; Uvalle-Bueno, J Xavier; Gómez-Leyva, Juan F

    2013-04-01

    In this study, 115 isolates of Fusarium oxysporum from roots of Agave tequilana Weber cv azul plants and soil in commercial plantations in western Mexico were characterized using morphological and molecular methods. Genetic analyses of monosporic isolates included restriction enzyme analysis of rDNA (ARDRA) using HaeIII and HinfI, and genetic diversity was determined using Box-PCR molecular markers. Box-PCR analysis generated 14 groups. The groups correlated highly with the geographic location of the isolate and sample type. These results demonstrate the usefulness of ARDRA and Box-PCR techniques in the molecular characterization of the Fusarium genus for the discrimination of pathogenic isolates.

  8. Root exudates of transgenic cotton and their effects on Fusarium oxysporum.

    Science.gov (United States)

    Li, Xiao-gang; Wei, Qin; Liu, Biao; Alam, Mohammad-Saiful; Wang, Xing-xiang; Shen, Wenjing; Han, Zheng-min

    2013-01-01

    The components of the root exudates from two transgenic insect-resistant cotton lines and their parental cotton lines, and their effects on the growth of Fusarium oxysporum were investigated. The results demonstrated that the resistance of transgenic insect-resistant cotton to F. oxysporum was significantly reduced compared with their parental lines. Likewise, the root exudates from transgenic insect-resistant cotton significantly promoted the spore germination and mycelial growth of cotton F. oxysporum. The types of compounds found in the root exudates of transgenic insect-resistant cotton were similar to those of the parental cotton, but the composition and relative content of the compounds were different. The type and content of the fatty acids and esters were significantly reduced in the root exudates of the transgenic insect-resistant cotton, as were certain specific materials, whereas several alkanes were increased. The inhibition of the soil-borne pathogen F. oxysporum caused by the root exudates from the transgenic insect-resistant cotton was decreased compared with the parental cotton. This result provides a scientific basis for the decline in disease resistance in transgenic insect-resistant cotton.

  9. Detection of Fusarium oxysporum f.sp. basilici in substrates and roots by PCR.

    Science.gov (United States)

    Pugliese, M; Ferrocino, I; Gullino, M L; Garibaldi, A

    2013-01-01

    Fusarium oxysporum is a soil-borne fungus that causes vascular wilts in a wide variety of plant species. Basil is recognized as an ecological niche for Fusarium oxysporum f.sp. basilici (FOB) and this fungus is now present in most countries where basil is cultivated. The rapid identification of the species affecting basil plants is necessary to define a successful method for crop protection. The aim of this study was to develop a PCR method for the rapid detection of Fusarium oxysporum f. sp. basilici in substrates. The specificity of the primers used was tested using the DNA extracted directly from substrate samples. Fusarium oxysporum f.sp. basilici was artificially inoculated with decreasing amounts in a commercial substrate (sphagnum peat moss) and in a mixture with 40% of municipal compost, after steam disinfestation. Basil seeds (cv. Fine verde) were sown in pots that were laid on a bench in the greenhouse. At time 0 and after 7, 14 and 21 days from the inoculation, substrate and root samples were collected and prepared for microbial analysis and for the DNA extraction. DNA extraction was carried out using NucleoSpin Soil Kit (Macherey-Nagel, Germany). PCR amplification for the specific detection was carried out using primer sets Bik 1 (5'-ATT CAA GAG CTA AAG GTC C-3') and Bik 4 (5'-TTT GAC CAA GAT AGA TGC C-3') for the first PCR, while primers Bik 1 + Bik 2 (5'-AAA GGT AGT ATA TCG GAG G-3') for the nested PCR to increase detection sensitivity. Disease incidence was also assessed 21 days after seeding. The results showed the presence of amplified fragments of the expected size when the concentration of F. oxysporum f.sp. basilici was at least 3.5 Log CFU g(-1) by using DNA extract directly from substrate, before roots were infected by the pathogen. The detection of Fusarium oxysporum f. sp. basilici by PCR method developed in this study is certainly simple and fast and can be useful for its reliable detection in substrate samples, but not to guarantee that

  10. [Allelopathic effects of phenolic compounds of melon root exudates on Fusarium oxysporum f. sp. melonis].

    Science.gov (United States)

    Yang, Rui-Xiu; Gao, Zeng-Gui; Yao, Yuan; Liu, Xian; Sun, Shu-Qing; Wang, Ying

    2014-08-01

    In this study, the phenolic compounds of melon root exudates were identified by HPLC and seven phenolic compounds including gallic acid, phthalic acid, syringic acid, salicylic acid, ferulic acid, benzoic acid and cinnamic acid were observed. The laboratory experiment showed that ferulic acid, benzoic acid and cinnamic acid of 0.1 and 0.25 mmol x L(-1) could significantly promote the germination of Fusarium oxysporum f. sp. melonis spore while salicylic acid inhibited the spore germination to some degree. Syringic acid and ferulic acid significantly promoted the mycelium growth at the late stage of incubation. The pot experiments demonstrated that cinnamic acid, benzoic acid and ferulic acid enhanced melon infection at concentrations of 0.5, 0.1 and 0.5 mmol x L(-1).

  11. Root Proteomic Analysis of Grapevine Rootstocks Inoculated with Rhizophagus irregularis and Fusarium oxysporum f. sp. herbemontis

    Directory of Open Access Journals (Sweden)

    Elisa Vilvert

    Full Text Available ABSTRACT Grapevine decline and death caused by the pathogenic fungus Fusarium oxysporum f. sp. herbemontis is among the main phytosanitary problem for viticulture in southern Brazil. The eradication of infected plants is presently the most common procedure for disease control in vineyards. Inoculation with arbuscular mycorrhizal fungi is an option to reduce or neutralize the negative impacts of soil pathogenic microorganisms, but the mechanisms of plant response involved in this process are not yet completely elucidated. In order to better understand these mechanisms, an experiment was carried out to identify proteins related to plant defence induced by the mycorrhizal fungus after infection with the pathogenic fungus. We used the grapevine rootstocks SO4 and R110 (susceptible and resistant to the pathogenic fungus, respectively inoculated or not inoculated with the mycorrhizal fungus Rhizophagus irregularis, and inoculated or not inoculated with Fusarium oxysporum f. sp. herbemontis. Growth of the rootstocks’ shoot and root and presence of pathogenic symptoms were evaluated. The protein profiles of roots were characterized by two-dimensional electrophoresis and proteins were identified using mass spectrometry. The grapevine rootstocks inoculated with R. irregularis had higher biomass production and lower level of pathogenic symptoms. The R110 rootstock differentially accumulated 73 proteins, while SO4 accumulated 59 proteins. Nine plant-defence proteins were expressed by SO4 rootstock, and six were expressed by R110 rootstock plants. The results confirm the effect of mycorrhizal fungi in plant growth promotion and their potential for biological control against soil pathogenic fungus. Protein expression is dependent on rootstock characteristics and on the combination of plant material with the fungi.

  12. Effects of Fusarium solani and F. oxysporum Infection on the Metabolism of Ginsenosides in American Ginseng Roots.

    Science.gov (United States)

    Jiao, Xiaolin; Lu, Xiaohong; Chen, Amanda Juan; Luo, Yi; Hao, Jianjun J; Gao, Weiwei

    2015-06-08

    American ginseng (Panax quinquefolius L.) is a highly valuable herb widely used for medicinal treatments. Its pharmacologically important compounds are the ginsenosides, which are secondary metabolites in American ginseng root. The concentrations of ginsenoside in roots can be changed by fungal infection, but it is unclear what specific root tissues are impacted and whether the change is systemic. In this study, American ginseng roots were inoculated with two fungal pathogens (Fusarium solani or F. oxysporum) and the levels of six ginsenosides (Rb1, Rb2, Rc, Rd, Re, and Rg1) were then measured in the phloem and xylem around the discolored lesions and adjacent healthy areas of the root. Results indicated that the growth of Fusarium spp. was strictly limited to phloem, and correspondingly the ginsenoside concentration was only altered in this infected phloem. The concentration of Rg1, Rd, and Rc significantly changed in phloem tissues where F. solani was inoculated, while only Rg1 and Rd changed significantly after F. oxysporum inoculation. However, no changes of any ginsenoside occurred in either xylem or phloem tissue adjacent to the inoculation point. In addition, when two Fusarium spp. were grown on ginsenoside-amended Czapek medium, the majority of ginsenosides were depleted. Therefore, pathogenic Fusarium spp. may reduce ginsenoside levels by consuming them.

  13. Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp. lycopersici

    Science.gov (United States)

    Akhter, Adnan; Hage-Ahmed, Karin; Soja, Gerhard; Steinkellner, Siegrid

    2015-01-01

    Soil amendments like compost and biochar are known to affect soil properties, plant growth as well as soil borne plant pathogens. Complex interactions based on microbial activity and abiotic characteristics are supposed to be responsible for suppressive properties of certain substrates, however, the specific mechanisms of action are still widely unknown. In the present study, the main focus was on the development of the soil borne pathogen, Fusarium oxysporum f.sp. lycopersici (Fol) in tomato (Solanum lycopersicum L.) and changes in root exudates of tomato plants grown in different soil substrate compositions, such as compost (Comp) alone at application rate of 20% (v/v), and in combination with wood biochar (WB; made from beech wood chips) or green waste biochar (GWB; made from garden waste residues) at application rate of 3% (v/v), and/or with additional arbuscular mycorrhizal fungi (AMF). The association of GWB and AMF had a positive effect on tomato plants growth unlike to the plants grown in WB containing a soil substrate. The AMF root colonization was not enhanced by the addition of WB or GWB in the soil substrate, though a bio-protective effect of mycorrhization was evident in both biochar amended treatments against Fol. Compost and biochars altered root exudates differently, which is evident from variable response of in vitro growth and development of Fol. The microconidia germination was highest in root exudates from plants grown in the soil containing compost and GWB, whereas root exudates of plants from a substrate containing WB suppressed the mycelial growth and development of Fol. In conclusion, the plant growth response and disease suppression in biochar containing substrates with additional AMF was affected by the feedstock type. Moreover, application of compost and biochars in the soil influence the quality and composition of root exudates with respect to their effects on soil-dwelling fungi. PMID:26217373

  14. Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum.

    Science.gov (United States)

    Lanubile, Alessandra; Muppirala, Usha K; Severin, Andrew J; Marocco, Adriano; Munkvold, Gary P

    2015-12-21

    Fusarium oxysporum is one of the most common fungal pathogens causing soybean root rot and seedling blight in U.S.A. In a recent study, significant variation in aggressiveness was observed among isolates of F. oxysporum collected from roots in Iowa, ranging from highly pathogenic to weakly or non-pathogenic isolates. We used RNA-seq analysis to investigate the molecular aspects of the interactions of a partially resistant soybean genotype with non-pathogenic/pathogenic isolates of F. oxysporum at 72 and 96 h post inoculation (hpi). Markedly different gene expression profiles were observed in response to the two isolates. A peak of highly differentially expressed genes (HDEGs) was triggered at 72 hpi in soybean roots and the number of HDEGs was about eight times higher in response to the pathogenic isolate compared to the non-pathogenic one (1,659 vs. 203 HDEGs, respectively). Furthermore, the magnitude of induction was much greater in response to the pathogenic isolate. This response included a stronger activation of defense-related genes, transcription factors, and genes involved in ethylene biosynthesis, secondary and sugar metabolism. The obtained data provide an important insight into the transcriptional responses of soybean-F. oxysporum interactions and illustrate the more drastic changes in the host transcriptome in response to the pathogenic isolate. These results may be useful in the developing new methods of broadening resistance of soybean to F. oxysporum, including the over-expression of key soybean genes.

  15. Genome dynamics in Fusarium oxysporum

    NARCIS (Netherlands)

    Vlaardingerbroek, I.

    2016-01-01

    Fusarium oxysporum is an important fungal pathogen of many crops. The genome of this pathogen has a "core" part and a highly dynamic lineage-specific part. Certain lineage specific chromosomes are determinants of host range. It has been shown previously that some chromosomes that are important for i

  16. Structural and Biochemical Changes in Salicylic-Acid-Treated Date Palm Roots Challenged with Fusarium oxysporum f. sp. albedinis

    Directory of Open Access Journals (Sweden)

    Abdelhi Dihazi

    2011-01-01

    Full Text Available Histochemical and ultrastructural analyses were carried out to assess structural and biochemical changes in date palm roots pretreated with salicylic acid (SA then inoculated with Fusarium oxysporum f. sp. albedinis (Foa. Flavonoids, induced proteins, and peroxidase activity were revealed in root tissues of SA-treated plants after challenge by Foa. These reactions were closely associated with plant resistance to Foa. Host reactions induced after inoculation of SA-treated plants with Foa included the plugging of intercellular spaces, the deposition of electron-dense materials at the sites of pathogen penetration, and several damages to fungal cells. On the other hand, untreated inoculated plants showed marked cell wall degradation and total cytoplasm disorganization, indicating the protective effects provided by salicylic acid in treated plants.

  17. Interaction of Pseudostellaria heterophylla with Fusarium oxysporum f.sp. heterophylla mediated by its root exudates in a consecutive monoculture system.

    Science.gov (United States)

    Zhao, Yongpo; Wu, Linkun; Chu, Leixia; Yang, Yanqiu; Li, Zhenfang; Azeem, Saadia; Zhang, Zhixing; Fang, Changxun; Lin, Wenxiong

    2015-02-03

    In this study, quantitative real-time PCR (qPCR) was used to determine the amount of Fusarium oxysporum, an important replant disease pathogen in Pseudostellaria heterophylla rhizospheric soil. Moreover, HPLC was used to identify phenolic acids in root exudates then it was further to explore the effects of the phenolic acid allelochemicals on the growth of F. oxysporum f.sp. heterophylla. The amount of F. oxysporum increased significantly in P. heterophylla rhizosphere soil under a consecutive replant system as monitored through qPCR analysis. Furthermore, the growth of F. oxysporum f.sp. heterophylla mycelium was enhanced by root exudates with a maximum increase of 23.8%. In addition, the number of spores increased to a maximum of 12.5-fold. Some phenolic acids promoted the growth of F. oxysporum f.sp. heterophylla mycelium and spore production. Our study revealed that phenolic acids in the root secretion of P. heterophylla increased long with its development, which was closely related to changes in rhizospheric microorganisms. The population of pathogenic microorganisms such as F. oxysporum in the rhizosphere soil of P. heterophylla also sharply increased. Our results on plant-microbe communication will help to better clarify the cause of problems associated with P. heterophylla under consecutive monoculture treatment.

  18. Fusarium oxysporum mediates systems metabolic reprogramming of chickpea roots as revealed by a combination of proteomics and metabolomics.

    Science.gov (United States)

    Kumar, Yashwant; Zhang, Limin; Panigrahi, Priyabrata; Dholakia, Bhushan B; Dewangan, Veena; Chavan, Sachin G; Kunjir, Shrikant M; Wu, Xiangyu; Li, Ning; Rajmohanan, Pattuparambil R; Kadoo, Narendra Y; Giri, Ashok P; Tang, Huiru; Gupta, Vidya S

    2016-07-01

    Molecular changes elicited by plants in response to fungal attack and how this affects plant-pathogen interaction, including susceptibility or resistance, remain elusive. We studied the dynamics in root metabolism during compatible and incompatible interactions between chickpea and Fusarium oxysporum f. sp. ciceri (Foc), using quantitative label-free proteomics and NMR-based metabolomics. Results demonstrated differential expression of proteins and metabolites upon Foc inoculations in the resistant plants compared with the susceptible ones. Additionally, expression analysis of candidate genes supported the proteomic and metabolic variations in the chickpea roots upon Foc inoculation. In particular, we found that the resistant plants revealed significant increase in the carbon and nitrogen metabolism; generation of reactive oxygen species (ROS), lignification and phytoalexins. The levels of some of the pathogenesis-related proteins were significantly higher upon Foc inoculation in the resistant plant. Interestingly, results also exhibited the crucial role of altered Yang cycle, which contributed in different methylation reactions and unfolded protein response in the chickpea roots against Foc. Overall, the observed modulations in the metabolic flux as outcome of several orchestrated molecular events are determinant of plant's role in chickpea-Foc interactions. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Effect of corn steep liquor on lettuce root rot (Fusarium oxysporum f.sp. lactucae) in hydroponic cultures.

    Science.gov (United States)

    Chinta, Yufita D; Kano, Kazuki; Widiastuti, Ani; Fukahori, Masaru; Kawasaki, Shizuka; Eguchi, Yumi; Misu, Hideyuki; Odani, Hiromitsu; Zhou, Songying; Narisawa, Kazuhiko; Fujiwara, Kazuki; Shinohara, Makoto; Sato, Tatsuo

    2014-08-01

    Recent reports indicate that organic fertilisers have a suppressive effect on the pathogens of plants grown under hydroponic systems. Furthermore, microorganisms exhibiting antagonistic activity to diseases have been observed in organic hydroponic systems. This study evaluated the effect of corn steep liquor (CSL) on controlling lettuce root rot disease [Fusarium oxysporum f.sp. lactucae (FOL)] in a hydroponic system. The effect of CSL and Otsuka A (a chemical fertiliser) on the inhibition of FOL in terms of mycelial growth inhibition was tested in vivo. Addition of CSL suppressed FOL infection rates. CSL inhibited FOL infection by 26.3-42.5% from 2 days after starting incubation. In comparison, Otsuka A inhibited FOL growth by 5.5-19.4%. In addition, four of 10 bacteria isolated from the nutrient media containing CSL exhibited inhibition zones preventing FOL mycelial growth. We found that CSL suppressed FOL in lettuce via its antifungal and biostimulatory effects. We suggest that activation of beneficial microorganisms present in CSL may be used to decrease lettuce root rot disease and contribute to lettuce root growth. © 2014 Society of Chemical Industry.

  20. Visualizing and quantifying Fusarium oxysporum in the plant host.

    Science.gov (United States)

    Diener, Andrew

    2012-12-01

    Host-specific forms of Fusarium oxysporum infect the roots of numerous plant species. I present a novel application of familiar methodology to visualize and quantify F. oxysporum in roots. Infection in the roots of Arabidopsis thaliana, tomato, and cotton was detected with colorimetric reagents that are substrates for Fusarium spp.-derived arabinofuranosidase and N-acetyl-glucosaminidase activities and without the need for genetic modification of either plant host or fungal pathogen. Similar patterns of blue precipitation were produced by treatment with 5-bromo-4-chloro-3-indoxyl-α-l-arabinofuranoside and 5-bromo-4-chloro-3-indoxyl-2-acetamido-2-deoxy-β-d-glucopyranoside, and these patterns were consistent with prior histological descriptions of F. oxysporum in roots. Infection was quantified in roots of wild-type and mutant Arabidopsis using 4-nitrophenyl-α-l-arabinofuranoside. In keeping with an expectation that disease severity above ground is correlated with F. oxysporum infection below ground, elevated levels of arabinofuranosidase activity were measured in the roots of susceptible agb1 and rfo1 while a reduced level was detected in the resistant eir1. In contrast, disease severity and F. oxysporum infection were uncoupled in tir3. The distribution of staining patterns in roots suggests that AGB1 and RFO1 restrict colonization of the vascular cylinder by F. oxysporum whereas EIR1 promotes colonization of root apices.

  1. Phenylpropanoid pathway is potentiated by silicon in the roots of banana plants during the infection process of Fusarium oxysporum f. sp. cubense.

    Science.gov (United States)

    Fortunato, Alessandro Antônio; da Silva, Washington Luís; Rodrigues, Fabrício Ávila

    2014-06-01

    Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense, is a disease that causes large reductions in banana yield worldwide. Considering the importance of silicon (Si) to potentiate the resistance of several plant species to pathogen infection, this study aimed to investigate, at the histochemical level, whether this element could enhance the production of phenolics on the roots of banana plants in response to F. oxysporum f. sp. cubense infection. Plants of cultivar Maçã, which is susceptible to F. oxysporum f. sp. cubense, were grown in plastic pots amended with 0 (-Si) or 0.39 g of Si (+Si) per kilogram of soil and inoculated with race 1 of F. oxysporum f. sp. cubense. The root Si concentration was increased by 35.6% for +Si plants in comparison to the -Si plants, which contributed to a 27% reduction in the symptoms of Fusarium wilt on roots. There was an absence of fluorescence for the root sections of the -Si plants treated with the Neu and Wilson's reagents. By contrast, for the root sections obtained from the +Si plants treated with Neu's reagent, strong yellow-orange fluorescence was observed in the phloem, and lemon-yellow fluorescence was observed in the sclerenchyma and metaxylem vessels, indicating the presence of flavonoids. For the root sections of the +Si plants treated with Wilson's reagent, orange-yellowish autofluorescence was more pronounced around the phloem vessels, and yellow fluorescence was more pronounced around the metaxylem vessels, also indicating the presence of flavonoids. Lignin was more densely deposited in the cortex of the roots of the +Si plants than for the -Si plants. Dopamine was barely detected in the roots of the -Si plants after using the lactic and glyoxylic acid stain, but was strongly suspected to occur on the phloem and metaxylem vessels of the roots of the +Si plants as confirmed by the intense orange-yellow fluorescence. The present study provides new evidence of the pivotal role of the phenylpropanoid pathway in

  2. Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4

    Directory of Open Access Journals (Sweden)

    Li Chun-yu

    2012-08-01

    Full Text Available Abstract Background Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4, is considered the most lethal disease of Cavendish bananas in the world. The disease can be managed in the field by planting resistant Cavendish plants generated by somaclonal variation. However, little information is available on the genetic basis of plant resistance to Foc TR4. To a better understand the defense response of resistant banana plants to the Fusarium wilt pathogen, the transcriptome profiles in roots of resistant and susceptible Cavendish banana challenged with Foc TR4 were compared. Results RNA-seq analysis generated more than 103 million 90-bp clean pair end (PE reads, which were assembled into 88,161 unigenes (mean size = 554 bp. Based on sequence similarity searches, 61,706 (69.99% genes were identified, among which 21,273 and 50,410 unigenes were assigned to gene ontology (GO categories and clusters of orthologous groups (COG, respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG mapped 33,243 (37.71% unigenes to 119 KEGG pathways. A total of 5,008 genes were assigned to plant-pathogen interactions, including disease defense and signal transduction. Digital gene expression (DGE analysis revealed large differences in the transcriptome profiles of the Foc TR4-resistant somaclonal variant and its susceptible wild-type. Expression patterns of genes involved in pathogen-associated molecular pattern (PAMP recognition, activation of effector-triggered immunity (ETI, ion influx, and biosynthesis of hormones as well as pathogenesis-related (PR genes, transcription factors, signaling/regulatory genes, cell wall modification genes and genes with other functions were analyzed and compared. The results indicated that basal defense mechanisms are involved in the recognition of PAMPs, and that high levels of defense-related transcripts may contribute to Foc TR4 resistance in

  3. Biological Control of Fusarium oxysporum f. sp. melonis, the Causal Agent of Root Rot Disease of Greenhouse Cucurbits in Kerman Province of Iran

    Directory of Open Access Journals (Sweden)

    Sara Shafii Bafti

    2005-01-01

    Full Text Available Antagonistic activity of 178 soil actinomycete isolates was assayed against Fusarium oxysporum f. sp. melonis Schlecht, Emend (Snyde and Hansen cause of root rot and fusarium wilt of greenhouse cucurbits in Kerman Province, southeast of Iran. From tested isolates, Streptomyces olivaceus (strain 115 showed anti-fusarium activity revealed through screening and bioassays by agar disk and well-diffusion methods. The active strain was grown in submerged cultures for determination of growth curve and preparation of crude extract for further biological characterizations. Antifungal activity was fungistatic type on the pathogen mycelia. It is prominent that amending greenhouse soil mix with the S. olivaceus (strain 115 will reduce crop losses by the pathogen.

  4. Differential responses of vanilla accessions to root rot and colonization by Fusarium oxysporum f. sp. radicis-vanillae.

    Directory of Open Access Journals (Sweden)

    Sayuj eKoyyappurath

    2015-12-01

    Full Text Available Root and stem rot (RSR disease caused by Fusarium oxysporum f. sp. radicis-vanillae (Forv is the most damaging disease of vanilla (Vanilla planifolia and V. ×tahitensis, Orchidaceae. Breeding programs aimed at developing resistant vanilla varieties are hampered by the scarcity of sources of resistance to RSR and insufficient knowledge about the histopathology of Forv. In this work we have i identified new genetic resources resistant to RSR including V. planifolia inbreds and vanilla relatives, ii thoroughly described the colonization pattern of Forv into selected vanilla accessions, confirming its necrotic non-vascular behavior in roots, and iii evidenced the key role played by hypodermis, and particularly lignin deposition onto hypodermal cell walls, for resistance to Forv in two highly resistant vanilla accessions.Two hundred and fifty-four vanilla accessions were evaluated in the field under natural conditions of infection and in controlled conditions using in-vitro plants root-dip inoculated by the highly pathogenic isolate Fo072. For the 26 accessions evaluated in both conditions, a high correlation was observed between field evaluation and in-vitro assay.The root infection process and plant response of one susceptible and two resistant accessions challenged with Fo072 were studied using wide field and multiphoton microscopy. In susceptible V. planifolia, hyphae penetrated directly into the rhizodermis in the hairy root region then invaded the cortex through the passage cells where it induced plasmolysis, but never reached the vascular region. In the case of the resistant accessions, the penetration was stopped at the hypodermal layer. Anatomical and histochemical observations coupled with spectral analysis of the hypodermis suggested the role of lignin deposition in the resistance to Forv. The thickness of lignin constitutively deposited onto outer cell walls of hypodermis was highly correlated with the level of resistance for 21

  5. Isolation screening and characterisation of local beneficial rhizobacteria based upon their ability to suppress the growth of Fusarium oxysporum f. sp. radicis-lycopersici and tomato foot and root rot

    Science.gov (United States)

    Tomato crown and root rot or tomato foot and root rot (TFRR) is caused by the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici (Forl). The disease occurs in both greenhouse and outdoor tomato cultivations and cannot be treated efficiently with the existing fungicides. We conducte...

  6. Coordinated effects of root autotoxic substances and Fusarium oxysporum Schl. f. sp. fragariae on the growth and replant disease of strawberry

    Institute of Scientific and Technical Information of China (English)

    Xusheng ZHAO; Wenchao ZHEN; Yongzhi QI; Xuejing LIU; Baozhong YIN

    2009-01-01

    Effects of hydroxybenzoic acid, an important autotoxic substance in roots, on plant growth, photosynth-esis and Fusarium oxysporum occurrence in succession cropping of strawberry were evaluated in this paper. It was found that plant growth was negatively regulated by hydroxybcnzoic acid or inoculation with E oxysporum. Compared with these single factor treatments, the combination of the hydroxybenzoic acid treatment and E oxysporum inoculation caused more severe inhibition in plant growth, greatly enhanced the occurrence of disease symptoms, and significantly decreased the chlorophyll content, net photosynthetic rate, transpiration rate, stomatal conductance and intercellular CO2 concentration. In the meantime, the chlorophyll fluorescence parameters in strawberry were also significantly affected. After the application of hydroxybenzoic acid, the original chlor-ophyll fluorescence rapidly increased, resulting in a combined corresponding decrease in the maximum chlorophyll fluorescence and the chlorophyll fluorescence transformation efficiency. The effects of hydroxybenzoic acid treatment on the above chlorophyll fluorescence parameters from inoculation were delayed. Similarly, the coordination of hydroxybenzoic acid and E oxysporum showed an elevated negative effect on the degree of inhibition of leaf photosynthesis more than the single factor treatments.

  7. The cell wall of Fusarium oxysporum

    NARCIS (Netherlands)

    Schoffelmeer, EAM; Klis, FM; Sietsma, JH; Cornelissen, BJC

    1999-01-01

    Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for

  8. The cell wall of Fusarium oxysporum

    NARCIS (Netherlands)

    Schoffelmeer, EAM; Klis, FM; Sietsma, JH; Cornelissen, BJC

    1999-01-01

    Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for 50

  9. Studies on the management of root-knot nematode, Meloidogyne incognita-wilt fungus, Fusarium oxysporum disease complex of green gram, Vigna radiata cv ML-1108

    Institute of Scientific and Technical Information of China (English)

    HASEEB Akhtar; SHARMA Anita; SHUKLA Prabhat Kumar

    2005-01-01

    Studies were conducted under pot conditions to determine the comparative efficacy of carbofuran at 1 mg a.i./kg soil,bavistin at 1 mg a.i./kg soil, neem (Azadirachta indica) seed powder at 50 mg/kg soil, green mould (Trichoderma harzianum) at 50.0 ml/kg soil, rhizobacteria (Pseudomonas fluorescens) at 50.0 ml/kg soil against root-knot nematode, Meloidogyne incognita-wilt fungus, Fusarium oxysporum disease complex on green gram, Vigna radiata cv ML-1108. All the treatments significantly improved the growth of the plants as compared to untreated inoculated plants. Analysis of data showed that carbofuran and A. indica seed powder increased plant growth and yield significantly more in comparison to bavistin and P.fluorescens. Carbofuran was highly effective against nematode, bavistin against fungus, A. indica seed powder against both the pathogens and both the bioagents were moderately effective against both the pathogens.

  10. Arabidopsis thaliana resistance to fusarium oxysporum 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection.

    Directory of Open Access Journals (Sweden)

    Yunping Shen

    2013-05-01

    Full Text Available In the plant Arabidopsis thaliana, multiple quantitative trait loci (QTLs, including RFO2, account for the strong resistance of accession Columbia-0 (Col-0 and relative susceptibility of Taynuilt-0 (Ty-0 to the vascular wilt fungus Fusarium oxysporum forma specialis matthioli. We find that RFO2 corresponds to diversity in receptor-like protein (RLP genes. In Col-0, there is a tandem pair of RLP genes: RFO2/At1g17250 confers resistance while RLP2 does not. In Ty-0, the highly diverged RFO2 locus has one RLP gene conferring weaker resistance. While the endogenous RFO2 makes a modest contribution to resistance, transgenic RFO2 provides strong pathogen-specific resistance. The extracellular leucine-rich repeats (eLRRs in RFO2 and RLP2 are interchangeable for resistance and remarkably similar to eLRRs in the receptor-like kinase PSY1R, which perceives tyrosine-sulfated peptide PSY1. Reduced infection in psy1r and mutants of related phytosulfokine (PSK receptor genes PSKR1 and PSKR2 shows that tyrosine-sulfated peptide signaling promotes susceptibility. The related eLRRs in RFO2 and PSY1R are not interchangeable; and expression of the RLP nPcR, in which eLRRs in RFO2 are replaced with eLRRs in PSY1R, results in constitutive resistance. Counterintuitively, PSY1 signaling suppresses nPcR because psy1r nPcR is lethal. The fact that PSK signaling does not similarly affect nPcR argues that PSY1 signaling directly downregulates the expression of nPcR. Our results support a speculative but intriguing model to explain RFO2's role in resistance. We propose that F. oxysporum produces an effector that inhibits the normal negative feedback regulation of PSY1R, which stabilizes PSY1 signaling and induces susceptibility. However, RFO2, acting as a decoy receptor for PSY1R, is also stabilized by the effector and instead induces host immunity. Overall, the quantitative resistance of RFO2 is reminiscent of the better-studied monogenic resistance traits.

  11. Genetic basis of carotenoid overproduction in Fusarium oxysporum.

    NARCIS (Netherlands)

    Rodríguez-Ortiz, R.; Michielse, C.; Rep, M.; Limón, M.C.; Avalos, J.

    2012-01-01

    The phytopathogenic fungus Fusarium oxysporum is a model organism in the study of plant-fungus interactions. As other Fusarium species, illuminated cultures of F. oxysporum exhibit an orange pigmentation because of the synthesis of carotenoids, and its genome contains orthologous light-regulated car

  12. Synthesis of CdSe Quantum Dots Using Fusarium oxysporum

    OpenAIRE

    Takaaki Yamaguchi; Yoshijiro Tsuruda; Tomohiro Furukawa; Lumi Negishi; Yuki Imura; Shohei Sakuda; Etsuro Yoshimura; Michio Suzuki

    2016-01-01

    CdSe quantum dots are often used in industry as fluorescent materials. In this study, CdSe quantum dots were synthesized using Fusarium oxysporum. The cadmium and selenium concentration, pH, and temperature for the culture of F. oxysporum (Fusarium oxysporum) were optimized for the synthesis, and the CdSe quantum dots obtained from the mycelial cells of F. oxysporum were observed by transmission electron microscopy. Ultra-thin sections of F. oxysporum showed that the CdSe quantum dots were pr...

  13. Effects of silicon treatment and inoculation with Fusarium oxysporum f. sp. vasinfectum on cellular defences in root tissues of two cotton cultivars.

    Science.gov (United States)

    Whan, Jennifer A; Dann, Elizabeth K; Aitken, Elizabeth A B

    2016-08-01

    Silicon has been shown to enhance the resistance of plants to fungal and bacterial pathogens. Here, the effect of potassium silicate was assessed on two cotton (Gossypium hirsutum) cultivars subsequently inoculated with Fusarium oxysporum f. sp. vasinfectum (Fov). Sicot 189 is moderately resistant whilst Sicot F-1 is the second most resistant commercial cultivar presently available in Australia. Transmission and light microscopy were used to compare cellular modifications in root cells after these different treatments. The accumulation of phenolic compounds and lignin was measured. Cellular alterations including the deposition of electron-dense material, degradation of fungal hyphae and occlusion of endodermal cells were more rapidly induced and more intense in endodermal and vascular regions of Sicot F-1 plants supplied with potassium silicate followed by inoculation with Fov than in similarly treated Sicot 189 plants or in silicate-treated plants of either cultivar not inoculated with Fov. Significantly more phenolic compounds were present at 7 d post-infection (dpi) in root extracts of Sicot F-1 plants treated with potassium silicate followed by inoculation with Fov compared with plants from all other treatments. The lignin concentration at 3 dpi in root material from Sicot F-1 treated with potassium silicate and inoculated with Fov was significantly higher than that from water-treated and inoculated plants. This study demonstrates that silicon treatment can affect cellular defence responses in cotton roots subsequently inoculated with Fov, particularly in Sicot F-1, a cultivar with greater inherent resistance to this pathogen. This suggests that silicon may interact with or initiate defence pathways faster in this cultivar than in the less resistant cultivar. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. De Novo characterization of the banana root transcriptome and analysis of gene expression under Fusarium oxysporum f. sp. Cubense tropical race 4 infection

    Directory of Open Access Journals (Sweden)

    Wang Zhuo

    2012-11-01

    Full Text Available Abstract Background Bananas and plantains (Musa spp. are among the most important crops in the world due to their nutritional and export value. However, banana production has been devastated by fungal infestations caused by Fusarium oxysporum f. sp. cubense (Foc, which cannot be effectively prevented or controlled. Since there is very little known about the molecular mechanism of Foc infections; therefore, we aimed to investigate the transcriptional changes induced by Foc in banana roots. Results We generated a cDNA library from total RNA isolated from banana roots infected with Foc Tropical Race 4 (Foc TR 4 at days 0, 2, 4, and 6. We generated over 26 million high-quality reads from the cDNA library using deep sequencing and assembled 25,158 distinct gene sequences by de novo assembly and gap-filling. The average distinct gene sequence length was 1,439 base pairs. A total of 21,622 (85.94% unique sequences were annotated and 11,611 were assigned to specific metabolic pathways using the Kyoto Encyclopedia of Genes and Genomes database. We used digital gene expression (DGE profiling to investigate the transcriptional changes in the banana root upon Foc TR4 infection. The expression of genes in the Phenylalanine metabolism, phenylpropanoid biosynthesis and alpha-linolenic acid metabolism pathways was affected by Foc TR4 infection. Conclusion The combination of RNA-Seq and DGE analysis provides a powerful method for analyzing the banana root transcriptome and investigating the transcriptional changes during the response of banana genes to Foc TR4 infection. The assembled banana transcriptome provides an important resource for future investigations about the banana crop as well as the diseases that plague this valuable staple food.

  15. The pathogenesis of Fusarium oxysporum f. sp. narcissi and the role of antagonistic bulb-borne fungi in the chemical control of basal rot

    NARCIS (Netherlands)

    Langerak, C.J.

    1985-01-01

    The pathogenesis of Fusarium oxysporum f. sp. narcissiBasal plates and roots of narcissus were infected by Fusarium oxysporum Schlecht f. sp. narcissi (Cooke & Massee) Snyder & Hansen during the period of emergence of the roots in autumn only. This observation contrasts with the generally acc

  16. Fusarium oxysporum f.sp. ciceri race 1 induced redox state alterations are coupled to downstream defense signaling in root tissues of chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Gupta, Sumanti; Bhar, Anirban; Chatterjee, Moniya; Das, Sampa

    2013-01-01

    Reactive oxygen species are known to play pivotal roles in pathogen perception, recognition and downstream defense signaling. But, how these redox alarms coordinate in planta into a defensive network is still intangible. Present study illustrates the role of Fusarium oxysporum f.sp ciceri Race1 (Foc1) induced redox responsive transcripts in regulating downstream defense signaling in chickpea. Confocal microscopic studies highlighted pathogen invasion and colonization accompanied by tissue damage and deposition of callose degraded products at the xylem vessels of infected roots of chickpea plants. Such depositions led to the clogging of xylem vessels in compatible hosts while the resistant plants were devoid of such obstructions. Lipid peroxidation assays also indicated fungal induced membrane injury. Cell shrinkage and gradual nuclear adpression appeared as interesting features marking fungal ingress. Quantitative real time polymerase chain reaction exhibited differential expression patterns of redox regulators, cellular transporters and transcription factors during Foc1 progression. Network analysis showed redox regulators, cellular transporters and transcription factors to coordinate into a well orchestrated defensive network with sugars acting as internal signal modulators. Respiratory burst oxidase homologue, cationic peroxidase, vacuolar sorting receptor, polyol transporter, sucrose synthase, and zinc finger domain containing transcription factor appeared as key molecular candidates controlling important hubs of the defense network. Functional characterization of these hub controllers may prove to be promising in understanding chickpea-Foc1 interaction and developing the case study as a model for looking into the complexities of wilt diseases of other important crop legumes.

  17. Fusarium oxysporum f.sp. ciceri race 1 induced redox state alterations are coupled to downstream defense signaling in root tissues of chickpea (Cicer arietinum L..

    Directory of Open Access Journals (Sweden)

    Sumanti Gupta

    Full Text Available Reactive oxygen species are known to play pivotal roles in pathogen perception, recognition and downstream defense signaling. But, how these redox alarms coordinate in planta into a defensive network is still intangible. Present study illustrates the role of Fusarium oxysporum f.sp ciceri Race1 (Foc1 induced redox responsive transcripts in regulating downstream defense signaling in chickpea. Confocal microscopic studies highlighted pathogen invasion and colonization accompanied by tissue damage and deposition of callose degraded products at the xylem vessels of infected roots of chickpea plants. Such depositions led to the clogging of xylem vessels in compatible hosts while the resistant plants were devoid of such obstructions. Lipid peroxidation assays also indicated fungal induced membrane injury. Cell shrinkage and gradual nuclear adpression appeared as interesting features marking fungal ingress. Quantitative real time polymerase chain reaction exhibited differential expression patterns of redox regulators, cellular transporters and transcription factors during Foc1 progression. Network analysis showed redox regulators, cellular transporters and transcription factors to coordinate into a well orchestrated defensive network with sugars acting as internal signal modulators. Respiratory burst oxidase homologue, cationic peroxidase, vacuolar sorting receptor, polyol transporter, sucrose synthase, and zinc finger domain containing transcription factor appeared as key molecular candidates controlling important hubs of the defense network. Functional characterization of these hub controllers may prove to be promising in understanding chickpea-Foc1 interaction and developing the case study as a model for looking into the complexities of wilt diseases of other important crop legumes.

  18. Molecular Characterization of Fusarium oxysporum and Fusarium commune Isolates from a Conifer Nursery.

    Science.gov (United States)

    Stewart, Jane E; Kim, Mee-Sook; James, Robert L; Dumroese, R Kasten; Klopfenstein, Ned B

    2006-10-01

    ABSTRACT Fusarium species can cause severe root disease and damping-off in conifer nurseries. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Isolates of Fusarium spp. can differ in virulence; however, virulence and colony morphology are not correlated. Forty-one isolates of Fusarium spp., morphologically indistinguishable from F. oxysporum, were collected from nursery samples (soils, healthy seedlings, and diseased seedlings). These isolates were characterized by amplified fragment length polymorphism (AFLP) and DNA sequencing of nuclear rDNA (internal transcribed spacer including 5.8S rDNA), mitochon-drial rDNA (small subunit [mtSSU]), and nuclear translation elongation factor 1-alpha. Each isolate had a unique AFLP phenotype. Out of 121 loci, 111 (92%) were polymorphic; 30 alleles were unique to only highly virulent isolates and 33 alleles were unique to only isolates nonpathogenic on conifers. Maximum parsimony and Bayesian analyses of DNA sequences from all three regions and the combined data set showed that all highly virulent isolates clearly separated into a common clade that contained F. commune, which was recently distinguished from its sister taxon, F. oxysporum. Interestingly, all but one of the nonpathogenic isolates grouped into a common clade and were genetically similar to F. oxysporum. The AFLP cladograms had similar topologies when compared with the DNA-based phylograms. Although all tested isolates were morphologically indistinguishable from F. oxysporum based on currently available monographs, some morphological traits can be plastic and unreliable for identification of Fusarium spp. We consider the highly virulent isolates to be F. commune based on strong genetic evidence. To our knowledge, this is the first reported evidence that shows F. commune is a cause of Fusarium disease (root rot and dampingoff) on Douglas-fir seedlings. Furthermore

  19. Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1).

    Science.gov (United States)

    Chatterjee, Moniya; Gupta, Sumanti; Bhar, Anirban; Chakraborti, Dipankar; Basu, Debabrata; Das, Sampa

    2014-11-03

    Vascular wilt caused by Fusarium oxysporum f. sp. ciceri Race 1 (Foc1) is a serious disease of chickpea (Cicer arietinum L.) accounting for approximately 10-15% annual crop loss. The fungus invades the plant via roots, colonizes the xylem vessels and prevents the upward translocation of water and nutrients, finally resulting in wilting of the entire plant. Although comparative transcriptomic profiling have highlighted some important signaling molecules, but proteomic studies involving chickpea-Foc1 are limited. The present study focuses on comparative root proteomics of susceptible (JG62) and resistant (WR315) chickpea genotypes infected with Foc1, to understand the mechanistic basis of susceptibility and/or resistance. The differential and unique proteins of both genotypes were identified at 48 h, 72 h, and 96 h post Foc1 inoculation. 2D PAGE analyses followed by MALDI-TOF MS and MS/MS identified 100 differentially (>1.5 fold<, p<0.05) or uniquely expressed proteins. These proteins were further categorized into 10 functional classes and grouped into GO (gene ontology) categories. Network analyses of identified proteins revealed intra and inter relationship of these proteins with their neighbors as well as their association with different defense signaling pathways. qRT-PCR analyses were performed to correlate the mRNA and protein levels of some proteins of representative classes. The differential and unique proteins identified indicate their involvement in early defense signaling of the host. Comparative analyses of expression profiles of obtained proteins suggest that albeit some common components participate in early defense signaling in both susceptible and resistant genotypes, but their roles and regulation differ in case of compatible and/or incompatible interactions. Thus, functional characterization of identified PR proteins (PR1, BGL2, TLP), Trypsin protease inhibitor, ABA responsive protein, cysteine protease, protein disulphide isomerase, ripening

  20. Onychomycosis by Fusarium oxysporum probably acquired in utero

    Directory of Open Access Journals (Sweden)

    Vania O. Carvalho

    2014-10-01

    Full Text Available Fusarium oxysporum has been described as a pathogen causing onychomycosis, its incidence has been increasing in immunocompetent and disseminated infection can occur in immunosuppressed individuals. We describe the first case of congenital onychomycosis in a child caused by Fusarium oxysporum. The infection being acquired in utero was proven by molecular methods with the identification of the fungus both in the nail and placenta, most probably as an ascending contamination/infection in a HIV-positive, immunosuppressed mother.

  1. Quantitative and microscopic assessment of compatible and incompatible interactions between chickpea cultivars and Fusarium oxysporum f. sp. ciceris races.

    Science.gov (United States)

    Jiménez-Fernández, Daniel; Landa, Blanca B; Kang, Seogchan; Jiménez-Díaz, Rafael M; Navas-Cortés, Juan A

    2013-01-01

    Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races. We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245, JG-62 and WR-315 by Fusarium oxysporum f. sp. ciceris races 0 and 5 labeled with ZsGreen fluorescent protein using confocal laser scanning microscopy. The two races colonized the host root surface in both interactions with preferential colonization of the root apex and subapical root zone. In compatible interactions, the pathogen grew intercellularly in the root cortex, reached the xylem, and progressed upwards in the stem xylem, being the rate and intensity of stem colonization directly related with the degree of compatibility among Fusarium oxysporum f. sp. ciceris races and chickpea cultivars. In incompatible interactions, race 0 invaded and colonized 'JG-62' xylem vessels of root and stem but in 'WR-315', it remained in the intercellular spaces of the root cortex failing to reach the xylem, whereas race 5 progressed up to the hypocotyl. However, all incompatible interactions were asymptomatic. The differential patterns of colonization of chickpea cultivars by Fusarium oxysporum f. sp. ciceris races may be related to the operation of multiple resistance mechanisms.

  2. Quantitative and Microscopic Assessment of Compatible and Incompatible Interactions between Chickpea Cultivars and Fusarium oxysporum f. sp. ciceris Races

    Science.gov (United States)

    Jiménez-Fernández, Daniel; Landa, Blanca B.; Kang, Seogchan; Jiménez-Díaz, Rafael M.; Navas-Cortés, Juan A.

    2013-01-01

    Background Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races. Methodology We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245, JG-62 and WR-315 by Fusarium oxysporum f. sp. ciceris races 0 and 5 labeled with ZsGreen fluorescent protein using confocal laser scanning microscopy. Findings The two races colonized the host root surface in both interactions with preferential colonization of the root apex and subapical root zone. In compatible interactions, the pathogen grew intercellularly in the root cortex, reached the xylem, and progressed upwards in the stem xylem, being the rate and intensity of stem colonization directly related with the degree of compatibility among Fusarium oxysporum f. sp. ciceris races and chickpea cultivars. In incompatible interactions, race 0 invaded and colonized ‘JG-62’ xylem vessels of root and stem but in ‘WR-315’, it remained in the intercellular spaces of the root cortex failing to reach the xylem, whereas race 5 progressed up to the hypocotyl. However, all incompatible interactions were asymptomatic. Conclusions The differential patterns of colonization of chickpea cultivars by Fusarium oxysporum f. sp. ciceris races may be related to the operation of multiple resistance mechanisms. PMID:23613839

  3. Comparison of virulence between vascular competent and incompetent Fusarium oxysporum f. sp. vasinfectum pathotypes

    Science.gov (United States)

    The Australian biotype and California race 4 isolates of Fusarium oxysporum f. sp. Vasinfectum (Fov) are pathologically distinct from the Fov U.S. race 1 isolates in that they do not cause disease when stem-puncture inoculated while race 1 isolates do. When root-dip inoculation method was used, bot...

  4. How to conquer a tomato plant? Fusarium oxysporum effector targets

    NARCIS (Netherlands)

    de Sain, M.

    2016-01-01

    Pathogens secrete small proteins, called effectors, to alter the environment in their host to facilitate infection. The causal agent of Fusarium wilt on tomato, Fusarium oxysporum f. sp. lycopersici (Fol), secretes these proteins in the xylem sap of infected plants and hence they have been called Si

  5. Screenhouse and field persistence of nonpathogenic endophytic Fusarium oxysporum in Musa tissue culture plants.

    Science.gov (United States)

    Paparu, Pamela; Dubois, Thomas; Gold, Clifford S; Niere, Björn; Adipala, Ekwamu; Coyne, Daniel

    2008-04-01

    Two major biotic constraints to highland cooking banana (Musa spp., genome group AAA-EA) production in Uganda are the banana weevil Cosmopolites sordidus and the burrowing nematode Radopholus similis. Endophytic Fusarium oxysporum strains inoculated into tissue culture banana plantlets have shown control of the banana weevil and the nematode. We conducted screenhouse and field experiments to investigate persistence in the roots and rhizome of two endophytic Fusarium oxysporum strains, V2w2 and III4w1, inoculated into tissue-culture banana plantlets of highland cooking banana cultivars Kibuzi and Nabusa. Re-isolation of F. oxysporum showed that endophyte colonization decreased faster from the rhizomes than from the roots of inoculated plants, both in the screenhouse and in the field. Whereas rhizome colonization by F. oxysporum decreased in the screenhouse (4-16 weeks after inoculation), root colonization did not. However, in the field (17-33 weeks after inoculation), a decrease was observed in both rhizome and root colonization. The results show a better persistence in the roots than rhizomes of endophytic F. oxysporum strains V2w2 and III4w1.

  6. Multilocus analysis using putative fungal effectors to describe a population of Fusarium oxysporum from sugar beet.

    Science.gov (United States)

    Covey, Paul A; Kuwitzky, Brett; Hanson, Mia; Webb, Kimberly M

    2014-08-01

    Sugar beet (Beta vulgaris) Fusarium yellows is caused by Fusarium oxysporum f. sp. betae and can lead to significant reductions in root yield, sucrose percentage, juice purity, and storability. F. oxysporum f. sp. betae can be highly variable and many F. oxysporum strains isolated from symptomatic sugar beet are nonpathogenic. Identifying pathogenicity factors and their diversity in the F. oxysporum f. sp. betae population could further understanding of how this pathogen causes disease and potentially provide molecular markers to rapidly identify pathogenic isolates. This study used several previously described fungal effector genes (Fmk1, Fow1, Pda1, PelA, PelD, Pep1, Prt1, Rho1, Sge1, Six1, Six6, Snf1, and Ste12) as genetic markers, in a population of 26 pathogenic and nonpathogenic isolates of F. oxysporum originally isolated from symptomatic sugar beet. Of the genes investigated, six were present in all F. oxysporum isolates from sugar beet (Fmk1, Fow1, PelA, Rho1, Snf1, and Ste12), and seven were found to be dispersed within the population (Pda1, PelD, Pep1, Prt1, Sge1, Six1, and Six6). Of these, Fmk1, Fow1, PelA, Rho1, Sge1, Snf1, and Ste12 were significant in relating clade designations and PelD, and Prt1 were significant for correlating with pathogenicity in F. oxysporum f. sp. betae.

  7. Fermentation characteristics of Fusarium oxysporum grown on acetate

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Pachidou, Fotini; Petroutsos, Dimitris

    2008-01-01

    In this study, the growth characteristics of Fusarium oxysporum were evaluated in minimal medium using acetate or different mixtures of acetate and glucose as carbon source. The minimum inhibitory concentration (MIC) of acetic acid that F oxysporum cells could tolerate was 0.8% w/v while glucose...... of succinate-propionate pathway which consumes reducing power (NADH) via conversion of succinate to propionyl-CoA and produce propionate. (C) 2008 Elsevier Ltd. All rights reserved....

  8. Fusarium verwelkingsziekte in tomaat geen probleem meer dankzij resistentie: Speciale vormen Fusarium oxysporum veroorzaken ziekten

    NARCIS (Netherlands)

    Paternotte, S.J.

    2011-01-01

    Fusarium oxysporum is een algemeen voorkomende bodemschimmel. Speciale vormen kunnen problemen veroorzaken zoals verwelkingsziekte en voet- en wortelrot in verschillende vruchtgroentegewassen, potplanten en snijbloemen en zuur in bolgewassen. Per gewas kan de schade variëren van minimaal, doordat

  9. Synthesis of CdSe Quantum Dots Using Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Takaaki Yamaguchi

    2016-10-01

    Full Text Available CdSe quantum dots are often used in industry as fluorescent materials. In this study, CdSe quantum dots were synthesized using Fusarium oxysporum. The cadmium and selenium concentration, pH, and temperature for the culture of F. oxysporum (Fusarium oxysporum were optimized for the synthesis, and the CdSe quantum dots obtained from the mycelial cells of F. oxysporum were observed by transmission electron microscopy. Ultra-thin sections of F. oxysporum showed that the CdSe quantum dots were precipitated in the intracellular space, indicating that cadmium and selenium ions were incorporated into the cell and that the quantum dots were synthesized with intracellular metabolites. To reveal differences in F. oxysporum metabolism, cell extracts of F. oxysporum, before and after CdSe synthesis, were compared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. The results suggested that the amount of superoxide dismutase (SOD decreased after CdSe synthesis. Fluorescence microscopy revealed that cytoplasmic superoxide increased significantly after CdSe synthesis. The accumulation of superoxide may increase the expression of various metabolites that play a role in reducing Se4+ to Se2− and inhibit the aggregation of CdSe to make nanoparticles.

  10. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-12-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  11. Purification and characterization of xylitol dehydrogenase from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Kekos, D.; Macris, B.J.

    2002-01-01

    An NAD(+)-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M-r 48 000, and pI 3.6. It was optimally active at 45degreesC and pH 9-10. It was fully...

  12. Dynamics of the establishment of multinucleate compartments in Fusarium oxysporum

    NARCIS (Netherlands)

    Shahi, S.; Beerens, B.; Manders, E.M.M.; Rep, M.

    2015-01-01

    Nuclear dynamics can vary widely between fungal species and between stages of development of fungal colonies. Here we compared nuclear dynamics and mitotic patterns between germlings and mature hyphae in Fusarium oxysporum. Using fluorescently labeled nuclei and live-cell imaging, we show that F. ox

  13. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Rebecca Lyons

    Full Text Available Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant.

  14. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana.

    Science.gov (United States)

    Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M; Kazan, Kemal

    2015-01-01

    Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant.

  15. Specific detection of the toxigenic species Fusarium proliferatum and F. oxysporum from asparagus plants using primers based on calmodulin gene sequences.

    Science.gov (United States)

    Mulè, Giuseppina; Susca, Antonia; Stea, Gaetano; Moretti, Antonio

    2004-01-30

    Fusarium proliferatum and Fusarium oxysporum are the causal agents of a destructive disease of asparagus called Fusarium crown and root rot. F. proliferatum from asparagus produces fumonisin B1 and B2, which have been detected as natural contaminants in infected asparagus plants. Polymerase chain reaction (PCR) assays were developed for the rapid identification of F. proliferatum and F. oxysporum in asparagus plants. The primer pairs are based on calmodulin gene sequences. The PCR products from F. proliferatum and F. oxysporum were 526 and 534 bp long, respectively. The assays were successfully applied to identify both species from the vegetative part of the plants.

  16. Bacillus species (BT42) isolated from Coffea arabica L. rhizosphere antagonizes Colletotrichum gloeosporioides and Fusarium oxysporum and also exhibits multiple plant growth promoting activity.

    Science.gov (United States)

    Kejela, Tekalign; Thakkar, Vasudev R; Thakor, Parth

    2016-11-18

    Colletotrichum and Fusarium species are among pathogenic fungi widely affecting Coffea arabica L., resulting in major yield loss. In the present study, we aimed to isolate bacteria from root rhizosphere of the same plant that is capable of antagonizing Colletotrichum gloeosporioides and Fusarium oxysporum as well as promotes plant growth. A total of 42 Bacillus species were isolated, one of the isolates named BT42 showed maximum radial mycelial growth inhibition against Colletotrichum gloeosporioides (78%) and Fusarium oxysporum (86%). BT42 increased germination of Coffee arabica L. seeds by 38.89%, decreased disease incidence due to infection of Colletotrichum gloeosporioides to 2.77% and due to infection of Fusarium oxysporum to 0 (p Fusarium oxysporum. The mechanism of action of inhibition of the pathogenic fungi found to be synergistic effects of secondary metabolites, lytic enzymes, and siderophores. The major inhibitory secondary metabolite identified as harmine (β-carboline alkaloids).

  17. Identification of pathogenicity‐related genes in Fusarium oxysporum f. sp. cepae

    Science.gov (United States)

    Vágány, Viktória; Jackson, Alison C.; Harrison, Richard J.; Rainoni, Alessandro; Clarkson, John P.

    2016-01-01

    Summary Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non‐pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non‐pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific. PMID:26609905

  18. Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae.

    Science.gov (United States)

    Taylor, Andrew; Vágány, Viktória; Jackson, Alison C; Harrison, Richard J; Rainoni, Alessandro; Clarkson, John P

    2016-09-01

    Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non-pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non-pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific. © 2015 The Authors Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  19. [Isolation of protoplasts from vegetable tissues using extracellular lytic enzymes from fusarium oxysporum f.sp. melonis].

    Science.gov (United States)

    Alconada, T M; Martínez, M J

    1995-01-01

    Fusarium oxysporum f.sp. melonis, a pathogen of melon (Cucumis melo L.), was grown in shaken cultures at 26 degrees C in a mineral salts medium containing glucose, xylan and apple pectin as carbon sources. The extracellular enzymic complex obtained from these cultures showed lytic activity on plant tissues, causing maceration of melon fruits, potato tubers and carrot roots. Protoplasts were isolated from melon fruits when the maceration was carried out under appropriate osmotic conditions. This fact suggest a possible relationship between the enzymes produced by Fusarium oxysporum f.sp. melonis and their pathogenicity on melon plants.

  20. Nondermatophytic onychomycosis by Fusarium oxysporum in an immunocompetent host.

    Science.gov (United States)

    Shah, S R; Dalal, B D; Modak, M S

    2016-03-01

    Fusarium onychomycosis is not uncommon in tropical countries but is worth reporting. We report a case of nondermatophytic onychomycosis by Fusarium oxysporum in an immunocompetent woman from Buldhana district of Maharashtra (India). Bilateral involvement of great toe nail, chronic duration and acquisition of infection due to peculiar practice of daily pasting floors with mud and dung, is interesting. The case was successfully treated with topical and oral terbinafine with a dose of 250 mg daily for 3 weeks. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. First Report on Fusarium Wilt of Zucchini Caused by Fusarium oxysporum, in Korea.

    Science.gov (United States)

    Choi, In-Young; Kim, Ju-Hee; Lee, Wang-Hyu; Park, Ji-Hyun; Shin, Hyeon-Dong

    2015-06-01

    Fusarium wilt of zucchini in Jeonju, Korea, was first noticed in May 2013. Symptoms included wilting of the foliage, drying and withering of older leaves, and stunting of plants. Infected plants eventually died during growth. Based on morphological characteristics and phylogenetic analyses of the molecular markers (internal transcribed spacer rDNA and translation elongation factor 1α), the fungus was identified as Fusarium oxysporum. Pathogenicity of a representative isolate was demonstrated via artificial inoculation, and it satisfied Koch's postulates. To our knowledge, this is the first report of F. oxysporum causing wilt of zucchini in Korea.

  2. [Faba bean fusarium wilt (Fusarium oxysporum )control and its mechanism in different wheat varieties and faba bean intercropping system].

    Science.gov (United States)

    Dong, Yan; Dong, Kun; Zheng, Yi; Tang, Li; Yang, Zhi-Xian

    2014-07-01

    Field experiment and hydroponic culture were conducted to investigate effects of three wheat varieties (Yunmai 42, Yunmai 47 and Mianyang 29) and faba bean intercropping on the shoot biomass, disease index of fusarium wilt, functional diversity of microbial community and the amount of Fusarium oxysporum in rhizosphere of faba bean. Contents and components of the soluble sugars, free amino acids and organic acids in the root exudates were also examined. Results showed that, compared with monocropped faba bean, shoot biomass of faba bean significantly increased by 16.6% and 13.4%, disease index of faba bean fusarium wilt significantly decreased by 47.6% and 23.3% as intercropped with Yunmai 42 and Yunmai 47, but no significant differences of both shoot biomass and disease index were found as intercropped with Mianyang 29. Compared with monocropped faba bean, the average well color development (AWCD value) and total utilization ability of carbon sources of faba bean significantly increased, the amount of Fusarium oxysporum of faba bean rhizosphere significantly decreased, and the microbial community structures of faba bean rhizosphere changed as intercropped with YM42 and YM47, while no significant effects as intercropped with MY29. Total contents of soluble sugar, free amino acids and organic acids in root exudates were in the trend of MY29>YM47>YM42. Contents of serine, glutamic, glycine, valine, methionine, phenylalanine, lysine in root exudates of MY29 were significantly higher than that in YM42 and YM47. The arginine was detected only in the root exudates of YM42 and YM47, and leucine was detected only in the root exudates of MY29. Six organic acids of tartaric acid, malic acid, citric acid, succinic acid, fumaric acid, t-aconitic acid were detected in root exudates of MY29 and YM47, and four organic acids of tartaric acid, malic acid, citric acid, fumaric acid were detected in root exudates of YM42. Malic acid content in root exudates of YM47 and MY29 was

  3. Discovery of a new source of resistance to Fusarium oxysporum, cause of Fusarium wilt in Allium fistulosum, located on chromosome 2 of Allium cepa Aggregatum group.

    Science.gov (United States)

    Vu, Hoa Q; El-Sayed, Magdi A; Ito, Shin-Ichi; Yamauchi, Naoki; Shigyo, Masayoshi

    2012-11-01

    This study was carried out to evaluate the antifungal effect of Allium cepa Aggregatum group (shallot) metabolites on Fusarium oxysporum and to determine the shallot chromosome(s) related to Fusarium wilt resistance using a complete set of eight Allium fistulosum - shallot monosomic addition lines. The antifungal effects of hexane, butanol, and water extraction fractions from bulbs of shallot on 35 isolates of F. oxysporum were examined using the disc diffusion method. Only hexane and butanol fractions showed high antifungal activity. Shallot showed no symptom of disease after inoculation with F. oxysporum f. sp. cepae. The phenolic content of the roots and the saponin content of root exudates of inoculated shallot increased to much higher levels than those of the control at 3 days after inoculation. Application of freeze-dried shallot root exudates to seeds of A. fistulosum soaked in a spore suspension of F. oxysporum resulted in protection of seedlings against infection. Among eight monosomic addition lines and A. fistulosum, FF+2A showed the highest resistance to Fusarium wilt. This monosomic addition line also showed a specific saponin band derived from shallot on the thin layer chromatography profile of saponins in the eight monosomic addition lines. The chromosome 2A of shallot might possess some of the genes related to Fusarium wilt resistance.

  4. Transcriptome and expression profile analysis of highly resistant and susceptible banana roots challenged with Fusarium oxysporum f. sp. cubense tropical race 4.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Bai

    Full Text Available Banana wilt disease, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense 4 (Foc4, is regarded as one of the most devastating diseases worldwide. Cavendish cultivar 'Yueyoukang 1' was shown to have significantly lower disease severity and incidence compared with susceptible cultivar 'Brazilian' in greenhouse and field trials. De novo sequencing technology was previously performed to investigate defense mechanism in middle resistant 'Nongke No 1' banana, but not in highly resistant cultivar 'Yueyoukang 1'. To gain more insights into the resistance mechanism in banana against Foc4, Illumina Solexa sequencing technology was utilized to perform transcriptome sequencing of 'Yueyoukang 1' and 'Brazilian' and characterize gene expression profile changes in the both two cultivars at days 0.5, 1, 3, 5 and 10 after infection with Foc4. The results showed that more massive transcriptional reprogramming occurs due to Foc4 treatment in 'Yueyoukang 1' than 'Brazilian', especially at the first three time points, which suggested that 'Yueyoukang 1' had much faster defense response against Foc4 infection than 'Brazilian'. Expression patterns of genes involved in 'Plant-pathogen interaction' and 'Plant hormone signal transduction' pathways were analyzed and compared between the two cultivars. Defense genes associated with CEBiP, BAK1, NB-LRR proteins, PR proteins, transcription factor and cell wall lignification were expressed stronger in 'Yueyoukang 1' than 'Brazilian', indicating that these genes play important roles in banana against Foc4 infection. However, genes related to hypersensitive reaction (HR and senescence were up-regulated in 'Brazilian' but down-regulated in 'Yueyoukang 1', which suggested that HR and senescence may contribute to Foc4 infection. In addition, the resistance mechanism in highly resistant 'Yueyoukang 1' was found to differ from that in middle resistant 'Nongke No 1' banana. These results explain the resistance in the

  5. Nitrate Protects Cucumber Plants Against Fusarium oxysporum by Regulating Citrate Exudation.

    Science.gov (United States)

    Wang, Min; Sun, Yuming; Gu, Zechen; Wang, Ruirui; Sun, Guomei; Zhu, Chen; Guo, Shiwei; Shen, Qirong

    2016-09-01

    Fusarium wilt causes severe yield losses in cash crops. Nitrogen plays a critical role in the management of plant disease; however, the regulating mechanism is poorly understood. Using biochemical, physiological, bioinformatic and transcriptome approaches, we analyzed how nitrogen forms regulate the interactions between cucumber plants and Fusarium oxysporum f. sp. cucumerinum (FOC). Nitrate significantly suppressed Fusarium wilt compared with ammonium in both pot and hydroponic experiments. Fewer FOC colonized the roots and stems under nitrate compared with ammonium supply. Cucumber grown with nitrate accumulated less fusaric acid (FA) after FOC infection and exhibited increased tolerance to chemical FA by decreasing FA absorption and transportation in shoots. A lower citrate concentration was observed in nitrate-grown cucumbers, which was associated with lower MATE (multidrug and toxin compound extrusion) family gene and citrate synthase (CS) gene expression, as well as lower CS activity. Citrate enhanced FOC spore germination and infection, and increased disease incidence and the FOC population in ammonium-treated plants. Our study provides evidence that nitrate protects cucumber plants against F. oxysporum by decreasing root citrate exudation and FOC infection. Citrate exudation is essential for regulating disease development of Fusarium wilt in cucumber plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Isolation and identification of biocontrol agent Streptomyces rimosus M527 against Fusarium oxysporum f. sp. cucumerinum.

    Science.gov (United States)

    Lu, Dandan; Ma, Zheng; Xu, Xianhao; Yu, Xiaoping

    2016-08-01

    Actinomycetes have received considerable attention as biocontrol agents against fungal plant pathogens and as plant growth promoters. In this study, a total of 320 actinomycetes were isolated from various habitats in China. Among which, 77 strains have been identified as antagonistic activities against Fusarium oxysporum f. sp. cucumerinum which usually caused fusarium wilt of cucumber. Of these, isolate actinomycete M527 not only displayed broad-spectrum antifungal activity but also showed the strongest antagonistic activity against the spore germination of F. oxysporum f. sp. cucumerinum. In pot experiments, the results indicated that isolate M527 could promote the shoot growth and prevent the development of the disease on cucumber caused by F. oxysporum f. sp. cucumerinum. The control efficacy against seedling fusarium wilt of cucumber after M527 fermentation broth root-irrigation was up to 72.1% as compared to control. Based on 16S rDNA sequence analysis, the isolate M527 was identified as Streptomyces rimosus. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fusarium verwelkingsziekte in tomaat geen probleem meer dankzij resistentie: Speciale vormen Fusarium oxysporum veroorzaken ziekten

    NARCIS (Netherlands)

    Paternotte, S.J.

    2011-01-01

    Fusarium oxysporum is een algemeen voorkomende bodemschimmel. Speciale vormen kunnen problemen veroorzaken zoals verwelkingsziekte en voet- en wortelrot in verschillende vruchtgroentegewassen, potplanten en snijbloemen en zuur in bolgewassen. Per gewas kan de schade variëren van minimaal, doordat he

  8. Fusarium verwelkingsziekte in tomaat geen probleem meer dankzij resistentie: Speciale vormen Fusarium oxysporum veroorzaken ziekten

    NARCIS (Netherlands)

    Paternotte, S.J.

    2011-01-01

    Fusarium oxysporum is een algemeen voorkomende bodemschimmel. Speciale vormen kunnen problemen veroorzaken zoals verwelkingsziekte en voet- en wortelrot in verschillende vruchtgroentegewassen, potplanten en snijbloemen en zuur in bolgewassen. Per gewas kan de schade variëren van minimaal, doordat he

  9. Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction.

    Science.gov (United States)

    Lyons, Rebecca; Rusu, Anca; Stiller, Jiri; Powell, Jonathan; Manners, John M; Kazan, Kemal

    2015-01-01

    Plants respond to pathogens either by investing more resources into immunity which is costly to development, or by accelerating reproductive processes such as flowering time to ensure reproduction occurs before the plant succumbs to disease. In this study we explored the link between flowering time and pathogen defense using the interaction between Arabidopsis thaliana and the root infecting fungal pathogen Fusarium oxysporum. We report that F. oxysporum infection accelerates flowering time and regulates transcription of a number of floral integrator genes, including FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT) and GIGANTEA (GI). Furthermore, we observed a positive correlation between late flowering and resistance to F. oxysporum in A. thaliana natural ecotypes. Late-flowering gi and autonomous pathway mutants also exhibited enhanced resistance to F. oxysporum, supporting the association between flowering time and defense. However, epistasis analysis showed that accelerating flowering time by deletion of FLC in fve-3 or fpa-7 mutants did not alter disease resistance, suggesting that the effect of autonomous pathway on disease resistance occurs independently from flowering time. Indeed, RNA-seq analyses suggest that fve-3 mediated resistance to F. oxysporum is most likely a result of altered defense-associated gene transcription. Together, our results indicate that the association between flowering time and pathogen defense is complex and can involve both pleiotropic and direct effects.

  10. In planta and soil quantification of Fusarium oxysporum f. sp. ciceris and evaluation of Fusarium wilt resistance in chickpea with a newly developed quantitative polymerase chain reaction assay.

    Science.gov (United States)

    Jiménez-Fernández, Daniel; Montes-Borrego, Miguel; Jiménez-Díaz, Rafael M; Navas-Cortés, Juan A; Landa, Blanca B

    2011-02-01

    Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris can be managed by risk assessment and use of resistant cultivars. A reliable method for the detection and quantification of F. oxysporum f. sp. ciceris in soil and chickpea tissues would contribute much to implementation of those disease management strategies. In this study, we developed a real-time quantitative polymerase chain reaction (q-PCR) protocol that allows quantifying F. oxysporum f. sp. ciceris DNA down to 1 pg in soil, as well as in the plant root and stem. Use of the q-PCR protocol allowed quantifying as low as 45 colony forming units of F. oxysporum f. sp. ciceris per gram of dry soil from a field plot infested with several races of the pathogen. Moreover, the q-PCR protocol clearly differentiated susceptible from resistant chickpea reactions to the pathogen at 15 days after sowing in artificially infested soil, as well as the degree of virulence between two F. oxysporum f. sp. ciceris races. Also, the protocol detected early asymptomatic root infections and distinguished significant differences in the level of resistance of 12 chickpea cultivars that grew in that same field plot infested with several races of the pathogen. Use of this protocol for fast, reliable, and cost-effective quantification of F. oxysporum f. sp. ciceris in asymptomatic chickpea tissues at early stages of the infection process can be of great value for chickpea breeders and for epidemiological studies in growth chambers, greenhouses and field-scale plots.

  11. Taxol producing mangrove endophytic fungi Fusarium oxysporum from Rhizophora annamalayana

    Institute of Scientific and Technical Information of China (English)

    Alaganadham Elavarasi; Gnanaprakash Sathiya Rathna; Murugaiyan Kalaiselvam

    2012-01-01

    Objective: To find out the anticancer properties of Taxol (paclitaxel) isolated from mangrove endophytic fungi. Methods: An endophytic fungus Fusarium oxysporum was isolated fromRhizophora annamalayana, a mangrove plant and analysis for Taxol production. The fungus was identified based on morphology and spore characteristics. The secondary metabolites Taxol were extracted with ethyl acetate. Taxol extracted was characterized by chromatographic and spectrometric analysis. Results: Thin layer chromatography plate shows violet red and IR spectrum values were conformed as group of terpenoid functional groups. The HPLC analysis showed the higher yield of Taxol 172.3 μg/L from potato dextrose liquid medium. Conclusion:The bioprospecting of entophytic fungus F. oxysporum isolated from mangrove is discussed and may serve as a potential material for the production of Taxol for anticancer treatment.

  12. Dynamics of the Establishment of Multinucleate Compartments in Fusarium oxysporum

    Science.gov (United States)

    Shahi, Shermineh; Beerens, Bas; Manders, Erik M. M.

    2014-01-01

    Nuclear dynamics can vary widely between fungal species and between stages of development of fungal colonies. Here we compared nuclear dynamics and mitotic patterns between germlings and mature hyphae in Fusarium oxysporum. Using fluorescently labeled nuclei and live-cell imaging, we show that F. oxysporum is subject to a developmental transition from a uninucleate to a multinucleate state after completion of colony initiation. We observed a special type of hypha that exhibits a higher growth rate, possibly acting as a nutrient scout. The higher growth rate is associated with a higher nuclear count and mitotic waves involving 2 to 6 nuclei in the apical compartment. Further, we found that dormant nuclei of intercalary compartments can reenter the mitotic cycle, resulting in multinucleate compartments with up to 18 nuclei in a single compartment. PMID:25398376

  13. Molecular characterization of Fusarium oxysporum and fusarium commune isolates from a conifer nursery

    Science.gov (United States)

    Jane E. Stewart; Mee-Sook Kim; Robert L. James; R. Kasten Dumroese; Ned B. Klopfenstein

    2006-01-01

    Fusarium species can cause severe root disease and damping-off in conifer nurseries. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Isolates of Fusarium spp. can differ in virulence; however, virulence and...

  14. Production, purification and characterization of alkaline lipase from Fusarium oxysporum.

    OpenAIRE

    2006-01-01

    Resumo: Recentemente, a aplicação industrial de lipases microbianas tem sido estendida a muitas áreas, como por exemplo, na modificação de triglicerídeos, síntese de vários compostos de ésteres e detergentes. As lipases podem ser aplicadas na limpeza de maquinários industriais ou em detergentes como sabões em pó na remoção de manchas de lipídeos em tecidos. A linhagem de fungo Fusarium oxysporum 152B foi selecionada entre 216 linhagens de microrganismos isolados de amostras de frutas e solo d...

  15. Comparative Proteomics Analyses of Two Races of Fusarium oxysporum f. sp. conglutinans that Differ in Pathogenicity.

    Science.gov (United States)

    Li, Erfeng; Ling, Jian; Wang, Gang; Xiao, Jiling; Yang, Yuhong; Mao, Zhenchuan; Wang, Xuchu; Xie, Bingyan

    2015-09-03

    Fusarium oxysporum is a soil-inhabiting fungus that induces vascular wilt and root rot in a variety of plants. F. oxysporum f. sp. conglutinans (Foc), which comprises two races, can cause wilt disease in cabbage. Compared with race 1 (52557(-TM), R1), race 2 (58385(-TM), R2) exhibits much stronger pathogenicity. Here, we provide the first proteome reference maps for Foc mycelium and conidia and identify 145 proteins with different abundances among the two races. Of these proteins, most of the high-abundance proteins in the R2 mycelium and conidia are involved in carbohydrate, amino acid and ion metabolism, which indicates that these proteins may play important roles in isolate R2's stronger pathogenicity. The expression levels of 20 typical genes demonstrate similarly altered patterns compared to the proteomic analysis. The protein glucanosyltransferase, which is involved in carbohydrate metabolism, was selected for research. We knocked out the corresponding gene (gas1) and found that Foc-∆gas1 significantly reduced growth rate and virulence compared with wild type isolates. These results deepened our understanding of the proteins related to F. oxysporum pathogenicity in cabbage Fusarium wilt and provided new opportunities to control this disease.

  16. A DNA-Based Procedure for In Planta Detection of Fusarium oxysporum f. sp. phaseoli.

    Science.gov (United States)

    Alves-Santos, Fernando M; Ramos, Brisa; García-Sánchez, M Asunción; Eslava, Arturo P; Díaz-Mínguez, José María

    2002-03-01

    ABSTRACT We have characterized strains of Fusarium oxysporum from common bean fields in Spain that were nonpathogenic on common bean, as well as F. oxysporum strains (F. oxysporum f. sp. phaseoli) pathogenic to common bean by random amplified polymorphic DNA (RAPD) analysis. We identified a RAPD marker (RAPD 4.12) specific for the highly virulent pathogenic strains of the seven races of F. oxysporum f. sp. phaseoli. Sequence analysis of RAPD 4.12 allowed the design of oligonucleotides that amplify a 609-bp sequence characterized amplified region (SCAR) marker (SCAR-B310A280). Under controlled environmental and greenhouse conditions, detection of the pathogen by polymerase chain reaction was 100% successful in root samples of infected but still symptomless plants and in stem samples of plants with disease severity of >/=4 in the Centro Internacional de Agricultura Tropical (CIAT; Cali, Colombia) scale. The diagnostic procedure can be completed in 5 h and allows the detection of all known races of the pathogen in plant samples at early stages of the disease with no visible symptoms.

  17. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling.

    Science.gov (United States)

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  18. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling

    Directory of Open Access Journals (Sweden)

    Vasileios eBitas

    2015-11-01

    Full Text Available Volatile organic compounds (VOCs have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  19. Search for sources of resistance to Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum in okra germplasm

    Directory of Open Access Journals (Sweden)

    Frederick Mendes Aguiar

    2013-04-01

    Full Text Available – Fusarium oxysporum f. sp. vasinfectum (FOV is one the most destructive okra (Abelmoschus esculentus pathogens in Brazil. Fifty-four okra accessions were evaluated for resistance to FOV. Greenhouse screening was initially carried out with one FOV isolate (‘Fus-194’. Inoculation (in all assays was carried out with 21-day-old plantlets, using the root-dipping inoculation technique. Thirty-three accessions displaying differential responses in the first screening were re-evaluated in two additional assays, using two FOV isolates (‘Fus-194’ and ‘Fus-201’. Twelve accessions were rated as highly to intermediately resistant to ‘Fus-194’ during the dry/moderate temperature season, whereas nine accessions were classified as highly to intermediately resistant to ‘Fus-201’. In the assay carried out in the wet and warm season, 72% of the accessions were classified as having high and intermediate resistance to ‘Fus-194’, and 32% were resistant to ‘Fus-201’. The accessions ‘Santa Cruz-47’, ‘BR-2399’ and ‘BR-1449’ were the most promising resistance sources.

  20. Effector profiles distinguish formae speciales of Fusarium oxysporum.

    Science.gov (United States)

    van Dam, Peter; Fokkens, Like; Schmidt, Sarah M; Linmans, Jasper H J; Kistler, H Corby; Ma, Li-Jun; Rep, Martijn

    2016-11-01

    Formae speciales (ff.spp.) of the fungus Fusarium oxysporum are often polyphyletic within the species complex, making it impossible to identify them on the basis of conserved genes. However, sequences that determine host-specific pathogenicity may be expected to be similar between strains within the same forma specialis. Whole genome sequencing was performed on strains from five different ff.spp. (cucumerinum, niveum, melonis, radicis-cucumerinum and lycopersici). In each genome, genes for putative effectors were identified based on small size, secretion signal, and vicinity to a "miniature impala" transposable element. The candidate effector genes of all genomes were collected and the presence/absence patterns in each individual genome were clustered. Members of the same forma specialis turned out to group together, with cucurbit-infecting strains forming a supercluster separate from other ff.spp. Moreover, strains from different clonal lineages within the same forma specialis harbour identical effector gene sequences, supporting horizontal transfer of genetic material. These data offer new insight into the genetic basis of host specificity in the F. oxysporum species complex and show that (putative) effectors can be used to predict host specificity in F. oxysporum. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Effet inhibiteur in vitro et in vivo du Trichoderma harzianum sur Fusarium oxysporum f. sp. Radicis-lycopersici

    Directory of Open Access Journals (Sweden)

    El Mahjoub M.

    2005-01-01

    Full Text Available In vitro and in vivo antagonistic effect of Trichoderma harzianum against Fusarium oxysporum f. sp. radicis-lycopersici. Tests of direct confrontation, on PDA medium or remote confrontation, between Fusarium oxysporum f. sp. radicislycopersici and Trichoderma harzianum, revealed that the latest has inhibited mycelial growth of the pathogen by more than 65% compared to the control and this after an incubation period of about four days at 25°C. Moreover, beyond this period and after six days, T. harzianum invades and also sporulates on F. oxysporum f. sp. radicis-lycopersici colonies revealing its high myco-parasitism. Some interesting results have also been obtained in vivo: indeed, transplantation of tomato seedlings in a mixture of perlite inoculated by F. oxysporum f. sp. radicis-lycopersici and T. harzianum reduced Fusarium crown and root rot incidence compared to seedlings planted in perlite only inoculated by the pathogen. Even better, seedlings planted in perlite containing the pathogen and the studied antagonist present a better vegetative growth and a vigorous root system compared to those of the healthy control (not inoculated and untreated.

  2. Hyphal growth of phagocytosed Fusarium oxysporum causes cell lysis and death of murine macrophages.

    Science.gov (United States)

    Schäfer, Katja; Bain, Judith M; Di Pietro, Antonio; Gow, Neil A R; Erwig, Lars P

    2014-01-01

    Fusarium oxysporum is an important plant pathogen and an opportunistic pathogen of humans. Here we investigated phagocytosis of F. oxysporum by J774.1 murine cell line macrophages using live cell video microscopy. Macrophages avidly migrated towards F. oxysporum germlings and were rapidly engulfed after cell-cell contact was established. F. oxysporum germlings continued hyphal growth after engulfment by macrophages, leading to associated macrophage lysis and escape. Macrophage killing depended on the multiplicity of infection. After engulfment, F. oxysporum inhibited macrophages from completing mitosis, resulting in large daughter cells fused together by means of a F. oxysporum hypha. These results shed new light on the initial stages of Fusarium infection and the innate immune response of the mammalian host.

  3. Genetic Characterization by RAPD Analysis of Isolates of Fusarium oxysporum f. sp. erythroxyli Associated with an Emerging Epidemic in Peru.

    Science.gov (United States)

    Nelson, A J; Elias, K S; Arévalo G, E; Darlington, L C; Bailey, B A

    1997-12-01

    ABSTRACT An epidemic of vascular wilt caused by Fusarium oxysporum f. sp. erythroxyli is currently occurring on Erythroxylum coca var. coca in the coca-growing regions of the Huallaga Valley in Peru. Random amplified polymorphic DNA (RAPD) analysis of isolates of the pathogen was undertaken to elucidate its genetic complexity, as well as to identify a specific DNA fingerprint for the pathogen. Two hundred isolates of Fusarium were collected from 10 coca-growing regions in Peru. Of these, 187 were confirmed to be F. oxysporum, and 143 of the F. oxysporum were shown to be pathogens of coca by a root-dip pathogenicity test. The pathogens could be grouped into two subpopulations based on RAPD analysis, and no polymorphism in RAPD pattern was observed among isolates of either subpopulation. Both subpopulations were present in the central Huallaga Valley, where earliest reports of the epidemic occurred. RAPD analysis could easily distinguish the isolates of F. oxysporum f. sp. erythroxyli from the nonpathogenic isolates of F. oxysporum from E. coca var. coca, indicating its utility in DNA fingerprinting.

  4. Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine- and leucine-conjugated jasmonates.

    Science.gov (United States)

    Cole, Stephanie J; Yoon, Alexander J; Faull, Kym F; Diener, Andrew C

    2014-08-01

    Three pathogenic forms, or formae speciales (f. spp.), of Fusarium oxysporum infect the roots of Arabidopsis thaliana below ground, instigating symptoms of wilt disease in leaves above ground. In previous reports, Arabidopsis mutants that are deficient in the biosynthesis of abscisic acid or salicylic acid or insensitive to ethylene or jasmonates exhibited either more or less wilt disease, than the wild-type, implicating the involvement of hormones in the normal host response to F. oxysporum. Our analysis of hormone-related mutants finds no evidence that endogenous hormones contribute to infection in roots. Mutants that are deficient in abscisic acid and insensitive to ethylene show no less infection than the wild-type, although they exhibit less disease. Whether a mutant that is insensitive to jasmonates affects infection depends on which forma specialis (f. sp.) is infecting the roots. Insensitivity to jasmonates suppresses infection by F. oxysporum f. sp. conglutinans and F. oxysporum f. sp. matthioli, which produce isoleucine- and leucine-conjugated jasmonate (JA-Ile/Leu), respectively, in culture filtrates, whereas insensitivity to jasmonates has no effect on infection by F. oxysporum f. sp. raphani, which produces no detectable JA-Ile/Leu. Furthermore, insensitivity to jasmonates has no effect on wilt disease of tomato, and the tomato pathogen F. oxysporum f. sp. lycopersici produces no detectable jasmonates. Thus, some, but not all, F. oxysporum pathogens appear to utilize jasmonates as effectors, promoting infection in roots and/or the development of symptoms in shoots. Only when the infection of roots is promoted by jasmonates is wilt disease enhanced in a mutant deficient in salicylic acid biosynthesis. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  5. Fusarium oxysporum dispersion by larvae of Cyclocephala modesta , Dyscinetus gagates and Diloboderus abderus in Brazil

    Directory of Open Access Journals (Sweden)

    Geraldo Salgado-Neto

    2016-06-01

    Full Text Available ABSTRACT: The scientific and economic importance of soybean root rot justifies the study of this disease, especially the role of insects as dispersers in the spread of root pathogens. The objective was to identify and evaluate qualitatively and quantitatively the role of Cyclocephala modesta, Dyscinetus gagates and Diloboderus abderus (Coleoptera: Melolonthidae in the dispersion of root pathogens in cultivated fields. The fungi were identified to the species level with DNA extraction and sequencing of these organisms within Melolonthidae larvae . Larvae were dissected and separated into the parts: mouth parts, prothorax, cuticle and digestive tract (alimentary canal. The Internal Transcribed Spacer region of the rRNA was amplified and compared to sequences deposited in GenBank. This is the first record of dispersion Fusarium oxysporum by Cyclocephala modesta, Dyscinetus gagates and Diloboderus abderus (Coleoptera: Melolonthidae under soybean in Brazil.

  6. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato.

    Science.gov (United States)

    Hage-Ahmed, Karin; Krammer, Johannes; Steinkellner, Siegrid

    2013-10-01

    Arbuscular mycorrhizal fungi (AMF) and their bioprotective aspects are of great interest in the context of sustainable agriculture. Combining the benefits of AMF with the utilisation of plant species diversity shows great promise for the management of plant diseases in environmentally compatible agriculture. In the present study, AMF were tested against Fusarium oxysporum f. sp. lycopersici with tomato intercropped with either leek, cucumber, basil, fennel or tomato itself. Arbuscular mycorrhizal (AM) root colonisation of tomato was clearly affected by its intercropping partners. Tomato intercropped with leek showed even a 20 % higher AM colonisation rate than tomato intercropped with tomato. Positive effects of AMF expressed as an increase of tomato biomass compared to the untreated control treatment could be observed in root as well as in shoot weights. A compensation of negative effects of F. oxysporum f. sp. lycopersici on tomato biomass by AMF was observed in the tomato/leek combination. The intercropping partners leek, cucumber, basil and tomato had no effect on F. oxysporum f. sp. lycopersici disease incidence or disease severity indicating no allelopathic suppression; however, tomato co-cultivated with tomato clearly showed a negative effect on one plant/pot with regard to biomass and disease severity of F. oxysporum f. sp. lycopersici. Nonetheless, bioprotective effects of AMF resulting in the decrease of F. oxysporum f. sp. lycopersici disease severity were evident in treatments with AMF and F. oxysporum f. sp. lycopersici co-inoculation. However, these bioprotective effects depended on the intercropping partner since these effects were only observed in the tomato/leek and tomato/basil combination and for the better developed plant of tomato/tomato. In conclusion, the effects of the intercropping partner on AMF colonisation of tomato are of great interest for crop plant communities and for the influences on each other. The outcome of the bioprotective

  7. Pathogenicity of eight formae speciales of Fusarium oxysporum Schlecht. in relation to different plants species

    Directory of Open Access Journals (Sweden)

    Maria Wagner

    2014-08-01

    Full Text Available Eight formae speciales of Fusarium oxysporum were isolated from plants of aster, flax, bean, pea, tomato, carnation, yellow lupine and pine, showing visible symptoms of wilting. Plants of the eight species were inoculated with each of the studied formae speciales of F. oxysporum, F. oxysporum f. sp. lupini could be reisolated only from lupine, while the others were pathogenic for the hosts and showed ability to colonize another plants.

  8. Response of cattleya hybrids for Fusarium oxysporum f. sp. cattleyae Foster

    OpenAIRE

    Cristiano Pedroso-de-Moraes; Marcelo Claro de Souza; Cínthia Cristina Ronconi; Marco Aurélio Marteline

    2011-01-01

    The Cattleya genus has a great importance in the flower agro-business market. Fusarium wilts, caused by Fusarium oxysporum f. sp. cattleyae, is considered one of the main factors of decline and death of plants of this genus. Using seven hybrids (intra and intergenerics) of Cattleya, tests of resistance and susceptibility to F. oxysporum were performed in conditions of greenhouse for 12 months, using, as evaluation criterion, a scale of the disease severity ranging from one (resistant) to eigh...

  9. Determination of resistance to Fusarium oxysporum f. sp. lycopersici via molecular markers in tomato lines

    OpenAIRE

    PINAR, Hasan; ATA, Atilla; Keleş, Davut; Mutlu,Nedim; DENLİ, Nihal; ÜNLÜ, Mustafa

    2013-01-01

    Fusarium oxysporum f. sp. lycopersici (FOL) is common in tomato production areas where intensive production causes huge losses. Other plant species as well as biological and chemical control is insufficient to fight with the disease. The most effective solution to this problem is the use of resistant varieties. Fusarium oxysporum f. sp. lycopersici resistance has been transferred to most of the commercial varieties via classical and molecular marker-assisted selection (MAS). The use of molecu...

  10. Induction, purification, and characterization of two extracellular alpha-L-arabinofuranosidases from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Topakas, E.; Economou, L.

    2003-01-01

    In the presence of L-arabinose as sole carbon source, Fusarium oxysporum produces two alpha-L-arabinofuranosidases (ABFs) named ABF1 and ABF2, with molecular masses of 200 and 180 kDa, respectively. The two F. oxysporum proteins have been purified to homogeneity. The purified enzymes are composed...

  11. A novel thermophilic endoglucanase from a mesophilic fungus Fusarium oxysporum

    Institute of Scientific and Technical Information of China (English)

    LIU Shuyan; DUAN Xinyuan; LU Xuemei; GAO Peiji

    2006-01-01

    A novel thermophilic endoglucanase (EGt) was extracted from a mesophilic fungus (Fusarium oxysporum L19). We invoked conventional kinetic enzyme reactions using the sodium salt of carboxymethyl cellulose (CMC-Na) as substrate. EGt displayed optimal activity at 75℃ when kept running 30 min in the temperature range of 30―85℃. Thermal stability curve measured at 70℃ suggested that its half-life time is 15.1 min. The activity was enhanced in the presence of Co2+ or Mg2+ but inhibited by Pb2+ and Fe3+. Moreover, N-bromosuccinimide (NBS) modification resulted in a complete loss of EGt activity, suggesting that tryptophan residues 5 be involved in the enzyme active site. Amino acid composition analysis demonstrated that EGt contains more proline residues. EGt lacks activity towards p-nitrophenyl cellobiose (pNPC). The N-terminal amino acid sequence of EGt is SYRVPAANGFPNP- DASQEKQ, and the gene of EGt was sequenced and analyzed. Extensive sequence alignments failed to show any homology between EGt and any known endoglucanases. This is the first report addressing the thermal adaptation of a cellulolytic enzyme from the mesophilic fungus F. oxysporum. 5be the expression of multiple isoenzyme in an organism helps it adapt to complex living environments.

  12. Morphological and RAPD Analysis of Fusarium Species Associated with Root and Stem Rot of Dendrobium Orchid in Northern Peninsula Malaysia

    Directory of Open Access Journals (Sweden)

    LATIFFAH ZAKARIA

    2009-06-01

    Full Text Available A total of 29 Fusarium isolates were isolated from Dendrobium orchid showing symptoms of root and stem rots. Based on morphological characteristics, three species were identified namely, F. oxysporum, F. solani, and F. proliferatum which were recovered from root and stem rots of Dendrobium. Cluster analysis of RAPD bands clearly separated F. oxysporum, F. proliferatum, and F. solani into distinct clusters. The present studies showed that three Fusarium species were isolated from root and stem rot of Dendrobium and cluster analysis of RAPD bands was in agreement with morphological characterization of the Fusarium species from root and stem rot of Dendrobium.

  13. Sterilization of Fusarium oxysporum by treatment of non-thermalequilibrium plasma in nutrient solution

    Science.gov (United States)

    Yasui, Shinji; Seki, Satoshi; Yoshida, Ryohei; Shoji, Kazuhiro; Terazoe, Hitoshi

    2016-01-01

    Fusarium wilt of spinach due to F. oxysporum infection is one of the most destructive root diseases in hydroponics in factories using the nutrient film technique. We investigated new technologies for the sterilization of microconidia of F. oxysporum by using a non-thermalequilibrium plasma treatment method in nutrient solution. Specifically, we investigated the sterilization capabilities of five types of gas (air, O2, N2, He, and Ar) used for plasma generation. The highest sterilization capability was achieved by using O2 plasma. However, ozone, which causes growth inhibition, was then generated and released into the atmosphere. The sterilization capability was lower when N2 or air plasma was used in the nutrient solution. It was confirmed that sterilization can be achieved by plasma treatment using inert gases that do not generate ozone; therefore, we determined that Ar plasma is the most preferable. In addition, we investigated the sterilization capabilities of other factors associated with Ar plasma generation, without direct plasma treatment. However, none of these other factors, which included Ar bubbling, pH reduction, increased temperature, hydrogen peroxide concentration, and UV radiation, could completely reproduce the results of direct plasma treatment. We assume that radicals such as O or OH may contribute significantly to the sterilization of microconidia of F. oxysporum in a nutrient solution.

  14. Association of Effector Six6 with Vascular Wilt Symptoms Caused by Fusarium oxysporum on Soybean.

    Science.gov (United States)

    Lanubile, Alessandra; Ellis, Margaret L; Marocco, Adriano; Munkvold, Gary P

    2016-11-01

    The Fusarium oxysporum species complex (FOSC) is a widely distributed group of fungi that includes both pathogenic and nonpathogenic isolates. In a previous study, isolates within the FOSC collected primarily from soybean were assessed for the presence of 12 fungal effector genes. Although none of the assayed genes was significantly associated with wilt symptoms on soybean, the secreted in xylem 6 (Six6) gene was present only in three isolates, which all produced high levels of vascular wilt on soybean. In the current study, a collection of F. oxysporum isolates from soybean roots and F. oxysporum f. sp. phaseoli isolates from common bean was screened for the presence of the Six6 gene. Interestingly, all isolates for which the Six6 amplicon was generated caused wilt symptoms on soybean, and two-thirds of the isolates showed high levels of aggressiveness, indicating a positive association between the presence of the effector gene Six6 and induction of wilt symptoms. The expression profile of the Six6 gene analyzed by quantitative reverse-transcription polymerase chain reaction revealed an enhanced expression for the isolates that caused more severe wilt symptoms on soybean, as established by the greenhouse assay. These findings suggest the suitability of the Six6 gene as a possible locus for pathogenicity-based molecular diagnostics across the various formae speciales.

  15. [Differential gene expression in incompatible interaction between Lilium regale Wilson and Fusarium oxysporum f. sp. lilii revealed by combined SSH and microarray analysis].

    Science.gov (United States)

    Rao, J; Liu, D; Zhang, N; He, H; Ge, F; Chen, C

    2014-01-01

    Fusarium wilt, caused by a soilborne pathogen Fusarium oxysporum f. sp. lilii, is the major disease of lily (Lilium L.). In order to isolate the genes differentially expressed in a resistant reaction to F. oxysporum in L. regale Wilson, a cDNA library was constructed with L. regale root during F. oxysporum infection using the suppression subtractive hybridization (SSH), and a total of 585 unique expressed sequence tags (ESTs) were obtained. Furthermore, the gene expression profiles in the incompatible interaction between L. regale and F. oxysporum were revealed by oligonucleotide microarray analysis of 585 unique ESTs comparison to the compatible interaction between a susceptible Lilium Oriental Hybrid 'Siberia' and F. oxysporum. The result of expression profile analysis indicated that the genes encoding pathogenesis-related proteins (PRs), antioxidative stress enzymes, secondary metabolism enzymes, transcription factors, signal transduction proteins as well as a large number of unknown genes were involved in early defense response of L. regale to F. oxysporum infection. Moreover, the following quantitative reverse transcription PCR (QRT-PCR) analysis confirmed reliability of the oligonucleotide microarray data. In the present study, isolation of differentially expressed genes in L. regale during response to F. oxysporum helped to uncover the molecular mechanism associated with the resistance of L. regale against F. oxysporum.

  16. Evaluation of methods to detect the cotton pathogen Fusarium oxysporum f. sp. vasinfectum race 4

    Science.gov (United States)

    Fusarium wilt caused by Fusarium oxysporum f. sp. vasinfectum (Fov) is an important disease of cotton. Fov race 4, identified in the San Joaquin Valley of California, has caused serious losses and is a potential threat to US cotton production. Tests have been developed to rapidly identify race 4 i...

  17. Genetic diversity, virulence, and Meloidogyne incognita interactions of Fusarium oxysporum isolates causing cotton wilt in Georgia

    Science.gov (United States)

    Locally severe outbreaks of Fusarium wilt of cotton (Gossypium spp.) in South Georgia raised concerns about the genotypes of the causal pathogen, Fusarium oxysporum f. sp. vasinfectum. Vegetative complementation tests and DNA sequence analysis were used to determine genetic diversity among 492 F. ox...

  18. Evaluation of methods to detect the cotton wilt pathogen Fusarium oxysporum f. sp. vasinfectum race 4

    Science.gov (United States)

    Fusarium wilt caused by Fusarium oxysporum f. sp. vasinfectum (Fov) is an economically significant disease of cultivated cottons (Gossypium hirsutum and G. barbadense). Fov race 4 has spread among soils planted to cotton in the San Joaquin Valley of California and has caused serious losses. Because ...

  19. Comparative transcriptome analyses and genome assembly of Fusarium oxysporum f. sp. cubense

    NARCIS (Netherlands)

    Dita, M.A.; Herai, R.; Waalwijk, C.; Yamagishi, M.; Giachetto, P.; Ferreira, G.; Souza, de M.; Kema, G.H.J.

    2013-01-01

    Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt of banana, is a highly destructive and genetically diverse pathogen. Despite its economic importance, genomic information about Foc is limited and no transcriptomic analyses have been reported so far. By using 454 sequencing

  20. First report of Fusarium oxysporum species complex infection in zebrafish culturing system.

    Science.gov (United States)

    Kulatunga, D C M; Dananjaya, S H S; Park, B K; Kim, C-H; Lee, J; De Zoysa, M

    2017-04-01

    Fusarium oxysporum species complex (FOSC) is a highly diverse fungus. Recently, F. oxysporum infection was identified from zebrafish (Danio rerio) culturing system in Korea. Initially, a rapid whitish smudge was appeared in the water with the fungal blooming on walls of fish tanks. Microscopic studies were conducted on fungal hyphae, colony pigmentation and chlamydospore formation and the presence of macro- and microspores confirmed that the isolated fungus as F. oxysporum. Furthermore, isolated F. oxysporum was confirmed by internal transcribed spacer sequencing which matched (100%) to nine F. oxysporum sequences available in GenBank. Experimental hypodermic injection of F. oxysporum into adult zebrafish showed the development of fungal mycelium and pathogenicity similar to signs observed. Histopathologic results revealed a presence of F. oxysporum hyphae in zebrafish muscle. Fusarium oxysporum growth was increased with sea salt in a concentration-dependent manner. Antifungal susceptibility results revealed that F. oxysporum is resistant to copper sulphate (up to 200 μg mL(-1) ) and sensitive to nystatin (up to 40 μg mL(-1) ). This is the first report of FOSC from zebrafish culture system, suggesting it appears as an emerging pathogen, thus posing a significant risk on zebrafish facilities in the world. © 2016 John Wiley & Sons Ltd.

  1. Antagonistic Activities of Novel Peptides from Bacillus amyloliquefaciens PT14 against Fusarium solani and Fusarium oxysporum.

    Science.gov (United States)

    Kim, Young Gwon; Kang, Hee Kyoung; Kwon, Kee-Deok; Seo, Chang Ho; Lee, Hyang Burm; Park, Yoonkyung

    2015-12-09

    Bacillus species have recently drawn attention due to their potential use in the biological control of fungal diseases. This paper reports on the antifungal activity of novel peptides isolated from Bacillus amyloliquefaciens PT14. Reverse-phase high-performance liquid chromatography revealed that B. amyloliquefaciens PT14 produces five peptides (PT14-1, -2, -3, -4a, and -4b) that exhibit antifungal activity but are inactive against bacterial strains. In particular, PT14-3 and PT14-4a showed broad-spectrum antifungal activity against Fusarium solani and Fusarium oxysporum. The PT14-4a N-terminal amino acid sequence was identified through Edman degradation, and a BLAST homology analysis showed it not to be identical to any other protein or peptide. PT14-4a displayed strong fungicidal activity with minimal inhibitory concentrations of 3.12 mg/L (F. solani) and 6.25 mg/L (F. oxysporum), inducing severe morphological deformation in the conidia and hyphae. On the other hand, PT14-4a had no detectable hemolytic activity. This suggests PT14-4a has the potential to serve as an antifungal agent in clinical therapeutic and crop-protection applications.

  2. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    Science.gov (United States)

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  3. AKTIVITAS ANTIFUNGI EKSTRAK DAUN KEMANGI (Ocimum americanum L. TERHADAP FUNGI Fusarium oxysporum Schlecht

    Directory of Open Access Journals (Sweden)

    Zainal Berlian

    2016-01-01

    Full Text Available Fusarium oxysporum Schlecht. a parasitic fungus that cause leaf wilt disease in plants. Meanwhile, basil (Ocimum americanum L. is a plant that contains of the active compound in the form of phenols which have antifungal activity. This study aimed to test whether the extract of leaves of basil have antifungal activity againts Fusarium oxysporum Schlecht. and determine the optimum concentration to inhibit the growth of the fungus Fusarium oxysporum Schlecht. Antifungal test is done by using paper disc diffusion method. The study design used was a completely randomized design with 4 treatments and 6 replications. The treatment is K0 (0% w/v, K1 (5% w/v, K2 (10% w/v, and K3 (15% w/v. The results showed that the leaf extract of basil have antifungal activity against Fusarium oxysporum Schlecht. Inhibition zone on K0, K1, K2, and K3 are each 0,0 mm, 1,49 mm, 2,46 mm, and 2,01 mm. The optimum concentration of antifungal activity of extract of basil, namely the K2 concentration (10% w/v. Based on analysis of variance (ANOVA, the concentration of basil leaf extract provides significant differences (p > 0,05 on fungus Fusarium oxysporum Schlecht., where Fcount > Ftable is 4,5 > 3,1.

  4. Biochemical and Physiological Changes of Three Watermelon Cultivars Infested with Fusarium oxysporum f. Sp.niveum

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-ming; HAO Chi; GUO Chun-rong; ZHANG Zuo-gang; HE Yun-chun

    2002-01-01

    The dynamic changes in membrane permeability, activities of disease-related enzymes, and contents of pathogenesis-relevant chemical compounds and photosynthetic pigments in root cells of three watermelon cultivars were studied after inoculation with Fusarium oxysporum f. sp. niveum at seedling stage. The results showed that the capacity of self-regulating and returning to normal status of cultivar Kelunsheng (resistant) was greater than that of a susceptible cultivar, Zaohua, in terms of malonaldehyde (MDA) content, relative conductivity, and activity of superoxide dismutase (SOD) and catalase (CAT). The resistant cultivar maintained a higher activity of dehydrogenase, higher content of vitamin C(Vc), and relatively lower content of soluble sugar than the susceptible cultivar. The content of soluble protein was higher in the resistant cultivar than that in the susceptible one at day 1 after inoculation. The capacities of the resistant cultivar to inhibit chlorophyll deterioration and maintain a higher carotenoid content were significantly stronger than those of the susceptible cultivar.

  5. Dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici.

    Science.gov (United States)

    Vlaardingerbroek, Ido; Beerens, Bas; Schmidt, Sarah M; Cornelissen, Ben J C; Rep, Martijn

    2016-12-01

    The genomes of many filamentous fungi consist of a 'core' part containing conserved genes essential for normal development as well as conditionally dispensable (CD) or lineage-specific (LS) chromosomes. In the plant-pathogenic fungus Fusarium oxysporum f. sp. lycopersici, one LS chromosome harbours effector genes that contribute to pathogenicity. We employed flow cytometry to select for events of spontaneous (partial) loss of either the two smallest LS chromosomes or two different core chromosomes. We determined the rate of spontaneous loss of the 'effector' LS chromosome in vitro at around 1 in 35 000 spores. In addition, a viable strain was obtained lacking chromosome 12, which is considered to be a part of the core genome. We also isolated strains carrying approximately 1-Mb deletions in the LS chromosomes and in the dispensable core chromosome. The large core chromosome 1 was never observed to sustain deletions over 200 kb. Whole-genome sequencing revealed that some of the sites at which the deletions occurred were the same in several independent strains obtained for the two chromosomes tested, indicating the existence of deletion hotspots. For the core chromosome, this deletion hotspot was the site of insertion of the marker used to select for loss events. Loss of the core chromosome did not affect pathogenicity, whereas loss of the effector chromosome led to a complete loss of pathogenicity. © 2016 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  6. INDUCCIÓN DE RESISTENCIA SISTÉMICA CONTRA Fusarium oxysporum EN TOMATE POR Trichoderma koningiopsis Th003 Induced Systemic Resistance Against Fusarium oxysporum In Tomato By Trichoderma koningiopsis Th003

    Directory of Open Access Journals (Sweden)

    YEIRME YANETH JAIMES SUÁREZ

    Full Text Available Trichoderma koningiopsis Th003 ha mostrado alta eficacia en el control de diferentes fitopatógenos incluyendo Fusarium oxysporum, agente causal de la pudrición del cuello y la raíz del tomate (Solanum lycopersicum Mill.. Con el propósito de estudiar si este agente tiene la capacidad para inducir respuestas sistémicas de defensa, se utilizó como patosistema modelo Fusarium oxysporum -tomate, cuyas plantas se establecieron en cubos de enraizamiento con el sistema radical separado en dos porciones. Cuando Th003 se inoculó en una porción de la raíz 96 h antes de inocular en la otra porción F. oxysporum, se presentó un retraso de la colonización del fitopatógeno en el sistema vascular de la planta, en comparación con las plantas inoculadas solamente con el fitopatógeno. Este resultado sugiere que Th003 estimuló respuestas sistémicas de defensa en la planta, dado que el antagonista y el fitopatógeno permanecieron separados espacialmente. El microorganismo biocontrolador formulado como gránulos dispersables, se aplicó en un cultivo comercial de tomate bajo invernadero y redujo significativamente la incidencia de la pudrición del cuello y las raíces del tomate en 35%, en comparación con el testigo absoluto. El hongo T. koningiopsis Th003 demostró habilidad para controlar F. oxysporum f. sp. radicislycopersici mediante inducción de respuestas de defensa sistémica en las plantas de tomate.Trichoderma koningiopsis Th003 has proved to be an efficient biocontrol agent of different plant pathogens including Fusarium oxysporum, causing agent of tomato crown and root rot. With the aim to studying whether Th003 has the ability to induce defense systemic responses to control Fusarium oxysporum infection, tomato plants (Solanumlycopersicum Mill. were sown in pots using split root modified method. When Th003 was applied to one root portion 96 h before inoculating F. oxysporum in the other root portion, delayed colonization of the plant

  7. The Membrane Mucin Msb2 Regulates Invasive Growth and Plant Infection in Fusarium oxysporum[W

    Science.gov (United States)

    Pérez-Nadales, Elena; Di Pietro, Antonio

    2011-01-01

    Fungal pathogenicity in plants requires a conserved mitogen-activated protein kinase (MAPK) cascade homologous to the yeast filamentous growth pathway. How this signaling cascade is activated during infection remains poorly understood. In the soil-borne vascular wilt fungus Fusarium oxysporum, the orthologous MAPK Fmk1 (Fusarium MAPK1) is essential for root penetration and pathogenicity in tomato (Solanum lycopersicum) plants. Here, we show that Msb2, a highly glycosylated transmembrane protein, is required for surface-induced phosphorylation of Fmk1 and contributes to a subset of Fmk1-regulated functions related to invasive growth and virulence. Mutants lacking Msb2 share characteristic phenotypes with the Δfmk1 mutant, including defects in cellophane invasion, penetration of the root surface, and induction of vascular wilt symptoms in tomato plants. In contrast with Δfmk1, Δmsb2 mutants were hypersensitive to cell wall targeting compounds, a phenotype that was exacerbated in a Δmsb2 Δfmk1 double mutant. These results suggest that the membrane mucin Msb2 promotes invasive growth and plant infection upstream of Fmk1 while contributing to cell integrity through a distinct pathway. PMID:21441438

  8. Draft Genome Sequence of an Isolate of Fusarium oxysporum f. sp. melongenae, the Causal Agent of Fusarium Wilt of Eggplant

    Science.gov (United States)

    Hsiang, Tom; Luo, Mei

    2017-01-01

    ABSTRACT Here, we present the genome sequence of an isolate (14004) of Fusarium oxysporum f. sp. melongenae, an eggplant pathogen. The final assembly consists of 1,631 scaffolds with 53,986,354 bp (G+C content, 46.4%) and 16,485 predicted genes. PMID:28209821

  9. Specific PCR detection of Fusarium oxysporum f. sp. raphani: a causal agent of Fusarium wilt on radish plants.

    Science.gov (United States)

    Kim, H; Hwang, S-M; Lee, J H; Oh, M; Han, J W; Choi, G J

    2017-08-01

    Fusarium oxysporum, a causal agent of Fusarium wilt, is one of the most important fungal pathogens worldwide, and detection of F. oxysporum DNA at the forma specialis level is crucial for disease diagnosis and control. In this study, two novel F. oxysporum f. sp. raphani (For)-specific primer sets were designed, FOR1-F/FOR1-R and FOR2-F/FOR2-R, to target FOQG_17868 and FOQG_17869 ORFs, respectively, which were selected based on the genome comparison of other formae speciales of F. oxysporum including conglutinans, cubense, lycopersici, melonis, and pisi. The primer sets FOR1-F/FOR1-R and FOR2-F/FOR2-R that amplified a 610- and 425-bp DNA fragment, respectively, were specific to For isolates which was confirmed using a total of 40 F. oxysporum isolates. From infected plants, the FOR2-F/FOR2-R primer set directly detected the DNA fragment of For isolates even when the radish plants were collected in their early stage of disease development. Although the loci targeted by the For-specific primer sets were not likely involved in the pathogenesis, the primer set FOR2-F/FOR2-R is available for the determination of pathogenicity of radish-infecting F. oxysporum isolates. This study is the first report providing novel primer sets to detect F. oxysporum f. sp. raphani. Because plant pathogenic Fusarium oxysporum has been classified into special forms based on its host specificity, identification of F. oxysporum usually requires a pathogenicity assay as well as knowledge of the morphological characteristics. For rapid and reliable diagnosis, this study provides PCR primer sets that specifically detect Fusarium oxysporum f. sp. raphani (For) which is a devastating pathogen of radish plants. Because one of the primer sets directly detected the DNA fragment of For isolates from infected plants, the specific PCR method demonstrated in this study will provide a foundation for integrated disease management practices in commodity crops. © 2017 The Society for Applied Microbiology.

  10. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains

    Directory of Open Access Journals (Sweden)

    De Souza Gabriel IH

    2005-07-01

    Full Text Available Abstract Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver nanoparticles were in the range of 20–50 nm in dimensions. The reduction of the metal ions occurs by a nitrate-dependent reductase and a shuttle quinone extracellular process. The potentialities of this nanotechnological design based in fugal biosynthesis of nanoparticles for several technical applications are important, including their high potential as antibacterial material.

  11. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death.

    Science.gov (United States)

    Gawehns, F; Houterman, P M; Ichou, F Ait; Michielse, C B; Hijdra, M; Cornelissen, B J C; Rep, M; Takken, F L W

    2014-04-01

    Plant pathogens secrete effectors to manipulate their host and facilitate colonization. Fusarium oxysporum f. sp. lycopersici is the causal agent of Fusarium wilt disease in tomato. Upon infection, F. oxysporum f. sp. lycopersici secretes numerous small proteins into the xylem sap (Six proteins). Most Six proteins are unique to F. oxysporum, but Six6 is an exception; a homolog is also present in two Colletotrichum spp. SIX6 expression was found to require living host cells and a knockout of SIX6 in F. oxysporum f. sp. lycopersici compromised virulence, classifying it as a genuine effector. Heterologous expression of SIX6 did not affect growth of Agrobacterium tumefaciens in Nicotiana benthamiana leaves or susceptibility of Arabidopsis thaliana toward Verticillium dahliae, Pseudomonas syringae, or F. oxysporum, suggesting a specific function for F. oxysporum f. sp. lycopersici Six6 in the F. oxysporum f. sp. lycopersici- tomato pathosystem. Remarkably, Six6 was found to specifically suppress I-2-mediated cell death (I2CD) upon transient expression in N. benthamiana, whereas it did not compromise the activity of other cell-death-inducing genes. Still, this I2CD suppressing activity of Six6 does not allow the fungus to overcome I-2 resistance in tomato, suggesting that I-2-mediated resistance is independent from cell death.

  12. Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana.

    Science.gov (United States)

    Swarupa, V; Ravishankar, K V; Rekha, A

    2014-04-01

    Soil-borne fungal pathogen, Fusarium oxysporum causes major economic losses by inducing necrosis and wilting symptoms in many crop plants. Management of fusarium wilt is achieved mainly by the use of chemical fungicides which affect the soil health and their efficiency is often limited by pathogenic variability. Hence understanding the nature of interaction between pathogen and host may help to select and improve better cultivars. Current research evidences highlight the role of oxidative burst and antioxidant enzymes indicating that ROS act as an important signaling molecule in banana defense response against Fusarium oxysporum f.sp. cubense. The role of jasmonic acid signaling in plant defense against necrotrophic pathogens is well recognized. But recent studies show that the role of salicylic acid is complex and ambiguous against necrotrophic pathogens like Fusarium oxysporum, leading to many intriguing questions about its relationship between other signaling compounds. In case of banana, a major challenge is to identify specific receptors for effector proteins like SIX proteins and also the components of various signal transduction pathways. Significant progress has been made to uncover the role of defense genes but is limited to only model plants such as Arabidopsis and tomato. Keeping this in view, we review the host response, pathogen diversity, current understanding of biochemical and molecular changes that occur during host and pathogen interaction. Developing resistant cultivars through mutation, breeding, transgenic and cisgenic approaches have been discussed. This would help us to understand host defenses against Fusarium oxysporum and to formulate strategies to develop tolerant cultivars.

  13. In vitro study of the growth, development and pathogenicity responses of Fusarium oxysporum to phthalic acid, an autotoxin from Lanzhou lily.

    Science.gov (United States)

    Wu, Zhijiang; Yang, Liu; Wang, Ruoyu; Zhang, Yubao; Shang, Qianhan; Wang, Le; Ren, Qin; Xie, Zhongkui

    2015-08-01

    Continuous monoculture of Lanzhou lily (Lilium davidii var. unicolor Cotton) results in frequent incidence of fusarium wilt caused by Fusarium oxysporum. Phthalic acid (PA), a principal autotoxin from root exudates of Lanzhou lily, is involved in soil sickness by inducing autotoxicity. The aim of this study was to evaluate the direct allelopathic effects of PA on the growth, development and pathogenicity of F. oxysporum in vitro based on an ecologically relevant soil concentration. The results showed that PA slightly but not significantly inhibited the colony growth (mycelial growth) and fungal biomass of F. oxysporum at low concentrations ranging from 0.05 to 0.5 mM, and significantly inhibited the colony growth at the highest concentration (1 mM). None of the PA concentrations tested significantly inhibited the conidial germination and sporulation of F. oxysporum in liquid medium. However, mycotoxin (fusaric acid) yield and pathogenesis-related hydrolytic enzyme (protease, pectinase, cellulase, and amylase) activities were significantly stimulated in liquid cultures of F. oxysporum containing PA at ≥ 0.25 mM. We conclude that PA at a soil level (i.e. 0.25 mM) is involved in plant-pathogen allelopathy as a stimulator of mycotoxin production and hydrolytic enzyme activities in F. oxysporum, which is possibly one of the mechanisms responsible for promoting the wilt disease of lily.

  14. Biological Control of Fusarium oxysporum f.sp. cumini with Aspergillus versicolor

    Directory of Open Access Journals (Sweden)

    S. Israel

    2005-04-01

    Full Text Available A native heat-tolerant strain of Aspergillus versicolor (Vuill. Tirab. highly antagonistic to Fusarium oxysporum f. sp. cumini (Foc was isolated from arid soils. In tests performed to ascertain its antagonistic activity against Foc as compared to Trichoderma harzianum, a 99.2 and 96.4% reduction in Foc propagules was achieved in A. versicolor and T. harzianum infested soil respectively. The reduction of Foc propagules in Foc and A. versicolorinfested soil was also determined. In a liquid-culture test, even at a low concentration of 0.5 ml cell-free filtrate, A. versicolor inhibited mycelial growth of Foc. Population changes of A. versicolor were examined at different soil moisture gradients, where maximum survival and multiplication of A. versicolor was estimated at 50% of moisture holding capacity. In general, with increasing concentrations of A. versicolor inoculum, soil population densities of Foc went down. Studies on thermal resistance showed that A. versicolor survived and multiplied even at 65°C. Soil amended with A. versicolor alone, or with a combination of T. harzianum and Verbisina enceloides residues was significantly better at reducing Foc than was non-amended control soil. A marked increase in the root length of cumin was observed in soil amended with A. versicolor or T. harzianum or both. The results suggest that A. versicolor has a potential value for use against Fusarium in hot arid soils because it can survive under dry and high-temperature conditions.

  15. Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation.

    Science.gov (United States)

    Nam, Myeong Hyeon; Park, Myung Soo; Kim, Hong Gi; Yoo, Sung Joon

    2009-05-01

    Two isolates, Bacillus sp. BS87 and RK1, selected from soil in strawberry fields in Korea, showed high levels of antagonism towards Fusarium oxysporum f. sp. fragariae in vitro. The isolates were identified as B. velezensis based on the homology of their gyrA sequences to reference strains. BS87 and RK1 were evaluated for control of Fusarium wilt in strawberries in pot trials and field trials conducted in Nonsan, Korea. In the pot trials, the optimum applied concentration of BS87 and RK1 for pre-plant root-dip application to control Fusarium wilt was 10(5) and 10(6) colony-forming units (CFU)/ml, respectively. Meanwhile, in the 2003 and 2005 field trials, the biological control efficacies of formulations of RK1 were similar to that of a conventional fungicide (copper hydroxide) when compared with a non-treated control. The RK1 formulation was also more effective than BS87 in suppressing Fusarium wilt under field conditions. Therefore, the results indicated that formulation of B.velezensis BS87 and RK1 may have potential to control Fusarium wilt in strawberries.

  16. Genome sequence of Fusarium oxysporum f. sp. melonis, a fungus causing wilt disease on melon

    Science.gov (United States)

    This manuscript reports the genome sequence of F. oxysporum f. sp. melonis, a fungal pathogen that causes Fusarium wilt disease on melon (Cucumis melo). The project is part of a large comparative study designed to explore the genetic composition and evolutionary origin of this group of horizontally ...

  17. Response of AtNPR1-expressing cotton plants to Fusarium oxysporum f. sp. vasinfectum isolates

    Science.gov (United States)

    In our earlier investigation, we had demonstrated that transgenic cotton plants expressing AtNPR1 showed significant tolerance to Fusarium oxysporum f. sp. vasinfectum, isolate 11 (Fov11) and several other pathogens. The current study was designed to further characterize the nature of the protectio...

  18. The Concept of Ecthyma Gangrenosum Illustrated by a Fusarium oxysporum Infection in an Immunocompetent Individual.

    Science.gov (United States)

    Jiang, Yanping; Al-Hatmi, Abdullah M S; Xiang, Yining; Cao, Yu; van den Ende, Albert H G Gerrits; Curfs-Breuker, Ilse; Meis, Jacques F; Lu, Hongguang; de Hoog, G Sybren

    2016-10-01

    Ecthyma gangrenosum (EG) involves necrotic cutaneous lesions caused by bacteria, mainly Pseudomonas aeruginosa, and is usually seen in immunocompromised patients with septicemia. However, clinically similar infections have been published with fungi as etiologic agents. We present a case of an EG-like lesion due to Fusarium oxysporum confirmed by clinical diagnosis, culture and molecular identification and discuss the definition of EG.

  19. Molecular markers for improving control of soil-borne pathogen Fusarium oxysporum in sugar beet

    Science.gov (United States)

    Fusarium oxysporum f. sp. betae (FOB) is an important pathogen of sugar beet worldwide causing leaf yellowing and vascular discoloration. The use of tolerant varieties is one of the most effective methods for managing this disease. In this study, a large germplasm collection,comprised of 29 sugar be...

  20. NADPH-dependent D-aldose reductases and xylose fermentation in Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Christakopoulos, P.

    2004-01-01

    Two aldose (xylose) reductases (ARI and ARII) from Fusarium oxysporum were purified and characterized. The native ARI was a monomer with M-r 41000, pI 5.2 and showed a 52-fold preference for NADPH over NADH, while ARII was homodimeric with a subunit of M-r 37000, pI 3.6 and a 60-fold preference...

  1. Aspects of resistance of flax and linseed (Linum usitatissimum) to Fusarium oxysporum f.sp. lini.

    NARCIS (Netherlands)

    Kroes, G.M.L.W.

    1997-01-01

    In the thesis aspects have been described of the flax and linseed interaction to Fusarium oxysporum f.sp. lini, the causal agent of flax wilt. Two in vitro tests were established to screen for resistance, to investigate race specificity and to study infection and colonization patterns in a resistant

  2. Determination of resistance to Fusarium oxysporum f. sp. lycopersici via molecular markers in tomato lines

    Directory of Open Access Journals (Sweden)

    Hasan PINAR

    2013-06-01

    Full Text Available Fusarium oxysporum f. sp. lycopersici (FOL is common in tomato production areas where intensive production causes huge losses. Other plant species as well as biological and chemical control is insufficient to fight with the disease. The most effective solution to this problem is the use of resistant varieties. Fusarium oxysporum f. sp. lycopersici resistance has been transferred to most of the commercial varieties via classical and molecular marker-assisted selection (MAS. The use of molecular markers in the development of new varieties resistant to this disease, but not allelic race-specific resistance genes allows pyramiding to these genes at one cultivar. Markers which linked to resistance genes for FOL races (0, 1, 2 were improved and routinely used in tomato breeding programs. In this study, 450 pure tomato lines from the gene pool of tomato to the fore in terms of yield and some quality characteristics in Alata Horticultural Research Station Directorate were screened for Fusarium oxysporum f. sp. lycopersici (FOL resistance via developed SCAR and CAPS markers linked to I-1 and I-2. The 88 tomato lines had I-1 gene and 74 of tomato lines yielded band of homozygote resistance allele for I-2. Obtained results in this study show that developed molecular markers for Fusarium oxysporum f. sp. resistance can use easily for the developing of new cultivars.

  3. Investigation of Genetic Diversity of Fusarium oxysporum f. sp. fragariae Using PCR-RFLP

    Science.gov (United States)

    Kim, Ji-Su; Kang, Nam Jun; Kwak, Youn-Sig; Lee, Choungkeun

    2017-01-01

    Fusarium wilts of strawberry, caused by Fusarium oxysporum f. sp. fragariae, is a serious soil-borne disease. Fusarium wilt causes dramatic yield losses in commercial strawberry production and it is a very stubborn disease to control. Reliable chemical control of strawberry Fusarium wilt disease is not yet available. Moreover, other well-known F. oxysporum have different genetic information from F. oxysporum f. sp. fragariae. This analysis investigates the genetic diversity of strawberry Fusairum wilt pathogen. In total, 110 pathogens were isolated from three major strawberry production regions, namely Sukok, Hadong, Sancheong in Gyeongnam province in South Korea. The isolates were confirmed using F. oxysporum f. sp. fragariae species-specific primer sets. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analyses were executed using the internal transcribed spacer, intergenic spacer, translation elongation factor1-α, and β-tubulin genes of the pathogens and four restriction enzymes: AluI, HhaI, HinP1I and HpyCH4V. Regarding results, there were diverse patterns in the three gene regions except for the β-tubulin gene region. Correlation analysis of strawberry cultivation region, cultivation method, variety, and phenotype of isolated pathogen, confirmed that genetic diversity depended on the classification of the cultivated region. PMID:28381961

  4. Effects of Neodymium on Growth, Pectinase Activity and Mycelium Permeability of Fusarium oxysporum

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The diameter of the colony of Fusarium oxysporum in solid medium, and the mycelium growth, pectinase activity, and mycelium permeability of Fusarium oxysporum in liquid medium under varying concentrations of Nd3+ (0, 2, 4, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 300, and 400 mg·L-1) were measured. The results indicated that the growth of Fusarium oxysporum was stimulated in solid medium when the concentration of Nd3+ ranges from 2 to 180 mg·L-1, whereas it was inhibited when Nd3+ concentration was greater than 200 mg·L-1. The colonies were fewer and smaller when Nd3+ was used in the solid medium. The growth of Fusarium oxysporum was inhibited in liquid medium when Nd3+ was used. The inhibition rate showed by the dry weight of mycelium ranged from 4.83% to 52.18% and increased with Nd3+ concentration. The pectinase activity decreased compared with that of controls. When the concentration of Nd3+ was 10 and 400 mg·L-1, the pectinase activity decreased by 95% at both concentrations. Mycelium cell membrane permeability increased when Nd3+ concentrations ranged from 10 to 400 mg·L-1 but decreased when Nd3+ concentration was 2 mg·L-1.

  5. Detecting Fusarium oxysporum f. sp. cubense tropical race 4 in soil and symptomless banana tissues

    NARCIS (Netherlands)

    Dita Rodriguez, M.A.; Waalwijk, C.; Mutua, P.; Daly, A.; Chang, P.F.L.; Corcolon, B.M.; Paiva, L.; Souza, de M.; Kema, G.H.J.

    2013-01-01

    Tropical race 4 (TR4) of Fusarium oxysporum f. sp. cubense (Foc) is a quarantine pathogen in many banana-producing regions of the world. Preventing further dissemination and precluding incursions into areas where it has not been observed is critical for maintaining local and commercial banana produc

  6. Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L).

    Science.gov (United States)

    Osorio-Guarín, Jaime A; Enciso-Rodríguez, Felix E; González, Carolina; Fernández-Pozo, Noé; Mueller, Lukas A; Barrero, Luz Stella

    2016-03-18

    Vascular wilt caused by Fusarium oxysporum is the most important disease in cape gooseberry (Physalis peruviana L.) in Colombia. The development of resistant cultivars is considered one of the most cost-effective means to reduce the impact of this disease. In order to do so, it is necessary to provide breeders with molecular markers and promising germplasm for introgression of different resistance loci as part of breeding schemes. Here we described an association mapping study in cape gooseberry with the goal to: (i) select promising materials for use in plant breeding and (ii) identify SNPs associated with the cape gooseberry resistance response to the F. oxysporum pathogen under greenhouse conditions, as potential markers for cape gooseberry breeding. We found a total of 21 accessions with different resistance responses within a diversity panel of 100 cape gooseberry accessions. A total of 60,663 SNPs were also identified within the same panel by means of GBS (Genotyping By Sequencing). Model-based population structure and neighbor-joining analyses showed three populations comprising the cape gooseberry panel. After correction for population structure and kinship, we identified SNPs markers associated with the resistance response against F. oxysporum. The identification of markers was based on common tags using the reference genomes of tomato and potato as well as the root/stem transcriptome of cape gooseberry. By comparing their location with the tomato genome, 16 SNPs were found in genes involved in defense/resistance response to pathogens, likewise when compared with the genome of potato, 12 markers were related. The work presented herein provides the first association mapping study in cape gooseberry showing both the identification of promising accessions with resistance response phenotypes and the identification of a set of SNP markers mapped to defense/resistance response genes of reference genomes. Thus, the work also provides new knowledge on candidate

  7. FUNGICIDAL PROPERTIES OF ARTEMISIA AROMATIC PLANTS TOWARDS FUSARIUM OXYSPORUM

    Directory of Open Access Journals (Sweden)

    Ivashchenko Iryna Vіctorovna

    2015-08-01

    Full Text Available The article establishes the fungicidal activity of water extracts of Artemisia maritimа L., Artemisia austriaca Jacq., under the concentration of 100, 50 and 25 mg/ml on dry matter with regard to the phytopathogenic mushroom Fusarium oxysporum. It also shows the fungistatic influence of extract of Artemisia dracunculus L. under concentration 25 and 50 mg/ml, fungicidal – under 100 mg/ml. Concerning Artemisia abrotanum L., the slow growth of mushroom is observed under the concentration 25 mg/ml, fungicidal effect – under 50 and 100 mg/ml. The paper provides the information on the component composition of ethereal oil and phenolic compounds of Artemisia maritimа, Artemisia austriaca, Artemisia abrotanum, Artemisia dracunculus, cultivated in Zhytomyr Polissya. The chief ingredients of ethereal oil which is synthesized by the plant of Artemisia abrotanum are 1,8-cineole (30.44% and camphor (31.92%. A high 1,8-cineole and camphor content determines antimicrobial properties of the plants. Amount of phenolic compounds in the air-dry raw Artemisia abrotanum is 2.98 percent. By the method of highly efficient solution chromatography (HESChr in the grass of Artemisia abrotanum we have detected 23 phenolic compounds, of which we identified such flavonoids as rutin, luteolin-7-glycoside as well as caffeic, chlorogenic and isochlorogenic acids. The main compounds of ethereal oil of Artemisia austriaca are trans-verbenole (30.77 %, pinocarvone (10.77 % and sabinilacetate (18.16 %. In the grass of Artemisia austriaca we have detected 31 phenolic compounds, of which we identified such flavonoids as rutin, apigenin, quercetin-bioside and the following acids: caffeic, chlorogenic, and isochlorogenic. Amount of phenolic compounds in the air-dry raw Austrian wormwood is 27.25 mg / g (2.73 %. The main component of ethereal oil of Artemisia dracunculus is methyleugenol (94.65 %. We have discovered 31 phenolic compounds in the grass of linear-leaved wormwood

  8. Characterization of the gene encoding pisatin demethylase (FoPDA1) in Fusarium oxysporum.

    Science.gov (United States)

    Coleman, Jeffrey J; Wasmann, Catherine C; Usami, Toshiyuki; White, Gerard J; Temporini, Esteban D; McCluskey, Kevin; VanEtten, Hans D

    2011-12-01

    The pea pathogen Fusarium oxysporum f. sp. pisi is able to detoxify pisatin produced as a defense response by pea, and the gene encoding this detoxification mechanism, FoPDA1, was 82% identical to the cytochrome P450 pisatin demethylase PDA1 gene in Nectria haematococca. A survey of F. oxysporum f. sp. pisi isolates demonstrated that, as in N. haematococca, the PDA gene of F. oxysporum f. sp. pisi is generally located on a small chromosome. In N. haematococca, PDA1 is in a cluster of pea pathogenicity (PEP) genes. Homologs of these PEP genes also were found in the F. oxysporum f. sp. pisi isolates, and PEP1 and PEP5 were sometimes located on the same small chromosomes as the FoPDA1 homologs. Transforming FoPDA1 into a pda(?) F. oxysporum f. sp. lini isolate conferred pda activity and promoted pathogenicity on pea to some transformants. Different hybridization patterns of FoPDA1 were found in F. oxysporum f. sp. pisi but these did not correlate with the races of the fungus, suggesting that races within this forma specialis arose independently of FoPDA1. FoPDA1 also was present in the formae speciales lini, glycines, and dianthi of F. oxysporum but they had mutations resulting in nonfunctional proteins. However, an active FoPDA1 was present in F. oxysporum f. sp. phaseoli and it was virulent on pea. Despite their evolutionary distance, the amino acid sequences of FoPDA1 of F. oxysporum f. sp. pisi and F. oxysporum f. sp. phaseoli revealed only six amino acid differences, consistent with a horizontal gene transfer event accounting for the origin of these genes.

  9. Reação de linhagens de feijoeiro ao fungo Fusarium oxysporum f. sp. phaseoli em condições controladas Reaction of common bean lines to Fusarium oxysporum f. sp. phaseoli in controlled conditions

    Directory of Open Access Journals (Sweden)

    Mônica Juliani Zavaglia Pereira

    2011-10-01

    . sp. phaseoli and at the same time, to estimate the genetic and phenotypic parameters that could help in future programs of improvement for this character. Three hundred and sixty seven lines were evaluated in ten experiments. The controls' Carioca'(susceptible and 'Carioca MG'(resistant were used in all experiments. The experimental design used was a entirely randomized one, with five replicates and plots of one plant per pot. The inoculations were carried out following the method of cutting and dumping of roots in the suspension of spores of the fungus and the assessments conducted at 21 days after inoculation based on the index of severity of the disease employing up notes of 1 (plants without symptoms to 9 (dead plants. Among the lines of germoplasm bank of the Federal University of Lavras (UFLA assessed, 36.5% were resistant to Fusarium oxysporum f. sp. phaseoli. Among the resistance, most of the lines were obtained before 1990: out of the 18 lines of the experiments of VCU evaluated in 2005/06, only four were susceptible. The estimate of heritability (h² was high (h² = 87%, indicating that, in principle, the character is of easy selection.

  10. Antifungal activity of (KW)n or (RW)n peptide against Fusarium solani and Fusarium oxysporum.

    Science.gov (United States)

    Gopal, Ramamourthy; Na, Hyungjong; Seo, Chang Ho; Park, Yoonkyung

    2012-11-15

    The presence of lysine (Lys) or arginine (Arg) and tryptophan (Trp) are important for the antimicrobial effects of cationic peptides. Therefore, we designed and synthesized a series of antimicrobial peptides with various numbers of Lys (or Arg) and Trp repeats [(KW and RW)(n)-NH(2), where n equals 2, 3, 4, or 5]. Antifungal activities of these peptides increased with chain length. Light microscopy demonstrated that longer peptides (n = 4, 5) strongly inhibited in vitro growth of Fusarium solani, and Fusarium oxysporum, at 4-32 μM. Furthermore, longer peptides displayed potent fungicidal activities against a variety of agronomical important filamentous fungi, including F. solani and F. oxysporum, at their minimal inhibitory concentrations (MICs). However, RW series peptides showed slightly higher fungicidal activities than KW peptides against the two strains. Taken together, the results of this study indicate that these short peptides would be good candidates for use as synthetic or transgenic antifungal agents.

  11. Fusarium Wilt of Banana Is Caused by Several Pathogens Referred to as Fusarium oxysporum f. sp. cubense.

    Science.gov (United States)

    Ploetz, Randy C

    2006-06-01

    ABSTRACT Fusarium wilt of banana (also known as Panama disease) is caused by Fusarium oxysporum f. sp. cubense. Where susceptible cultivars are grown, management is limited to the use of pathogen-free planting stock and clean soils. Resistant genotypes exist for some applications, but resistance is still needed in other situations. Progress has been made with this recalcitrant crop by traditional and nontraditional improvement programs. The disease was first reported in Australia in 1876, but did the greatest damage in export plantations in the western tropics before 1960. A new variant, tropical race 4, threatens the trades that are now based on Cavendish cultivars, and other locally important types such as the plantains. Phylogenetic studies indicate that F. oxysporum f. sp. cubense had several independent evolutionary origins. The significance of these results and the future impact of this disease are discussed.

  12. Microbiological Control of Soil-Borne Phytopathogenic Fungi with Special Emphasis on Wilt-Inducing Fusarium oxysporum

    National Research Council Canada - National Science Library

    Claude Alabouvette; Chantal Olivain; Quirico Migheli; Christian Steinberg

    2009-01-01

    .... In addition to Pseudomonas spp. and Trichoderma spp., which are the two most widely studied groups of biological control agents, the protective strains of Fusarium oxysporum represent an original model...

  13. Effet inhibiteur in vitro et in vivo du Trichoderma harzianum sur Fusarium oxysporum f. sp. Radicis-lycopersici

    OpenAIRE

    El Mahjoub M.; Khiareddine H.; Daami-Remadi M.; Hibar K.,

    2005-01-01

    In vitro and in vivo antagonistic effect of Trichoderma harzianum against Fusarium oxysporum f. sp. radicis-lycopersici. Tests of direct confrontation, on PDA medium or remote confrontation, between Fusarium oxysporum f. sp. radicislycopersici and Trichoderma harzianum, revealed that the latest has inhibited mycelial growth of the pathogen by more than 65% compared to the control and this after an incubation period of about four days at 25°C. Moreover, beyond this period and after six days, T...

  14. Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis.

    Science.gov (United States)

    Castillejo, María Ángeles; Bani, Moustafa; Rubiales, Diego

    2015-07-01

    Fusarium oxysporum f. sp. pisi (Fop) is an important and destructive pathogen affecting pea crop (Pisum sativum) throughout the world. Control of this disease is achieved mainly by integration of different disease management procedures. However, the constant evolution of the pathogen drives the necessity to broaden the molecular basis of resistance to Fop. Our proteomic study was performed on pea with the aim of identifying proteins involved in different resistance mechanisms operating during F. oxysporum infection. For such purpose, we used a two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MALDI-TOF/TOF) analysis to study the root proteome of three pea genotypes showing different resistance response to Fop race 2. Multivariate statistical analysis identified 132 differential protein spots under the experimental conditions (genotypes/treatments). All of these protein spots were subjected to mass spectrometry analysis to deduce their possible functions. A total of 53 proteins were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. The following main functional categories were assigned to the identified proteins: carbohydrate and energy metabolism, nucleotides and aminoacid metabolism, signal transduction and cellular process, folding and degradation, redox and homeostasis, defense, biosynthetic process and transcription/translation. Results obtained in this work suggest that the most susceptible genotypes have increased levels of enzymes involved in the production of reducing power which could then be used as cofactor for enzymes of the redox reactions. This is in concordance with the fact that a ROS burst occurred in the same genotypes, as well as an increase of PR proteins. Conversely, in the resistant genotype proteins responsible to induce changes in the membrane and cell wall composition related to reinforcement were identified. Results are discussed in terms of the differential response to Fop

  15. Changes in the proteome of xylem sap in Brassica oleracea in response to Fusarium oxysporum stress

    Directory of Open Access Journals (Sweden)

    Zijing ePu

    2016-02-01

    Full Text Available Fusarium oxysporum f. sp. conlutinans (Foc is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change >=2 fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and ten of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  16. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress

    Science.gov (United States)

    Pu, Zijing; Ino, Yoko; Kimura, Yayoi; Tago, Asumi; Shimizu, Motoki; Natsume, Satoshi; Sano, Yoshitaka; Fujimoto, Ryo; Kaneko, Kentaro; Shea, Daniel J.; Fukai, Eigo; Fuji, Shin-Ichi; Hirano, Hisashi; Okazaki, Keiichi

    2016-01-01

    Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions. PMID:26870056

  17. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress.

    Science.gov (United States)

    Pu, Zijing; Ino, Yoko; Kimura, Yayoi; Tago, Asumi; Shimizu, Motoki; Natsume, Satoshi; Sano, Yoshitaka; Fujimoto, Ryo; Kaneko, Kentaro; Shea, Daniel J; Fukai, Eigo; Fuji, Shin-Ichi; Hirano, Hisashi; Okazaki, Keiichi

    2016-01-01

    Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  18. Effector gene suites in some soil isolates of Fusarium oxysporum are not sufficient predictors of vascular wilt in tomato

    Science.gov (United States)

    This is the first study examining the distribution of fungal effector genes among soil populations of Fusarium oxysporum in a tomato field undergoing a wilt disease epidemic. 74 F. oxysporum soil isolates were assayed for known effector genes present in a Race 3 tomato wilt strain (FOL MN-25) obtain...

  19. Hyperkeratotic warty skin lesion of foot caused by Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Ravinder Kaur

    2013-01-01

    Full Text Available Fusarium species are common soil-inhabiting organisms and plant pathogens. Human infections are usually precipitated by local or systemic predisposing factors, and disseminated infection is associated with impaired immune responses. Skin infections caused by Fusarium spp. include keratitis, onychomycosis, mycetoma, painful discrete erythematous nodules. Hyperkeratotic skin lesions caused by Fusarium spp. are, however, rarely reported. We report a case of hyperkeratotic verrucous warty skin lesion in the foot of a 50-year-old immunocompetent male, farmer by occupation.

  20. Vinegar residue compost as a growth substrate enhances cucumber resistance against the Fusarium wilt pathogen Fusarium oxysporum by regulating physiological and biochemical responses.

    Science.gov (United States)

    Shi, Lu; Du, Nanshan; Yuan, Yinghui; Shu, Sheng; Sun, Jin; Guo, Shirong

    2016-09-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cucumerinum (FOC) is the most severe soil-borne disease attacking cucumber. To assess the positive effects of vinegar residue substrate (VRS) on the growth and incidence of Fusarium wilt on cucumber, we determined the cucumber growth parameters, disease severity, defense-related enzyme and pathogenesis-related (PR) protein activities, and stress-related gene expression levels. In in vitro and pot experiments, we demonstrated the following results: (i) the VRS extract exhibited a higher biocontrol activity than that of peat against FOC, and significantly improved the growth inhibition of FOC, with values of 48.3 %; (ii) in response to a FOC challenge, antioxidant enzymes and the key enzymes of phenylpropanoid metabolic activities, as well as the PR protein activities in the roots of cucumber, were significantly increased. Moreover, the activities of these proteins were higher in VRS than in peat; (iii) the expression levels of stress-related genes (including glu, pal, and ethylene receptor) elicited responses to the pathogens inoculated in cucumber leaves; and (iv) the FOC treatment significantly inhibited the growth of cucumber seedlings. Moreover, all of the growth indices of plants grown in VRS were significantly higher than those grown in peat. These results offer a new strategy to control cucumber Fusarium wilt, by upregulating the activity levels of defense-related enzymes and PR proteins and adjusting gene expression levels. They also provide a theoretical basis for VRS applications.

  1. Effect of Rhizobium Isolates on Isoflavonoid Levels in Chickpea Plants Infected with Fusarium oxysporum f.sp. ciceris

    Directory of Open Access Journals (Sweden)

    A. Arfaoui

    2006-04-01

    Full Text Available The aim of the present studies was to determine the effect of two biocontrol agents, belonging to the genus Rhizobium, PchDMS and Pch43, on the accumulation of soluble phenolic compounds, and particularly constitutive isoflavonoids, in chickpea roots infected with Fusarium oxysporum f. sp. ciceris (Foc, the causal agent of Fusarium wilt of chickpea. Pretreatment of roots with the bacterial isolates before challenge with Foc significantly increased levels of soluble phenolic compounds in both the susceptible ILC482 and the moderately resistant INRAT87/ 1 chickpea cultivars. High performance liquid chromatography analysis revealed the isoflavones biochanin A and formononetin in the chickpea roots, in both the free and the glycosidically bound forms. Bacterization of the roots with Rhizobium isolates before challenge with Foc increased levels of these isoflavones in plant roots. The antifungal activity of crude phenolics extracted from the chickpea roots was tested in vitro on PDA amended with various concentrations of these extracts and inoculated with Foc. Crude phenolics significantly reduced fungal growth and caused considerable morphological changes in the mycelium, including marked cellular disorganization.

  2. Pseudomonas aeruginosa (GRC1) as a strong antagonist of Macrophomina phaseolina and Fusarium oxysporum.

    Science.gov (United States)

    Gupta, C P; Sharma, A; Dubey, R C; Maheshwari, D K

    1999-01-01

    A plant growth promotory bacterial strain, isolated from the potato rhizosphere, was characterized as Pseudomonas aeruginosa (GRC1). The isolate produced an hydroxamate type of siderophore after 48 h of incubation on tryptic soy medium under iron deficient conditions. The in vitro antifungal activity of P. aeruginosa was tested against two soil-borne plant pathogens, Macrophomina phaseolina and Fusarium oxysporum. The antagonistic behaviour of the isolate was tested by dual culture technique. The growth inhibition of M. phaseolina and F. oxysporum was 74.1% and 70.5%, respectively, after 5 days of incubation. The production of hydrocyanic acid and indole acetic acid was also recorded under normal growth conditions.

  3. Comparison of transcriptome profiles by Fusarium oxysporum inoculation between Fusarium yellows resistant and susceptible lines in Brassica rapa L.

    Science.gov (United States)

    Miyaji, Naomi; Shimizu, Motoki; Miyazaki, Junji; Osabe, Kenji; Sato, Maho; Ebe, Yusuke; Takada, Satoko; Kaji, Makoto; Dennis, Elizabeth S; Fujimoto, Ryo; Okazaki, Keiichi

    2017-08-17

    Resistant and susceptible lines in Brassica rapa have different immune responses against Fusarium oxysporum inoculation. Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans (Foc) is an important disease of Brassicaceae; however, the mechanism of how host plants respond to Foc is still unknown. By comparing with and without Foc inoculation in both resistant and susceptible lines of Chinese cabbage (Brassica rapa var. pekinensis), we identified differentially expressed genes (DEGs) between the bulked inoculated (6, 12, 24, and 72 h after inoculation (HAI)) and non-inoculated samples. Most of the DEGs were up-regulated by Foc inoculation. Quantitative real-time RT-PCR showed that most up-regulated genes increased their expression levels from 24 HAI. An independent transcriptome analysis at 24 and 72 HAI was performed in resistant and susceptible lines. GO analysis using up-regulated genes at 24 HAI indicated that Foc inoculation activated systemic acquired resistance (SAR) in resistant lines and tryptophan biosynthetic process and responses to chitin and ethylene in susceptible lines. By contrast, GO analysis using up-regulated genes at 72 HAI showed the overrepresentation of some categories for the defense response in susceptible lines but not in the resistant lines. We also compared DEGs between B. rapa and Arabidopsis thaliana after F. oxysporum inoculation at the same time point, and identified genes related to defense response that were up-regulated in the resistant lines of Chinese cabbage and A. thaliana. Particular genes that changed expression levels overlapped between the two species, suggesting that they are candidates for genes involved in the resistance mechanisms against F. oxysporum.

  4. Effet des extraits de compost sur la croissance mycélienne et l'agressivité du Fusarium oxysporum f. sp. radicis-lycopersici

    Directory of Open Access Journals (Sweden)

    El Mahjoub M.

    2006-01-01

    Full Text Available Effect of compost tea on mycelial growth and disease severity of Fusarium oxysporum f. sp. radicis-lycopersici. Simultaneous addition, on culture media, of Fusarium oxysporum f. sp. radicis-lycopersici and compost teas revealed that the latest induced the inhibition of the mycelial growth of the pathogen. This inhibition, noted after an incubation period of about six days at 25°C, was more important when compost teas were enriched in PDB (Potato Dextrose Broth, where it may reach 70% compared to the control. Transplantation of tomato seedlings, previously inoculated by a conidial suspension of F. oxysporum f. sp. radicis-lycopersici, in a container media (peat, perlite or the mixture of the two substrates treated by compost teas has signifi cantly reduced Fusarium crown and root rot incidence compared to inoculated and untreated control seedlings. Disease incidence is more reduced when tomato inoculated plants are transplanted in peat treated by compost teas; indeed, these plants donʼt show any wilting and present a vigorous root system and a better vegetative growth.

  5. Molecular identification of two vegetative compatibility groups of Fusarium oxysporum f. sp. cepae.

    Science.gov (United States)

    Southwood, Michael J; Viljoen, Altus; Mostert, Glaudina; McLeod, Adéle

    2012-02-01

    Fusarium oxysporum f. sp. cepae, which causes basal rot of onion, consists of seven vegetative compatibility groups (VCGs 0420 to 0426) and several single-member VCGs (SMVs). F. oxysporum f. sp. cepae populations in South Africa and Colorado each consist of one main VCG (namely, VCG 0425 and 0421, respectively). The aim of this study was to develop sequence-characterized amplified region (SCAR) markers for the identification of VCGs 0425 and 0421, using 79 previously characterized F. oxysporum isolates. A second aim was to investigate the prevalence of VCG 0425 among 88 uncharacterized South African onion F. oxysporum isolates using (i) the developed SCAR markers and (ii) inter-retrotransposon (IR)- and random amplified polymorphic DNA (RAPD) fingerprinting. Only two RAPD primers provided informative fingerprints for VCG 0425 isolates but these could not be developed into SCAR markers, although they provided diagnostic fragments for differentiation of VCG 0425 from VCG 0421. IR fingerprinting data were used to develop a multiplex IR-SCAR polymerase chain reaction method for the identification of VCG 0421, VCG 0425, and SMV 4 isolates as a group. Molecular identification of the uncharacterized collection of 88 F. oxysporum isolates (65 F. oxysporum f. sp. cepae and 23 F. oxysporum isolates nonpathogenic to onion) confirmed that VCG 0425 is the main VCG in South Africa, with all but 3 of the 65 F. oxysporum f. sp. cepae isolates having the molecular characteristics of this VCG. Genotyping and VCG testing showed that two of the three aforementioned isolates were new SMVs (SMV 6 and SMV 7), whereas the third (previously known as SMV 3) now belongs to VGC 0247.

  6. New Lines of Chickpea Against Fusarium Oxysporum f. sp. Ciceris Wilt

    Directory of Open Access Journals (Sweden)

    Rosa M. Arvayo-Ortiz

    2012-01-01

    Full Text Available Problem statement: In Mexico, 70 and 20% of chickpea is produced in Sinaloa and Sonora, respectively. In Sonora wilting by Fusarium Oxysporum f. sp. Ciceris (FOC causes losses of up to 60%, while in other parts of the world ranged from 12-15% annually. The aim of this study was to evaluate the resistance of new lines of chickpea obtained through breeding programs against FOC wilt. Approach: In order to evaluate the resistance of new chickpea lines: Hoga-012, Hoga-490-2 and Hoga-508, including the two most important commercial cultivars in Mexico: Blanco Sinaloa-92 and Costa-2004 and as control two cultivars: JG-62 (susceptible and WR-315 (resistant, a pathogen city test was performed with races 0 and 5 of FOC. Plants were evaluated based on leaf and root damage during 50 days, using a hedonic scale of five levels (0-4. Results: New chickpea lines as well as commercial cultivars were susceptible to races 0 and 5 of FOC. Changes (PConclusion: New lines of chickpea and commercial cultivars did not show resistance to FOC races isolated in chickpea fields of Sonora. Thus, it should be continued in the search for resistant genotypes through breeding programs to assist in controlling the disease.

  7. Inoculation Methods and Conidial Densities of Fusarium oxysporum f.sp. cubense in Abaca

    Directory of Open Access Journals (Sweden)

    RULLY DYAH PURWATI

    2008-03-01

    Full Text Available Abaca (Musa textilis Nee is an important industrial crop. Its cultivation in Indonesia is, however, hampered by the wilt (Panama disease caused by Fusarium oxysporum f.sp. cubense (Foc infections. Developing Foc resistance abaca lines require availability of established and reliable screening methods for resistance against Foc. The objectives of this study were to evaluate the (i effectiveness of Foc inoculation methods, (ii extent of Foc conidial densities – for causing the wilt in abaca, and (iii responses of ten abaca cultivars against Foc infection. Results of this study showed that the method of inoculation by wounding abaca roots followed submerging the wounded plant in suspension of Foc conidia (106 conidia/ml for 2 hours before planting was the most effective method for causing the wilt. Among ten abaca cultivars tested, none was resistant to Foc infection. Based on the calculation of disease intensity, nine abaca cultivars were identified as very susceptible, where as one cultivar was susceptible to Foc infection.

  8. Engineering of the redox imbalance of Fusarium oxysporum enables anaerobic growth on xylose

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Christakopoulos, Paul; Grotkjær, Thomas

    2006-01-01

    Dissimilatory nitrate reduction metabolism, of the natural xylose-fermenting fungus Fusarium oxysporum, was used as a strategy to achieve anaerobic growth and ethanol production from xylose. Beneficial alterations of the redox fluxes and thereby of the xylose metabolism were obtained by taking...... of nitrate with ammonium limited the growth significantly (0.15 g L-1 biomass). Using nitrate, the maximum acetate yield was 0.21 moles per mole of xylose and no xylitol excretion was observed. Furthermore, the network structure in the central carbon metabolism of F. oxysporum was characterized in steady...... state. F. oxysporum grew anaerobically on [1-C-13] labelled glucose and unlabelled xylose in chemostat cultivation with nitrate as nitrogen source. The use of labelled substrate allowed the precise determination of the glucose and xylose contribution to the carbon fluxes in the central metabolism...

  9. Innovative Approach to the Accumulation of Rubrosterone by Fermentation of Asparagus filicinus with Fusarium oxysporum.

    Science.gov (United States)

    Li, Ying; Cai, Le; Dong, Jian-Wei; Xing, Yun; Duan, Wei-He; Zhou, Hao; Ding, Zhong-Tao

    2015-07-29

    Rubrosterone, possessing various remarkable bioactivities, is an insect-molting C19-steroid. However, only very small amounts are available for biological tests due to its limited content from plant sources. Fungi of genus Fusarium have been reported to have the ability to convert C27-steroids into C19-steroids. In this study, Asparagus filicinus, containing a high content of 20-hydroxyecdysone, was utilized to accumulate rubrosterone through solid fermentation by Fusarium oxysporum. The results showed that F. oxysporum had the ability to facilitate the complete biotransformation of 20-hydroxyecdysone to rubrosterone by solid-state fermentation. The present method could be an innovative and efficient approach to accumulate rubrosterone with an outstanding conversion ratio.

  10. Response of cattleya hybrids for Fusarium oxysporum f. sp. cattleyae Foster

    Directory of Open Access Journals (Sweden)

    Cristiano Pedroso-de-Moraes

    2011-04-01

    Full Text Available The Cattleya genus has a great importance in the flower agro-business market. Fusarium wilts, caused by Fusarium oxysporum f. sp. cattleyae, is considered one of the main factors of decline and death of plants of this genus. Using seven hybrids (intra and intergenerics of Cattleya, tests of resistance and susceptibility to F. oxysporum were performed in conditions of greenhouse for 12 months, using, as evaluation criterion, a scale of the disease severity ranging from one (resistant to eight (highly susceptible. High susceptibility to the fungus by Cattleya Nobile's Wax Toy, Cattleya Orquidacea's Mister Fast intrageneric hybrids and Potinara Orquidacea's Havana Brown intergeneric hybrid, related to Brassocattleya Orquidacea's Melody intergeneric hybrid, high resistance to the pathogens was observed.

  11. Bioautographic test of Punica granatum extracts on Fusarium oxysporum.f .sp.albidinis

    Directory of Open Access Journals (Sweden)

    LAOUFI A

    2015-11-01

    Full Text Available Fusarium oxysporum f. sp. albidinis, is among the most aggressive soil fungi causing wilt and rot of date palm. Bayoud disease, caused by Fusarium oxysporum f. sp. albidinis (Foa, is a major limiting factor of the date palm cultivation. In order to look for other alternatives to fight against this fungus, in this work we study the antifungal potency of substances extracted from the peel of Punica granatum . The analysis by the method of direct bioautography allows the detection of 17 bioactive substances, Three are indicated in the ethyl acetate extract, two on the level of hexane extract, two in the extract of dichlorométhane, one in the butanol extract and nine on the level of the chloroformic extract. Key Words: sp. Albidinis,

  12. Identification of resistance to fusarium oxysporum f. sp. niveum Race 2 in citrullus lanatus var. citroides plant introductions

    Science.gov (United States)

    Fusarium wilt is a major disease of watermelon in North America and around the world. Control of this disease is difficult, because the soil-borne causal agent Fusarium oxysporum f. sp. niveum (Fon), produces resilient spores that remain infectious for many years. Although various levels of resist...

  13. Virulence and secondary metabolite profiles of vascular competent and vascular incompetent pathotypes of Fusarium oxysporum f. sp. vasinfectum

    Science.gov (United States)

    Fusarium wilt of cotton, caused by Fusarium oxysporum f. sp. vasinfectum (Fov), occurs in most cotton growing areas of the world. Pathotypes of Fov have been categorized into eight races based on virulence to different hosts. However, lack of reciprocal resistance reactions among cotton cultivars t...

  14. Resistance to Fusarium oxysporum f. sp. gladioli in transgenic Gladiolus plants expressing either a bacterial chloroperoxidase or fungal chitinase genes

    Science.gov (United States)

    Three antifungal genes, a non-heme chloroperoxidase from Pseudomonas pyrrocinia, and an exochitinase and endochitinase from Fusarium venetanum under regulation by the CaMV 35S promoter, were used to transform Gladiolus for resistance to Fusarium oxysporum f. sp. gladioli. Gladiolus plants were conf...

  15. Development and evaluation of a TaqMan Real-Time PCR assay for Fusarium oxysporum f. sp. spinaciae

    Science.gov (United States)

    Fusarium oxysporum f. sp. spinaciae, causal agent of spinach Fusarium wilt, is an important soilborne pathogen in many areas of the world where spinach is grown. The pathogen is persistent in acid soils of maritime western Oregon and Washington, the only region of the USA suitable for commercial spi...

  16. Genetic Diversity of Fusarium oxysporum f. sp. dianthi in Southern Spain

    OpenAIRE

    2014-01-01

    The diversity of races and prevalence of pathogenic populations of Fusarium oxysporum f. sp. dianthi (Fod) were surveyed in an area in southern Spain. From 54 farms, 132 isolates were collected from wilted carnation plants. Isolates were characterized by RAPD-PCR, DNA sequence analysis of the TEF1-α gene, and race-specific molecular markers. Selected isolates from RAPD groups were phenotypically evaluated by pathogenicity tests. Data analysis showed that Fod race 2 was the most frequent and p...

  17. Inoculation Methods and Conidial Densities of Fusarium oxysporum f.sp. cubense in Abaca

    OpenAIRE

    RULLY DYAH PURWATI; NURUL HIDAYAH; SUDJINDRO; SUDARSONO

    2008-01-01

    Abaca (Musa textilis Nee) is an important industrial crop. Its cultivation in Indonesia is, however, hampered by the wilt (Panama disease) caused by Fusarium oxysporum f.sp. cubense (Foc) infections. Developing Foc resistance abaca lines require availability of established and reliable screening methods for resistance against Foc. The objectives of this study were to evaluate the (i) effectiveness of Foc inoculation methods, (ii) extent of Foc conidial densities – for causing the wilt in abac...

  18. Assessment of compost for suppression of Fusarium oxysporum and ...

    African Journals Online (AJOL)

    user

    2012-08-28

    Aug 28, 2012 ... disease suppression in compost-amended soil was associated with the reduction in soil pathogen ... aspects include nutrient levels, organic matter, moisture,. pH, and ..... caused by several plant pathogens such as Fusarium.

  19. Races of the Celery Pathogen Fusarium oxysporum f. sp. apii Are Polyphyletic.

    Science.gov (United States)

    Epstein, Lynn; Kaur, Sukhwinder; Chang, Peter L; Carrasquilla-Garcia, Noelia; Lyu, Guiyun; Cook, Douglas R; Subbarao, Krishna V; O'Donnell, Kerry

    2017-04-01

    Fusarium oxysporum species complex (FOSC) isolates were obtained from celery with symptoms of Fusarium yellows between 1993 and 2013 primarily in California. Virulence tests and a two-gene dataset from 174 isolates indicated that virulent isolates collected before 2013 were a highly clonal population of F. oxysporum f. sp. apii race 2. In 2013, new highly virulent clonal isolates, designated race 4, were discovered in production fields in Camarillo, California. Long-read Illumina data were used to analyze 16 isolates: six race 2, one of each from races 1, 3, and 4, and seven genetically diverse FOSC that were isolated from symptomatic celery but are nonpathogenic on this host. Analyses of a 10-gene dataset comprising 38 kb indicated that F. oxysporum f. sp. apii is polyphyletic; race 2 is nested within clade 3, whereas the evolutionary origins of races 1, 3, and 4 are within clade 2. Based on 6,898 single nucleotide polymorphisms from the core FOSC genome, race 3 and the new highly virulent race 4 are highly similar with Nei's Da = 0.0019, suggesting that F. oxysporum f. sp. apii race 4 evolved from race 3. Next generation sequences were used to develop PCR primers that allow rapid diagnosis of races 2 and 4 in planta.

  20. Trichoderma harzianum containing 1-aminocyclopropane-1-carboxylate deaminase and chitinase improved growth and diminished adverse effect caused by Fusarium oxysporum in soybean.

    Science.gov (United States)

    Zhang, Fuli; Chen, Can; Zhang, Fan; Gao, Lidong; Liu, Jidong; Chen, Long; Fan, Xiaoning; Liu, Chang; Zhang, Ke; He, Yuting; Chen, Chen; Ji, Xiue

    2017-03-01

    An isolate, named Trichoderma harzianum T-soybean, showed growth-promoting for soybean seedlings and induced resistance to Fusarium oxysporum under greenhouse. Compared to control soybean seedlings, fresh weight, dry weight, lateral root number, chlorophyll content, root activity and soluble protein of plants pretreated with T-soybean increased, but initial pod height reduced. Furthermore, we found that T-soybean inhibited the growth of F. oxysporum by parasitic function. In addition, plate test results showed that culture filtrates of T-soybean also inhibited significantly F. oxysporum growth. Meanwhile, T-soybean treatment obviously reduced disease severity and induced quickly the H2O2 and O2(-) burst as well as pathogenesis related protein gene (PR3) expression after F. oxysporum inoculation, and subsequently diminished the cell damage in soybean caused by the pathogen challenge. Reactive oxygen species (ROS) scavenging enzymes activity analysis showed that the activities of peroxidase (POD), polyphenol oxidase (PPO) and superoxide dismutase (SOD) increased significantly in T-soybean pretreated plants. These results suggested that T-soybean treatment induced resistance in soybean seedlings to F. oxysporum by companying the production of ROS and the increasing of ROS scavenging enzymes activity as well as PR3 expression. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Volatile Substances Produced by Fusarium oxysporum from Coffee Rhizosphere and Other Microbes affect Meloidogyne incognita and Arthrobotrys conoides.

    Science.gov (United States)

    Freire, E S; Campos, V P; Pinho, R S C; Oliveira, D F; Faria, M R; Pohlit, A M; Noberto, N P; Rezende, E L; Pfenning, L H; Silva, J R C

    2012-12-01

    Microorganisms produce volatile organic compounds (VOCs) which mediate interactions with other organisms and may be the basis for the development of new methods to control plant-parasitic nematodes that damage coffee plants. In the present work, 35 fungal isolates were isolated from coffee plant rhizosphere, Meloidogyne exigua eggs and egg masses. Most of the fungal isolates belonged to the genus Fusarium and presented in vitro antagonism classified as mutual exclusion and parasitism against the nematode-predator fungus Arthrobotrys conoides (isolated from coffee roots). These results and the stronger activity of VOCs against this fungus by 12 endophytic bacteria may account for the failure of A. conoides to reduce plant-parasitic nematodes in coffee fields. VOCs from 13 fungal isolates caused more than 40% immobility to Meloidogyne incognita second stage juveniles (J2), and those of three isolates (two Fusarium oxysporum isolates and an F. solani isolate) also led to 88-96% J2 mortality. M. incognita J2 infectivity decreased as a function of increased exposure time to F. oxysporum isolate 21 VOCs. Gas chromatography-mass spectrometry (GC-MS) analysis lead to the detection of 38 VOCs produced by F. oxysporum is. 21 culture. Only five were present in amounts above 1% of the total: dioctyl disulfide (it may also be 2-propyldecan-1-ol or 1-(2-hydroxyethoxy) tridecane); caryophyllene; 4-methyl-2,6-di-tert-butylphenol; and acoradiene. One of them was not identified. Volatiles toxic to nematodes make a difference among interacting microorganisms in coffee rhizosphere defining an additional attribute of a biocontrol agent against plant-parasitic nematodes.

  2. The role of strigolactones during plant interactions with the pathogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Foo, Eloise; Blake, Sara N; Fisher, Brendan J; Smith, Jason A; Reid, James B

    2016-06-01

    Strigolactones (SLs) do not influence spore germination or hyphal growth of Fusarium oxysporum. Mutant studies revealed no role for SLs but a role for ethylene signalling in defence against this pathogen in pea. Strigolactones (SLs) play important roles both inside the plant as a hormone and outside the plant as a rhizosphere signal in interactions with mycorrhizal fungi and parasitic weeds. What is less well understood is any potential role SLs may play in interactions with disease causing microbes such as pathogenic fungi. In this paper we investigate the influence of SLs on the hemibiotrophic pathogen Fusarium oxysporum f.sp. pisi both directly via their effects on fungal growth and inside the plant through the use of a mutant deficient in SL. Given that various stereoisomers of synthetic and naturally occuring SLs can display different biological activities, we used (+)-GR24, (-)-GR24 and the naturally occurring SL, (+)-strigol, as well as a racemic mixture of 5-deoxystrigol. As a positive control, we examined the influence of a plant mutant with altered ethylene signalling, ein2, on disease development. We found no evidence that SLs influence spore germination or hyphal growth of Fusarium oxysporum and that, while ethylene signalling influences pea susceptibility to this pathogen, SLs do not.

  3. Expression and distribution of extensins and AGPs in susceptible and resistant banana cultivars in response to wounding and Fusarium oxysporum

    Science.gov (United States)

    Wu, Yunli; Fan, Wei; Li, Xiaoquan; Chen, Houbin; Takáč, Tomáš; Šamajová, Olga; Fabrice, Musana Rwalinda; Xie, Ling; Ma, Juan; Šamaj, Jozef; Xu, Chunxiang

    2017-01-01

    Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is soil-borne disease of banana (Musa spp.) causing significant economic losses. Extensins and arabinogalactan proteins (AGPs) are cell wall components important for pathogen defence. Their significance for Foc resistance in banana was not reported so far. In this study, two banana cultivars differing in Foc sensitivity were used to monitor the changes in transcript levels, abundance and distribution of extensins and AGPs after wounding and Foc inoculation. Extensins mainly appeared in the root cap and meristematic cells. AGPs recognized by JIM13, JIM8, PN16.4B4 and CCRC-M134 antibodies located in root hairs, xylem and root cap. Individual AGPs and extensins showed specific radial distribution in banana roots. At the transcript level, seven extensins and 23 AGPs were differentially expressed between two banana cultivars before and after treatments. Two extensins and five AGPs responded to the treatments at the protein level. Most extensins and AGPs were up-regulated by wounding and pathogen inoculation of intact plants but down-regulated by pathogen attack of wounded plants. Main components responsible for the resistance of banana were MaELP-2 and MaPELP-2. Our data revealed that AGPs and extensins represent dynamic cell wall components involved in wounding and Foc resistance. PMID:28218299

  4. Assessment of Production of Extracellular Enzymes by Trichoderma spp. For Control of Soybean Root Rot Pathogens (Fusarium oxysporum,Rhizoctonia solani)%木霉菌(胞外水解酶)拮抗大豆根腐病病原菌的机制研究

    Institute of Scientific and Technical Information of China (English)

    邵红涛; 许艳丽

    2006-01-01

    The role of extracellular enzymes by Trichoderma MM35 for control of soybean root rot pathogens(Fusarium oxysporum , Rhizoctonia solani) was assessed in vitro and in vivo. Detective levels of hydrolytic extracellular enzymes were recorded by Trichoderma MM35 using dried F. oxysporum mycelium as C-source in vitro or fresh F. oxysporum mycelium or fresh R.solani mycelium in vivo was found that there were significant increases in chitinase activities by Trichoderma MM35 in soil with inoculation of F. oxysporum. Soil infested with Trichoderma MM35 had significantly elevated chitinase and β-1,3-glueanase activities in presence of R. solani as compared to R. solani control.%通过室内试验与温室试验研究了具有生防能力的木霉菌株Trichoderma MM35所分泌的胞外水解酶在拮抗大豆根腐病病原菌(F.oxysporum、R.solani)中的作用.试验结果表明:以病原菌F.oxysporum烘干的菌丝体作唯一碳源,可以诱导Trichoderma MM35分泌几丁质酶、β-1,3-葡聚糖酶.β-1,3-葡聚糖酶高水平诱导表达在前,几丁质酶诱导表达在后.土壤中接种Trichoderma MM35、F.oxysporum和R.solani之后都能够检测到几丁质酶、β1,3-葡聚糖酶活性.向有病原菌F.oxysporum的土壤中接种Trichoderma MM35,土壤中几丁质酶活性能够显著升高.向有病原菌R.solani的土壤中接种Trichoderma MM35,土壤中的几丁质酶、β-1,3-葡聚糖酶活性都显著升高.

  5. Dispersal of Formulations of Fusarium oxysporum f. sp. erythroxyli and F. oxysporum f. sp. melonis by Ants.

    Science.gov (United States)

    Gracia-Garza, J A; Fravel, D R; Bailey, B A; Hebbar, P K

    1998-03-01

    ABSTRACT A natural epidemic of Fusarium wilt on coca (Erythroxylum coca) in Peru prompted the suggestion of possibly using the pathogen Fusarium oxysporum f. sp. erythroxyli as a mycoherbicide against this narcotic plant. During field trials conducted in Kauai, HI, to test the pathogenicity of the coca wilt pathogen, ants were observed removing formulations from test plots. While removal of formulations by ants was considered detrimental with respect to conducting field tests, ant removal was considered potentially beneficial in disseminating the mycoherbicide. Thus, research was initiated to assess the ability of formulation additives to alter the preference of ants for the formulated mycoherbicide. In Hawaii, preference of indigenous ants for removing formulations was tested using three different food bases (rice, rice plus canola oil, and wheat flour [gluten]). Similar tests were conducted at Beltsville, MD, using F. oxysporum f. sp. melonis, in which the formulation based on wheat flour was replaced by a formulation based on canola meal. Formulations based on wheat were preferred by ants in both locations; up to 90% of the wheat plus rice flour granules (C-6) and the wheat gluten plus kaolin granules (pesta) were removed within 24 h, while only 20% of those containing rice without oils were taken. However, when either canola, sunflower (Maryland only), or olive oil was added to the rice formulation, up to 90% of the granules were taken. The formulation based on canola meal was less attractive to ants, as only 65% of the granules were removed within a period of 24 h. Ants showed no preference with respect to presence or absence of fungal biomass. To alter the attractiveness of the C-6 formulation to ants, C-6 was amended with three natural products. Canna and tansy leaves were added to C-6 at a ratio of 1:5 (wt/wt), while chili powder was added at 1:25 or 1:2.5 (wt/wt). Canna, tansy, and the higher rate of chili powder significantly reduced the number of C-6

  6. Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana.

    Science.gov (United States)

    Zhu, Qian-Hao; Stephen, Stuart; Taylor, Jennifer; Helliwell, Chris A; Wang, Ming-Bo

    2014-01-01

    Short noncoding RNAs have been demonstrated to play important roles in regulation of gene expression and stress responses, but the repertoire and functions of long noncoding RNAs (lncRNAs) remain largely unexplored, particularly in plants. To explore the role of lncRNAs in disease resistance, we used a strand-specific RNA-sequencing approach to identify lncRNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. Antisense transcription was found in c. 20% of the annotated A. thaliana genes. Several noncoding natural antisense transcripts responsive to F. oxysporum infection were found in genes implicated in disease defense. While the majority of the novel transcriptionally active regions (TARs) were adjacent to annotated genes and could be an extension of the annotated transcripts, 159 novel intergenic TARs, including 20 F. oxysporum-responsive lncTARs, were identified. Ten F. oxysporum-induced lncTARs were functionally characterized using T-DNA insertion or RNA-interference knockdown lines, and five were demonstrated to be related to disease development. Promoter analysis suggests that some of the F. oxysporum-induced lncTARs are direct targets of transcription factor(s) responsive to pathogen attack. Our results demonstrated that strand-specific RNA sequencing is a powerful tool for uncovering hidden levels of transcriptome and that IncRNAs are important components of the antifungal networks in A. thaliana. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  7. Highly diverse endophytic and soil Fusarium oxysporum populations associated with field-grown tomato plants.

    Science.gov (United States)

    Demers, Jill E; Gugino, Beth K; Jiménez-Gasco, María Del Mar

    2015-01-01

    The diversity and genetic differentiation of populations of Fusarium oxysporum associated with tomato fields, both endophytes obtained from tomato plants and isolates obtained from soil surrounding the sampled plants, were investigated. A total of 609 isolates of F. oxysporum were obtained, 295 isolates from a total of 32 asymptomatic tomato plants in two fields and 314 isolates from eight soil cores sampled from the area surrounding the plants. Included in this total were 112 isolates from the stems of all 32 plants, a niche that has not been previously included in F. oxysporum population genetics studies. Isolates were characterized using the DNA sequence of the translation elongation factor 1α gene. A diverse population of 26 sequence types was found, although two sequence types represented nearly two-thirds of the isolates studied. The sequence types were placed in different phylogenetic clades within F. oxysporum, and endophytic isolates were not monophyletic. Multiple sequence types were found in all plants, with an average of 4.2 per plant. The population compositions differed between the two fields but not between soil samples within each field. A certain degree of differentiation was observed between populations associated with different tomato cultivars, suggesting that the host genotype may affect the composition of plant-associated F. oxysporum populations. No clear patterns of genetic differentiation were observed between endophyte populations and soil populations, suggesting a lack of specialization of endophytic isolates. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Morning glory systemically accumulates scopoletin and scopolin after interaction with Fusarium oxysporum.

    Science.gov (United States)

    Shimizu, Bun-ichi; Miyagawa, Hisashi; Ueno, Tamio; Sakata, Kanzo; Watanabe, Ken; Ogawa, Kei

    2005-01-01

    An isolate of non-pathogenic Fusarium, Fusarium oxysporum 101-2 (NPF), induces resistance in the cuttings of morning glory against Fusarium wilt caused by F. oxysporum f. sp. batatas O-17 (PF). The effect of NPF on phenylpropanoid metabolism in morning glory cuttings was studied. It was found that morning glory tissues responded to treatment with NPF bud-cell suspension (108 bud-cells/ml) with the activation of phenylalanine ammonia-lyase (PAL). PAL activity was induced faster and greater in the NPF-treated cuttings compared to cuttings of a distilled water control. High performance liquid chromatography analysis of the extract from tissues of morning glory cuttings after NPF treatment showed a quicker induction of scopoletin and scopolin synthesis than that seen in the control cuttings. PF also the induced synthesis of these compounds at 10(5) bud-cells/ml, but inhibited it at 10(8) bud-cells/ml. Possibly PF produced constituent(s) that elicited the inhibitory effect on induction of the resistance reaction. These compounds could potentially be useful as markers to detect early beginning interactions between Fusarium and morning glory tissues cuttings.

  9. The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum.

    Science.gov (United States)

    Niño-Sánchez, Jonathan; Casado-Del Castillo, Virginia; Tello, Vega; De Vega-Bartol, José J; Ramos, Brisa; Sukno, Serenella A; Díaz Mínguez, José María

    2016-09-01

    The FTF (Fusarium transcription factor) gene family comprises a single copy gene, FTF2, which is present in all the filamentous ascomycetes analysed, and several copies of a close relative, FTF1, which is exclusive to Fusarium oxysporum. An RNA-mediated gene silencing system was developed to target mRNA produced by all the FTF genes, and tested in two formae speciales: F. oxysporum f. sp. phaseoli (whose host is common bean) and F. oxysporum f. sp. lycopersici (whose host is tomato). Quantification of the mRNA levels showed knockdown of FTF1 and FTF2 in randomly isolated transformants of both formae speciales. The attenuation of FTF expression resulted in a marked reduction in virulence, a reduced expression of several SIX (Secreted In Xylem) genes, the best studied family of effectors in F. oxysporum, and lower levels of SGE1 (Six Gene Expression 1) mRNA, the presumptive regulator of SIX expression. Moreover, the knockdown mutants showed a pattern of colonization of the host plant similar to that displayed by strains devoid of FTF1 copies (weakly virulent strains). Gene knockout of FTF2 also resulted in a reduction in virulence, but to a lesser extent. These results demonstrate the role of the FTF gene expansion, mostly the FTF1 paralogues, as a regulator of virulence in F. oxysporum and suggest that the control of effector expression is the mechanism involved. © 2016 The Authors Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  10. Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35.

    Science.gov (United States)

    Minerdi, Daniela; Bossi, Simone; Gullino, Maria Lodovica; Garibaldi, Angelo

    2009-04-01

    Fusarium oxysporum MSA35 [wild-type (WT) strain] is an antagonistic Fusarium that lives in association with a consortium of bacteria belonging to the genera Serratia, Achromobacter, Bacillus and Stenotrophomonas in an Italian soil suppressive to Fusarium wilt. Typing experiments and virulence tests provided evidence that the F. oxysporum isolate when cured of the bacterial symbionts [the cured (CU) form], is pathogenic, causing wilt symptoms identical to those caused by F. oxysporum f. sp. lactucae. Here, we demonstrate that small volatile organic compounds (VOCs) emitted from the WT strain negatively influence the mycelial growth of different formae speciales of F. oxysporum. Furthermore, these VOCs repress gene expression of two putative virulence genes in F. oxysporum lactucae strain Fuslat10, a fungus against which the WT strain MSA 35 has antagonistic activity. The VOC profile of the WT and CU fungus shows different compositions. Sesquiterpenes, mainly caryophyllene, were present in the headspace only of WT MSA 35. No sesquiterpenes were found in the volatiles of ectosymbiotic Serratia sp. strain DM1 and Achromobacter sp. strain MM1. Bacterial volatiles had no effects on the growth of the different ff. spp. of F. oxysporum examined. Hyphae grownwithVOCfrom WT F. oxysporum f. sp. lactucae strain MSA 35 were hydrophobic whereas those grown without VOCs were not, suggesting a correlation between the presence of volatiles in the atmosphere and the phenotype of the mycelium. This is the first report of VOC production by antagonistic F. oxysporum MSA35 and their effects on pathogenic F. oxysporum. The results obtained in this work led us to propose a new potential direct long-distance mechanism for antagonism by F. oxysporum MSA 35 mediated by VOCs. Antagonism could be the consequence of both reduction of pathogen mycelial growth and inhibition of pathogen virulence gene expression.

  11. INOCULAÇÃO DE Fusarium oxysporum E Fusarium solani E NÍVEIS DE SOMBREAMENTO NA ERVA-MATE: INFLUÊNCIA NA SEVERIDADE DA PODRIDÃO-DE-RAÍZES

    Directory of Open Access Journals (Sweden)

    Igor Poletto

    2009-01-01

    Full Text Available Ilex paraguariensis A. St.-Hill is a broadly cultivated species in the South of Brazil. With the increasing planted area, mainly in the last decade, fitosanitary problems caused by pest and diseases have increased in this crop, and the root-rot is becoming one of the main problems. Among the pathogens, Fusarium oxysporum Schlecht. and Fusarium solani (Mart. Sacc are the main ones. These fungi provoke severe damages resulting in the destruction of the root system and, in the most serious cases, they cause the death of the plant. It is suspected that the incidence and severity of disease are influenced by cultivation of Ilex paraguariensis in different levels of shading or full sun. Therefore, experiments were conducted in the Forest Nursery area belonging to Forest Sciences Department/CCR/UFSM with the objective of confirming this assumption. The experiment was conducted in a factorial design (2 x 5, composed by Fusarium oxysporum and Fusarium solani inoculation and by shading levels. It was verified that the plants submitted to lower shading levels or full sun had their predisposed to the disease.

  12. Species-specific primers for Fusarium redolens and a PCR-RFLP technique to distinguish among three clades of Fusarium oxysporum.

    Science.gov (United States)

    Bogale, Mesfin; Wingfield, Brenda D; Wingfield, Michael J; Steenkamp, Emma T

    2007-06-01

    The currently available morphological and molecular diagnostic techniques for Fusarium redolens and the three phylogenetic clades of Fusarium oxysporum are problematic. Aligned translation elongation factor 1 alpha (TEF-1 alpha) gene sequences from these species and their close relatives were used to design F. redolens-specific primers, and to identify restriction sites that discriminate among the three clades of F. oxysporum. The F. redolens-specific primers distinguished this species from all others included in the study. There were three TEF-1 alpha-RFLP patterns among formae speciales of F. oxysporum. These PCR-RFLP patterns corresponded with the three clades. These techniques provide simple and inexpensive diagnostic methods for the identification of F. redolens and members of the three clades of F. oxysporum.

  13. Genetic Variation Among Vegetative Compatibility Groups of Fusarium oxysporum f. sp. cubense Analyzed by DNA Fingerprinting.

    Science.gov (United States)

    Bentley, S; Pegg, K G; Moore, N Y; Davis, R D; Buddenhagen, I W

    1998-12-01

    ABSTRACT Genetic variation within a worldwide collection of 208 isolates of Fu-sarium oxysporum f. sp. cubense, representing physiological races 1, 2, 3, and 4 and the 20 reported vegetative compatibility groups (VCGs), was analyzed using modified DNA amplification fingerprinting. Also characterized were 133 isolates that did not belong to any of the reported VCGs of F. oxysporum f. sp. cubense including race 3 isolates from a Heliconia species and isolates from a symptomatic wild banana species growing in the jungle in peninsular Malaysia. The DNA fingerprint patterns were generally VCG specific, irrespective of geographic or host origin. A total of 33 different genotypes were identified within F. oxysporum f. sp. cu-bense; 19 genotypes were distinguished among the isolates that belonged to the 20 reported VCGs, and 14 new genotypes were identified among the isolates that did not belong to any of the existing VCGs. DNA fingerprinting analysis also allowed differentiation of nine clonal lineages within F. oxysporum f. sp. cubense. Five of these lineages each contained numerous closely related VCGs and genotypes, and the remaining four lineages each contained a single genotype. The genetic diversity and geographic distribution of several of these lineages of F. oxysporum f. sp. cubense suggests that they have coevolved with edible bananas and their wild diploid progenitors in Asia. DNA fingerprinting analysis of isolates from the wild pathosystem provides further evidence for the coevolution hypothesis. The genetic isolation and limited geographic distribution of four of the lineages of F. oxysporum f. sp. cubense suggests that the pathogen has also arisen independently, both within and outside of the center of origin of the host.

  14. Transcriptome analysis of Pseudostellaria heterophylla in response to the infection of pathogenic Fusarium oxysporum.

    Science.gov (United States)

    Qin, Xianjin; Wu, Hongmiao; Chen, Jun; Wu, Linkun; Lin, Sheng; Khan, Muhammad Umar; Boorboori, Mohammad Reza; Lin, Wenxiong

    2017-09-18

    Pseudostellaria heterophylla (P. heterophylla), a herbaceous perennial, belongs to Caryophyllaceae family and is one of the Chinese herbal medicine with high pharmacodynamic value. It can be used to treat the spleen deficiency, anorexia, weakness after illness and spontaneous perspiration symptoms. Our previous study found that consecutive monoculture of Pseudostellaria heterophylla could lead to the deterioration of the rhizosphere microenvironment. The specialized forms of pathogenic fungus Fusarium oxysporum f.Sp. heterophylla (F. oxysporum) in rhizosphere soils of P. heterophylla plays an important role in the consecutive monoculture of P. heterophylla. In this study, F. oxysporum was used to infect the tissue culture plantlets of P. heterophylla to study the responding process at three different infection stages by using RNA-sequencing. We obtained 127,725 transcripts and 47,655 distinct unigenes by de novo assembly and obtained annotated information in details for 25,882 unigenes. The Kyoto Encyclopedia of Genes and Genomes pathway analysis and the real-time quantitative PCR results suggest that the calcium signal system and WRKY transcription factor in the plant-pathogen interaction pathway may play an important role in the response process, and all of the WRKY transcription factor genes were divided into three different types. Moreover, we also found that the stimulation of F. oxysporum may result in the accumulation of some phenolics in the plantlets and the programmed cell death of the plantlets. This study has partly revealed the possible molecular mechanism of the population explosion of F. oxysporum in rhizosphere soils and signal response process, which can be helpful in unraveling the role of F. oxysporum in consecutive monoculture problems of P. heterophylla.

  15. Morphological and molecular characterization of Fusarium. solani and F. oxysporum associated with crown disease of oil palm.

    Science.gov (United States)

    Hafizi, R; Salleh, B; Latiffah, Z

    2013-01-01

    Crown disease (CD) is infecting oil palm in the early stages of the crop development. Previous studies showed that Fusarium species were commonly associated with CD. However, the identity of the species has not been resolved. This study was carried out to identify and characterize through morphological approaches and to determine the genetic diversity of the Fusarium species. 51 isolates (39%) of Fusarium solani and 40 isolates (31%) of Fusarium oxysporum were recovered from oil palm with typical CD symptoms collected from nine states in Malaysia, together with samples from Padang and Medan, Indonesia. Based on morphological characteristics, isolates in both Fusarium species were classified into two distinct morphotypes; Morphotypes I and II. Molecular characterization based on IGS-RFLP analysis produced 27 haplotypes among the F. solani isolates and 33 haplotypes for F. oxysporum isolates, which indicated high levels of intraspecific variations. From UPGMA cluster analysis, the isolates in both Fusarium species were divided into two main clusters with the percentage of similarity from 87% to 100% for F. solani, and 89% to 100% for F. oxysporum isolates, which was in accordance with the Morphotypes I and II. The results of the present study indicated that F. solani and F. oxysporum associated with CD of oil palm in Malaysia and Indonesia were highly variable.

  16. Genetic mapping of resistance to Fusarium oxysporum f. sp. tulipae in tulip.

    Science.gov (United States)

    Tang, Nan; van der Lee, Theo; Shahin, Arwa; Holdinga, Maarten; Bijman, Paul; Caser, Matteo; Visser, Richard G F; van Tuyl, Jaap M; Arens, Paul

    Fusarium oxysporum is a major problem in the production of tulip bulbs. Breeding for resistant cultivars through a conventional approach is a slow process due to the long life cycle of tulip. Until now, marker-assisted selection (MAS) has been hampered by the large genome size and the absence of a genetic map. This study is aimed at construction of the first genetic map for tulip and at the identification of loci associated with resistance to F. oxysporum. A cross-pollinated population of 125 individuals segregating for Fusarium resistance was obtained from Tulipa gesneriana "Kees Nelis" and T. fosteriana "Cantata." Fusarium resistance of the mapping population was evaluated through a soil infection test in two consecutive years, and a spot inoculation test in which a green fluorescent protein tagged Fusarium strain was used for inoculation. The genetic maps have been constructed for the parents separately. The genetic map of "Kees Nelis" comprised 342 markers on 27 linkage groups covering 1707 cM, while the map of "Cantata" comprised 300 markers on 21 linkage groups covering 1201 cM. Median distance between markers was 3.9 cM for "Kees Nelis" and 3.1 cM for "Cantata." Six putative quantitative trait loci (QTLs) for Fusarium resistance were identified, derived from both parents. QTL2, QTL3, and QTL6 were significant in all disease tests. For the flanking markers of the QTLs, phenotypic means of the two allelic groups, segregating from a parent for such a marker, were significantly different. These markers will be useful for the development of MAS in tulip breeding.

  17. SUPPRESSION ABILITY OF CRUDE EXTRACT DERIVED FROM MARINE BIOTA AGAINST FUSARIUM OXYSPORUM F.SP. VANILLAE

    Directory of Open Access Journals (Sweden)

    I Ketut Suada

    2010-06-01

    Full Text Available The objective of this research was to investigate suppression ability of marine biota extracts against Fusarium oxysporum f.sp. vanillae of vanilla stem rot. Samples were collected at intertidal zones and in the depth of 1-7 m from seven beaches in Bali. Screening of active compounds of biota extracts were conducted using inhibition zone of well diffusion method on Potato Dextrose Agar (PDA. The extract was tested in-vitro in PDA medium using completely randomized design with three replicates. The methanolic extract of Aglaophenia sp. was able to suppress the growth of F. oxysporum f.sp. vanillae effectively, with minimum inhibition concentration (MIC of 0.05 %. The extract inhibited colony growth diameter and total mycelial dry weight.

  18. Bioactive extracts and chemical constituents of two endophytic strains of Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Andréa M. do Nascimento

    2012-12-01

    Full Text Available Ethyl acetate extracts of cultures grown in liquid Czapek and on solid rice media of the fungal endophyte Fusarium oxysporum SS46 isolated from the medicinal plant Smallanthus sonchifolius (Poepp. H. Rob., Asteraceae, exhibited considerable cytotoxic activity when tested in vitro against human cancer cells. Chromatographic separation yielded anhydrofusarubin (1 and beauvericin (2 that were identified based on their ¹H and 13C NMR data. Compounds 1 and 2 showed the strongest cytotoxic activity against different cancer cell lines. Compound 2 also showed promising activity against Leishmania braziliensis. Hexanic extract of F. oxysporum SS50 grown on solid rice media also afforded a mixture of compounds that displayed cytotoxic activity against different cancer cell lines. Chemical analysis of the mixture of compounds, investigated by gas chromatography-mass spectrometry (GC-MS, showed that there was a predominance of methyl esters of fatty acids and alkanes.

  19. Mechanisms of coal solubilization by the deuteromycetes Trichoderma atroviride and Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Hoelker, U.; Ludwig, S.; Scheel, T.; Hoefer, M. [Bonn Univ. (Germany). Botanisches Inst. und Botanischer Garten

    1999-07-01

    Three different mechanisms can be envisaged that are used by fungi to solubilize coal: the production of alkaline substances, the extrusion of chelators and, of special interest in the scope of biotechnology, the action of enzymes. Whether these mechanisms are operating separately or in various combinations has not yet been finally assessed. The two deuteromycetes Fusarium oxysporum and Trichoderma atroviride solubilize coal by synergistic effects of various different mechanisms depending on the cell metabolism. F. oxysporum seems to solubilize coal by increasing the pH of the mycelial surroundings and by the action of chelators induced during growth in glutamate-containing media (without involvement of enzymes). T. atroviride, on the other hand, appears to use, in addition to an alkaline pH and a high chelator activity, at least two classes of enzyme activity to attack coal: hydrolytic activity for coal solubilization and ligninolytic activity for degradation of humic acids. (orig.)

  20. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia

    Science.gov (United States)

    Molina, Agustin B.; Daniells, Jeff; Fourie, Gerda; Hermanto, Catur; Chao, Chih-Ping; Fabregar, Emily; Sinohin, Vida G.; Masdek, Nik; Thangavelu, Raman; Li, Chunyu; Yi, Ganyun; Mostert, Lizel; Viljoen, Altus

    2017-01-01

    Fusarium oxysporum formae specialis cubense (Foc) is a soil-borne fungus that causes Fusarium wilt, which is considered to be the most destructive disease of bananas. The fungus is believed to have evolved with its host in the Indo-Malayan region, and from there it was spread to other banana-growing areas with infected planting material. The diversity and distribution of Foc in Asia was investigated. A total of 594 F. oxysporum isolates collected in ten Asian countries were identified by vegetative compatibility groups (VCGs) analysis. To simplify the identification process, the isolates were first divided into DNA lineages using PCR-RFLP analysis. Six lineages and 14 VCGs, representing three Foc races, were identified in this study. The VCG complex 0124/5 was most common in the Indian subcontinent, Vietnam and Cambodia; whereas the VCG complex 01213/16 dominated in the rest of Asia. Sixty-nine F. oxysporum isolates in this study did not match any of the known VCG tester strains. In this study, Foc VCG diversity in Bangladesh, Cambodia and Sri Lanka was determined for the first time and VCGs 01221 and 01222 were first reported from Cambodia and Vietnam. New associations of Foc VCGs and banana cultivars were recorded in all the countries where the fungus was collected. Information obtained in this study could help Asian countries to develop and implement regulatory measures to prevent the incursion of Foc into areas where it does not yet occur. It could also facilitate the deployment of disease resistant banana varieties in infested areas. PMID:28719631

  1. A rapid inoculation technique for assessing pathogenicity of Fusarium oxysporum f. sp. niveum and F. o. melonis on Cucurbits

    Science.gov (United States)

    Freeman, S.; Rodriguez, R.J.

    1993-01-01

    A continuous-dip inoculation technique for rapid assessment of pathogenicity of Fusarium oxysporum f. sp. niveum and F. o. melonis was developed. The method, adapted from a similar procedure for determining pathogenicity of Colletotrichum magna (causal agent of anthracnose of cucurbits), involves constant exposure of seedlings and cuttings (seedlings with root systems excised) of watermelon and muskmelon to conidial suspensions contained in small scintillation vials. Disease development in intact seedlings corresponded well to disease responses observed with the standard root-dip inoculation/pot assay. The continuous-dip inoculation technique resulted in rapid disease development, with 50% of watermelon cuttings dying after 4–6 days of exposure to F. o. niveum. A mortality of 30% also was observed in watermelon cuttings exposed to conidia of F. o. melonis, as opposed to only a 0–2.5% mortality in seedlings with intact roots. Disease response was similar with muskmelon seedlings and cuttings continuously dip-inoculated with F. o. melonis isolates. However, no disease symptoms were observed in muskmelon seedlings or cuttings inoculated with F. o. niveum. Four nonpathogenic isolates of F. oxysporum did not cause disease symptoms in either watermelon or muskmelon cuttings and seedlings when assayed by this technique. The proposed method enables a rapid screening of pathogenicity and requires less time, labor, and greenhouse space than the standard root-dip inoculation/pot assay. The reliability of the continuous-dip inoculation technique is limited, however, to exposure of intact seedlings at a concentration of 1 × 106conidia per milliliter; the method is not accurate at this range for excised seedlings.

  2. An Evaluation Method for the Suppression of Pathogenic Fusarium oxysporum by Soil Microorganisms Using the Dilution Plate Technique.

    Science.gov (United States)

    Mitsuboshi, Masahiro; Kioka, Yuuzou; Noguchi, Katsunori; Asakawa, Susumu

    2016-09-29

    Soil-borne diseases caused by pathogenic microorganisms are one of the main factors responsible for the decline in crop yields in farmlands. Pathogenic Fusarium oxysporum causes serious damage to various crops, and, thus, a feasible diagnostic method for soil-borne diseases is required. We herein examined a simple method to evaluate the suppressiveness of soil microorganisms against a pathogen by co-cultivating indigenous soil microorganisms and a pathogenic fungus (F. oxysporum f. sp. spinaciae). We inoculated F. oxysporum onto the center of agar medium plates mixed with a dilution series of a suspension of organic fertilizers or soil. After an approximately one-week cultivation, the growth degree of F. oxysporum was estimated based on the size of the colonies that formed on the plates. The growth degree of F. oxysporum significantly differed among the organic fertilizers tested, indicating the usefulness of the method for evaluating suppressiveness by organic fertilizers. Differences in the growth degrees of F. oxysporum were associated with the incidence of disease in spinach on soil treated with organic fertilizers and inoculated with a pathogenic F. oxysporum strain. These results suggested that this method provides some useful information on the suppressiveness of organic fertilizers and soil against Fusarium wilt.

  3. Infection Courts in Watermelon Plants Leading to Seed Infestation by Fusarium oxysporum f. sp. niveum.

    Science.gov (United States)

    Petkar, Aparna; Ji, Pingsheng

    2017-07-01

    Fusarium wilt incited by Fusarium oxysporum f. sp. niveum is a seed-transmitted disease that causes significant yield loss in watermelon production. The pathogen may infect watermelon seeds latently, which can be an important inoculum source and contribute to severe disease outbreak. However, information regarding infection courts of F. oxysporum f. sp. niveum leading to infestation of watermelon seeds is limited. To determine how seeds in watermelon fruit can be infested by F. oxysporum f. sp. niveum during the watermelon growing season, greenhouse and field experiments were conducted in 2014 and 2015 where watermelon flowers and immature fruit were inoculated with F. oxysporum f. sp. niveum. Seeds were extracted from mature watermelon fruit, and infestation of watermelon seeds was determined by isolation of F. oxysporum f. sp. niveum and further confirmed by real-time polymerase chain reaction (PCR) analysis. Inoculation of the pericarp of immature fruit resulted in 17.8 to 54.4% of infested seeds under field conditions and 0.6 to 12.8% of infested seeds under greenhouse conditions when seeds were not surface disinfested prior to isolation. Seed infestation was also detected in 0 to 4.5% of the seeds when seeds were surface disinfested prior to isolation. Inoculation of pistil resulted in 0 to 7.2% and 0 to 18.3% of infested seeds under greenhouse and field conditions when seeds were surface disinfested or not disinfested before isolation, respectively. Inoculation of peduncle resulted in 0.6 to 6.1% and 0 to 10.0% of infested seeds in the greenhouse and field experiments when seeds were surface disinfested or not disinfested before isolation, respectively. Seed infestation was also detected in all the experiments using real-time PCR assay when pericarp or pistil was inoculated, and in three of four experiments when peduncle was inoculated, regardless of whether seeds were surface disinfested or not disinfested. Pericarp and peduncle of immature watermelon fruit

  4. Determination of the physiological races of fusarium oxysporum f.sp. dianthi on carnation in colombia

    OpenAIRE

    Arbelaez, Germán; Calderón, Olga Lucia

    2011-01-01

    Uno de los problemas más limitantes del cultivo del clavel en Colombia es el marchitamiento vascular ocasionado por el hongo Fusarium oxysporum f. sp. disnthi, El trabajo fue realizado con el objetivo de determinar la variabilidad morfológica, cultural, reproductiva y patológica de 121 aislamientos del hongo obtenidos de 61 fincas localizadas en la Sabana de Bogotá. Como patrones de comparación se utilizaron nueve aislamientos extranjeros de las razas 1, 2,4 y 8 del patógeno. Las pruebas de p...

  5. Enhancement of pectinase production by ultraviolet irradiation and diethyl sulfate mutagenesis of a Fusarium oxysporum isolate.

    Science.gov (United States)

    Yin, L B; Zhang, C F; Xia, Q L; Yang, Y; Xiao, K; Zhao, L Z

    2016-09-23

    Fusarium oxysporum strain BM-201 was treated with ultraviolet (UV) radiation to obtain a high pectinase-producing strain. Mutant UV-10-41 was obtained and then treated by diethyl sulfate. Next, the mutant UV-diethyl sulfate-43 derived from UV-10-41 was selected as high pectinase-producing strain. Mutant UV-diethyl sulfate-43 was incubated on slant for 10 generations, demonstrating that the pectinase-producing genes were stable. Pectinase activity reached 391.2 U/mL, which is 73.6% higher than that of the original strain.

  6. Diferenciacion de razas de fusarium oxysporum f. sp. dianthi por electroforesis de aril esterasa

    OpenAIRE

    Garces de Granada, Emira; Orozco de Amezquita, Martha; Arbelaez-Torres, German

    2011-01-01

    En los últimos años, la separaci6n por la técnica de electroforesis de las enzimas que presentan polimorfismo, ha sido utilizada para establecer diferencias entre poblaciones de microorganismos, cuando las características morfológicas no son distintivas. En este trabajo, se propuso la separación por electroforesis de la enzima aril esterasa obtenida a partir de aislamientos de Fusarium oxysporum f. sp. dianthi de la raza 2 obtenidos de suelos y plantas de la Sabana de Bogotá, un aislamiento d...

  7. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum.

    Science.gov (United States)

    Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen

    2015-01-01

    In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum.

  8. The Tomato Wilt Fungus Fusarium oxysporum f. sp. lycopersici shares Common Ancestors with Nonpathogenic F. oxysporum isolated from Wild Tomatoes in the Peruvian Andes

    Science.gov (United States)

    Inami, Keigo; Kashiwa, Takeshi; Kawabe, Masato; Onokubo-Okabe, Akiko; Ishikawa, Nobuko; Pérez, Enrique Rodríguez; Hozumi, Takuo; Caballero, Liliana Aragón; de Baldarrago, Fatima Cáceres; Roco, Mauricio Jiménez; Madadi, Khalid A.; Peever, Tobin L.; Teraoka, Tohru; Kodama, Motoichiro; Arie, Tsutomu

    2014-01-01

    Fusarium oxysporum is an ascomycetous fungus that is well-known as a soilborne plant pathogen. In addition, a large population of nonpathogenic F. oxysporum (NPF) inhabits various environmental niches, including the phytosphere. To obtain an insight into the origin of plant pathogenic F. oxysporum, we focused on the tomato (Solanum lycopersicum) and its pathogenic F. oxysporum f. sp. lycopersici (FOL). We collected F. oxysporum from wild and transition Solanum spp. and modern cultivars of tomato in Chile, Ecuador, Peru, Mexico, Afghanistan, Italy, and Japan, evaluated the fungal isolates for pathogenicity, VCG, mating type, and distribution of SIX genes related to the pathogenicity of FOL, and constructed phylogenies based on ribosomal DNA intergenic spacer sequences. All F. oxysporum isolates sampled were genetically more diverse than FOL. They were not pathogenic to the tomato and did not carry SIX genes. Certain NPF isolates including those from wild Solanum spp. in Peru were grouped in FOL clades, whereas most of the NPF isolates were not. Our results suggested that the population of NPF isolates in FOL clades gave rise to FOL by gaining pathogenicity. PMID:24909710

  9. The tomato wilt fungus Fusarium oxysporum f. sp. lycopersici shares common ancestors with nonpathogenic F. oxysporum isolated from wild tomatoes in the Peruvian Andes.

    Science.gov (United States)

    Inami, Keigo; Kashiwa, Takeshi; Kawabe, Masato; Onokubo-Okabe, Akiko; Ishikawa, Nobuko; Pérez, Enrique Rodríguez; Hozumi, Takuo; Caballero, Liliana Aragón; de Baldarrago, Fatima Cáceres; Roco, Mauricio Jiménez; Madadi, Khalid A; Peever, Tobin L; Teraoka, Tohru; Kodama, Motoichiro; Arie, Tsutomu

    2014-01-01

    Fusarium oxysporum is an ascomycetous fungus that is well-known as a soilborne plant pathogen. In addition, a large population of nonpathogenic F. oxysporum (NPF) inhabits various environmental niches, including the phytosphere. To obtain an insight into the origin of plant pathogenic F. oxysporum, we focused on the tomato (Solanum lycopersicum) and its pathogenic F. oxysporum f. sp. lycopersici (FOL). We collected F. oxysporum from wild and transition Solanum spp. and modern cultivars of tomato in Chile, Ecuador, Peru, Mexico, Afghanistan, Italy, and Japan, evaluated the fungal isolates for pathogenicity, VCG, mating type, and distribution of SIX genes related to the pathogenicity of FOL, and constructed phylogenies based on ribosomal DNA intergenic spacer sequences. All F. oxysporum isolates sampled were genetically more diverse than FOL. They were not pathogenic to the tomato and did not carry SIX genes. Certain NPF isolates including those from wild Solanum spp. in Peru were grouped in FOL clades, whereas most of the NPF isolates were not. Our results suggested that the population of NPF isolates in FOL clades gave rise to FOL by gaining pathogenicity.

  10. Występowanie fuzariozy tulipanów (Fusarium oxysporum (Schlecht. S. et H. f. sp. tulipae Apt. na plantacjach produkcyjnych w Polsce [Fusarium oxysporum (Schlecht. S. et H. f. sp. tulipae Apt. in tulip plantations in Poland

    Directory of Open Access Journals (Sweden)

    Cz. Zamorski

    2015-06-01

    Full Text Available The disease caused by Fusarium oxysporum f. sp. tulipae has been observed on 'bud'b coming from different plantations. The number of diseased bulbs depended on the conditions of cultivation, the manner of storing, and the variety. Among the varieties most strongly affected were: Red Giant (up to 70%, Brilliant Star, Blizzard, Cellini, and Prominence.

  11. Evaluation of the significance of cell wall polymers in flax infected with a pathogenic strain of Fusarium oxysporum.

    Science.gov (United States)

    Wojtasik, Wioleta; Kulma, Anna; Dymińska, Lucyna; Hanuza, Jerzy; Czemplik, Magdalena; Szopa, Jan

    2016-03-22

    Fusarium oxysporum infection leads to Fusarium-derived wilt, which is responsible for the greatest losses in flax (Linum usitatissimum) crop yield. Plants infected by Fusarium oxysporum show severe symptoms of dehydration due to the growth of the fungus in vascular tissues. As the disease develops, vascular browning and leaf yellowing can be observed. In the case of more virulent strains, plants die. The pathogen's attack starts with secretion of enzymes degrading the host cell wall. The main aim of the study was to evaluate the role of the cell wall polymers in the flax plant response to the infection in order to better understand the process of resistance and develop new ways to protect plants against infection. For this purpose, the expression of genes involved in cell wall polymer metabolism and corresponding polymer levels were investigated in flax seedlings after incubation with Fusarium oxysporum. This analysis was facilitated by selecting two groups of genes responding differently to the infection. The first group comprised genes strongly affected by the infection and activated later (phenylalanine ammonia lyase and glucosyltransferase). The second group comprised genes which are slightly affected (up to five times) and their expression vary as the infection progresses. Fusarium oxysporum infection did not affect the contents of cell wall polymers, but changed their structure. The results suggest that the role of the cell wall polymers in the plant response to Fusarium oxysporum infection is manifested through changes in expression of their genes and rearrangement of the cell wall polymers. Our studies provided new information about the role of cellulose and hemicelluloses in the infection process, the change of their structure and the expression of genes participating in their metabolism during the pathogen infection. We also confirmed the role of pectin and lignin in this process, indicating the major changes at the mRNA level of lignin metabolism genes

  12. CCR4-Not Complex Subunit Not2 Plays Critical Roles in Vegetative Growth, Conidiation and Virulence in Watermelon Fusarium Wilt Pathogen Fusarium oxysporum f. sp. niveum

    Science.gov (United States)

    Dai, Yi; Cao, Zhongye; Huang, Lihong; Liu, Shixia; Shen, Zhihui; Wang, Yuyan; Wang, Hui; Zhang, Huijuan; Li, Dayong; Song, Fengming

    2016-01-01

    CCR4-Not complex is a multifunctional regulator that plays important roles in multiple cellular processes in eukaryotes. In the present study, the biological function of FonNot2, a core subunit of the CCR4-Not complex, was explored in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon wilt disease. FonNot2 was expressed at higher levels in conidia and germinating conidia and during infection in Fon-inoculated watermelon roots than in mycelia. Targeted disruption of FonNot2 resulted in retarded vegetative growth, reduced conidia production, abnormal conidial morphology, and reduced virulence on watermelon. Scanning electron microscopy observation of infection behaviors and qRT-PCR analysis of in planta fungal growth revealed that the ΔFonNot2 mutant was defective in the ability to penetrate watermelon roots and showed reduced fungal biomass in root and stem of the inoculated plants. Phenotypic and biochemical analyses indicated that the ΔFonNot2 mutant displayed hypersensitivity to cell wall perturbing agents (e.g., Congo Red and Calcofluor White) and oxidative stress (e.g., H2O2 and paraquat), decreased fusaric acid content, and reduced reactive oxygen species (ROS) production during spore germination. Our data demonstrate that FonNot2 plays critical roles in regulating vegetable growth, conidiogenesis and conidia morphology, and virulence on watermelon via modulating cell wall integrity, oxidative stress response, ROS production and FA biosynthesis through the regulation of transcription of genes involved in multiple pathways. PMID:27695445

  13. Characterization of vacuolar amino acid transporter from Fusarium oxysporum in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lunprom, Siriporn; Pongcharoen, Pongsanat; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi; Akiyama, Koichi

    2015-01-01

    Fusarium oxysporum causes wilt disease in many plant families, and many genes are involved in its development or growth in host plants. A recent study revealed that vacuolar amino acid transporters play an important role in spore formation in Schizosaccharomyces pombe and Saccharomyces cerevisiae. To investigate the role of vacuolar amino acid transporters of this phytopathogenic fungus, the FOXG_11334 (FoAVT3) gene from F. oxysporum was isolated and its function was characterized. Transcription of FoAVT3 was upregulated after rapamycin treatment. A green fluorescent protein fusion of FoAvt3p was localized to vacuolar membranes in both S. cerevisiae and F. oxysporum. Analysis of the amino acid content of the vacuolar fraction and amino acid transport activities using vacuolar membrane vesicles from S. cerevisiae cells heterologously expressing FoAVT3 revealed that FoAvt3p functions as a vacuolar amino acid transporter, exporting neutral amino acids. We conclude that the FoAVT3 gene encodes a vacuolar neutral amino acid transporter.

  14. Discovery of Fungal Denitrification Inhibitors by Targeting Copper Nitrite Reductase from Fusarium oxysporum.

    Science.gov (United States)

    Matsuoka, Masaki; Kumar, Ashutosh; Muddassar, Muhammad; Matsuyama, Akihisa; Yoshida, Minoru; Zhang, Kam Y J

    2017-02-27

    The efficient application of nitrogenous fertilizers is urgently required, as their excessive and inefficient use is causing substantial economic loss and environmental pollution. A significant amount of applied nitrogen in agricultural soils is lost as nitrous oxide (N2O) in the environment due to the microbial denitrification process. The widely distributed fungus Fusarium oxysporum is a major denitrifier in agricultural soils and its denitrification activity could be targeted to reduce nitrogen loss in the form of N2O from agricultural soils. Here, we report the discovery of first small molecule inhibitors of copper nitrite reductase (NirK) from F. oxysporum, which is a key enzyme in the fungal denitrification process. The inhibitors were discovered by a hierarchical in silico screening approach consisting of pharmacophore modeling and molecular docking. In vitro evaluation of F. oxysporum NirK activity revealed several pyrimidone and triazinone based compounds with potency in the low micromolar range. Some of these compounds suppressed the fungal denitrification in vivo as well. The compounds reported here could be used as starting points for the development of nitrogenous fertilizer supplements and coatings as a means to prevent nitrogen loss by targeting fungal denitrification.

  15. Local origin of two vegetative compatibility groups of Fusarium oxysporum f. sp. vasinfectum in Australia

    Science.gov (United States)

    Wang, Bo; Brubaker, Curt L; Summerell, Brett A; Thrall, Peter H; Burdon, Jeremy J

    2010-01-01

    Pathogenicity and genetic diversity of Fusarium oxysporum from geographically widespread native Gossypium populations, including a cotton growing area believed to be the center of origin of VCG 01111 and VCG 01112 of F. oxysporum f. sp. vasinfectum (Fov) in Australia, was determined using glasshouse bioassays and AFLPs. Five lineages (A–E) were identified among 856 isolates. Of these, 12% were strongly pathogenic on cotton, 10% were weakly pathogenic and designated wild Fov, while 78% were nonpathogenic. In contrast to the occurrence of pathogenic isolates in all five lineages in soils associated with wild Gossypium, in cotton growing areas only three lineages (A, B, E) occurred and all pathogenic isolates belonged to two subgroups in lineage A. One of these contained VCG 01111 isolates while the other contained VCG 01112 isolates. Sequence analyses of translation elongation factor-1α, mitochondrial small subunit rDNA, nitrate reductase and phosphate permease confirmed that Australian Fov isolates were more closely related to lineage A isolates of native F. oxysporum than to Fov races 1–8 found overseas. These results strongly support a local evolutionary origin for Fov in Australian cotton growing regions. PMID:25567943

  16. Exploiting the inter-strain divergence of Fusarium oxysporum for microbial bioprocessing of lignocellulose to bioethanol.

    Science.gov (United States)

    Ali, Shahin S; Khan, Mojibur; Fagan, Brian; Mullins, Ewen; Doohan, Fiona M

    2012-03-15

    Microbial bioprocessing of lignocellulose to bioethanol still poses challenges in terms of substrate catabolism. A targeted evolution-based study was undertaken to determine if inter-strain microbial variability could be exploited for bioprocessing of lignocellulose to bioethanol. The microorganism studied was Fusarium oxysporum because of its capacity to both saccharify and ferment lignocellulose. Strains of F. oxysporum were isolated and assessed for their genetic variability. Using optimised solid-state straw culture conditions, experiments were conducted that compared fungal strains in terms of their growth, enzyme activities (cellulases, xylanase and alcohol dehydrogenase) and yield of bioethanol and the undesirable by-products acetic acid and xylitol. Significant inter-strain divergence was recorded in regards to the capacity of studied F. oxysporum strains to produce alcohol from untreated straw. No correlation was observed between bioethanol synthesis and either the biomass production or microbial enzyme activity. A strong correlation was observed between both acetic acid and xylitol production and bioethanol yield. The level of diversity recorded in the alcohol production capacity among closely-related microorganism means that a targeted screening of populations of selected microbial species could greatly improve bioprocessing yields, in terms of providing both new host strains and candidate genes for the bioethanol industry.

  17. Fungitoxic phenols from carnation (Dianthus caryophyllus) effective against Fusarium oxysporum f. sp. dianthi.

    Science.gov (United States)

    Curir, Paolo; Dolci, Marcello; Dolci, Paola; Lanzotti, Virginia; De Cooman, Luc

    2003-01-01

    The phenol compositions of two cultivars of carnation (Dianthus caryophyllus) namely "Gloriana" and "Roland", which are partially and highly resistant, respectively, to Fusarium oxysporum f. sp. dianthi have been investigated with the aim of determining if endogenous phenols could have an anti-fungal effect against the pathogen. Analyses were performed on healthy and F. oxysporum-inoculated in vitro tissues, and on in vivo plants. Two benzoic acid derivatives, protocatechuic acid (3,4-dihydroxybenzoic acid) and vanillic acid (4-hydroxy-3-methoxybenzoic acid), were found within healthy and inoculated tissues of both cultivars, together with the flavonol glycoside peltatoside (3-[6-O-(alpha-L-arabinopyranosyl)-beta-D-glucopyranosyl] quercetin). These molecules proved to be only slightly inhibitory towards the pathogen. 2,6-Dimethoxybenzoic acid was detected in small amounts only in the inoculated cultivar "Gloriana", while the highly resistant cultivar "Roland" showed the presence of the flavone datiscetin (3,5,7,2'-tetrahydroxyflavone). The latter compound exhibited an appreciable fungitoxic activity towards F. oxysporum f. sp. dianthi.

  18. Crude extract of Fusarium oxysporum induces apoptosis and structural alterations in the skin of healthy rats.

    Science.gov (United States)

    de Paulo, Luis F; Coelho, Ana C; Svidzinski, Terezinha I E; Sato, Francielle; Rohling, Jurandir H; Natali, Maria Raquel M; Baesso, Mauro L; Hernandes, Luzmarina

    2013-09-01

    We evaluate the biological and physicochemical effects of a Fusarium oxysporum crude extract (CE) on the skin of healthy rats. The CE is topically applied and subsequently the skin is collected after 3, 6, 12, and 24 h. The samples are analyzed by Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) and histomorphometric analysis. Terminal dUTP nick end labeling (TUNEL assay) is performed to detect both the cells in apoptosis and proliferation. There is a thickening of the epidermis after 6, 12, and 24 h and dermis after 12 and 24 h of CE application. A reduction of the dermis thickness is observed at 3 and 6 h. The treated skin shows higher labeling intensity by TUNEL at 3 h, while a higher intensity by proliferating cell nuclear antigen occurs at 3 and 12 h. FTIR-PAS data support the histology observations showing an increase in the absorption peaks in the dermis after the application of the CE. F. oxysporum CE permeated through the epidermis and the dermis, reaching the subcutaneous tissue, inducing cell apoptosis, and causing physicochemical changes in the organic molecules located in the dermis. This is the first known study associating histopathological and physical chemistry changes on healthy skin after the application of F. oxysporum CE.

  19. Nuclear dynamics during germination, conidiation, and hyphal fusion of Fusarium oxysporum.

    Science.gov (United States)

    Ruiz-Roldán, M Carmen; Köhli, Michael; Roncero, M Isabel G; Philippsen, Peter; Di Pietro, Antonio; Espeso, Eduardo A

    2010-08-01

    In many fungal pathogens, infection is initiated by conidial germination. Subsequent stages involve germ tube elongation, conidiation, and vegetative hyphal fusion (anastomosis). Here, we used live-cell fluorescence to study the dynamics of green fluorescent protein (GFP)- and cherry fluorescent protein (ChFP)-labeled nuclei in the plant pathogen Fusarium oxysporum. Hyphae of F. oxysporum have uninucleated cells and exhibit an acropetal nuclear pedigree, where only the nucleus in the apical compartment is mitotically active. In contrast, conidiation follows a basopetal pattern, whereby mononucleated microconidia are generated by repeated mitotic cycles of the subapical nucleus in the phialide, followed by septation and cell abscission. Vegetative hyphal fusion is preceded by directed growth of the fusion hypha toward the receptor hypha and followed by a series of postfusion nuclear events, including mitosis of the apical nucleus of the fusion hypha, migration of a daughter nucleus into the receptor hypha, and degradation of the resident nucleus. These previously unreported patterns of nuclear dynamics in F. oxysporum could be intimately related to its pathogenic lifestyle.

  20. Cytotoxicities of enniatins H, I, and MK1688 from Fusarium oxysporum KFCC 11363P.

    Science.gov (United States)

    Lee, Hee-Seok; Song, Hyuk-Hwan; Jeong, Jin-Ho; Shin, Cha-Gyun; Choi, Sang-Un; Lee, Chan

    2008-06-01

    Enniatins (ENs) H, I, and MK1688 and beauvericin (BEA) were purified from concentrated chloroform extracts of Fusarium oxysporum KFCC 11363P submerged cultures using HPLC, and their in vitro cytotoxicities were evaluated against four human carcinoma cell lines (lung, A549; ovarian, SK-OV-3; skin melanoma, SK-MEL-2; and colon, HCT15) using the sulforhodamine B (SRB) method. ENs I and MK1688 inhibited the growth of cancer cell lines most strongly and had similar cytotoxic effects on the tested human cancer cell cultures. The cytotoxicity of ENs I and MK1688 was three- to fourfold higher than that of BEA and EN H. When cultivated in Fusarium-defined medium (FDM), the concentrations of ENs and BEA produced in F. oxysporum KFCC 11363P decreased in the following order: EN MK1688 (0.81 g/L) >EN I (0.55 g/L) >BEA (0.17 g/L) > EN H (0.16 g/L). This study has shown that ENs H, I, and MK1688 exhibit cytotoxicity against certain adenocarcinoma cell lines. The results indicate the need for more investigations into the significance of the biological properties of these new ENs.

  1. The antagonistic effect of Banana bunchy top virus multifunctional protein B4 against Fusarium oxysporum.

    Science.gov (United States)

    Zhuang, Jun; Coates, Christopher J; Mao, Qianzhuo; Wu, Zujian; Xie, Lianhui

    2016-06-01

    The viral-induced banana bunchy top disease and the fungal-induced banana blight are two major causes of concern for industrial scale production of bananas. Banana blight is particularly troublesome, affecting ∼80% of crops worldwide. Strict guidelines and protocols are in place in order to ameliorate the effects of this devastating disease, yet little success has been achieved. From the data presented here, we have found that Banana bunchy top virus (BBTV)-infected bananas are more resistant to Fusarium oxysporum f. sp. cubense (Foc). BBTV appears to be antagonistic towards Foc, thus improving the survivability of plants against blight. The BBTV suppressor of RNA silencing, namely protein B4, displays fungicidal properties in vitro. Furthermore, transgenic tomatoes expressing green fluorescent protein (GFP)-tagged protein B4 demonstrate enhanced resistance to F. oxysporum f. sp. lycopersici (Fol). Differential gene expression analysis indicates that increased numbers of photogenesis-related gene transcripts are present in dark-green leaves of B4-GFP-modified tomato plants relative to those found in WT plants. Conversely, the transcript abundance of immunity-related genes is substantially lower in transgenic tomatoes compared with WT plants, suggesting that plant defences may be influenced by protein B4. This viral-fungal interaction provides new insights into microbial community dynamics within a single host and has potential commercial value for the breeding of transgenic resistance to Fusarium-related blight/wilt. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  2. [Keratomycosis due to Fusarium oxysporum treated with the combination povidone iodine eye drops and oral fluconazole].

    Science.gov (United States)

    Diongue, K; Sow, A S; Nguer, M; Seck, M C; Ndiaye, M; Badiane, A S; Ndiaye, J M; Ndoye, N W; Diallo, M A; Diop, A; Ndiaye, Y D; Dieye, B; Déme, A; Ndiaye, I M; Ndir, O; Ndiaye, D

    2015-12-01

    In developing countries where systemic antifungal are often unavailable, treatment of filamentous fungi infection as Fusarium is sometimes very difficult to treat. We report the case of a keratomycosis due to Fusarium oxysporum treated by povidone iodine eye drops and oral fluconazole. The diagnosis of abscess in the cornea was retained after ophthalmological examination for a 28-year-old man with no previous ophthalmological disease, addressed to the Ophthalmological clinic at the University Hospital Le Dantec in Dakar for a left painful red eye with decreased visual acuity lasting for 15 days. The patient did not receive any foreign body into the eye. Samples by corneal scraping were made for microbiological analysis and the patient was hospitalized and treated with a reinforced eye drops based treatment (ceftriaxone+gentamicin). The mycological diagnosis revealed the presence of a mold: F. oxysporum, which motivated the replacement of the initial treatment by eye drops containing iodized povidone solution at 1% because of the amphotericin B unavailability. Due to the threat of visual loss, oral fluconazole was added to the local treatment with eye drops povidone iodine. The outcome was favorable with a healing abscess and visual acuity amounted to 1/200th. Furthermore, we noted sequels such as pannus and pillowcase. The vulgarization of efficient topical antifungal in developing countries would be necessary to optimize fungal infection treatment. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Genetic and Pathogenic Variability of Fusarium oxysporum f. sp. cepae Isolated from Onion and Welsh Onion in Japan.

    Science.gov (United States)

    Sasaki, Kazunori; Nakahara, Katsuya; Tanaka, Shuhei; Shigyo, Masayoshi; Ito, Shin-ichi

    2015-04-01

    Fusarium oxysporum f. sp. cepae causes Fusarium basal rot in onion (common onion) and Fusarium wilt in Welsh onion. Although these diseases have been detected in various areas in Japan, knowledge about the genetic and pathogenic variability of F. oxysporum f. sp. cepae is very limited. In this study, F. oxysporum f. sp. cepae was isolated from onion and Welsh onion grown in 12 locations in Japan, and a total of 55 F. oxysporum f. sp. cepae isolates (27 from onion and 28 from Welsh onion) were characterized based on their rDNA intergenic spacer (IGS) and translation elongation factor-1α (EF-1α) nucleotide sequences, vegetative compatibility groups (VCGs), and the presence of the SIX (secreted in xylem) homologs. Phylogenetic analysis of IGS sequences showed that these isolates were grouped into eight clades (A to H), and 20 onion isolates belonging to clade H were monophyletic and assigned to the same VCG. All the IGS-clade H isolates possessed homologs of SIX3, SIX5, and SIX7. The SIX3 homolog was located on a 4 Mb-sized chromosome in the IGS-clade H isolates. Pathogenicity tests using onion seedlings showed that all the isolates with high virulence were in the IGS-clade H. These results suggest that F. oxysporum f. sp. cepae isolates belonging to the IGS-clade H are genetically and pathogenically different from those belonging to the other IGS clades.

  4. The FonSIX6 gene acts as an avirulence effector in the Fusarium oxysporum f. sp. niveum - watermelon pathosystem

    Science.gov (United States)

    There are three generally accepted Fusarium oxysporum f. sp. niveum (Fon) physiological races (0, 1, and 2) that infect watermelon (Citrullus lanatus). Among them, race 1 is the most prevalent on watermelon throughout the world, while race 2 is highly aggressive to all commercial watermelon cultivar...

  5. Management of Fusarium oxysporum f.sp cubense (Foc-TR4) from banana by anaerobic soil disinfestation (ASD)

    NARCIS (Netherlands)

    Runia, W.T.

    2014-01-01

    Applied Plant Research in Lelystad has, commissioned by Gert Kema, Plant Research International (PRI) and leader of the Panama Project, performed a trial to measure the efficacy of anaerobic soil disinfestation (ASD) with a ‘Herbie” product against Fusarium oxysporum f.sp. cubense (Foc; TR 4),

  6. [Date palm and fusariosis. VIII.--Parasitism of "Fusarium oxysporum" f. sp. "albedinis" by an actinomycete (author's transl)].

    Science.gov (United States)

    Sabaou, N; Bennaceur, M; Bounaga, D

    1981-01-01

    Fortuitous growth of an actinomycete on Fusarium oxysporum f. sp. albedinis culture has shown a host-parasite process. As a response to the actinomycete, the fungus produces thallospores with various forms which can germinate faster than the non-parasited F. o. albedinis microconidies. However, the strains obtained from thallospores showed as sensible as the mother strain towards actinomycete action.

  7. Media for efficient generating nitrate- - nonutilizing (NIT) mutants of Verticillium dahliae, Colletotrichum gloeosporioides, Colletotrichum lindemuthianum and Fusarium oxysporum.

    NARCIS (Netherlands)

    Rataj-Guranowska, M.; Pieczul, K.; Nowak, E.; Hiemstra, J.A.; Drapikowska, M.

    2001-01-01

    The effect of several media amended wit potassium chlorate (1.5% and 6%) on generation of nit mutants, especially nit M mutants from Verticillium dahliae, Colletotrichum gloeosporioides, Colletotrichum lindemuthianum and Fusarium oxysporum were studied. For all species minimal medium with 6% chlorat

  8. Identification of NADH kinase activity in filamentous fungi and structural modelling of the novel enzyme from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Papadakis, Emmanouil; Topakas, E.

    2008-01-01

    ATP-NADH kinase phosphorylates NADH to produce NADPH at the expense of ATP. The present study describes Fusarium oxysporum NADH kinase (ATP:NADH 2'-phosphotransferase, EC 2.7.1.86), a novel fungal enzyme capable of synthesizing NADPH using NADH as the preferred diphosphonicotinamide (diphosphopyr...

  9. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage

    Science.gov (United States)

    The ability of chitosan and oligochitosan to enhance the resistance of ginger (Zingiber officinale) to rhizome rot, caused by Fusarium oxysporum, in storage was investigated. Both chitosan and oligochitosan at 1 and 5 g/L significantly inhibited rhizome rot, relative to the untreated control, with...

  10. FUBT, a putative MFS transporter, promotes secretion of fusaric acid in the cotton pathogen Fusarium oxysporum f.sp. vasinfectum

    Science.gov (United States)

    Fusaric acid (FA), a phytotoxic polyketide produced by Fusarium oxysporum f. sp. vasinfectum (FOV), has been shown to be associated with disease symptoms on cotton. A gene located upstream of the polyketide synthase gene responsible for the biosynthesis of FA is predicted to encode a member of the ...

  11. Media for efficient generating nitrate- - nonutilizing (NIT) mutants of Verticillium dahliae, Colletotrichum gloeosporioides, Colletotrichum lindemuthianum and Fusarium oxysporum.

    NARCIS (Netherlands)

    Rataj-Guranowska, M.; Pieczul, K.; Nowak, E.; Hiemstra, J.A.; Drapikowska, M.

    2001-01-01

    The effect of several media amended wit potassium chlorate (1.5% and 6%) on generation of nit mutants, especially nit M mutants from Verticillium dahliae, Colletotrichum gloeosporioides, Colletotrichum lindemuthianum and Fusarium oxysporum were studied. For all species minimal medium with 6%

  12. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum

    NARCIS (Netherlands)

    Dijksterhuis, J; Sanders, M; Gorris, L G; Smid, E J

    1999-01-01

    Interaction of Fusarium oxysporum and Paenibacillus polymyxa starts with polar attachment of bacteria to the fungal hyphae followed by the formation of a large cluster of non-motile cells embedded in an extracellular matrix in which the bacteria develop endospores. Enumeration of fungal viable count

  13. Biocontrol potential of salinity tolerant mutants of Trichoderma harzianum against Fusarium oxysporum Potencial de biocontrole de mutantes sal-tolerantes de Trichoderma harzianum contra Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Hassan Abdel-Latif A. Mohamed

    2006-06-01

    Full Text Available Exposing a wild-type culture of Trichoderma harzianum to gamma irradiation induced two stable salt-tolerant mutants (Th50M6 and Th50M11. Under saline conditions, both mutants greatly surpassed their wild type strain in growth rate, sporulation and biological proficiency against Fusarium oxysporum, the causal agent of tomato wilt disease. Tolerant T. harzianum mutants detained a capability to grow and convinced sporulation in growth media containing up to 69 mM NaCl. In comparison with their parent strain, characterization of both mutants confirmed that they have reinforced contents of proline and hydroxyproline, relatively higher sodium content compared to potassium, calcium or magnesium contents, higher level of total phenols. Electrophoretic analysis of total soluble proteins in the salt tolerance mutant Th50M6 showed different bands accumulated in response to 69 mM NaCl. Data also showed that mutants produce certain active metabolites, such as chitinases, cellulases, beta-galactosidases, as well as, some antibiotics i.e., trichodermin, gliotoxin and gliovirin. Trichoderma mutants significantly reduced wilt disease incidence and improved yield and mineral contents of tomato plants under both saline and non-saline soil conditions, as well as, under infested and natural conditions. T. harzianum mutants were also more efficient in dropping the F. oxysporum growth in rhizosphere compared to the wild type strain. Population density of both mutants in rhizosphere far exceeded that of T. harzianum wild type strain.A exposição de uma cepa selvagem de Trichoderma harzianum à irradiação gama induziu dois mutantes tolerantes a sal (Th50M6 e Th50M11. Em condições salinas, os dois mutantes foram muito superiores à cepa selvagem em relação à velocidade de multiplicação, esporulação e eficiência contra Fusarium oxysporum, o agente causador da doença wilt do tomate. Os mutantes tolerantes foram capazes de multiplicação e esporulação em

  14. MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to Fusarium oxysporum

    Science.gov (United States)

    Ouyang, Shouqiang; Park, Gyungsoon; Atamian, Hagop S.; Han, Cliff S.; Stajich, Jason E.; Kaloshian, Isgouhi; Borkovich, Katherine A.

    2014-01-01

    MicroRNAs (miRNAs) suppress the transcriptional and post-transcriptional expression of genes in plants. Several miRNA families target genes encoding nucleotide-binding site–leucine-rich repeat (NB-LRR) plant innate immune receptors. The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. We explored a role for miRNAs in tomato defense against F. oxysporum using comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato cultivars. slmiR482f and slmiR5300 were repressed during infection of Motelle with F. oxysporum. Two predicted mRNA targets each of slmiR482f and slmiR5300 exhibited increased expression in Motelle and the ability of these four targets to be regulated by the miRNAs was confirmed by co-expression in Nicotiana benthamiana. Silencing of the targets in the resistant Motelle cultivar revealed a role in fungal resistance for all four genes. All four targets encode proteins with full or partial nucleotide-binding (NB) domains. One slmiR5300 target corresponds to tm-2, a susceptible allele of the Tomato Mosaic Virus resistance gene, supporting functions in immunity to a fungal pathogen. The observation that none of the targets correspond to I-2, the only known resistance (R) gene for F. oxysporum in tomato, supports roles for additional R genes in the immune response. Taken together, our findings suggest that Moneymaker is highly susceptible because its potential resistance is insufficiently expressed due to the action of miRNAs. PMID:25330340

  15. Chronic infection due to Fusarium oxysporum mimicking lupus vulgaris: case report and review of cutaneous involvement in fusariosis.

    Science.gov (United States)

    Pereiro, M; Abalde, M T; Zulaica, A; Caeiro, J L; Flórez, A; Peteiro, C; Toribio, J

    2001-01-01

    A 67-year-old female presented with a 20-year-old lesion involving the right ear and preauricular area mimicking tuberculous lupus. Fusarium oxysporum infection was confirmed by biopsy studies and cultures. The biopsy specimen showed an unusually extensive dermal invasion with fungal hyphae. This is an uncommon clinical presentation for Fusarium infection in a healthy patient. When referred to us, the patient had received antifungal therapy with itraconazole without any benefit. Improvement was obtained with fluconazole therapy. The spectrum of cutaneous involvement related to Fusarium spp. includes toxic reactions, colonization, superficial indolent infection, deep cutaneous or subcutaneous infections and disseminated infection.

  16. Lipopeptide biosurfactant from Bacillus thuringiensis pak2310: A potential antagonist against Fusarium oxysporum.

    Science.gov (United States)

    Deepak, R; Jayapradha, R

    2015-03-01

    The aims of the study were to evaluate the effects of a biosurfactant obtained from a novel Bacillus thuringiensis on Fusarium oxysporum to determine the morphological changes in the structure of the fungi and its biofilm in the presence of the biosurfactant and to evaluate the toxicity of the biosurfactant on HEp-2 human epithelial cell lines. The strain was screened and isolated from petroleum contaminated soil based on the E24 emulsification index. The biosurfactant was produced on glycerol, extracted using chloroform:methanol system and purified using HPLC. The purified fraction showing both surface activity (emulsification and oil-spread activity) and anti-fusarial activity (agar well diffusion method) was studied using FT-IR and MALDI-TOF MS, respectively. The minimum inhibitory concentration (MIC) and the biofilm inhibitory concentration (BIC) were determined using dilution method. The effect of biosurfactant on the morphology of Fusarium oxysporum was monitored using light microscopy and confocal laser scanning microscopy (for biofilm). The purified surfactant showed the presence of functional groups like that of surfactin in the FT-IR spectra and MALDI-TOF MS estimated the molecular weight as 700Da. The MIC and BIC were estimated to be 0.05 and 0.5mg/mL, respectively. The molecule was also non-toxic to HEp-2 cell lines at 10× MIC. A non-toxic and effective anti-Fusarium biosurfactant, that is both safe for human use and to the environment, has been characterized. The growth and metabolite production using glycerol (major byproduct of biodiesel and soap industries) also adds up to the efficiency and ecofriendly nature of this biosurfactant. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Prevalence of Deg Nala disease in eastern India and its reproduction in buffaloes by feeding Fusarium oxysporum infested rice straw

    Institute of Scientific and Technical Information of China (English)

    P Dandapat; PK Nanda; S Bandyopadhyay; Anmol Kaushal; A Sikdar

    2011-01-01

    Objective: To undertake a study on prevalence of Deg Nala disease in eastern states of India and to reproduce the disease in buffaloes by the Fusarium spp., isolated from the affected region.Methods:During this investigation, a survey was conducted covering four states of eastern region to identify the Deg Nala cases as well as to isolate and characterize the causative agent(s). An experimental study was carried out to reproduce the disease in healthy male buffaloes (2-3 years age) by randomly dividing them into five groups (four in each group). Each individual group was fed with rice straw artificially infested with either of the two representative isolates ofFusarium oxysporum (F. oxysporum) (F01, F02) or representative reference strains of Fusarium equiseti (F. equiseti) (ITCCF-2470) and Fusarium moniliforme (F. moniliforme) (ITCCF-4821) for 30 days, whereas the control group was fed with normal rice straw only. Results: A total of 658 Deg Nala cases were recorded and 12 Fusarium isolates were identified from the mouldy rice straw collected from these affected areas. The characterization of the isolates revealed three species viz., F. oxysporum, F. equiseti and F. moniliforme, among which F. oxysporum was predominant. The disease was artificially reproduced in three buffaloes in F01 group and one in F02 group within 20-23 days by feeding F. oxysporum infested rice straw which resembled the clinical symptoms and gross lesions of natural Deg Nala cases. Conclusions: The field investigation and laboratory studies, including experimental production of Deg Nala disease suggest the possible involvement of mycotoxins. However, further investigations needs to be done to understand nature of the toxic factors involved in production of the Deg Nala disease.

  18. Photodynamic treatment with phenothiazinium photosensitizers kills both ungerminated and germinated microconidia of the pathogenic fungi Fusarium oxysporum, Fusarium moniliforme and Fusarium solani.

    Science.gov (United States)

    de Menezes, Henrique Dantas; Tonani, Ludmilla; Bachmann, Luciano; Wainwright, Mark; Braga, Gilberto Úbida Leite; von Zeska Kress, Marcia Regina

    2016-11-01

    The search for alternatives to control microorganisms is necessary both in clinical and agricultural areas. Antimicrobial photodynamic treatment (APDT) is a promising light-based approach that can be used to control both human and plant pathogenic fungi. In the present study, we evaluated the effects of photodynamic treatment with red light and four phenothiazinium photosensitizers (PS): methylene blue (MB), toluidine blue O (TBO), new methylene blue N (NMBN) and the phenothiazinium derivative S137 on ungerminated and germinated microconidia of Fusarium oxysporum, F. moniliforme, and F. solani. APDT with each PS killed efficiently both the quiescent ungerminated microconidia and metabolically active germinated microconidia of the three Fusarium species. Washing away the unbound PS from the microconidia (both ungerminated and germinated) before red light exposure reduced but did not prevent the effect of APDT. Subcelullar localization of PS in ungerminated and germinated microconidia and the effects of photodynamic treatment on cell membranes were also evaluated in the three Fusarium species. APDT with MB, TBO, NMBN or S137 increased the membrane permeability in microconidia and APDT with NMBN or S137 increased the lipids peroxidation in microconidia of the three Fusarium species. These findings expand the understanding of photodynamic inactivation of filamentous fungi with phenothiazinium PS. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Evaluation of Green Manure Amendments for the Management of Fusarium Basal Rot (Fusarium oxysporum f.sp. cepae on Shallot

    Directory of Open Access Journals (Sweden)

    Assefa Sintayehu

    2014-01-01

    Full Text Available Shallot (Allium cepa L. var. ascalonicum is the most traditional vegetable crop in Ethiopia. Shallot is susceptible to a number of diseases that reduce yield and quality, among which fusarium basal rot (FBR caused by Fusarium oxysporum f.sp. cepae (Foc is one of the most important yield limiting factors in Ethiopia. The present study was designed to evaluate the effectiveness of Brassica crops for the management of shallot FBR on shallot. The experiments were carried out at Debre Zeit Agricultural Research Center using cabbage (Brassica oleracea, garden cress (Lepidium sativum, Ethiopia mustard (B. carinata, and rapeseed (B. napus. The evaluations were done under in vitro and greenhouse conditions. Under in vitro test condition it was confirmed that extracts of Ethiopian mustard and rapeseed showed higher inhibition on the growth of Foc pathogen compared to control. Data on seedling emergence, plant height, plant stand, disease incidence, severity, cull bulbs, and bulb weight were collected in greenhouse experiment. The green manure amendments of rapeseed and Ethiopian mustard significantly reduced disease incidence by 21% and 30% and disease severity by 23% and 29%, respectively. However the plant emergency was not significantly different among treatments in greenhouse test. These results indicated that Ethiopian mustard and rapeseed crops have potential as green manure for the management of FBR disease of shallot crop.

  20. Comparative genomics provide a rapid detection ofFusarium oxysporum f. sp.conglutinans

    Institute of Scientific and Technical Information of China (English)

    LING Jian; ZHANG Ji-xiang; ZENG Feng; CAO Yue-xia; XIE Bing-yan; YANG Yu-hong

    2016-01-01

    Fusarium oxysporumf. sp. conglutinans(Foc) is the causal agent ofFusarium wilt disease ofBrassica oleracea. A rapid, accurate, and reliable method to detect and identify plant pathogens is vitaly important to integrated disease management. In this study, using a comparative genome analysis amongFusarium oxysporum (Fo), we developed aFoc-speciifc primer set (Focs-1/Focs-2) and established a multiplex-PCR assay. In the assay, the Focs-1/Focs-2 and universal primers for Fusariumspecies(W106R/F106S) could be used to detectFoc isolates in a single PCR reaction. With the optimized PCR parameters, the multiplex-PCR assay showed a high speciifcity for detectingFoc and was very sensitive to detect as little as 100 pg of pureFoc genomic DNA or 1000 spores in 1 g of twice-autoclaved soil. We also demonstrated thatFoc isolates were easily detected from infected plant tissues, as wel as from natural ifeld soils, using the multiplex-PCR assay. To our knowledge, this is a ifrst report on detectionFo by comparative genomic method.

  1. Isolation of vanilla-endophytic bacteria (Vanilla planifolia with in vitro biocontrol activity against Fusarium oxysporum f. sp. Vanillae

    Directory of Open Access Journals (Sweden)

    Karol Jiménez-Quesada

    2015-06-01

    Full Text Available Vanilla sp. genus belongs to Orchidaceae family, and V. planifolia, V. pompona and V. tahitensis. are species of commercial interest. The quality classification of vanilla is made according to the length of the capsule and vanillin content, which is used to make food and beverage, as raw material in the pharmaceutical industry and for the production of cosmetics and perfumes, among others. Currently, root rot caused by the fungus Fusarium oxyporum f. sp. Vanillae is considered to be the biggest problem facing vanilla production, causing 30 to 52% of plant death, attacking adventitious roots and preventing this plant is able to absorb water and nutrients. The fungus cannot be eradicated by the action of chemicals that damage the viability of the plants, and because the cultivation of vanilla in agroforestry systems without the application of agrochemicals is an activity that is gaining interest among small producers country. It is for this reason why was studied the ability of control of vanilla endophytic bacteria isolated from samples from Corcovado, Puriscal, Dota and Guápiles, by testing in vitro antagonism between asylee bacteria and fungus F. oxysporum, giving results about promising candidate B1M11 to respond to pathogen attack, which was corroborated by the appearance of a halo of inhibition of fungal growth on plate.

  2. Adaptation of Fusarium oxysporum and Fusarium dimerum to the specific aquatic environment provided by the water systems of hospitals.

    Science.gov (United States)

    Steinberg, Christian; Laurent, Julie; Edel-Hermann, Véronique; Barbezant, Marie; Sixt, Nathalie; Dalle, Frédéric; Aho, Serge; Bonnin, Alain; Hartemann, Philippe; Sautour, Marc

    2015-06-01

    Members of the Fusarium group were recently detected in water distribution systems of several hospitals in the world. An epidemiological investigation was conducted over 2 years in hospital buildings in Dijon and Nancy (France) and in non-hospital buildings in Dijon. The fungi were detected only within the water distribution systems of the hospital buildings and also, but at very low concentrations, in the urban water network of Nancy. All fungi were identified as Fusarium oxysporum species complex (FOSC) and Fusarium dimerum species complex (FDSC) by sequencing part of the translation elongation factor 1-alpha (TEF-1α) gene. Very low diversity was found in each complex, suggesting the existence of a clonal population for each. Density and heterogeneous distributions according to buildings and variability over time were explained by episodic detachments of parts of the colony from biofilms in the pipes. Isolates of these waterborne populations as well as soilborne isolates were tested for their ability to grow in liquid medium in the presence of increasing concentrations of sodium hypochlorite, copper sulfate, anti-corrosion pipe coating, at various temperatures (4°-42 °C) and on agar medium with amphotericin B and voriconazole. The waterborne isolates tolerated higher sodium hypochlorite and copper sulfate concentrations and temperatures than did soilborne isolates but did not show any specific resistance to fungicides. In addition, unlike waterborne isolates, soilborne isolates did not survive in water even supplemented with glucose, while the former developed in the soil as well as soilborne isolates. We concluded the existence of homogeneous populations of FOSC and FDSC common to all contaminated hospital sites. These populations are present at very low densities in natural waters, making them difficult to detect, but they are adapted to the specific conditions offered by the complex water systems of public hospitals in Dijon and Nancy and probably other

  3. Live-cell imaging of the early stages of colony development in Fusarium oxysporum in vitro and ex vivo during infection of a human corneal model

    OpenAIRE

    Kurian, Smija Mariam

    2016-01-01

    ABSTRACTThe University of ManchesterName: Smija Mariam KurianDegree title: Doctor of PhilosophyResearch title: Live-cell imaging of the early stages of colony development in Fusarium oxysporum in vitro and ex vivo during infection of a human corneal modelDate: May 2016Abstract: Fusarium oxysporum is a major fungal plant pathogen and emerging human pathogen. It has been hypothesised that conidial anastomosis tube (CAT) fusion may facilitate horizontal gene/chromosome transfer that could result...

  4. Genome and Transcriptome Analysis of the Fungal Pathogen Fusarium oxysporum f. sp. cubense Causing Banana Vascular Wilt Disease

    Science.gov (United States)

    Zeng, Huicai; Fan, Dingding; Zhu, Yabin; Feng, Yue; Wang, Guofen; Peng, Chunfang; Jiang, Xuanting; Zhou, Dajie; Ni, Peixiang; Liang, Changcong; Liu, Lei; Wang, Jun; Mao, Chao

    2014-01-01

    Background The asexual fungus Fusarium oxysporum f. sp. cubense (Foc) causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.). To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced. Methodology/Principal Findings Genome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1), the Foc race 4 isolate (Foc4) has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana ‘Brazil’ in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety ‘Brazil’. Conclusions/Significance Foc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will thus advance

  5. Genome and transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. cubense causing banana vascular wilt disease.

    Directory of Open Access Journals (Sweden)

    Lijia Guo

    Full Text Available BACKGROUND: The asexual fungus Fusarium oxysporum f. sp. cubense (Foc causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.. To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced. METHODOLOGY/PRINCIPAL FINDINGS: Genome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1, the Foc race 4 isolate (Foc4 has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana 'Brazil' in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety 'Brazil'. CONCLUSIONS/SIGNIFICANCE: Foc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will

  6. Molecular genetic characterization of the koa-wilt pathogen (Fusarium oxysporum): Application of molecular genetic tools toward improving koa restoration in Hawai'i

    Science.gov (United States)

    Mee-Sook Kim; Jane E. Stewart; Nicklos Dudley; John Dobbs; Tyler Jones; Phil G. Cannon; Robert L. James; Kas Dumroese; Ned B. Klopfenstein

    2015-01-01

    Several forest diseases are causing serious threats to the native Hawaiian forest. Among them, koawilt disease (caused by Fusarium oxysporum) is damaging to native populations of koa (Acacia koa), and it also hinders koa restoration/reforestation. Because F. oxysporum likely represents a complex of species with distinct pathogenic activities, more detailed...

  7. Wilted cucumber plants infected by Fusarium oxysporum f. sp. cucumerinum do not suffer from water shortage.

    Science.gov (United States)

    Sun, Yuming; Wang, Min; Li, Yingrui; Gu, Zechen; Ling, Ning; Shen, Qirong; Guo, Shiwei

    2017-09-01

    Fusarium wilt is primarily a soil-borne disease and results in yield loss and quality decline in cucumber (Cucumis sativus). The main symptom of fusarium wilt is the wilting of entire plant, which could be caused by a fungal toxin(s) or blockage of water transport. To investigate whether this wilt arises from water shortage, the physiological responses of hydroponically grown cucumber plants subjected to water stress using polyethylene glycol (PEG, 6000) were compared with those of plants infected with Fusarium oxysporum f. sp. cucumerinum (FOC). Parameters reflecting plant water status were measured 8d after the start of treatment. Leaf gas exchange parameters and temperature were measured with a LI-COR portable open photosynthesis system and by thermal imaging. Chlorophyll fluorescence and chloroplast structures were assessed by imaging pulse amplitude-modulated fluorometry and transmission electron microscopy, respectively. Cucumber water balance was altered after FOC infection, with decreased water absorption and hydraulic conductivity. However, the responses of cucumber leaves to FOC and PEG differed in leaf regions. Under water stress, measures of lipid peroxidation (malondialdehyde) and chlorophyll fluorescence indicated that the leaf edge was more seriously injured, with a higher leaf temperature and disrupted leaf water status compared with the centre. Here, abscisic acid (ABA) and proline were negatively correlated with water potential. In contrast, under FOC infection, membrane damage and a higher temperature were observed in the leaf centre while ABA and proline did not vary with water potential. Cytologically, FOC-infected cucumber leaves exhibited circular chloroplasts and swelled starch grains in the leaf centre, in which they again differed from PEG-stressed cucumber leaves. This study illustrates the non-causal relationship between fusarium wilt and water transport blockage. Although leaf wilt occurred in both water stress and FOC infection, the

  8. TOMATO-Fusarium oxysporum INTERACTIONS: I- CHITOSAN AND MSB EFFECTIVELY INHIBITS FUNGAL GROWTH

    Directory of Open Access Journals (Sweden)

    A. Borges Jr

    2000-01-01

    Full Text Available Quitosana y menadiona bisulfito de sodio (MBS fueron aplicados como enmendantes y recubrimiento de semi- lla, para probar su efecto combinado sobre el crecimiento in vitro de Fusarium oxysporum f.sp. lycopersicii (FOL y el de- sarrollo de la enfermedad en semillas de plantas de tomate. En agar enmendante, la quitosana combinada con el MBS (quitosana 1.0 mg.mL-1 + MBS 0.1 mg.mL-1 inhibió significati- vamente el crecimiento de FOL. Solamente la quitosana como enmendante y como recubrimiento a la semilla fue efectiva, disminuyendo la incidencia de la enfermedad en las raíces emergentes de las semillas de tomate.

  9. Studies on the control of Fusarium oxysporum f.sp.cubense with Trichoderma

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yue-li; LIU Kai-qi; XIANG Mei-mei; LIU Ren

    2004-01-01

    @@ One hundred and fifty one isolates of Trichoderma were collected mainly from more than 40 soil samples and other materials in Guangdong Province (including Chigang, Zhanjiang, Wuchuan,Panyu, Zhaoqing, Dongguan, Humen, Qingyuan, Guanzhou) and the soil samples were also from different plant rhizosphere (including rice, different fruits and different vegetables). It was shown that 39 isolates of Trichoderma grew faster than other isolates using growth velocity experiments.The 39 isolates could effectively inhibit Fusarium oxysporum f. sp. cubense (E. F. Sm) Sny. &Hans.by dual cultural experiments. The inhibited activity included the antifungal activities of its metabolite,mycoparasitic activities and the lytic enzymes by dual culture, electronic microcopy and enzyme assay.At present, studies on the taxonomy of the 151 isolates of Trichoderma are carried out in our experiments, some Trichoderma species aggregates will be identified according to the taxonomy system revised by Rifai and Bissett.

  10. Eficiência dos extratos de alho e agave no controle de Fusarium oxysporum S.

    OpenAIRE

    Morais,Martival dos Santos; Araújo, Egberto; Araújo,Afrânio César de; Belém,Lindomar de Farias

    2010-01-01

    Objetivou-se com este trabalho avaliar o efeito dos extratos de alho e agave sobre Fusarium oxysporum, agente causador da murcha-de-fusário no feijão-vagem. Em ensaio conduzido em laboratório, avaliou-se a germinação de conídios e o crescimento micelial em esquema fatorial 2x5 com seis repetições, cujos fatores foram: dois extratos vegetais em cinco concentrações. Em ensaio realizado em casa de vegetação, foi avaliada a incidência de plantas com sintomas de murcha, trinta dias após o plantio....

  11. Extracción del ADN de Fusarium Oxysporum f.sp. Dianthi

    OpenAIRE

    2010-01-01

    Se estudia la utílización de dos métodos para la extracción del ADN del Fusarium o.xy.sporum f.sp. Dianthi. En los dos métodos la pared del hongo se rompió con nitrógeno líquido, uno de ellos empleó como solución extractora bromuro de cetiltrimetil amonio (BCTA) y el otro una solución de sacarosa con altas concentraciones de protcasa y EDTA. Para la desproteinización ambos métodos utilizaron soluciones de fcnol-clorofonno y enzimas proteolítícas. El ADN obtenido se digirió con enzimas d...

  12. Extracción del adn de fusarium oxysporum f.sp. dianthi

    OpenAIRE

    Sixta T. Martínez; Soto, Carlos Y.

    2010-01-01

    Se estudia la utílización de dos métodos para la extracción del ADN del Fusarium o.xy.sporum f.sp. Dianthi. En los dos métodos la pared del hongo se rompió con nitrógeno líquido, uno de ellos empleó como solución extractora bromuro de cetiltrimetil amonio (BCTA) y el otro una solución de sacarosa con altas concentraciones de protcasa y EDTA. Para la desproteinización ambos métodos utilizaron soluciones de fcnol-clorofonno y enzimas proteolítícas. El ADN obtenido se digirió con enzimas d...

  13. Fermented Flourensia cernua Extracts and Their in vitro Assay Against Penicillium expansum and Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Diana Jasso-Cantu

    2013-01-01

    Full Text Available The antioxidant activity and efficiency of aqueous extracts of fermented tarbush (Fluorensia cernua DC in the inhibition of two phytopathogenic fungi, Penicillium expansum and Fusarium oxysporum, have been evaluated. A solid-state fermentation of tarbush leaves by Aspergillus niger GH1 was performed to enhance the biological activities of the obtained extracts. Fungal culture conditions were: initial moisture of 60 %, pH=5.5 and temperature of 30 °C during 96 h. Aqueous extracts were obtained every 12 hours during the culture time. Antioxidant activity was evaluated by DPPH method. The aqueous extract of fermented tarbush had the highest antioxidant activity at 12 h, which was 63 % higher than the control (unfermented material. Fermentation enhanced the fungicidal effect against both phytopathogenic microorganisms at a concentration of 0.5 g/L. This study demonstrated that fungal fermentation of tarbush increased the biological activities of the aqueous extracts.

  14. Rapid Synthesis of Silver Nanoparticles from Fusarium oxysporum by Optimizing Physicocultural Conditions

    Directory of Open Access Journals (Sweden)

    Sonal S. Birla

    2013-01-01

    Full Text Available Synthesis of silver nanoparticles (SNPs by fungi is emerging as an important branch of nanotechnology due to its ecofriendly, safe, and cost-effective nature. In order to increase the yield of biosynthesized SNPs of desired shape and size, it is necessary to control the cultural and physical parameters during the synthesis. We report optimum synthesis of SNPs on malt extract glucose yeast extract peptone (MGYP medium at pH 9–11, 40–60°C, and 190.7 Lux and in sun light. The salt concentrations, volume of filtrate and biomass quantity were found to be directly proportional to the yield. The optimized conditions for the stable and rapid synthesis will help in large scale synthesis of monodispersed SNPs. The main aim of the present study was to optimize different media, temperature, pH, light intensity, salt concentration, volume of filtrate, and biomass quantity for the synthesis of SNPs by Fusarium oxysporum.

  15. Response of embryo axes of germinating seeds of yellow lupine to Fusarium oxysporum.

    Science.gov (United States)

    Morkunas, Iwona; Bednarski, Waldemar; Kozłowska, Monika

    2004-06-01

    Defence responses of embryo axes of Lupinus luteus L. cv. Polo were studied 48-96 h after inoculation with Fusarium oxysporum Schlecht f.sp. lupini. The infection restricted the growth of embryo axes, the lengths of infected embryo axes 72 and 96 h after inoculation were 11 and 12 mm less in the controls, respectively, while their masses c. 0.03 g less than in the controls. The concentration of H2O2 in embryo axes of inoculated germinating seeds was higher than in the control. This was probably a consequence of oxidative burst as well as H2O2 generation by the invading necrotrophic fungal pathogen. EPR-based analyses detected the presence of free radicals with g1 and g2 values of 2.0052 +/- 0.0004 and 2.0031 +/- 0.0005, respectively. Concentrations of the radicals 72 and 96 h after inoculation were 50% higher than in the control. The values of the spectroscopic splitting coefficients suggest that they are quinone radicals. However, inoculated embryo axes possess a number of adaptive mechanisms protecting them from oxidative damage. A twofold increase in catalase (CAT, EC 1.11.1.6) activity was evidenced in embryo axes infected with F. oxysporum Schlecht f. sp. lupini, as compared to the control 48-96 h after inoculation. Superoxide dismutase (SOD, EC 1.15.1.1) activity 96 h after inoculation was 80% higher than in the control. Furthermore, EPR-based analyses revealed a higher concentration of Mn2+ ions after 72 h for inoculated embryo axes, as compared to the control. On the other hand, no increase was detected in the concentration of thiobarbituric acid reactive substances (products of lipid peroxidation) in infected embryo axes. The protective mechanisms induced in lupine embryo axes in response to F. oxysporum Schlecht f.sp. lupini were compared with responses to infections with pathogenic fungi elicited in other plant families.

  16. Miltefosine is effective against Candida albicans and Fusarium oxysporum nail biofilms in vitro.

    Science.gov (United States)

    Machado Vila, Taissa Vieira; Sousa Quintanilha, Natália; Rozental, Sonia

    2015-11-01

    Onychomycosis is a fungal nail infection that represents ∼50 % of all nail disease cases worldwide. Clinical treatment with standard antifungals frequently requires long-term systemic therapy to avoid chronic disease. Onychomycosis caused by non-dermatophyte moulds, such as Fusarium spp., and yeasts, such as Candida spp., is particularly difficult to treat, possibly due to the formation of drug-resistant fungal biofilms on affected areas. Here, we show that the alkylphospholipid miltefosine, used clinically against leishmaniasis and cutaneous breast metastases, has potent activity against biofilms of Fusarium oxysporum and Candida albicans formed on human nail fragments in vitro. Miltefosine activity was compared with that of commercially available antifungals in the treatment of biofilms at two distinct developmental phases: formation and maturation (pre-formed biofilms). Drug activity towards biofilms formed on nail fragments and on microplate surfaces (microdilution assays) was evaluated using XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assays, and drug effects on fingernail biofilms were analysed by scanning electron microscopy (SEM). For F. oxysporum, miltefosine at 8 μg ml- 1 inhibited biofilm formation by 93%, whilst 256 μg ml- 1 reduced the metabolic activity of pre-formed nail biofilms by 93%. Treatment with miltefosine at 1000 μg ml- 1 inhibited biofilm formation by 89% and reduced the metabolic activity of pre-formed C. albicans biofilms by 99%. SEM analyses of biofilms formed on fingernail fragments showed a clear reduction in biofilm biomass after miltefosine treatment, in agreement with XTT results. Our results show that miltefosine has potential as a therapeutic agent against onychomycosis and should be considered for in vivo efficacy studies, especially in topical formulations for refractory disease treatment.

  17. Discovery of a Novel Linoleate Dioxygenase of Fusarium oxysporum and Linoleate Diol Synthase of Colletotrichum graminicola.

    Science.gov (United States)

    Sooman, Linda; Oliw, Ernst H

    2015-12-01

    Fungal pathogens constitute serious threats for many forms of life. The pathogenic fungi Fusarium and Colletotrichum and their formae speciales (f. spp.) infect many types of crops with severe consequences and Fusarium oxysporum can also induce keratitis and allergic conditions in humans. These fungi code for homologues of dioxygenase-cytochrome P450 (DOX-CYP) fusion proteins of the animal heme peroxidase (cyclooxygenase) superfamily. The objective was to characterize the enzymatic activities of the DOX-CYP homologue of Colletotrichum graminicola (EFQ34869) and the DOX homologue of F. oxysporum (EGU79548). The former oxidized oleic and linoleic acids in analogy with 7,8-linoleate diol synthases (LDSs), but with the additional biosynthesis of 8,11-dihydroxylinoleic acid. The latter metabolized fatty acids to hydroperoxides with broad substrate specificity. It oxidized 20:4n-6 and 18:2n-6 to hydroperoxides with an R configuration at the (n-10) positions, and other n-6 fatty acids in the same way. [11S-(2)H]18:2n-6 was oxidized with retention and [11R-(2)H]18:2n-6 with loss of deuterium, suggesting suprafacial hydrogen abstraction and oxygen insertion. Fatty acids of the n-3 series were oxidized less efficiently and often to hydroperoxides with an R configuration at both (n-10) and (n-7) positions. The enzyme spans 1426 amino acids with about 825 residues in the N-terminal domain with DOX homology and 600 residues at the C-terminal domain without homology to other enzymes. We conclude that fungal oxylipins can be formed by two novel subfamilies of cyclooxygenase-related DOX.

  18. An investigation of a defensive chitinase against Fusarium oxysporum in pepper leaf tissue

    Directory of Open Access Journals (Sweden)

    Khemika S. Lomthaisong

    2008-01-01

    Full Text Available Plant chitinase is classified as a PR-protein involved in a defense mechanism against a pathogen. This research aims to investigate a specific type of chitinase which is produced by pepper in response to an early defense against Fusarium oxysporum, which causes wilt disease. The changes of chitinase isozyme patterns in the inter- and intracellular fluids in the leaf of four cultivars of pepper (Capsicum annuum L. at day 1, 3, 5, 7 and 10 from fungal inoculation were analysed using SDS-PAGE in polyacrylamide gel supplemented with glycol chitin as a substrate. The levels of disease severity in the four varieties of pepper were also compared with the isozyme patterns. The results showed that the resistance of pepper to F. oxysporum attack corresponded to the expression of ~70 kDa chitinase band (Chi-3 in the intercellular fluid. Therefore, such chitinase could possibly be used as a protein marker to identify the tolerant line and as a springboard for further study of wilt disease control.

  19. Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum.

    Science.gov (United States)

    Guleria, Shiwani; Walia, Abhishek; Chauhan, Anjali; Shirkot, C K

    2016-09-02

    An alkaline protease gene was amplified from genomic DNA of Bacillus amyloliquefaciens SP1 which was involved in effective biocontrol of Fusarium oxysporum. We investigated the antagonistic capacity of protease of B. amyloliquifaciens SP1, under in vitro conditions. The 5.62 fold purified enzyme with specific activity of 607.69U/mg reported 24.14% growth inhibition of F. oxysporum. However, no antagonistic activity was found after addition of protease inhibitor i.e. PMSF (15mM) to purified enzyme. An 1149bp nucleotide sequence of protease gene encoded 382 amino acids of 43kDa and calculated isoelectric point of 9.29. Analysis of deduced amino acid sequence revealed high homology (86%) with subtilisin E of Bacillus subtilis. The B. amyloliquefaciens SP1 protease gene was expressed in Escherichiax coli BL21. The expressed protease was secreted into culture medium by E. coli and exhibited optimum activity at pH8.0 and 60°C. The most reliable three dimensional structure of alkaline protease was determined using Phyre 2 server which was validated on the basis of Ramachandran plot and ERRAT value. The expression and structure prediction of the enzyme offers potential value for commercial application in agriculture and industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Structure-Activity Relationship of α Mating Pheromone from the Fungal Pathogen Fusarium oxysporum.

    Science.gov (United States)

    Vitale, Stefania; Partida-Hanon, Angélica; Serrano, Soraya; Martínez-Del-Pozo, Álvaro; Di Pietro, Antonio; Turrà, David; Bruix, Marta

    2017-03-03

    During sexual development ascomycete fungi produce two types of peptide pheromones termed a and α. The α pheromone from the budding yeast Saccharomyces cerevisiae, a 13-residue peptide that elicits cell cycle arrest and chemotropic growth, has served as paradigm for the interaction of small peptides with their cognate G protein-coupled receptors. However, no structural information is currently available for α pheromones from filamentous ascomycetes, which are significantly shorter and share almost no sequence similarity with the S. cerevisiae homolog. High resolution structure of synthetic α-pheromone from the plant pathogenic ascomycete Fusarium oxysporum revealed the presence of a central β-turn resembling that of its yeast counterpart. Disruption of the-fold by d-alanine substitution of the conserved central Gly(6)-Gln(7) residues or by random sequence scrambling demonstrated a crucial role for this structural determinant in chemoattractant activity. Unexpectedly, the growth inhibitory effect of F. oxysporum α-pheromone was independent of the cognate G protein-coupled receptors Ste2 and of the central β-turn but instead required two conserved Trp(1)-Cys(2) residues at the N terminus. These results indicate that, despite their reduced size, fungal α-pheromones contain discrete functional regions with a defined secondary structure that regulate diverse biological processes such as polarity reorientation and cell division. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Identification of immunity related genes to study the Physalis peruviana--Fusarium oxysporum pathosystem.

    Science.gov (United States)

    Enciso-Rodríguez, Felix E; González, Carolina; Rodríguez, Edwin A; López, Camilo E; Landsman, David; Barrero, Luz Stella; Mariño-Ramírez, Leonardo

    2013-01-01

    The Cape gooseberry (Physalisperuviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC-NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance.

  2. Identification of immunity related genes to study the Physalis peruviana--Fusarium oxysporum pathosystem.

    Directory of Open Access Journals (Sweden)

    Felix E Enciso-Rodríguez

    Full Text Available The Cape gooseberry (Physalisperuviana L is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site, CC (Coiled-Coil, TIR (Toll/Interleukin-1 Receptor. We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene architecture, 17 Receptor like kinase (RLKs candidates related to PAMP-Triggered Immunity (PTI, eight (TIR-NBS-LRR, or TNL and nine (CC-NBS-LRR, or CNL candidates related to Effector-Triggered Immunity (ETI genes among others. These candidate genes were categorized by molecular function (98%, biological process (85% and cellular component (79% using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance.

  3. Methyl Salicylate Level Increase in Flax after Fusarium oxysporum Infection Is Associated with Phenylpropanoid Pathway Activation

    Science.gov (United States)

    Boba, Aleksandra; Kostyn, Kamil; Kostyn, Anna; Wojtasik, Wioleta; Dziadas, Mariusz; Preisner, Marta; Szopa, Jan; Kulma, Anna

    2017-01-01

    Flax (Linum usitatissimum) is a crop plant valued for its oil and fiber. Unfortunately, large losses in cultivation of this plant are caused by fungal infections, with Fusarium oxysporum being one of its most dangerous pathogens. Among the plant's defense strategies, changes in the expression of genes of the shikimate/phenylpropanoid/benzoate pathway and thus in phenolic contents occur. Among the benzoates, salicylic acid, and its methylated form methyl salicylate play an important role in regulating plants' response to stress conditions. Upon treatment of flax plants with the fungus we found that methyl salicylate content increased (4.8-fold of the control) and the expression profiles of the analyzed genes suggest that it is produced most likely from cinnamic acid, through the β-oxidative route. At the same time activation of some genes involved in lignin and flavonoid biosynthesis was observed. We suggest that increased methyl salicylate biosynthesis during flax response to F. oxysporum infection may be associated with phenylpropanoid pathway activation. PMID:28163709

  4. VEGETATIVE COMPATIBILITY GROUPS OF FUSARIUM OXYSPORUM, THE CAUSAL ORGANISM OF VASCULAR WILT ON ROSELLE IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    K.H. Ooi

    1999-01-01

    Full Text Available Forty strains of Fusarium oxysporvm isolated from roselle (Hibiscus sabdariffa var. sabdariffa showing vascular wilt symptoms in three states (Terengganu, Penang and Ipoh in the northern Malaysian Peninsula were used to investigate the vegetative co mpatibility. Nitrate-nonutilizing (nil mutants were recovered from all the strains tested and subsequently used to study vegetative compatibility groups (VCG within the population by nit mutants pairings on minimal medium. Thirteen VCGs were found and none were vegetatively compatible with those of other formae speciales (f. spp. such as asparagi and cubense, and non-pathogenic strains from paddy and oil palm. The results indicate that there is substantial genetic diversity in F. oxysporum that causes vascular wilt disease on roselle as reflected by multiple VCGs, but the distribution of strains into the VCGs is not even as there are 26 representatives in VCG-1001M, two in VCG-1003M and VCG-1013M and only one in the other VCGs. This study may provide new insight into the establishment of a new forma specialis off. oxysporum.

  5. Metabolic Engineering of Fusarium oxysporum to Improve Its Ethanol-Producing Capability.

    Science.gov (United States)

    Anasontzis, George E; Kourtoglou, Elisavet; Villas-Boâs, Silas G; Hatzinikolaou, Dimitris G; Christakopoulos, Paul

    2016-01-01

    Fusarium oxysporum is one of the few filamentous fungi capable of fermenting ethanol directly from plant cell wall biomass. It has the enzymatic toolbox necessary to break down biomass to its monosaccharides and, under anaerobic and microaerobic conditions, ferments them to ethanol. Although these traits could enable its use in consolidated processes and thus bypass some of the bottlenecks encountered in ethanol production from lignocellulosic material when Saccharomyces cerevisiae is used-namely its inability to degrade lignocellulose and to consume pentoses-two major disadvantages of F. oxysporum compared to the yeast-its low growth rate and low ethanol productivity-hinder the further development of this process. We had previously identified phosphoglucomutase and transaldolase, two major enzymes of glucose catabolism and the pentose phosphate pathway, as possible bottlenecks in the metabolism of the fungus and we had reported the effect of their constitutive production on the growth characteristics of the fungus. In this study, we investigated the effect of their constitutive production on ethanol productivity under anaerobic conditions. We report an increase in ethanol yield and a concomitant decrease in acetic acid production. Metabolomics analysis revealed that the genetic modifications applied did not simply accelerate the metabolic rate of the microorganism; they also affected the relative concentrations of the various metabolites suggesting an increased channeling toward the chorismate pathway, an activation of the γ-aminobutyric acid shunt, and an excess in NADPH regeneration.

  6. Nuclear dynamics and genetic rearrangement in heterokaryotic colonies of Fusarium oxysporum.

    Science.gov (United States)

    Shahi, Shermineh; Beerens, Bas; Bosch, Martin; Linmans, Jasper; Rep, Martijn

    2016-06-01

    Recent studies have shown horizontal transfer of chromosomes to be a potential key contributor to genome plasticity in asexual fungal pathogens. However, the mechanisms behind horizontal chromosome transfer in eukaryotes are not well understood. Here we investigated the role of conidial anastomosis in heterokaryon formation between incompatible strains of Fusarium oxysporum and determined the importance of heterokaryons for horizontal chromosome transfer. Using live-cell imaging we demonstrate that conidial pairing of incompatible strains under carbon starvation can result in the formation of viable heterokaryotic hyphae in F. oxysporum. Nuclei of the parental lines presumably fuse at some stage as conidia with a single nucleus harboring both marker histones (GFP- and RFP-tagged) are produced. Upon colony formation, this hybrid offspring is subject to progressive and gradual genome rearrangement. The parental genomes appear to become spatially separated and RFP-tagged histones, deriving from one of the strains, Fol4287, are eventually lost. With a PCR-based method we showed that markers for most of the chromosomes of this strain are lost, indicating a lack of Fol4287 chromosomes. This leaves offspring with the genomic background of the other strain (Fo47), but in some cases together with one or two chromosomes from Fol4287, including the chromosome that confers pathogenicity towards tomato.

  7. Etiology and Epidemiological Conditions Promoting Fusarium Root Rot in Sweetpotato.

    Science.gov (United States)

    Scruggs, A C; Quesada-Ocampo, L M

    2016-08-01

    Sweetpotato production in the United States is limited by several postharvest diseases, and one of the most common is Fusarium root rot. Although Fusarium solani is believed to be the primary causal agent of disease, numerous other Fusarium spp. have been reported to infect sweetpotato. However, the diversity of Fusarium spp. infecting sweetpotato in North Carolina is unknown. In addition, the lack of labeled and effective fungicides for control of Fusarium root rot in sweetpotato creates the need for integrated strategies to control disease. Nonetheless, epidemiological factors that promote Fusarium root rot in sweetpotato remain unexplored. A survey of Fusarium spp. infecting sweetpotato in North Carolina identified six species contributing to disease, with F. solani as the primary causal agent. The effects of storage temperature (13, 18, 23, 29, and 35°C), relative humidity (80, 90, and 100%), and initial inoculum level (3-, 5-, and 7-mm-diameter mycelia plug) were examined for progression of Fusarium root rot caused by F. solani and F. proliferatum on 'Covington' sweetpotato. Fusarium root rot was significantly reduced (P Fusarium spp. revealed the production of fumonisin B1 by F. proliferatum when infecting sweetpotato. This study is a step toward characterizing the etiology and epidemiology of Fusarium root rot in sweetpotato, which allows for improved disease management recommendations to limit postharvest losses to this disease.

  8. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors.

    Science.gov (United States)

    Thatcher, Louise F; Williams, Angela H; Garg, Gagan; Buck, Sally-Anne G; Singh, Karam B

    2016-11-03

    Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing necrotrophic fungi. We previously developed a model legume-infecting pathosystem based on the reference legume Medicago truncatula and a pathogenic F. oxysporum forma specialis (f. sp.) medicaginis (Fom). To dissect the molecular pathogenicity arsenal used by this root-infecting pathogen, we sequenced its transcriptome during infection of a susceptible and resistant host accession. High coverage RNA-Seq of Fom infected root samples harvested from susceptible (DZA315) or resistant (A17) M. truncatula seedlings at early or later stages of infection (2 or 7 days post infection (dpi)) and from vegetative (in vitro) samples facilitated the identification of unique and overlapping sets of in planta differentially expressed genes. This included enrichment, particularly in DZA315 in planta up-regulated datasets, for proteins associated with sugar, protein and plant cell wall metabolism, membrane transport, nutrient uptake and oxidative processes. Genes encoding effector-like proteins were identified, including homologues of the F. oxysporum f. sp. lycopersici Secreted In Xylem (SIX) proteins, and several novel candidate effectors based on predicted secretion, small protein size and high in-planta induced expression. The majority of the effector candidates contain no known protein domains but do share high similarity to predicted proteins predominantly from other F. oxysporum ff. spp. as well as other Fusaria (F. solani, F. fujikori, F. verticilloides, F. graminearum and F. pseudograminearum), and from another wilt pathogen of the same class, a Verticillium species. Overall, this suggests these novel effector candidates may play important roles in Fusaria and wilt pathogen virulence. Combining high coverage in planta RNA-Seq with knowledge of fungal pathogenicity

  9. Characterization of Fusarium isolates from asparagus fields in southwestern Ontario and influence of soil organic amendments on Fusarium crown and root rot.

    Science.gov (United States)

    Borrego-Benjumea, Ana; Basallote-Ureba, María J; Melero-Vara, José M; Abbasi, Pervaiz A

    2014-04-01

    Fusarium crown and root rot (FCRR) of asparagus has a complex etiology with several soilborne Fusarium spp. as causal agents. Ninety-three Fusarium isolates, obtained from plant and soil samples collected from commercial asparagus fields in southwestern Ontario with a history of FCRR, were identified as Fusarium oxysporum (65.5%), F. proliferatum (18.3%), F. solani (6.4%), F. acuminatum (6.4%), and F. redolens (3.2%) based on morphological or cultural characteristics and polymerase chain reaction (PCR) analysis with species-specific primers. The intersimple-sequence repeat PCR analysis of the field isolates revealed considerable variability among the isolates belonging to different Fusarium spp. In the in vitro pathogenicity screening tests, 50% of the field isolates were pathogenic to asparagus, and 22% of the isolates caused the most severe symptoms on asparagus. The management of FCRR with soil organic amendments of pelleted poultry manure (PPM), olive residue compost, and fish emulsion was evaluated in a greenhouse using three asparagus cultivars of different susceptibility in soils infested with two of the pathogenic isolates (F. oxysporum Fo-1.5 and F. solani Fs-1.12). Lower FCRR symptom severity and higher plant weights were observed for most treatments on 'Jersey Giant' and 'Grande' but not on 'Mary Washington'. On all three cultivars, 1% PPM consistently reduced FCRR severity by 42 to 96% and increased plant weights by 77 to 152% compared with the Fusarium control treatment. Populations of Fusarium and total bacteria were enumerated after 1, 3, 7, and 14 days of soil amendment. In amended soils, the population of Fusarium spp. gradually decreased while the population of total culturable bacteria increased. These results indicate that soil organic amendments, especially PPM, can decrease disease severity and promote plant growth, possibly by decreasing pathogen population and enhancing bacterial activity in the soil.

  10. HapX-Mediated Iron Homeostasis Is Essential for Rhizosphere Competence and Virulence of the Soilborne Pathogen Fusarium oxysporum[C][W][OA

    Science.gov (United States)

    López-Berges, Manuel S.; Capilla, Javier; Turrà, David; Schafferer, Lukas; Matthijs, Sandra; Jöchl, Christoph; Cornelis, Pierre; Guarro, Josep; Haas, Hubertus; Di Pietro, Antonio

    2012-01-01

    Soilborne fungal pathogens cause devastating yield losses and are highly persistent and difficult to control. During the infection process, these organisms must cope with limited availability of iron. Here we show that the bZIP protein HapX functions as a key regulator of iron homeostasis and virulence in the vascular wilt fungus Fusarium oxysporum. Deletion of hapX does not affect iron uptake but causes derepression of genes involved in iron-consuming pathways, leading to impaired growth under iron-depleted conditions. F. oxysporum strains lacking HapX are reduced in their capacity to invade and kill tomato (Solanum lycopersicum) plants and immunodepressed mice. The virulence defect of ΔhapX on tomato plants is exacerbated by coinoculation of roots with a biocontrol strain of Pseudomonas putida, but not with a siderophore-deficient mutant, indicating that HapX contributes to iron competition of F. oxysporum in the tomato rhizosphere. These results establish a conserved role for HapX-mediated iron homeostasis in fungal infection of plants and mammals. PMID:22968717

  11. Development of co-dominant SCAR markers linked to resistant gene against the Fusarium oxysporum f. sp. radicis-lycopersici.

    Science.gov (United States)

    Mutlu, Nedim; Demirelli, Aylin; Ilbi, Hülya; Ikten, Cengiz

    2015-09-01

    We developed highly reliable co-dominant SCAR markers linked to the Frl gene. FORL testing is difficult. The marker is expected to be quickly adapted for MAS by tomato breeders. Fusarium oxysporum f. sp. radicis-lycopersici causes Fusarium crown and root rot (FCR), an economically important soil-borne disease of tomato. The resistance against FCR is conferred by a single dominant gene (Frl) located on chromosome 9. The aim of this study was to develop molecular markers linked to the Frl gene for use in marker-assisted breeding (MAS) programs. The FCR-resistant 'Fla. 7781' and susceptible 'B560' lines were crossed, and F1 was both selfed and backcrossed to 'B560' to generate segregating F2 and BC1 populations. The two conserved set II (COSII) markers were found linked to the Frl gene, one co-segregated with FCR resistance in both F2 and BC1 populations and the other was 8.5 cM away. Both COSII markers were converted into co-dominant SCAR markers. SCARFrl marker produced a 950 and a 1000 bp fragments for resistant and susceptible alleles, respectively. The linkage of SCARFrl marker was confirmed in BC2F3 populations developed by backcrossing the resistant 'Fla. 7781' to five different susceptible lines. The SCARFrl marker has been in use in the tomato breeding programs in BATEM, Antalya, Turkey, since 2012 and has proved highly reliable. The SCARFrl marker is expected to aid in the development of FCR-resistant lines via marker-assisted selection (MAS).

  12. Native soil bacteria isolates in Mexico exhibit a promising antagonistic effect against Fusarium oxysporum f. sp. radicis-lycopersici.

    Science.gov (United States)

    Cordero-Ramírez, Jesús Damián; López-Rivera, Raquel; Figueroa-Lopez, Alejandro Miguel; Mancera-López, María Elena; Martínez-Álvarez, Juan Carlos; Apodaca-Sánchez, Miguel Ángel; Maldonado-Mendoza, Ignacio Eduardo

    2013-10-01

    Sinaloa state accounts for 23% of Mexico's tomato production. One constraint on this important crop is the Fusarium crown and root rot, caused by Fusarium oxysporum f. sp. radicis-lycopersici, which has been reported to reduce crop yield by up to 50%. In this study, we set out to identify bacterial populations which could be used to control this disease through natural antagonism. Five tomato rhizospheric soil samples were collected, dried for 1-week, and homogenized. Sub-samples were used to prepare an aqueous solution used to isolate microorganisms in pure cultures. Organisms were purified and grown separately, and used to generate a collection of 705 bacterial isolates. Thirty-four percent from this bank (254 strains) was screened against Forl, finding 27 bacteria displaying in vitro Forl growth inhibition levels from 5% to 60%. These isolates belonged to the genus Bacillus and their 16Sr DNA sequences showed that they are closely related to seven species and they were putatively designated as: B. subtilis, B. cereus, B. amyloliquefaciens, B. licheniformis, B. thuringiensis, B. megaterium, and B. pumilus. One isolate belonged to the genus Acinetobacter. Two B. subtilis isolates (144 and 151) and one B. cereus isolate (171) showed the best antagonistic potential against FCRRT when evaluated on seedlings. Plate and activity assays indicate that these isolates include a diverse repertoire of functional antagonistic traits that might explain their ability to control FCRRT. Moreover, bacteria showed partial hemolytic activity, and future research will be directed at ensuring that their application will be not harmful for humans and effective against Forl in greenhouse or field conditions.

  13. Antifungal activity of marigold fungicide Ⅰ and its mechanism on Fusarium oxysporum f.sp.niveum%万寿菊杀菌素Ⅰ抗菌性及其对西瓜枯萎病菌作用机理的初步研究

    Institute of Scientific and Technical Information of China (English)

    范志宏; 郭春绒; 王金胜

    2012-01-01

    Marigold fungicide I was studied about the antifungal activity on several pathogenic fungi and the mechanism against Fusarium oxysporum f. sp. niveum (FON), synthetic analogue of extracts of Tagetes pat-ula root. The results showed that marigold fungicide I remarkably inhibited the mycelial growth of several pathogenic fungi, which possessed the content and time effects on Fusarium oxysporum schlecht. f. sp. niveum, Phytophthpra capsici Loen, Botrytis cinerea Pers. and Fulviafulva (Cookee) Ciferri, threshold effects on Fusarium oxysporum f. sp. capsici and Gibberella zeae( Schw. )Petch and content effects on Glomerella gossypii (Southw. )Edgertin. Marigold fungicide I was applied on FON and manifested the following findings; reduced the dry weight of mycelium, amplified membrane permeability, shortly increased chitinase activity, but no change of POD isozyme. The electrophoresis of total protein by SDS- PAGE showed that marigold fungicide I apparently affected the species and expression amounts of protein of FON.

  14. Selection and differentiation of Bacillus spp. Antagonistic to Fusarium oxysporum f.sp. lycopersici and Alternaria solani infecting Tomato.

    Science.gov (United States)

    Shanmugam, Veerubommu; Atri, Kamini; Gupta, Samriti; Kanoujia, Nandina; Naruka, Digvijay Singh

    2011-03-01

    Antagonistic Bacillus spp. displaying in vitro production of siderophore, chitinase, and β-1,3-glucanase were identified from dual culture assays. In independent greenhouse studies, seed bacterization and soil application of Bacillus atrophaeus S2BC-2 challenge inoculated with Fusarium oxysporum f.sp. lycopersici (FOL) and Alternaria solani (AS) recorded low percent disease index of 25.3 and 28.7, respectively, over nonbacterised pathogen control (44.3 and 56.4). The low disease incidence corroborated with tomato growth promotion with high vigor index (8,041.2) and fresh plant weight (82.5 g) on challenge inoculation with FOL. Analysis of root and leaf samples in rhizobacterial treatment challenged with FOL and AS revealed maximum induction of chitinase (1.9 and 1.7 U/mg of protein, respectively) and β-1,3-glucanase (23.5 and 19.2 U/mg of protein, respectively). In native gel activity assays, the rhizobacterial treatment on challenge inoculation strongly expressed three high intensity PO isoforms along with one low intensity isoform. In studies on genetic diversity of the Bacillus strains by repetitive extragenomic palindromic-polymerase chain reaction (REP-PCR) and amplified rDNA restriction analysis (ARDRA) patterns, ARDRA was more highly discriminant than REP-PCR and allowed grouping of the strains and differentiation of the antagonistic strains from other isolates.

  15. Classification of physiological races of Fusarium oxysporum f. sp. phaseoli in common bean

    Directory of Open Access Journals (Sweden)

    Francisco Humberto Henrique

    2015-03-01

    Full Text Available Fusarium wilt, caused by Fusarium oxysporum Schlecht. f. phaseoli Kendrick and Snyder (FOP, is a major disease of common bean, causing large economic losses. Genetic resistance is one of the main mechanisms of pathogen control, and knowledge of the physiological variability is fundamental in breeding for resistant cultivars. Thus, a method of pathogen classification that describes the variability and is useful in plant breeding of isolates from different sources was evaluated by different methodologies. Common bean plants of different sets of differentiating cultivars were inoculated with 25 FOP isolates and 3 controls, totaling 28 isolates evaluated 30 days after inoculation. The variability in the isolates found in this study differs from the results of other authors, who reported a small number of physiological races of the pathogen and disagrees with their evaluation of the races and the evaluation methodology. The proposed approach for binary classification based on a group of 12 differentiating cultivars demonstrated that the variability in pathogenicity of FOP is greater than reported so far. By this methodology, 27 different physiological races of the pathogen were obtained. The methods led to contrasting results, with double race classification in the same isolate. The physiological variability found indicates that the physiological races of the pathogen are not limited to 7 as previously mentioned.

  16. In Vitro Selection of Abaca for Resistance to Fusarium oxysporum f.sp. cubense

    Directory of Open Access Journals (Sweden)

    RULLY DYAH PURWATI

    2007-06-01

    Full Text Available Abaca (Musa textilis Nee is an important industrial crop. However, the cultivation of this crop in Indonesia is hampered by Fusarium wilt (Panama disease as a result of Fusarium oxysporum f.sp. cubense (Foc infection. The objectives of this study were to (i evaluate inhibitory effects of culture filtrates (CF of three Foc isolates (Banyuwangi, Malang, and Bojonegoro isolates on shoot growth of abaca cv. Tangongon and Sangihe-1, (ii determine sublethal concentration of Foc CF, (iii isolate variant cells/tissues which are insensitive against Foc CF and regenerate plantlets from the variants, and (iv evaluate responses of the plantlets against Foc infection. The results of the experiment showed that even though CF of all Foc isolates inhibited abaca’s shoot growth, CF of Foc Banyuwangi isolate showed the most inhibitory effect. Sublethal concentration of CF of Foc Banyuwangi isolate was 40%. From abaca cv. Tangongon, 326 shoots were regenerated from CF insensitive embryogenic calli while from Sangihe-1 - 176 shoots were regenerated. Following acclimatization and Foc inoculation using detached-leaf dual culture test, a total of four immune, two resistant, and two moderately resistant plantlets were identified out of 45 tested variants of Tangongon. On the other hand, only two resistant and one moderately resistant plantlets were identified out of 10 tested variants of Sangihe-1.

  17. Enhanced ethanol production from brewer's spent grain by a Fusarium oxysporum consolidated system

    Directory of Open Access Journals (Sweden)

    Christakopoulos Paul

    2009-02-01

    Full Text Available Abstract Background Brewer's spent grain (BG, a by-product of the brewing process, is attracting increasing scientific interest as a low-cost feedstock for many biotechnological applications. BG in the present study is evaluated as a substrate for lignocellulolytic enzyme production and for the production of ethanol by the mesophilic fungus Fusarium oxysporum under submerged conditions, implementing a consolidated bioconversion process. Fermentation experiments were performed with sugar mixtures simulating the carbohydrate content of BG in order to determine the utilization pattern that could be expected during the fermentation of the cellulose and hemicellulose hydrolysate of BG. The sugar mixture fermentation study focused on the effect of the initial total sugar concentration and on the effect of the aeration rate on fermenting performance of F. oxysporum. The alkali pretreatment of BG and different aeration levels during the ethanol production stage were studied for the optimization of the ethanol production by F. oxysporum. Results Enzyme yields as high as 550, 22.5, 6.5, 3225, 0.3, 1.25 and 3 U per g of carbon source of endoglucanase, cellobiohydrolase, β-D-glucosidase, xylanase, feruloyl esterase, β-D-xylosidase and α-L-arabinofuranosidase respectively, were obtained during the growth stage under optimized submerged conditions. An ethanol yield of 109 g ethanol per kg of dry BG was obtained with alkali-pretreated BG under microaerobic conditions (0.01 vvm, corresponding to 60% of the theoretical yield based on total glucose and xylose content of BG. Conclusion The enzymatic profile of the extracellular extract from F. oxysporum submerged cultures using BG and corn cob as the carbon source was proved efficient for a successful hydrolysis of BG. The fermentation study carried out using sugar mixtures simulating BG's carbohydrates content and consecutively alkali-pretreated and untreated BG, indicates that BG hydrolysis is the bottleneck

  18. ß-glycosidase and peroxidase activity in yellow lupin seedling infected by Fusarium oxysporum f. sp. lupini

    Directory of Open Access Journals (Sweden)

    Magdalena Rybus-Zając

    2012-12-01

    Full Text Available Lupine diseases caused by pathogenic fungi constitute a serious problem in agriculture. They lead to partial yield loss and deterioration of crop quality through the changes in biochemical composition of seeds or their contamination with mycotoxins. Some of common lupine diseases are fusarioses caused by Fusarium oxysporum f. sp. lupini. Morphometric and metabolic changes were investigated in yellow lupine seedlings infected with F. oxysporum f. sp. lupini. It was found that infection caused temporary inhibition of seedling growth, overcome at later development, and activation of ß-glycosidase and peroxidases. The changes in enzymes activity indicate the induction of defense mechanism against F. oxysporum f. sp. lupini and inhibition of pathogen spread.

  19. Genetic mapping and identification of quantitative trait loci associated with resistance to Fusarium oxysporum f. sp. niveum races 1 and 2 in watermelon

    Science.gov (United States)

    Fusarium wilt is a major disease of watermelon caused by the soil-borne fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). Fon race 1 is most prevalent throughout the U.S. while race 2 is more virulent. Our overall objective is to identify and utilize ...

  20. Quantitative trait loci mapping of resistance to Fusarium oxysporum f. sp. niveum race 2 in Citrullus lanatus var. citroides using genotyping-by-sequencing

    Science.gov (United States)

    One of the most devastating watermelon diseases worldwide, Fusarium wilt, is caused by Fusarium oxysporum f. sp. niveum (Fon). Spread of the particularly virulent Fon race 2 in the United States, coupled with the lack of resistance in edible cultivars of the sweet cultivated watermelon Citrullus lan...

  1. Genetic diversity of Fusarium oxysporum f. sp. dianthi in Southern Spain

    OpenAIRE

    2014-01-01

    The diversity of races and prevalence of pathogenic populations of Fusarium oxysporum f. sp. dianthi (Fod) were surveyed in an area in southern Spain. From 54 farms, 132 isolates were collected from wilted carnation plants. Isolates were characterized by RAPDPCR, DNA sequence analysis of the TEF1-α gene, and race-specific molecular markers. Selected isolates from RAPD groups were phenotypically evaluated by pathogenicity tests. Data analysis showed that Fod race 2 was the most frequent and pr...

  2. Kaempferide triglycoside: a possible factor of resistance of carnation (Dianthus caryophyllus) to Fusarium oxysporum f. sp. dianthi.

    Science.gov (United States)

    Curir, P; Dolci, M; Lanzotti, V; Taglialatela-Scafati, O

    2001-04-01

    A kaempferide triglycoside has been found as a constitutive component in an uninfected carnation (Dianthus caryophyllus) of the cultivar Novada. The chemical structure has been determined mainly by the use of spectroscopic methods, including 2D NMR experiments. It showed a strong activity in restricting fungal parasite development, which could contribute to the known ability of carnation cv. Novada to resist to Fusarium oxysporum f. sp. dianthi infection.

  3. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    Science.gov (United States)

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jimmy

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1 and OPR) in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.

  4. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    Directory of Open Access Journals (Sweden)

    Zongli eHu

    2015-01-01

    Full Text Available Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi technology to partially silence three different genes (FOW2, FRP1 and OPR in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.

  5. Fusarium foetens, a new species pathogenic to begonia elatior hybrids (Begonia x hiemalis) and the sister taxon of the Fusarium oxysporum species complex.

    Science.gov (United States)

    Schroers, H-J; Baayen, R P; Meffert, J P; de Gruyter, J; Hooftman, M; O'Donnell, K

    2004-01-01

    A new disease recently was discovered in begonia elatior hybrid (Begonia × hiemalis) nurseries in The Netherlands. Diseased plants showed a combination of basal rot, vein yellowing and wilting and the base of collapsing plants was covered by unusually large masses of Fusarium macroconidia. A species of Fusarium was isolated consistently from the discolored veins of leaves and stems. It differed morphologically from F. begoniae, a known agent of begonia flower, leaf and stem blight. The Fusarium species resembled members of the F. oxysporum species complex in producing short monophialides on the aerial mycelium and abundant chlamydospores. Other phenotypic characters such as polyphialides formed occasionally in at least some strains, relatively long monophialides intermingled with the short monophialides formed on the aerial mycelium, distinct sporodochial conidiomata, and distinct pungent colony odor distinguished it from the F. oxysporum species complex. Phylogenetic analyses of partial sequences of the mitochondrial small subunit of the ribosomal DNA (mtSSU rDNA), nuclear translation elongation factor 1α (EF-1α) and β-tubulin gene exons and introns indicate that the Fusarium species represents a sister group of the F. oxysporum species complex. Begonia × hiemalis cultivars Bazan, Bellona and Netja Dark proved to be highly susceptible to the new species. Inoculated plants developed tracheomycosis within 4 wk, and most died within 8 wk. The new taxon was not pathogenic to Euphorbia pulcherrima, Impatiens walleriana and Saintpaulia ionantha that commonly are grown in nurseries along with B. × hiemalis. Inoculated plants of Cyclamen persicum did not develop the disease but had discolored vessels from which the inoculated fungus was isolated. Given that the newly discovered begonia pathogen is distinct in pathogenicity, morphology and phylogeny from other fusaria, it is described here as a new species, Fusarium foetens.

  6. Selection of potential antagonists against asparagus crown and root rot caused by Fusarium spp.

    Science.gov (United States)

    Rubio-Pérez, E; Molinero-Ruiz, M L; Melero-Vara, J M; Basallote-Ureba, M J

    2008-01-01

    Crown and root rot is one of the most important diseases of asparagus crop worldwide. Fusarium oxysporum f.sp. asparagi and F. proliferatum are the two species more frequently associated to this complex and their prevalence depends on the production area. The control of the disease on asparagus crop is difficult to achieve because its perennial condition and the long survival of the pathogen in the soil as chlamydospores or as mycelium in infected plant debris. Furthermore, Fusarium spp. are easily disseminated with asparagus propagation materials. Thus, control measures should aim at obtaining seedlings protection for longer than achieved with conventional pre-planting chemical treatments. The effectiveness of fungal antagonists on the control of diseases caused by soil borne fungi has been reported. The potential of Trichoderma spp. as a biological control agent against diseases caused by Fusarium spp. in tomato and asparagus has been studied . It has been suggested that microorganisms isolated from the root or rhizosphere of a specific crop may be better adapted to that crop and may provide better disease control than organisms originally isolated from other plant species. The objective of this work was the evaluation of the potential of fungal isolates from symptomless asparagus plants as biocontrol agents of Fusarium crown and root rot.

  7. Use of the Plant Defense Protein Osmotin To Identify Fusarium oxysporum Genes That Control Cell Wall Properties

    KAUST Repository

    Lee, H.

    2010-02-26

    Fusarium oxysporum is the causative agent of fungal wilt disease in a variety of crops. The capacity of a fungal pathogen such as F. oxysporum f. sp. nicotianae to establish infection on its tobacco (Nicotiana tabacum) host depends in part on its capacity to evade the toxicity of tobacco defense proteins, such as osmotin. Fusarium genes that control resistance to osmotin would therefore reflect coevolutionary pressures and include genes that control mutual recognition, avoidance, and detoxification. We identified FOR (Fusarium Osmotin Resistance) genes on the basis of their ability to confer osmotin resistance to an osmotin-sensitive strain of Saccharomyces cerevisiae. FOR1 encodes a putative cell wall glycoprotein. FOR2 encodes the structural gene for glutamine:fructose-6-phosphate amidotransferase, the first and rate-limiting step in the biosynthesis of hexosamine and cell wall chitin. FOR3 encodes a homolog of SSD1, which controls cell wall composition, longevity, and virulence in S. cerevisiae. A for3 null mutation increased osmotin sensitivity of conidia and hyphae of F. oxysporum f. sp. nicotianae and also reduced cell wall β-1,3-glucan content. Together our findings show that conserved fungal genes that determine cell wall properties play a crucial role in regulating fungal susceptibility to the plant defense protein osmotin.

  8. STUDIES ON VASCULAR INFECTION OF FUSARIUM OXYSPORUM F. SP. CUBENSE RACE 4 IN BANANA BY FIELD SURVEY AND GREEN FLUORESCENT PROTEIN REPORTER

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2013-04-01

    Full Text Available Fusarium wilt of banana (Musa spp. caused by Fusarium oxysporum f. sp. cubense (Foc is one of the most serious banana fungal diseases in the world. Understanding the infection process of Foc is important for development of effective ways in disease control. In order to follow infection and colonization of this pathogen from root to rhizome and pseudostem tissues of banana, a highly pathogenic strain FJAT-3076 of Foc race 4 (Foc4 was transformed with gene encoding green fluorescent protein (GFP and the fungus carrying gfp (FJAT-3076-GFP was used to inoculate banana plants (Cavendish cv. B.F.. After inoculation for 3 to 10 d, it was observed that the conidia and their germ-tubes had penetrated into epidermis of young roots. The hyphae were found inside the root xylem 10 d after inoculation in the rhizome and pseudostem xylem after inoculation for 17 d. All plants infected by Foc died in 24 d after inoculation. It was also observed that Foc had spread all over the xylem and part of hyphae reached the pseudostem surface. Hyphal population was found the highest in the pseudostem, lower in root and least in rhizome. Field survey confirmed that Foc4 were mostly present in the base of pseudostem and less in the rhizome. Thus, effective prevention of the Foc hyphae movement from the rhizome up to the pseudostem might delay or control banana wilt disease.

  9. Effector Gene Suites in Some Soil Isolates of Fusarium oxysporum Are Not Sufficient Predictors of Vascular Wilt in Tomato.

    Science.gov (United States)

    Jelinski, Nicolas A; Broz, Karen; Jonkers, Wilfried; Ma, Li-Jun; Kistler, H Corby

    2017-07-01

    Seventy-four Fusarium oxysporum soil isolates were assayed for known effector genes present in an F. oxysporum f. sp. lycopersici race 3 tomato wilt strain (FOL MN-25) obtained from the same fields in Manatee County, Florida. Based on the presence or absence of these genes, four haplotypes were defined, two of which represented 96% of the surveyed isolates. These two most common effector haplotypes contained either all or none of the assayed race 3 effector genes. We hypothesized that soil isolates with all surveyed effector genes, similar to FOL MN-25, would be pathogenic toward tomato, whereas isolates lacking all effectors would be nonpathogenic. However, inoculation experiments revealed that presence of the effector genes alone was not sufficient to ensure pathogenicity on tomato. Interestingly, a nonpathogenic isolate containing the full suite of unmutated effector genes (FOS 4-4) appears to have undergone a chromosomal rearrangement yet remains vegetatively compatible with FOL MN-25. These observations confirm the highly dynamic nature of the F. oxysporum genome and support the conclusion that pathogenesis among free-living populations of F. oxysporum is a complex process. Therefore, the presence of effector genes alone may not be an accurate predictor of pathogenicity among soil isolates of F. oxysporum.

  10. Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato

    Directory of Open Access Journals (Sweden)

    Raheem Shahzad

    2017-03-01

    Full Text Available Fungal pathogenic attacks are one of the major threats to the growth and productivity of crop plants. Currently, instead of synthetic fungicides, the use of plant growth-promoting bacterial endophytes has been considered intriguingly eco-friendly in nature. Here, we aimed to investigate the in vitro and in vivo antagonistic approach by using seed-borne endophytic Bacillus amyloliquefaciens RWL-1 against pathogenic Fusarium oxysporum f. sp. lycopersici. The results revealed significant suppression of pathogenic fungal growth by Bacillus amyloliquefaciens in vitro. Further to this, we inoculated tomato plants with RWL-1 and F. oxysporum f. sp. lycopersici in the root zone. The results showed that the growth attributes and biomass were significantly enhanced by endophytic-inoculation during disease incidence as compared to F. oxysporum f. sp. lycopersici infected plants. Under pathogenic infection, the RWL-1-applied plants showed increased amino acid metabolism of cell wall related (e.g., aspartic acid, glutamic acid, serine (Ser, and proline (Pro as compared to diseased plants. In case of endogenous phytohormones, significantly lower amount of jasmonic acid (JA and higher amount of salicylic acid (SA contents was recorded in RWL-1-treated diseased plants. The phytohormones regulation in disease incidences might be correlated with the ability of RWL-1 to produce organic acids (e.g., succinic acid, acetic acid, propionic acid, and citric acid during the inoculation and infection of tomato plants. The current findings suggest that RWL-1 inoculation promoted and rescued plant growth by modulating defense hormones and regulating amino acids. This suggests that bacterial endophytes could be used for possible control of F. oxysporum f. sp. lycopersici in an eco-friendly way.

  11. Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato

    Science.gov (United States)

    Shahzad, Raheem; Khan, Abdul Latif; Bilal, Saqib

    2017-01-01

    Fungal pathogenic attacks are one of the major threats to the growth and productivity of crop plants. Currently, instead of synthetic fungicides, the use of plant growth-promoting bacterial endophytes has been considered intriguingly eco-friendly in nature. Here, we aimed to investigate the in vitro and in vivo antagonistic approach by using seed-borne endophytic Bacillus amyloliquefaciens RWL-1 against pathogenic Fusarium oxysporum f. sp. lycopersici. The results revealed significant suppression of pathogenic fungal growth by Bacillus amyloliquefaciens in vitro. Further to this, we inoculated tomato plants with RWL-1 and F. oxysporum f. sp. lycopersici in the root zone. The results showed that the growth attributes and biomass were significantly enhanced by endophytic-inoculation during disease incidence as compared to F. oxysporum f. sp. lycopersici infected plants. Under pathogenic infection, the RWL-1-applied plants showed increased amino acid metabolism of cell wall related (e.g., aspartic acid, glutamic acid, serine (Ser), and proline (Pro)) as compared to diseased plants. In case of endogenous phytohormones, significantly lower amount of jasmonic acid (JA) and higher amount of salicylic acid (SA) contents was recorded in RWL-1-treated diseased plants. The phytohormones regulation in disease incidences might be correlated with the ability of RWL-1 to produce organic acids (e.g., succinic acid, acetic acid, propionic acid, and citric acid) during the inoculation and infection of tomato plants. The current findings suggest that RWL-1 inoculation promoted and rescued plant growth by modulating defense hormones and regulating amino acids. This suggests that bacterial endophytes could be used for possible control of F. oxysporum f. sp. lycopersici in an eco-friendly way. PMID:28321368

  12. Diferenciacion de razas de Fusarium oxysporum f. sp. Dianthi por electroforesis de aril esterasa

    Directory of Open Access Journals (Sweden)

    Garces de Granada Emira

    1997-06-01

    Full Text Available

    En los últimos años, la separaci6n por la técnica de electroforesis de las enzimas que presentan polimorfismo, ha sido utilizada para establecer diferencias entre poblaciones de microorganismos, cuando las características morfológicas no son distintivas. En este trabajo, se propuso la separación por electroforesis de la enzima aril esterasa obtenida a partir de aislamientos de Fusarium oxysporum f. sp. dianthi de la raza 2 obtenidos de suelos y plantas de la Sabana de Bogotá, un aislamiento de la misma forma especial y raza procedente de Italia, aislamientos de las razas 1, 4 y 8 de Fusarium oxysporum f. sp. dianthi, un aislamiento de Fusarium

  13. Proteomics of Fusarium oxysporum race 1 and race 4 reveals enzymes involved in carbohydrate metabolism and ion transport that might play important roles in banana Fusarium wilt.

    Science.gov (United States)

    Sun, Yong; Yi, Xiaoping; Peng, Ming; Zeng, Huicai; Wang, Dan; Li, Bo; Tong, Zheng; Chang, Lili; Jin, Xiang; Wang, Xuchu

    2014-01-01

    Banana Fusarium wilt is a soil-spread fungal disease caused by Fusarium oxysporum. In China, the main virulence fungi in banana are F. oxysporum race 1 (F1, weak virulence) and race 4 (F4, strong virulence). To date, no proteomic analyses have compared the two races, but the difference in virulence between F1 and F4 might result from their differentially expressed proteins. Here we report the first comparative proteomics of F1 and F4 cultured under various conditions, and finally identify 99 protein species, which represent 59 unique proteins. These proteins are mainly involved in carbohydrate metabolism, post-translational modification, energy production, and inorganic ion transport. Bioinformatics analysis indicated that among the 46 proteins identified from F4 were several enzymes that might be important for virulence. Reverse transcription PCR analysis of the genes for 15 of the 56 proteins revealed that their transcriptional patterns were similar to their protein expression patterns. Taken together, these data suggest that proteins involved in carbohydrate metabolism and ion transport may be important in the pathogenesis of banana Fusarium wilt. Some enzymes such as catalase-peroxidase, galactosidase and chitinase might contribute to the strong virulence of F4. Overexpression or knockout of the genes for the F4-specific proteins will help us to further understand the molecular mechanism of Fusarium-induced banana wilt.

  14. Systemic acquired resistance in Cavendish banana induced by infection with an incompatible strain of Fusarium oxysporum f. sp. cubense.

    Science.gov (United States)

    Wu, Yuanli; Yi, Ganjun; Peng, Xinxiang; Huang, Bingzhi; Liu, Ee; Zhang, Jianjun

    2013-07-15

    Fusarium wilt of banana is caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc). The fact that there are no economically viable biological, chemical, or cultural measures of controlling the disease in an infected field leads to search for alternative strategies involving activation of the plant's innate defense system. The mechanisms underlying systemic acquired resistance (SAR) are much less understood in monocots than in dicots. Since systemic protection of plants by attenuated or avirulent pathogens is a typical SAR response, the establishment of a biologically induced SAR model in banana is helpful to investigate the mechanism of SAR to Fusarium wilt. This paper described one such model using incompatible Foc race 1 to induce resistance against Foc tropical race 4 in an in vitro pathosystem. Consistent with the observation that the SAR provided the highest level of protection when the time interval between primary infection and challenge inoculation was 10d, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL, EC 4.3.1.5), peroxidase (POD, EC 1.11.1.7), polyphenol oxidase (PPO, EC 1.14.18.1), and superoxide dismutase (SOD, EC 1.15.1.1) in systemic tissues also reached the maximum level and were 2.00-2.43 times higher than that of the corresponding controls on the tenth day. The total salicylic acid (SA) content in roots of banana plantlets increased from about 1 to more than 5 μg g⁻¹ FW after the second leaf being inoculated with Foc race 1. The systemic up-regulation of MaNPR1A and MaNPR1B was followed by the second up-regulation of PR-1 and PR-3. Although SA and jasmonic acid (JA)/ethylene (ET) signaling are mostly antagonistic, systemic expression of PR genes regulated by different signaling pathways were simultaneously up-regulated after primary infection, indicating that both pathways are involved in the activation of the SAR.

  15. Hypersensitive response of Sesamum prostratum Retz. elicitated by Fusarium oxysporum f. sesame (Schelt) Jacz Butler.

    Science.gov (United States)

    Rajab, Reeja; Rajan, S Sajitha; Satheesh, L Shilpa; Harish, S R; Sunukumar, S S; Sandeep, B S; Mohan, T C Kishor; Murugan, K

    2009-10-01

    Aim of this study was to investigate the intensity and timing of the ROS formation, lipid peroxidation and expression of antioxidant enzymes as initial responses of calli of Sesamum prostratum (SP) against Fusarium oxysporum f. sesame crude toxin metabolite of varying concentrations. 2,4 dichlorophenoxy acetic acid (2,4-D) / coconut milk combinations were found to be more efficient among different hormonal regimes (2,4 -D, 2,4-D/casein hydrosylate and 2,4-D/ coconut milk). The concentration of hydrogen peroxide and lipid peroxidation were higher (13.2 and 5.7-folds, respectively) after 6 h in the treated callus confirmed the oxidative stress. An increase in total phenolics was also detected in inoculated callus. Increased activity of antioxidative enzymes viz., NADPH oxidase and superoxide dismutase (SOD) corroborate with the high level of ROSs, such as O2*- and H2O2. The poor activity of catalase confirmed the oxidative burst in the callus leading to necrosis. Activity of peroxidase was at par with total phenolics. Similarly, phenylalanine ammonia lyase (PAL) also showed high activity revealing the active phase in the synthesis of secondary metabolites in the plant. The oxidative burst generated in the interaction between Sesamum and F. oxysporum f. sesame toxin might be the first line of defense by the host mounted against the invading necrotrophic pathogen. The results suggested that the rapid production of reactive oxygen species in the callus in response to fungal toxin had been proposed to orchestrate the establishment of different defensive barriers against the pathogens.

  16. A diagnostic guide for Fusarium Root Rot of pea

    Science.gov (United States)

    Fusarium root rot, caused by Fusarium solani f. sp. pisi, is a major root rot pathogen in pea production areas worldwide. Here we provide a diagnostic guide that describes: the taxonomy of the pathogen, signs and symptoms of the pathogen, host range, geographic distribution, methods used to isolate ...

  17. Diversity of Endophytic Fungi from Red Ginger (Zingiber officinale Rosc. Plant and Their Inhibitory Effect to Fusarium oxysporum Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    SIHEGIKO KANAYA

    2013-09-01

    Full Text Available Indonesia has been known as a country with high medicinal plant diversity. One of the most common medicinal plant from Indonesia is red ginger (Zingiber officinale Rosc.. Nevertheless, limited studies of endophytic fungi associated with these medicinal plants are hitherto available. The objectives of this research were to study the diversity of endophytic fungi on red ginger and to analyze their potential as a source of antifungal agent. All parts of plant organs such as leaf, rhizome, root, and stem were subjected for isolation. Fungal identification was carried out by using a combination of morphological characteristic and molecular analysis of DNA sequence generated from ITS rDNA region. Thirty endophytic fungi were successfully isolated from leaf, rhizome, root, and stem of red ginger plant. Antagonistic activity was tested against Fusarium oxysporum, a pathogenic fungus on plants, using an antagonistic assay. Based on this approach, the fungi were assigned as Acremonium macroclavatum, Beltraniella sp., Cochliobolus geniculatus and its anamorphic stage Curvularia affinis, Fusarium solani, Glomerella cingulata, and its anamorphic stage Colletotrichum gloeosporoides, Lecanicillium kalimantanense, Myrothecium verrucaria, Neonectria punicea, Periconia macrospinosa, Rhizopycnis vagum, and Talaromyces assiutensis. R. vagum was found specifically on root whereas C. affinis, L. kalimantanense, and M. verrucaria were found on stem of red ginger plant. A. macroclavatum was found specifically in red ginger plant’s organ which located under the ground, whereas C. affinis was found from shoot or organ which located above the ground. The antagonistic activity of isolated endophytic fungi against F. oxysporum varied with the inhibition value range from 1.4 to 68.8%. C. affinis (JMbt7, F. solani (JMd14, and G. cingulata (JMr2 had significantly high antagonistic activity with the value above 65%; and R. vagum (JMa4 and C. geniculatus (JMbt9 had

  18. Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds

    Science.gov (United States)

    Abd-Elsalam, Kamel A.; Khokhlov, Alexei R.

    2015-02-01

    The current research deals with the formulation and characterization of bio-based oil-in-water nanoemulsion. The formulated eugenol oil nanoemulsion was characterized by dynamic light scattering, stability test, transmission electron microscopy and thin layer chromatography. The nanoemulsion droplets were found to have a Z-average diameter of 80 nm and TEM study reveals the spherical shape of eugenol oil nanoemulsion (EON). The size of the nanoemulsion was found to be physically stable up to more than 1-month when it was kept at room temperature (25 °C). The TEM micrograph showed that the EON was spherical in shape and moderately mono or di-dispersed and was in the range of 50-110 nm. Three concentrations of the nanoformulation were used to evalute the anti-fusarium activity both in vitro and in vivo experiments. SDS-PAGE results of total protein from the Fusarium oxysporum f. sp. vasinfectum (FOV) isolate before and after treatment with eugenol oil nanoemulsion indicate that the content of extra cellular soluble small molecular proteins decreased significantly in EON-treated fungus. Light micrographs of mycelia and spores treated with EON showed the disruption of the fungal structures. The analysis of variance (ANOVA) for Fusarium wilt incidence indicated highly significant ( p = 0.000) effects of concentration, genotype, and their interaction. The difference in wilt incidence between concentrations and control was not the same for each genotype, that is, the genotypes responded differently to concentrations. Effects of three EON concentration on germination percentage, and radicle length, were determined in the laboratory. One very interesting finding in the current study is that cotton genotypes was the most important factors in determining wilt incidence as it accounted for 93.18 % of the explained (model) variation. In vitro experiments were conducted to evaluate the potential phytotoxic effect of three EON concentrations. Concentration, genotype and

  19. Release of pea germplasm with Fusarium resistance combined with desirable yield and anti-lodging traits

    Science.gov (United States)

    Fusarium root rot caused by Fusarium solani f. sp. pisi (Fsp) and Fusarium wilt caused by Fusarium oxysporum f. sp. pisi (Fop) races 1, 2 and 5, negatively impact the pea industry worldwide. Limited pea germplasm with agronomically acceptable characteristics combined with resistance to these disease...

  20. The Use of Genetic Variability Analysis of Fusarium oxysporum f. sp. cubense for Breeding Resistance of Banana against Fusarium Wilting Disease

    Directory of Open Access Journals (Sweden)

    Faria Ruhana

    2015-11-01

    Full Text Available Fusarium wilting on banana crop caused by Fusarium oxysporum f. sp. cubense is one of the important disease in banana plant in Indonesia. This disease can cause plant to wilt and die, therefore bringing loss to the banana farmer and entrepreneur. F. oxysporum f. sp. cubense genetic variability analysis techniques can be done by in vitro or in vivo. One of F.oxysporum f. sp. cubense genetic variability analysis techniques by in vitro is RAPD-PCR. In this research, analysis is continued with pathogen test. Genetic variability analysis by in vivo is needed to determine the level of pathogen and the race. The result of genetic variability techniques by RAPD-PCR done by this writer indicates that there is a big relation/link difference between isolats from different island. Isolat from Mojokerto (East Java is 100% genetically different compared to the one from West Sumatera. Later, result of pathogen test shows that Pisang Ambon Kuning is the most resilient compared to Pisang Raja and William Cavendish. Based on the level of pathogen, there are two race grouping, which are race 1 that attacks Pisang Ambon Kuning and race 4 that attacks Pisang Raja and William Cavendish. Scott-Knott analysis on 26 isolats results in no real difference between isolats tested.

  1. Immobilization of a Cutinase from Fusarium oxysporum and Application in Pineapple Flavor Synthesis.

    Science.gov (United States)

    Nikolaivits, Efstratios; Makris, Georgios; Topakas, Evangelos

    2017-05-03

    In the present study, the immobilization of a cutinase from Fusarium oxysporum was carried out as cross-linked enzyme aggregates. Under optimal immobilization conditions, acetonitrile was selected as precipitant, utilizing 9.4 mg protein/mL and 10 mM glutaraldehyde as cross-linker. The immobilized cutinase (imFocut5a) was tested in isooctane for the synthesis of short-chain butyrate esters, displaying enhanced thermostability compared to the free enzyme. Pineapple flavor (butyl butyrate) synthesis was optimized, leading to a conversion yield of >99% after 6 h, with an initial reaction rate of 18.2 mmol/L/h. Optimal reaction conditions were found to be 50 °C, a vinyl butyrate/butanol molar ratio of 3:1, vinyl butyrate concentration of 100 mM, and enzyme loading of 11 U. Reusability studies of imFocut5a showed that after four consecutive runs, the reaction yield reaches 54% of the maximum. The efficient bioconversion offers a sustainable and environmentally friendly process for the production of "natural" aroma compounds essential for the food industry.

  2. Production and partial characterization of alkaline feruloyl esterases by Fusarium oxysporum during submerged batch cultivation

    DEFF Research Database (Denmark)

    Topakas, E.; Christakopoulos, Paul

    2004-01-01

    (corn cobs) which compared favorably to those reported for the other microorganisms. Use of de-esterified corn cobs as carbon source decreased FAE production by 5.5-fold compared to untreated corn cobs even though ferulic acid (FA) was added to the concentration found in alkali-extracts of corn cobs......Production of feruloyl esterases (FAEs) by Fusarium oxysporum was enhanced by optimization of initial pH of the culture medium, the type and concentration of nitrogen and carbon source. Submerged batch cultivation in a laboratory bioreactor (17 1) produced activity at 82 nkat g(-1) dry substrate....... Production of FAE does not therefore, require FA, however, production is diminished by the removal of esterified FA from the growth substrate. Optimal FAE activity was observed at pH 7 and 50 degreesC with 68 and 55% activity at pH 8 and pH 9, respectively. The esterase was fully stable at pH 5-8 and up...

  3. Biological activities of a mixture of biosurfactant from Bacillus subtilis and alkaline lipase from Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Cedenir Pereira de Quadros

    2011-03-01

    Full Text Available In this study, we investigate the antimicrobial effects of a mixture of a biosurfactant from Bacillus subtilis and an alkaline lipase from Fusarium oxysporum (AL/BS mix on several types of microorganisms, as well as their abilities to remove Listeria innocua ATCC 33093 biofilm from stainless steel coupons. The AL/BS mix had a surface tension of around 30 mN.m-1, indicating that the presence of alkaline lipase did not interfere in the surface activity properties of the tensoactive component. The antimicrobial activity of the AL/BS mix was determined by minimum inhibitory concentration (MIC micro-assays. Among all the tested organisms, the presence of the mixture only affected the growth of B. subtilis CCT 2576, B. cereus ATCC 10876 and L. innocua. The most sensitive microorganism was B. cereus (MIC 0.013 mg.mL-1. In addition, the effect of the sanitizer against L. innocua attached to stainless steel coupons was determined by plate count after vortexing. The results showed that the presence of the AL/BS mix improved the removal of adhered cells relative to treatment done without the sanitizer, reducing the count of viable cells by 1.72 log CFU.cm-2. However, there was no significant difference between the sanitizers tested and an SDS detergent standard (p<0.05.

  4. Genetic Diversity of Fusarium oxysporum f. sp. dianthi in Southern Spain

    Directory of Open Access Journals (Sweden)

    Raúl Castaño

    2014-01-01

    Full Text Available The diversity of races and prevalence of pathogenic populations of Fusarium oxysporum f. sp. dianthi (Fod were surveyed in an area in southern Spain. From 54 farms, 132 isolates were collected from wilted carnation plants. Isolates were characterized by RAPD-PCR, DNA sequence analysis of the TEF1-α gene, and race-specific molecular markers. Selected isolates from RAPD groups were phenotypically evaluated by pathogenicity tests. Data analysis showed that Fod race 2 was the most frequent and prevalent race in the study area, followed by race 1/8. Moreover, phylogenetic analyses showed similar results, which were different to those of the race-specific PCR assays. It was concluded that (i seven isolates were not classified in groups where Fod testers were clustered; even they showed different results when race-specific markers were used, (ii ten isolates with retarded race 1 or race 8 specific band were characterized as F. proliferatum by TEF1-α gene sequencing and clustered into an outgroup, and (iii six isolates failed to generate an amplification signal using race-specific markers. Furthermore, three of them were grouped close to race 2 tester according to the phylogenetic analyses, showing the same differential pathogenicity as race 2. This may indicate a Fod race 2 subgroup in this region.

  5. Extracellular chitinases of fluorescent pseudomonads antifungal to Fusarium oxysporum f. sp. dianthi causing carnation wilt.

    Science.gov (United States)

    Ajit, Naosekpam Singh; Verma, Rajni; Shanmugam, V

    2006-04-01

    Vascular wilt of carnation caused by Fusarium oxysporum f. sp. dianthi (Prill. & Delacr.) W. C. Synder & H.N. Hans inflicts substantial yield and quality loss to the crop. Mycolytic enzymes such as chitinases are antifungal and contribute significantly to the antagonistic activity of fluorescent pseudomonads belonging to plant-growth-promoting rhizobacteria. Fluorescent pseudomonads antagonistic to the vascular wilt pathogen were studied for their ability to grow and produce chitinases on different substrates. Bacterial cells grown on chitin-containing media showed enhanced growth and enzyme production with increased anti-fungal activity against the pathogen. Furthermore, the cell-free bacterial culture filtrate from chitin-containing media also significantly inhibited the mycelial growth. Both the strains and their cell-free culture filtrate from chitin-amended media showed the formation of lytic zones on chitin agar, indicating chitinolytic ability. Extracellular proteins of highly antagonistic bacterial strain were isolated from cell-free extracts of media amended with chitin and fungal cell wall. These cell-free conditioned media contained one to seven polypeptides. Western blot analysis revealed two isoforms of chitinase with molecular masses of 43 and 18.5 kDa. Further plate assay for mycelial growth inhibition showed the 43-kDa protein to be antifungal. The foregoing studies clearly established the significance of chitinases in the antagonism of fluorescent pseudomonads, showing avenues for possible exploitation in carnation wilt management.

  6. Synthesis of gold nanoparticles from different cellular fractions of Fusarium oxysporum.

    Science.gov (United States)

    Deepa, Kannan; Panda, Tapobrata

    2014-05-01

    The addition of varying concentrations of precursor gold salt to different cellular fractions of Fusarium oxysporum, viz., the culture filtrate and the intracellular extract obtained in the growing and resting phase of the cells had a profound influence on the size, shape, and state of aggregation of the nanoparticles. Multiply-twinned nanoparticles were obtained when the culture filtrate was used for synthesizing nanoparticles while mostly irregular shapes were obtained with the intracellular extract. The time taken for the formation of gold nanoparticles in the culture filtrate of resting cells was very less (synthesis of nanoparticles. There was a reduction in size of the nanoparticles with decreasing concentration of the gold salt from 1 mM to 0.05 mM. With the intracellular extract, the initial rate of increase in surface plasmon absorption maximum was linearly proportional to the initial concentration of the gold salt used. Gold nanoparticles were also obtained with the heat-inactivated culture filtrate which suggests alternatively the role of peptides and amino acids besides proteins in reducing and/or stabilizing the nanoparticles.

  7. The in vitro physiological phenotype of tomato resistance to Fusarium oxysporum f. sp. lycopersici.

    Science.gov (United States)

    Storti, E; Latil, C; Salti, S; Bettini, P; Bogani, P; Pellegrini, M G; Simeti, C; Molnar, A; Buiatti, M

    1992-06-01

    With the aim of dissecting host-parasite interaction processes in the system Lycopersicon aesculentum-Fusarium oxysporum f. sp. lycopersici we have isolated plant cell mutants having single-step alterations in their defense response. A previous analysis of the physiological phenotypes of mutant cell clones suggested that recognition is the crucial event for active defence, and that polysaccharide content, fungal growth inhibition, peroxidase induction in in vitro dual culture and ion leakage induced by cultural filtrates of the pathogen can be markers of resistance. In this paper we present the results of a similar analysis carried out on cell cultures from one susceptible ('Red River'), one tolerant ('UC 105') and three resistant ('Davis UC 82', 'Heinz', 'UC 90') tomato cultivars. Our data confirm that the differences in the parameters considered are correlated with resistance versus susceptibility in vivo. Therefore, these parameters can be used for early screening in selection programmes. These data, together with those obtained on isolated cell mutants, suggest that the selection in vitro for altered fungal recognition and/or polysaccharide or callose content may lead to in vivo - resistant genotypes. The data are thoroughly discussed with particular attention paid to the importance of polysaccharides in active defense initiation.

  8. How phytohormones shape interactions between plants and the soil-borne fungus Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Xiaotang eDi

    2016-02-01

    Full Text Available Plants interact with a huge variety of soil microbes, ranging from pathogenic to mutualistic. The Fusarium oxysporum (Fo species complex consists of ubiquitous soil inhabiting fungi that can infect and cause disease in over 120 different plant species including tomato, banana, cotton and Arabidopsis. However, in many cases Fo colonization remains symptomless or even has beneficial effects on plant growth and/or stress tolerance. Also in pathogenic interactions a lengthy asymptomatic phase usually precedes disease development. All this indicates a sophisticated and fine-tuned interaction between Fo and its host. The molecular mechanisms underlying this balance are poorly understood. Plant hormone signaling networks emerge as key regulators of plant-microbe interactions in general. In this review we summarize the effects of the major phytohormones on the interaction between Fo and its diverse hosts. Generally, Salicylic Acid (SA signaling reduces plant susceptibility, whereas Jasmonic Acid (JA, Ethylene (ET, Abscisic Acid (ABA and auxin have complex effects, and are potentially hijacked by Fo for host manipulation. Finally, we discuss how plant hormones and Fo effectors balance the interaction from beneficial to pathogenic and vice versa.

  9. Cutinase production by Fusarium oxysporum in liquid medium using central composite design.

    Science.gov (United States)

    Pio, Tatiana Fontes; Macedo, Gabriela Alves

    2008-01-01

    The objective of the present study was to measure the production of cutinase by Fusarium oxysporum in the presence of several carbon and nitrogen sources (glycides, fatty acids and oils, and several organic and inorganic nitrogen sources), trying to find a cost-effective substitute for cutin in the culture medium as an inducer of cutinase production. The results were evaluated by the Tukey test, and flaxseed oil was found to give the best results as a cutinase inducer. The authors optimized the composition of the growth medium employing response surface methodology. The experimental results were fitted to a second-order polynomial model at a 95% level of significance (p mineral medium supplemented with flaxseed oil, showing an increase in enzymatic activity from 11 to 22.68 U/mL after 48 h of fermentation. A CCD study of the fermentation conditions was carried out, and the best production of cutinase was registered with the use of 30 degrees C and 100 rpm. These results support the use of flaxseed oil as a substitute for cutin, which is difficult and expensive to obtain, for the production of cutinase in a larger scale.

  10. Extracción del ADN de Fusarium Oxysporum f.sp. Dianthi

    Directory of Open Access Journals (Sweden)

    Sixta T. Martínez

    2010-07-01

    Full Text Available Se estudia la utílización de dos métodos para la extracción del ADN del Fusarium o.xy.sporum f.sp. Dianthi. En los dos métodos la pared del hongo se rompió con nitrógeno líquido, uno de ellos empleó como solución extractora bromuro de cetiltrimetil amonio (BCTA y el otro una solución de sacarosa con altas concentraciones de protcasa y EDTA. Para la desproteinización ambos métodos utilizaron soluciones de fcnol-clorofonno y enzimas proteolítícas. El ADN obtenido se digirió con enzimas de restricción EcoRI y Hindlll. Se corroboró que cl ADN estaba libre de los contaminantes más frecuentes en hongos, como proteínas y carbohidratos por medio de ultracentrifugación en cloruro de cesio (CsCI. La extracción con BCTA presentó los mejores rendimientos.

  11. [Antifungal effect of phenolic and carotenoids extracts from chiltepin (Capsicum annum var. glabriusculum) on Alternaria alternata and Fusarium oxysporum].

    Science.gov (United States)

    Rodriguez-Maturino, Alfonso; Troncoso-Rojas, Rosalba; Sánchez-Estrada, Alberto; González-Mendoza, Daniel; Ruiz-Sanchez, Esau; Zamora-Bustillos, Roberto; Ceceña-Duran, Carlos; Grimaldo-Juarez, Onecimo; Aviles-Marin, Mónica

    2015-01-01

    The effect of phenolic and carotenoid extracts from chiltepin fruits on mycelial growth and the inhibition of conidial germination of Alternaria alternata and Fusarium oxysporum were investigated in the present work. Phenolic extracts inhibited mycelial growth of A.alternata by 38.46%, and significantly reduced conidial germination on the fifth day after treatment to 92% in relation to control. No significant changes were observed in the inhibition of mycelial growth in Fusarium oxysporum; however, the number of germinated conidia was reduced, showing 85% inhibition five days after treatment in relation to control. Moreover, carotenoid extracts showed 38.5% inhibition of mycelial growth and 85.3% inhibition of conidial germination of A.alternata, five days after treatment. Carotenoid extracts showed less inhibition of mycelial growth (20.3%) in F.oxysporum, with respect to A.alternata; while there was greater inhibition of conidial germination (96%) on the fifth day after treatment. Phenolic and carotenoid extracts from chiltepin may be a promising alternative as a natural fungicide against fungi of agricultural importance. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Sesquiterpene emissions from Alternaria alternata and Fusarium oxysporum: Effects of age, nutrient availability, and co-cultivation.

    Science.gov (United States)

    Weikl, Fabian; Ghirardo, Andrea; Schnitzler, Jörg-Peter; Pritsch, Karin

    2016-02-26

    Alternaria alternata is one of the most studied fungi to date because of its impact on human life - from plant pathogenicity to allergenicity. However, its sesquiterpene emissions have not been systematically explored. Alternaria regularly co-occurs with Fusarium fungi, which are common plant pathogens, on withering plants. We analyzed the diversity and determined the absolute quantities of volatile organic compounds (VOCs) in the headspace above mycelial cultures of A. alternata and Fusarium oxysporum under different conditions (nutrient rich and poor, single cultures and co-cultivation) and at different mycelial ages. Using stir bar sorptive extraction and gas chromatography-mass spectrometry, we observed A. alternata to strongly emit sesquiterpenes, particularly during the early growth stages, while emissions from F. oxysporum consistently remained comparatively low. The emission profile characterizing A. alternata comprised over 20 sesquiterpenes with few effects from nutrient quality and age on the overall emission profile. Co-cultivation with F. oxysporum resulted in reduced amounts of VOCs emitted from A. alternata although its profile remained similar. Both fungi showed distinct emission profiles, rendering them suitable biomarkers for growth-detection of their phylotype in ambient air. The study highlights the importance of thorough and quantitative evaluations of fungal emissions of volatile infochemicals such as sesquiterpenes.

  13. Isolation, evaluation and characterization of Bacillus subtilis from cotton rhizospheric soil with biocontrol activity against Fusarium oxysporum.

    Science.gov (United States)

    Gajbhiye, Archana; Rai, Alok R; Meshram, Sudhir U; Dongre, A B

    2010-07-01

    Present investigation is based on the isolation of Bacillus subtilis from cotton rhizosphere and their evaluation as biocontrol agent against Fusarium oxysporum. The production of extracellular hydrolytic enzyme was studied for determining the antagonism. 43% of 21 isolates were identified under the B. subtilis group on the basis of biochemical characterization. 38% isolates showed competitive activity against Fusarium oxysporum and exhibit more than 50% mycelial inhibition in dual culture bioassay. The pot assay of cotton by seed treatment and soil amendment technique under green house condition showed the competent activity of the isolates in preventing the wilting of cotton seedlings due to F. oxysporum infection. SVI values of 30 day old seedlings indicated that the soil inoculation with B. subtilis BP-2 and seed treatment with B. subtilis BP-9 significantly promoted the growth of cotton seedlings. RAPD profiling revealed the diversity in the Bacillus subtilis group, ranging from 10 to 32%. The discriminative pattern among the isolates belonging to the same species was validated by 16S rDNA partial sequencing which identified them into four different strains of B. subtilis.

  14. Organic amendments conditions on the control of Fusarium crown and root rot of asparagus caused by three Fusarium spp

    Energy Technology Data Exchange (ETDEWEB)

    Borrego-Benjumea, A.I.; Melero-Vara, J.M.; Basallote-Ureba, M.J.

    2015-07-01

    Fusarium oxysporum (Fo), F. proliferatum (Fp) and F. solani (Fs) are causal agents associated with roots of asparagus affected by crown and root rot, a disease inflicting serious losses worldwide. The propagule viability of Fusarium spp. was determined on substrate artificially infested with Fo5, Fp3 or Fs2 isolates, amended with either poultry manure (PM), its pellet (PPM), or olive residue compost (ORC) and, thereafter, incubated at 30 or 35°C for different periods. Inoculum viability was significantly affected by these organic amendments (OAs) in combination with temperature and incubation period. The greatest reduction in viability of Fo5 and Fs2 occurred with PPM and loss of viability achieved was higher at 35°C than at 30ºC, and longer incubation period (45 days). However, the viability of Fp3 did not decrease greatly in most of the treatments, as compared to the infested and un-amended control, when incubated at 30ºC. After incubation, seedlings of asparagus Grande´ were transplanted into pots containing substrates infested with the different species of Fusarium. After three months in greenhouse, symptoms severity in roots showed highly significant decreases, but Fp3 caused lower severity than Fo5 and Fs2. Severity reduction was particularly high at 30ºC (by 15 days incubation for Fs2 and by 30-45 days for Fo5), after PPM treatment, as well as PM-2% for Fo5 and Fs2 incubated during 30 and 45 days at both temperatures, and with ORC (15-30 days incubation). Moreover, assessment of plants fresh weight showed significantly high increases in Fo5 and Fs2, with some rates of the three OAs tested, depending on incubat. (Author)

  15. Organic amendments conditions on the control of Fusarium crown and root rot of asparagus caused by three Fusarium spp.

    Directory of Open Access Journals (Sweden)

    Ana I. Borrego-Benjumea

    2015-12-01

    Full Text Available Fusarium oxysporum (Fo, F. proliferatum (Fp and F. solani (Fs are causal agents associated with roots of asparagus affected by crown and root rot, a disease inflicting serious losses worldwide. The propagule viability of Fusarium spp. was determined on substrate artificially infested with Fo5, Fp3 or Fs2 isolates, amended with either poultry manure (PM, its pellet (PPM, or olive residue compost (ORC and, thereafter, incubated at 30 or 35°C for different periods. Inoculum viability was significantly affected by these organic amendments (OAs in combination with temperature and incubation period. The greatest reduction in viability of Fo5 and Fs2 occurred with PPM and loss of viability achieved was higher at 35°C than at 30ºC, and longer incubation period (45 days. However, the viability of Fp3 did not decrease greatly in most of the treatments, as compared to the infested and un-amended control, when incubated at 30ºC. After incubation, seedlings of asparagus `Grande´ were transplanted into pots containing substrates infested with the different species of Fusarium. After three months in greenhouse, symptoms severity in roots showed highly significant decreases, but Fp3 caused lower severity than Fo5 and Fs2. Severity reduction was particularly high at 30ºC (by 15 days incubation for Fs2 and by 30-45 days for Fo5, after PPM treatment, as well as PM-2% for Fo5 and Fs2 incubated during 30 and 45 days at both temperatures, and with ORC (15-30 days incubation. Moreover, assessment of plants fresh weight showed significantly high increases in Fo5 and Fs2, with some rates of the three OAs tested, depending on incubation period and temperature.

  16. A high efficiency gene disruption strategy using a positive-negative split selection marker and electroporation for Fusarium oxysporum.

    Science.gov (United States)

    Liang, Liqin; Li, Jianqiang; Cheng, Lin; Ling, Jian; Luo, Zhongqin; Bai, Miao; Xie, Bingyan

    2014-11-01

    The Fusarium oxysporum species complex consists of fungal pathogens that cause serial vascular wilt disease on more than 100 cultivated species throughout the world. Gene function analysis is rapidly becoming more and more important as the whole-genome sequences of various F. oxysporum strains are being completed. Gene-disruption techniques are a common molecular tool for studying gene function, yet are often a limiting step in gene function identification. In this study we have developed a F. oxysporum high-efficiency gene-disruption strategy based on split-marker homologous recombination cassettes with dual selection and electroporation transformation. The method was efficiently used to delete three RNA-dependent RNA polymerase (RdRP) genes. The gene-disruption cassettes of three genes can be constructed simultaneously within a short time using this technique. The optimal condition for electroporation is 10μF capacitance, 300Ω resistance, 4kV/cm field strength, with 1μg of DNA (gene-disruption cassettes). Under these optimal conditions, we were able to obtain 95 transformants per μg DNA. And after positive-negative selection, the transformants were efficiently screened by PCR, screening efficiency averaged 85%: 90% (RdRP1), 85% (RdRP2) and 77% (RdRP3). This gene-disruption strategy should pave the way for high throughout genetic analysis in F. oxysporum. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Salicylic acid is a modulator of catalase isozymes in chickpea plants infected with Fusarium oxysporum f. sp. ciceri.

    Science.gov (United States)

    Gayatridevi, S; Jayalakshmi, S K; Sreeramulu, K

    2012-03-01

    The relationship between salicylic acid level catalases isoforms chickpea cv. ICCV-10 infected with Fusarium oxysporum f. sp. ciceri was investigated. Pathogen-treated chickpea plants showed high levels of SA compared with the control. Two isoforms of catalases in shoot extract (CAT-IS and CAT-IIS) and single isoform in root extract (CAT-R) were detected in chickpea. CAT-IS and CAT-R activities were inhibited in respective extracts treated with pathogen whereas, CAT-IIS activity was not inhibited. These isoforms were purified and their kinetic properties studied in the presence or absence of SA. The molecular mass determined by SDS-PAGE of CAT-IS, CAT-IIS and CAT-R was found to be 97, 40 and 66 kDa respectively. Kinetic studies indicated that Km and V(max) of CAT-IS were 0.2 mM and 300 U/mg, 0.53 mM and 180 U/mg for CAT-IIS and 0.25 mM and 280 U/mg for CAT-R, respectively. CAT-IS and CAT-R were found to be more sensitive to SA and 50% of their activities were inhibited at 6 and 4 μM respectively, whereas CAT-IIS was insensitive to SA up to 100 μM. Quenching of the intrinsic tryptophan fluorescence of purified catalases were used to quantitate SA binding; the estimated K(d) value for CAT-IS, CAT-IIS and CAT-R found to be 2.3 μM, 3.1 mM and 2.8 μM respectively. SA is a modulator of catalase isozymes activity, supports its role in establishment of SAR in chickpea plants infected with the pathogen.

  18. Allelopathic effects of fresh parsley root acetone extracts on Fusarium oxysporum f. sp. cucumberinum and allelochemicals identification%西芹鲜根丙酮浸提物层析流分对黄瓜枯萎病菌的化感作用以及化感物质鉴定

    Institute of Scientific and Technical Information of China (English)

    高晓敏; 王琚钢; 李杰; 马立国; 郝静; 云兴福

    2014-01-01

    为探明西芹鲜根中化感物质成分,利用柱层析法对西芹鲜根丙酮浸提液进行4次层析,每次层析后获得的流分与黄瓜枯萎病菌共培养,测定菌落直径与孢子萌发率,以化感抑制效果筛选最佳流分,然后通过GC-MS对第4次层析最佳流分中化感物质进行鉴定。结果表明,各次层析最佳流分均对黄瓜枯萎病菌菌丝生长及孢子萌发有较强抑制作用,第4次层析获得的最佳流分(RA3246、RA3344、RA9889、RA91064)对枯萎病菌菌丝生长的化感抑制效果[相对于第4次层析丙酮对照(ACK4)]分别升高至28.69%、37.83%、42.44%、33.83%,孢子萌发抑制率分别升高至50.72%、50.66%、55.02%、59.37%。通过GC-MS共鉴定出有机酸、酚、醇、酯类、杂环有机物及含氮化合物6类12种化感物质,分别为3-羟基扁桃酸、硫代乙醇酸、2,4-二叔丁基苯酚、十二烷醇、2-甲基-2-丙烯酸十三烷酯、2-丙烯酸十二烷基酯、2-丙稀酸十五烷基酯、二甲基环己酯、3,4-环氧呋喃、十六烷基二甲基叔胺、(Z)-9-十八烯酸酰胺和二丁氨腈。研究获得结果可为利用西芹提取物防控黄瓜枯萎病提供理论基础。%In field production of cucumber (Cucumis sativus), it is relatively difficult to control wilt caused by Fusarium oxysporum. However, the extent of infection is reduced by crop rotation with parsley (Apium graveloens). To identify inhibitory allelochemicals released into the soil by parsley crop, acetone extracts from fresh parsley roots were examined after a repeated series of purification (four cycles) in column chromatography (10 mm × 300 mm) using a column with silicone coating. We used a bioassay that incor-porated the various column fractions into PDA medium and co-cultured the plates with F. oxysporum f. sp. cucumberinum. By measuring colony diameter and spore germination rate, we screened the best fractions in terms of allelopathic inhibition effect and identified further

  19. Differential protein accumulations in isolates of the strawberry wilt pathogen Fusarium oxysporum f. sp. fragariae differing in virulence.

    Science.gov (United States)

    Fang, Xiangling; Barbetti, Martin J

    2014-08-28

    This study was conducted to define differences in Fusarium oxysporum f. sp. fragariae (Fof) isolates with different virulence efficiency to strawberry at the proteome level, in combination with their differences in mycelial growth, conidial production and germination. Comparative proteome analyses revealed substantial differences in mycelial proteomes between Fof isolates, where the 54 differentially accumulated protein spots were consistently over-accumulated or exclusively in the highly virulent isolate. These protein spots were identified through MALDI-TOF/TOF mass spectrometry analyses, and the identified proteins were mainly related to primary and protein metabolism, antioxidation, electron transport, cell cycle and transcription based on their putative functions. Proteins of great potential as Fof virulence factors were those involved in ubiquitin/proteasome-mediated protein degradation and reactive oxygen species detoxification; the hydrolysis-related protein haloacid dehalogenase superfamily hydrolase; 3,4-dihydroxy-2-butanone 4-phosphate synthase associated with riboflavin biosynthesis; and those exclusive to the highly virulent isolate. In addition, post-translational modifications may also make an important contribution to Fof virulence. F. oxysporum f. sp. fragariae (Fof), the causal agent of Fusarium wilt in strawberry, is a serious threat to commercial strawberry production worldwide. However, factors and mechanisms contributing to Fof virulence remained unknown. This study provides knowledge of the molecular basis for the differential expression of virulence in Fof, allowing new possibilities towards developing alternative and more effective strategies to manage Fusarium wilt. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Effect of plant growth regulators on in vitro biological control of Fusarium oxysporum by Trichoderma harzianum (T8).

    Science.gov (United States)

    Badri, M; Zamani, M R; Motallebi, M

    2007-09-01

    In this study the effect of two plant growth regulators (indolacetic acid, IAA and gibberellic acid, GA3) and also Trichoderma harzianum (T8) on the phytopathogen fungus Fusarium oxysporium (F15) was investigated. IAA and GA3 with 15 and 30 ppm concentration have no significant effect on T. harzianum (T8) growth. The biocontrol activity of T. harzianum on F. oxysporum was slightly decreased by the presence of IAA and/or GA3. Addition of 40 ppm of GA3 to the culture medium of F. oxsporum increased polygalacturonase activity about 100%. A strong increasing effect on chitinase activity (60%) by T. harzianum (T8) was observed in the presence of phytopathogenic fungus F. oxysporum, but 40 ppm IAA and/or GA3 decreased about 47% of chitinase activity of T. harzianum.

  1. Different strategies of fungi to solubilize coal: a comparison of the deutermycetes Trichoderma atroviride and Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Hoelker, U.; Ludwig, S.; Moenkemann, H.; Scheel, T.; Hoefer, M. [Bonn Univ. (Germany). Botanisches Inst.

    1997-12-31

    Four different mechanisms can be envisaged which are used by microorganisms to solubilize coal: the production of alkaline substances, the extrusion of chelators, the action of biotensides, and of special interest in terms of biotechnology, the action of enzymes. Whether these mechanisms are operating seperately or in varying combinations has not yet been settled. The two deuteromycetes Fusarium oxysporum and Trichoderma altroviride solubilize coal by synergistic effects of different mechanisms depending on the cell metabolism. F. oxysporum seems to solubilize coal by increasing the pH of the mycelial surroundings and by the action of chelators induced during growth in glutamate containing media (without involvement of enzymes). T. atroviride, on the other hand, appears to use, in addition to an alkaline pH and a high chelator activity, at least two classes of enzymes to attack coal: hydrolytic activity for coal solubilization and ligninolytic activity for degradation of humic acids. (orig.)

  2. Inoculum padronization for the production of cutinase by Fusarium oxysporum Padronização do inóculo para a produção de cutinase por Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Tatiana Fontes Pio

    2008-03-01

    Full Text Available Cutinase is a versatile enzyme showing several interesting properties for application in industrial processes. The widespread use of this enzyme depends on the development of an efficient and low-cost production system. One of the most important steps in a fermentation process is the standardization of the inoculum characteristics. In this study, the production of cutinase by Fusarium oxysporum showed a statistically significant relationship with both the inoculum size and the inoculum PDA pH. The greatest activities were 19.1 U/mL at PDA pH 7.0 and 22.72 U/mL using an aliquot of 12.72 x 10(7 spores/mL. The macroscopic characteristics of the colonies of Fusarium oxysporum changed according to the variation of the medium pH, with the best results recorded in those colonies presenting a cotton white aspect.Cutinase é uma enzima versátil, que apresenta propriedades interessantes para aplicação em processos industriais. O uso desta enzima em larga escala depende do desenvolvimento de um sistema de produção eficiente e de baixo custo. Uma das etapas mais importantes em um processo de fermentação é a padronização do inóculo. Neste estudo, houve uma associação estatisticamente significativa entre a produção de cutinase por Fusarium oxysporum e tamanho do inóculo e pH do meio PDA. As maiores atividades de cutinase foram 19,1 U/mL em PDA com pH 7,0 e 22,72 U/mL empregando um inóculo de 12,72 x 10(7 esporos/mL. As características macroscópicas das colônias de Fusarium oxysporum mostraram alterações em função do pH do meio, com as maiores atividades sendo registradas em presença de colônias brancas com aspecto cotonoso.

  3. The F-box protein Fbp1 functions in the invasive growth and cell wall integrity mitogen-activated protein kinase (MAPK) pathways in Fusarium oxysporum.

    Science.gov (United States)

    Miguel-Rojas, Cristina; Hera, Concepcion

    2016-01-01

    F-box proteins determine substrate specificity of the ubiquitin-proteasome system. Previous work has demonstrated that the F-box protein Fbp1, a component of the SCF(Fbp1) E3 ligase complex, is essential for invasive growth and virulence of the fungal plant pathogen Fusarium oxysporum. Here, we show that, in addition to invasive growth, Fbp1 also contributes to vegetative hyphal fusion and fungal adhesion to tomato roots. All of these functions have been shown previously to require the mitogen-activated protein kinase (MAPK) Fmk1. We found that Fbp1 is required for full phosphorylation of Fmk1, indicating that Fbp1 regulates virulence and invasive growth via the Fmk1 pathway. Moreover, the Δfbp1 mutant is hypersensitive to sodium dodecylsulfate (SDS) and calcofluor white (CFW) and shows reduced phosphorylation levels of the cell wall integrity MAPK Mpk1 after SDS treatment. Collectively, these results suggest that Fbp1 contributes to both the invasive growth and cell wall integrity MAPK pathways of F. oxysporum. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  4. INDUCCIÓN DE RESISTENCIA SISTÉMICA CONTRA Fusarium oxysporum EN TOMATE POR Trichoderma koningiopsis Th003

    Directory of Open Access Journals (Sweden)

    YEIRME YANETH JAIMES SUÁREZ

    2009-01-01

    Full Text Available Trichoderma koningiopsis Th003 ha mostrado alta eficacia en el control de diferentes fitopatógenos incluyendo Fusarium oxysporum, agente causal de la pudrición del cuello y la raíz del tomate (Solanum lycopersicum Mill.. Con el propósito de estudiar si este agente tiene la capacidad para inducir respuestas sistémicas de defensa, se utilizó como patosistema modelo Fusarium oxysporum tomate, cuyas plantas se establecieron en cubos de enraizamiento con el sistema radical separado en dos porciones. Cuando Th003 se inoculó en una porción de la raíz 96 h antes de inocular en la otra porción F. oxysporum, se presentó un retraso de la colonización del fitopatógeno en el sistema vascular de la planta, en comparación con las plantas inoculadas solamente con el fitopatógeno. Este resultado sugiere que Th003 estimuló respuestas sistémicas de defensa en la planta, dado que el antagonista y el fitopatógeno permanecieron separados espacialmente. El microorganismo biocontrolador formulado como gránulos dispersables, se aplicó en un cultivo comercial de tomate bajo invernadero y redujo significativamente la incidencia de la pudrición del cuello y las raíces del tomate en 35%, en comparación con el testigo absoluto. El hongo T. koningiopsis Th003 demostró habilidad para controlar F. oxysporum f. sp. radicislycopersici mediante inducción de respuestas de defensa sistémica en las plantas de tomate.

  5. Potencial de los aceites comerciales de Canela (Cinnamomum zeylanicum) y Laurel (Laurus nobilis) en el control de Fusarium oxysporum.

    OpenAIRE

    GIGANTE ESTEVE, ANA MARÍA

    2015-01-01

    [EN] The main objective of this work is to study the antifungal activity of essential oils of Cinnamon (Cinnamomum zeylanicum) and Bay leaf (Laurus nobilis) against Fusarium oxysporum, isolated from tomato. The bioassays were conducted over dose of 300 μg/mL from the essential oil in the PDA culture medium. It was calculated the speed of growth of the fungi (mm/day), the daily average radial growth (mm), and the micelial growth inhibition (MGI). The speed of growth of the fungi was 5...

  6. Insights from the Fungus Fusarium oxysporum Point to High Affinity Glucose Transporters as Targets for Enhancing Ethanol Production from Lignocellulose

    Science.gov (United States)

    Ali, Shahin S.; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M.

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing. PMID:23382943

  7. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.

    Directory of Open Access Journals (Sweden)

    Shahin S Ali

    Full Text Available Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km((glucose was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.

  8. Analysis of miRNAs targeting transcription factors in Persicaria minor induced by Fusarium oxysporum

    Science.gov (United States)

    Samad, Abdul Fatah A.; Ali, Nazaruddin Muhammad; Ismail, Ismanizan; Murad, Abdul Munir Abdul

    2016-11-01

    A recent discovery showed small non-coding RNA known as microRNA has a crucial role in plant development and plant survival in extreme condition. In the past few years, researchers have managed to identify the various families of transcription factors that play a crucial role in regulating plant development and plant responses to stresses. This study focuses on the expression pattern of miRNA targeted transcription factor under biotic stress in a plant rich with secondary metabolite, Persicaria minor. A pathogenic fungus, Fusarium oxysporum was used in the biotic stress treatment since the previous study revealed this fungus could trigger plant defense system. Two small RNA libraries were constructed which consist of control and treated samples. In order to identify the potential target, psRobot target prediction software was used for each miRNA that shows significant change due to the infection. The result showed miR156b/c, miR172a, miR319, miR858, and miR894 were found to be targeting a wide range of transcription factors that involve in plant development and plant response towards stresses. The expression of miR156b/c and miR172 were up-regulated while the expression of miR319, miR858, and miR894 was found to be down-regulated. These results may provide a certain level of networking between those two regulatory molecules in plant genetic system under biotic stress.

  9. SELEKSI DAN PEMANFAATAN ACTINOMYCETES SEBAGAI MIKROBA ANTAGONIS YANG RAMAH LINGKUNGAN TERHADAP Fusarium oxysporum f.sp. cubense SECARA IN VITRO

    Directory of Open Access Journals (Sweden)

    I MADE SUDARMA

    2015-06-01

    Full Text Available A total of 119 different actinomycete isolate were recovered from banana crop habitats with and without Fusarium wilt disease symptom. These were than assessed for their antagonist ability against Fusarium oxysporum £sp. cubense (Foe in vitro. Results indicated that four of all actinomycete isolate active against Foe. The four of actinomycete isolates were Streptomyces sp. l (AAo4, Streptomyces sp.2 (AAo32 , Streptomyces sp.3 (AAo33 and Streptomyces sp. 4 (AAo35. It was can inhibit the Foe mycelium growth, 79,63%, 72,22%, 78,89% and 72,22% respectively. After tested with the 3 times replication, the four Streptomyces spp. isolate effective to control the Foe that attack Bali banana cultivars, such as Susu, Saba, Raja and Ketip.

  10. The Transcription Factor Con7-1 Is a Master Regulator of Morphogenesis and Virulence in Fusarium oxysporum.

    Science.gov (United States)

    Ruiz-Roldán, Carmen; Pareja-Jaime, Yolanda; González-Reyes, José Antonio; Roncero, M Isabel G

    2015-01-01

    Previous studies have demonstrated the essential role of morphogenetic regulation in Fusarium oxysporum pathogenesis, including processes such as cell-wall biogenesis, cell division, and differentiation of infection-like structures. We identified three F. oxysporum genes encoding predicted transcription factors showing significant identities to Magnaporthe oryzae Con7p, Con7-1, plus two identical copies of Con7-2. Targeted deletion of con7-1 produced nonpathogenic mutants with altered morphogenesis, including defects in cell wall structure, polar growth, hyphal branching, and conidiation. By contrast, simultaneous inactivation of both con7-2 copies caused no detectable defects in the resulting mutants. Comparative microarray-based gene expression analysis indicated that Con7-1 modulates the expression of a large number of genes involved in different biological functions, including host-pathogen interactions, morphogenesis and development, signal perception and transduction, transcriptional regulation, and primary and secondary metabolism. Taken together, our results point to Con7-1 as general regulator of morphogenesis and virulence in F. oxysporum.

  11. Direct MALDI-TOF/TOF analyses of unnatural beauvericins produced by the endophytic fungus Fusarium oxysporum SS46

    Directory of Open Access Journals (Sweden)

    Mayra Vendramini Tuiche

    2014-08-01

    Full Text Available The best time of production of the cyclohexadepsipeptide beauvericin by the endophytic fungus Fusarium oxysporum SS46 in Czapek medium was evaluated. The highest level of beauvericin production was found on day 21 of fermentative culture, as assessed by quantitative analysis by high performance liquid chromatography coupled with a photodiode array detector. Precursor-directed biosynthesis experiments were carried out to produce new analogues of beauvericin by feeding F. oxysporum with ten analogues of L-phenylalanine. In order to evaluate which precursor analogues were incorporated by the microorganism, the obtained extracts were analyzed using matrix-assisted laser desorption ionization - time-of-flight mass spectrometry (MALDI-TOF/TOF. The precursor-directed biosynthesis studies led to the biosynthesis of novel beauvericin derivatives by replacement of one, two, or all three L-phenylalanine residues in beauvericin with DL-3-fluorophenylalanine, L-3-fluorophenylalanine, L-4-fluorophenylalanine, or L-tyrosine. Beyond these precursor analogues, one unit of L-4-aminophenylalanine, L-4-chlorophenylalanine, DL-4-bromophenylalanine, or L-4-bromophenylalanine was also incorporated by the endophyte F. oxysporum SS46. Units of L-4-nitrophenylalanine and L-histidine were not incorporated by the microorganism to produce unnatural beauvericins.

  12. Suppressor of fusion, a Fusarium oxysporum homolog of Ndt80, is required for nutrient-dependent regulation of anastomosis.

    Science.gov (United States)

    Shahi, Shermineh; Fokkens, Like; Houterman, Petra M; Rep, Martijn

    2016-10-01

    Heterokaryon formation is an essential step in asexual recombination in Fusarium oxysporum. Filamentous fungi have an elaborate nonself recognition machinery to prevent formation and proliferation of heterokaryotic cells, called heterokaryon incompatibility (HI). In F. oxysporum the regulation of this machinery is not well understood. In Neurospora crassa, Vib-1, a putative transcription factor of the p53-like Ndt80 family of transcription factors, has been identified as global regulator of HI. In this study we investigated the role of the F. oxysporum homolog of Vib-1, called Suf, in vegetative hyphal and conidial anastomosis tube (CAT) fusion and HI. We identified a novel function for an Ndt80 homolog as a nutrient-dependent regulator of anastomosis. Strains carrying the SUF deletion mutation display a hyper-fusion phenotype during vegetative growth as well as germling development. In addition, conidial paring of incompatible SUF deletion strains led to more heterokaryon formation, which is independent of suppression of HI. Our data provides further proof for the divergence in the functions of different members Ndt80 family. We propose that Ndt80 homologs mediate responses to nutrient quality and quantity, with specific responses varying between species.

  13. Diagnóstico molecular diferencial Colletotrichum gloeosporioides y Fusarium oxysporum en ñame (Dioscorea sp.

    Directory of Open Access Journals (Sweden)

    Yeimy Alexandra Pinzón Gutiérrez

    2013-06-01

    Full Text Available Título en ingles: Differential molecular diagnosis Colletotrichum gloeosporioides and Fusarium oxysporum in yam (Dioscorea sp..Título corto:  Diagnóstico molecular en ñameResumen: Las enfermedades de origen fúngico son responsables de las mayores pérdidas reportadas en los cultivos de ñame colombianos, entre ellas la antracnosis causada por Colletotrichum spp. se destaca por ser la más devastadora.  En los últimos años, hongos con baja prevalencia pero con alto poder de diseminación como Fusarium spp., han ampliado su presencia en los cultivos de ñame favoreciendo el desarrollo de enfermedades como la pudrición del tubérculo en postcosecha. A pesar de la importancia del cultivo de ñame en las regiones de la Costa Atlántica colombiana, el Pacífico y la Amazonia, este es considerado un cultivo huérfano en razón a que son pocos los esfuerzos que en investigación se realizan a nivel mundial y particularmente en Colombia.  Con el propósito de aportar al diagnóstico correcto y oportuno de fitopatógenos que afectan el cultivo de ñame, se obtuvieron aislamientos fúngicos a partir de hojas con manchas necróticas. De los aislamientos obtenidos, cinco presentaron morfología propia del género Colletotrichum y tres de Fusarium.  La identidad de las especies implicadas se determinó por secuenciación de los ITS del ADNr, correspondiendo a Colletotrichum gloeosporioides y Fusarium oxysporum.  La evaluación de marcadores moleculares para la detección de forma diferencial y simultánea de estos patógenos, permitió seleccionar la amplificación del factor de elongación alpha (EF-α como la mejor prueba de diagnosis. Las pruebas de patogenicidad confirmaron la capacidad de los aislados de C. gloeosporioides para causar sintomatología de antracnosis en foliolos y de los aislados de F. oxysporum para desencadenar pudrición en tubérculo, la presencia de este último en hojas se podría asociar a su fácil y rápida dispersi

  14. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Riddin, T L [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown (South Africa); Gericke, M [MINTEK, Private Bag X3015, Randburg 2125 (South Africa); Whiteley, C G [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown (South Africa)

    2006-07-28

    Fusarium oxysporum fungal strain was screened and found to be successful for the inter- and extracellular production of platinum nanoparticles. Nanoparticle formation was visually observed, over time, by the colour of the extracellular solution and/or the fungal biomass turning from yellow to dark brown, and their concentration was determined from the amount of residual hexachloroplatinic acid measured from a standard curve at 456 nm. The extracellular nanoparticles were characterized by transmission electron microscopy. Nanoparticles of varying size (10-100 nm) and shape (hexagons, pentagons, circles, squares, rectangles) were produced at both extracellular and intercellular levels by the Fusarium oxysporum. The particles precipitate out of solution and bioaccumulate by nucleation either intercellularly, on the cell wall/membrane, or extracellularly in the surrounding medium. The importance of pH, temperature and hexachloroplatinic acid (H{sub 2}PtCl{sub 6}) concentration in nanoparticle formation was examined through the use of a statistical response surface methodology. Only the extracellular production of nanoparticles proved to be statistically significant, with a concentration yield of 4.85 mg l{sup -1} estimated by a first-order regression model. From a second-order polynomial regression, the predicted yield of nanoparticles increased to 5.66 mg l{sup -1} and, after a backward step, regression gave a final model with a yield of 6.59 mg l{sup -1}.

  15. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology

    Science.gov (United States)

    Riddin, T. L.; Gericke, M.; Whiteley, C. G.

    2006-07-01

    Fusarium oxysporum fungal strain was screened and found to be successful for the inter- and extracellular production of platinum nanoparticles. Nanoparticle formation was visually observed, over time, by the colour of the extracellular solution and/or the fungal biomass turning from yellow to dark brown, and their concentration was determined from the amount of residual hexachloroplatinic acid measured from a standard curve at 456 nm. The extracellular nanoparticles were characterized by transmission electron microscopy. Nanoparticles of varying size (10-100 nm) and shape (hexagons, pentagons, circles, squares, rectangles) were produced at both extracellular and intercellular levels by the Fusarium oxysporum. The particles precipitate out of solution and bioaccumulate by nucleation either intercellularly, on the cell wall/membrane, or extracellularly in the surrounding medium. The importance of pH, temperature and hexachloroplatinic acid (H2PtCl6) concentration in nanoparticle formation was examined through the use of a statistical response surface methodology. Only the extracellular production of nanoparticles proved to be statistically significant, with a concentration yield of 4.85 mg l-1 estimated by a first-order regression model. From a second-order polynomial regression, the predicted yield of nanoparticles increased to 5.66 mg l-1 and, after a backward step, regression gave a final model with a yield of 6.59 mg l-1.

  16. Biodiversity, Antimicrobial Potential, and Phylogenetic Placement of an Endophytic Fusarium oxysporum NFX 06 Isolated from Nothapodytes foetida

    Directory of Open Access Journals (Sweden)

    Sogra Fathima Musavi

    2013-01-01

    Full Text Available Biodiversity of endophytic fungi associated with the medicinal plant Nothapodytes foetida of Agumbe forest was determined and evaluated for its microbial activity. A total of 170 endophytic isolates were obtained from leaf, stem, seed, and fruit tissues of Nothapodytes foetida. The dominant endophytic fungi belong to genera Fusarium, Penicillium, Aspergillus, and Colletotrichum. Maximum endophytic isolates were obtained from leaves segments followed by fruit, stem, and seed tissues. Hyphomycetes were the dominant group found with 75.29% over other fungal groups. Shannon-Weiner and Simpson indexes showed rich diversity of endophytic fungi suggesting even and uniform occurrence of various species. 88.57%, 74.28%, 62.85%, and 65.71% of isolates have shown activity against Staphylococcus aureus (ATCC 25923, Pseudomonas aeruginosa (ATCC 27853, Escherichia coli (ATCC 25922, and Candida albicans (ATCC 69548, respectively. One of the isolate NFX 06 isolated from leaf has showed considerable antimicrobial activity against all the test pathogens. It was identified as Fusarium oxysporum by ITS sequence analysis; the nucleotide sequence was submitted in the GenBank with an accession number KC914432. Phylogenetic relationship confirmed that the strain F. oxysporum NFX 06 has evolved from an endophytic ancestor.

  17. The ultrasound-assisted extraction and identification of antifungal substances from B. amyloliquefaciens strain NJN-6 suppressing Fusarium oxysporum.

    Science.gov (United States)

    Yuan, Jun; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2012-12-01

    The primary mechanism underlying antagonism among microorganisms is the production of antagonistic substances called antibiotics that inhibit the growth of pathogens. In this study, the antagonistic substances produced by the Bacillus amyloliquefaciens strain NJN-6 that had antifungal activity against Fusarium oxysporum were extracted and identified. The active antifungal substance was extracted from dried leavening with ultrasound-assisted extraction (UAE), using n -butanol as the extractant. HPLC/ESI-MS was performed to investigate the components of the extracts. The results of the study showed that the antimicrobial substances consisted of three homologues of the iturin A family with molecular weights of 1043, 1057 and 1071 Da and of two homologues of the fengycin family with molecular weights of 1477 and 1491 Da. The effects of ultrasonic treatment time, extraction time and extractant volume, three major methodological parameters, were also studied to determine the optimal conditions for extraction. Compared with traditional extraction techniques, UAE is a simple, cheap and environmentally friendly method that represents a new option for the isolation and identification of lipopeptides and other active compounds. These antifungal substances extracted and identified from Bacillus amyloliquefaciens NJN-6 will help us to understand its biocontrol mechanism against Fusarium oxysporum.

  18. Inducción de resistencia sistémica contra Fusarium oxysporum en tomate por Trichoderma koningiopsis Th003

    Directory of Open Access Journals (Sweden)

    Cotes Prado Alba Marina

    2009-12-01

    Full Text Available Trichoderma koningiopsis Th003 ha demostrado ser un eficiente agente de control biológico de diferentes fitopatógenos incluyendo Fusarium oxysporum, además de ser un agente versátil en los modos de acción implicados en la respuesta de biocontrol. Con el propósito de estudiar la capacidad de este biocontrolador para inducir respuestas sistémicas de defensa en el control de la infección de Fusarium oxysporum, se utilizaron plantas de tomate (Solanum lycopersicum Mill. establecidas en cubos de enraizamiento con el sistema radical separado en dos porciones. Cuando Th003 se inoculó en una porción de la raíz 96 h antes de inocular F. oxysporum en la otra porción se presentó un retraso de la colonización del fitopatógeno en el sistema vascular de la planta, en comparación con las plantas inoculadas solamente con el fitopatógeno. Este resultado sugiere que
    T. koningiopsis Th003 estimuló respuestas sistémicas de defensa en la planta, dado que el antagonista y el fitopatógeno permanecieron separados espacialmente. Cuando el microorganismo biocontrolador fue evaluado en un cultivo comercial de tomate bajo invernadero, éste redujo significativamente (P<0.05 la incidencia de la enfermedad causada por F. oxysporum en 35%, en comparación con el testigo absoluto. El hongo T. koningiopsis Th003 demostró su habilidad para controlar F. oxysporum f. sp. radicis-lycopersici mediante inducción de respuestas de defensa sistémica en las plantas de tomate.

  19. Effect of root exudates of different resistant varieties of cucumber on fusarium wilt and preliminary studies on their resistance mechanism

    Institute of Scientific and Technical Information of China (English)

    Benli HUANG; Yundong XU; Ye WU; Shunqi ZHANG; Xuchao CHEN

    2008-01-01

    This study investigated the effect of root exudates of cucumber varieties, Jinyan 4 (susceptible variety), Jinchun 4 (resistant variety) and Yinnan Black seed squash on fusa-rium wilt. The results showed that fusarium wilt occurrence of plants treated with the root exudate of Jinyan 4 was earlier. The infection rate was significantly higher 15 days after inoculation, but similar to the control 20 days after inocula-tion. In contrast, the infection rate of plants treated with the root exudate of Jinchun 4 was significantly lower than that of the control. The plant height and fresh weight of Jinyan 4 treated with its own root exudate were lower than those of the control, and the root vigor decreased but the conductance increased. There was no significant effect of the root exudates from Jinchun 4 and Black seed squash on plant height and fresh mass of Jinyan 4. We found that the root exudate of susceptible cucumber variety stimulated the growth of Fusarium oxysporum pathogen, in contrast, that of resistance variety and Black seed squash suppressed the growth.

  20. Seleção de antagonistas fúngicos a Fusarium solani e Fusarium oxysporum em substrato comercial para mudas Selection of fungi antagonistic to Fusarium solani and Fusarium oxysporum in commercial substrate for seedlings

    Directory of Open Access Journals (Sweden)

    Luciana Zago Ethur

    2007-12-01

    Full Text Available Testes in vitro são geralmente utilizados para a seleção inicial de agentes de biocontrole contra fungos de solo, faltando metodologias que utilizem solo e/ou substrato. O objetivo deste trabalho foi realizar a seleção massal de isolados fúngicos antagônicos a F. solani e F. oxysporum em substrato comercial para mudas. Foram realizados dois experimentos com os patógenos F. solani e F. oxysporum e com 98 possíveis antagonistas fúngicos, dos gêneros Penicillium claviforme, Penicillium, Aspergillus e Cladosporium. A suspensão dos patógenos foi inserida no substrato, em copos plásticos, sendo acrescentada, cinco dias depois, a suspensão dos demais fungos. Avaliou-se o número de unidades formadoras de colônia de F. solani e F. oxysporum por grama de substrato após nove dias. Dos 98 isolados utilizados contra F. solani, 43 % não diferiram da testemunha e 57% reduziram o seu desenvolvimento em substrato, sendo que os três melhores isolados fúngicos foram do gênero Penicillium claviforme. Os três isolados de Penicillium claviforme selecionados para F. solani também foram eficientes para F. oxysporum.Tests in vitro are usually used for the initial selection of biocontrol agents against soil fungi, lacking methodologies using soil and/or substrate. The objective of this research was to accomplish the mass selection of fungi isolates antagonistic to F. solani and F. oxysporum in commercial substrate for seedlings. Two experiments were conducted, with the pathogens F. solani and F. oxysporum, and 98 possible antagonistic fungi of the genera Penicillium claviforme, Penicillium, Aspergillus and Cladosporium. The suspension of the pathogens was inoculated in the substrate, in plastic cups, and the suspension of the other fungi was added five days later. The number of colony-forming unit of F. solani and F. oxysporum/g of substrate was counted after nine days. Of the 98 isolates used against F. solani, 43% did not differ from the control

  1. Involvement of fub4, a putative serine hydrolase, in fusaric acid biosynthesis in the cotton pathogen Fusarium oxysporum f. sp. vasinfectum

    Science.gov (United States)

    Previous work has determined that fusaric acid is required for virulence in the Australian isolate of Fusarium oxysporum f. sp. vasinfectum (Fov), which produce copious amounts of fusaric acid. Race 4 isolates, identified in the San Joaquin Valley of California, has caused serious losses and is a p...

  2. Specific PCR detection of Fusarium oxysporum f. sp. vasinfectum California Race 4 based on a unique Tfo1 insertion event in the PHO gene

    Science.gov (United States)

    A highly virulent race 4 (Cal race 4) of Fusarium oxysporum f. sp. vasinfectum (Fov) was identified in California cotton fields in 2001, and has since been found in increasing numbers of fields. Cal race 4 isolates contain a unique Tfo1 transposon insertion in the PHO gene that was not found in othe...

  3. Induction of Phytoalexins in Seabrook Sea Island, Pima S-7 and Pima S-6 Cottons after Inoculation with Fusarium oxysporum f. sp. vasinfectum Race-4

    Science.gov (United States)

    In 2002, a strain of Fusarium oxysporum f. sp. vasinfectum was found in California cotton fields and identified as race 4. Stem inoculations with isolates of the California strain (CA Fov-4) do not elicit symptoms in controlled-environmental chamber experiments, while stem inoculations with Fov rac...

  4. Production of anti-fungal volatiles by non-pathogenic Fusarium oxysporum and its efficacy in suppression of verticillium wilt of cotton

    Science.gov (United States)

    Aims: The study aimed to identify volatile organic compounds (VOCs) produced by the non-pathogenic Fusarium oxysporum (Fo) strain CanR-46, and to determine the anti-fungal spectrum and the control efficacy of the Fo-VOCs. Methods: The Fo-VOCs were identified by GC-MS. The antifungal activity of the...

  5. Crop rotation design in view of soilborne pathogen dynamics : a methodological approach illustrated with Sclerotium rolfsii and Fusarium oxysporum f.sp. cepae

    NARCIS (Netherlands)

    Leoni, C.

    2013-01-01

    Key words: Sclerotium rolfsii, Fusarium oxysporum f.sp. cepae, soilborne pathogens, crop rotation, population dynamic models, simulation.   During the last decades, agriculture went through an intensification process associated with an increased use of fossil fuel energy, which despite tempor

  6. Detection of Fusarium oxysporum f. sp. vasinfectum race 3 by single-base extension method and allele-specific polymerase chain reaction

    Science.gov (United States)

    We developed allele specific (AS) SNP primers for rapid detection of Fusarium oxysporum f.sp vasinfectum (FOV) race 3. FOV_BT_SNP_R3 and FOV_BT_AS_R3 primers were designed based on single nucleotide polymorphisms of partial sequence alignment of the ß-tubulin (BT) gene from several FOV races. These ...

  7. Draft Genome Sequence of Rhizobium sp. Strain TBD182, an Antagonist of the Plant-Pathogenic Fungus Fusarium oxysporum, Isolated from a Novel Hydroponics System Using Organic Fertilizer.

    Science.gov (United States)

    Iida, Yuichiro; Fujiwara, Kazuki; Someya, Nobutaka; Shinohara, Makoto

    2017-03-16

    Rhizobium sp. strain TBD182, isolated from a novel hydroponics system, is an antagonistic bacterium that inhibits the mycelial growth of Fusarium oxysporum but does not eliminate the pathogen. We report the draft genome sequence of TBD182, which may contribute to elucidation of the molecular mechanisms of its fungistatic activity. Copyright © 2017 Iida et al.

  8. Draft Genome Sequence of Rhizobium sp. Strain TBD182, an Antagonist of the Plant-Pathogenic Fungus Fusarium oxysporum, Isolated from a Novel Hydroponics System Using Organic Fertilizer

    Science.gov (United States)

    Fujiwara, Kazuki; Someya, Nobutaka; Shinohara, Makoto

    2017-01-01

    ABSTRACT Rhizobium sp. strain TBD182, isolated from a novel hydroponics system, is an antagonistic bacterium that inhibits the mycelial growth of Fusarium oxysporum but does not eliminate the pathogen. We report the draft genome sequence of TBD182, which may contribute to elucidation of the molecular mechanisms of its fungistatic activity. PMID:28302768

  9. Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum : Site-dependent composition and diversity revealed

    NARCIS (Netherlands)

    Adesina, Modupe F.; Lembke, Antje; Costa, Rodrigo; Speksnijder, Arien; Smalla, Kornelia

    2007-01-01

    A cultivation-based approach was used to determine the in vitro antagonistic potential of soil bacteria towards Rhizoctonia solani AG3 and Fusarium oxysporum f. sp. lini (Foln3). Four composite soil samples were collected from four agricultural sites with previous documentation of disease

  10. Occurrence of paracrystalloids and their particles in resistant and susceptible carnation plants infected with Fusarium oxysporum f.sp dianthi race 2

    NARCIS (Netherlands)

    Ouellette, G.B.; Rioux, D.; Simard, M.; Baayen, R.P.

    2004-01-01

    Uncommon, opaque particles (of approximately 20-22 nm, referred to as OP), aggregating into paracrystalloids occurred only next to colonized cells in carnation plants of either a susceptible or resistant cultivar (cv.) infected with Fusarium oxysporum f.sp. dianthi. In the susceptible plant, those s

  11. A robust identification and detection assay to discriminate the cucumber pathogens Fusarium oxysporum f. sp. cucumerinum and f. sp. radicis-cucumerinum

    NARCIS (Netherlands)

    Lievens, B.; Claes, L.; Vakalounakis, D.J.; Vanachter, A.C.R.C.; Thomma, B.P.H.J.

    2007-01-01

    The fungal species Fusarium oxysporum is a ubiquitous inhabitant of soils worldwide that includes pathogenic as well as non-pathogenic or even beneficial strains. Pathogenic strains are characterized by a high degree of host specificity and strains that infect the same host range are organized in so

  12. Down-regulatory effect of Thymus vulgaris L. on growth and Tri4 gene expression in Fusarium oxysporum strains.

    Science.gov (United States)

    Divband, Kolsum; Shokri, Hojjatollah; Khosravi, Ali Reza

    2017-03-01

    The aims of this study were to evaluate the efficacy of Thymus vulgaris (T. vulgaris) essential oil on the fungal growth and Tri4 gene expression in Fusarium oxysporum (F. oxysporum) strains. The oil was obtained by water-distillation using a Clevenger-type system. The chemical composition of the essential oil was obtained by gas chromatography- mass spectroscopy (GC-MS) and by retention indices. The antifungal activity was evaluated by broth microdilution assay. A quantitative real time RT-PCR (qRT-PCR) assay was also developed specific for F. oxysporum on the basis of trichothecene biosynthetic gene, Tri4, which allowed discrimination from F. oxysporum. Results showed thymol (32.67%) and p-cymene (16.68%) as the main components of T. vulgaris. Minimum inhibitory concentration (MIC) values varied from 5 to 20 μg/ml with T. vulgaris (mean: 10.50 μg/ml), while minimum fungicidal concentration (MFC) values ranged from 8 to 30 μg/ml with mean value of 16.20 μg/ml qRT-PCR results revealed a downregulation from 4.04 to 6.27 fold of Tri4 gene expression of the fungi exposed to T. vulgaris essential oil. The results suggest that T. vulgaris oil can be considered potential alternative natural fungicide to the synthetic chemicals that are currently used to prevent and control seed-borne diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil.

    Science.gov (United States)

    Sharma, Abhishek; Rajendran, Sasireka; Srivastava, Ankit; Sharma, Satyawati; Kundu, Bishwajit

    2017-03-01

    The antifungal effects of four essential oils viz., clove (Syzygium aromaticum), lemongrass (Cymbopogon citratus), mint (Mentha × piperita) and eucalyptus (Eucalyptus globulus) were evaluated against wilt causing fungus, Fusarium oxysporum f. sp. lycopersici 1322. The inhibitory effect of oils showed dose-dependent activity on the tested fungus. Most active being the clove oil, exhibiting complete inhibition of mycelial growth and spore germination at 125 ppm with IC50 value of 18.2 and 0.3 ppm, respectively. Essential oils of lemongrass, mint and eucalyptus were inhibitory at relatively higher concentrations. The Minimum inhibitory concentration (MIC) of clove oil was 31.25 ppm by broth microdilution method. Thirty one different compounds of clove oil, constituting approximately ≥99% of the oil, were identified by gas chromatography-mass spectroscopy analysis. The major components were eugenol (75.41%), E-caryophyllene (15.11%), α-humulene (3.78%) and caryophyllene oxide (1.13%). Effect of clove oil on surface morphology of F. oxysporum f. sp. lycopersici 1322 was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM observation revealed shrivelled hyphae while AFM observation showed shrunken and disrupted spores in clove oil treated samples. In pots, 5% aqueous emulsion of clove oil controlled F. oxysporum f. sp. lycopersici 1322 infection on tomato plants. This study demonstrated clove oil as potent antifungal agent that could be used as biofungicide for the control of F. oxysporum f. sp. lycopersici in both preventive and therapeutic manner. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Drought Impact on the Soilborne Fungal Pathogen of Tomato: Fusarium Oxysporum f. sp. Lycopersici Race 3

    Science.gov (United States)

    Raju, T.

    2016-12-01

    This paper reviews the drought impact on fungal pathogen of tomato. It presents the 11 Main Procedures used to conduct the experiments and discusses materials used. The 11 procedures are: Gather All the Soils, Sterilize the Soils Using Auto-Clave, Water Retention Test Using Auto-Clave, Cultivate Pathogen, Grow Tomato Plant, Count Pathogenic Cells, Inoculate the Pathogen, Conduct Root Dip, Grow Positive and Negative Samples, Test for Fusarium, and the Soil Separation Experiment with Pathogenic Soil. Experiments conducted on 6 Main Soils used in farming throughout California. The Yolo Series, Whiterock Series, Euic Soil, Potting Soil, Blacklock Series, and Henneke Series. The 6 Soils include amounts of clay, silt, sand, loam, and humus. It was crucial that these soils include these properties because deriving from last year's research I found that these particles in the soil has a role in the growth of the plant. Next, I tested the dry/wet weight of the soils, as this gave me a good estimate of how much water the soils can retain. This is very important because I found a direct correlation between the soil that retained the most amount of water and the soil that had the least harms done. Next, the other labs were completed to cultivate, inoculate, and test the pathogens in the soil, now these steps must be carried out with accuracy and precision because pathogens are a biological agent that causes disease or illness to its host, and if even 0.100 mL is changed in the pathogenic level it can make a large difference. Later, after I finished conducting the root dip, and raising the tomato plants. I counted the Fusarium count in the soil and plated the samples, where I was able to find the results on how much harm the pathogen had on the plant. In each of the 90 reps. the Fusarium (soilborne pathogen) decreased a little, which factors in the transfer from Potato Dextrose Agar Petri Dish to the Soils. After, this transfer the pathogen decreased and never increased, but

  15. Conjunctively screening of biocontrol agents (BCAs) against fusarium root rot and fusarium head blight caused by Fusarium graminearum.

    Science.gov (United States)

    Wang, Lu-Yao; Xie, Yue-Shen; Cui, Yuan-Yu; Xu, Jianjun; He, Wei; Chen, Huai-Gu; Guo, Jian-Hua

    2015-08-01

    Fusarium root-rot and fusarium head blight are plant diseases caused by Fusarium sp. in different growth periods of wheat, bring heavy losses to crop production in China. This research is aiming to screen biocontrol agents conjunctively for controlling these two diseases at the same time, as well as evaluate our previous BCAs (Biological Control Agents) screening strategies in more complex situation, considering biocontrol is well concerned as an environmental-friendly plant disease controlling method. Totally 966 bacterial isolates were screened from different parts of wheat tissues, of which potential biocontrol values were detected according to their abilities in antagonism inhibition and secreting extracellular hydrolytic enzyme. Biocontrol tests against fusarium root rot and fusarium head blight were carried out on 37 bacterial isolates with potential biocontrol capacity after pre-selection through ARDRA- and BOX-PCR analysis on strains with high assessment points. We acquired 10 BCAs with obvious biocontrol efficacy (more than 40%) in greenhouse and field tests. Pseudomonas fluorescens LY1-8 performed well in both two tests (biocontrol efficacy: 44.62% and 58.31%), respectively. Overall, correlation coefficient is 0.720 between assessment values of 37 tested BCA strains and their biocontrol efficacy in trails against fusarium root rot; correlation coefficient is 0.806 between their assessment values and biocontrol efficacy in trails against fusarium head blight. We acquired 10 well-performed potential BCAs, especially P. fluorescens LY1-8 displayed good biocontrol capacity against two different diseases on wheat. Biocontrol efficacies results in both greenhouse and field tests showed high positive correlation with assessment values (0.720 and 0.806), suggesting that the BCAs screening and assessing strategy previously developed in our lab is also adaptable for conjunctively screening BCAs for controlling both root and shoot diseases on wheat caused by same

  16. Quantification of Fusarium oxysporum in fumigated soils by a newly developed real-time PCR assay to assess the efficacy of fumigants for Fusarium wilt disease in strawberry plants.

    Science.gov (United States)

    Li, Yuan; Mao, Liangang; Yan, Dongdong; Ma, Taotao; Shen, Jin; Guo, Meixia; Wang, Qiuxia; Ouyang, Canbin; Cao, Aocheng

    2014-11-01

    Two soil fumigants, chloropicrin (CP) and dimethyl disulfide (DMDS), were used to control Fusarium wilt disease (FWD) which caused large economic losses in strawberries. The fumigants were evaluated alone and in combination in a laboratory study and in strawberry greenhouses. Laboratory tests found that combinations of CP and DMDS indicated a positive synergistic activity on Fusarium oxysporum. A newly developed quantitative assay for F. oxysporum involving real-time PCR was used successfully to evaluate F. oxysporum control by the fumigants; it provided similar results to the selective medium but was less time-consuming and less labor intensive. Greenhouse trials revealed that the combination of CP and DMDS successfully suppressed the incidence of FWD and sharply reduced the population density of F. oxysporum, which significantly increased fruit branch number and maintained a good strawberry yield, higher than methyl bromide (MB) treatment. All of the treatments provided significantly better results than the non-treated control. This study confirms that the newly developed real-time PCR quantitative assay for F. oxysporum was suitable for the control efficacy evaluation of soil fumigants and that the novel fumigant combination of CP and DMDS offers a promising effective alternative to MB for the control of F. oxysporum in strawberry greenhouses. © 2013 Society of Chemical Industry.

  17. Thermographic visualization of leaf response in cucumber plants infected with the soil-borne pathogen Fusarium oxysporum f. sp. cucumerinum.

    Science.gov (United States)

    Wang, Min; Ling, Ning; Dong, Xian; Zhu, Yiyong; Shen, Qirong; Guo, Shiwei

    2012-12-01

    Infection with the soil-borne pathogen Fusarium oxysporum f. sp. cucumerinum (FOC), which causes Fusarium wilt of cucumber plants, might result in changes in plant transpiration and water status within leaves. To monitor leaf response in cucumber infected with FOC, digital infrared thermography (DIT) was employed to detect changes in leaf temperature. During the early stages of FOC infection, stomata closure was induced by ABA in leaves, resulting in a decreased transpiration rate and increased leaf temperature. Subsequently, cell death occurred, accompanied by water loss, resulting in a little decrease in leaf temperature. A negative correlation between transpiration rate and leaf temperature was existed. But leaf temperature exhibited a special pattern with different disease severity on light-dark cycle. Lightly wilted leaves had a higher temperature in light and a lower temperature in dark than did in healthy leaves. We identified that the water loss from wilted leaves was regulated not by stomata but rather by cells damage caused by pathogen infection. Finally, water balance in infected plants became disordered and dead tissue was dehydrated, so leaf temperature increased again. These data suggest that membrane injury caused by FOC infection induces uncontrolled water loss from damaged cells and an imbalance in leaf water status, and ultimately accelerate plant wilting. Combining detection of the temperature response of leaves to light-dark conditions, DIT not only permits noninvasive detection and indirect visualization of the development of the soil-borne disease Fusarium wilt, but also demonstrates certain internal metabolic processes correlative with water status.

  18. Rapid and efficient estimation of pea resistance to the soil-borne pathogen Fusarium oxysporum by infrared imaging.

    Science.gov (United States)

    Rispail, Nicolas; Rubiales, Diego

    2015-01-01

    Fusarium wilts are widespread diseases affecting most agricultural crops. In absence of efficient alternatives, sowing resistant cultivars is the preferred approach to control this disease. However, actual resistance sources are often overcome by new pathogenic races, forcing breeders to continuously search for novel resistance sources. Selection of resistant accessions, mainly based on the evaluation of symptoms at timely intervals, is highly time-consuming. Thus, we tested the potential of an infra-red imaging system in plant breeding to speed up this process. For this, we monitored the changes in surface leaf temperature upon infection by F. oxysporum f. sp. pisi in several pea accessions with contrasting response to Fusarium wilt under a controlled environment. Using a portable infra-red imaging system we detected a significant temperature increase of at least 0.5 °C after 10 days post-inoculation in the susceptible accessions, while the resistant accession temperature remained at control level. The increase in leaf temperature at 10 days post-inoculation was positively correlated with the AUDPC calculated over a 30 days period. Thus, this approach allowed the early discrimination between resistant and susceptible accessions. As such, applying infra-red imaging system in breeding for Fusarium wilt resistance would contribute to considerably shorten the process of selection of novel resistant sources.

  19. Modified Primers for the Identification of Nonpathogenic Fusarium oxysporum Isolates That Have Biological Control Potential against Fusarium Wilt of Cucumber in Taiwan

    Science.gov (United States)

    Wang, Chaojen; Lin, Yisheng; Lin, Yinghong; Chung, Wenhsin

    2013-01-01

    Previous investigations demonstrated that Fusarium oxysporum (Fo), which is not pathogenic to cucumbers, could serve as a biological control agent for managing Fusarium wilt of cucumber caused by Fo f. sp. cucumerinum (Foc) in Taiwan. However, thus far it has not been possible to separate the populations of pathogenic Fo from the nonpathogenic isolates that have biological control potential through their morphological characteristics. Although these two populations can be distinguished from one another using a bioassay, the work is laborious and time-consuming. In this study, a fragment of the intergenic spacer (IGS) region of ribosomal DNA from an Fo biological control agent, Fo366, was PCR-amplified with published general primers, FIGS11/FIGS12 and sequenced. A new primer, NPIGS-R, which was designed based on the IGS sequence, was paired with the FIGS11 primer. These primers were then evaluated for their specificity to amplify DNA from nonpathogenic Fo isolates that have biological control potential. The results showed that the modified primer pair, FIGS11/NPIGS-R, amplified a 500-bp DNA fragment from five of seven nonpathogenic Fo isolates. These five Fo isolates delayed symptom development of cucumber Fusarium wilt in greenhouse bioassay tests. Seventy-seven Fo isolates were obtained from the soil and plant tissues and then subjected to amplification using the modified primer pair; six samples showed positive amplification. These six isolates did not cause symptoms on cucumber seedlings when grown in peat moss infested with the isolates and delayed disease development when the same plants were subsequently inoculated with a virulent isolate of Foc. Therefore, the modified primer pair may prove useful for the identification of Fo isolates that are nonpathogenic to cucumber which can potentially act as biocontrol agents for Fusarium wilt of cucumber. PMID:23762289

  20. Evaluations of shorter exposures of contact lens cleaning solutions against Fusarium oxysporum species complex and Fusarium solani species complex to simulate inappropriate usage.

    Science.gov (United States)

    Ramani, Rama; Chaturvedi, Vishnu

    2011-05-01

    An outbreak of Fusarium keratitis in contact lens users resulted in withdrawal of ReNu with MoistureLoc solution, although the exact cause of the outbreak remains enigmatic. We evaluated current and discontinued multipurpose cleaning solutions (MPSs; MoistureLoc, Equate, MultiPlus, and OptiFree Express) against plankton- and biofilm-derived cells of Fusarium oxysporum species complex (FOSC) and F. solani species complex (FSSC). The methods included a traditional assay based on CFU counts and a novel flow cytometry (FC) assay based on percent cell subpopulation (PCS) stained with two fluorochromes (Sytox Red and 5-chloromethylfluorescein diacetate). The tests were done with the respective manufacturers' recommended cleaning regimens (240 to 360 min) and under shorter exposures (15 to 60 min) to simulate inappropriate usage by the customers. FC assay measured PCS, which was available rapidly, in 5 to 7 h, whereas 24 to 48 h was needed for CFU counts, and there was good correlation between the two methods (r2=0.97). FC assays allowed identification of injured fungal cells, which are likely to be missed with growth assays. In general, a time- and inoculum-dependent survival pattern was seen for both FOSC and FSSC cells, and biofilm-derived cells were more resistant than plankton-derived cells. MultiPlus and Equate produced 100% sterilization of fungi even under shorter exposures. However, biofilm FOSC and FSSC cells survived for up to 4 h in MoistureLoc solution and up to 6 h in OptiFree Express solution under shorter exposure times. This finding was enigmatic, as OptiFree Express is not associated with any outbreak of Fusarium keratitis. This study provides additional support for possible roles that improper lens cleaning regimens and fungal biofilms could play as predisposing factors for Fusarium keratitis.

  1. Fungicidal activity of Eucalyptus tereticornis essential oil on the pathogenic fungus Fusarium oxysporum Actividad antimicótica del aceite esencial a partir de Eucalyptus tereticornis sobre el hongo patógeno Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Walter Murillo Arango

    2011-06-01

    Full Text Available The objective of present paper was to determine the antifungal activity of the Eucalyptus tereticornis (Myrtaceae essential oil and two fractions on the Fusarium oxysporum mushroom, a pathogen with clinical and agricultural significance. The total citronelal (44.8 % and geraniol (9.78 % essential oil had a fungicidal effect at a 3 g/L concentration and a fungicidal activity at small concentrations. The A and B fractions composed most of p-mentane-3,8-diol (18.95 % and geraniol acetate (24.34 %, respectively were more active than the total extract. The observations at microscopic level showed damages and changes in hyphae and chlamydospores, as well as a decrease in the number of conidia. The observed fungicidal activity and the morphologic damages were dependent on the concentration.El objetivo de este trabajo fue determinar la actividad antifúngica del aceite esencial de Eucalyptus tereticornis (Myrtaceae y 2 fracciones sobre el hongo Fusarium oxysporum, patógeno de importancia tanto clínica como agrícola. El aceite esencial total, compuesto principalmente por citronelal (44,8 %, citronelol (9,78 % presentó un efecto fungicida a una concentración de 3 g/L y actividad fungistática a concentraciones menores. La fracciones A y B compuestas en su mayoría por p-mentano-3,8-diol (18,95 % y acetato de citronelol (24,34 % respectivamente fueron más activas que el extracto total. Las observaciones a nivel microscópico mostraron daños y cambios en hifas y clamidosporas, así como disminución en el número de conidias. La actividad fungistática observada y los daños morfológicos fueron dependientes de la concentración.

  2. TOMATO-Fusarium oxysporum INTERACTIONS: II-CHITOSAN AND MSB INDUCED RESISTANCE AGAINST FOL IN YOUNG TOMATO PLANTS

    Directory of Open Access Journals (Sweden)

    Dalila Paz-Lago

    2000-01-01

    Full Text Available Quitosana, hidrolizados de quitosana y menadiona bisulfito de sodio (MBS, fueron aplicados al suelo y asperjados sobre plantas de tomate en diferentes experimentos, para eva- luar su efecto combinado sobre el desarrollo de la enfermedad. Los tres productos protegieron con efectividad las plantas contra la enfermedad, mostrando los mejores resultados la as- persión al follaje con hidrolizados de quitosana y MBS (0.25 + 0.05 g.L-1 respectivamente, sugiriendo que la inducción de resistencia sistémica juega un papel importante como meca- nismo de defensa del tomate contra el ataque de Fusarium oxysporum f.sp lycopersicii (FOL. Se midieron algunos me- canismos enzimáticos relacionados con la defensa en plantas tratadas con elicitores e inoculadas con FOL como marcado- res de resistencia a la enfermedad.

  3. H1-A, a compound isolated from Fusarium oxysporum inhibits hepatitis C virus (HCV) NS3 serine protease.

    Science.gov (United States)

    Yang, Li-Yuan; Lin, Jun; Zhou, Bin; Liu, Yan-Gang; Zhu, Bao-Quan

    2016-04-01

    The present study was aimed to isolate the active compounds from the fermentation products of Fusarium oxysporum, which had hepatitis C virus (HCV) NS3 protease inhibitory activity. A bioactive compound was isolated by reverse-phase silica-gel column chromatography, silica-gel column chromatography, semi-preparative reverse-phase High Performance Liquid Chromatography (HPLC), and then its molecular structure was elucidated based on the spectrosopic analysis. As a result, the compound (H1-A, 1) Ergosta-5, 8 (14), 22-trien-7-one, 3-hydroxy-,(3β, 22E) was isolated and identified. To the best of our knowledge, this was the first report on the isolation of H1-A from microorganisms with the inhibitory activity of NS3 protease. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  4. INDUCCIÓN DE DOS ENZIMAS PECTOLÍTICAS EN EL MODELO Fusarium oxysporum f. sp. dianthi - CLAVEL

    Directory of Open Access Journals (Sweden)

    Liliana Goméz García

    2008-03-01

    Full Text Available Se estudió por ensayos in vitro la posible participación de las enzimas endopoligalacturonasa (PG (EC.3.2.1.15 y pectato liasa (PL (EC.4.2.2.2, consideradas factores de virulencia en el proceso de infección del clavel por el hongo Fusarium oxysporum f. sp. dianthi (FOD.Los resultados muestran la inducción de la expresión de la enzima PG en presencia de los inductores artificiales, ácido poligalacturónico (APG y pectina, y un nivel de expresión muy bajo en cultivos con pared celular (PC de clavel de variedades resistente y susceptible. La enzima PL no presentó expresión en presencia de inductores artificiales (APG y pectina, mientras que en cultivos inducidos con pared celular de raíz presentó un alto nivel de expresión.

  5. Isolation and heterologous expression of a polygalacturonase produced by Fusarium oxysporum f. sp. cubense race 1 and 4.

    Science.gov (United States)

    Dong, Zhangyong; Wang, Zhenzhong

    2015-04-03

    Fusarium wilt (Panama disease) caused by Fusarium oxysporum f. sp. cubense (FOC) represents a significant threat to banana (Musa spp.) production. Musa AAB is susceptible to Race 1 (FOC1) and Race 4 (FOC4), while Cavendish Musa AAA is found to be resistant to FOC1 but still susceptible to Race 4. A polygalacturonase (PGC3) was purified from the supernatant of Fusarium oxysporum f. sp. cubense race 4 (FOC4), which is the pathogen of Fusarium wilt. PGC3 had an apparent molecular weight of 45 kDa according to SDS-PAGE. The enzyme hydrolyzed polygalacturonic acid in an exo-manner, as demonstrated by analysis of degradation products. The Km and Vmax values of PGC3 from FOC4 were determined to be 0.70 mg·mL-1 and 101.01 Units·mg·protein-1·min-1, respectively. Two pgc3 genes encoding PGC3 from FOC4 and FOC1, both genes of 1368 bp in length encode 456 amino-acid residues with a predicted signal peptide sequence of 21 amino acids. There are 16 nucleotide sites difference between FOC4-pgc3 and FOC1-pgc3, only leading to four amino acid residues difference. In order to obtain adequate amounts of protein required for functional studies, two genes were cloned into the expression vector pPICZaA and then expressed in Pichia pastoris strains of SMD1168. The recombinant PGC3, r-FOC1-PGC3 and r-FOC4-PGC3, were expressed and purified as active proteins. The optimal PGC3 activity was observed at 50 °C and pH 4.5. Both recombinant PGC3 retained >40% activity at pH 3-7 and >50% activity in 10-50 °C. Both recombinant PGC3 proteins could induce a response but with different levels of tissue maceration and necrosis in banana plants. In sum, our results indicate that PGC3 is an exo-PG and can be produced with full function in P. pastoris.

  6. The Fusarium oxysporum gnt2, Encoding a Putative N-Acetylglucosamine Transferase, Is Involved in Cell Wall Architecture and Virulence

    Science.gov (United States)

    López-Fernández, Loida; Ruiz-Roldán, Carmen; Pareja-Jaime, Yolanda; Prieto, Alicia; Khraiwesh, Husam; Roncero, M. Isabel G.

    2013-01-01

    With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity. PMID:24416097

  7. Controle de Rhizoctonia solani e Fusarium oxysporum f.sp. phaseoli por biopreparados de isolados de Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    Pedro Paulo Dias

    2013-12-01

    Full Text Available Os experimentos objetivaram avaliar em condições de casa de vegetação o biocontrole dos fitopatógenos Rhizoctonia solani (RS e Fusarium oxysporum f.sp. phaseoli (FOP em alface (Lactuca sativa L. cultivar Regina, e feijão-vagem (Phaseolus vulgaris L. cultivar Alessa, respectivamente, utilizando como agentes antagonistas, 10 isolados de Trichoderma spp. selecionados em testes in vitro. Foram feitos biopreparados à base de arroz previamente colonizado por isolados de Trichoderma spp. e posteriormente triturados. Para a realização dos testes, os biopreparados foram inoculados previamente na proporção de 10(9 conídios.mL-1, em substrato comercial para produção de mudas. Após sete dias, os patógenos foram introduzidos separadamente em duas concentrações distintas: R. solani na proporção de 144 mg de meio de arroz por kg de substrato e F. oxysporum f.sp. phaseoli inoculado na forma de suspensão contendo 4,75 x 10(6 conídios.mL-1. Avaliou-se a influência dos biopreparados na % de damping-off de pós-emergência em plantas de alface e a severidade de murcha em plantas de feijão-vagem. O biopreparado referente ao isolado T-03 foi o mais eficiente no controle de R. solani em plantas de alface cultivar Regina, por ter reduzido a incidência de damping-off de pós-emergência nessa cultura. Por outro lado, nenhum dos biopreparados apresentou efeito antagonista satisfatório à F. oxysporum f.sp. phaseoli em plantas de feijão-vagem.

  8. FocVel1 influences asexual production, filamentous growth, biofilm formation, and virulence in Fusarium oxysporum f. sp. cucumerinum

    Directory of Open Access Journals (Sweden)

    Li ePeiqian

    2015-05-01

    Full Text Available Velvet genes play critical roles in the regulation of diverse cellular processes. In current study, we identified the gene FocVel1, a homolog of Fusarium graminearum VelA, in the plant pathogenic fungus F. oxysporum f. sp. cucumerinum. This pathogen causes the destructive disease called cucumber Fusarium wilt, which severely affects the production and marketing of this vegetable worldwide. Transcript analyses revealed high expression of FocVel1 during conidiophore development. Disruption of the FocVel1 gene led to several phenotypic defects, including reduction in aerial hyphal formation and conidial production. The deletion mutant ⊿FocVel1 showed increased resistance to both osmotic stress and cell wall-damaging agents, but increased sensitivity to iprodione and prochloraz fungicides, which may be related to changes in cell wall components. In the process of biofilm formation in vitro, the mutant strain ⊿FocVel1 displayed not only a reduction in spore aggregation but also a delay in conidial germination on the polystyrene surface, which may result in defects in biofilm formation. Moreover, pathogenicity assays showed that the mutant ⊿FocVel1 exhibited impaired virulence in cucumber seedlings. And the genetic complementation of the mutant with the wild-type FocVel1 gene restored all the defects of the ⊿FocVel1. Taken together, the results of this study indicated that FocVel1 played a critical role in the regulation of various cellular processes and pathogenicity in F. oxysporum f. sp. cucumerinum.

  9. Combined action of the major secreted exo- and endopolygalacturonases is required for full virulence of Fusarium oxysporum.

    Science.gov (United States)

    Bravo Ruiz, Gustavo; Di Pietro, Antonio; Roncero, M Isabel G

    2016-04-01

    The genome of the tomato pathogen Fusarium oxysporum f. sp. lycopersici encodes eight different polygalacturonases (PGs): four endoPGs and four exoPGs. Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed that endoPGs pg1 and pg5 and exoPGs pgx4 and pgx6 are expressed at significant levels during growth on citrus pectin, polygalacturonic acid or the monomer galacturonic acid, as well as during the infection of tomato plants. The remaining PG genes exhibit low expression levels under all the conditions tested. Secreted PG activity was decreased significantly during growth on pectin in the single deletion mutants lacking either pg1 or pgx6, as well as in the double mutant. Although the single deletion mutants did not display a significant virulence reduction on tomato plants, the Δpg1Δpgx6 double mutant was significantly attenuated in virulence. The combined action of exoPGs and endoPGs is thus essential for plant infection by the vascular wilt fungus F. oxysporum. © 2015 BSPP and John Wiley & Sons Ltd.

  10. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum

    Science.gov (United States)

    Thatcher, Louise F.; Cevik, Volkan; Grant, Murray; Zhai, Bing; Jones, Jonathan D.G.; Manners, John M.; Kazan, Kemal

    2016-01-01

    In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen Pst DC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes. PMID:26896849

  11. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum.

    Science.gov (United States)

    Thatcher, Louise F; Cevik, Volkan; Grant, Murray; Zhai, Bing; Jones, Jonathan D G; Manners, John M; Kazan, Kemal

    2016-04-01

    In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen PstDC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes.

  12. Extraction optimization of water-extracted mycelial polysaccharide from endophytic fungus Fusarium oxysporum Dzf17 by response surface methodology.

    Science.gov (United States)

    Li, Peiqin; Lu, Shiqiong; Shan, Tijiang; Mou, Yan; Li, Yan; Sun, Weibo; Zhou, Ligang

    2012-01-01

    Water-extracted mycelial polysaccharide (WPS) from the endophytic fungus Fusarium oxysporum Dzf17 isolated from Dioscorea zingiberensis was found to be an efficient elicitor to enhance diosgenin accumulation in D. zingigerensis cultures, and also demonstrated antioxidant activity. In this study, response surface methodology (RSM) was employed to optimize the extraction process of WPS from F. oxysporum Dzf17 using Box-Behnken design (BBD). The ranges of the factors investigated were 1-3 h for extraction time (X(1)), 80-100 °C for extraction temperature (X(2)), and 20-40 (v/w) for ratio of water volume (mL) to raw material weight (g) (X(3)). The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis. Statistical analysis showed that the polynomial regression model was in good agreement with the experimental results with the determination coefficient (R(2)) of 0.9978. By solving the regression equation and analyzing the response surface contour plots, the extraction parameters were optimized as 1.7 h for extraction time, 95 °C for extraction temperature, 39 (v/w) for ratio of water volume (mL) to raw material weight (g), and with 2 extractions. The maximum value (10.862%) of WPS yield was obtained when the WPS extraction process was conducted under the optimal conditions.

  13. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts

    Directory of Open Access Journals (Sweden)

    Kelly Ishida

    2014-04-01

    Full Text Available The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus .

  14. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts

    Science.gov (United States)

    Ishida, Kelly; Cipriano, Talita Ferreira; Rocha, Gustavo Miranda; Weissmüller, Gilberto; Gomes, Fabio; Miranda, Kildare; Rozental, Sonia

    2013-01-01

    The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus . PMID:24714966

  15. An iron 13S-lipoxygenase with an α-linolenic acid specific hydroperoxidase activity from Fusarium oxysporum.

    Directory of Open Access Journals (Sweden)

    Florian Brodhun

    Full Text Available Jasmonates constitute a family of lipid-derived signaling molecules that are abundant in higher plants. The biosynthetic pathway leading to plant jasmonates is initiated by 13-lipoxygenase-catalyzed oxygenation of α-linolenic acid into its 13-hydroperoxide derivative. A number of plant pathogenic fungi (e.g. Fusarium oxysporum are also capable of producing jasmonates, however, by a yet unknown biosynthetic pathway. In a search for lipoxygenase in F. oxysporum, a reverse genetic approach was used and one of two from the genome predicted lipoxygenases (FoxLOX was cloned. The enzyme was heterologously expressed in E. coli, purified via affinity chromatography, and its reaction mechanism characterized. FoxLOX was found to be a non-heme iron lipoxygenase, which oxidizes C18-polyunsaturated fatty acids to 13S-hydroperoxy derivatives by an antarafacial reaction mechanism where the bis-allylic hydrogen abstraction is the rate-limiting step. With α-linolenic acid as substrate FoxLOX was found to exhibit a multifunctional activity, because the hydroperoxy derivatives formed are further converted to dihydroxy-, keto-, and epoxy alcohol derivatives.

  16. Efeito de extratos vegetais no controle de Fusarium oxysporum f. sp tracheiphilum em sementes de caupi Effect of naturals extracts on the control of Fusarium oxysporum f. sp tracheiphilum in cowpea seeds

    Directory of Open Access Journals (Sweden)

    Jandiê Araújo da Silva

    2009-04-01

    Full Text Available A fusariose é uma doença de grande importância para a cultura do feijoeiro em virtude da redução da produtividade. O controle da doença vem sendo realizado com aplicações indiscriminadas de fungicidas químicos, acarretando problemas ao homem e ao meio ambiente. Objetivou-se, no presente trabalho, avaliar o efeito de extratos vegetais no controle de Fusarium oxysporum f. sp tracheiphilum, proveniente de sementes de caupi, comparando-se com o efeito do fungicida químico. Utilizaram-se extratos de alho, angico e manjericão, isolados ou combinados entre si e ou em associação ao fungicida Mancozeb. Uma alíquota de 50 µL de cada tratamento foi adicionada em orifício feito no centro das placas de Petri com BDA, sobre o qual depositou-se um disco de micélio do fungo. Avaliou-se durante sete dias, medindo-se o crescimento micelial do patógeno. Sementes de caupi foram desinfestadas com hipoclorito de sódio a 4,0%, semeadas em sacos de polietileno contendo solo autoclavado. Oito dias após germinação, efetuaram-se ferimentos no colo das plântulas, aplicando-se suspensão de esporos do fungo (1,4 x 10-5 con/mL. As avaliações de severidade da doença foram realizadas diariamente durante 30 dias após a inoculação, utilizando-se escala de notas. Os extratos combinados de alho + manjericão e angico + manjericão não inibiram o crescimento micelial do fungo, enquanto o extrato de manjericão isoladamente, proporcionou o menor crescimento micelial, indicando a ação fungicida e inibitória desse tratamento sobre o fungo F. oxysporum f. sp tracheiphilum nas condições analisadas. O fungicida Mancozeb + o extrato de angico proporcionou menor média de severidade nas plantas avaliadas.Wilt caused by Fusarium sp. in cowpea crop is a disease of great importance because it causes yield decrease. The control of this disease has been accomplished with uncontrolled applications of chemical fungicides causing problems for humans and

  17. Ocorrência, métodos de inoculação e agressividade de Fusarium oxysporum f. sp. cubense em Heliconia spp Occurrence, inoculation methods and aggressivity of Fusarium oxysporum f.sp. cubense in Heliconia spp

    Directory of Open Access Journals (Sweden)

    Neilza Reis Castro

    2008-06-01

    Full Text Available A murcha de fusário, causada por Fusarium oxysporum f. sp. cubense, vem sendo diagnosticada em áreas produtoras de helicônias, uma das plantas ornamentais mais apreciadas da floricultura tropical. Neste trabalho, os objetivos foram verificar a ocorrência da doença em propriedades produtoras de helicônias, avaliar a eficiência de métodos de inoculação do patógeno e caracterizar, quanto à agressividade, os isolados obtidos. Foram visitadas 28 propriedades em Pernambuco, Alagoas e Sergipe, nas quais foram coletados materiais vegetais com sintomas característicos da doença, para a obtenção dos isolados. Os métodos de inoculação testados foram o de injeção com 10 mL da suspensão fúngica no colo das plantas suscetíveis, Heliconia psittacorum x H. spathocircinata cv. Alan Carle; deposição de 20 mL da suspensão no solo pela técnica de "meia lua" e "dipping" (30 e 60 minutos. A avaliação da agressividade dos isolados foi realizada pela inoculação de discos da colônia do fungo, crescidos em meios de cultura, em colmos destacados da planta, que ficaram em condição de câmara úmida por cinco dias. Das propriedades visitadas 88% apresentavam a doença, de onde se obtiveram 31 isolados de F. oxysporum f. sp. cubense. Quanto à inoculação, o método de injeção foi o mais eficiente, reproduzindo os sintomas da doença aos 36 dias após a inoculação. Quanto à agressividade, dez isolados foram agrupados como os de maior agressividade, 13 apresentaram agressividade intermediária e oito isolados como os de menor agressividade.Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc, have been observed in production fields of heliconias flower, one of the most appreciate plants in tropical flowers culture. The objectives of this work were verify the disease occurrence in production fields of tropical flowers, evaluate efficiency or inoculation methods and severity characterization for obtained isolates. Periodic

  18. Identification of a Novel Small Cysteine-Rich Protein in the Fraction from the Biocontrol Fusarium oxysporum Strain CS-20 that Mitigates Fusarium Wilt Symptoms and Triggers Defense Responses in Tomato

    Science.gov (United States)

    Shcherbakova, Larisa A.; Odintsova, Tatyana I.; Stakheev, Alexander A.; Fravel, Deborah R.; Zavriev, Sergey K.

    2016-01-01

    The biocontrol effect of the non-pathogenic Fusarium oxysporum strain CS-20 against the tomato wilt pathogen F. oxysporum f. sp. lycopersici (FOL) has been previously reported to be primarily plant-mediated. This study shows that CS-20 produces proteins, which elicit defense responses in tomato plants. Three protein-containing fractions were isolated from CS-20 biomass using size exclusion chromatography. Exposure of seedling roots to one of these fractions prior to inoculation with pathogenic FOL strains significantly reduced wilt severity. This fraction initiated an ion exchange response in cultured tomato cells resulting in a reversible alteration of extracellular pH; increased tomato chitinase activity, and induced systemic resistance by enhancing PR-1 expression in tomato leaves. Two other protein fractions were inactive in seedling protection. The main polypeptide (designated CS20EP), which was specifically present in the defense-inducing fraction and was not detected in inactive protein fractions, was identified. The nucleotide sequence encoding this protein was determined, and its complete amino acid sequence was deduced from direct Edman degradation (25 N-terminal amino acid residues) and DNA sequencing. The CS20EP was found to be a small basic cysteine-rich protein with a pI of 9.87 and 23.43% of hydrophobic amino acid residues. BLAST search in the NCBI database showed that the protein is new; however, it displays 48% sequence similarity with a hypothetical protein FGSG_10784 from F. graminearum strain PH-1. The contribution of CS20EP to elicitation of tomato defense responses resulting in wilt mitigating is discussed. PMID:26779237

  19. Proteomic analysis of conidia germination in Fusarium oxysporum f. sp. cubense tropical race 4 reveals new targets in ergosterol biosynthesis pathway for controlling Fusarium wilt of banana.

    Science.gov (United States)

    Deng, Gui-Ming; Yang, Qiao-Song; He, Wei-Di; Li, Chun-Yu; Yang, Jing; Zuo, Cun-Wu; Gao, Jie; Sheng, Ou; Lu, Shao-Yun; Zhang, Sheng; Yi, Gan-Jun

    2015-09-01

    Conidial germination is a crucial step of the soilborne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), a most important lethal disease of banana. In this study, a total of 3659 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic approach, of which 1009 were differentially expressed during conidial germination of the fungus at 0, 3, 7, and 11 h. Functional classification and bioinformatics analysis revealed that the majority of the differentially expressed proteins are involved in six metabolic pathways. Particularly, all differential proteins involved in the ergosterol biosynthesis pathway were significantly upregulated, indicating the importance of the ergosterol biosynthesis pathway to the conidial germination of Foc TR4. Quantitative RT-PCR, western blotting, and in vitro growth inhibition assay by several categories of fungicides on the Foc TR4 were used to validate the proteomics results. Four enzymes, C-24 sterol methyltransferase (ERG6), cytochrome P450 lanosterol C-14α-demethylase (EGR11), hydroxymethylglutaryl-CoA synthase (ERG13), and C-4 sterol methyl oxidase (ERG25), in the ergosterol biosynthesis pathway were identified and verified, and they hold great promise as new targets for effective inhibition of Foc TR4 early growth in controlling Fusarium wilt of banana. To the best of our knowledge, this report represents the first comprehensive study on proteomics profiling of conidia germination in Foc TR4. It provides new insights into a better understanding of the developmental processes of Foc TR4 spores. More importantly, by host plant-induced gene silencing (HIGS) technology, the new targets reported in this work allow us to develop novel transgenic banana leading to high protection from Fusarium wilt and to explore more effective antifungal drugs against either individual or multiple target proteins of Foc TR4.

  20. Evaluating methyl jasmonate for induction of resistance to Fusarium oxysporum, F. circinatum and Ophiostoma novo-ulmi

    Energy Technology Data Exchange (ETDEWEB)

    Vivas, M.; Martin, J. a.; Gil, L.; Solla, A.

    2012-11-01

    Damping off is probably the most common disease affecting seedlings in forest nurseries. In south-western Europe, the pitch canker and the Dutch elm disease cause relevant economic looses in forests, mostly in adult trees. The ability of the chemical plant elicitor methyl jasmonate (MeJA) to induce resistance in Pinus pinaster against Fusarium oxysporum and F. circinatum, and in Ulmus minor against Ophiostoma novo-ulmi was examined. In a first experiment, an aqueous solution of MeJA 5 mM was applied to P. pinaster seeds by immersion or spray, and different concentrations of MeJA (0, 0.1, 0.5, 1, 5 and 10 mM) were tested in seedlings before inoculations with F. oxysporum (105 and 107 spores mL{sup -}1). In a second experiment, 6-months-old P. pinaster seedlings were sprayed with 0 and 25 mM of MeJA, and later challenged with mycelium of F. circinatum. Finally, 4-year-old U. minor trees were sprayed with 0, 50 and 100 mM of MeJA and subsequently inoculated with O. novo-ulmi (106 spores mL{sup -}1). MeJA did not protect P. pinaster seeds and seedlings against F. oxysporum, probably because plants were too young for the physiological mechanisms responsible for resistance to be induced. Based on the morphological changes observed in the treated 6-months-old P. pinaster seedlings (reduction of growth and increased resin duct density), there is evidence that MeJA could have activated the mechanisms of resistance. However, 25 mM MeJA did not reduce plant mortality, probably because the spread of the virulent F. circinatum strain within the tree tissues was faster than the formation of effective defense responses. Based on the lack of phenological changes observed in the treated elms, there is no evidence that MeJA would cause induction of resistance. These results suggest that the use of MeJA to prevent F. oxysporum and F. circinatum in P. pinaster seedlings in nurseries and O. novo-ulmi in U. minor trees should be discarded. (Author) 42 refs.

  1. Studying the ability of Fusarium oxysporum and recombinant Saccharomyces cerevisiae to efficiently cooperate in decomposition and ethanolic fermentation of wheat straw

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Topakas, Evangelos; Moukouli, Maria

    2011-01-01

    by the addition of commercially available enzymes Celluclast® 1.5 L FG and Novozym® 188 in 3:1 ratio for the treatment of PWS, resulted in a 3-fold increase in the volumetric ethanol productivity without increasing the ethanol production significantly. By direct bioconversion of 110 kg m−3 dry matter of PWS......, ethanol concentration (4.9 kg m−3) and yield (40 g kg−1 of PWS) were similarly obtained by F. oxysporum and the mixed culture, while productivity rates as high as 34 g m−3 h−1 and 108 g m−3 h−1 were obtained by F. oxysporum and the mixed culture, respectively.......Fusarium oxysporum F3 alone or in mixed culture with Saccharomyces cerevisiae F12 were used to ferment carbohydrates of wet exploded pre-treated wheat straw (PWS) directly to ethanol. Both microorganisms were first grown aerobically to produce cell mass and thereafter fermented PWS to ethanol under...

  2. Resistance of Polish lines and hybrids of watermelon [Citrullus lanatus (Thunb.) Matsum et Nakai] to Fusarium oxysporum at the seedling stage.

    Science.gov (United States)

    Swiader, Magdalena; Prończuk, Maria; Niemirowicz-Szczyt, Katarzyna

    2002-01-01

    Watermelon is a species cultivated in the hot climate or in the greenhouse. Since recently it has also started to be grown in the open in the Polish climate. This species is frequently at risk of Fusarium oxysporum infection. Between 1996 and 1997 ten inbred lines and nine hybrids of Polish origin were tested for resistance to this pathogen. The test was conducted with the use of four isolates of F. oxysporum: three from Polish infected plants (formae speciales not determined), while the fourth from U.K. (F. oxysporum f. sp. niveum). In the three series of tests the control plants were Pannonia F(1) and Sugar Baby. No inbred line or hybrid was found to be highly resistant to the pathogen. However, it was possible to identify four lines and five hybrids showing a higher level of resistance as compared with the control. The level of hybrid resistance was determined by comparison with the parental genotypes.

  3. Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f.sp. lycopersici.

    Science.gov (United States)

    Sathiyabama, M; Charles, R Einstein

    2015-11-20

    Cell wall polymer (chitosan) was isolated from Fusarium oxysporum f.sp. lycopersici. They were cross linked with sodium tripolyphosphate (TPP) to synthesize nanoparticles (CWP-NP). The nanoparticles were characterized by FTIR, DLS, SEM, XRD and NMR analyses. The isolated CWP-NP exhibit antifungal activity under in vitro condition. The foliar application of the CWP-NP to tomato plants challenged with F. oxysporum f. sp. lycopersici showed delay in wilt disease symptom expression and reduce the wilt disease severity. Treated plants also showed enhanced yield. These results suggested the role of the CWP-NP in protecting tomato plants from F. oxysporum f.sp. lycopersici infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Resistance to Fusarium dry root rot disease in cassava accessions

    Directory of Open Access Journals (Sweden)

    Saulo Alves Santos de Oliveira

    2013-10-01

    Full Text Available The objective of this work was to identify sources of resistance to dry root rot induced by Fusarium sp. in cassava accessions. A macroconidial suspension (20 µL of 11 Fusarium sp. isolates was inoculated in cassava roots, from 353 acessions plus seven commercial varieties. Ten days after inoculation, the total area colonized by the pathogen on the root pulp was evaluated by digital image analysis. Cluster analysis revealed the presence of five groups regarding resistance. The root lesion areas ranged from 18.28 to 1,096.07 mm² for the accessions BGM 1518 and BGM 556, respectively. The genotypes BGM 1042, BGM 1552, BGM 1586, BGM 1598, and BGM 1692 present the best agronomical traits.

  5. Isolation and characterization of an exopolygalacturonase from Fusarium oxysporum f.sp. cubense race 1 and race 4

    Directory of Open Access Journals (Sweden)

    Dong Zhangyong

    2011-09-01

    Full Text Available Abstract Background Fusarium wilt is an economically devastating disease that affects banana production. Although Cavendish banana cultivars are resistant to Fusarium oxysporum f.sp. cubense race 1 (FOC1 and maitain banana production after Gros Michel was destructed by race 1, a new race race 4 (FOC4 was found to infect Cavendish. Results An exopolygalacturonase (PGC2 was isolated and purified from the supernatant of the plant pathogen Fusarium oxysporum f.sp. cubense race 4 (FOC4. PGC2 had an apparent Mr of 63 kDa by SDS-PAGE and 51.7 kDa by mass spectrometry. The enzyme was N-glycosylated. PGC2 hydrolyzed polygalacturonic acid in an exo-manner, as demonstrated by analysis of degradation products. To obtain adequate amounts of protein for functional studies between the PGC2 proteins of two races of the pathogen, pgc2 genes encoding PGC2 from race 4 (FOC4 and race 1 (FOC1, both 1395 bp in length and encoding 465 amino acids with a predicted amino-terminal signal sequence of 18 residues, were cloned into the expression vector pPICZaA and then expressed in Pichia pastoris strains of SMD1168. The recombinant PGC2 products, r-FOC1-PGC2 and r-FOC4-PGC2, were expressed and purified as active extracellular proteins. Optimal PGC2 activity was observed at 50°C and pH 5. The Km and Vmax values of purified r-FOC1-PGC2 were 0.43 mg.mL-1 and 94.34 units mg protein-1 min-1, respectively. The Km and Vmax values of purified r-FOC4-PGC2 were 0.48 mg.mL-1 and 95.24 units mg protein-1 min-1, respectively. Both recombinant PGC2 proteins could induce tissue maceration and necrosis in banana plants. Conclusions Collectively, these results suggest that PGC2 is the first exoPG reported from the pathogen FOC, and we have shown that fully functional PGC2 can be produced in the P. pastoris expression system.

  6. A newly developed real-time PCR assay for detection and quantification of Fusarium oxysporum and its use in compatible and incompatible interactions with grafted melon genotypes.

    Science.gov (United States)

    Haegi, Anita; Catalano, Valentina; Luongo, Laura; Vitale, Salvatore; Scotton, Michele; Ficcadenti, Nadia; Belisario, Alessandra

    2013-08-01

    A reliable and species-specific real-time quantitative polymerase chain reaction (qPCR) assay was developed for detection of the complex soilborne anamorphic fungus Fusarium oxysporum. The new primer pair, designed on the translation elongation factor 1-α gene with an amplicon of 142 bp, was highly specific to F. oxysporum without cross reactions with other Fusarium spp. The protocol was applied to grafted melon plants for the detection and quantification of F. oxysporum f. sp. melonis, a devastating pathogen of this cucurbit. Grafting technologies are widely used in melon to confer resistance against new virulent races of F. oxysporum f. sp. melonis, while maintaining the properties of valuable commercial varieties. However, the effects on the vascular pathogen colonization have not been fully investigated. Analyses were performed on 'Charentais-T' (susceptible) and 'Nad-1' (resistant) melon cultivars, both used either as rootstock and scion, and inoculated with F. oxysporum f. sp. melonis race 1 and race 1,2. Pathogen development was compared using qPCR and isolations from stem tissues. Early asymptomatic melon infections were detected with a quantification limit of 1 pg of fungal DNA. The qPCR protocol clearly showed that fungal development was highly affected by host-pathogen interaction (compatible or incompatible) and time (days postinoculation). The principal significant effect (P ≤ 0.01) on fungal development was due to the melon genotype used as rootstock, and this effect had a significant interaction with time and F. oxysporum f. sp. melonis race. In particular, the amount of race 1,2 DNA was significantly higher compared with that estimated for race 1 in the incompatible interaction at 18 days postinoculation. The two fungal races were always present in both the rootstock and scion of grafted plants in either the compatible or incompatible interaction.

  7. The 24-kDa protein from Fusarium oxysporum f.sp. erythroxyli: occurrence in related fungi and the effect of growth medium on its production.

    Science.gov (United States)

    Bailey, B A; Jennings, J C; Anderson, J D

    1997-01-01

    A 24-kDa protein that elicits ethylene production and necrosis in leaves of dicotyledonous plants was previously purified from culture filtrates of Fusarium oxysporum Schlechtend:Fr. f.sp. erythroxyli. Antisera to the denatured 24-kDa protein detected 2.5 ng of the 24-kDa protein on Western blots at 100000-fold dilutions. The antisera cross-reacted with a 24-kDa protein on Western blots of culture filtrates from three other F. oxysporum formae speciales. Of seven Fusarium species, only F. oxysporum, F. acuminatum Ellis and Kellerm., and F. avenaceum (Fr.:Fr.) Sacc. isolates produced an antigenically related 24-kDa protein. Although there were differences in the profiles of proteins extracted from stems of coca (Erythroxylum coca var. coca L. Lam.) infected with F. oxysporum f.sp. erythroxyli compared with uninfected stems, antisera to the 24-kDa protein did not cross-react with any proteins from the infected coca stems. For the fungal isolates studied, the best medium tested for production of the 24-kDa protein contained 1% sucrose and 1% asparagine. Biological activity of the F. oxysporum culture filtrates on sweet basil leaves was consistently correlated with the presence of the 24-kDa protein. Production of the 24-kDa protein was limited in cultures containing pectin or cellulose as the primary carbon source, or in cultures lacking sucrose or casamino acids. Water-soluble extracts from coca stems inhibited production of the 24-kDa protein, whereas cellulose and pectin did not. Components produced by the plant may limit production of the 24-kDa protein in infected plant tissue and thereby limit the response of the plant to the fungus. These results suggest the 24-kDa protein does not function in the symptomatic phase of the F. oxysporum f.sp. erythroxylicoca disease interaction.

  8. Three improved Citrullus lanatus var. citroides lines USVL246-FR2, USVL252-FR2, and USVL335-FR2, with resistance to Fusarium oxysporum f. sp. niveum race 2

    Science.gov (United States)

    Fusarium wilt (FW) is a major disease of watermelon in North America and around the world. Control of this disease is difficult because the soil-borne causal agent Fusarium oxysporum f. sp. niveum (Fon) produces chlamydospores that remain infectious in the soil for many years. Although, various le...

  9. A genotype-by-sequencing-single nucleotide polymorphism based linkage map and quantitative trait loci (QTL) associated with resistance to Fusarium oxysporum f. sp. niveum race 2 identified in Citrullus lanatus var. citroides

    Science.gov (United States)

    Fusarium wilt, a fungal disease caused by Fusarium oxysporum f. sp. niveum (Fon), devastates watermelon crop production worldwide. Several races, which are differentiated by host range, of the pathogen exist. Resistance to Fon race 2, a particularly virulent strain prevalent in the United States, do...

  10. A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery

    Science.gov (United States)

    Fusarium wilt is a major soil-borne disease of watermelon caused by the fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). In this study, a genetic population of 186 F3 families (24 plants in each family) exhibited continuous distribution for Fon race ...

  11. Induction of Defense-Related Enzymes in Banana Plants: Effect of Live and Dead Pathogenic Strain of Fusarium oxysporum f. sp. cubense

    OpenAIRE

    2013-01-01

    The aim of the present study was to scrutinize the response of banana (Grand Naine variety) plants when interacting with dead or live pathogen, Fusarium oxysporum f.sp. cubense, a causative agent of Panama disease. Response of plants was evaluated in terms of induction of defense-related marker enzyme activity, namely, peroxidase (POX), polyphenol oxidase (PPO), β-1,3 glucanase, chitinase, and phenolics. Plant's interaction with live pathogen resulted in early induction of defense to restrain...

  12. Risk Levels of Invasive Fusarium oxysporum f. sp. in Areas Suitable for Date Palm (Phoenix dactylifera) Cultivation under Various Climate Change Projections

    Science.gov (United States)

    Shabani, Farzin; Kumar, Lalit

    2013-01-01

    Global climate model outputs involve uncertainties in prediction, which could be reduced by identifying agreements between the output results of different models, covering all assumptions included in each. Fusarium oxysporum f.sp. is an invasive pathogen that poses risk to date palm cultivation, among other crops. Therefore, in this study, the future distribution of invasive Fusarium oxysporum f.sp., confirmed by CSIRO-Mk3.0 (CS) and MIROC-H (MR) GCMs, was modeled and combined with the future distribution of date palm predicted by the same GCMs, to identify areas suitable for date palm cultivation with different risk levels of invasive Fusarium oxysporum f.sp., for 2030, 2050, 2070 and 2100. Results showed that 40%, 37%, 33% and 28% areas projected to become highly conducive to date palm are under high risk of its lethal fungus, compared with 37%, 39%, 43% and 42% under low risk, for the chosen years respectively. Our study also indicates that areas with marginal risk will be limited to 231, 212, 186 and 172 million hectares by 2030, 2050, 2070 and 2100. The study further demonstrates that CLIMEX outputs refined by a combination of different GCMs results of different species that have symbiosis or parasite relationship, ensure that the predictions become robust, rather than producing hypothetical findings, limited purely to publication. PMID:24340100

  13. Naphthalene Acetic Acid Potassium Salt (NAA-K(+)) Affects Conidial Germination, Sporulation, Mycelial Growth, Cell Surface Morphology, and Viability of Fusarium oxysporum f. sp. radici-lycopersici and F. oxysporum f. sp. cubense in Vitro.

    Science.gov (United States)

    Manzo-Valencia, María Karina; Valdés-Santiago, Laura; Sánchez-Segura, Lino; Guzmán-de-Peña, Dora Linda

    2016-11-09

    The response to exogenous addition of naphthalene acetic acid potassium salt (NAA-K(+)) to Fusarium oxysporum f. sp radici-lycopersici ATCC 60095 and F. oxysporum f. sp. cubense isolated from Michoacan Mexico soil is reported. The in vitro study showed that NAA-K(+) might be effective in the control of Fusarium oxysporum. Exogenous application of NAA-K(+) affected both spores and mycelium stages of the fungi. Viability testing using acridine orange and propidium iodide showed that NAA-K(+) possesses fungal killing properties, doing it effectively in the destruction of conidia of this phytopathogenic fungi. Analysis of treated spores by scanning electron microscopy showed changes in the shape factor and fractal dimension. Moreover, NAA-K(+) repressed the expression of brlA and fluG genes. The results disclosed here give evidence of the use of this synthetic growth factor as a substance of biocontrol that presents advantages, and the methods of application in situ should be explored.

  14. Diversidade genética por marcadores moleculares em Fusarium oxysporum f. sp. cubense no Estado de Santa Catarina Genetic diversity by molecular markers in Fusarium oxysporum f. sp. cubense in Santa Catarina State

    Directory of Open Access Journals (Sweden)

    Cristiane Maria da Silva

    2010-12-01

    Full Text Available O mal-do-panamá, causado por Fusarium oxysporum f. sp. cubense (FOC, é um dos principais problemas fitossanitários da bananicultura. O uso de cultivares resistentes é o método preferencialmente recomendado para o seu controle, sendo a avaliação da diversidade genética do patógeno necessária no desenvolvimento de estratégias de manejo da doença a longo prazo. Assim, este trabalho teve como objetivo estudar a variabilidade genética de isolados de FOC por marcadores moleculares RAPD e SSR. Foram avaliados 64 isolados coletados em regiões produtoras do estado de Santa Catarina, sendo que 100% deles foram patogênicos à bananeira da cv. 'Enxerto'. As análises de conglomerados com esses marcadores revelaram variabilidade entre os isolados amostrados. As técnicas moleculares aplicadas foram eficientes em separar os isolados em três grupos distintos. Os membros de cada grupo, em cada uma das técnicas, em geral, foram coincidentes e três dos isolados (CO16, JS23 e JS26 apresentaram-se mais distantes geneticamente nos dendrogramas de similaridade.Panama disease, caused by Fusarium oxysporum f. sp. cubense (FOC, is one of the major disease of banana crop. The use of resistant cultivars is the recommended control method, but the assessment of the pathogen genetic diversity is necessary for the development of long-term management strategies. This study aimed to analyze the genetic variability of isolates of FOC in Santa Catarina state, using RAPD and SSR molecular markers. It was evaluated 64 isolates collected in the producing regions of Santa Catarina state, where 100% of them were pathogenic to banana cv. 'Enxerto'. Cluster analysis by molecular markers revealed variability among the isolates. Both molecular techniques were effective in separating the isolates into tree distinct groups and, in general, led to similar grouping. Three isolates (CO16, JS23 and JS26 were genetically more distant in dendograms of similarity.

  15. In vitro antifugal activity of medicinal plant extract against Fusarium oxysporum f. sp. lycopersici race 3 the causal agent of tomato wilt.

    Science.gov (United States)

    Isaac, G S; Abu-Tahon, M A

    2014-03-01

    Medicinal plant extracts of five plants; Adhatoda vasica, Eucalyptus globulus, Lantana camara, Nerium oleander and Ocimum basilicum collected from Cairo, Egypt were evaluated against Fusarium oxysporum f. sp. lycopersici race 3 in vitro conditions using water and certain organic solvents. The results revealed that cold distilled water extracts of O. basilicum and E. globulus were the most effective ones for inhibiting the growth of F. oxysporum f. sp. lycopersici. Butanolic and ethanolic extracts of the tested plants inhibited the pathogen growth to a higher extent than water extracts. Butanolic extract of O. basilicum completely inhibited the growth of F. oxysporum f. sp. lycopersici at concentrations 1.5 and 2.0% (v/v). Butanolic extracts (2.0%) of tested plants had a strong inhibitory effect on hydrolytic enzymes; β-glucosidase, pectin lyase and protease of F. oxysporum f. sp. lycopersici. This study has confirmed that the application of plant extracts, especially from O. basilicum for controlling F. oxysporum f. sp. lycopersici is environmentally safe, cost effective and does not disturb ecological balance. Investigations are in progress to test the efficacy of O. basilicum extract under in vivo conditions.

  16. A proteomics approach to study synergistic and antagonistic interactions of the fungal-bacterial consortium Fusarium oxysporum wild-type MSA 35.

    Science.gov (United States)

    Moretti, Marino; Grunau, Alexander; Minerdi, Daniela; Gehrig, Peter; Roschitzki, Bernd; Eberl, Leo; Garibaldi, Angelo; Gullino, Maria Lodovica; Riedel, Kathrin

    2010-09-01

    Fusarium oxysporum is an important plant pathogen that causes severe damage of many economically important crop species. Various microorganisms have been shown to inhibit this soil-borne plant pathogen, including non-pathogenic F. oxysporum strains. In this study, F. oxysporum wild-type (WT) MSA 35, a biocontrol multispecies consortium that consists of a fungus and numerous rhizobacteria mainly belonging to gamma-proteobacteria, was analyzed by two complementary metaproteomic approaches (2-DE combined with MALDI-Tof/Tof MS and 1-D PAGE combined with LC-ESI-MS/MS) to identify fungal or bacterial factors potentially involved in antagonistic or synergistic interactions between the consortium members. Moreover, the proteome profiles of F. oxysporum WT MSA 35 and its cured counter-part CU MSA 35 (WT treated with antibiotics) were compared with unravel the bacterial impact on consortium functioning. Our study presents the first proteome mapping of an antagonistic F. oxysporum strain and proposes candidate proteins that might play an important role for the biocontrol activity and the close interrelationship between the fungus and its bacterial partners.

  17. Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici

    Science.gov (United States)

    Nirmaladevi, D.; Venkataramana, M.; Srivastava, Rakesh K.; Uppalapati, S. R.; Gupta, Vijai Kumar; Yli-Mattila, T.; Clement Tsui, K. M.; Srinivas, C.; Niranjana, S. R.; Chandra, Nayaka S.

    2016-01-01

    The present study aimed at the molecular characterization of pathogenic and non pathogenic F. oxysporum f. sp. lycopersici strains isolated from tomato. The causal agent isolated from symptomatic plants and soil samples was identified based on morphological and molecular analyses. Pathogenicity testing of 69 strains on five susceptible tomato varieties showed 45% of the strains were highly virulent and 30% were moderately virulent. Molecular analysis based on the fingerprints obtained through ISSR indicated the presence of wide genetic diversity among the strains. Phylogenetic analysis based on ITS sequences showed the presence of at least four evolutionary lineages of the pathogen. The clustering of F. oxysporum with non pathogenic isolates and with the members of other formae speciales indicated polyphyletic origin of F. oxysporum f. sp. lycopersici. Further analysis revealed intraspecies variability and nucleotide insertions or deletions in the ITS region among the strains in the study and the observed variations were found to be clade specific. The high genetic diversity in the pathogen population demands for development of effective resistance breeding programs in tomato. Among the pathogenic strains tested, toxigenic strains harbored the Fum1 gene clearly indicating that the strains infecting tomato crops have the potential to produce Fumonisin. PMID:26883288

  18. 两种瓜类镰刀菌的多重 PCR 检测%Multiple PCR Detection of Fusarium oxysporum and Fusarium solani in Cucurbitaceous Plants

    Institute of Scientific and Technical Information of China (English)

    严蕾艳; 张宴瑜; 马凯慧; 宋慧; 王毓洪

    2014-01-01

    为了更快更准确地在病菌潜伏期或发病初期鉴定出尖孢镰刀菌引起的瓜类枯萎病和茄病镰刀菌引起的瓜类根腐病这2种病害,根据尖孢镰刀菌和茄病镰刀菌的翻译延长因子TEF1-α序列设计了3条种特异性引物。引物对FO-F和Fu-R可以从尖孢镰刀菌中扩增到1条228 bp的片段,引物对FS-F和Fu-R可以从茄病镰刀菌中扩增到1条347 bp片段,并且3条引物FO-F、FS-F和Fu-R可以同时在1个PCR反应中扩增到2个片段,而这2对引物都不能从其他病原真菌中扩增到任何条带。结果表明,该多重PCR检测方法可以同时鉴定样品中的2种镰刀菌。%The early symptoms caused by F.oxysporum and F.solani were similar in cucurbitaceous plants such as watermelon .To rapidly and accurately distinguish the two diseases at a potential or early infection ,three primes were designed based on the TEF 1-α( Translation elongation factor 1-α) of F.oxysporum and F.solani.The primer pair FO-F+Fu-R amplified a 228 bp fragment from F.oxysporum,and the primer pair FS-F+Fu-R amplified a 347 bp fragment from F.solani.No PCR products were amplified with these primer pairs from DNA of other fungal spe-cies.A multiple species-specific PCR method was developed successfully to detect both two fusarium fungi simulta -neously in single PCR amplifications with the primers FO-F+FS-F+Fu-R.

  19. In-vitro antifungal susceptibility of clinical and environmental Fusarium spp. strains

    National Research Council Canada - National Science Library

    Pujol, I; Guarro, J; Gené, J; Sala, J

    1997-01-01

    The MICs of amphotericin B, miconazole, ketoconazole, flucytosine, itraconazole and fluconazole for 19 isolates of Fusarium oxysporum, 16 Fusarium solani, seven Fusarium verticilliodes, four Fusarium...

  20. Enhancement of Diosgenin Production in Dioscorea zingiberensis Cell Cultures by Oligosaccharides from Its Endophytic Fungus Fusarium oxysporum Dzf17

    Directory of Open Access Journals (Sweden)

    Ligang Zhou

    2011-12-01

    Full Text Available The effects of the oligosaccharides from the endophytic fungus Fusarium oxysporum Dzf17 as elicitors on diosgenin production in cell suspension cultures of its host Dioscorea zingiberensis were investigated. Three oligosaccharides, DP4, DP7 and DP10, were purified from the oligosaccharide fractions DP2-5, DP5-8 and DP8-12, respectively, which were prepared from the water-extracted mycelial polysaccharide of the endophytic fungus F. oxysporum Dzf17. When the cell cultures were treated with fraction DP5-8 at 20 mg/L on day 26 and harvested on day 32, the maximum diosgenin yield (2.187 mg/L was achieved, which was 5.65-fold of control (0.387 mg/L. When oligosaccharides DP4, DP7 and DP10 were individually added to 26-day-old D. zingiberensis cell cultures at concentrations of 2, 4, 6, 8 and 10 mg/L in medium, DP7 at 6 mg/L was found to significantly enhance diosgenin production, with a yield of 3.202 mg/L, which was 8.27-fold of control. When the cell cultures were treated with DP7 twice on days 24 and 26, and harvested on day 30, both diosgenin content and yield were significantly increased and reached the maximums of 1.159 mg/g dw and 4.843 mg/L, both of which were higher than those of single elicitation, and were 9.19- and 12.38-fold of control, respectively.

  1. Respuesta de variedades de clavel a la inoculacion con Fusarium oxysporum f. Sp. dianthi y Phialophora cinerescens: produccion de fitoalexinas

    Directory of Open Access Journals (Sweden)

    Orozco de Amezquita Martha

    1997-06-01

    Full Text Available

    La resistencia del clavel a Fusarium oxysporum f. sp. dianthi se ha correlacionado con el metabolismo de compuestos fenólicos. Por lo tanto, con el fin de profundizar en el conocimiento de las relaciones que existen entre el patógeno vascular y su hospedante, en este trabajo, se propuso evaluar la producci6n de compuestos feno1icos en cinco variedades de clavel inoculadas con el aislamiento 15 de la raza 2, un aislamiento de la raza 4 y el aislamiento 71 de baja patogeninidad de Fusarium oxysporum f. sp. dianthi y un aislamiento de Phialophora cinerescens. En todas las variedades se presenta acumulación de compuestos fenolicos independientemente de si fueron o no inoculadas con los patógenos. La proporción de estos compuestos y el tipo de ellos fue diferente en los distintos tratamientos. Ya que los perfiles cromatograficos obtenidos en este experimento coinciden con los correspondientes a la muestra enviada por el doctor Schoffelmeer, se puede señalar que los compuestos separados por cromatografía corresponden a dianthialexinas, pero que, los resultados de este trabaje aun no permiten establecer su relación con las respuestas de resistencia.

    Palabras claves: Asistencia, Metabolismo, Compuestos fenólicos, Dianthialexinas.

  2. BIOTRANSFORMATION OF 2,4,6-TRINITROTOLUENE (TNT) BY A PLANT-ASSOCIATED FUNGUS FUSARIUM OXYSPORUM

    Science.gov (United States)

    The capability of a plant-associated fungus, Fusarium oxyvorum, to transform TNT in liquid cultures was investigated. TNT was transformed into 2-amino-4, 6-dinitrotoluene (2-A-DNT), 4-amino-2, 6-dinitrotoluene (4-A- DNT), and 2, 4-diamino-6-nitrotoluene (2, 4-DAT) via 2- and 4-hy...

  3. BIOTRANSFORMATION OF 2,4,6-TRINITROTOLUENE (TNT) BY A PLANT-ASSOCIATED FUNGUS FUSARIUM OXYSPORUM

    Science.gov (United States)

    The capability of a plant-associated fungus, Fusarium oxyvorum, to transform TNT in liquid cultures was investigated. TNT was transformed into 2-amino-4, 6-dinitrotoluene (2-A-DNT), 4-amino-2, 6-dinitrotoluene (4-A- DNT), and 2, 4-diamino-6-nitrotoluene (2, 4-DAT) via 2- and 4-hy...

  4. Molecular diversity within global populations of Fusarium oxysporum f.sp. cubense.

    OpenAIRE

    Ordoñez, María Eugenia

    1998-01-01

    Bananas constitute one of the most important crops in the world, being amongst the principal staple food crops of the developing countries in the tropics. One of the major economically significant and widespread diseases of the banana is Fusarium wilt, also known as Panamá disease, caused by the soilborne fungus.

  5. Bestrijding van Fusarium oxysporum ("zuur") bij tulpen, die bij 5 graden C zijn gekoeld

    NARCIS (Netherlands)

    Rooy, de M.; Vink, G.J.M.

    1969-01-01

    Zowel bij het onderzoek als in de praktijk is gebleken, dat bij de vroegste bloei (vóór Kerstmis; grondtemperatuur 16 °C) de kans op uitval tengevolge van Fusarium-aantasting ('zuur') groot is. Bij het forceren bij lagere grondtemperatuur is nauwelijks sprake van uitval door deze oorzaak. In 1968/19

  6. Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. ciceri race I.

    Directory of Open Access Journals (Sweden)

    Sumanti Gupta

    Full Text Available BACKGROUND: Biotrophic interaction between host and pathogen induces generation of reactive oxygen species that leads to programmed cell death of the host tissue specifically encompassing the site of infection conferring resistance to the host. However, in the present study, biotrophic relationship between Fusarium oxysporum and chickpea provided some novel insights into the classical concepts of defense signaling and disease perception where ROS (reactive oxygen species generation followed by hypersensitive responses determined the magnitude of susceptibility or resistant potentiality of the host. METHODOLOGY/PRINCIPAL FINDINGS: Microscopic observations detected wound mediated in planta pathogenic establishment and its gradual progression within the host vascular tissue. cDNA-AFLP showed differential expression of many defense responsive elements. Real time expression profiling also validated the early recognition of the wound inducing pathogen by the host. The interplay between fungus and host activated changes in primary metabolism, which generated defense signals in the form of sugar molecules for combating pathogenic encounter. CONCLUSIONS/SIGNIFICANCE: The present study showed the limitations of hypersensitive response mediated resistance, especially when foreign encounters involved the food production as well as the translocation machinery of the host. It was also predicted from the obtained results that hypersensitivity and active species generation failed to impart host defense in compatible interaction between chickpea and Fusarium. On the contrary, the defense related gene(s played a critical role in conferring natural resistance to the resistant host. Thus, this study suggests that natural selection is the decisive factor for selecting and segregating out the suitable type of defense mechanism to be undertaken by the host without disturbing its normal metabolism, which could deviate from the known classical defense mechanisms.

  7. Trichoderma spp. decrease Fusarium root rot in common bean

    Directory of Open Access Journals (Sweden)

    Hudson Teixeira

    2012-12-01

    Full Text Available The effectiveness of six Trichoderma-based commercial products (TCP in controlling Fusarium root rot (FRR in common bean was assessed under field conditions. Three TCP, used for seed treatment or applied in the furrow, increased seedling emergence as much as the fungicide fludioxonil. FRR incidence was not affected, but all TCP and fludioxonil reduced the disease severity, compared to control. Application of Trichoderma-based products was as effective as that of fludioxonil in FRR management.

  8. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum

    Science.gov (United States)

    Gopinath, V.; Velusamy, P.

    2013-04-01

    In last few decades nanoparticles have attracted and emerged as a field in biomedical research due to their incredible applications. The current research was focused on extracellular synthesis of silver nanoparticles (AgNPs) using cell free culture supernatant of strain GP-23. It was found that the strain GP-23 belonged to Bacillus species by 16S rRNA sequence analysis. Biosynthesis of AgNPs was achieved by addition of culture supernatant with aqueous silver nitrate solution, after 24 h it turned to brown color solution with a peak at 420 nm corresponding to the Plasmon absorbance of AgNPs by UV-Vis Spectroscopy. The nanoparticles were characterized by FTIR, XRD, HRTEM, EDX and AFM. The synthesized nanoparticles were found to be spherical in shape with size in the range of 7-21 nm. It was stable in aqueous solution for five months period of storage at room temperature under dark condition. The biosynthesized AgNPs exhibited strong antifungal activity against plant pathogenic fungus, Fusarium oxysporum at the concentration of 8 μg ml-1. The results suggest that the synthesized AgNPs act as an effective antifungal agent/fungicide.

  9. Microbial host selection and periplasmic folding in Escherichia coli affect the biochemical characteristics of a cutinase from Fusarium oxysporum.

    Science.gov (United States)

    Nikolaivits, Efstratios; Kokkinou, Areti; Karpusas, Michael; Topakas, Evangelos

    2016-11-01

    A cutinase from the mesophilic fungus Fusarium oxysporum (FoCut5a) was functionally expressed in different hosts and their recombinant products were characterized regarding their activity, thermostability and tolerance in organic solvents. The cutinase gene cut5a was expressed in the BL21 and Origami 2 Escherichia coli strains and the resulting protein was folded either in the cytoplasm or in the periplasmic space, with the aim of correct formation of disulfide bonds. Increase of thermostability occurred when the enzyme was expressed in the oxidative cytoplasm of Origami 2. All expression products showed maximum enzyme activity at 40 °C, while thermostability increased by 73% when expressed in the Origami strain compared to the cytoplasmic expression in BL21 cells. The melting temperature of each protein construct was determined by fluorescence spectroscopy showing an additional transition at about 63 °C for enzymes expressed in Origami cells, indicating the co-presence of a different thermostable species. Kinetic studies performed on three p-nitrophenyl synthetic esters of aliphatic acids (C2, C4, C12) indicated that this cutinase shows higher affinity for the hydrolysis of the butyl ester. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity

    Science.gov (United States)

    Syed, Asad; Ahmad, Absar

    2013-04-01

    The growing demand for semiconductor [quantum dots (Q-dots)] nanoparticles has fuelled significant research in developing strategies for their synthesis and characterization. They are extensively investigated by the chemical route; on the other hand, use of microbial sources for biosynthesis witnessed the highly stable, water dispersible nanoparticles formation. Here we report, for the first time, an efficient fungal-mediated synthesis of highly fluorescent CdTe quantum dots at ambient conditions by the fungus Fusarium oxysporum when reacted with a mixture of CdCl2 and TeCl4. Characterization of these biosynthesized nanoparticles was carried out by different techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Photoluminescence (PL), X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. CdTe nanoparticles shows antibacterial activity against Gram positive and Gram negative bacteria. The fungal based fabrication provides an economical, green chemistry approach for production of highly fluorescent CdTe quantum dots.

  11. Morphological Variability and Races of Fusarium oxysporum f.sp. ciceris Associated with Chickpea (Cicer arietinum Crops

    Directory of Open Access Journals (Sweden)

    Rosa M. Arvayo-Ortiz

    2011-01-01

    Full Text Available Problem statement: Mexico is the third largest producer and exporter of chickpea (Cicer arietinum, with the states of Sinaloa and Sonora accounting for 70 and 20% of Mexicos production, respectively. The most damaging disease affecting this species is caused by Fusarium oxysporum f.sp. Ciceris (FOC, which causes losses of up to 60% in Sonora. The objective of this study was to isolate and characterize the phenotype and genetics of FOC collected from affected chickpea plants in northwestern Mexico and to identify the abiotic factors that allow it to develop. Approach: Sampling focused on affected plants from 12 crops in Sonora and Sinaloa. Based on 355 isolated strains, using Polymerase Chain Reaction (PCR 161 were positive for FOC. Results: Of the 161 strains, 91 were identified as races previously recorded for the Americas: Yellowing (R0 (41%, R1B/C (15% and wilting (R5 (14% and R6 (28% reflecting the symptoms observed in the areas sampled. The other 70 isolates could be nonpathogenic, or could be races yet to be recorded for the Americas. Conclusion: Morphological variability in FOC was high in the main chickpea producing regions in northwestern Mexico and was not a function of the physical and chemical properties of the soil, nor of the geographic location of the cropfields. This is the first report of races of FOC in Mexico.

  12. Biosynthesis of Anti-Proliferative Gold Nanoparticles Using Endophytic Fusarium oxysporum Strain Isolated from Neem (A. indica) Leaves.

    Science.gov (United States)

    Siddiqui, Ejaz Ahmad; Ahmad, Absar; Julius, Anju; Syed, Asad; Khan, Shadab; Kharat, Mahesh; Pai, Kalpana; Kadoo, Narendra; Gupta, Vidya

    2016-01-01

    Here we report a simple, rapid, environment friendly approach for the synthesis of gold nanoparticles using neem (Azadirachta indica A. Juss.) fungal endophyte, which based upon morphological and cultural characteristics was eventually identified as Fusarium oxysporum. The aqueous precursor (HAuCl4) solution when reacted with endophytic fungus resulted in the biosynthesis of abundant amounts of well dispersed gold nanoparticles of 10-40 nm with an average size of 22nm. These biosynthesized gold nanoparticles were then characterized by standard analytical techniques such as UV-Visible spectroscopy, X-ray diffraction, Transmission Electron Microscopy and Fourier Transform Infrared Spectroscopy. Cytotoxic activity of these nanoparticles was checked against three different cell types including breast cancer (ZR-75-1), Daudi (Human Burkitt's lymphoma cancer) and normal human peripheral blood mononuclear cells (PBMC), where it was found that our gold nanoparticles are anti-proliferative against cancer cells but completely safe toward normal cells. In addition to this, assessment of toxicity toward human RBC revealed less than 0.1 % hemolysis as compared to Triton X-100 suggesting safe nature of our biosynthesized gold nanoparticles on human cells. Also, our nanoparticles exhibited no anti-fungal (against Aspergillus niger) or anti-bacterial [against Gram positive (Bacillus subtilis & Staphylococcus aureus) and Gram negative (Escherichia coli & Pseudomonas aeruginosa) bacteria] activity thus suggesting their non-toxic, biocompatible nature. The present investigation opens up avenues for ecofriendly, biocompatible nanomaterials to be used in a wide variety of application such as drug delivery, therapeutics, theranostics and so on.

  13. Antibiotic effect of exogenously applied salicylic acid on in vitro soilborne pathogen, Fusarium oxysporum f.sp.niveum.

    Science.gov (United States)

    Wu, Hong-Sheng; Raza, Waseem; Fan, Jia-Qin; Sun, Yong-Gang; Bao, Wei; Liu, Dong-Yang; Huang, Qi-Wei; Mao, Ze-Sheng; Shen, Qi-Rong; Miao, Wei-Guo

    2008-12-01

    Salicylic acid, which is biosynthesized inside plant and is often found and accumulated in soil due to plant debris decaying, is considered as a signaling substance during plant-microbe interactions. It is involved in the cycling of biogeochemistry and related to plant resistance to biotic and abiotic stress. The antibiotic effect of salicylic acid on Fusarium oxysporum f.sp.niveum (FON) was studied to investigate the relationships between the salicylic acid and the fungus in the ecological interaction of plant-microbe. Results showed that the biomass, colony diameter, number of conidium germination and conidium production of FON were decreased by 52.0%, 25.7%, 100% and 100% at concentrations of 800 mg L(-1). However, mycotoxin yield was increased by 233%, pectinase activity raised by 168.0% and cellulase activity increased by 1325% compared to control at higher concentrations. It was concluded that salicylic acid as an allelochemical greatly inhibited FON growth and conidia formation and germination, though stimulated mycotoxin production and activities of hydrolytic enzymes by FON.

  14. Comparative genomics and prediction of conditionally dispensable sequences in legume-infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors.

    Science.gov (United States)

    Williams, Angela H; Sharma, Mamta; Thatcher, Louise F; Azam, Sarwar; Hane, James K; Sperschneider, Jana; Kidd, Brendan N; Anderson, Jonathan P; Ghosh, Raju; Garg, Gagan; Lichtenzveig, Judith; Kistler, H Corby; Shea, Terrance; Young, Sarah; Buck, Sally-Anne G; Kamphuis, Lars G; Saxena, Rachit; Pande, Suresh; Ma, Li-Jun; Varshney, Rajeev K; Singh, Karam B

    2016-03-05

    Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and compare draft genome assemblies for three legume-infecting formae speciales (ff. spp.): F. oxysporum f. sp. ciceris (Foc-38-1) and f. sp. pisi (Fop-37622), significant pathogens of chickpea and pea respectively, the world's second and third most important grain legumes, and lastly f. sp. medicaginis (Fom-5190a) for which we developed a model legume pathosystem utilising Medicago truncatula. Focusing on the identification of pathogenicity gene content, we leveraged the reference genomes of Fusarium pathogens F. oxysporum f. sp. lycopersici (tomato-infecting) and F. solani (pea-infecting) and their well-characterised core and dispensable chromosomes to predict genomic organisation in the newly sequenced legume-infecting isolates. Dispensable chromosomes are not essential for growth and in Fusarium species are known to be enriched in host-specificity and pathogenicity-associated genes. Comparative genomics of the publicly available Fusarium species revealed differential patterns of sequence conservation across F. oxysporum formae speciales, with legume-pathogenic formae speciales not exhibiting greater sequence conservation between them relative to non-legume-infecting formae speciales, possibly indicating the lack of a common ancestral source for legume pathogenicity. Combining predicted dispensable gene content with in planta expression in the model legume-infecting isolate, we identified small conserved regions and candidate effectors, four of which shared greatest similarity to proteins from another legume-infecting ff. spp. We demonstrate that distinction of core and potential dispensable genomic regions of novel F. oxysporum genomes is an effective tool to facilitate effector discovery and the identification of gene content possibly linked to host

  15. Heterotrophic Bioleaching of Sulfur, Iron, and Silicon Impurities from Coal by Fusarium oxysporum FE and Exophiala spinifera FM with Growing and Resting Cells.

    Science.gov (United States)

    Etemadzadeh, Shekoofeh Sadat; Emtiazi, Giti; Etemadifar, Zahra

    2016-06-01

    Coal is the most abundant fossil fuel containing sulfur and other elements which promote environmental pollution after burning. Also the silicon impurities make the transportation of coal expensive. In this research, two isolated fungi from oil contaminated soil with accessory number KF554100 (Fusarium oxysporum FE) and KC925672 (Exophiala spinifera FM) were used for heterotrophic biological leaching of coal. The leaching were detected by FTIR, CHNS, XRF analyzer and compared with iron and sulfate released in the supernatant. The results showed that E. spinifera FM produced more acidic metabolites in growing cells, promoting the iron and sulfate ions removal while resting cells of F. oxysporum FE enhanced the removal of aromatic sulfur. XRF analysis showed that the resting cells of E. spinifera FM proceeded maximum leaching for iron and silicon (48.8, 43.2 %, respectively). CHNS analysis demonstrated that 34.21 % of sulfur leaching was due to the activities of resting cells of F. oxysporum FE. Also F. oxysporum FE removed organic sulfur more than E. spinifera FM in both growing and resting cells. FTIR data showed that both fungi had the ability to remove pyrite and quartz from coal. These data indicated that inoculations of these fungi to the coal are cheap and impurity removals were faster than autotrophic bacteria. Also due to the removal of dibenzothiophene, pyrite, and quartz, we speculated that they are excellent candidates for bioleaching of coal, oil, and gas.

  16. Mutation of FVS1, encoding a protein with a sterile alpha motif domain, affects asexual reproduction in the fungal plant pathogen Fusarium oxysporum.

    Science.gov (United States)

    Iida, Yuichiro; Fujiwara, Kazuki; Yoshioka, Yosuke; Tsuge, Takashi

    2014-02-01

    Fusarium oxysporum produces three kinds of asexual spores: microconidia, macroconidia and chlamydospores. We previously analysed expressed sequence tags during vegetative growth and conidiation in F. oxysporum and found 42 genes that were markedly upregulated during conidiation compared to vegetative growth. One of the genes, FVS1, encodes a protein with a sterile alpha motif (SAM) domain, which functions in protein-protein interactions that are involved in transcriptional or post-transcriptional regulation and signal transduction. Here, we made FVS1-disrupted mutants from the melon wilt pathogen F. oxysporum f. sp. melonis. Although the mutants produced all three kinds of asexual spores with normal morphology, they formed markedly fewer microconidia and macroconidia than the wild type. The mutants appeared to have a defect in the development of the conidiogenesis cells, conidiophores and phialides, required for the formation of microconidia and macroconidia. In contrast, chlamydospore formation was dramatically promoted in the mutants. The growth rates of the mutants on media were slightly reduced, indicating that FVS1 is also involved in, but not essential for, vegetative growth. We also observed that mutation of FVS1 caused defects in conidial germination and virulence, suggesting that the Fvs1 has pleiotropic functions in F. oxysporum.

  17. [Biological characteristics of an Hog1 MAPK homologous gene FoHog1 knock-out mutant of Fusarium oxysporum f. sp. cubense].

    Science.gov (United States)

    Mao, Chao; Chen, Pingya; Dai, Qingdong; Yang, Laying; Huang, Junsheng

    2014-11-04

    This study was aimed to obtain a mitogen-activated protein kinase (MAPK) gene namely FoHog1 from Fusarium oxysporum f. sp. cubense and to verify its function. We amplified FoHog1 gene by PCR and RT-PCR methods and analyzed it through bioinformatics method. PEG-mediated protoplast transformation was used to create the deletion mutants of FoHog1 gene. We analyzed different biological characteristics between knock-out strain and wild-type strain. FoHog1 gene encoding a putative protein of 357 amino acids and its genetic relationship with different Fusarium' s protein. Compared with the wild-type strain, FoHog1 deletion mutants have loose hyphae colony, less spores production, lower dry weight of hyphae and more sensitive to temperature, pH and osmotic stress. FoHog1 deletion mutants also have reduced colonization ability compared with the wild-type strain. FoHog1 gene participated in mycelial growth, sporulation, catabolism of sodium acetate and ammonium chloride, osmotic stress response and pathogenic process with Fusarium oxysporum f. sp. cubense Race 4.

  18. A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid-stable cellulase: consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid.

    Science.gov (United States)

    Xu, Jiaxing; Wang, Xinfeng; Hu, Lei; Xia, Jun; Wu, Zhen; Xu, Ning; Dai, Benlin; Wu, Bin

    2015-04-01

    In this study, microbial communities from chemicals polluted microhabitats were cultured with the addition of imidazolium-based ionic liquid (IL) to enrich for IL-tolerant microbes. A strain of Fusarium oxysporum BN producing cellulase from these enrichments was capable of growing in 10% (w/v) 1-ethyl-3-methylimidazolium phosphinate, much higher than the normal IL concentrations in the lignocellulose regenerated from ILs. Cellulase secreted by the strain showed high resistance to ILs based on phosphate and sulfate radicals, evidencing of a high conformational stability in relevant media. Gratifyingly, F. oxysporum BN can directly convert IL-pretreated rice straw to bioethanol via consolidated bioprocessing (I-CBP). At optimum fermentation condition, a maximum ethanol yield of 0.125 g ethanol g(-1) of rice straw was finally obtained, corresponding to 64.2% of the theoretical yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Potencial fungitóxico do óleo essencial de Piper hispidinervum (pimenta longa sobre os fungos fitopatogênicos Bipolaris sorokiniana, Fusarium oxysporum e Colletotrichum gloeosporioides Fungitoxic potential of the essential oil the Piper hispidinervum (long-pepper against phytopathogenic fungi Bipolaris sorokiniana, Fusarium oxysporum e Colletotrichum gloeosporioides

    Directory of Open Access Journals (Sweden)

    Lidiany Mendonça Zacaroni

    2009-03-01

    Full Text Available O objetivo deste trabalho foi avaliar a atividade fungicida in vitro do óleo essencial das folhas de Piper hispidinervum sobre Bipolaris sorokiniana, Fusarium oxysporum e Colletotrichum gloeosporioides. Para os ensaios biológicos, empregou-se o teste bioanalítico in vitro utilizando as concentrações de 100, 200, 500, 1000, 1500 e 2000 µg.mL-1 do óleo essencial. Estas foram incorporadas no meio de cultura BDA (batata-dextrose-ágar para avaliação do crescimento ou inibição micelial. O delineamento estatístico utilizado foi o inteiramente casualizado, com quatro repetições. Na concentração de 200 µg.mL-1, observou-se uma inibição total do fitopatógeno Bipolaris sorokiniana enquanto que, para o Fusarium oxysporum e o Colletotrichum gloeosporioides esta ocorreu na concentração de 1000 µg.mL-1.The objective of this study was to evaluate the in vitro antifungal activity of the essential oil of the leaves of Piper hispidinervum against Bipolaris sorokiniana, Fusarium oxysporum and Colletotrichum gloeosporioides. For the biological tests, using the bioanalitic test in vitro the concentrations of 100, 200, 500, 1000, 1500 and 2000 µg.mL-1 the essential oil. This were incorporated into PDA (potato dextrose agar medium in order to evaluate fungal mycelial growth or inhibition. The statistic design used was completely randomized, with four replicates. In the concentration of 200 µg.mL-1, observed inhibited complete the phytopathogens Bipolaris sorokiniana while the Fusarium oxysporum and Colletotrichum gloeosporioides this is occurred in the concentration of 1000 µg.mL-1.

  20. Wound-induced pectin methylesterases enhance banana (Musa spp. AAA) susceptibility to Fusarium oxysporum f. sp. cubense.

    Science.gov (United States)

    Ma, Li; Jiang, Shuang; Lin, Guimei; Cai, Jianghua; Ye, Xiaoxi; Chen, Houbin; Li, Minhui; Li, Huaping; Takác, Tomás; Samaj, Jozef; Xu, Chunxiang

    2013-05-01

    Recent studies suggest that plant pectin methylesterases (PMEs) are directly involved in plant defence besides their roles in plant development. However, the molecular mechanisms of PME action on pectins are not well understood. In order to understand how PMEs modify pectins during banana (Musa spp.)-Fusarium interaction, the expression and enzyme activities of PMEs in two banana cultivars, highly resistant or susceptible to Fusarium, were compared with each other. Furthermore, the spatial distribution of PMEs and their effect on pectin methylesterification of 10 individual homogalacturonan (HG) epitopes with different degrees of methylesterification (DMs) were also examined. The results showed that, before pathogen treatment, the resistant cultivar displayed higher PME activity than the susceptible cultivar, corresponding well to the lower level of pectin DM. A significant increase in PME expression and activity and a decrease in pectin DM were observed in the susceptible cultivar but not in the resistant cultivar when plants were wounded, which was necessary for successful infection. With the increase of PME in the wounded susceptible cultivar, the JIM5 antigen (low methyestrified HGs) increased. Forty-eight hours after pathogen infection, the PME activity and expression in the susceptible cultivar were higher than those in the resistant cultivar, while the DM was lower. In conclusion, the resistant and the susceptible cultivars differ significantly in their response to wounding. Increased PMEs and thereafter decreased DMs acompanied by increased low methylesterified HGs in the root vascular cylinder appear to play a key role in determination of banana susceptibility to Fusarium.

  1. A PCR-denaturing gradient gel electrophoresis (DGGE) approach to assess Fusarium diversity in asparagus

    NARCIS (Netherlands)

    Yergeau, E.; Filion, M.; Vujanovic, V.; St-Arnaud, M.

    2005-01-01

    In North America, asparagus (Asparagus officinalis) production suffers from a crown and root rot disease mainly caused by Fusarium oxysporum f. sp. asparagi and F. proliferatum. Many other Fusarium species are also found in asparagus fields, whereas accurate detection and identification of these org

  2. A PCR-denaturing gradient gel electrophoresis (DGGE) approach to assess Fusarium diversity in asparagus

    NARCIS (Netherlands)

    Yergeau, E.; Filion, M.; Vujanovic, V.; St-Arnaud, M.

    2005-01-01

    In North America, asparagus (Asparagus officinalis) production suffers from a crown and root rot disease mainly caused by Fusarium oxysporum f. sp. asparagi and F. proliferatum. Many other Fusarium species are also found in asparagus fields, whereas accurate detection and identification of these

  3. Alternaria tenuissima, A. alternata y Fusarium oxysporum Hongos Causantes de la Pudrición del Florete de Brócoli

    OpenAIRE

    María de Lourdes Fraire-Cordero; Daniel Nieto-Ángel; Elizabeth Cárdenas-Soriano; Gabriel Gutiérrez-Alonso; Rafael Bujanos-Muñiz; Humberto Vaquera-Huerta

    2010-01-01

    Durante los meses de julio-octubre del 2005 y 2006, se observaron manchas necróticas circulares, café oscuras en floretes de brócoli en Guanajuato, México. Se colectaron floretes de brócoli con síntomas y del tejido sintomático se aislaron Alternaria tenuissima, A. alternata y Fusarium oxysporum, los cuales fueron identificados morfológica y molecularmente. Las pruebas de patogenicidad mostraron que los tres hongos son agentes causales de la pudrición o manchado del florete de brócoli. Los pr...

  4. Inhibición de Fusarium oxysporum por cepas mutantes de Pseudomonas fluorescens Zum80 incapaces de producir sideróforos

    OpenAIRE

    Eduardo Valencia-Cantero; Javier Villegas-Moreno; Juan Manuel Sánchez-Yáñez; Juan José Peña-Cabriales; Rodolfo Farías-Rodríguez

    2005-01-01

    Pseudomonas fluorescens, cepa ZUM80, es una bacteria productora de sideróforos que inhibe el crecimiento de microorganismos fitopatógenos en condiciones de escasez de hierro. Con el fin de entender el mecanismo de inhibición de la cepa ZUM80 sobre Fusarium oxysporum, se obtuvieron mutantes incapaces de sintetizar sideróforos, por medio de la exposición de P. fluorescens ZUM80 a nitrosoguanidina. Ensayos de antibiosis en condiciones de escasez de hierro, mostraron que, cuando se inoculó el hon...

  5. Evaluación de microorganismos aislados de gallinaza por su potencial para el biocontrol de fusarium (f. oxysporum) en plántulas de uchuva (physalis peruviana).

    OpenAIRE

    Rodríguez Amézquita, Jorge Enrique; Velandia Monsalve, Jorge; Viteri Rosero, Silvio Edgar

    2011-01-01

    En Colombia, las pérdidas económicas ocasionadas por Fusarium oxysporum en el cultivo de uchuva son considerables. Se evaluaron hongos y bacterias aislados de 2 fuentes de gallinaza, su potencial como agentes de biocontrol de este patógeno. La evaluación se realizó en cajas de Petri con PDA para lo cual se colocó en el centro de las mismas, un disco de 5 mm de diámetro colonizado por el patógeno y a 3 cm del centro, sobre los ejes horizontal y vertical, cada uno de los aislamientos de la gall...

  6. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    NARCIS (Netherlands)

    Ma, L.-J.; van der Does, H.C.; Borkovich, K.A.; Coleman, J.J.; Daboussi, M.J.; Di Pietro, A.; Dufresne, M.; Freitag, M.; Grabherr, M.; Henrissat, B.; Houterman, P.M.; Kang, S.; Shim, W.B.; Woloshuk, C.; Xie, X.; Xu, J.-R; Antoniw, J.; Baker, S.E.; Bluhm, B.H.; Breakspear, A.; Brown, D.W.; Butchko, R.A.E.; Chapman, S.; Coulson, R.; Coutinho, P.M.; Danchin, E.G.J.; Diener, A.; Gale, L.R.; Gardiner, D.M.; Goff, S.; Hammond-Kosack, K.E.; Hilburn, K.; Hua-Van, A.; Jonkers, W.; Kazan, K.; Kodira, C.D.; Koehrsen, M.; Kumar, L.; Lee, Y.H.; Li, L.; Manners, J.M.; Miranda-Saavedra, D.; Mukherjee, M.; Park, G.; Park, J.; Park, S.Y.; Proctor, R.H.; Regev, A.; Ruiz-Roldan, M.C.; Sain, D.; Sakthikumar, S.; Sykes, S.; Schwartz, D.C.; Gillian Turgeon, B.; Wapinski, I.; Yoder, O.; Young, S.; Zeng, Q.; Zhou, S.; Galagan, J.; Cuomo, C.A.; Kistler, H.C.; Rep, M.

    2010-01-01

    Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum

  7. Identification of Volatile Metabolites from Fungal Endophytes with Biocontrol Potential towards Fusarium oxysporum F. sp. cubense Race 4

    Directory of Open Access Journals (Sweden)

    A. S. Y. Ting

    2010-01-01

    Full Text Available Problem statement: Fungal endophytes are widely studied for their potential as biocontrol agents towards fungal pathogens. In vitro assessments usually reveal their antibiosis and mycoparasitism nature, but little is understood regarding their production of volatile metabolites as mechanisms of antagonism. Approach: This study explored the potential of fungal endophytes in controlling the pathogen responsible for Fusarium wilt disease. Nine fungal endophytes were tested for their ability to inhibit the growth of the pathogenic Fusarium oxysporum F. sp. cubense race 4 (FocR4 via production of volatile inhibitory metabolites. The type of volatile metabolites produced were subsequently characterized and identified using the Gas-Chromatography Mass-Spectrophotometry (GCMS. Results: Eight of the isolates (BTF05, BTF07, BTF08, BTF15, BTF21, WAA03, WAA02, MIF01 showed positive results with percentages of inhibition varying from 1.43-31.43% while one isolate (ALF01, showed negative result (0% inhibition. Volatile profiles showed that these fungal endophytes produced between 15-47 volatile metabolites per isolate. However, the more volatile metabolites produced by a single endophyte does not indicate better biocontrol potential. Isolate BTF05 produced 47 different volatile metabolites, but has only 8.57% inhibition, compared to isolate BTF21 with 15 metabolites but a percentage of 11.43% inhibition. The potency of the volatile metabolites produced may also influenced the biocontrol potential of the fungal endophytes as some isolates such as BTF08 and MIF01 have only two to three known inhibitory metabolites but have higher PIDG values at 31.43 and 11.43%, respectively. Contrary, isolates WAA02 and WAA03 which has five to six metabolites but PIDG values of less than 3%. Conclusion: Fungal endophytes have the ability to produce several types of volatile metabolites to inhibit the growth of FocR4. These volatile inhibitory metabolites can be further

  8. RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini

    Science.gov (United States)

    Galindo-González, Leonardo; Deyholos, Michael K.

    2016-01-01

    Fusarium oxysporum f. sp. lini is a hemibiotrophic fungus that causes wilt in flax. Along with rust, fusarium wilt has become an important factor in flax production worldwide. Resistant flax cultivars have been used to manage the disease, but the resistance varies, depending on the interactions between specific cultivars and isolates of the pathogen. This interaction has a strong molecular basis, but no genomic information is available on how the plant responds to attempted infection, to inform breeding programs on potential candidate genes to evaluate or improve resistance across cultivars. In the current study, disease progression in two flax cultivars [Crop Development Center (CDC) Bethune and Lutea], showed earlier disease symptoms and higher susceptibility in the later cultivar. Chitinase gene expression was also divergent and demonstrated and earlier molecular response in Lutea. The most resistant cultivar (CDC Bethune) was used for a full RNA-seq transcriptome study through a time course at 2, 4, 8, and 18 days post-inoculation (DPI). While over 100 genes were significantly differentially expressed at both 4 and 8 DPI, the broadest deployment of plant defense responses was evident at 18 DPI with transcripts of more than 1,000 genes responding to the treatment. These genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signaling, activation of pathogenesis-related genes, and changes in secondary metabolism. Among these, several key genes that consistently appear in studies of plant-pathogen interactions, had increased transcript abundance in our study, and constitute suitable candidates for resistance breeding programs. These included: an induced RPMI-induced protein kinase; transcription factors WRKY3, WRKY70, WRKY75, MYB113, and MYB108; the ethylene response factors ERF1 and ERF14; two genes involved in auxin/glucosinolate precursor synthesis (CYP79B2 and CYP79B3); the flavonoid

  9. Raios gama na sobrevivência de plantas de maracujazeiro amarelo inoculadas com Fusarium oxysporum f sp. passiflorae

    Directory of Open Access Journals (Sweden)

    Patrícia Silva Flores

    2014-04-01

    Full Text Available A murcha de Fusarium ou fusariose ocorre em diversas regiões produtoras de maracujá amarelo e tem ocasionado grandes danos devido à morte das plantas. A mutagênese associada à seleção in vitro utilizando fitotoxinas possibilita a aplicação de uma pressão de seleção sobre um grande número de propágulos e, assim, pode direcionar a seleção dos mutantes específicos. Neste trabalho, foi analisado o efeito de raios gama sobre a sobrevivência de plantas de maracujazeiro amarelo inoculados com F. oxysporum f. sp. passiflorae. Brotações foliares provenientes de segmentos caulinares de P. edulis irradiados a 20Gy foram submetidas a dois ciclos de seleção em meio de cultura suplementado com o filtrado da cultura fúngica (40% e 50% de filtrado. As plantas selecionadas foram inoculadas com a suspensão de conídio em casa de vegetação e após, transferidas para o campo em local com histórico da doença. Ao final da etapa de seleção in vitro, sobreviveram 17,05% das plantas irradiadas e nenhuma planta do tratamento testemunha. A inoculação com a suspensão de conídio não resultou em diferenças significativas na sobrevivência das plantas irradiadas e não irradiadas. No entanto, em condições de campo, foi confirmado o efeito da radiação no aumento da sobrevivência das plantas, sendo verificada a sobrevivência de 77,78% das plantas irradiadas e a morte de todas as plantas do tratamento testemunha.

  10. Targeting Iron Acquisition Blocks Infection with the Fungal Pathogens Aspergillus fumigatus and Fusarium oxysporum

    Science.gov (United States)

    Leal, Sixto M.; Roy, Sanhita; Vareechon, Chairut; Carrion, Steven deJesus; Clark, Heather; Lopez-Berges, Manuel S.; diPietro, Antonio; Schrettl, Marcus; Beckmann, Nicola; Redl, Bernhard; Haas, Hubertus; Pearlman, Eric

    2013-01-01

    Filamentous fungi are an important cause of pulmonary and systemic morbidity and mortality, and also cause corneal blindness and visual impairment worldwide. Utilizing in vitro neutrophil killing assays and a model of fungal infection of the cornea, we demonstrated that Dectin-1 dependent IL-6 production regulates expression of iron chelators, heme and siderophore binding proteins and hepcidin in infected mice. In addition, we show that human neutrophils synthesize lipocalin-1, which sequesters fungal siderophores, and that topical lipocalin-1 or lactoferrin restricts fungal growth in vivo. Conversely, we show that exogenous iron or the xenosiderophore deferroxamine enhances fungal growth in infected mice. By examining mutant Aspergillus and Fusarium strains, we found that fungal transcriptional responses to low iron levels and extracellular siderophores are essential for fungal growth during infection. Further, we showed that targeting fungal iron acquisition or siderophore biosynthesis by topical application of iron chelators or statins reduces fungal growth in the cornea by 60% and that dual therapy with the iron chelator deferiprone and statins further restricts fungal growth by 75%. Together, these studies identify specific host iron-chelating and fungal iron-acquisition mediators that regulate fungal growth, and demonstrate that therapeutic inhibition of fungal iron acquisition can be utilized to treat topical fungal infections. PMID:23853581

  11. Control integrado del marchitamiento vascular del clavel ocasionado por Fusarium oxysporum f.sp. dianthi

    Directory of Open Access Journals (Sweden)

    León Jorge

    1993-06-01

    Full Text Available Las enfermedades vasculares del clavel, ocasionadas,
    principalmente, por Fusarium oxysporumf.sp. dianthi, y en menor grado por Phialophora cinerescens, constituyen un factor limitante del cultivo del clavel en Colombia. Estas enfermedades se introdujeron aColombia, en material de propagación infectado, procedente de diversos paIses desde hace más de quince anos, y su incidencia ha aumentado progresivamente, ocasionando pérdidas muy importantes y con un incremento muy significativo de los costos de producción. La alta incidencia de las enfermedades vasculares
    se debe a su fácil propagación a través de esquejes
    infectados, a su rápida diseminación por formas diversas, a la alta persistencia del patógeno en el suelo y al alto costo y la baja eficiencia de las medidas de control utilizadas (Arbeláez, 1987a.

  12. Potential of Burkholderia seminalis TC3.4.2R3 as Biocontrol Agent Against Fusarium oxysporum Evaluated by Mass Spectrometry Imaging

    Science.gov (United States)

    Araújo, Francisca Diana da Silva; Araújo, Welington Luiz; Eberlin, Marcos Nogueira

    2017-02-01

    Species of genus Burkholderia display different interaction profiles in the environment, causing either several diseases in plants and animals or being beneficial to some plants, promoting their growth, and suppressing phytopathogens. Burkholderia spp. also produce many types of biomolecules with antimicrobial activity, which may be commercially used to protect crops of economic interest, mainly against fungal diseases. Herein we have applied matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate secondary metabolites produced by B. seminalis TC3.4.2R3 in monoculture and coculture with plant pathogen Fusarium oxysporum. The siderophore pyochelin and the rhamnolipid Rha-Rha-C15-C14 were detected in wild-type B. seminalis strain, and their productions were found to vary in mutant strains carrying disruptions in gene clusters associated with antimicrobial compounds. Two mycotoxins were detected in F. oxysporum. During coculture with B. seminalis, metabolites probably related to defense mechanisms of these microorganisms were observed in the interspecies interaction zone. Our findings demonstrate the effective application of MALDI-MSI in the detection of bioactive molecules involved in the defense mechanism of B. seminalis, and these findings suggest the potential use of this bacterium in the biocontrol of plant diseases caused by F. oxysporum.

  13. Potential of Burkholderia seminalis TC3.4.2R3 as Biocontrol Agent Against Fusarium oxysporum Evaluated by Mass Spectrometry Imaging

    Science.gov (United States)

    Araújo, Francisca Diana da Silva; Araújo, Welington Luiz; Eberlin, Marcos Nogueira

    2017-05-01

    Species of genus Burkholderia display different interaction profiles in the environment, causing either several diseases in plants and animals or being beneficial to some plants, promoting their growth, and suppressing phytopathogens. Burkholderia spp. also produce many types of biomolecules with antimicrobial activity, which may be commercially used to protect crops of economic interest, mainly against fungal diseases. Herein we have applied matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate secondary metabolites produced by B. seminalis TC3.4.2R3 in monoculture and coculture with plant pathogen Fusarium oxysporum. The siderophore pyochelin and the rhamnolipid Rha-Rha-C15-C14 were detected in wild-type B. seminalis strain, and their productions were found to vary in mutant strains carrying disruptions in gene clusters associated with antimicrobial compounds. Two mycotoxins were detected in F. oxysporum. During coculture with B. seminalis, metabolites probably related to defense mechanisms of these microorganisms were observed in the interspecies interaction zone. Our findings demonstrate the effective application of MALDI-MSI in the detection of bioactive molecules involved in the defense mechanism of B. seminalis, and these findings suggest the potential use of this bacterium in the biocontrol of plant diseases caused by F. oxysporum.

  14. Functional characterization of the gene FoOCH1 encoding a putative α-1,6-mannosyltransferase in Fusarium oxysporum f. sp. cubense.

    Science.gov (United States)

    Li, Min-Hui; Xie, Xiao-Ling; Lin, Xian-Feng; Shi, Jin-Xiu; Ding, Zhao-Jian; Ling, Jin-Feng; Xi, Ping-Gen; Zhou, Jia-Nuan; Leng, Yueqiang; Zhong, Shaobin; Jiang, Zi-De

    2014-04-01

    Fusarium oxysporum f. sp. cubense (FOC) is the causal agent of banana Fusarium wilt and has become one of the most destructive pathogens threatening the banana production worldwide. However, few genes related to morphogenesis and pathogenicity of this fungal pathogen have been functionally characterized. In this study, we identified and characterized the disrupted gene in a T-DNA insertional mutant (L953) of FOC with significantly reduced virulence on banana plants. The gene disrupted by T-DNA insertion in L953 harbors an open reading frame, which encodes a protein with homology to α-1,6-mannosyltransferase (OCH1) in fungi. The deletion mutants (ΔFoOCH1) of the OCH1 orthologue (FoOCH1) in FOC were impaired in fungal growth, exhibited brighter staining with fluorescein isothiocyanate (FITC)-Concanavalin A, had less cell wall proteins and secreted more proteins into liquid media than the wild type. Furthermore, the mutation or deletion of FoOCH1 led to loss of ability to penetrate cellophane membrane and decline in hyphal attachment and colonization as well as virulence to the banana host. The mutant phenotypes were fully restored by complementation with the wild type FoOCH1 gene. Our data provide a first evidence for the critical role of FoOCH1 in maintenance of cell wall integrity and virulence of F. oxysporum f. sp. cubense. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Hydrophilic compounds in culture filtrates of Fusarium oxysporum f. sp. cubense GCV [01210] induce protection to banana leave toward a main pathogen phytotoxic component

    Directory of Open Access Journals (Sweden)

    Nayanci Portal González

    2014-07-01

    Full Text Available Panama disease caused by Fusarium oxysporum f. sp. cubense (Foc, is among the most important diseases in Musa spp. Foc is a necrotrophic fungus, their phytotoxins play a role in disease development. Previously culture filtrate (FCC 15 days incubation with differential phytotoxic activity against two Musa cultivars was obtained. From this, the main fraction with nonspecific phytotoxic activity against both cultivars was purified. In this study, the biological activity of the aqueous phase and the main phytotoxic fraction purified from organic extract of Fusarium oxysporum f. sp. cubense VCG [01210] Race 1 FCC was determined on banana leaves of cv. `Gros Michel' (susceptible and `FHIA-01' (resistant. Foc FCC phytotoxic effect was confirmed. The aqueous phase showed no phytotoxic activity on both cultivars, while the simultaneous application of the aqueous phase with the main phytotoxic fraction induced a differential response of tissues in susceptible and resistant cultivars evaluated. The results indicated that the compounds present in the aqueous phase are required to induce the protection of leaf tissue against phytotoxic main component of the pathogen. Key words: culture filtrate, Panama disease, resistant, susceptible

  16. Respuesta de algunas variedades de clavel estándar a cuatro razas fisiológicas de Fusarium oxysporum f. sp. Dianthi Response of some standard carnation varieties to four physiological

    Directory of Open Access Journals (Sweden)

    Arbeláez Germán

    1996-12-01

    Full Text Available Sesenta y ocho variedades de clavel estándar se evaluaron par su respuesta patológica a las razas fisiológicas 1, 2, 4 Y 8 de Fusarium oxysporum f. sp. dianthi. Solamente las variedades Bogotá, Fabiana y Pesco fueron resistentes a las cuatro razas del patógeno. Las variedades Giallo y Jole fueron susceptibles a todas las razas. La raza fisiológica más patogénica fue la raza 2, la cual es la raza predominante en Colombia, seguida de la raza 8. Las razas 1 y 4 presentaron menor patogenicidad. En esta investigación, se propone un nuevo juego de variedades diferenciales para la identificación de las razas de Fusarium oxysporum f. sp. dianthi.Sixty eight standard carnation varieties were evaluated for their pathological response to the physiological races 1, 2 , 4 and 8 of Fusarium oxysporum f. sp. dianthi. Only Bogota, Fabiana and Pesco varieties were resistant to all races. The varieties Giallo and Jole were susceptible to the four races. The race 2, which is the predominant race in Colombia, was the most pathogenic of the four races, followed by race 8. Races 1 and 4 were less pathogenic. In this study, we propose a new set of differential varieties to identify physiological races of Fusarium oxysporum f. sp. dianthi in Colombia.

  17. Peculiar ultrastructural characteristics of fungal cells and of other elements apposed to and in vessel walls in plants of a susceptible carnation cultivar, infected with Fusarium oxysporum f.sp dianthi race 2

    NARCIS (Netherlands)

    Ouellette, G.B.; Baayen, R.P.; Rioux, D.; Simard, M.

    2004-01-01

    Uncommon, opaque particles (of approximately 20-22 nm, referred to as OP), aggregating into paracrystalloids occurred only next to colonized cells in carnation plants of either a susceptible or resistant cultivar (cv.) infected with Fusarium oxysporum f.sp. dianthi. In the susceptible plant, those s

  18. Efecto de los procesos de compostacion y lombricultura de residuos de clavel sobre la población de Fusarium oxysporum f.sp. dianthi Effect of the processes of composting and lombricomposting of carnation residues on the population of Fusarium oxysporum f.sp. dianthi

    Directory of Open Access Journals (Sweden)

    Pardo Fabio Alejandro

    1998-12-01

    Full Text Available El manejo de los residuos vegetales es uno de los problemas que actualmente enfrenta la floricultura colombiana. El objetivo de la investigación fue estudiar el efecto de la descomposición de residuos de clavel mediante los procesos de compostación y lombricultura sobre la población de Fusarium oxysporum en una finca productora de flores
    localizada en la Sabana de Bogotá. Los procesos de compostación y lombricultura redujeron de manera apreciable la población del hongo, obteniéndose la mayor reducción en el tratamiento de plantas de rosa más plantas de clavel enfermo. De 235 aislamientos de F oxysporum inoculados en esquejes de clavel de la variedad "Navidad", 37 (16% fueron patogénicos y pertenecen a F. oxysporum f.sp. dianthi, mientras que 198 aislamientos (84% correspondieron a formas no patogénicas de F oxysporum o a formas patogénicas de la especie, diferentes a la forma especial dianthi. La utilización de compost o de humus de lombriz que provenga de plantas enfermas de clavel presenta riesgos fitopatológicos importantes para su aplicación al suelo.The management of plant residues is a very important problem of the Colombian floriculture. The objetive of the research was to study the effect of descomposition of carnation plant residues with the processes of compostation and lombricompostation on the population of Fusarium oxysporum on a commercial farm located at the Bogota Plateau. Compostation and lombricompostation processes reduced significantly the population of Foxysporum. The highest reduction was obtained with the treatment of a mixture of rose plants plus carnation diseased plants. From 235 isolates of F. oxysporum inoculated on carnation cuttings of the variety "Navidad", 37 (16% were pathogenic and belong to F oxysporum f.sp. dianthi, 198 isolates (84% did not cause disease on carnation plants, so they belong to other formae specialis or they are nonpathogenic isolates of Foxysporum. The application of

  19. Development of quantitative proteomics using iTRAQ based on the immunological response of Galleria mellonella larvae challenged with Fusarium oxysporum microconidia.

    Directory of Open Access Journals (Sweden)

    Amalia Muñoz-Gómez

    Full Text Available Galleria mellonella has emerged as a potential invertebrate model for scrutinizing innate immunity. Larvae are easy to handle in host-pathogen assays. We undertook proteomics research in order to understand immune response in a heterologous host when challenged with microconidia of Fusarium oxysporum. The aim of this study was to investigate hemolymph proteins that were differentially expressed between control and immunized larvae sets, tested with F. oxysporum at two temperatures. The iTRAQ approach allowed us to observe the effects of immune challenges in a lucid and robust manner, identifying more than 50 proteins, 17 of them probably involved in the immune response. Changes in protein expression were statistically significant, especially when temperature was increased because this was notoriously affected by F. oxysporum 104 or 106 microconidia/mL. Some proteins were up-regulated upon immune fungal microconidia challenge when temperature changed from 25 to 37°C. After analysis of identified proteins by bioinformatics and meta-analysis, results revealed that they were involved in transport, immune response, storage, oxide-reduction and catabolism: 20 from G. mellonella, 20 from the Lepidoptera species and 19 spread across bacteria, protista, fungi and animal species. Among these, 13 proteins and 2 peptides were examined for their immune expression, and the hypothetical 3D structures of 2 well-known proteins, unannotated for G. mellonella, i.e., actin and CREBP, were resolved using peptides matched with Bombyx mori and Danaus plexippus, respectively. The main conclusion in this study was that iTRAQ tool constitutes a consistent method to detect proteins associated with the innate immune system of G. mellonella in response to infection caused by F. oxysporum. In addition, iTRAQ was a reliable quantitative proteomic approach to detect and quantify the expression levels of immune system proteins and peptides, in particular, it was found that 104

  20. AÇÃO ANTIFÚNGICA in vitro DE ISOLADOS DE Bacillu s sp. SOBRE Fusarium oxysporum f. sp. lycopersici

    Directory of Open Access Journals (Sweden)

    ODENILSON DE DEUS RIBEIRO LIMA

    2014-01-01

    Full Text Available This study aimed to evaluate antagonism and metabolites produced by different species of Ba- cillus in the inhibition of mycelial growth in vitro against F. oxysporum f. sp . lycopersici . For evaluating the antagonism of Bacillus spp. F. oxysporum f. sp . lycopersici was performed pairing of fungus and bacteria by the method of the circle. In the method for detection for the quality for thermostable metabolites liquids. Media BD were used for growth of the isolated Bacillus sp. And incubated for 15 days. After this period, was added 3 g of agar in each flask, and autoclaved broth and poured into Petri dishes. In the center of the plates were placed discs culture of the pathogen. The experimental design was completely randomized with 11 treatments and six repetitions in both experiments. Statistical difference was found between the isolate and the control. Special mention to strains B12 ( Bacillus sp., B41 ( B. cereus , B22' ( B.pentothenticus , B45 ( B. cereus , B47 ( B. cereus that exhibited the lowest average diameter of the colony. To study the inhibition of mycelial growth of F. oxysporum f. sp. lycopersici by thermostatable metabolites five differ statistically from the control they are: B35 ( B. pumilus , B47 ( B. cereus , B22' ( B. pentothenticus , B12 ( Bacillus sp. and B41 ( B. cereus the latter two treatments showed the best results of the pathogen colony diameters and 3.81 to 2.89 cm, respective- ly. B12 and B41 Isolates showed that their antibiotic products were able to inhibit 67.88 % and 57,66 % of F. oxysporum f. sp. lycopersici . These results highlight the possibility of using isolates of the genus Bacillus in the fight against fusarium wilt in tomato.

  1. Detection and differentiation of Fusarium oxysporum f. sp. lycopersici race 1 using loop-mediated isothermal amplification with three primer sets.

    Science.gov (United States)

    Ayukawa, Y; Komatsu, K; Kashiwa, T; Akai, K; Yamada, M; Teraoka, T; Arie, T

    2016-09-01

    Fusarium oxysporum f. sp. lycopersici (Fol) causes tomato wilt. Based on the difference in pathogenicity towards tomato cultivars, Fol is classified into three races. In this study, a rapid method is developed for the detection and discrimination of Fol race 1 using a loop-mediated isothermal amplification (LAMP) assay with two primer sets targeting a region of the nucleotide sequence of the SIX4 gene specific for race 1 and a primer set targeting the SIX5 gene, conserved in all known Fol isolates. Upon LAMP reaction, amplification using all three primer sets was observed only when DNA of Fol race 1 was used as a template, and not when DNA of other Fol races or other fungal species was used. This method could detect 300 fg of Fol race 1 DNA, a 100-fold higher sensitivity than that obtained by conventional PCR. The method can also detect DNA extracted from soil artificially infested with Fol race 1. It is now possible to detect Fol race 1 in colonies and infected tomato stems without DNA isolation. This method is a rapid and simple tool for discrimination of Fol race 1. This study developed a loop-mediated isothermal amplification (LAMP) assay for detection and differentiation of Fusarium oxysporum f. sp. lycopersici (Fol) race 1 by using three primer sets targeting for the SIX4 and SIX5 genes. These genes are present together only in Fol race 1. This method can detect Fol race 1 in infected tomato stems without DNA extraction, affording an efficient diagnosis of Fusarium wilt on tomatoes in the field. © 2016 The Society for Applied Microbiology.

  2. Antifungal Activity of Sophora flavescens extracts against Capsicum Blight ( Fusarium oxysporum )%苦参对辣椒枯萎病的抑菌活性

    Institute of Scientific and Technical Information of China (English)

    郑玉艳

    2011-01-01

    [目的]探讨苦参对辣椒枯萎病的抑菌活性.[方法]采用生长速率法和悬滴法测试不同溶剂、浓度苦参提取物对辣椒枯萎病菌的抑制作用.[结果]乙酸乙酯与丙酮提取苦参所得粗提物的抑菌率显著高于乙醇.随着苦参乙酸乙酯粗提液浓度的增大,其对枯萎病痛菌菌丝生长及孢子萌发抑制作用均显著增强;在质量浓度为40g/L时,其对辣椒枯萎菌菌丝生长、孢子萌发抑制率分别达到94.48%、89.01%.[结论]苦参根中所含活性物质对辣椒枯萎病的抑菌活性较强,具有进一步研究开发的价值.%[ Objective ] The paper was to explore the antifungal activity of Sophora flavescens extracts against capsicum blight. [ Method ] Growth rate method and suspend-drop method were used to measure different solvents and concentrations of S. Flavescens extracts against capsicum blight. [ Result]The inhibition rate of crude extracts of S.flavescens extracted from ethyl acetate and acetone was significantly higher than ethanol. With the increasing concentration of ethyl acetate crude extracts of S. Flavescens,its inhibition effect against mycelial growth and spore germination of Fusarium oxysporum significantly increased. When the mass concentration was 40 g/L,its inhibition rates against mycelial growth and spore germination of capsicum blight were 94.48% and 89.01% .respectively. [ Conclusion]The active substance contained in S. Flavescens roots had strong inhibition activity against capsicum blight,which had the potential value for further research and development.

  3. Stimulative effect of the fungal biocontrol agent Fusarium oxysporum f.sp. Striga on abundance of nitrifying prokaryotes in a maize rhizosphere

    Science.gov (United States)

    Musyoki, Mary; Enowashu, Esther; Zimmermann, Judith; Muema, Esther; Wainright, Henry; Vanlauwe, Bernard; Cadisch, Georg; Rasche, Frank

    2014-05-01

    The integration of resistant crop varieties and Fusarium oxysporum f.sp. strigae (Foxy-2) strains as biological control agent (BCA) has shown to be an effective control of the weed Striga hermonthica which is parasitic to several cereals (e.g., maize) cultivated in Sub-Saharan Africa. Most studies have examined the efficacy of the BCA and its interactions with host crops, while overlooking the interplay among key microorganisms in the soil nitrogen (N) cycle. Hence, we postulated that both Foxy-2 and Striga pose threats to the indigenous plant root-associated microbial communities involved in N cycling through direct or indirect competition for nutrients and that the application of high quality organic residues would compensate these effects. The primary objective of this study was thus to assess the potential impact of Foxy-2 on indigenous nitrifying prokaryotes in maize rhizosphere cultivated on two distinct soils (sandy Ferric Alisol versus clayey Humic Nitisol) obtained from Machanga and Embu, respectively, in central Kenya. These soils were treated with or without Foxy-2 and Striga; and in combination with high quality (i.e. CN ratio; 13, lignins, 8.9 % and polyphenols, 1.7 %) organic residues (i.e., Tithonia diversifolia) as N source. Using quantitative polymerase chain reaction (qPCR), we followed at three pre-defined sampling dates (14, 28 and 42 days after planting) the responses of ammonia-oxidizing archaea (AOA) and bacteria (AOB), total bacteria and archaea in four treatments of a rhizobox experiment: (i) Foxy-2 plus Striga (F+S), (ii) Striga only (C+S), (iii) Foxy-2 plus Striga plus Tithonia diversifolia residues (F+S+T), and (iv) a non-treated control (C). Overall, the treatment effects on soil microbial populations were, in comparison to the clayey Embu soil, more pronounced in the sandy Machanga soil. Contrary to our expectations, we observed a distinct stimulative, but no resource competition effect of Foxy-2 on the abundance of AOA, as well as

  4. Reação de genótipos de feijoeiro comum a Fusarium oxysporum f. sp. phaseoli, Macrophomina phaseolina e Xanthomonas campestris pv. phaseoli Behavior of dry bean genotypes to Fusarium oxysporum f. sp. phaseoli, Macrophomina phaseolina, and Xanthomonas campestris pv. phaseoli

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Maringoni

    1999-04-01

    Full Text Available Foi avaliado no presente trabalho o comportamento dos genótipos de feijoeiro (Phaseolus vulgaris L. PI 150414, PI 163117, PI 175829 branco, PI 175829 roxo, PI 175858, PI 197687, A 417, A 420, A 429, Xan 160, Xan 161, WISHBR 40 e IAC Carioca inoculados com Fusarium oxysporum f. sp. phaseoli, Macrophomina phaseolina e Xanthomonas campestris pv. phaseoli, sob condições de telado/casa de vegetação. Verificou-se que os genótipos Xan 160, PI 150414, A 417, PI 175829 roxo, Xan 161, A 420, PI 163117 e PI 175829 branco foram resistentes a F. oxysporum f. sp. phaseoli e somente o PI 175829 branco apresentou bom nível de resistência a M. phaseolina. Com relação ao comportamento desses genótipos a X. campestris pv. phaseoli, eles foram altamente suscetíveis ao isolado Feij-4 e apenas o genótipo Xan 161 apresentou nível moderado de resistência foliar ao isolado Feij-41.The behavior of dry bean (Phaseolus vulgaris L. genotypes PI 150414, PI 163117, PI 175829 white, PI 175829 purple, PI 175858, PI 197687, A 417, A 420, A 429, Xan 160, Xan 161, WISHBR 40, and IAC Carioca inoculated with Fusarium oxysporum f. sp. phaseoli, Macrophomina phaseolina, and Xanthomonas campestris pv. phaseoli was evaluated under greenhouse condition. The bean genotypes Xan 160, PI 150414, A 417, PI 175829 purple, Xan 161, A 420, PI 163117, and PI 175829 white were resistant to F. oxysporum f. sp. phaseoli, and only PI 155829 white had a good level of resistance to M. phaseolina. All bean genotypes were susceptible to Feij-4 strain, and only Xan 161 had some level of leaf resistance to Feij-41 strain of X. campestris pv. phaseoli.

  5. Modification of competence for in vitro response to Fusarium oxysporum in tomato cells. II. Effect of the integration of Agrobacterium tumefaciens genes for auxin and cytokinin synthesis.

    Science.gov (United States)

    Storti, E; Bogani, P; Bettini, P; Bittini, P; Guardiola, M L; Pellegrini, M G; Inzé, D; Buiatti, M

    1994-04-01

    We have studied the effect of a change in the endogenous hormone equilibria on the competence of tomato (Lycopersicon esculentum) cells to defend themselves against the fungal pathogen Fusarium oxysporum f. sp. lycopersici. Calluses from cvs 'Davis' and 'Red River', respectively resistant and susceptible to Fusarium and transgenic for an auxin- or cytokinin-synthesizing gene from Agrobacterium tumefaciens, were used. The integration of Agrobacterium hormone-related genes into susceptible cv 'Red River' can bring the activation of defense processes to a stable competence as assessed by the inhibition of mycelial growth in dual culture and gem-tube elongation of Fusarium conidia, the determination of callose contents, peroxidase induction and ion leakage in the presence of fusaric acid. This is particularly true when the transformation results in a change of phytohormone equilibria towards an higher cytokin in concentration. On the contrary, in resistant cv 'Davis' the inhibition of both fungal growth in dual culture and conidia germination is higher when the hormone balance is modified in favour of the auxins. No significant effect was observed for ion leakage and peroxidase induction, probably because of a constitutive overproduction of cytokinins in 'Davis' cells.

  6. Development of a thematic collection of Musa spp accessions using SCAR markers for preventive breeding against Fusarium oxysporum f. sp cubense tropical race 4.

    Science.gov (United States)

    Silva, P R O; de Jesus, O N; Bragança, C A D; Haddad, F; Amorim, E P; Ferreira, C F

    2016-03-11

    Bananas are one of the most consumed fruits worldwide, but are affected by many pests and diseases. One of the most devastating diseases is Fusarium wilt, caused by Fusarium oxysporum f. sp cubense (Foc). Recently, Fusarium tropical race 4 (Foc TR4) has been causing irreparable damage, especially in Asia and Africa where it has devastated entire plantations, including areas with Cavendish, which is known to be resistant to Foc race 1. Although this race is not yet present in Brazil, results obtained by Embrapa in partnership with the University of Wageningen, The Netherlands, indicate that 100% of the cultivars used by Brazilian growers are susceptible to Foc TR 4. In our study, 276 banana accessions were screened with sequence characterized amplified region (SCAR) markers that have been linked to the resistance of Foc TR 4. Two SCAR primers were tested and the results revealed that SCAR ScaU1001 was efficient at discriminating accessions with possible resistance in 36.6% of the evaluated accessions. This is the first attempt to develop a thematic collection of possible Foc TR 4 resistant banana accessions in Brazil, which could be tested in Asian or African countries to validate marker-assisted selection (MAS), and for use in the preventive breeding of the crop to safeguard our banana plantations against Foc TR 4. We believe that this is an important step towards the prevention of this devastating disease, especially considering that our banana plantations are at risk.

  7. QTL analysis for Fusarium root rot resistance in snap bean under greenhouse conditions

    Science.gov (United States)

    Fusarium root rot (FRR), caused by Fusarium solani f. sp. phaseoli (syn.F. phaseoli T. Aoki & O’Donnell, F. cuneirostrum O’Donnell & T. Aoki), is considered as one of the most economically important and widespread fungal diseases of common bean (1). Progress in breeding for FRR resistance has been h...

  8. Evaluation of pea accessions and commercial cultivars for Fusarium Root Rot resistance

    Science.gov (United States)

    Fusarium root rot caused by Fusarium solani f. sp. pisi (Fsp) can result in major yield losses in pea (Pisum sativum L.). Currently no fungicides effectively manage this disease. Previous studies evaluated the Pisum germplasm collection for resistance to Fsp, however, evaluations of commercial marke...

  9. In vitro mutants identification of banana (Musa sp.) with tolerance to toxin from Fusarium oxysporum f. sp cubense, treating buds with several gamma radiation doses; Identificacao in vitro de mutantes de banana maca (Musa sp.) tolerantes a toxina do Fusarium oxysporum f. sp. cubense, a partir de gemas tratadas com diferentes doses de radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Adriana Muniz Mendes de; Houllou-Kido, Laureen Michelle; Franca, Jose Geraldo Eugenio de [Empresa Pernambucana de Pesquisa Agropecuaria, Recife, PE (Brazil); Colaco, Waldeciro [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear

    1999-11-01

    Mutants of banana, obtained through treatment with different level of gamma-radiation (0; 10; 20; 30; 40 Gy), were initially cultivated in vitro in medium for rapid clonal propagation during 30 days. These treatment affected the shoot tips development ratio. Some plants developed necrosis and died, but some of the shoot tips emitted new gems. These material were cultivated in medium 20% of the toxin of Fusarium oxysporum cubense. During the selection period, the necrosis occurrence and death of susceptible shoot tips were observed. Whereas the tolerant shoot tips kept themselves green during the entire selection process. At the end of the selection process, eight shoot tips were obtained. (author) 7 refs.

  10. Occurrence of Fusarium oxysporum f.sp.cubense tropical race 4 and resistance identification of banana varieties in Guangxi%广西香蕉枯萎病4号生理小种发生情况及香蕉品种抗性鉴定

    Institute of Scientific and Technical Information of China (English)

    黄穗萍; 莫贱友; 郭堂勋; 李其利; 潘朝勃

    2013-01-01

    [Objective]Occurrence status of Fusarum oxysporum f.sp.cubense tropical race 4 in Guangxi was surveyed and the resistance of banana varieties cultivated in Guangxi against Fusarium oxysporum f.sp.cubense tropical race 4 was also studied to provide references for formulating the corresponding prevention and control measures.[Method]The condition of Fusarium oxysporum f.sp.cubense tropical race 4 infecting the banana was investigated in 2-3 spots of 23 villages randomly chosen from Guangxi was.Furthermore,the resistance of eleven banana varieties cultivated against Fusarium oxysporum f.sp.cubense tropical race 4 was determined using injury root inoculation method.[Result]Fusarium oxysporum f.sp.cubense tropical race 4 was found in Qinzhou City,Wuming County,Longan County,Longzhou County,and Xixiangtang District,in which the diseased plant rates were 1.00%-14.00%.All of the eleven banana varieties were highly sensitive (disease index:70.00-100.00) to Fusarium oxysporum f.sp.cubense tropical race 4 except Jinfen 1 which was sensitive (disease index:50.00).Fusarium oxysporum f.sp.cubense tropical race 4 was not present in the investigation spots of Tiandong County.[Conclusion]Fusarium oxysporum f.sp.cubense tropical race 4 was found sporadical in a part banana production area of Guangxi and propagated rapidly.Since banana varieties cultivated in Guangxi were highly sensitive or sensitive to Fusarium oxysporum f.sp.cubense tropical race 4,their disease-resistant ability was poor.More efforts should be made to prevent and control Fusarium oxysporum f.sp.cubense tropical race 4.%[目的]明确香蕉枯萎病4号生理小种在广西的发生实况和广西现有香蕉品种对香蕉枯萎病4号生理小种的抗性水平,为制定相应的防控措施提供参考.[方法]在广西香蕉产区随机选择23个村,每村抽取2~3个点,调查香蕉枯萎病4号生理小种的发生情况.用伤根接种法测定11个香蕉品种对香蕉枯萎病4号生理小种的

  11. GMC oxidoreductase, a highly expressed protein in a potent biocontrol agent Fusarium oxysporum Cong:1-2, is dispensable for biocontrol activity.

    Science.gov (United States)

    Kawabe, Masato; Okabe Onokubo, Akiko; Arimoto, Yutaka; Yoshida, Takanobu; Azegami, Koji; Teraoka, Tohru; Arie, Tsutomu

    2011-01-01

    A spontaneous non-pathogenic variant (Cong:1-2) derived from Fusarium oxysporum f. sp. conglutinans (Cong: 1-1), a causal agent of cabbage yellows, carries biocontrol activity for cabbage yellows. We found a GMC oxidoreductase (ODX1) among the proteins expressed much more in Cong:1-2 than Cong:1-1 by 2D-DIGE comparison. GMC oxidoreductases have been reported to be involved in biocontrol activity of several plant pathogenic fungi. The gene encoding ODX1 in Cong:1-2 was cloned, and targeted disruption of the gene in Cong:1-2 did not affect its biocontrol activity, suggesting that GMC oxidoreductase is dispensable for biocontrol activity in the fungal biocontrol agent.

  12. Isolation and Identification of the Antimicrobial Agent Beauvericin from the Endophytic Fusarium oxysporum 5-19 with NMR and ESI-MS/MS

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2016-01-01

    Full Text Available Endophytic microbe has been proved to be one of rich sources of bioactive natural products with potential application for new drug and pesticide discovery. One cyclodepsipeptide, beauvericin, was firstly isolated from the fermentation broth of Fusarium oxysporum 5-19 endophytic on Edgeworthia chrysantha Linn. Its chemical structure was unambiguously identified by a combination of spectroscopic methods, such as HRESI-MS and 1H and 13C NMR. ESI-MS/MS was successfully used to elucidate the splitting decomposition route of the positive molecule ion of beauvericin. Antimicrobial results showed that this cyclodepsipeptide had inhibitory effect on three human pathogenic microbes, Candida albicans, Escherichia coli, and Staphylococcus aureus. In particular, beauvericin exhibited the strongest antimicrobial activity against S. aureus with MIC values of 3.91 μM, which had similar effect with that of the positive control amoxicillin.

  13. Phenotypic evaluation of the resistance in F1 carnation populations to vascular wilt caused by Fusarium oxysporum f.sp. dianthi

    Directory of Open Access Journals (Sweden)

    Johana Carolina Soto-Sedano

    2012-08-01

    Full Text Available One of the most important phytosanitary problems of the carnation crops in Colombia and in the entire world is vascular wilting produced by Fusarium oxysporum f.sp. dianthi. Currently, an effective treatment against the pathogen does not exist; the search for resistant varieties has been the most successful method for control of this disease. Breeding programs are vital to solving the problem of the carnation fusariosis. The objective of this research was the phenotypic evaluation of carnation F1 populations, products of contrasting crossing, resistant per susceptible to F. oxysporum f.sp. dianthi, in order to determine if the resistance is inherited in the lines. This information will contribute to the selection of material and to the successful introduction of the resistant characteristic, whose expression is commercially acceptable, to the gene pool. The methodology adopted was a phenotypic evaluation of the response to the parasite in the population (450 individuals and in the parental. This evaluation estimated the area under the curve (AU DPC, using a scale of symptoms reported for carnation vascular wilt. Three different phenotypes were established with this evaluation. The moderately susceptible one is the predominant phenotype and an analysis of phenotypic frequencies was carried out on it. The results show that the individuals of the evaluated F1 population were distributed between two extreme ranges, resistant and susceptible; this shows that there is segregation for the trait resistant to F. oxysporum f.sp dianthi. We did not observe clearly differentiated classes, i.e. with complete absence or presence of the disease, indicating a possible control of the resistance in the evaluated carnation material, governed by more than one gene and with a possible additive genetic action

  14. Effect of Nanoencapsulated Vitamin B1 Derivative on Inhibition of Both Mycelial Growth and Spore Germination of Fusarium oxysporum f. sp. raphani

    Directory of Open Access Journals (Sweden)

    Hyeon Yong Lee

    2013-02-01

    Full Text Available Nanoencapsulation of thiamine dilauryl sulfate (TDS, a vitamin B1 derivative, was proved to effectively inhibit the spore germination of Fusarium oxysporum f. sp. raphani (F. oxysporum, as well as mycelial growth. The average diameter of nanoparticles was measured as 136 nm by being encapsulated with an edible encapsulant, lecithin, whose encapsulation efficiency was about 55% in containing 200 ppm of TDS concentration: the 100 ppm TDS nanoparticle solution showed a mycelial growth inhibition rate of 59%. These results were about similar or even better than the cases of treating 100 ppm of dazomet, a positive antifungal control (64%. Moreover, kinetic analysis of inhibiting spore germination were estimated as 6.6% reduction of spore germination rates after 24 h treatment, which were 3.3% similar to the case of treating 100 ppm of a positive control (dazomet for the same treatment time. It was also found that TDS itself could work as an antifungal agent by inhibiting both mycelial growth and spore germination, even though its efficacy was lower than those of nanoparticles. Nanoparticles especially played a more efficient role in limiting the spore germination, due to their easy penetration into hard cell membranes and long resident time on the surface of the spore shell walls. In this work, it was first demonstrated that the nanoparticle of TDS not a harmful chemical can control the growth of F. oxysporum by using a lower dosage than commercial herbicides, as well as the inhibiting mechanism of the TDS. However, field trials of the TDS nanoparticles encapsulated with lecithin should be further studied to be effectively used for field applications.

  15. Grado de especificidad de tres formas especiales de Fusarium oxysporum mediante inoculacion cruzada (bajo condiciones de invernadero en la Sabana de Bogotá, Colombia

    Directory of Open Access Journals (Sweden)

    Cogua Jorge

    2006-06-01

    Full Text Available Una de las alternativas planteadas para el control de la coca es el uso el hongo fitopatógeno Fusarium oxysporum F sp erythroxyli. El argumento principal, en el momento de proponer la utilización de este hongo para la erradicación de plantaciones de coca se fundamenta en su capacidad para discriminar su hospedero, por lo que flora nativa, cultivos, animales y demás seres vivos, no serian afectados, en tanto que sobre la coca cumpliría un papel devastador. Sin embargo dicho argumento es ampliamente discutido y controvertido por
    investigaciones encaminadas a tratar de estimar sus efectos reales donde se han encontrado porcentajes de infección en plantas no hospederas. En el presente estudio se evalúa el grado de especificidad de tres formas especiales de F. oxysporum con el fin de ampliar el conocimiento acerca del comportamiento de la especie. Se inoculó al suelo una suspensión de esporas (1,5 x 10-6/ml de las formas especiales dianthi, erythroxyli, y lycopersici en plantas de tomate, rábano, y clavel, encontrando porcentajes de infección en tomate por la f sp. Dianthi de 33%, lycopersici de 46% y erythroxyli 53%. En clavel, por dianthi 46%, lycopersici 30% y erythroxyli 43% y 53%. En rábano por dianthi de 40%, lycopersici 50% y erythroxyli 46% y 56%. De este trabajo se concluye que las formas especiales de F. oxysporum utilizadas no son específicas puesto que con todas se encontraron porcentajes de infección en plantas no hospederas.

  16. Efecto antifúngico de extractos fenólicos y de carotenoides de chiltepín (Capsicum annum var. glabriusculum en Alternaria alternata y Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Alfonso Rodriguez-Maturino

    2015-03-01

    Full Text Available En el presente estudio se evaluó el efecto de extractos fenólicos y de carotenoides procedentes de frutos de chiltepín sobre el crecimiento micelial y la germinación de conidios de Alternaria alternata y Fusarium oxysporum, 2 importantes hongos causantes de podredumbres en frutas y hortalizas. Los extractos fenólicos presentaron una inhibición en el crecimiento micelial de A. alternata del 38,46 %, y redujeron significativamente la germinación de conidios al quinto día después del tratamiento al 92 % en relación al control. No se observaron cambios significativos en el crecimiento micelial de F. oxysporum, pero sí se redujo significativamente al 85 % en relación al control, el número de conidios germinados a los 5 días de tratamiento. Los extractos de carotenoides mostraron una inhibición del 38,5 % en el crecimiento micelial y del 85,3 % en la germinación de conidios de A. alternata, 5 días después del tratamiento. Frente a F. oxysporum, dichos extractos presentaron menor inhibición del crecimiento micelial (20,3 %, mientras que hubo una mayor inhibición en la germinación de conidios (96 %. Los extractos fenólicos y de carotenoides de chiltepín pueden ser una alternativa promisoria de importancia agrícola como fungicidas naturales.

  17. Tomato I2 Immune Receptor Can Be Engineered to Confer Partial Resistance to the Oomycete Phytophthora infestans in Addition to the Fungus Fusarium oxysporum.

    Science.gov (United States)

    Giannakopoulou, Artemis; Steele, John F C; Segretin, Maria Eugenia; Bozkurt, Tolga O; Zhou, Ji; Robatzek, Silke; Banfield, Mark J; Pais, Marina; Kamoun, Sophien

    2015-12-01

    Plants and animals rely on immune receptors, known as nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins, to defend against invading pathogens and activate immune responses. How NLR receptors respond to pathogens is inadequately understood. We previously reported single-residue mutations that expand the response of the potato immune receptor R3a to AVR3a(EM), a stealthy effector from the late blight oomycete pathogen Phytophthora infestans. I2, another NLR that mediates resistance to the will-causing fungus Fusarium oxysporum f. sp. lycopersici, is the tomato ortholog of R3a. We transferred previously identified R3a mutations to I2 to assess the degree to which the resulting I2 mutants have an altered response. We discovered that wild-type I2 protein responds weakly to AVR3a. One mutant in the N-terminal coiled-coil domain, I2(I141N), appeared sensitized and displayed markedly increased response to AVR3a. Remarkably, I2(I141N) conferred partial resistance to P. infestans. Further, I2(I141N) has an expanded response spectrum to F. oxysporum f. sp. lycopersici effectors compared with the wild-type I2 protein. Our results suggest that synthetic immune receptors can be engineered to confer resistance to phylogenetically divergent pathogens and indicate that knowledge gathered for one NLR could be exploited to improve NLR from other plant species.

  18. The transmembrane protein Sho1 cooperates with the mucin Msb2 to regulate invasive growth and plant infection in Fusarium oxysporum.

    Science.gov (United States)

    Perez-Nadales, Elena; Di Pietro, Antonio

    2015-08-01

    In the vascular wilt pathogen Fusarium oxysporum, the mitogen-activated protein kinase (MAPK) Fmk1 is essential for plant infection. The mucin-like membrane protein Msb2 regulates a subset of Fmk1-dependent functions. Here, we examined the role of the tetraspan transmembrane protein Sho1 as an additional regulator of the Fmk1 pathway and determined its genetic interaction with Msb2. Targeted Δsho1 mutants were generated in wild-type and Δmsb2 backgrounds to test possible interactions between the two genes. The mutants were examined for hyphal growth under different stress conditions, phosphorylation of the MAPK Fmk1 and an array of Fmk1-dependent virulence functions. Similar to Msb2, Sho1 was required for the activation of Fmk1 phosphorylation, as well as Fmk1-dependent gene expression and invasive growth functions, including extracellular pectinolytic activity, cellophane penetration, plant tissue colonization and virulence on tomato plants. Δsho1 mutants were hypersensitive to the cell wall-perturbing compound Calcofluor White, and this phenotype was exacerbated in the Δmsb2 Δsho1 double mutant. These results highlight that Sho1 and Msb2 have partially overlapping functions upstream of the Fmk1 MAPK cascade, to promote invasive growth and plant infection, as well as cell wall integrity, in F. oxysporum. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  19. Effects of Crop Development on the Emission of Volatiles in Leaves of Lycopersicon esculentum and Its Inhibitory Activity to Botrytis cinerea and Fusarium oxysporum

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Volatiles emitted from the leaves of Lycopersicon esculentum at the two-, ten-leaf and anthesis periods were collected by a gas absorbing method and analyzed by gas chromatography (GC)-mass spectrometry. In total, 33 compounds of volatiles emitted from three developmental stage plants were separated and identified, and quantitatively analyzed by the internal standard addition method. All of the samples of volatile were found to be rich in monoterpenes and sesquiterpenes.β-phellandrene and caryophyllene predominated in the volatiles of the leaves of plants at the two- and ten-leaf stages.Furthermore, (E)-2-hexenal were the dominant components in the volatiles emitted from anthesis plants. The results of volatiles analyzed show that the compositions varied depending on the developmental stages. The volatiles emitted from crushed tomato leaves of plants at the anthesis stage had the most strongly inhibitory activity against the spore germination and hyphal growth of Botrytis cinerea and Fusarium oxysporum, followed by ten- and two-leaf plants. However, the activity of volatiles, emitted from the leaves of plants at the two-leaf stage, in inhibiting F. oxysporum was greater than B. cinerea.

  20. Effect of physicochemical parameters on nitrile-hydrolyzing potentials of newly isolated nitrilase of Fusarium oxysporum f. sp. lycopercisi ED-3.

    Science.gov (United States)

    Bura Gohain, Manorama; Talukdar, Shruti; Talukdar, Madhumita; Yadav, Archana; Gogoi, Binod Kumar; Bora, Tarun Chandra; Kiran, Shashi; Gulati, Arvind

    2015-01-01

    In recent years, nitrilases from fungus have received increasing attention, and most of the studies are performed on nitrilases of bacterial origin. Frequently used methods are based on analytical methods such as high-performance liquid chromatography, liquid chromatography-mass spectrometry, and gas chromatography; therefore, an efficient, user friendly, and rapid method has been developed to screen nitrilase enzyme based on the principle of color change of a pH indicator. Phenol red amended with the minimal medium appears light yellow at neutral pH, which changes into pink with the formation of ammonia, indicating nitrilase activity in the reaction medium. A highly potent strain ED-3 identified as Fusarium oxysporum f. sp. lycopercisi (specific activity 17.5 µmol/Min/mg dcw) was isolated using this method. The nitrilase activity of F. oxysporum f. sp. lycopercisi ED-3 strain showed wide substrate specificity toward aliphatic nitriles, aromatic nitriles, and orthosubstituted heterocyclic nitriles. 4-Aminobenzonitrile was found to be a superior substrate among all the nitriles used in this study. This nitrilase was active within pH 5-10 and temperature ranging from 25 to 60 °C with optimal at pH 7.0 and temperature at 50 °C. The nitrilase activity was enhanced to several folds through optimization of culture and biotransformation conditions from 1,121 to 1,941 µmol/Min. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  1. Fusarium paranaense sp. nov., a member of the Fusarium solani species complex causes root rot on soybean in Brazil.

    Science.gov (United States)

    Costa, Sarah S; Matos, Kedma S; Tessmann, Dauri J; Seixas, Claudine D S; Pfenning, Ludwig H

    2016-01-01

    Isolates of Fusarium obtained from soybean plants showing symptoms of root rot collected in subtropical southern and tropical central Brazil were characterized based on phylogenetic analyses, sexual crossing, morphology, and pathogenicity tests. A novel species within the Fusarium solani species complex (FSSC) causing soybean root rot is formally described herein as Fusarium paranaense. This species can be distinguished from the other soybean root rot pathogens in the FSSC, which are commonly associated with soybean sudden death syndrome (SDS) based on analyses of the combined DNA sequences of translation elongation factor 1-α and the second largest subunit of RNA polymerase II and on interspecies mating compatibility. Bayesian and maximum parsimony phylogenetic analyses showed that isolates of F. paranaense formed a distinct group in clade 3 of the FSSC in contrast to the pathogens currently known to cause SDS, which are in clade 2. Female fertile tester strains were developed that can be used for the identification of this new species in the FSSC based on sexual crosses. All isolates were heterothallic and belonged to a distinct mating population. Fusarium tucumaniae, a known SDS pathogen, was found in the subtropical southern region of the country.

  2. Patogeniczność wybranych form specjalnych Fusarium oxysporum względem goździków

    Directory of Open Access Journals (Sweden)

    Maria Werner

    2014-08-01

    Full Text Available The studies were carried out on the pathogenicity of 8 formae speciales of F. oxysporum towards Dianthus caryophyllus, D. barhatus, D. chinensis and D. caryophyllus x semperflorens. The wilting was neither observed on plants growing in soil infested with F. oxyspotum f. sp. lupini nor on plants inoculated with an isolate obtained from Pinus sylvestris. However these isolates were reisolated occasionally from D. barbatus, less frequently from D. chinensis and D. caryophyllus and never from D. caryophyllus semperflorens. Only F. oxysporum f. sp. dianthi and in less degree F. oxysporum f. sp. pisi caused always the wilting off all studied carnations, while the others were responsible for occasional wilting of some plants.

  3. Sensitivity of Fusarium strains to Chelidonium majus L. extracts.

    Science.gov (United States)

    Matos, O C; Baeta, J; Silva, M J; Pinto Ricardo, C

    1999-08-01

    Ten Fusarium strains were tested for their sensitivity to extracts of Chelidonium majus L. Growth inhibition was measured either in solid or in liquid media. Aqueous extracts had considerable inhibitory action but methanolic extracts showed the best results. Root extracts were more inhibitory than shoot extracts. On the basis of growth inhibition the Fusarium strains were aggregated into five classes, the extremes being Fusarium culmorum plus Fusarium graminearum (quite resistant) and Fusarium oxysporum f. sp. cubense (very sensitive), with the other seven strains occupying the three intermediate classes. The high resistance of most Fusarium strains to conventional fungicides led us to propose C. majus as a good source of substances useful for the treatment of fungal infections, with special importance for those caused by Fusarium.

  4. Development of a field inoculation method to screen for sugar beet seedling resistance to Fusarium oxysporum f. sp. beta

    Science.gov (United States)

    Fusarium yellows is an important disease in many sugar beet production areas throughout the U.S. and yield losses can be devastating. Also seedling damping off caused by Fusarium can result in serious damage to the sugar beet stand establishment. This can lead to a severe loss in yield. The object...

  5. Virulence of Fusarium species to alfalfa seedlings

    Directory of Open Access Journals (Sweden)

    Krnjaja Vesna

    2005-01-01

    Full Text Available In in vitro conditions, virulence of 91 isolates of species Fusarium genus (F. oxysporum, F. solani, F. acuminatum, F. equiseti, F. arthrosporioides, F. prolifera- tum, F. avenaceum, F. semitectum, F. tricinctum, F. sporotrichioides and F. graminearum towards alfalfa seedlings was investigated. Isolates of investigated species originated from diseased alfalfa plants collected at four locations in Serbia based on symptoms of wilting caused by Fusarium and root rotting. Pathogenicity and virulence of investigated isolates of Fusarium spp. were determined by visual evaluation of inoculated seedlings of cultivar K28 in laboratory conditions. All isolated of investigated species had pathogenic effect on alfalfa seedlings which expressed symptoms such as necrosis of root, moist rotting and "melting of seedlings". Colour of necrotic root tissue varied from light brown, brown lipstick red to explicit black, depending on the Fusarium species. Strong virulence was established in 48 isolates, medium virulence in 31 and weak virulence in 12 isolates.

  6. Virulence of Fusarium species to alfalfa seedlings

    Directory of Open Access Journals (Sweden)

    Krnjaja Vesna

    2005-01-01

    Full Text Available In in vitro conditions, virulence of 91 isolates of species Fusarium genus (F. oxysporum, F. solani, F. acuminatum, F. equiseti, F. arthrosporioides, F. proliferatum, F. avenaceum, F. semitectum, F. tricinctum, F. sporotrichioides and F. graminearum towards alfalfa seedlings was investigated. Isolates of investigated species originated from diseased alfalfa plants collected on four locations in Serbia based on symptoms of wilting caused by fusarium and root rotting. Pathogenicity and virulence of investigated isolates of Fusarium spp. were determined by visual evaluation of inoculated seedlings of cultivars K28 in laboratory conditions. All isolated of investigated species had pathogenic effect on alfalfa seedlings, which expressed symptoms such as necrosis of root, moist rotting and "melting of seedlings". Colour of necrotic root tissue varied from light brown, brown, lipstick red to explicit black, depending on the Fusarium species. Strong virulence was established in 48 isolates, medium virulence in 31 and weak virulence in 12 isolates.

  7. Differential gene expression, induced by salicylic acid and Fusarium oxysporum f. sp. lycopersici infection, in tomato Expressão diferencial de genes induzida por ácido salicílico e por Fusarium oxysporum f. sp. lycopersici, em tomateiro

    Directory of Open Access Journals (Sweden)

    Daniel Oliveira Jordão do Amaral

    2008-08-01

    Full Text Available The objective of this work was to determine the transcript profile of tomato plants (Lycopersicon esculentum Mill., during Fusarium oxysporum f. sp. lycopersici infection and after foliar application of salicylic acid. The suppression subtractive hybridization (SSH technique was used to generate a cDNA library enriched for transcripts differentially expressed. A total of 307 clones was identified in two subtractive libraries, which allowed the isolation of several defense-related genes that play roles in different mechanisms of plant resistance to phytopathogens. Genes with unknown roles were also isolated from the two libraries, which indicates the possibility of identifying new genes not yet reported in studies of stress/defense response. The SSH technique is effective for identification of resistance genes activated by salicylic acid and F. oxysporum f. sp. lycopersici infection. Not only the application of this technique enables a cost effective isolation of differentially expressed sequences, but also it allows the identification of novel sequences in tomato from a relative small number of sequences.O objetivo deste trabalho foi determinar o perfil de transcritos em plantas de tomate (Lycopersicon esculentum Mill., durante a infecção com Fusarium oxysporum f. sp. lycopersici e após a aplicação foliar de ácido salicílico. A técnica de hibridização subtrativa por supressão (SSH foi utilizada para gerar uma biblioteca de cDNA enriquecida por transcritos diferencialmente expressos. Foram identificados 307 clones, em duas bibliotecas subtrativas, que permitiram o isolamento de diversos genes de defesa com função em diferentes processos relacionados à resistência vegetal contra patógenos. Também foram isolados, nas duas bibliotecas, genes com função desconhecida, o que indica a possibilidade de identificação de novos genes que ainda não tenham sido relatados em estudos anteriores de resposta a estresses e defesa, em plantas

  8. Research Advances on Molecular Pathogenic Mechanism and Control of Fusarium oxysporum f.sp.Cubense%香蕉枯萎病致病分子机理与防治研究进展

    Institute of Scientific and Technical Information of China (English)

    孙勇; 曾会才; 彭明; 王旭初; 易小平

    2012-01-01

    Fusarium wilt of banana is considered as one of the most destructive worldwide diseases of banana, caused by Fusarium oxysporum f. sp. Cubense, a kind of soil epiphyte, and is badly endangering the production of banana, which arises extensive attentions and researches, but the understanding of the molecular pathogenic mechanism is not still clear. This review focused on the infection process of Fusarium oxysporum f. sp. cubenes, the components of pathotoxin, pathogenic genes of Fusarium oxysporum, the disease resistance of banana, and control of Fusarium wilt of banana. These attempted to make a systematical view on pathogenesis of fusarium wilt of banana, which would be helpful for the set of new prevention method.%香蕉枯萎病是一种由尖孢镰刀菌古巴专化型引起的土传毁灭性病害,一直严重危害世界香蕉生产,从而引起广泛关注和深入研究,但其致病机理到目前还不清楚.本文综述了香蕉枯萎病菌侵染寄主的过程、致病毒素的成分分析、致病相关基因、香蕉的抗病性和枯萎病防治等方面的研究进展,为全面、深入地揭示香蕉枯萎病致病的分子机理和开展新的防治途径提供研究方向和思路上的启发.

  9. ANTAGONISMO IN VITRO DE Trichoderma harzianum Rifai SOBRE Fusarium oxysporum Schlecht f. sp passiflorae EN MARACUYÁ (Passiflora edulis Sims var. Flavicarpa DEL MUNICIPIO ZONA BANANERA COLOMBIANA ANTAGONISM IN VITRO OF Trichoderma harzianum Rifai AGAINST Fusarium oxysporum Schlecht f. sp passiflorae IN PASSION FRUIT (Passiflora edulis Sims var. Flavicarpa FROM COLOMBIAN BANANERA ZONE MUNICIPALITY

    Directory of Open Access Journals (Sweden)

    Reinel José Fernández Barbosa

    2009-06-01

    Full Text Available Fusarium oxysporum Schlecht f. sp passiflorae causa la marchitez del maracuyá (Passiflora edulis Sims var. Flavicarpa, afectando su rendimiento. En la búsqueda de alternativas para su control se realizó la presente investigación con el objetivo de determinar la capacidad antagónica de 6 aislamientos de Trichoderma harzianum sobre dicho patógeno. Se evaluaron 3 aislamientos comerciales (TCC-001, TCC-005 y TCC-006 y 3 aislamientos nativos de suelo cultivado con palma de aceite en el Centro de Investigación Caribia de Corpoica (TCN-009, TCN-010, TCN-014. Se hizo la prueba in vitro empleando la técnica de cultivo dual en platos Petri con Agar Sabouraud. Se evaluó competencia por nutrientes y espacio, micoparasitismo y porcentaje de inhibición del crecimiento radial (PICR, por 10 días a 28 ºC. Se estableció un diseño completamente aleatorio, con 13 tratamientos y 3 repeticiones. Todos los aislamientos de T. harzianum superaron en crecimiento a F. oxysporum con radios de de 7,42 cm en cultivo dual. Mientras que el patógeno mostró un radio de 1,99 cm. TCN-009 y TCC-006 expresaron los mejores radios al crecer 4 veces mas rápido que F. oxysporum y reducir 3 veces menos el RCP con respecto al testigo, sin diferencias significativas entre estos tratamientos (P=0,0001; además, produjeron el mayor PICR a los 10 días con valores de 64,61 y 65,91%, respectivamente. No hubo diferencias significativas al comparar los aislamientos comerciales y nativos; sin embargo, por la naturaleza autóctona TCN-009, resulta ser a nivel in vitro, el aislamiento mas promisorio en el biocontrol de F. oxysporum por hallarse en condiciones agroclimáticas similares en la Zona Bananera Colombiana.Fusarium oxysporum Schlecht f. sp passiflorae cause withering of the passion fruit (Passiflora edulis Sims var. Flavicarpa, affecting their performance. In the search of alternatives for its control was carried out the present investigation with the objective of

  10. Comparative genomics of Fusarium oxysporum f. sp. melonis reveals the secreted protein recognized by the Fom-2 resistance gene in melon.

    Science.gov (United States)

    Schmidt, Sarah Maria; Lukasiewicz, Joanna; Farrer, Rhys; van Dam, Peter; Bertoldo, Chiara; Rep, Martijn

    2016-01-01

    Development of resistant crops is the most effective way to control plant diseases to safeguard food and feed production. Disease resistance is commonly based on resistance genes, which generally mediate the recognition of small proteins secreted by invading pathogens. These proteins secreted by pathogens are called 'avirulence' proteins. Their identification is important for being able to assess the usefulness and durability of resistance genes in agricultural settings. We have used genome sequencing of a set of strains of the melon wilt fungus Fusarium oxysporum f. sp. melonis (Fom), bioinformatics-based genome comparison and genetic transformation of the fungus to identify AVRFOM2, the gene that encodes the avirulence protein recognized by the melon Fom-2 gene. Both an unbiased and a candidate gene approach identified a single candidate for the AVRFOM2 gene. Genetic complementation of AVRFOM2 in three different race 2 isolates resulted in resistance of Fom-2-harbouring melon cultivars. AvrFom2 is a small, secreted protein with two cysteine residues and weak similarity to secreted proteins of other fungi. The identification of AVRFOM2 will not only be helpful to select melon cultivars to avoid melon Fusarium wilt, but also to monitor how quickly a Fom population can adapt to deployment of Fom-2-containing cultivars in the field. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Study on usability of Fusarium oxysporum Schlecht.f.sp. tulipae Apt. metabolites for screening for basal rot resistance in tulip

    Directory of Open Access Journals (Sweden)

    Małgorzata Podwyszyńska

    2013-12-01

    Full Text Available The usefulness of fungus culture filtrates and fusaric acid as selecting agents for Fusarium resistance breeding in tulip was examined on in vitro cultures of shoots and embryonic calli of seven tulip genotypes differing in resistance to Fusarium oxysporum Schlecht. f. sp. tulipae Apt. (F.o.t. and four virulent F.o.t. isolates. Fusaric acid influenced the shoot growth of all cultivars tested in a similar way, irrespectively of their greenhouse resistance to basal rot. Also, the sensitivity of calli of the cultivars studied to fusaric acid did not correspond with their resistance to F.o.t. evaluated in the greenhouse screening. The phytotoxity of F.o.t. culture filtrates did not depend on their fusaric acid contents. There was a negative correlation between cultivar's resistance to F.o.t in greenhouse tests and the sensitivity of their shoots to fungus culture filtrates in in vitro tests. This indicates that defence mechanism against F.o.t. in tulip tissue may have a nature of hypersensitive response. Considering the results of our study, it may be concluded that the use of fusaric acid or fungus culture filtrates for the in vitro selection of somaclones resistant to F.o.t. in tulip is not feasible.

  12. Dynamics of Colonization and Expression of Pathogenicity Related Genes in Fusarium oxysporum f.sp. ciceri during Chickpea Vascular Wilt Disease Progression

    Science.gov (United States)

    Upasani, Medha L.; Gurjar, Gayatri S.; Gupta, Vidya S.

    2016-01-01

    Fusarium wilt caused by Fusarium oxysporum f.sp. ciceri (Foc) is a constant threat to chickpea productivity in several parts of the world. Understanding the molecular basis of chickpea-Foc interaction is necessary to improve chickpea resistance to Foc and thereby the productivity of chickpea. We transformed Foc race 2 using green fluorescent protein (GFP) gene and used it to characterize pathogen progression and colonization in wilt-susceptible (JG62) and wilt-resistant (Digvijay) chickpea cultivars using confocal microscopy. We also employed quantitative PCR (qPCR) to estimate the pathogen load and progression across various tissues of both the chickpea cultivars during the course of the disease. Additionally, the expression of several candidate pathogen virulence genes was analyzed using quantitative reverse transcriptase PCR (qRT-PCR), which showed their characteristic expression in wilt-susceptible and resistant chickpea cultivars. Our results suggest that the pathogen colonizes the susceptible cultivar defeating its defense; however, albeit its entry in the resistant plant, further proliferation is severely restricted providing an evidence of efficient defense mechanism in the resistant chickpea cultivar. PMID:27227745

  13. DNA polymorphism among Fusarium oxysporum f.sp. elaeidis populations from oil palm, using a repeated and dispersed sequence "Palm".

    Science.gov (United States)

    Mouyna, I; Renard, J L; Brygoo, Y

    1996-07-31

    A worldwide collection, of 76 F. oxysporum f.sp. elaeidis isolates (Foe), and of 21 F. oxysporum isolates from the soil of several palm grove was analysed by RFLP. As a probe, we used a random DNA fragment (probe 46) from a genomic library of a Foe isolate. This probe contains two different types of sequence, one being repeated and dispersed in the genome "Palm", the other being a single-copy sequence. All F. oxysporum isolates from the palm-grove soils were non-pathogenic to oil palm. They all had a simple restriction pattern with one band homologous to the single-copy sequence of probe 46. All Foe isolates were pathogenic to oil palm and they all had complex patterns due to hybridization with "Palm". This repetitive sequence reveals that Foe isolates are distinct from the other F. oxysporum palm-grove soils isolates. The sequence can reliably discriminate pathogenic from non-pathogenic oil palm isolates. Based on DNA fingerprint similarities, Foe populations were divided into ten groups consisting of isolates with the same geographic origin. Isolates from Brazil and Ecuador were an exception to that rule as they had the same restriction pattern as a few isolates from the Ivory Coast, suggesting they may originated from Africa.

  14. ASAI ISOLAT BAKTERI KITINOLITIK BACILLUS SP. BK17 PADA MEDIA PEMBAWA TANAH GAMBUT DAN KOMPOS JANJANG KELAPA SAWIT DALAM MENGHAMBAT PERTUMBUHAN JAMUR PATOGEN SCLEROTIUM ROLFSII DAN FUSARIUM OXYSPORUM PADA KECAMBAH CABAI

    Directory of Open Access Journals (Sweden)

    Deswidya Hutauruk

    2016-10-01

    Full Text Available Assay of chitinolytic bacterial isolate of Bacillus sp. Bk17 in peat and palm oil bunch compost as carrier media in inhibiting Sclerotium rolfsii and Fusarium oxysporum of chilli seedlings. Sclerotium rolfsii and Fusarium oxysporum have been known as causal agents of seedling-off of chilli. Biological control has been used as an alternative control to replace chemical control. This study was aimed to determine the viability and ability of chitinolityc bacteria Bacillus sp. BK17 in carrier media of peat and palm oil bunch compost and in growing media to control seedling-off caused by S. rolfsii dan F. oxysporum of chilli. Our previous study showed that Bacillus sp. BK17 could reduce disease severity and intensity. Bacterial viability was measured as colony number grown after 90 days of storage in minimum salt medium with colloidal chitin as sole C source. Reduction of disease infection was measured as seedling number infected by S. rolfsii dan F. oxysporum. Seedling performances were measured as seedling height, leaf number and dry-weight after 30-days of growth. The result showed that bacterial cell viability was still high in both peat and palm oil bunch compost both with and without colloidal chitin addition after 90 days of storage. It was also shown that during application bacterial cell could grow. Seedling performaces i.e. seedling height, leaf number and dry-weight showed to be normal or even increase compared to those of pathogenic fungal inoculation only and (- control.

  15. Genetic structure of soil population of fungus Fusarium oxysporum Schlechtend.: Fr.: Molecular reidentification of the species and genetic differentiation of isolates using polymerase chain reaction technique with universal primers (UP-PCR)

    Energy Technology Data Exchange (ETDEWEB)

    Bulat, S.A. [St. Petersburg Institute of Nuclear Physics, Gatchina (Russian Federation); Mironenko, N.V. [All-Russian Institute of Plant Protection, Pushkin (Russian Federation); Zholkevich, Yu.G. [Institute of Microbiology and Virology, Kiev (Ukraine)

    1995-07-01

    The genetic structure of three soil populations of fungus Fusarium oxysporum was analyzed using polymerase chain reaction with universal primers (UP-PCR). Distinct UP-PCR variants revealed by means of cross-dot hybridization of amplified DNA and restriction analysis of nuclear ribosomal DNA represent subspecies or sibling species of F. oxysporum. The remaining isolates of F. oxysporum showed moderate UP-PCR polymorphism characterized by numerous types, whose relatedness was analyzed by computer treatment of the UP-PCR patterns. The genetic distance trees based on the UP-PCR patterns, which were obtained with different universal primers, demonstrated similar topology. This suggests that evolutionarily important genome rearrangements correlatively occur within the entire genome. Isolates representing different UP-PCR polymorphisms were encountered in all populations, being distributed asymmetrically in two of these. In general, soil populations of F. oxysporum were represented by numerous genetically isolated groups with a similar genome structure. The genetic heterogeneity of the isolates within these groups is likely to be caused by the parasexual process. The usefulness of the UP-PCR technique for population studies of F. oxysporum was demonstrated. 39 refs., 7 figs., 2 tabs.

  16. Fusarium

    DEFF Research Database (Denmark)

    Thrane, Ulf

    2014-01-01

    The genus Fusarium is one of the most important mycotoxigenic fungal genera in food and feed. Nearly all species are able to produce mycotoxins of which many are under international regulation. Well-known Fusarium mycotoxins are fumonisins, zearalenone, deoxynivalenol, and additional trichothecenes...

  17. Development of a hydrolysis probe-based real-time assay for the detection of tropical strains of Fusarium oxysporum f. sp. cubense race 4

    Science.gov (United States)

    Cerf-Wendling, Isabelle; Hostachy, Bruno; Viljoen, Altus; Ioos, Renaud

    2017-01-01

    Fusarium oxysporum f. sp. cubense (Foc) is one of the most important threats to global banana production. Strategies to control the pathogen are lacking, with plant resistance offering the only long-term solution, if sources of resistance are available. Prevention of introduction of Foc into disease-free areas thus remains a key strategy to continue sustainable banana production. In recent years, strains of Foc affecting Cavendish bananas have destroyed plantations in a number of countries in Asia and in the Middle East, and one African country. One vegetative compatibility group (VCG), 01213/16, is considered the major threat to bananas in tropical and subtropical climatic conditions. However, other genetically related VCGs, such as 0121, may potentially jeopardize banana cultures if they were introduced into disease-free areas. To prevent the introduction of these VCGs into disease-free Cavendish banana-growing countries, a real-time PCR test was developed to accurately detect both VCGs. A previously described putative virulence gene was used to develop a specific combination of hydrolysis probe/primers for the detection of tropical Foc race 4 strains. The real-time PCR parameters were optimized by following a statistical approach relying on orthogonal arrays and the Taguchi method in an attempt to enhance sensitivity and ensure high specificity of the assay. This study also assessed critical performance criteria, such as repeatability, reproducibility, robustness, and specificity, with a large including set of 136 F. oxysporum isolates, including 73 Foc pathogenic strains representing 24 VCGs. The validation data demonstrated that the new assay could be used for regulatory testing applications on banana plant material and can contribute to preventing the introduction and spread of Foc strains affecting Cavendish bananas in the tropics. PMID:28178348

  18. Extraction Optimization of Water-Extracted Mycelial Polysaccharide from Endophytic Fungus Fusarium oxysporum Dzf17 by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ligang Zhou

    2012-05-01

    Full Text Available Water-extracted mycelial polysaccharide (WPS from the endophytic fungus Fusarium oxysporum Dzf17 isolated from Dioscorea zingiberensis was found to be an efficient elicitor to enhance diosgenin accumulation in D. zingigerensis cultures, and also demonstrated antioxidant activity. In this study, response surface methodology (RSM was employed to optimize the extraction process of WPS from F. oxysporum Dzf17 using Box-Behnken design (BBD. The ranges of the factors investigated were 1–3 h for extraction time (X1, 80–100 °C for extraction temperature (X2, and 20–40 (v/w for ratio of water volume (mL to raw material weight (g (X3. The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis. Statistical analysis showed that the polynomial regression model was in good agreement with the experimental results with the determination coefficient (R2 of 0.9978. By solving the regression equation and analyzing the response surface contour plots, the extraction parameters were optimized as 1.7 h for extraction time, 95 °C for extraction temperature, 39 (v/w for ratio of water volume (mL to raw material weight (g, and with 2 extractions. The maximum value (10.862% of WPS yield was obtained when the WPS extraction process was conducted under the optimal conditions.

  19. Expression of NEP1 by Fusarium oxysporum f. sp. erythroxyli After Gene Replacement and Overexpression Using Polyethylene Glycol-Mediated Transformation.

    Science.gov (United States)

    Bailey, B A; Apel-Birkhold, Patricia C; Luster, Douglas G

    2002-08-01

    ABSTRACT The necrosis inducing extracellular protein Nep1 is produced by Fusarium oxysporum f. sp. erythroxyli in liquid culture. NEP1, the Nep1 protein structural gene, was disrupted in F. oxysporum f. sp. erythroxyli isolate EN-4 by gene replacement using polyethylene glycol (PEG)-mediated transformation. NEP1 disruption was verified by polymerase chain reaction (PCR), Southern blot, and northern blot analysis. NEP1-disrupted transformants failed to produce Nep1 in liquid culture. NEP1 disruption did not affect the pathogenicity of isolate EN-4 toward Erythroxylum coca. Transformation of isolate EN-4 with construct pPB-FO11-45 carrying NEP1 between the trpC promoter and terminator resulted in increased production of Nep1 in potato dextrose broth plus 1% casamino acids or Czapek-Dox broth plus 1% casamino acids but not in potato dextrose broth alone. Transformation of EN-4 with construct pPB-FO11-45 was verified by PCR and Southern blot analysis. Overexpression of NEP1 was confirmed by northern blot and Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. NEP1-overexpressing transformant 15 produced 64 to 128 times as much Nep1 as EN-4 wild type when grown in shake cultures. Transformants overexpressing Nep1 in liquid culture were no more or less pathogenic toward E. coca than wild-type isolates. Nep1 was not detected in E. coca seedlings infected with NEP1-overexpressing transformants or with EN-4 wild type. In large-scale fermentations of NEP1-overexpressing transformant 15, the amount of secreted protein including Nep1 was 15.1 times that of the wild-type EN-4, providing a ready source of Nep1 for future study.

  20. Development of a hydrolysis probe-based real-time assay for the detection of tropical strains of Fusarium oxysporum f. sp. cubense race 4.

    Science.gov (United States)

    Aguayo, Jaime; Mostert, Diane; Fourrier-Jeandel, Céline; Cerf-Wendling, Isabelle; Hostachy, Bruno; Viljoen, Altus; Ioos, Renaud

    2017-01-01

    Fusarium oxysporum f. sp. cubense (Foc) is one of the most important threats to global banana production. Strategies to control the pathogen are lacking, with plant resistance offering the only long-term solution, if sources of resistance are available. Prevention of introduction of Foc into disease-free areas thus remains a key strategy to continue sustainable banana production. In recent years, strains of Foc affecting Cavendish bananas have destroyed plantations in a number of countries in Asia and in the Middle East, and one African country. One vegetative compatibility group (VCG), 01213/16, is considered the major threat to bananas in tropical and subtropical climatic conditions. However, other genetically related VCGs, such as 0121, may potentially jeopardize banana cultures if they were introduced into disease-free areas. To prevent the introduction of these VCGs into disease-free Cavendish banana-growing countries, a real-time PCR test was developed to accurately detect both VCGs. A previously described putative virulence gene was used to develop a specific combination of hydrolysis probe/primers for the detection of tropical Foc race 4 strains. The real-time PCR parameters were optimized by following a statistical approach relying on orthogonal arrays and the Taguchi method in an attempt to enhance sensitivity and ensure high specificity of the assay. This study also assessed critical performance criteria, such as repeatability, reproducibility, robustness, and specificity, with a large including set of 136 F. oxysporum isolates, including 73 Foc pathogenic strains representing 24 VCGs. The validation data demonstrated that the new assay could be used for regulatory testing applications on banana plant material and can contribute to preventing the introduction and spread of Foc strains affecting Cavendish bananas in the tropics.

  1. RESÍDUOS ORGÂNICOS NO CONTROLE DE Fusarium oxysporum f. sp. passiflorae EM MARACUJAZEIRO AMARELO (Passiflora edulis f. flavicarpa

    Directory of Open Access Journals (Sweden)

    Renato Bernardes FERREIRA

    2015-01-01

    Full Text Available La fusariosis, es una importante enfermedad en el cultivo de maracuyá que causa una severa limitación en la producción de frutos y una reducción en la longevidad del cultivo. Este trabajo tuvo como objetivo, evaluar el efecto de residuos orgánicos i n vitro e in vivo como medida alternativa para el manejo de la fusariosis en el maracuyá, causada por Fusarium oxysporum f. sp. passiflorae. Se evaluaron seis concentraciones in vitro (0, 2, 4, 6, 8 y 10 % en forma de extracto acuoso, e igual número, para la inhibición del crecimiento micelial in vivo (0, 20, 40, 60, 80, 100 g kg -1 , incorporados al suelo para el control de Fusarium. Los residuos orgánicos utilizados, fueron hojas de eucalipto, bagazo de coco babasú y cáscara de yuca. Estos residuos fueron sometidos a análisis nutricionales y microbiológicos. Se confirmó la patogeneidad de los aislados evaluados, lo que comprobó la presencia de fusariosis en el maracuyá amarillo in vivo . La bagazo babasú, presentó las mayores concentraciones de N, P y K. Las especies fúngicas presentes con mayor frecuencia fueron Penicillium sp., Aspergillus niger, Aspergillus flavus y Aspergillus ochraceus . En el proceso in vitro , el extracto de babasú presento inhibición significativa en la concentración del 6 % y, en los extractos de hojas de eucalipto y cáscara de yuca la del 10 %. A nivel in vivo , la concentración de 60 g kg -1 de bagazo babasú y 80 g kg -1 de cáscara de mandioca, fueron eficientes en el control de fusariosis. El residuo de eucalipto no influenció el desarrollo de la mancha de fusarium del maracuyá en vivero. Es posible utilizar residuos orgánicos para el control de fusarium en el cultivo de maracuyá amarillo.

  2. pH胁迫下尖孢镰刀菌生长动力学模型%Growth kinetic model of Fusarium oxysporum under different pH

    Institute of Scientific and Technical Information of China (English)

    蓝江林; 肖荣凤; 刘波; 朱育菁; 车建美; 林抗美

    2012-01-01

    尖孢镰刀菌(Fusarium oxysporum)是兼性寄生真菌,引起农作物枯萎病,防治困难.研究来自不同寄主的尖孢镰刀菌在不同pH马铃薯蔗糖(PS)琼脂培养基上的生长情况,构建动力学模型,以了解培养基的初始pH差异对尖孢镰刀菌生长特性的影响.测定了尖孢镰刀菌菌株在不同pH培养基、25℃培养条件下的生长速度,构建生长动力学模型.供试6个尖孢镰刀菌菌株在pH为3~10的液体培养基中均有不同程度生长,不同菌株对培养基pH的影响规律相似,在不同pH的PS液体培养基中培养14 d后,液体培养基的pH均有靠近6~7的趋势.在pH为3~9的培养条件下,尖孢镰刀菌菌落可以分成4类:菌丝型、粘滑层型、菌丝-粘滑层型和菌丝带粉状物,各菌株的菌丝和培养基色泽也有所差异.同一菌株在培养基不同pH下生长速度不同,其生长的最适pH为6~8,菌落平均直径最大(45~49 mm)、亚适pH为4、5和9;而在pH为3、10和11时菌落直径明显变小(17~21 mm).培养14d后培养基pH对菌落形态、色泽有一定的影响,不同菌株在不同pH培养基培养下产孢量也存在差异.pH在4~8时其平均产孢量最大,达(223.8~273.3)×104 cfu·mL-1,其中pH为6.38(自然pH)时产孢量最高,pH为11时产孢量最低.供试菌株在不同pH条件下的菌落生长速度和产孢量变化动力学模型均符合二次曲线方程.%Fusarium wilt disease in agricultural crops caused by Fusarium oxysporum facultative fungi has always been difficult to control. In this paper, the effects of different pH on the growth characteristics of six F. oxysporum strains isolated from different host plants were studied by constructing a kinetic model with growth characteristics of F. oxysporum inoculated on potato sucrose (PS) agar mediums with different pH levels. The tested six F. oxysporum strains could grow in PS liquid medium with pH 3-9. pH changes of PS liquid medium with different stains was

  3. Cross-talk interactions of sucrose and Fusarium oxysporum in the phenylpropanoid pathway and the accumulation and localization of flavonoids in embryo axes of yellow lupine.

    Science.gov (United States)

    Morkunas, Iwona; Narożna, Dorota; Nowak, Witold; Samardakiewicz, Sławomir; Remlein-Starosta, Dorota

    2011-03-15

    This study investigated the effects of cross-talk interactions of sucrose and infection caused by a pathogenic fungus Fusarium oxysporum f.sp. lupini on the regulation of the phenylpropanoid pathway, i.e. the level of expression of genes encoding enzymes participating in flavonoid biosynthesis, as well as cell location and accumulation of these compounds in embryo axes of Lupinus luteus L. cv. Polo. Embryo axes, both non-inoculated and inoculated, were cultured for 96h on Heller medium with 60mM sucrose (+Sn and +Si) or without it (-Sn and -Si). Real-time RT-PCR to assess expression levels of the flavonoid biosynthetic genes, phenylalanine ammonialyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI) and isoflavone synthase (IFS) were used. Sucrose alone strongly stimulated the expression of these genes. There was a very high expression level of these genes in +Si embryo axes in the early phase of infection. Signal amplification by sucrose and the infection was most intense in the 48-h +Si axes, resulting in the highest level of expression of flavonoid biosynthetic genes. In -Si tissues, the expression level of these genes increased at 48 and 72h after inoculation relative to 24h; however, the relative level of expression was much lower than in +Si axes, except at 72h for PAL and CHS.Moreover, at 48h of culture, considerably higher activity of CHI (EC 5.5.1.6) was observed in axes with a high level of sucrose than in those with a sucrose deficit. CHI activity in +Si axes at 48 and 96h post-inoculation was over 1.5 and 2 times higher than that in +Sn axes, as well as higher than in -Si axes.Observations of yellow lupine embryo axes under a confocal microscope showed an increased post-infection accumulation of flavonoids, particularly in cells of embryo axes infected with F. oxysporum and cultured on a medium containing sucrose (+Si). Up to 48h post-infection in +Si axes, a very intensive emission of green fluorescence was observed, indicating high

  4. EVALUACIÓN DE MICROORGANISMOS AISLADOS DE GALLINAZA POR SU POTENCIAL PARA EL BIOCONTROL DE FUSARIUM (F. OXYSPORUM EN PLÁNTULAS DE UCHUVA (PHYSALIS PERUVIANA EVALUATION OF MICROORGANISMS INSOLATED FROM HEN MANURE FOR THEIR POTENCIAL AS BIOCONTROL AGENTS OF FUSARIUM (F. OXYSPORUM IN GOOSEBERRY (PHYSALIS PERUVIANA SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Rodríguez Amézquita

    2010-12-01

    Full Text Available En Colombia, las pérdidas económicas ocasionadas por Fusarium oxysporum en el cultivo de uchuva son considerables. Se evaluaron hongos y bacterias aislados de 2 fuentes de gallinaza, su potencial como agentes de biocontrol de este patógeno. La evaluación se realizó en cajas de Petri con PDA para lo cual se colocó en el centro de las mismas, un disco de 5 mm de diámetro colonizado por el patógeno y a 3 cm del centro, sobre los ejes horizontal y vertical, cada uno de los aislamientos de la gallinaza. Los aislamientos que mostraron antagonismo fueron posteriormente evaluados in vitro por su capacidad de restringir el crecimiento y esporulación de F. oxysporum. Cada uno de los aislamientos que mostró el mayor potencial antagónico fue inoculado simultáneamente con el patógeno en plántulas de uchuva y evaluado por sus efectos en contra de la incidencia de la enfermedad y la muerte de las plántulas. Los resultados indicaron que de los 39 microorganismos aislados de la gallinaza pura, 6 mostraron antagonismo contra F. oxysporum y entre ellos los más efectivos para restringir in vitro su crecimiento y esporulación fueron los hongos H2 y H6 y las bacterias B17 y B19. Las bacterias B17 y B19 resultaron ser las más efectivas en reducir no sólo la incidencia sino también la muerte de plántulas ocasionada por el patógeno. Según los resultados de la identificación, los hongos H2 y H6 pertenecen a los géneros Geotrichum sp. y Trichoderma sp, respectivamente y las bacterias B17 y B19 al género Bacillus.In Colombia, economic losses due to attack of Fusarium oxysporum in the gooseberry plantation are considerable. Fungi and bacteria isolated from 2 hen manure sources were evaluated for their potential as biological control agents of this pathogen. The evaluation was conducted in Petri dishes containing PDA by placing a 5 mm diameter disk, colonized by this pathogen, in the center of the plates and at 3 cm from the center, over the

  5. Identificacion de marcadores genéticos del agente causal del marchitamiento del clavel fusarium oxysporum f.sp. dianthi mediante amplificacion arbitraria de fragmentos polimórficos de adn

    Directory of Open Access Journals (Sweden)

    Arbeláez G.

    1998-12-01

    Full Text Available La técnica de Amplificación Arbitraria de Fragmentos Polimórficos de ADN (RAPD fue utilizada para identificar marcadores genéticos útiles para el desarrollo de un método diagnóstico para Fusarium oxysporum f.sp. dianthi, el agente etiológico de la enfermedad del marchitamiento del clavel. Con el fin de identificar fragmentos genéticos característicos de este patógeno, un total de 18 aislados diferentes, provenientes de diferentes lugares del mundo y 17 cepas de F. oxysporum de otras formas especiales fueron amplificadas utilizando 15 iniciadores diferentes. Aunque ninguno de los iniciadores empleados en este estudio amplificó una banda común a todas las formas especiales dianthi, el iniciador OPA 17 mostró un patrón de RAPD que permitió la identificación de cuatro grupos polimórficos dentro de este grupo taxonómico. Este mismo iniciador, permitió la discriminación entre aislados de Fusarium oxysporum f.sp. dianthi y cepas de F. oxysporum de otras formas especiales. No se observó una correlación directa entre el patrón de RAPD y las razas reportadas para F. oxysporum f.sp. dianthi, previamente determinadas mediante ensayos biológicos por otros grupos de investigadores. Los análisis de hibridación molecular con fragmentos escogidos de estos patrones de RAPD, permitieron el reconocimiento selectivo de los cuatro grupos descritos. Los fragmentos genómicos identificados, son candidatos para el desarrollo de un  sistema diagnóstico por PCR para este patógeno del clavel.

  6. Differentially Expressed Genes in Resistant and Susceptible Common Bean (Phaseolus vulgaris L. Genotypes in Response to Fusarium oxysporum f. sp. phaseoli.

    Directory of Open Access Journals (Sweden)

    Renfeng Xue

    Full Text Available Fusarium wilt of common bean (Phaseolus vulgaris L., caused by Fusarium oxysporum Schlechtend.:Fr. f.sp. phaseoli (Fop, is one of the most important diseases of common beans worldwide. Few natural sources of resistance to Fop exist and provide only moderate or partial levels of protection. Despite the economic importance of the disease across multiple crops, only a few of Fop induced genes have been analyzed in legumes. Therefore, our goal was to identify transcriptionally regulated genes during an incompatible interaction between common bean and the Fop pathogen using the cDNA amplified fragment length polymorphism (cDNA-AFLP technique. We generated a total of 8,730 transcript-derived fragments (TDFs with 768 primer pairs based on the comparison of a moderately resistant and a susceptible genotype. In total, 423 TDFs (4.9% displayed altered expression patterns after inoculation with Fop inoculum. We obtained full amplicon sequences for 122 selected TDFs, of which 98 were identified as annotated known genes in different functional categories based on their putative functions, 10 were predicted but non-annotated genes and 14 were not homologous to any known genes. The 98 TDFs encoding genes of known putative function were classified as related to metabolism (22, signal transduction (21, protein synthesis and processing (20, development and cytoskeletal organization (12, transport of proteins (7, gene expression and RNA metabolism (4, redox reactions (4, defense and stress responses (3, energy metabolism (3, and hormone responses (2. Based on the analyses of homology, 19 TDFs from different functional categories were chosen for expression analysis using quantitative RT-PCR. The genes found to be important here were implicated at various steps of pathogen infection and will allow a better understanding of the mechanisms of defense and resistance to Fop and similar pathogens. The differential response genes discovered here could also be used as

  7. Genetic analysis and chromosome mapping of resistance to Fusarium oxysporum f. sp. niveum (FON) race 1 and race 2 in watermelon (Citrullus lanatus L.).

    Science.gov (United States)

    Ren, Yi; Di Jiao; Gong, Guoyi; Zhang, Haiying; Guo, Shaogui; Zhang, Jie; Xu, Yong

    Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. niveum (FON) is the major soilborne disease of watermelon (Citrullus lanatus L.). The development and deployment of resistant cultivars is generally considered to be an effective approach to control FW. In this study, an F8 population consisting of 103 recombinant inbred lines derived from a cross between the cultivar 97103 and a wild accession PI 296341-FR was used for FON race 1 and race 2 fungal inoculations. One major QTL on chromosome 1 for FON race 1 resistance was detected with a logarithm of odds of 13.2 and explained phenotypic variation R(2) = 48.1 %; two QTLs of FON race 2 resistance on chromosomes 9 and 10 were discovered based on the high-density integrated genetic map we constructed. The nearest molecular marker should be useful for marker-assisted selection of FON race 1 and race 2 resistance. One receptor kinase, one glucan endo-1,3-β-glucosidase precursors and three acidic chitinase located in the FON-1 QTL genomic region. In Qfon2.1 QTL region, one lipoxygenase gene, five receptor-like kinases and four glutathione S-transferase genes are discovered. One arginine biosynthesis bifunctional protein, two receptor kinase proteins and one lipid-transfer protein located in Qfon2.2 QTL region. Based on SNP analysis by using 20 re-sequenced accessions of watermelon and 231-plant F2 population generated from Black Diamond × Calhoun Grey, we developed a SNP marker Chr1SNP_502124 for FON-1 detection.

  8. Determinación del antagonismo del aislamiento T 95 de Trichoderma harzianum sobre Fusarium oxysporum f.sp. cucumerinum en plantas de pepino cohombro

    Directory of Open Access Journals (Sweden)

    Borda Fernando

    1993-06-01

    Full Text Available Una de las enfermedades de mayor importancia económica en el cultivo de clavel en Colombia es la ocasionada por el hongo Fusarium oxysporumf.sp. dianthi. Las altas pérdidas directas que ocasiona el patógeno una vez establecido en cultivos comerciales, la facilidad de propagación através de esquejes infectados, la fácil diseminación del patógeno a
    través de diferentes formas, la alta persistencia del
    patógeno en el suelo y el alto costo y regular eficiencia
    de las medidas de control utilizadas, dan a esta
    enfermedad una gran importancia patológica y económica
    (Arbeláez, 1987. Para el control del marchitamiento vascular del clavel, se realizan prácticas, tales como tratamiento
    del suelo con vapor deagua, con diversos fumigantes y con fungicidas sistémicos, pero el costo de dichas prácticas puede variar actualmente entre $500.000 y $10.000.000, lo cual depende del tipo de tratamiento (Baker, 1980; Arbeláez, 1989. Las dificultades encontradas en el manejo de las
    poblaciones de Fusarium oxysporum f.sp. dianthi en el suelo por métodos convencionales, hacen que el control biológico sea uno de los métodos más promisorios para el control de la enfermedad; además el control biológico puede combinarse con otros métodos de control y asl, se logra una mayor
    eficiencia (Scher y Baker, 1980.

  9. Differentially Expressed Genes in Resistant and Susceptible Common Bean (Phaseolus vulgaris L.) Genotypes in Response to Fusarium oxysporum f. sp. phaseoli.

    Science.gov (United States)

    Xue, Renfeng; Wu, Jing; Zhu, Zhendong; Wang, Lanfen; Wang, Xiaoming; Wang, Shumin; Blair, Matthew W

    2015-01-01

    Fusarium wilt of common bean (Phaseolus vulgaris L.), caused by Fusarium oxysporum Schlechtend.:Fr. f.sp. phaseoli (Fop), is one of the most important diseases of common beans worldwide. Few natural sources of resistance to Fop exist and provide only moderate or partial levels of protection. Despite the economic importance of the disease across multiple crops, only a few of Fop induced genes have been analyzed in legumes. Therefore, our goal was to identify transcriptionally regulated genes during an incompatible interaction between common bean and the Fop pathogen using the cDNA amplified fragment length polymorphism (cDNA-AFLP) technique. We generated a total of 8,730 transcript-derived fragments (TDFs) with 768 primer pairs based on the comparison of a moderately resistant and a susceptible genotype. In total, 423 TDFs (4.9%) displayed altered expression patterns after inoculation with Fop inoculum. We obtained full amplicon sequences for 122 selected TDFs, of which 98 were identified as annotated known genes in different functional categories based on their putative functions, 10 were predicted but non-annotated genes and 14 were not homologous to any known genes. The 98 TDFs encoding genes of known putative function were classified as related to metabolism (22), signal transduction (21), protein synthesis and processing (20), development and cytoskeletal organization (12), transport of proteins (7), gene expression and RNA metabolism (4), redox reactions (4), defense and stress responses (3), energy metabolism (3), and hormone responses (2). Based on the analyses of homology, 19 TDFs from different functional categories were chosen for expression analysis using quantitative RT-PCR. The genes found to be important here were implicated at various steps of pathogen infection and will allow a better understanding of the mechanisms of defense and resistance to Fop and similar pathogens. The differential response genes discovered here could also be used as molecular

  10. Multiple garlic (Allium sativum L.) microRNAs regulate the immunity against the basal rot fungus Fusarium oxysporum f. sp. Cepae.

    Science.gov (United States)

    Chand, Subodh Kumar; Nanda, Satyabrata; Mishra, Rukmini; Joshi, Raj Kumar

    2017-04-01

    The basal plate rot fungus, Fusarium oxysporum f. sp. cepae (FOC), is the most devastating pathogen posing a serious threat to garlic (Allium sativum L.) production worldwide. MicroRNAs (miRNAs) are key modulators of gene expression related to development and defense responses in eukaryotes. However, the miRNA species associated with garlic immunity against FOC are yet to be explored. In the present study, a small RNA library developed from FOC infected resistant garlic line was sequenced to identify immune responsive miRNAs. Forty-five miRNAs representing 39 conserved and six novel sequences responsive to FOC were detected. qRT-PCR analyses further classified them into three classes based on their expression patterns in susceptible line CBT-As11 and in the resistant line CBT-As153. North-blot analyses of six selective miRNAs confirmed the qRT-PCR results. Expression studies on a selective set of target genes revealed a negative correlation with the complementary miRNAs. Furthermore, transgenic garlic plant overexpresing miR164a, miR168a and miR393 showed enhanced resistance to FOC, as revealed by decreased fungal growth and up-regulated expression of defense-responsive genes. These results indicate that multiple miRNAs are involved in garlic immunity against FOC and that the overexpression of miR164a, miR168a and miR393 can augment garlic resistance to Fusarium basal rot infection.

  11. Characterization of South African isolates of Fusarium oxysporum f.sp cubense from Cavendish banana

    Directory of Open Access Journals (Sweden)

    Tom Gordon

    2010-04-01

    Full Text Available Fusarium wilt, caused by the soil-borne fungus Fusarium oxysporum f.sp. cubense (Foc, is a serious vascular disease of bananas in most subtropical and tropical regions of the world. Twenty-four vegetative compatibility groups (VCGs and three pathogenic races have been identified in Foc, reflecting a relatively high genetic diversity for an asexual fungus. To characterise a South African population of Foc, a collection of 128 isolates from diverse geographic origins were isolated from diseased Cavendish bananas and subjected to VCG analysis and sequencing of the translation elongation factor 1-α (TEF gene region. The presence of mating type genes was also determined using MAT-1 and MAT-2 specific primers. VCG 0120 was established as the only VCG of Foc present in the South African population studied. Only the MAT-2 idiomorph was present in all the local isolates of Foc. A phylogenetic analysis of DNA sequences of the TEF gene region revealed that the South African isolates grouped closely with VCG 0120 isolates from Australia and Asia. These results suggest that the South African population of Foc was most likely introduced in a limited number of events and that it had spread with infected planting material within the country. The presence of only one mating type and the limited diversity in this pathogen render it unlikely to rapidly overcome disease management strategies involving host resistance.

  12. 抗感枯萎病香蕉的细胞结构抗性研究%Cell Structure Alteration of Banana Cultivars with Different Resistance to Fusarium Oxysporum f. sp. Cubense

    Institute of Scientific and Technical Information of China (English)

    邝瑞彬; 李春雨; 杨静; 魏岳荣; 杨乔松; 胡春华; 盛鸥; 易干军

    2013-01-01

    Fusarium wilt is a worldwide disastrous banana disease. In this study, ultrastructure observing was performed to understand the disease-resistant mechanism of cell structure alternation in banana via Foc (Fusarium Oxysporum f. sp. Cubense) inoculation treatment. Banana cultivars with different disease-resistant levels (resistant cultivars: Kangku 5, Musa AAA, and Fenza 1, Musa ABB, and susceptible cultivars: BAXI Cavendish, Musa AAA, and Guangfen 1, Musa ABB), were inoculated by dipping roots, and any change in cell structure of pseudostem was observed by using electron microscopy. Results showed that plasmolysis, decomposition and rupture of cell wall and membranes of cytoplasmic organoids were observed in the susceptible cultivars, while the breakage in the resistant cultivars was much slight. With the inoculation of Foc4, tylose and brown-like materials in vessels were observed in both types of cultivars, but thickening cuticles and suberification, and tubercles in cell wall were only appeared in the resistant cultivars. These results indicated that ultrastructure alteration of banana pseudostem might be against infection of Fusarium Oxysporum f. sp. Cubense.%  香蕉枯萎病是影响世界香蕉产业的毁灭性病害。本研究对香蕉枯萎病抗病品种抗枯5号香蕉、粉杂一号粉蕉和感病品种巴西香蕉和广粉一号粉蕉的幼苗根系接种后的球茎组织的进行了超微结构变化观察,结果表明清水对照中4个品种球茎组织的细胞形态和结构正常且完整,细胞代谢强;枯萎病原菌侵染处理下,病菌从根部受损部位侵入,穿过薄壁组织后进入维管组织,球茎木质部导管中相继出现侵填体及一些灰褐色物质,质壁分离;感病品种巴西香蕉和广粉一号粉蕉的球茎细胞壁破损断裂,细胞器肿胀变形,膜溶解呈不完整状态;抗病品种抗枯5号香蕉和粉杂一号粉蕉受害较轻,细胞器膜受损较轻,内部结构基

  13. 一株产铁载体内生细菌对尖孢镰刀菌的拮抗作用%Antagonism of a Siderophore-producing Entophytic Bacteria on Fusarium oxysporum

    Institute of Scientific and Technical Information of China (English)

    韩松; 张守村; 黄晓艳; 林天兴; 龚明福

    2011-01-01

    In this study,a siderophore-producing endophytic strain was isolated using the improved sugar-aspartic acid (MSA) as selective medium, and then detected its antibacterial effect against fusarium wilt pathogens (Fusarium oxysporum) at different concentrations of FeCl3. This strain was identified by using morphological,biochemical and physiological characteristics, 16S rDNA sequence homology and phylogenetics analysis. The results showed that strain HS-4 produced the fluorescent siderophores (pyoverdine) on MSA medium;whose content amounted to 80% of the total siderophores. The siderophore produced by strain HS-4 has the inhibitory action against Fusarium oxysporum under the low iron condition. Endophytic bacteria strain HS-4 was identified as Bacillus atrophaeus.%通过改良蔗糖-天冬氨酸培养基筛选到一株产铁载体的内生细菌HS-4,测定了该菌在不同铁离子浓度下对棉花枯萎病致病菌尖孢镰刀菌(Fusarium oxysporum)的抑菌效果,并结合形态、生理生化、16S rDNA序列同源性和系统发育分析对菌株进行鉴定.结果表明:内生细菌HS-4在MSA培养基中产生荧光型铁载体,其铁载体相对含量为80%.该铁载体在低铁条件下对F.oxysporum具有抑制作用.内生细菌HS-4初步鉴定为萎缩芽孢杆菌(Bacillus atrophaeus ).

  14. Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria.

    Science.gov (United States)

    Pal, K K; Tilak, K V; Saxena, A K; Dey, R; Singh, C S

    2001-01-01

    A plant growth-promoting isolate of a fluorescent Pseudomonas sp. EM85 and two bacilli isolates MR-11(2) and MRF, isolated from maize rhizosphere, were found strongly antagonistic to Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina, causal agents of foot rots and wilting, collar rots/stalk rots and root rots and wilting, and charcoal rots of maize, respectively. Pseudomonas sp. EM85 produced antifungal antibiotics (Afa+), siderophore (Sid+), HCN (HCN+) and fluorescent pigments (Flu+) besides exhibiting plant growth promoting traits like nitrogen fixation, phosphate solubilization, and production of organic acids and IAA. While MR-11(2) produced siderophore (Sid+), antibiotics (Afa+) and antifungal volatiles (Afv+), MRF exhibited the production of antifungal antibiotics (Afa+) and siderophores (Sid+). Bacillus spp. MRF was also found to produce organic acids and IAA, solubilized tri-calcium phosphate and fixed nitrogen from the atmosphere. All three isolates suppressed the diseases caused by Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina in vitro. A Tn5:: lacZ induced isogenic mutant of the fluorescent Pseudomonas EM85, M23, along with the two bacilli were evaluated for in situ disease suppression of maize. Results indicated that combined application of the two bacilli significantly (P = 0.05) reduced the Macrophomina-induced charcoal rots of maize by 56.04%. Treatments with the MRF isolate of Bacillus spp. and Tn5:: lacZ mutant (M23) of fluorescent Pseudomonas sp. EM85 significantly reduced collar rots, root and foot rots, and wilting of maize caused by Fusarium moniliforme and F. graminearum (P = 0.05) compared to all other treatments. All these isolates were found very efficient in colonizing the rhizotic zones of maize after inoculation. Evaluation of the population dynamics of the fluorescent Pseudomonas sp. EM85 using the Tn5:: lacZ marker and of the Bacillus spp. MRF and MR-11(2) using an antibiotic resistance

  15. Effects of Polysaccharide Elicitors from Endophytic Fusarium oxysporum Fat9 on the Growth, Flavonoid Accumulation and Antioxidant Property of Fagopyrum tataricum Sprout Cultures

    Directory of Open Access Journals (Sweden)

    Lingyun Zhong

    2016-11-01

    Full Text Available The purpose of this study was to evaluate the effects of four different fungal polysaccharides, named water-extracted mycelia polysaccharide (WPS, sodium hydroxide-extracted mycelia polysaccharide (SPS, hydrochloric-extracted mycelia polysaccharide (APS, and exo-polysaccharide (EPS obtained from the endophytic Fusarium oxysporum Fat9 on the sprout growth, flavonoid accumulation, and antioxidant capacity of tartary buckwheat. Without visible changes in the appearance of the sprouts, the exogenous polysaccharide elicitors strongly stimulated sprout growth and flavonoid production, and the stimulation effect was closely related with the polysaccharide (PS species and its treatment dosage. With application of 200 mg/L of EPS, 200 mg/L of APS, 150 mg/L of WPS, or 100 mg/L of SPS, the total rutin and quercetin yields of buckwheat sprouts were significantly increased to 41.70 mg/(100 sprouts, 41.52 mg/(100 sprouts, 35.88 mg/(100 sprouts, and 32.95 mg/(100 sprouts, respectively. This was about 1.11 to 1.40-fold compared to the control culture of 31.40 mg/(100 sprouts. Moreover, the antioxidant capacity of tartary buckwheat sprouts was also enhanced after treatment with the four PS elicitors. Furthermore, the present study revealed the polysaccharide elicitation that caused the accumulation of functional flavonoid by stimulating the phenylpropanoid pathway. The application of beneficial fungal polysaccharide elicitors may be an effective approach to improve the nutritional and functional characteristics of tartary buckwheat sprouts.

  16. Effects of Endogenous Signals and Fusarium oxysporum on the Mechanism Regulating Genistein Synthesis and Accumulation in Yellow Lupine and Their Impact on Plant Cell Cytoskeleton

    Directory of Open Access Journals (Sweden)

    Magda Formela

    2014-08-01

    Full Text Available The aim of the study was to examine cross-talk interactions of soluble sugars (sucrose, glucose and fructose and infection caused by Fusarium oxysporum f.sp. lupini on the synthesis of genistein in embryo axes of Lupinus luteus L.cv. Juno. Genistein is a free aglycone, highly reactive and with the potential to inhibit fungal infection and development of plant diseases. As signal molecules, sugars strongly stimulated accumulation of isoflavones, including genistein, and the expression of the isoflavonoid biosynthetic genes. Infection significantly enhanced the synthesis of genistein and other isoflavone aglycones in cells of embryo axes of yellow lupine with high endogenous sugar levels. The activity of β-glucosidase, the enzyme that releases free aglycones from their glucoside bindings, was higher in the infected tissues than in the control ones. At the same time, a very strong generation of the superoxide anion radical was observed in tissues with high sugar contents already in the initial stage of infection. During later stages after inoculation, a strong generation of semiquinone radicals was observed, which level was relatively higher in tissues deficient in sugars than in those with high sugar levels. Observations of actin and tubulin cytoskeletons in cells of infected embryo axes cultured on the medium with sucrose, as well as the medium without sugar, showed significant differences in their organization.

  17. Cross-talk interactions of exogenous nitric oxide and sucrose modulates phenylpropanoid metabolism in yellow lupine embryo axes infected with Fusarium oxysporum.

    Science.gov (United States)

    Morkunas, Iwona; Formela, Magda; Floryszak-Wieczorek, Jolanta; Marczak, Łukasz; Narożna, Dorota; Nowak, Witold; Bednarski, Waldemar

    2013-10-01

    The aim of the study was to examine cross-talk of exogenous nitric oxide (NO) and sucrose in the mechanisms of synthesis and accumulation of isoflavonoids in embryo axes of Lupinus luteus L. cv. Juno. It was verified whether the interaction of these molecules can modulate the defense response of axes to infection and development of the pathogenic fungus Fusarium oxysporum f. sp. lupini. Sucrose alone strongly stimulated a high level of genistein glucoside in axes pretreated with exogenous nitric oxide (SNP or GSNO) and non-pretreated axes. As a result of amplification of the signal coming from sucrose and GSNO, high isoflavonoids accumulation was observed (+Sn+GSNO). It needs to be stressed that infection in tissues pretreated with SNP/GSNO and cultured on the medium with sucrose (+Si+SNP/+Si+GSNO) very strongly enhances the accumulation of free isoflavone aglycones. In +Si+SNP axes phenylalanine ammonia-lyase activity was high up to 72h. As early as at 12h in +Si+SNP axes an increase was recorded in gene expression level of the specific isoflavonoid synthesis pathway. At 24h in +Si+SNP axes a very high total antioxidant capacity dependent on the pool of fast antioxidants was noted. Post-infection generation of semiquinone radicals was lower in axes with a high level of sucrose than with a deficit. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Effects of endogenous signals and Fusarium oxysporum on the mechanism regulating genistein synthesis and accumulation in yellow lupine and their impact on plant cell cytoskeleton.

    Science.gov (United States)

    Formela, Magda; Samardakiewicz, Sławomir; Marczak, Łukasz; Nowak, Witold; Narożna, Dorota; Bednarski, Waldemar; Kasprowicz-Maluśki, Anna; Morkunas, Iwona

    2014-08-29

    The aim of the study was to examine cross-talk interactions of soluble sugars (sucrose, glucose and fructose) and infection caused by Fusarium oxysporum f.sp. lupini on the synthesis of genistein in embryo axes of Lupinus luteus L.cv. Juno. Genistein is a free aglycone, highly reactive and with the potential to inhibit fungal infection and development of plant diseases. As signal molecules, sugars strongly stimulated accumulation of isoflavones, including genistein, and the expression of the isoflavonoid biosynthetic genes. Infection significantly enhanced the synthesis of genistein and other isoflavone aglycones in cells of embryo axes of yellow lupine with high endogenous sugar levels. The activity of β-glucosidase, the enzyme that releases free aglycones from their glucoside bindings, was higher in the infected tissues than in the control ones. At the same time, a very strong generation of the superoxide anion radical was observed in tissues with high sugar contents already in the initial stage of infection. During later stages after inoculation, a strong generation of semiquinone radicals was observed, which level was relatively higher in tissues deficient in sugars than in those with high sugar levels. Observations of actin and tubulin cytoskeletons in cells of infected embryo axes cultured on the medium with sucrose, as well as the medium without sugar, showed significant differences in their organization.