WorldWideScience

Sample records for fusarium graminearum strain

  1. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum.

    Science.gov (United States)

    Zhao, Yueju; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhou, Lu; Wang, Yan; Song, Huimin; Tan, Xinxin; Sun, Lichao; Sangare, Lancine; Folly, Yawa Minnie Elodie; Liu, Yang

    2014-01-01

    Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI), FHB index and DON (P ≤ 0.05). Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.

  2. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Yueju Zhao

    Full Text Available Fusarium graminearum causes Fusarium head blight (FHB, a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI, FHB index and DON (P ≤ 0.05. Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.

  3. Biological Efficacy of Streptomyces sp. Strain BN1 against the Cereal Head Blight Pathogen Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Boknam Jung

    2013-03-01

    Full Text Available Fusarium head blight (FHB caused by the filamentous fungus Fusarium graminearum is one of the most severe diseases threatening the production of small grains. Infected grains are often contaminated with mycotoxins such as zearalenone and trichothecences. During survey of contamination by FHB in rice grains, we found a bacterial isolate, designated as BN1, antagonistic to F. graminearum. The strain BN1 had branching vegetative hyphae and spores, and its aerial hyphae often had long, straight filaments bearing spores. The 16S rRNA gene of BN1 had 100% sequence identity with those found in several Streptomyces species. Phylogenetic analysis of ITS regions showed that BN1 grouped with S. sampsonii with 77% bootstrap value, suggesting that BN1 was not a known Streptomyces species. In addition, the efficacy of the BN1 strain against F. graminearum strains was tested both in vitro and in vivo. Wheat seedling length was significantly decreased by F. graminearum infection. However, this effect was mitigated when wheat seeds were treated with BN1 spore suspension prior to F. graminearum infection. BN1 also significantly decreased FHB severity when it was sprayed onto wheat heads, whereas BN1 was not effective when wheat heads were point inoculated. These results suggest that spraying of BN1 spores onto wheat heads during the wheat flowering season can be efficient for plant protection. Mechanistic studies on the antagonistic effect of BN1 against F. graminearum remain to be analyzed.

  4. Genome-wide expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium graminearum virus 1-DK21 infection

    Directory of Open Access Journals (Sweden)

    Cho Won

    2012-05-01

    Full Text Available Abstract Background Fusarium graminearum virus 1 strain-DK21 (FgV1-DK21 is a mycovirus that confers hypovirulence to F. graminearum, which is the primary phytopathogenic fungus that causes Fusarium head blight (FHB disease in many cereals. Understanding the interaction between mycoviruses and plant pathogenic fungi is necessary for preventing damage caused by F. graminearum. Therefore, we investigated important cellular regulatory processes in a host containing FgV1-DK21 as compared to an uninfected parent using a transcriptional approach. Results Using a 3′-tiling microarray covering all known F. graminearum genes, we carried out genome-wide expression analyses of F. graminearum at two different time points. At the early point of growth of an infected strain as compared to an uninfected strain, genes associated with protein synthesis, including ribosome assembly, nucleolus, and ribosomal RNA processing, were significantly up-regulated. In addition, genes required for transcription and signal transduction, including fungal-specific transcription factors and cAMP signaling, respectively, were actively up-regulated. In contrast, genes involved in various metabolic pathways, particularly in producing carboxylic acids, aromatic amino acids, nitrogen compounds, and polyamines, showed dramatic down-regulation at the early time point. Moreover, genes associated with transport systems localizing to transmembranes were down-regulated at both time points. Conclusion This is the first report of global change in the prominent cellular pathways in the Fusarium host containing FgV1-DK21. The significant increase in transcripts for transcription and translation machinery in fungal host cells seems to be related to virus replication. In addition, significant down-regulation of genes required for metabolism and transporting systems in a fungal host containing the virus appears to be related to the host defense mechanism and fungal virulence. Taken together

  5. A new PCR approach for the identification of Fusarium graminearum Um novo protocolo de PCR para a identificação de Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Gleison Ricardo de Biazio

    2008-09-01

    Full Text Available The main objective of this work was to develop a PCR protocol for the identification of Fusarium graminearum, based on a pair of primers targeted to a segment of the 3' coding region of the gaoA gene that codes for the enzyme galactose oxidase (GO. This region has low homology with the same region of GO genes from other fungi. Genomic DNA from 17 strains of Fusarium spp. isolated from diseased cereals, from several other Fusarium species, and from other fungi genera was analyzed in a PCR assay using this primer set. The 17 strains of Fusarium spp. were also analyzed for the GO enzyme production in submerse fermentation in a new formulated liquid medium. All strains that were morphologically and molecularly identified as F. graminearum were able to secrete the enzyme and had a positive result in the used PCR protocol. No DNA fragment was amplified using genomic DNA from other Fusarium species and species of other fungi genera. The results suggest that the proposed PCR protocol is specific and can be considered as a new molecular tool for the identification of F. graminearum. In addition, the new formulated medium is a cheap alternative for screening for GO screening production by F. graminearum.O principal objetivo deste trabalho foi desenvolver um novo protocolo de PCR para identificação de isolados de Fusarium graminearum, baseado no uso de um par de iniciadores direcionado para um segmento da região 3' codificadora do gene gaoA que codifica a enzima galactose oxidase (GO. Esta região possui baixa homologia com a mesma região de genes da GO de outros fungos. O DNA genômico de 17 cepas de Fusarium spp. isoladas de cereais infectados com sintomas, de vários outras espécies de Fusarium e de outros gêneros de fungos foi analisado em um protocolo de PCR utilizando os iniciadores desenhados. Os 17 isolados de Fusarium spp. também foram analisados para a produção da enzima GO em fermentação submersa em um novo meio líquido. Todas as

  6. Biosynthesis of fusarielins in Fusarium graminearum

    DEFF Research Database (Denmark)

    Saei, Wagma; Søndergaard, Teis; Giese, Henriette

    Polyketide synthase 9 (PKS9) is one of the 15 identified polyketide synthase (PKS) genes in Fusarium graminearum. The gene is coregulated along with five neighboring genes by a single transcription factor (TF). An overexpression of the transcription factor led to production of three novel...... by this cluster in Fusarium graminearum., deletion mutant of each gene was created in the overexpressed mutant by targeted gene replacemen...

  7. Fusarium graminearum and Fusarium verticillioides infection on maize seeds

    Directory of Open Access Journals (Sweden)

    Dayana Portes Ramos

    2014-03-01

    Full Text Available The previous knowledge of the infection process and pathogens behavior, for evaluating the physiological potential of maize seeds, is essential for decision making on the final destination of lots that can endanger sowing. This research was carried out in order to study the minimum period required for maize seeds contamination by Fusarium graminearum Schwabe and Fusarium verticillioides (Sacc. Nirenberg, as well as these pathogens influence on seed germination and vigor, by using the cold test. Three maize seeds hybrids, kept in contact with the pathogens for different periods, were evaluated with and without surface disinfection. After determining the most suitable period, new samples were contaminated by F. graminearum and F. verticillioides, under different infection levels, and subjected to germination tests in sand. The cold test was conducted with healthy and contaminated seeds, at different periods, in a cold chamber. The contact of maize seeds with F. graminearum and F. verticillioides for 16 hours was enough to cause infection. F. graminearum and F. verticillioides did not affect the maize seeds germination, however, F. graminearum reduced the vigor of seeds lots.

  8. Quantification of Fusarium graminearum and Fusarium culmorum by real-time PCR system and zearalenone assessment in maize

    International Nuclear Information System (INIS)

    Atoui, A.; El Khoury, A.; Kallassy, M.; Lebrihi, A.

    2012-01-01

    Zearalenone (ZEA) is a mycotoxin produced by some species of Fusarium, especially by Fusarium grami- nearum and F. culmorum. ZEA induces hyperoestrogenic responses in mammals and can result in reproductive disorders in farm animals. In the present study, a real-time PCR (qPCR) assay has been successfully developed for the detection and quantification of Fusarium graminearum based on primers targeting the gene PKS13 involved in ZEA biosynthesis. A standard curve was developed by plotting the logarithm of known concentrations of F. graminearum DNA against the cycle threshold (Ct) value. The developed real time PCR system was also used to analyze the occurrence of zearalenone producing F. graminearum strains on maize. In this context, DNA extractions were performed from thirty-two maize samples, and subjected to real time PCR. Maize samples also were analyzed for zearalenone content by HPLC. F. graminearum DNA content (pg DNA/ mg of maize) was then plotted against ZEA content (ppb) in maize samples. The regression curve showed a positive and good correlation (R2 = 0.760) allowing for the estimation of the potential risk from ZEA contamination. Consequently, this work offers a quick alternative to conventional methods of ZEA quantification and mycological detection and quantification of F. graminearum in maize. (author)

  9. Dipeptide transporters in Fusarium graminearum

    DEFF Research Database (Denmark)

    Droce, Aida; Giese, Henriette; Søndergaard, Teis

    Fungi have evolved different transport mechanisms in order to utilize both inorganic and organic nitrogen sources because nitrogen availability often is one of the limiting factors in pathogenic processes. In this study we have characterized four di/tripeptide transporters in the necrotrophic plant...... pathogen Fusarium graminearum Fusarium that causes head blight (FHB) in wheat and barley....

  10. Differences between the succinate dehydrogenase sequences of isopyrazam sensitive Zymoseptoria tritici and insensitive Fusarium graminearum strains.

    Science.gov (United States)

    Dubos, Tiphaine; Pasquali, Matias; Pogoda, Friederike; Casanova, Angèle; Hoffmann, Lucien; Beyer, Marco

    2013-01-01

    Forty-one Zymoseptoria tritici strains isolated in Luxembourg between 2009 and 2010 were highly sensitive towards the new succinate dehydrogenase inhibitor (SDHI) isopyrazam, with concentrations inhibiting fungal growth by 50% (EC50) ranging from 0.0281 to 4.53μM, whereas 41 Fusarium graminearum strains isolated in Europe and Northern America between 1969 and 2009 were insensitive with the average rate of inhibition converging towards 28% with increasing isopyrazam concentration. Seven isolates of both species covering the range of isopyrazam sensitivities observed in the present study were selected for the sequencing of the subunits B, C and D of the succinate dehydrogenase (sdh) gene. Predicted sdh amino acid sequences of subunits B, C and D were identical among F. graminearum strains. By comparing with fungal strains where resistance towards SDHIs was previously reported, three variations were unique to F. graminearum; B-D130N located in the iron-sulfur cluster [2Fe-2S], B-A275T located in the [3Fe-4S] cluster and an additional S at amino acid position 83-84 of sdhC, probably modifying structurally the ubiquinone binding site and therefore the biological activity of the fungicide. No variation was found among the Z. tritici strains in subunits B and D. Two variations were observed within the subunit C sequences of Z. tritici strains: C-N33T and C-N34T. The difference in EC50 values between Z. tritici strains with the NN and TT configuration was non-significant at P=0.289. Two outliers in the Z. tritici group with significantly higher EC50 values that were not related to mutations in the sdhB, sdhC, or sdhD were detected. The role of isopyrazam for the control of F. graminearum and Z. tritici in Luxembourg is discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. A European database of Fusarium graminearum and F. culmorum trichothecene genotypes

    Directory of Open Access Journals (Sweden)

    Matias ePasquali

    2016-04-01

    Full Text Available Fusarium species, particularly Fusarium graminearum and F. culmorum, are the main cause of trichothecene type B contamination in cereals. Data on the distribution of Fusarium trichothecene genotypes in cereals in Europe are scattered in time and space. Furthermore, a common core set of related variables (sampling method, host cultivar, previous crop, etc. that would allow more effective analysis of factors influencing the spatial and temporal population distribution, is lacking. Consequently, based on the available data, it is difficult to identify factors influencing chemotype distribution and spread at the European level. Here we describe the results of a collaborative integrated work which aims 1 to characterize the trichothecene genotypes of strains from three Fusarium species, collected over the period 2000-2013, and 2 to enhance the standardization of epidemiological data collection.Information on host plant, country of origin, sampling location, year of sampling and previous crop of 1147 F. graminearum, 479 F. culmorum and 3 F. cortaderiae strains obtained from 17 European countries was compiled and a map of trichothecene type B genotype distribution was plotted for each species. All information on the strains was collected in a freely accessible and updatable database (www.catalogueeu.luxmcc.lu, which will serve as a starting point for epidemiological analysis of potential spatial and temporal trichothecene genotype shifts in Europe.The analysis of the currently available European dataset showed that in F. graminearum, the predominant genotype was 15-acetyldeoxynivalenol (15-ADON (82.9%, followed by 3-acetyldeoxynivalenol (3-ADON (13.6% and nivalenol (NIV (3.5%. In F. culmorum, the prevalent genotype was 3-ADON (59.9%, while the NIV genotype accounted for the remaining 40.1%. Both geographical and temporal patterns of trichothecene genotypes distribution were identified.

  12. Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review

    OpenAIRE

    Leplat , Johann; Friberg , Hanna; Abid , Muhammad; Steinberg , Christian

    2012-01-01

    International audience; Wheat is one of the most cultivated crops worldwide. In 2010, 20 % of wheat and durum wheat were cultivated in Europe, 17 % in China and 9 % in Russia and in North America. Wheat yield can be highly decreased by several factors. In particular Fusarium graminearum Schwabe is a worldwide fungal pest impacting wheat production. F. graminearum is the causal agent of Fusarium head blight, root and stem-base rot of cereals. Losses caused by Fusarium head blight in Northern a...

  13. Biological control of Fusarium graminearum sensu stricto, causal agent of Fusarium head blight of wheat, using formulated antagonists under field conditions in Argentina

    NARCIS (Netherlands)

    Palazzini, Juan M.; Alberione, Enrique; Torres, Adriana; Donat, Christina; Kohl, Jurgen; Chulze, Sofia

    2016-01-01

    Fusarium head blight (FHB) mainly caused by Fusarium graminearum is a devastating disease that causes extensive yield and quality losses to wheat in humid and semi-humid regions of the world. The biocontrol effect of two bacterial strains on FHB incidence, severity and deoxynivalenol (DON)

  14. 2-D DIGE proteomic profiles of three strains of Fusarium graminearum grown in agmatine or glutamic acid medium

    Directory of Open Access Journals (Sweden)

    Tommaso Serchi

    2016-03-01

    Full Text Available 2D DIGE proteomics data obtained from three strains belonging to Fusarium graminearum s.s. species growing in a glutamic acid or agmatine containing medium are provided.A total of 381 protein species have been identified which do differ for abundance among the two treatments and among the strains (ANOVA±1.3.Data on the diversity of protein species profiles between the two media for each strain are made available. Shared profiles among strains are discussed in Pasquali et al. [1].Here proteins that with diverse profile can be used to differentiate strains are highlighted. The full dataset allow to obtaining single strain proteomic profiles. Keywords: Comparative strain proteomics, Toxigenic fungi, Polyamines, Trichothecenes, Strain variability

  15. The Transcription Cofactor Swi6 of the Fusarium graminearum Is Involved in Fusarium Graminearum Virus 1 Infection-Induced Phenotypic Alterations

    Directory of Open Access Journals (Sweden)

    Moonil Son

    2016-08-01

    Full Text Available The transcription cofactor Swi6 plays important roles in regulating vegetative growth and meiosis in Saccharomyces cerevisiae. Functions of Swi6 ortholog were also characterized in Fusarium graminearum which is one of the devastating plant pathogenic fungi. Here, we report possible role of FgSwi6 in the interaction between F. graminearum and Fusarium graminearum virus 1 (FgV1 strain DK21. FgV1 perturbs biological characteristics of host fungi such as vegetative growth, sporulation, pigmentation, and reduction of the virulence (hypovirulence of its fungal host. To characterize function(s of FgSWI6 gene during FgV1 infection, targeted deletion, over-expression, and complementation mutants were generated and further infected successfully with FgV1. Deletion of FgSwi6 led to severe reduction of vegetative growth even aerial mycelia while over-expression did not affect any remarkable alteration of phenotype in virus-free isolates. Virus-infected (VI FgSWI6 deletion isolate exhibited completely delayed vegetative growth. However, VI FgSWI6 over-expression mutant grew faster than any other VI isolates. To verify whether these different growth patterns in VI isolates, viral RNA quantification was carried out using qRT-PCR. Surprisingly, viral RNA accumulations in VI isolates were similar regardless of introduced mutations. These results provide evidence that FgSWI6 might play important role(s in FgV1 induced phenotype alteration such as delayed vegetative growth.

  16. Population genetic analysis and trichothecene profiling of Fusarium graminearum from wheat in Uruguay.

    Science.gov (United States)

    Pan, D; Mionetto, A; Calero, N; Reynoso, M M; Torres, A; Bettucci, L

    2016-03-11

    Fusarium graminearum sensu stricto (F. graminearum s.s.) is the major causal agent of Fusarium head blight of wheat worldwide, and contaminates grains with trichothecene mycotoxins that cause serious threats to food safety and animal health. An important aspect of managing this pathogen and reducing mycotoxin contamination of wheat is knowledge regarding its population genetics. Therefore, isolates of F. graminearum s.s. from the major wheat-growing region of Uruguay were analyzed by amplified fragment length polymorphism assays, PCR genotyping, and chemical analysis of trichothecene production. Of the 102 isolates identified as having the 15-ADON genotype via PCR genotyping, all were DON producers, but only 41 strains were also 15-ADON producers, as determined by chemical analysis. The populations were genotypically diverse but genetically similar, with significant genetic exchange occurring between them. Analysis of molecular variance indicated that most of the genetic variability resulted from differences between isolates within populations. Multilocus linkage disequilibrium analysis suggested that the isolates had a panmictic population genetic structure and that there is significant recombination occurs in F. graminearum s.s. In conclusion, tour findings provide the first detailed description of the genetic structure and trichothecene production of populations of F. graminearum s.s. from Uruguay, and expands our understanding of the agroecology of F. graminearum and of the correlation between genotypes and trichothecene chemotypes.

  17. Selection of wheat lines with resistance to Fusarium graminearum by somaclonal variation

    International Nuclear Information System (INIS)

    Sun Guangzu

    1997-10-01

    The screening wheat new lines which have the resistance to Fusarium graminearum were completed by in vitro induced mutation and cell screening. Four new lines with resistance to Fusarium graminearum were obtained. The field inoculating determination in 1990∼1996 showed that their resistance was 1∼2 degree higher than that of parents, and there were variations in main agronomic traits between the new lines and their parents. Changes of the defensive enzymes (SOD, POD), sugar-protein on cell surface, and ultrastructure were investigated by using new lines and their parents under the action of toxin of Fusarium graminearum. The new lines under the action of toxin of Fusarium graminearum have the ability to increase the defensive enzyme activity and thickness of sugarprotein on cell surface and to reduce the damage of cell membrane system that would result in resistance increasing. (8 refs., 3 figs., 3 tabs.)

  18. Response of germinating barley seeds to Fusarium graminearum: The first molecular insight into Fusarium seedling blight

    DEFF Research Database (Denmark)

    Yang, Fen; Svensson, Birte; Finnie, Christine

    2011-01-01

    involved in primary metabolism and detoxification whereas the majority of down-regulated proteins were plant protease inhibitors. The results suggest that there is a link between increased energy metabolism and oxidative stress in the germinating barley seeds in response to F. graminearum infection, which......Fusarium seedling blight in cereals can result in significant reductions in plant establishment but has not received much attention. The disease often starts during seed germination due to sowing of the seeds infected by Fusarium spp. including Fusarium graminearum. In order to gain the first...

  19. Development of a Selective Medium for the Fungal Pathogen Fusarium graminearum Using Toxoflavin Produced by the Bacterial Pathogen Burkholderia glumae

    Directory of Open Access Journals (Sweden)

    Boknam Jung

    2013-12-01

    Full Text Available The ascomycete fungus Fusarium graminearum is a major causal agent for Fusarium head blight in cereals and produces mycotoxins such as trichothecenes and zearalenone. Isolation of the fungal strains from air or cereals can be hampered by various other airborne fungal pathogens and saprophytic fungi. In this study, we developed a selective medium specific to F. graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae. F. graminearum was resistant to toxoflavin, while other fungi were sensitive to this toxin. Supplementing toxoflavin into medium enhanced the isolation of F. graminearum from rice grains by suppressing the growth of saprophytic fungal species. In addition, a medium with or without toxoflavin exposed to wheat fields for 1 h had 84% or 25%, respectively, of colonies identified as F. graminearum. This selection medium provides an efficient tool for isolating F. graminearum, and can be adopted by research groups working on genetics and disease forecasting.

  20. Comparative studies about fungal colonization and deoxynivalenol translocation in barley plants inoculated at the base with Fusarium graminearum, Fusarium culmorum and Fusarium pseudograminearum

    Directory of Open Access Journals (Sweden)

    Francesco Pecoraro

    2018-03-01

    Full Text Available Fusarium crown rot (FCR, an important disease of wheat and barley, is mainly caused by Fusarium graminearum, F. culmorum and F. pseudograminearum, which are also responsible for mycotoxin production. This is the first comparative investigation of their colonization on barley plants after stem base inoculation. At plant maturity, FCR symptoms were visually evaluated, fungal biomass was quantified by Real-Time quantitative PCR and deoxynivalenol (DON was detected by enzyme-linked immunosorbent assay (ELISA. All the inoculated strains caused the typical FCR necrotic symptoms. Real-Time PCR analysis showed that F. graminearum and F. culmorum were present in the head tissues, while F. pseudograminearum colonized only up to the area including the second node of the stem. Conversely, DON was detected up to the head for all the three species. This study shows that, as already demonstrated in previous research for wheat, DON may be detected up to the head as a consequence of stem base infection by the three FCR agents

  1. Development of a PCR-RFLP method based on the transcription elongation factor 1-α gene to differentiate Fusarium graminearum from other species within the Fusarium graminearum species complex.

    Science.gov (United States)

    Garmendia, Gabriela; Umpierrez-Failache, Mariana; Ward, Todd J; Vero, Silvana

    2018-04-01

    Fusarium head blight (FHB) is a destructive disease of cereals crops worldwide and a major food safety concern due to grain contamination with trichothecenes and other mycotoxins. Fusarium graminearum, a member of the Fusarium graminearum species complex (FGSC) is the dominant FHB pathogen in many parts of the world. However, a number of other Fusarium species, including other members of the FGSC, may also be present for example in Argentina, New Zealand, Ethiopia, Nepal, Unites States in cereals such as wheat and barley. Proper species identification is critical to research aimed at improving disease and mycotoxin control programs. Identification of Fusarium species is are often unreliable by traditional, as many species are morphologically cryptic. DNA sequence-based methods offer a reliable means of species identification, but can be expensive when applied to the analyses of population samples. To facilitate identification of the major causative agent of FHB, this work describes an easy and inexpensive method to differentiate F. graminearum from the remaining species within the FGSC and from the other common Fusarium species causing FHB in cereals. The developed method is based on a PCR-RFLP of the transcription elongation factor (TEF 1-α) gene using the restriction enzyme BsaHI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Natural Contamination with Mycotoxins Produced by Fusarium graminearum and Fusarium poae in Malting Barley in Argentina

    Science.gov (United States)

    Nogueira, María Soledad; Decundo, Julieta; Martinez, Mauro; Dieguez, Susana Nelly; Moreyra, Federico; Moreno, Maria Virginia

    2018-01-01

    Two of the most common species of toxin-producing Fusarium contaminating small cereal grains are Fusarium graminearum and F. poae; with both elaborating diverse toxins, especially deoxynivalenol (DON) and nivalenol (NIV), respectively. The objective of our work during the 2012–2014 growing seasons was to screen crops for the most commonly isolated Fusarium species and to quantify DON and NIV toxins in natural malting-barley samples from different producing areas of Argentina. We identified 1180 Fusarium isolates in the 119 samples analyzed, with 51.2% being F. graminearum, 26.2% F. poae and 22.6% other species. We found high concentrations of mycotoxins, at maximum values of 12 μg/g of DON and 7.71 μg/g of NIV. Of the samples, 23% exhibited DON at an average of 2.36 μg/g, with 44% exceeding the maximum limits (average of 5.24 μg/g); 29% contained NIV at an average of 2.36 μg/g; 7% contained both DON and NIV; and 55% were without DON or NIV. Finally, we report the mycotoxin contamination of the grain samples produced by F. graminearum and F. poae, those being the most frequent Fusarium species present. We identified the main Fusarium species affecting natural malting-barley grains in Argentina and documented the presence of many samples with elevated concentrations of DON and NIV. To our knowledge, the investigation reported here was the first to quantify the contamination by Fusarium and its toxins in natural samples of malting barley in Argentina. PMID:29439459

  3. Natural Contamination with Mycotoxins Produced by Fusarium graminearum and Fusarium poae in Malting Barley in Argentina

    Directory of Open Access Journals (Sweden)

    María Soledad Nogueira

    2018-02-01

    Full Text Available Two of the most common species of toxin-producing Fusarium contaminating small cereal grains are Fusarium graminearum and F. poae; with both elaborating diverse toxins, especially deoxynivalenol (DON and nivalenol (NIV, respectively. The objective of our work during the 2012–2014 growing seasons was to screen crops for the most commonly isolated Fusarium species and to quantify DON and NIV toxins in natural malting-barley samples from different producing areas of Argentina. We identified 1180 Fusarium isolates in the 119 samples analyzed, with 51.2% being F. graminearum, 26.2% F. poae and 22.6% other species. We found high concentrations of mycotoxins, at maximum values of 12 μg/g of DON and 7.71 μg/g of NIV. Of the samples, 23% exhibited DON at an average of 2.36 μg/g, with 44% exceeding the maximum limits (average of 5.24 μg/g; 29% contained NIV at an average of 2.36 μg/g; 7% contained both DON and NIV; and 55% were without DON or NIV. Finally, we report the mycotoxin contamination of the grain samples produced by F. graminearum and F. poae, those being the most frequent Fusarium species present. We identified the main Fusarium species affecting natural malting-barley grains in Argentina and documented the presence of many samples with elevated concentrations of DON and NIV. To our knowledge, the investigation reported here was the first to quantify the contamination by Fusarium and its toxins in natural samples of malting barley in Argentina.

  4. Application of proteomics to investigate barley-Fusarium graminearum interaction

    DEFF Research Database (Denmark)

    Yang, Fen

    in plants under low N and iv) proteomes of uninfected plants were similar under two N levels. Correlation of level of proteolysis induced by the fungus with measurement of Fusarium-damaged kernels, fungal biomass and mycotoxin levels indicated that FHB was more severe in barley with low N. In Chapter 3......, the molecular mechanisms of barley defense to Fusarium graminearum at the early infection stage were studied. Antibodies against barley β-amylases were shown to be the markers for infection at proteome level and for selection of the time for proteome analysis before extensive degradation caused by the fungus...... the disease. Due to the advantages of gel-based proteomics that differentially expressed proteins involved in the interaction can be directly detected by comparing protein profiles displayed on 2-D gels, it is used as a tool for studying the barley- Fusarium graminearum interaction form three different...

  5. Differential Contribution of RNA Interference Components in Response to Distinct Fusarium graminearum Virus Infections.

    Science.gov (United States)

    Yu, Jisuk; Lee, Kyung-Mi; Cho, Won Kyong; Park, Ju Yeon; Kim, Kook-Hyung

    2018-05-01

    The mechanisms of RNA interference (RNAi) as a defense response against viruses remain unclear in many plant-pathogenic fungi. In this study, we used reverse genetics and virus-derived small RNA profiling to investigate the contributions of RNAi components to the antiviral response against Fusarium graminearum viruses 1 to 3 (FgV1, -2, and -3). Real-time reverse transcription-quantitative PCR (qRT-PCR) indicated that infection of Fusarium graminearum by FgV1, -2, or -3 differentially induces the gene expression of RNAi components in F. graminearum Transcripts of the DICER-2 and AGO-1 genes of F. graminearum ( FgDICER-2 and FgAGO-1 ) accumulated at lower levels following FgV1 infection than following FgV2 or FgV3 infection. We constructed gene disruption and overexpression mutants for each of the Argonaute and dicer genes and for two RNA-dependent RNA polymerase (RdRP) genes and generated virus-infected strains of each mutant. Interestingly, mycelial growth was significantly faster for the FgV1-infected FgAGO-1 overexpression mutant than for the FgV1-infected wild type, while neither FgV2 nor FgV3 infection altered the colony morphology of the gene deletion and overexpression mutants. FgV1 RNA accumulation was significantly decreased in the FgAGO-1 overexpression mutant. Furthermore, the levels of induction of FgAGO-1 , FgDICER-2 , and some of the FgRdRP genes caused by FgV2 and FgV3 infection were similar to those caused by hairpin RNA-induced gene silencing. Using small RNA sequencing analysis, we documented different patterns of virus-derived small interfering RNA (vsiRNA) production in strains infected with FgV1, -2, and -3. Our results suggest that the Argonaute protein encoded by FgAGO-1 is required for RNAi in F. graminearum , that FgAGO-1 induction differs in response to FgV1, -2, and -3, and that FgAGO-1 might contribute to the accumulation of vsiRNAs in FgV1-infected F. graminearum IMPORTANCE To increase our understanding of how RNAi components in Fusarium

  6. Distribution and genetic chemotyping of Fusarium graminearum and Fusarium culmorum populations in wheat fields in the eastern Mediterranean region of Turkey

    Directory of Open Access Journals (Sweden)

    Fatih Mehmet Tok

    2016-03-01

    Full Text Available Fusarium graminearum and Fusarium culmorum are among the major causal agents of Fusarium head blight, which reduces both crop yield and grain quality in wheat worldwide. The present study was conducted with 57 isolates collected from 23 different locations across four provinces in the 2011/2012 growing season. Out of the 57 Fusarium isolates, 32 isolates were identified as F. graminearum and 25 isolates were identified as F. culmorum. Both pathogens are of particular importance, since they produce several mycotoxins. Among these, deoxynivalenol (DON and nivalenol (NIV are well known for their toxicity towards human and animal health. Genetic chemotyping of F. graminearum and F. culmorum species indicated that both DON and NIV chemotypes were present in the surveyed area. Of the 32 F. graminearum isolates, the primer sets Tri13DON and Tri13NIV identified 87.5% as DON chemotypes and 12.5% as NIV chemotypes. Similarly, the 25 F. culmorum isolates displayed 88% DON and 12% NIV chemotypes. In addition, DON acetylated derivatives, 3-acetyldeoxynivalenol (3-AcDON and 15-AcDON, were identified by polymerase chain reaction based methods. It was determined that 15-AcDON sub-chemotype was dominant in F. graminearum populations, whereas 3-AcDON was dominant in F. culmorum populations. This is the first report demonstrating the presence of F. graminearum and F. culmorum isolates and the distribution of 3-AcDON and 15-AcDON chemotypes in both Fusarium species in wheat fields of eastern Mediterranean region of Turkey.

  7. The effect of agmatine on trichothecene type B and zearalenone production in Fusarium graminearum, F. culmorum and F. poae

    Directory of Open Access Journals (Sweden)

    Matias Pasquali

    2016-02-01

    Full Text Available Agmatine and other putrescines are known for being strong inducers of deoxynivalenol (DON production in Fusarium graminearum. Other important species produce DON and/or other trichothecene type B toxins (3 acetylated DON, 15 acetylated DON, Fusarenon-X, Nivalenol, such as F. culmorum and F. poae. In order to verify whether the mechanism of the regulation of trichothecene type B induction by agmatine is shared by different species of Fusarium, we tested the hypothesis on 19 strains belonging to 3 Fusarium species (F. graminearum, F. culmorum, F. poae with diverse genetic chemotypes (3ADON, 15ADON, NIV by measuring trichothecene B toxins such as DON, NIV, Fusarenon-X, 3ADON and 15ADON. Moreover, we tested whether other toxins like zearalenone were also boosted by agmatine. The trichothecene type B boosting effect was observed in the majority of strains (13 out of 19 in all the three species. Representative strains from all three genetic chemotypes were able to boost toxin production after agmatine treatment. We identified the non-responding strains to the agmatine stimulus, which may contribute to deciphering the regulatory mechanisms that link toxin production to agmatine (and, more generally, polyamines.

  8. Biocontrol of Fusarium graminearum Growth and Deoxynivalenol Production in Wheat Kernels with Bacterial Antagonists

    Directory of Open Access Journals (Sweden)

    Cuijuan Shi

    2014-01-01

    Full Text Available Fusarium graminearum is the main causal pathogen affecting small-grain cereals, and it produces deoxynivalenol, a kind of mycotoxin, which displays a wide range of toxic effects in human and animals. Bacterial strains isolated from peanut shells were investigated for their activities against F. graminearum by dual-culture plate and tip-culture assays. Among them, twenty strains exhibited potent inhibition to the growth of F. graminearum, and the inhibition rates ranged from 41.41% to 54.55% in dual-culture plate assay and 92.70% to 100% in tip-culture assay. Furthermore, eighteen strains reduced the production of deoxynivalenol by 16.69% to 90.30% in the wheat kernels assay. Finally, the strains with the strongest inhibitory activity were identified by morphological, physiological, biochemical methods and also 16S rDNA and gyrA gene analysis as Bacillus amyloliquefaciens. The current study highlights the potential application of antagonistic microorganisms and their metabolites in the prevention of fungal growth and mycotoxin production in wheat kernels. As a biological strategy, it might avoid safety problems and nutrition loss which always caused by physical and chemical strategies.

  9. Application of proteomics to investigate barley-Fusarium graminearum interaction

    OpenAIRE

    Yang, Fen; Finnie, Christine; Jacobsen, Susanne

    2011-01-01

    Due to the great loss of barley grain yield and quality in addition to mycotoxins contamination caused by Fusarium head blight (FHB), it is essential to understand the molecular interaction between barley and Fusarium graminearum, one of the primary Fusarium species causing FHB, in order to control the disease. Due to the advantages of gel-based proteomics that differentially expressed proteins involved in the interaction can be directly detected by comparing protein profiles displayed on 2-D...

  10. Analysis of deoxynivalenol and deoxynivalenol-3-glucosides content in Canadian spring wheat cultivars inoculated with Fusarium graminearum.

    Science.gov (United States)

    Amarasinghe, Chami C; Simsek, Senay; Brûlé-Babel, Anita; Fernando, W G Dilantha

    2016-07-01

    Contamination of wheat grains with Fusarium mycotoxins and their modified forms is an important issue in wheat industry. The objective of this study was to analyse the deoxynivalenol (DON) and deoxynivalenol-3-glucosides (D3G) content in Canadian spring wheat cultivars grown in two locations, inoculated with a mixture of 3-acetyldeoxynivalenol (3-ADON)-producing Fusarium graminearum strains and a mixture of 15-acetlyldeoxynivalenol (15-ADON)-producing F. graminearum strains. According to the analysis of variance, significant differences were observed among the cultivars for Fusarium head blight (FHB) disease index, Fusarium-damaged kernel percentage (%FDK), DON content and D3G content. When the effect of chemotype was considered, significant differences were observed for FHB disease index, FDK percentage and DON content. The D3G content and D3G/DON ratio were not significantly different between the chemotypes, except for D3G content at the Winnipeg location. The Pearson correlation coefficient between DON and D3G was 0.84 and 0.77 at Winnipeg and Carman respectively. The highest D3G/DON ratio was observed in cultivars Carberry (44%) in Carman and CDC Kernen (63.8%) in Winnipeg. The susceptible cultivars showed lower D3G/DON ratio compared with the cultivars rated as moderately resistant and intermediate. The current study indicated that Canadian spring cultivars produce D3G upon Fusarium infection.

  11. Temporal dynamics and population genetic structure of Fusarium graminearum in the upper Midwestern United States.

    Science.gov (United States)

    Liang, J M; Xayamongkhon, H; Broz, K; Dong, Y; McCormick, S P; Abramova, S; Ward, T J; Ma, Z H; Kistler, H C

    2014-12-01

    Fusarium graminearum sensu stricto causes Fusarium head blight (FHB) in wheat and barley, and contaminates grains with several trichothecene mycotoxins, causing destructive yield losses and economic impact in the United States. Recently, a F. graminearum strain collected from Minnesota (MN) was determined to produce a novel trichothecene toxin, called NX-2. In order to determine the spatial and temporal dynamics of NX-2 producing strains in MN, North Dakota (ND) and South Dakota (SD), a total of 463 F. graminearum strains were collected from three sampling periods, 1999-2000, 2006-2007 and 2011-2013. A PCR-RFLP based diagnostic test was developed and validated for NX-2 producing strains based on polymorphisms in the Tri1 gene. Trichothecene biosynthesis gene (Tri gene)-based polymerase chain reaction (PCR) assays and ten PCR-restriction fragment length polymorphism (RFLP) markers were used to genotype all strains. NX-2 strains were detected in each sampling period but with a very low overall frequency (2.8%) and were mainly collected near the borders of MN, ND and SD. Strains with the 3ADON chemotype were relatively infrequent in 1999-2000 (4.5%) but increased to 29.4% in 2006-2007 and 17.2% in 2011-2013. The distribution of 3ADON producing strains also expanded from a few border counties between ND and MN in 1999-2000, southward toward the border between SD and MN in 2006-2007 and westward in 2011-2013. Genetic differentiation between 2006-2007 and 2011-2013 populations (3%) was much lower than that between 1999-2000 and 2006-2007 (22%) or 1999-2000 and 2011-2013 (20%) suggesting that most change to population genetic structure of F. graminearum occurred between 1999-2000 and 2006-2007. This change was associated with the emergence of a new population consisting largely of individuals with a 3ADON chemotype. A Bayesian clustering analysis suggested that NX-2 chemotype strains are part of a previously described Upper Midwestern population. However, these analyses

  12. Whey permeate fermented with kefir grains shows antifungal effect against Fusarium graminearum.

    Science.gov (United States)

    Gamba, Raúl Ricardo; De Antoni, Graciela; Peláez, Angela León

    2016-05-01

    The objective of the work reported here was to study the antifungal capability of cell-free supernatants obtained from whey permeates after fermentation by the kefir grains CIDCA AGK1 against Fusarium graminearum growth and zearalenone (ZEA) production. The assays were performed in order to study the conidial germination inhibition -in liquid media- and the effect on fungal growth rate and the Latency phase -in solid media. We observed that fermented supernatants of pH 3·5 produced the highest percentages of inhibition of conidial germination. The dilution and, particularly, alkalinisation of them led to the gradual loss of antifungal activity. In the fungal inhibition assays on plates we found that only the highest proportion of supernatant within solid medium had significant antifungal activity, which was determined as fungicidal. There was no ZEA biosynthesis in the medium with the highest proportion of supernatant, whereas at lower concentrations, the mycotoxin production was strain-dependent. From the results obtained we concluded that kefir supernatants had antifungal activity on the F. graminearum strains investigated and inhibited mycotoxin production as well, but in a strain-dependent fashion. The present work constitutes the first report of the effect of the products obtained from the kefir-grain fermentation of whey permeates - a readily available by-product of the dairy industry - on F. graminearum germination, growth, and toxin production.

  13. Bacillomycin D Produced by Bacillus amyloliquefaciens Is Involved in the Antagonistic Interaction with the Plant-Pathogenic Fungus Fusarium graminearum.

    Science.gov (United States)

    Gu, Qin; Yang, Yang; Yuan, Qiming; Shi, Guangming; Wu, Liming; Lou, Zhiying; Huo, Rong; Wu, Huijun; Borriss, Rainer; Gao, Xuewen

    2017-10-01

    Fusarium graminearum (teleomorph: Ascomycota, Hypocreales, Gibberella , Gibberella zeae ) is a destructive fungal pathogen that threatens the production and quality of wheat and barley worldwide. Controlling this toxin-producing pathogen is a significant challenge. In the present study, the commercially available strain Bacillus amyloliquefaciens ( Bacteria , Firmicutes , Bacillales , Bacillus ) FZB42 showed strong activity against F. graminearum The lipopeptide bacillomycin D, produced by FZB42, was shown to contribute to the antifungal activity. Purified bacillomycin D showed strong activity against F. graminearum , and its 50% effective concentration was determined to be approximately 30 μg/ml. Analyses using scanning and transmission electron microscopy revealed that bacillomycin D caused morphological changes in the plasma membranes and cell walls of F. graminearum hyphae and conidia. Fluorescence microscopy combined with different dyes showed that bacillomycin D induced the accumulation of reactive oxygen species and caused cell death in F. graminearum hyphae and conidia. F. graminearum secondary metabolism also responded to bacillomycin D challenge, by increasing the production of deoxynivalenol. Biological control experiments demonstrated that bacillomycin D exerted good control of F. graminearum on corn silks, wheat seedlings, and wheat heads. In response to bacillomycin D, F. graminearum genes involved in scavenging reactive oxygen species were downregulated, whereas genes involved in the synthesis of deoxynivalenol were upregulated. Phosphorylation of MGV1 and HOG1, the mitogen-activated protein kinases of F. graminearum , was increased in response to bacillomycin D. Taken together, these findings reveal the mechanism of the antifungal action of bacillomycin D. IMPORTANCE Biological control of plant disease caused by Fusarium graminearum is desirable. Bacillus amyloliquefaciens FZB42 is a representative of the biocontrol bacterial strains. In this work

  14. Presencia de Fusarium graminearum en muestras de trigo destinado al consumo humano

    Directory of Open Access Journals (Sweden)

    Mauro Martinez

    Full Text Available La fusariosis es una de las enfermedades más importantes de los cereales, Fusarium graminearum es su principal agente etiológico. Este hongo posee la capacidad de producir distintos tipos y niveles de toxinas, en especial deoxinivalenol (DON. En la campaña 2012-2013 se dieron condiciones ambientales predisponentes para el desarrollo de esta enfermedad. El objetivo de este trabajo fue evaluar la presencia del hongo y el contenido de DON en 50 muestras de trigo. Los resultados demostraron la presencia de Fusarium graminearum en el 80 % de las muestras analizadas. El 24 % de las muestras presentó valores de DON ≥ 1μg/g, el 26 % varió entre 0,5 y 0,99μg/g, mientras que el 50 % restante mostró valores inferiores a 0,5μg/g. Se observó correlación entre la presencia de Fusarium graminearum y de DON. Es necesario establecer valores límites de DON en granos de trigo destinados al consumo humano.

  15. Metabolomics to Decipher the Chemical Defense of Cereals against Fusarium graminearum and Deoxynivalenol Accumulation

    Directory of Open Access Journals (Sweden)

    Léa Gauthier

    2015-10-01

    Full Text Available Fusarium graminearum is the causal agent of Fusarium head blight (FHB and Gibberella ear rot (GER, two devastating diseases of wheat, barley, and maize. Furthermore, F. graminearum species can produce type B trichothecene mycotoxins that accumulate in grains. Use of FHB and GER resistant cultivars is one of the most promising strategies to reduce damage induced by F. graminearum. Combined with genetic approaches, metabolomic ones can provide powerful opportunities for plant breeding through the identification of resistant biomarker metabolites which have the advantage of integrating the genetic background and the influence of the environment. In the past decade, several metabolomics attempts have been made to decipher the chemical defense that cereals employ to counteract F. graminearum. By covering the major classes of metabolites that have been highlighted and addressing their potential role, this review demonstrates the complex and integrated network of events that cereals can orchestrate to resist to F. graminearum.

  16. Metabolomics to Decipher the Chemical Defense of Cereals against Fusarium graminearum and Deoxynivalenol Accumulation

    Science.gov (United States)

    Gauthier, Léa; Atanasova-Penichon, Vessela; Chéreau, Sylvain; Richard-Forget, Florence

    2015-01-01

    Fusarium graminearum is the causal agent of Fusarium head blight (FHB) and Gibberella ear rot (GER), two devastating diseases of wheat, barley, and maize. Furthermore, F. graminearum species can produce type B trichothecene mycotoxins that accumulate in grains. Use of FHB and GER resistant cultivars is one of the most promising strategies to reduce damage induced by F. graminearum. Combined with genetic approaches, metabolomic ones can provide powerful opportunities for plant breeding through the identification of resistant biomarker metabolites which have the advantage of integrating the genetic background and the influence of the environment. In the past decade, several metabolomics attempts have been made to decipher the chemical defense that cereals employ to counteract F. graminearum. By covering the major classes of metabolites that have been highlighted and addressing their potential role, this review demonstrates the complex and integrated network of events that cereals can orchestrate to resist to F. graminearum. PMID:26492237

  17. A simple culture method inducing sexual reproduction by Fusarium graminearum, the primary causal agent of Fusarium head blight

    Science.gov (United States)

    The homothallic ascomycete fungus Fusarium graminearum is the primary causal agent of Fusarium head blight (FHB), a devastating disease of wheat and barley worldwide. The fungus undergoes both asexual and sexual stages in its life cycle. The asexual stage produces conidiospores, whereas the sexual s...

  18. A network approach to predict pathogenic genes for Fusarium graminearum.

    Science.gov (United States)

    Liu, Xiaoping; Tang, Wei-Hua; Zhao, Xing-Ming; Chen, Luonan

    2010-10-04

    Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN) of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other pathogenic fungi, which

  19. A network approach to predict pathogenic genes for Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Xiaoping Liu

    Full Text Available Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB, which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other

  20. Functional roles of FgLaeA in controlling secondary metabolism, sexual development, and virulence in Fusarium graminearum

    Science.gov (United States)

    Fusarium graminearum, the causal agent of Fusarium head blight in cereal crops, produces mycotoxins such as trichothecenes and zearalenone in infected plants. Here, we focused on the function of FgLaeA in F. graminearum, a homolog of Aspergillus nidulans LaeA encoding the global regulator for both s...

  1. The Fusarium graminearum Histone Acetyltransferases Are Important for Morphogenesis, DON Biosynthesis, and Pathogenicity

    Directory of Open Access Journals (Sweden)

    Xiangjiu Kong

    2018-04-01

    Full Text Available Post-translational modifications of chromatin structure by histone acetyltransferase (HATs play a central role in the regulation of gene expression and various biological processes in eukaryotes. Although HAT genes have been studied in many fungi, few of them have been functionally characterized. In this study, we identified and characterized four putative HATs (FgGCN5, FgRTT109, FgSAS2, FgSAS3 in the plant pathogenic ascomycete Fusarium graminearum, the causal agent of Fusarium head blight of wheat and barley. We replaced the genes and all mutant strains showed reduced growth of F. graminearum. The ΔFgSAS3 and ΔFgGCN5 mutant increased sensitivity to oxidative and osmotic stresses. Additionally, ΔFgSAS3 showed reduced conidia sporulation and perithecium formation. Mutant ΔFgGCN5 was unable to generate any conidia and lost its ability to form perithecia. Our data showed also that FgSAS3 and FgGCN5 are pathogenicity factors required for infecting wheat heads as well as tomato fruits. Importantly, almost no Deoxynivalenol (DON was produced either in ΔFgSAS3 or ΔFgGCN5 mutants, which was consistent with a significant downregulation of TRI genes expression. Furthermore, we discovered for the first time that FgSAS3 is indispensable for the acetylation of histone site H3K4, while FgGCN5 is essential for the acetylation of H3K9, H3K18, and H3K27. H3K14 can be completely acetylated when FgSAS3 and FgGCN5 were both present. The RNA-seq analyses of the two mutant strains provide insight into their functions in development and metabolism. Results from this study clarify the functional divergence of HATs in F. graminearum, and may provide novel targeted strategies to control secondary metabolite expression and infections of F. graminearum.

  2. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Wild maize (teosinte has been reported to be less susceptible to pests than their modern maize (corn relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER in modern maize and produces the mycotoxin, deoxynivalenol (DON. In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense.

  3. Functional roles of FgLaeA in controlling secondary metabolism, sexual development, and virulence in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Hee-Kyoung Kim

    Full Text Available Fusarium graminearum, the causal agent of Fusarium head blight in cereal crops, produces mycotoxins such as trichothecenes and zearalenone in infected plants. Here, we focused on the function of FgLaeA in F. graminearum, a homolog of Aspergillus nidulans LaeA encoding the global regulator for both secondary metabolism and sexual development. Prior to gene analysis, we constructed a novel luciferase reporter system consisting of a transgenic F. graminearum strain expressing a firefly luciferase gene under control of the promoter for either TRI6 or ZEB2 controlling the biosynthesis of these mycotoxins. Targeted deletion of FgLaeA led to a dramatic reduction of luminescence in reporter strains, indicating that FgLaeA controls the expression of these transcription factors in F. graminearum; reduced toxin accumulation was further confirmed by GC-MS analysis. Overexpression of FgLaeA caused the increased production of trichothecenes and additional metabolites. RNA seq-analysis revealed that gene member(s belonging to ~70% of total tentative gene clusters, which were previously proposed, were differentially expressed in the ΔFgLaeA strain. In addition, ΔFgLaeA strains exhibited an earlier induction of sexual fruiting body (perithecia formation and drastically reduced disease symptoms in wheat, indicating that FgLaeA seems to negatively control perithecial induction, but positively control virulence toward the host plant. FgLaeA was constitutively expressed under both mycotoxin production and sexual development conditions. Overexpression of a GFP-FgLaeA fusion construct in the ΔFgLaeA strain restored all phenotypic changes to wild-type levels and led to constitutive expression of GFP in both nuclei and cytoplasm at different developmental stages. A split luciferase assay demonstrated that FgLaeA was able to interact with FgVeA, a homolog of A. nidulans veA. Taken together, these results demonstrate that FgLaeA, a member of putative FgVeA complex

  4. Extracellular peptidases of the cereal pathogen Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Rohan George Thomas Lowe

    2015-11-01

    Full Text Available The plant pathogenic fungus Fusarium graminearum (Fgr creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab of wheat and stalk rot of corn, reducing yield, degrading grain quality and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterise the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviours. An orbitrap MS/MS proteomics technique defined the extracellular proteases secreted by Fusarium graminearum. A meta-classification based on sequence characters and transcriptional/translational activity in planta and in vitro provides a platform to develop control strategies that target Fgr peptidases.

  5. Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum

    Science.gov (United States)

    Zhang, Fusheng; Chen, Qin; Chen, Cheng; Yu, Xiaorui; Liu, Qingya; Bao, Jinku

    2018-01-01

    Curcuma longa possesses powerful antifungal activity, as demonstrated in many studies. In this study, the antifungal spectrum of Curcuma longa alcohol extract was determined, and the resulting EC50 values (mg/mL) of its extract on eleven fungi, including Fusarium graminearum, Fusarium chlamydosporum, Alternaria alternate, Fusarium tricinctum, Sclerotinia sclerotiorum, Botrytis cinerea, Fusarium culmorum, Rhizopus oryzae, Cladosporium cladosporioides, Fusarium oxysporum and Colletotrichum higginsianum, were 0.1088, 0.1742, 0.1888, 0.2547, 0.3135, 0.3825, 0.4229, 1.2086, 4.5176, 3.8833 and 5.0183, respectively. Among them, F. graminearum was selected to determine the inhibitory effects of the compounds (including curdione, isocurcumenol, curcumenol, curzerene, β-elemene, curcumin, germacrone and curcumol) derived from Curcuma longa. In addition, the antifungal activities of curdione, curcumenol, curzerene, curcumol and isocurcumenol and the synergies of the complexes of curdione and seven other chemicals were investigated. Differential proteomics of F. graminearum was also compared, and at least 2021 reproducible protein spots were identified. Among these spots, 46 were classified as differentially expressed proteins, and these proteins are involved in energy metabolism, tRNA synthesis and glucose metabolism. Furthermore, several fungal physiological differences were also analysed. The antifungal effect included fungal cell membrane disruption and inhibition of ergosterol synthesis, respiration, succinate dehydrogenase (SDH) and NADH oxidase. PMID:29543859

  6. Toxigenic potential of Fusarium graminearum isolated from maize of northwest Argentina

    Directory of Open Access Journals (Sweden)

    D.A. Sampietro

    2013-01-01

    Full Text Available Twenty six isolates of Fusarium graminearum from grains of maize hybrids harvested in ±west Argentina were grown on autoclaved rice grain to assess their ability to produce type B trichothecenes. Chemical analysis indicated that 38% of isolates were nivalenol (NIV producers only, 31% were major NIV producers with high DON(deoxynivalenol/NIV ratios, 8% were major DON producers with minor NIV production, and 23% were DON producers only. Isolates showed a high variability in their toxigenic potential which was not related to fungal biomass. The distribution of the different chemotypes as well as the high and the low trichothecene-producing Fusarium isolates could not be associated to a geographical origin. Our results confirmed for the first time that isolates of Fusarium graminearum from maize of northwest Argentina are able to produce DON and NIV. A substancial contamination with both NIV and DON is likely in maize from northwest Argentina. Their contents should be quantified in regional surveillances for mycotoxin contamination.

  7. Fusarium graminearum growth inhibition mechanism using phenolic compounds from Spirulina sp Mecanismo de inibição de Fusarium graminearum por compostos fenólicos extraídos de Spirulina sp

    Directory of Open Access Journals (Sweden)

    Fernanda Arnhold Pagnussatt

    2013-02-01

    Full Text Available The application of natural antifungal substances is motivated by the need for alternatives to existing methods that are not always applicable, efficient, or that do not pose risk to consumers or the environment. Furthermore, studies on the behaviour of toxigenic species in the presence of natural fungicides have enabled their safe application in the food chain In this study, Spirulina LEB-18 phenolic extract was assessed for its antifungal activity on 12 toxigenic strains of Fusarium graminearum isolated from barley and wheat. The susceptible metabolic pathways were assessed through the determination of structural compounds (glucosamine and ergosterol and enzyme activity of the microorganisms' primary metabolism. The results indicate that phenolic extracts reduced the growth rate of the toxigenic species investigated. The IC50 was obtained by applying 3 to 8% (p/p of phenolic compounds in relation to the culture medium. The use of this natural fungicide proved promising for the inhibition of fungal multiplication, especially in terms of the inactivation of enzymatic systems (amylase and protease of Fusarium graminearum.A aplicação de substâncias naturais com efeito antifúngico é motivada pela necessidade de alternativas aos métodos existentes que nem sempre são aplicáveis, eficientes ou sem risco de danos ao consumidor ou meio ambiente. Além disso, estudos para elucidar o comportamento de espécies toxigênicas mediante fungicidas naturais tornam-se necessárias, contribuindo dessa forma com a segurança alimentar. Neste trabalho, extrato fenólico de Spirulina foi utilizado para avaliar a atividade antifúngica sobre 12 cepas toxigênicas de Fusarium graminearum, isoladas de cevada e trigo. As rotas metabólicas que poderiam ser afetadas foram avaliadas através da determinação de compostos estruturais (glicosamina e ergosterol e da atividade de enzimas do metabolismo primário dos micro-organismos. Os resultados indicaram que os

  8. MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Yongsoo Kim

    Full Text Available We previously characterized members of the Myb protein family, MYT1 and MYT2, in Fusarium graminearum. MYT1 and MYT2 are involved in female fertility and perithecium size, respectively. To expand knowledge of Myb proteins in F. graminearum, in this study, we characterized the functions of the MYT3 gene, which encodes a putative Myb-like transcription factor containing two Myb DNA-binding domains and is conserved in the subphylum Pezizomycotina of Ascomycota. MYT3 proteins were localized in nuclei during most developmental stages, suggesting the role of MYT3 as a transcriptional regulator. Deletion of MYT3 resulted in impairment of conidiation, germination, and vegetative growth compared to the wild type, whereas complementation of MYT3 restored the wild-type phenotype. Additionally, the Δmyt3 strain grew poorly on nitrogen-limited media; however, the mutant grew robustly on minimal media supplemented with ammonium. Moreover, expression level of nitrate reductase gene in the Δmyt3 strain was decreased in comparison to the wild type and complemented strain. On flowering wheat heads, the Δmyt3 strain exhibited reduced pathogenicity, which corresponded with significant reductions in trichothecene production and transcript levels of trichothecene biosynthetic genes. When the mutant was selfed, mated as a female, or mated as a male for sexual development, perithecia were not observed on the cultures, indicating that the Δmyt3 strain lost both male and female fertility. Taken together, these results demonstrate that MYT3 is required for pathogenesis and sexual development in F. graminearum, and will provide a robust foundation to establish the regulatory networks for all Myb-like proteins in F. graminearum.

  9. A Natural Mutation Involving both Pathogenicity and Perithecium Formation in the Fusarium graminearum Species Complex

    Directory of Open Access Journals (Sweden)

    Haruhisha Suga

    2016-12-01

    Full Text Available Members of the Fusarium graminearum species complex (Fg complex or FGSC are the primary pathogens causing Fusarium head blight in wheat and barley worldwide. A natural pathogenicity mutant (strain 0225022 was found in a sample of the Fg complex collected in Japan. The mutant strain did not induce symptoms in wheat spikes beyond the point of inoculation, and did not form perithecia. No segregation of phenotypic deficiencies occurred in the progenies of a cross between the mutant and a fully pathogenic wild-type strain, which suggested that a single genetic locus controlled both traits. The locus was mapped to chromosome 2 by using sequence-tagged markers; and a deletion of ∼3 kb was detected in the mapped region of the mutant strain. The wild-type strain contains the FGSG_02810 gene, encoding a putative glycosylphosphatidylinositol anchor protein, in this region. The contribution of FGSG_02810 to pathogenicity and perithecium formation was confirmed by complementation in the mutant strain using gene transfer, and by gene disruption in the wild-type strain.

  10. Fusarium graminearum and its interactions with cereal heads: studies in the proteomics era

    Directory of Open Access Journals (Sweden)

    Fen eYang

    2013-02-01

    Full Text Available The ascomycete fungal pathogen Fusarium graminearum is the causal agent of Fusarium head blight (FHB in wheat and barley. This disease leads to significant losses of crop yield, and especially quality through the contamination by diverse fungal mycotoxins, which constitute a significant threat to the health of humans and animals. In recent years, high-throughput proteomics, aiming at identifying a broad spectrum of proteins with a potential role in the pathogenicity and host resistance, has become a very useful tool in plant-fungus interaction research. In this review, we describe the progress in proteomics applications towards a better understanding of Fusarium graminearum pathogenesis, virulence and host defence mechanisms. The contribution of proteomics to the development of crop protection strategies against this pathogen is also discussed briefly.

  11. TOR signaling downregulation increases resistance to the cereal killer Fusarium graminearum.

    Science.gov (United States)

    Aznar, Néstor R; Consolo, V Fabiana; Salerno, Graciela L; Martínez-Noël, Giselle M A

    2018-02-01

    TOR is the master regulator of growth and development that senses energy availability. Biotic stress perturbs metabolic and energy homeostasis, making TOR a good candidate to participate in the plant response. Fusarium graminearum (Fusarium) produces important losses in many crops all over the world. To date, the role of TOR in Fusarium infection has remained unexplored. Here, we show that the resistance to the pathogen increases in different Arabidopsis mutants impaired in TOR complex or in wild-type plants treated with a TOR inhibitor. We conclude that TOR signaling is involved in plant defense against Fusarium.

  12. Molecular characterization, fitness and mycotoxin production of Fusarium graminearum laboratory strains resistant to benzimidazoles.

    Science.gov (United States)

    Sevastos, A; Markoglou, A; Labrou, N E; Flouri, F; Malandrakis, A

    2016-03-01

    Six benzimidazole (BMZ)-resistant Fusarium graminearum strains were obtained after UV mutagenesis and selection on carbendazim (MBC)-amended medium. In vitro bioassays resulted in the identification of two resistant phenotypes that were highly HR (Rf: 40-170, based on EC50) and moderately MR (Rf: 10-20) resistant to carbendazim. Cross resistance studies with other fungicides showed that all mutant strains tested were also resistant to other BMZs, such as benomyl and thiabendazole, but retained their parental sensitivity to fungicides belonging to other chemical groups. A point mutation at codon 6 (His6Asn) was found in the β2-tubulin gene of MR isolates while another mutation at codon 200 (Phe200Tyr) was present in one MR and one HR isolates. Interestingly, low temperatures suppressed MBC-resistance in all isolates bearing the H6N mutation. The three-dimensional homology model of the wild-type and mutants of β-tubulins were constructed, and the possible carbendazim binding site was analyzed. Studies on fitness parameters showed that the mutation(s) for resistance to BMZs did not affect the mycelial growth rate whereas adverse effects were found in sporulation and conidial germination in most of the resistant mutants. Pathogenicity tests on corn cobs revealed that mutants were less or equally aggressive to the wild-type strain but expressed their BMZ-resistance after inoculation on maize cobs treated with MBC. Analysis of mycotoxin production by high performance liquid chromatography revealed that only two HR strains produced zearalenone (ZEA) at concentrations similar to that of the wild-type strain, while no ZEA levels were detected in the rest of the mutants. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Population genomics of Fusarium graminearum reveals signatures of divergent evolution within a major cereal pathogen

    Science.gov (United States)

    The cereal pathogen Fusarium graminearum is the primary cause of Fusarium head blight (FHB) and a significant threat to food safety and crop production. To elucidate population structure and identify genomic targets of selection within major FHB pathogen populations in North America we sequenced the...

  14. Glutathione transferase-mediated benzimidazole-resistance in Fusarium graminearum.

    Science.gov (United States)

    Sevastos, A; Labrou, N E; Flouri, F; Malandrakis, A

    2017-09-01

    Fusarium graminearum laboratory mutants moderately (MR) and highly (HR) benzimidazole-resistant, carrying or not target-site mutations at the β 2 -tubulin gene were utilized in an attempt to elucidate the biochemical mechanism(s) underlying the unique BZM-resistance paradigm of this fungal plant pathogen. Relative expression analysis in the presence or absence of carbendazim (methyl-2-benzimidazole carbamate) using a quantitative Real Time qPCR (RT-qPCR) revealed differences between resistant and the wild-type parental strain although no differences in expression levels of either β 1 - or β 2 -tubulin homologue genes were able to fully account for two of the highly resistant phenotypes. Glutathione transferase (GST)-mediated detoxification was shown to be -at least partly- responsible for the elevated resistance levels of a HR isolate bearing the β 2 -tubulin Phe200Tyr resistance mutation compared with another MR isolate carrying the same mutation. This benzimidazole-resistance mechanism is reported for the first time in F. graminearum. No indications of detoxification involved in benzimidazole resistance were found for the rest of the isolates as revealed by GST and glutathione peroxidase (GPx) activities and bioassays using monoxygenase and hydrolase detoxification enzyme inhibiting synergists. Interestingly, besides the Phe200Tyr mutation-carrying HR isolate, the remaining highly-carbendazim resistant phenotypes could not be associated with any of the target site modification/overproduction, detoxification or reduced uptake-increased efflux mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Use of the polymerase chain reaction for detection of Fusarium graminearum in bulgur wheat

    Directory of Open Access Journals (Sweden)

    Carla Bertechini Faria

    2012-03-01

    Full Text Available The detection of mycotoxigenic fungi in foodstuff is important because their presence may indicate the possible associated mycotoxin contamination. Fusarium graminearum is a wheat pathogen and a producer of micotoxins. The polymerase chain reaction (PCR has been employed for the specific identification of F. graminearum. However, this methodology has not been commonly used for detection of F. graminearum in food. Thus, the objective of the present study was to develop a molecular methodology to detect F. graminearum in commercial samples of bulgur wheat. Two methods were tested. In the first method, a sample of this cereal was contaminated with F. graminearum mycelia. The genomic DNA was extracted from this mixture and used in a F. graminearum specific PCR reaction. The F. graminearum species was detected only in samples that were heavily contaminated. In the second method, samples of bulgur wheat were inoculated on a solid medium, and isolates having F. graminearum culture characteristics were obtained. The DNA extracted from these isolates was tested in F. graminearum specific PCR reactions. An isolate obtained had its trichothecene genotype identified by PCR. The established methodology could be used in surveys of food contamination with F. graminearum.

  16. Fusarium graminearum and Its Interactions with Cereal Heads: Studies in the Proteomics Era

    Science.gov (United States)

    Yang, Fen; Jacobsen, Susanne; Jørgensen, Hans J. L.; Collinge, David B.; Svensson, Birte; Finnie, Christine

    2013-01-01

    The ascomycete fungal pathogen Fusarium graminearum (teleomorph stage: Gibberella zeae) is the causal agent of Fusarium head blight in wheat and barley. This disease leads to significant losses of crop yield, and especially quality through the contamination by diverse fungal mycotoxins, which constitute a significant threat to the health of humans and animals. In recent years, high-throughput proteomics, aiming at identifying a broad spectrum of proteins with a potential role in the pathogenicity and host resistance, has become a very useful tool in plant-fungus interaction research. In this review, we describe the progress in proteomics applications toward a better understanding of F. graminearum pathogenesis, virulence, and host defense mechanisms. The contribution of proteomics to the development of crop protection strategies against this pathogen is also discussed briefly. PMID:23450732

  17. Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt

    Directory of Open Access Journals (Sweden)

    Amer F. Mahmoud

    2016-04-01

    Full Text Available Fusarium graminearum Schwabe causes Fusarium head blight (FHB, a devastating disease that leads to extensive yield and quality loss of wheat and other cereal crops. Twelve isolates of F. graminearum were collected from naturally infected spikes of wheat from Assiut Egypt. These isolates were compared using SRAP. The results indicated distinct genetic groups exist within F. graminearum, and demonstrated that these groups have different biological properties, especially with respect to their pathogenicity on wheat. There were biologically significant differences between the groups; with group (B isolates being more aggressive towards wheat than groups (A and (C. Furthermore, Trichoderma harzianum (Rifai and Bacillus subtilis (Ehrenberg which isolated from wheat kernels were screened for antagonistic activity against F. graminearum. They significantly reduced the growth of F. graminearum colonies in culture. In order to gain insight into biological control effect in situ, highly antagonistic isolates of T. harzianum and B. subtilis were selected, based on their in vitro effectiveness, for greenhouse test. It was revealed that T. harzianum and B. subtilis significantly reduced FHB severity. The obtained results indicated that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in FHB and should be harnessed for further biocontrol applications. The accurate analysis of genetic variation and studies of population structures have significant implications for understanding the genetic traits and disease control programs in wheat. This is the first known report of the distribution and genetic variation of F. graminearum on wheat spikes in Assiut Egypt.

  18. BIOLOGICAL CHARACTERISTICS OF FUSARIUM GRAMINEARUM SCHW. AND FUSARIUM CULMORUM (W.G. SMITH SACC.

    Directory of Open Access Journals (Sweden)

    Jasenka Ćosić

    2006-12-01

    Full Text Available Fusarium species from section Discolor are widespread and well-known and play an important role in disease etiology of wheat, barley and maize. F. graminearum and F. culmorum were isolated during a four-year period at several locations in Eastern Croatia and from different hosts. The mycelium development of 236isolates of F. graminearum and 2 isolates of F. culmorum was cultered during an eight day period on water agar, PDA, Bilai, Czapek's and CLA agar at temperatures 5°, 15°, 20°, 25° and 30°C and a 12 hour dark/light regime. The results show that agar medium does not influence colony diameter significantly. The agar medium influences the richness and density of the aerial mycelium significantly, although the shape and compactness of the mycelium is not only the result of the medium on which the fungus is developed, but also of the characteristics of the species itself. The sporulation of F. culmorum was abundant on all investigated medium, whereas the sporulation of F. graminearum was very weak on PDA and Bilai agar and it was medium on CLA.

  19. An arabinobio-hydrolase (Arb93B) from Fusarium graminearum is associated with wheat head blight disease

    Science.gov (United States)

    Fusarium head blight (FHB), caused by the fungus Fusarium graminearum, is one of the most important diseases of wheat and barley worldwide. FHB not only reduces crop yield, but the fungus also contaminates grains with mycotoxins, which are harmful to humans and animals. A previous study demonstrated...

  20. Fusarium graminearum and its interactions with cereal heads: studies in the proteomics era

    OpenAIRE

    Fen eYang; Fen eYang; Susanne eJacobsen; Hans J. L. Jørgensen; David B. Collinge; Birte eSvensson; Christine eFinnie

    2013-01-01

    The ascomycete fungal pathogen Fusarium graminearum is the causal agent of Fusarium head blight (FHB) in wheat and barley. This disease leads to significant losses of crop yield, and especially quality through the contamination by diverse fungal mycotoxins, which constitute a significant threat to the health of humans and animals. In recent years, high-throughput proteomics, aiming at identifying a broad spectrum of proteins with a potential role in the pathogenicity and host resistance, has ...

  1. In vitro effects of various xenobiotics on Fusarium spp. strains isolated from cereals.

    Science.gov (United States)

    Wolny-Koładka, Katarzyna A

    2014-01-01

    This study aimed to determine the susceptibility of Fusarium spp. strains isolated from cereals to selected heavy metals, fungicides and silver nanoparticles. The experiments were conducted using 50 Fusarium strains belonging to five species: F. graminearum, F. culmorum, F. oxysporum, F. sporotrichioides and F. avenaceum. The strains were found to be highly resistant to Pb(2+) and Zn(2+). Medium resistance to Cu(2+) and Mn(2+) and low resistance to Cd(2+) and Fe(3+) was also observed. Among the tested fungicides, formulations containing azoxystrobin, prochloraz and tebuconazole proved to be the most effective in inhibiting the growth of fungi, as they affected fungal growth in each of the applied doses. Susceptibility of Fusarium spp. to nanosilver, demonstrated in this study, shows the legitimacy of using nanostructures as fungicidal agents. The results confirm high diversity of the analyzed fungal species in terms of susceptibility to the tested substances, and encourage to continue research on the resistance of Fusarium spp. to various fungicidal agents.

  2. Infection of green fluorescence protein-tagged Fusarium graminearum on wheat and barley spikes

    NARCIS (Netherlands)

    Zhang, X.; Lee, van der T.A.J.; Dufresne, M.; Liu, T.; Lu, W.Z.; Yu, D.Z.; Ma, H.X.

    2008-01-01

    Fusorium head blight (FHB), mainly caused by Fusarium graminearum, is a very serious disease in wheat and barley production area. FHB epidemics cause yield decreases and production Of mycotoxin that renders the grain useless for flour and mail products. Understanding the infection mechanism of F.

  3. The Fungicidal Activity of Thymol against Fusarium graminearum via Inducing Lipid Peroxidation and Disrupting Ergosterol Biosynthesis

    Directory of Open Access Journals (Sweden)

    Tao Gao

    2016-06-01

    Full Text Available Thymol is a natural plant-derived compound that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism for thymol against phytopathogens remains unclear. In this study, we identified the antifungal action of thymol against Fusarium graminearum, an economically important phytopathogen showing severe resistance to traditional chemical fungicides. The sensitivity of thymol on different F. graminearum isolates was screened. The hyphal growth, as well as conidial production and germination, were quantified under thymol treatment. Histochemical, microscopic, and biochemical approaches were applied to investigate thymol-induced cell membrane damage. The average EC50 value of thymol for 59 F. graminearum isolates was 26.3 μg·mL−1. Thymol strongly inhibited conidial production and hyphal growth. Thymol-induced cell membrane damage was indicated by propidium iodide (PI staining, morphological observation, relative conductivity, and glycerol measurement. Thymol induced a significant increase in malondialdehyde (MDA concentration and a remarkable decrease in ergosterol content. Taken together, thymol showed potential antifungal activity against F. graminearum due to the cell membrane damage originating from lipid peroxidation and the disturbance of ergosterol biosynthesis. These results not only shed new light on the antifungal mechanism of thymol, but also imply a promising alternative for the control of Fusarium head blight (FHB disease caused by F. graminearum.

  4. Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, Jens D.; Svensson, Birte

    2012-01-01

    Fusarium graminearum is a phytopathogenic fungus primarily infecting small grain cereals, including barley and wheat. Secreted enzymes play important roles in the pathogenicity of many fungi. In order to access the secretome of F. graminearum, the fungus was grown in liquid culture with barley...... or wheat flour as the sole nutrient source to mimic the host–pathogen interaction. A gel‐based proteomics approach was employed to identify the proteins secreted into the culture medium. Sixty‐nine unique fungal proteins were identified in 154 protein spots, including enzymes involved in the degradation...... between wheat and barley flour medium were mainly involved in fungal cell wall remodelling and the degradation of plant cell walls, starch and proteins. The in planta expression of corresponding F. graminearum genes was confirmed by quantitative reverse transcriptase‐polymerase chain reaction in barley...

  5. The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Wilfried Jonkers

    Full Text Available WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity determents in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is required for pathogenicity and expression of key plant effector proteins. F. graminearum, an important pathogen of cereals, is not known to employ switching and no effector proteins from F. graminearum have been found to date that are required for infection. In this study, the potential role of the WOR1-like gene in pathogenesis was tested in this toxigenic fungus. Deletion of the WOR1 ortholog (called FGP1 in F. graminearum results in greatly reduced pathogenicity and loss of trichothecene toxin accumulation in infected wheat plants and in vitro. The loss of toxin accumulation alone may be sufficient to explain the loss of pathogenicity to wheat. Under toxin-inducing conditions, expression of genes for trichothecene biosynthesis and many other genes are not detected or detected at lower levels in Δfgp1 strains. FGP1 is also involved in the developmental processes of conidium formation and sexual reproduction and modulates a morphological change that accompanies mycotoxin production in vitro. The Wor1-like proteins in Fusarium species have highly conserved N-terminal regions and remarkably divergent C-termini. Interchanging the N- and C- terminal portions of proteins from F. oxysporum and F. graminearum resulted in partial to complete loss of function. Wor1-like proteins are conserved but have evolved to regulate pathogenicity in a range of fungi, likely by adaptations to the C-terminal portion of the protein.

  6. Identification of the Biosynthetic Gene Clusters for the Lipopeptides Fusaristatin A and W493 B in Fusarium graminearum and F. pseudograminearum

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Sondergaard, Teis Esben; Covarelli, Lorenzo

    2014-01-01

    The closely related species Fusarium graminearum and Fusarium pseudograminearum differ in that each contains a gene cluster with a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) that is not present in the other species. To identify their products, we deleted PKS6 and NRPS7...... Fusarium species. On the basis of genes in the putative gene clusters we propose a model for biosynthesis where the polyketide product is shuttled to the NPRS via a CoA ligase and a thioesterase in F. pseudograminearum. In F. graminearum the polyketide is proposed to be directly assimilated by the NRPS....

  7. Fusariosis de la espiga del trigo : dinámica del inóculo de Fusarium graminearum ante un manejo sustentable

    OpenAIRE

    Mourelos, Cecilia Alejandra

    2015-01-01

    Mourelos, C. A. (2015). Fusariosis de la espiga del trigo: Dinámica del inóculo de Fusarium graminearum ante un manejo sustentable. (Tesis de doctorado). Universidad Nacional de Quilmes, Bernal, Argentina. La fusariosis de la espiga de trigo (FET) es una de las enfermedades fúngicas más importantes del cultivo de trigo y de otros cereales en la Argentina. En el país, la enfermedad es causada principalmente por Fusarium graminearum Schwabe [teleomorfo Gibberella zeae (Schwein.) Petch]. Esta...

  8. Immunological detection of Fusarium species in cornmeal.

    Science.gov (United States)

    Iyer, M S; Cousin, M A

    2003-03-01

    An indirect enzyme-linked immunosorbent assay (ELISA) was developed to detect Fusarium species in foods. Antibodies to proteins extracted from the mycelia of Fusarium graminearum and Fusarium moniliforme (verticillioides) were produced in New Zealand white rabbits. These antibodies detected 13 Fusarium species in addition to the producer strains. Levels of Fusarium semitectum and Fusarium tricinctum strains were below the detection threshold. The specificity of the assay was tested against 70 molds and yeasts belonging to 23 genera. One strain of Monascus species and one strain of Phoma exigua were detected; however, these two molds are not common contaminants of cereal grains or foods and should not interfere with the assay. The indirect ELISA's detection limits for F. graminearum and F. moniliforme were 0.1 and 1 microg of mold mycelium per ml of a cornmeal mixture, respectively. When spores of each mold were added individually to cornmeal mixtures (at ca. 10 spores per g) and incubated at 25 degrees C, these spores were detected by the indirect ELISA when they reached levels of 10(2) to 10(3) CFU/ml after 24 to 36 h. The indirect ELISA developed here shows promise for the detection of Fusarium species in grains or foods.

  9. A Simple Method for the Assessment of Fusarium Head Blight Resistance in Korean Wheat Seedlings Inoculated with Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Sanghyun Shin

    2014-03-01

    Full Text Available Fusarium head blight (FHB; scab caused mainly by Fusarium graminearum is a devastating disease of wheat and barley around the world. FHB causes yield reductions and contamination of grain with trichothecene mycotoxins such as deoxynivalenol (DON which are a major health concern for humans and animals. The objective of this research was to develop an easy seed or seedling inoculation assay, and to compare these assays with whole plant resistance of twenty-nine Korean winter wheat cultivars to FHB. The clip-dipping assay consists of cutting off the coleoptiles apex, dipping the coleoptiles apex in conidial suspension, covering in plastic bag for 3 days, and measuring the lengths of lesions 7 days after inoculation. There were significant cultivar differences after inoculation with F. graminearum in seedling relative to the controls. Correlation coefficients between the lesion lengths of clip-dipping inoculation and FHB Type II resistance from adult plants were significant (r=0.45; P<0.05. Results from two other seedling inoculation methods, spraying and pin-point inoculation, were not correlated with adult FHB resistance. Single linear correlation was not significant between seed germination assays (soaking and soak-dry and FHB resistance (Type I and Type II, respectively. These results showed that clip-dipping inoculation method using F. graminearum may offer a real possibility of simple, rapid, and reliable for the early screening of FHB resistance in wheat.

  10. Expanding the substrate scope of chitooligosaccharide oxidase from Fusarium graminearum by structure-inspired mutagenesis

    NARCIS (Netherlands)

    Ferrari, Alessandro; Lee, Misun; Fraaije, Marco

    2015-01-01

    Chitooligosaccharide oxidase from Fusarium graminearum (ChitO) oxidizes N-acetyl-D-glucosamine (GlcNAc) and its oligomers with high efficiency at the C1-hydroxyl moiety while it shows poor or no activity with other carbohydrates. By sequence and structural comparison with other known carbohydrate

  11. The role of double covalent flavin binding in chito-oligosaccharide oxidase from Fusarium graminearum

    NARCIS (Netherlands)

    Heuts, Dominic P. H. M.; Winter, Remko T.; Damsma, Gerke E.; Janssen, Dick B.; Fraaije, Marco W.

    2008-01-01

    ChitO (chito-oligosaccharide oxidase) from Fusarium graminearum catalyses the regioselective oxidation of N-acetylated oligosaccharides. The enzyme harbours an FAD cofactor that is covalently attached to His(94) and Cys(154). The functional role of this unusual bi-covalent flavin-protein linkage was

  12. Semi-selective medium for Fusarium graminearum detection in seed samples

    Directory of Open Access Journals (Sweden)

    Marivane Segalin

    2010-12-01

    Full Text Available Fungi of the genus Fusarium cause a variety of difficult to control diseases in different crops, including winter cereals and maize. Among the species of this genus Fusarium graminearum deserves attention. The aim of this work was to develop a semi-selective medium to study this fungus. In several experiments, substrates for fungal growth were tested, including fungicides and antibiotics such as iprodiona, nystatin and triadimenol, and the antibacterial agents streptomycin and neomycin sulfate. Five seed samples of wheat, barley, oat, black beans and soybeans for F. graminearum detection by using the media Nash and Snyder agar (NSA, Segalin & Reis agar (SRA and one-quarter dextrose agar (1/4PDA; potato 50g; dextrose 5g and agar 20g, either unsupplemented or supplemented with various concentrations of the antimicrobial agents cited above. The selected components and concentrations (g.L-1 of the proposed medium, Segalin & Reis agar (SRA-FG, were: iprodiona 0.05; nystatin 0,025; triadimenol 0.015; neomycin sulfate 0.05; and streptomycin sulfate, 0.3 added of ¼ potato sucrose agar. In the isolation from seeds of cited plant species, the sensitivity of this medium was similar to that of NSA but with de advantage of maintaining the colony morphological aspects similar to those observed in potato-dextrose-agar medium.

  13. Trichothecene chemotype diversity of Fusarium graminearum isolated from wheat, maize and barley in Serbia

    Directory of Open Access Journals (Sweden)

    Obradović Ana

    2017-01-01

    Full Text Available Diversity of trichothecene chemotypes of Fusarium graminearum isolated from kernels of wheat, barley and maize grown under various agro-ecological conditions on 13 locations was analysed. Sixteen strains were tested for the effective capability to produce 15-ADON, 3-ADON and NIV, by using the liquid chromatography-tandem mass spectrometry (LC-MS/MS system. Fourteen out of sixteen analyzed strains produced 15-ADON, while remaining two were of the 3-ADON chemotype. Multiplex PCR reaction with two sets of specific primers for TRI3 and TRI12 genes was applied to identify trichothecene chemotypes (3-ADON, 15-ADON and NIV. The expected sizes of amplified fragments for TRI3 gene primer set are 840 bp (NIV, 610 bp (15-ADON and 243 bp (3-ADON. The amplified fragments for TRI12 gene primer set should be 840 bp (NIV, 670 bp (15-ADON and 410 bp (3-ADON. All F. graminearum isolates were of the 15-ADON chemotype, i.e. their bands were 610 bp and 670 bp size for TRI3 and TRI12 genes, respectively. The results indicate that genotypic characterisation does not correspond to determined chemotypes and this is a reason why the analyses for the risk of mycotoxins contamination should not be based only on trichotecene genotype determination. Due to high temperature differences in cereal growing regions in Serbia, the presence of other chemotypes could be expected. In order to determine whether besides 15-ADON there are other F. graminearum chemotypes on wheat, barley and maize kernels, further studies should include a large number of isolates from different agro-ecological conditions. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR31023

  14. Genetic Diversity in Fusarium graminearum from a Major Wheat-Producing Region of Argentina

    Directory of Open Access Journals (Sweden)

    Giuseppina Mulè

    2011-10-01

    Full Text Available The Fusarium graminearum species complex (FGSC is a group of mycotoxigenic fungi that are the primary cause of Fusarium head blight (FHB of wheat worldwide. The distribution, frequency of occurrence, and genetic diversity of FGSC species in cereal crops in South America is not well understood compared to some regions of Asia, Europe and North America. Therefore, we examined the frequency and genetic diversity of a collection of 183 FGSC isolates recovered from wheat grown during multiple growing seasons and across a large area of eastern Argentina, a major wheat producing region in South America. Sequence analysis of the translation elongation factor 1−α and β-tubulin genes as well as Amplified Fragment Length Polymorphism (AFLP analyses indicated that all isolates were the FGSC species F. graminearum sensu stricto. AFLP analysis resolved at least 11 subgroups, and all the isolates represented different AFLP haplotypes. AFLP profile and geographic origin were not correlated. Previously obtained trichothecene production profiles of the isolates revealed that the 15-acetyldeoxynivalenol chemotype was slightly more frequent than the 3-acetyldeoxynivalenol chemotype among the isolates. These data extend the current understanding of FGSC diversity and provide further evidence that F. graminearum sensu stricto is the predominant cause of FHB in the temperate main wheat-growing area of Argentina. Moreover, two isolates of F. crookwellense and four of F. pseudograminearum were also recovered from wheat samples and sequenced. The results also suggest that, although F. graminearum sensu stricto was the only FGSC species recovered in this study, the high level of genetic diversity within this species should be considered in plant breeding efforts and development of other disease management strategies aimed at reducing FHB.

  15. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Hokyoung Son

    2011-10-01

    Full Text Available Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The fungus produces mycotoxins that are harmful to animal and human. In this study, a systematic analysis of 17 phenotypes of the mutants in 657 Fusarium graminearum genes encoding putative transcription factors (TFs resulted in a database of over 11,000 phenotypes (phenome. This database provides comprehensive insights into how this cereal pathogen of global significance regulates traits important for growth, development, stress response, pathogenesis, and toxin production and how transcriptional regulations of these traits are interconnected. In-depth analysis of TFs involved in sexual development revealed that mutations causing defects in perithecia development frequently affect multiple other phenotypes, and the TFs associated with sexual development tend to be highly conserved in the fungal kingdom. Besides providing many new insights into understanding the function of F. graminearum TFs, this mutant library and phenome will be a valuable resource for characterizing the gene expression network in this fungus and serve as a reference for studying how different fungi have evolved to control various cellular processes at the transcriptional level.

  16. Wheat crown rot pathogens Fusarium graminearum and F. pseudograminearum lack specialization.

    Science.gov (United States)

    Chakraborty, Sukumar; Obanor, Friday; Westecott, Rhyannyn; Abeywickrama, Krishanthi

    2010-10-01

    This article reports a lack of pathogenic specialization among Australian Fusarium graminearum and F. pseudograminearum causing crown rot (CR) of wheat using analysis of variance (ANOVA), principal component and biplot analysis, Kendall's coefficient of concordance (W), and κ statistics. Overall, F. pseudograminearum was more aggressive than F. graminearum, supporting earlier delineation of the crown-infecting group as a new species. Although significant wheat line-pathogen isolate interaction in ANOVA suggested putative specialization when seedlings of 60 wheat lines were inoculated with 4 pathogen isolates or 26 wheat lines were inoculated with 10 isolates, significant W and κ showed agreement in rank order of wheat lines, indicating a lack of specialization. The first principal component representing nondifferential aggressiveness explained a large part (up to 65%) of the variation in CR severity. The differential components were small and more pronounced in seedlings than in adult plants. By maximizing variance on the first two principal components, biplots were useful for highlighting the association between isolates and wheat lines. A key finding of this work is that a range of analytical tools are needed to explore pathogenic specialization, and a statistically significant interaction in an ANOVA cannot be taken as conclusive evidence of specialization. With no highly resistant wheat cultivars, Fusarium isolates mostly differ in aggressiveness; however, specialization may appear as more resistant cultivars become widespread.

  17. PAM: Particle automata model in simulation of Fusarium graminearum pathogen expansion.

    Science.gov (United States)

    Wcisło, Rafał; Miller, S Shea; Dzwinel, Witold

    2016-01-21

    The multi-scale nature and inherent complexity of biological systems are a great challenge for computer modeling and classical modeling paradigms. We present a novel particle automata modeling metaphor in the context of developing a 3D model of Fusarium graminearum infection in wheat. The system consisting of the host plant and Fusarium pathogen cells can be represented by an ensemble of discrete particles defined by a set of attributes. The cells-particles can interact with each other mimicking mechanical resistance of the cell walls and cell coalescence. The particles can move, while some of their attributes can be changed according to prescribed rules. The rules can represent cellular scales of a complex system, while the integrated particle automata model (PAM) simulates its overall multi-scale behavior. We show that due to the ability of mimicking mechanical interactions of Fusarium tip cells with the host tissue, the model is able to simulate realistic penetration properties of the colonization process reproducing both vertical and lateral Fusarium invasion scenarios. The comparison of simulation results with micrographs from laboratory experiments shows encouraging qualitative agreement between the two. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Biocontrol of Fusarium graminearum sensu stricto, Reduction of Deoxynivalenol Accumulation and Phytohormone Induction by Two Selected Antagonists.

    Science.gov (United States)

    Palazzini, Juan; Roncallo, Pablo; Cantoro, Renata; Chiotta, Maria; Yerkovich, Nadia; Palacios, Sofia; Echenique, Viviana; Torres, Adriana; Ramírez, María; Karlovsky, Petr; Chulze, Sofia

    2018-02-20

    Fusarium head blight (FHB) is a devastating disease that causes extensive yield and quality losses to wheat and other small cereal grains worldwide. Species within the Fusarium graminearum complex are the main pathogens associated with the disease, F. graminearum sensu stricto being the main pathogen in Argentina. Biocontrol can be used as part of an integrated pest management strategy. Phytohormones play a key role in the plant defense system and their production can be induced by antagonistic microorganisms. The aims of this study were to evaluate the effect of the inoculation of Bacillus velezensis RC 218, F. graminearum and their co-inoculation on the production of salicylic acid (SA) and jasmonic acid (JA) in wheat spikes at different periods of time under greenhouse conditions, and to evaluate the effect of B. velezensis RC 218 and Streptomyces albidoflavus RC 87B on FHB disease incidence, severity and deoxynivalenol accumulation on Triticum turgidum L. var. durum under field conditions. Under greenhouse conditions the production of JA was induced after F. graminearum inoculation at 48 and 72 h, but JA levels were reduced in the co-inoculated treatments. No differences in JA or SA levels were observed between the B. velezensis treatment and the water control. In the spikes inoculated with F. graminearum, SA production was induced early (12 h), as it was shown for initial FHB basal resistance, while JA was induced at a later stage (48 h), revealing different defense strategies at different stages of infection by the hemibiotrophic pathogen F. graminearum. Both B. velezensis RC 218 and S. albidoflavus RC 87B effectively reduced FHB incidence (up to 30%), severity (up to 25%) and deoxynivalenol accumulation (up to 51%) on durum wheat under field conditions.

  19. Biocontrol of Fusarium graminearum sensu stricto, Reduction of Deoxynivalenol Accumulation and Phytohormone Induction by Two Selected Antagonists

    Directory of Open Access Journals (Sweden)

    Juan Palazzini

    2018-02-01

    Full Text Available Fusarium head blight (FHB is a devastating disease that causes extensive yield and quality losses to wheat and other small cereal grains worldwide. Species within the Fusarium graminearum complex are the main pathogens associated with the disease, F. graminearum sensu stricto being the main pathogen in Argentina. Biocontrol can be used as part of an integrated pest management strategy. Phytohormones play a key role in the plant defense system and their production can be induced by antagonistic microorganisms. The aims of this study were to evaluate the effect of the inoculation of Bacillus velezensis RC 218, F. graminearum and their co-inoculation on the production of salicylic acid (SA and jasmonic acid (JA in wheat spikes at different periods of time under greenhouse conditions, and to evaluate the effect of B. velezensis RC 218 and Streptomyces albidoflavus RC 87B on FHB disease incidence, severity and deoxynivalenol accumulation on Triticum turgidum L. var. durum under field conditions. Under greenhouse conditions the production of JA was induced after F. graminearum inoculation at 48 and 72 h, but JA levels were reduced in the co-inoculated treatments. No differences in JA or SA levels were observed between the B. velezensis treatment and the water control. In the spikes inoculated with F. graminearum, SA production was induced early (12 h, as it was shown for initial FHB basal resistance, while JA was induced at a later stage (48 h, revealing different defense strategies at different stages of infection by the hemibiotrophic pathogen F. graminearum. Both B. velezensis RC 218 and S. albidoflavus RC 87B effectively reduced FHB incidence (up to 30%, severity (up to 25% and deoxynivalenol accumulation (up to 51% on durum wheat under field conditions.

  20. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse.

    Science.gov (United States)

    Kheiri, A; Moosawi Jorf, S A; Malihipour, A; Saremi, H; Nikkhah, M

    2016-12-01

    Fusarium head blight (FHB) disease caused by Fusarium graminearum is one of the most important diseases of wheat in humid and warm areas. This disease significantly reduces yield as well as seed quality. The aim of this work was to evaluate the possibility of control of FHB by chitosan (CS) and chitosan nanoparticles (CS/NPs). In vitro, the application of various concentrations of CS and CS/NPs showed significant inhibition of both radial mycelial growth and number of colonies formed against F. graminearum. The application of 1000 and 5000ppm concentration of CS and CS/NPs produced maximum inhibition of radial mycelial growth in comparison to the control, respectively. The microscopic examination, of treated F. graminearum with the CS and CS/NPs, showed dehydration and deformation in mycelial growth and some hyphae were collapsed. The maximum percentage reduction number of colonies was observed in 5000ppm concentration of both CS and CS/NPs. To test the effect of CS and CS/NPs on spore germination, four concentrations were used for 4 and 24h incubation. The 24h incubation of F. graminearum spores with a 5000ppm solution of CS greatly reduced the number of germinating spores. In greenhouse trials, the disease severity percentage was low when CS and CS/NPs were applied before fungus inoculation on the plants and 1000ppm concentration. The spores of F. graminearum germinated on the anther, hyphae penetrated into anther and colonized the palea, lemma and glume after 24 and 72 hpi, respectively. Wherease, the spikelets treated with CS and CS/NPs were infected slowly. Light microscopy and TEM observations indicated that mycelium penetrated into the cells through stoma and transited to other cells by cell wall or plasmodesmata. Mycelial growth caused conidia into cells but CS and CS/NPs prevented of it's growth. Results showed that CS and CS/NPs could be a useful biological pesticide for controlling FHB. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum.

    Science.gov (United States)

    Mousa, Walaa K; Shearer, Charles; Limay-Rios, Victor; Ettinger, Cassie L; Eisen, Jonathan A; Raizada, Manish N

    2016-09-26

    The ancient African crop, finger millet, has broad resistance to pathogens including the toxigenic fungus Fusarium graminearum. Here, we report the discovery of a novel plant defence mechanism resulting from an unusual symbiosis between finger millet and a root-inhabiting bacterial endophyte, M6 (Enterobacter sp.). Seed-coated M6 swarms towards root-invading Fusarium and is associated with the growth of root hairs, which then bend parallel to the root axis, subsequently forming biofilm-mediated microcolonies, resulting in a remarkable, multilayer root-hair endophyte stack (RHESt). The RHESt results in a physical barrier that prevents entry and/or traps F. graminearum, which is then killed. M6 thus creates its own specialized killing microhabitat. Tn5-mutagenesis shows that M6 killing requires c-di-GMP-dependent signalling, diverse fungicides and resistance to a Fusarium-derived antibiotic. Further molecular evidence suggests long-term host-endophyte-pathogen co-evolution. The end result of this remarkable symbiosis is reduced deoxynivalenol mycotoxin, potentially benefiting millions of subsistence farmers and livestock. Further results suggest that the anti-Fusarium activity of M6 may be transferable to maize and wheat. RHESt demonstrates the value of exploring ancient, orphan crop microbiomes.

  2. Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum

    DEFF Research Database (Denmark)

    Kosawang, Chatchai; Karlsson, Magnus; Vélëz, Heriberto

    2014-01-01

    The fungus Clonostachys rosea is antagonistic against plant pathogens, including Fusarium graminearum, which produces the oestrogenic mycotoxin zearalenone (ZEA). ZEA inhibits other fungi, and C. rosea can detoxify ZEA through the enzyme zearalenone lactonohydrolase (ZHD101). As the relevance...... wheat seedlings against foot rot caused by the ZEA-producing F. graminearum. These data show that ZEA detoxification by ZHD101 is important for the biocontrol ability of C. rosea against F. graminearum....

  3. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis.

    Science.gov (United States)

    Li, Zhao; Zhou, Miaoping; Zhang, Zengyan; Ren, Lijuan; Du, Lipu; Zhang, Boqiao; Xu, Huijun; Xin, Zhiyong

    2011-03-01

    Fusarium head blight (scab), primarily caused by Fusarium graminearum, is a devastating disease of wheat (Triticum aestivum L.) worldwide. Wheat sharp eyespot, mainly caused by Rhizoctonia cerealis, is one of the major diseases of wheat in China. The defensin RsAFP2, a small cyteine-rich antifungal protein from radish (Raphanus sativus), was shown to inhibit growth in vitro of agronomically important fungal pathogens, such as F. graminearum and R. cerealis. The RsAFP2 gene was transformed into Chinese wheat variety Yangmai 12 via biolistic bombardment to assess the effectiveness of the defensin in protecting wheat from the fungal pathogens in multiple locations and years. The genomic PCR and Southern blot analyses indicated that RsAFP2 was integrated into the genomes of the transgenic wheat lines and heritable. RT-PCR and Western blot proved that the RsAFP2 was expressed in these transgenic wheat lines. Disease tests showed that four RsAFP2 transgenic lines (RA1-RA4) displayed enhanced resistance to F. graminearum compared to the untransformed Yangmai 12 and the null-segregated plants. Assays on Q-RT-PCR and disease severity showed that the express level of RsAFP2 was associated with the enhanced resistance degree. Two of these transgenic lines (RA1 and RA2) also exhibited enhanced resistance to R. cerealis. These results indicated that the expression of RsAFP2 conferred increased resistance to F. graminearum and R. cerealis in transgenic wheat.

  4. Simultaneous detection of Fusarium culmorum and F. graminearum in plant material by duplex PCR with melting curve analysis.

    Science.gov (United States)

    Brandfass, Christoph; Karlovsky, Petr

    2006-01-23

    Fusarium head blight (FHB) is a disease of cereal crops, which has a severe impact on wheat and barley production worldwide. Apart from reducing the yield and impairing grain quality, FHB leads to contamination of grain with toxic secondary metabolites (mycotoxins), which pose a health risk to humans and livestock. The Fusarium species primarily involved in FHB are F. graminearum and F. culmorum. A key prerequisite for a reduction in the incidence of FHB is an understanding of its epidemiology. We describe a duplex-PCR-based method for the simultaneous detection of F. culmorum and F. graminearum in plant material. Species-specific PCR products are identified by melting curve analysis performed in a real-time thermocycler in the presence of the fluorescent dye SYBR Green I. In contrast to multiplex real-time PCR assays, the method does not use doubly labeled hybridization probes. PCR with product differentiation by melting curve analysis offers a cost-effective means of qualitative analysis for the presence of F. culmorum and F. graminearum in plant material. This method is particularly suitable for epidemiological studies involving a large number of samples.

  5. Simultaneous detection of Fusarium culmorum and F. graminearum in plant material by duplex PCR with melting curve analysis

    Directory of Open Access Journals (Sweden)

    Karlovsky Petr

    2006-01-01

    Full Text Available Abstract Background Fusarium head blight (FHB is a disease of cereal crops, which has a severe impact on wheat and barley production worldwide. Apart from reducing the yield and impairing grain quality, FHB leads to contamination of grain with toxic secondary metabolites (mycotoxins, which pose a health risk to humans and livestock. The Fusarium species primarily involved in FHB are F. graminearum and F. culmorum. A key prerequisite for a reduction in the incidence of FHB is an understanding of its epidemiology. Results We describe a duplex-PCR-based method for the simultaneous detection of F. culmorum and F. graminearum in plant material. Species-specific PCR products are identified by melting curve analysis performed in a real-time thermocycler in the presence of the fluorescent dye SYBR Green I. In contrast to multiplex real-time PCR assays, the method does not use doubly labeled hybridization probes. Conclusion PCR with product differentiation by melting curve analysis offers a cost-effective means of qualitative analysis for the presence of F. culmorum and F. graminearum in plant material. This method is particularly suitable for epidemiological studies involving a large number of samples.

  6. Paenibacillus polymyxa A26 sfp-type phosphopantetheinyl transferase inactivation limits bacterial antagonism against Fusarium graminearum but not of F. culmorum

    Directory of Open Access Journals (Sweden)

    Islam A eAbd El Daim

    2015-05-01

    Full Text Available Fusarium graminearum and F. culmorum are the causing agents of a destructive disease known as Fusarium head blight (FHB. FHB is a re-emerging disease in small grain cereals which impairs both the grain yield and the quality. Most serious consequence is the contamination of grain with Fusarium mycotoxins that are severe threat to humans and animals. Biological control has been suggested as one of the integrated management strategies to control FHB. Paenibacillus polymyxa is considered as a promising biocontrol agent due to its unique antibiotic spectrum. In order to optimize strain A26 production, formulation and application strategies traits important for its compatibility need to be revealed. Here we developed a toolbox comprising of dual culture plate assays and wheat kernel assays including simultaneous monitoring of FHB causing pathogens A26 and mycotoxins produced. Using this system we show that, besides generally known lipopeptide antibiotic production by P. polymyxa, biofilm formation ability may play a crucial role in the case of stain A26 F. culmorum antagonism.

  7. MFS Transporters and GABA Metabolism Are Involved in the Self-Defense Against DON in Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Qinhu Wang

    2018-04-01

    Full Text Available Trichothecene mycotoxins, such as deoxynivalenol (DON produced by the fungal pathogen, Fusarium graminearum, are not only important for plant infection but are also harmful to human and animal health. Trichothecene targets the ribosomal protein Rpl3 that is conserved in eukaryotes. Hence, a self-defense mechanism must exist in DON-producing fungi. It is reported that TRI (trichothecene biosynthesis 101 and TRI12 are two genes responsible for self-defense against trichothecene toxins in Fusarium. In this study, however, we found that simultaneous disruption of TRI101 and TRI12 has no obvious influence on DON resistance upon exogenous DON treatment in F. graminearum, suggesting that other mechanisms may be involved in self-defense. By using RNA-seq, we identified 253 genes specifically induced in DON-treated cultures compared with samples from cultures treated or untreated with cycloheximide, a commonly used inhibitor of eukaryotic protein synthesis. We found that transporter genes are significantly enriched in this group of DON-induced genes. Of those genes, 15 encode major facilitator superfamily transporters likely involved in mycotoxin efflux. Significantly, we found that genes involved in the metabolism of gamma-aminobutyric acid (GABA, a known inducer of DON production in F. graminearum, are significantly enriched among the DON-induced genes. The GABA biosynthesis gene PROLINE UTILIZATION 2-2 (PUT2-2 is downregulated, while GABA degradation genes are upregulated at least twofold upon treatment with DON, resulting in decreased levels of GABA. Taken together, our results suggest that transporters influencing DON efflux are important for self-defense and that GABA mediates the balance of DON production and self-defense in F. graminearum.

  8. Sharing a Host Plant (Wheat [Triticum aestivum]) Increases the Fitness of Fusarium graminearum and the Severity of Fusarium Head Blight but Reduces the Fitness of Grain Aphids (Sitobion avenae)

    Science.gov (United States)

    Drakulic, Jassy; Caulfield, John; Woodcock, Christine; Jones, Stephen P. T.; Linforth, Robert; Bruce, Toby J. A.

    2015-01-01

    We hypothesized that interactions between fusarium head blight-causing pathogens and herbivores are likely to occur because they share wheat as a host plant. Our aim was to investigate the interactions between the grain aphid, Sitobion avenae, and Fusarium graminearum on wheat ears and the role that host volatile chemicals play in mediating interactions. Wheat ears were treated with aphids and F. graminearum inoculum, together or separately, and disease progress was monitored by visual assessment and by quantification of pathogen DNA and mycotoxins. Plants exposed to both aphids and F. graminearum inoculum showed accelerated disease progression, with a 2-fold increase in disease severity and 5-fold increase in mycotoxin accumulation over those of plants treated only with F. graminearum. Furthermore, the longer the period of aphid colonization of the host prior to inoculation with F. graminearum, the greater the amount of pathogen DNA that accumulated. Headspace samples of plant volatiles were collected for use in aphid olfactometer assays and were analyzed by gas chromatography-mass spectrometry (GC-MS) and GC-coupled electroantennography. Disease-induced plant volatiles were repellent to aphids, and 2-pentadecanone was the key semiochemical underpinning the repellent effect. We measured aphid survival and fecundity on infected wheat ears and found that both were markedly reduced on infected ears. Thus, interactions between F. graminearum and grain aphids on wheat ears benefit the pathogen at the expense of the pest. Our findings have important consequences for disease epidemiology, because we show increased spread and development of host disease, together with greater disease severity and greater accumulation of pathogen DNA and mycotoxin, when aphids are present. PMID:25769834

  9. Systematic discovery of regulatory motifs in Fusarium graminearum by comparing four Fusarium genomes

    Directory of Open Access Journals (Sweden)

    Kistler Corby

    2010-03-01

    Full Text Available Abstract Background Fusarium graminearum (Fg, a major fungal pathogen of cultivated cereals, is responsible for billions of dollars in agriculture losses. There is a growing interest in understanding the transcriptional regulation of this organism, especially the regulation of genes underlying its pathogenicity. The generation of whole genome sequence assemblies for Fg and three closely related Fusarium species provides a unique opportunity for such a study. Results Applying comparative genomics approaches, we developed a computational pipeline to systematically discover evolutionarily conserved regulatory motifs in the promoter, downstream and the intronic regions of Fg genes, based on the multiple alignments of sequenced Fusarium genomes. Using this method, we discovered 73 candidate regulatory motifs in the promoter regions. Nearly 30% of these motifs are highly enriched in promoter regions of Fg genes that are associated with a specific functional category. Through comparison to Saccharomyces cerevisiae (Sc and Schizosaccharomyces pombe (Sp, we observed conservation of transcription factors (TFs, their binding sites and the target genes regulated by these TFs related to pathways known to respond to stress conditions or phosphate metabolism. In addition, this study revealed 69 and 39 conserved motifs in the downstream regions and the intronic regions, respectively, of Fg genes. The top intronic motif is the splice donor site. For the downstream regions, we noticed an intriguing absence of the mammalian and Sc poly-adenylation signals among the list of conserved motifs. Conclusion This study provides the first comprehensive list of candidate regulatory motifs in Fg, and underscores the power of comparative genomics in revealing functional elements among related genomes. The conservation of regulatory pathways among the Fusarium genomes and the two yeast species reveals their functional significance, and provides new insights in their

  10. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum.

    Science.gov (United States)

    Yu, Fangwei; Gu, Qin; Yun, Yingzi; Yin, Yanni; Xu, Jin-Rong; Shim, Won-Bo; Ma, Zhonghua

    2014-07-01

    The target of rapamycin (TOR) signaling pathway plays critical roles in controlling cell growth in a variety of eukaryotes. However, the contribution of this pathway in regulating virulence of plant pathogenic fungi is unknown. We identified and characterized nine genes encoding components of the TOR pathway in Fusarium graminearum. Biological, genetic and biochemical functions of each component were investigated. The FgFkbp12-rapamycin complex binds to the FgTor kinase. The type 2A phosphatases FgPp2A, FgSit4 and FgPpg1 were found to interact with FgTap42, a downstream component of FgTor. Among these, we determined that FgPp2A is likely to be essential for F. graminearum survival, and FgSit4 and FgPpg1 play important roles in cell wall integrity by positively regulating the phosphorylation of FgMgv1, a key MAP kinase in the cell wall integrity pathway. In addition, the FgPpg1 interacting protein, FgTip41, is involved in regulating mycelial growth and virulence. Notably, FgTip41 does not interact with FgTap42 but with FgPpg1, suggesting the existence of FgTap42:FgPpg1:FgTip41 heterotrimer in F. graminearum, a complex not observed in the yeast model. Collectively, we defined a genetic regulatory framework that elucidates how the TOR pathway regulates virulence and vegetative development in F. graminearum. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  11. Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, J.D.; Svensson, Birte

    2010-01-01

    A proteomic analysis was conducted to map the events during the initial stages of the interaction between the fungal pathogen Fusarium graminearum and the susceptible barley cultivar Scarlett. Quantification of fungal DNA demonstrated a sharp increase in fungal biomass in barley spikelets at 3 da...

  12. In vitro sensitivity reduction of Fusarium graminearum to DMI and QoI fungicides

    Directory of Open Access Journals (Sweden)

    Aveline Avozani

    2014-12-01

    Full Text Available In Brazil, Fusarium head blight (FHB affecting wheat can cause up to 39.8% damage. Resistant cultivars are not available yet; thus, short-term disease control relies on the use of fungicides. The first step to improve control is to monitor fungal populations that are sensitivity to chemicals in order to achieve efficient FHB management. In vitro experiments were conducted to evaluate the inhibitory concentration (IC50 of fungicides for both mycelial growth and conidial germination of ten Fusarium graminearum isolates. The following demethylation inhibitor (DMI fungicides were tested: metconazole, prothioconazole and tebuconazole. In addition, pyraclostrobin and trifloxystrobin were included, representing QoI fungicides, as well as three co-formulations containing metconazole + pyraclostrobin, prothioconazole + trifloxystrobin, and tebuconazole + trifloxystrobin. For mycelial growth, the overall mean IC50 of isolates was: metconazole 0.07, prothioconazole 0.1, and tebuconazole 0.19 mg/L. For the co-formulations, it was: prothioconazole + trifloxystrobin 0.08, tebuconazole + trifloxystrobin 0.12, and metconazole + pyraclostrobin 0.14 mg/L. Regarding spore germination inhibition, IC50 for prothioconazole + trifloxystrobin was 0.06, for tebuconazole + trifloxystrobin, 0.12 mg/L, for QoI alone pyraclostrobin, was 0.09, and for trifloxystrobin, 0.28 mg/L. There was a sensitivity shift among isolates and the highest fungitoxicity to F. graminearum was confirmed for prothioconazole, metconazole and tebuconazole .

  13. Adjuvantes e herbicidas e a infectividade de Fusarium graminearum, agente potencial de biocontrole de Egeria densa e Egeria najas Adjuvants and herbicides and the infectivity of Fusarium graminearum, a potential biocontrol agent of Egeria densa and Egeria najas

    Directory of Open Access Journals (Sweden)

    C.R. Borges Neto

    2004-03-01

    Full Text Available Foram estudados os efeitos da adição de adjuvantes e a associação com herbicidas na infectividade do fungo dentro do patossistema Fusarium graminearum x Egeria spp. Foram utilizadas plantas sadias de Egeria densa e E. najas inoculadas com uma suspensão de arroz moído colonizado por F. graminearum, na concentração de 0,7 g L-1. Os tubos de ensaio contendo as plantas imersas na referida suspensão foram mantidos em incubadora à temperatura de 25 ºC e fotoperíodo de 12 horas diárias de luz, por oito dias, durante os quais foram avaliados os sintomas nas plantas a cada dois dias e o crescimento destas através do incremento de matéria fresca ao final do experimento. O efeito de 14 adjuvantes e 6 herbicidas, adicionados à suspensão de inóculo, sobre a ação de F. graminearum em E. densa e E. najas foi avaliado. De modo geral, os adjuvantes melhoraram a eficiência do bioerbicida e a associação herbicida + fungo proporcionou maior severidade de doença e controle do crescimento das plantas.The effects of adding adjuvants and their association with herbicides on fungus infectivity were studied in the Fusarium graminearum x Egeria spp. pathosystem. Healthy Egeria densa and E. naja plants were inoculated with suspension of ground rice with F. graminearum, at a concentration of 0.7 g L-1. The assay tubes with the plants immersed in the suspension were kept in the incubator at the temperature of 25 ºC and photoperiod of 12 hours daily, with plant symptoms being evaluated every two hours and plant growth monitored based on fresh matter increase at the end of the experiment. The effect of 14 adjuvants and 6 herbicides added to the inoculum on the action of F. graminearum against E. densa and E. najas was evaluated. In general, the adjuvants improved bioherbicide efficiency and the herbicide + fungus association increased disease severity and plant growth control.

  14. Mycological survey of Korean cereals and production of mycotoxins by Fusarium isolates.

    OpenAIRE

    Lee, U S; Jang, H S; Tanaka, T; Toyasaki, N; Sugiura, Y; Oh, Y J; Cho, C M; Ueno, Y

    1986-01-01

    The fungal species isolated from Korean cereals (barley, polished barley, wheat, rye, and malt) were Alternaria spp., Aspergillus spp., Chaetomium spp., Drechslera spp., Epicoccum sp., Fusarium spp., and Penicillium spp., etc. The number of Fusarium strains isolated was 36, and their ability to produce Fusarium mycotoxins on rice was tested. Nivalenol (NIV) was produced by Fusarium graminearum (7 of 9 isolates), Fusarium oxysporum (3 of 10 isolates), and Fusarium spp. (7 of 15 isolates). Of 1...

  15. Monitoring and Predicting the Long Distance Transport of Fusarium graminearum, Causal Agent of Fusarium Head Blight in Wheat and Barley

    Science.gov (United States)

    Prussin, Aaron Justin, II

    Fusarium head blight (FHB), caused by Fusarium graminearum , is a serious disease of wheat and barley that has caused several billion dollars in crop losses over the last decade in the United States. Spores of F. graminearum are released from corn and small grain residues left-over from the previous growing season and are transported long distances in the atmosphere before being deposited. Current risk assessment tools consider environmental conditions favorable for disease development, but do not include spore transport. Long distance transport models have been proposed for a number of plant pathogens, but many of these models have not been experimentally validated. In order to predict the atmospheric transport of F. graminearum, the potential source strength ( Qpot) of inoculum must be known. We conducted a series of laboratory and field experiments to estimate Qpot from a field-scale source of inoculum of F. graminearum. Perithecia were generated on artificial (carrot agar) and natural (corn stalk) substrates. Artificial substrate (carrot agar) produced 15+/-0.4 perithecia cm-2, and natural substrate (corn stalk) produced 44+/-2 perithecia cm-2. Individual perithecia were excised from both substrate types and allowed to release ascospores every 24 hours. Perithecia generated from artificial (carrot agar) and natural (corn stalk) substrates released a mean of 104+/-5 and 276+/-16 ascospores, respectively. A volumetric spore trap was placed inside a 3,716 m2 clonal source of inoculum in 2011 and 2012. Results indicated that ascospores were released under field conditions predominantly (>90%) during the night (1900 to 0700 hours). Estimates of Qpot for our field-scale sources of inoculum were approximately 4 billion ascospores per 3,716 m 2. Release-recapture studies were conducted from a clonal field-scale source of F. graminearum in 2011 and 2012. Microsatellites were used to identify the released clone of F. graminearum at distances up to 1 km from the source

  16. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Chenfang Wang

    2011-12-01

    Full Text Available As in other eukaryotes, protein kinases play major regulatory roles in filamentous fungi. Although the genomes of many plant pathogenic fungi have been sequenced, systematic characterization of their kinomes has not been reported. The wheat scab fungus Fusarium graminearum has 116 protein kinases (PK genes. Although twenty of them appeared to be essential, we generated deletion mutants for the other 96 PK genes, including 12 orthologs of essential genes in yeast. All of the PK mutants were assayed for changes in 17 phenotypes, including growth, conidiation, pathogenesis, stress responses, and sexual reproduction. Overall, deletion of 64 PK genes resulted in at least one of the phenotypes examined, including three mutants blocked in conidiation and five mutants with increased tolerance to hyperosmotic stress. In total, 42 PK mutants were significantly reduced in virulence or non-pathogenic, including mutants deleted of key components of the cAMP signaling and three MAPK pathways. A number of these PK genes, including Fg03146 and Fg04770 that are unique to filamentous fungi, are dispensable for hyphal growth and likely encode novel fungal virulence factors. Ascospores play a critical role in the initiation of wheat scab. Twenty-six PK mutants were blocked in perithecia formation or aborted in ascosporogenesis. Additional 19 mutants were defective in ascospore release or morphology. Interestingly, F. graminearum contains two aurora kinase genes with distinct functions, which has not been reported in fungi. In addition, we used the interlog approach to predict the PK-PK and PK-protein interaction networks of F. graminearum. Several predicted interactions were verified with yeast two-hybrid or co-immunoprecipitation assays. To our knowledge, this is the first functional characterization of the kinome in plant pathogenic fungi. Protein kinase genes important for various aspects of growth, developmental, and infection processes in F. graminearum were

  17. RNA-Seq Revealed Differences in Transcriptomes between 3ADON and 15ADON Populations of Fusarium graminearum In Vitro and In Planta

    OpenAIRE

    Puri, Krishna D.; Yan, Changhui; Leng, Yueqiang; Zhong, Shaobin

    2016-01-01

    Fusarium graminearum is the major causal agent of Fusarium head blight (FHB) in barley and wheat in North America. The fungus not only causes yield loss of the crops but also produces harmful trichothecene mycotoxins [Deoxynivalenol (DON) and its derivatives-3-acetyldeoxynivalenol (3ADON) and 15-acetyldeoxynivalenol (15ADON), and nivalenol (NIV)] that contaminate grains. Previous studies showed a dramatic increase of 3ADON-producing isolates with higher aggressiveness and DON production than ...

  18. Optimization for the Production of Deoxynivalenoland Zearalenone by Fusarium graminearum UsingResponse Surface Methodology

    Directory of Open Access Journals (Sweden)

    Li Wu

    2017-02-01

    Full Text Available Fusarium mycotoxins deoxynivalenol (DON and zearalenone (ZEN are the most common contaminants in cereals worldwide, causing a wide range of adverse health effects on animals and humans. Many environmental factors can affect the production of these mycotoxins. Here, we have used response surface methodology (RSM to optimize the Fusarium graminearum strain 29 culture conditions for maximal toxin production. Three factors, medium pH, incubation temperature and time, were optimized using a Box-Behnken design (BBD. The optimized conditions for DON production were pH 4.91 and an incubation temperature of 23.75 °C for 28 days, while maximal ZEN production required pH 9.00 and an incubation temperature of 15.05 °C for 28 days. The maximum levels of DON and ZEN production were 2811.17 ng/mL and 23789.70 ng/mL, respectively. Considering the total level of DON and ZEN, desirable yields of the mycotoxins were still obtained with medium pH of 6.86, an incubation temperature of 17.76 °C and a time of 28 days. The corresponding experimental values, from the validation experiments, fitted well with these predictions. This suggests that RSM could be used to optimize Fusarium mycotoxin levels, which are further purified for use as potential mycotoxin standards. Furthermore, it shows that acidic pH is a determinant for DON production, while an alkaline environment and lower temperature (approximately 15 °C are favorable for ZEN accumulation. After extraction, separation and purification processes, the isolated mycotoxins were obtained through a simple purification process, with desirable yields, and acceptable purity. The mycotoxins could be used as potential analytical standards or chemical reagents for routine analysis.

  19. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum.

    Science.gov (United States)

    Han, Jigang; Lakshman, Dilip K; Galvez, Leny C; Mitra, Sharmila; Baenziger, Peter Stephen; Mitra, Amitava

    2012-03-09

    The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Using the tools of plant genetic engineering, a broad-spectrum antimicrobial gene was tested for resistance against head blight caused by Fusarium graminearum Schwabe, a devastating disease of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) that reduces both grain yield and quality. A construct containing a bovine lactoferrin cDNA was used to transform wheat using an Agrobacterium-mediated DNA transfer system to express this antimicrobial protein in transgenic wheat. Transformants were analyzed by Northern and Western blots to determine lactoferrin gene expression levels and were inoculated with the head blight disease fungus F. graminearum. Transgenic wheat showed a significant reduction of disease incidence caused by F. graminearum compared to control wheat plants. The level of resistance in the highly susceptible wheat cultivar Bobwhite was significantly higher in transgenic plants compared to control Bobwhite and two untransformed commercial wheat cultivars, susceptible Wheaton and tolerant ND 2710. Quantification of the expressed lactoferrin protein by ELISA in transgenic wheat indicated a positive correlation between the lactoferrin gene expression levels and the levels of disease resistance. Introgression of the lactoferrin gene into elite commercial wheat, barley and other susceptible cereals may enhance resistance to F. graminearum.

  20. Causal agents of Fusarium head blight of durum wheat (Triticum durum Desf.) in central Italy and their in vitro biosynthesis of secondary metabolites.

    Science.gov (United States)

    Beccari, G; Colasante, V; Tini, F; Senatore, M T; Prodi, A; Sulyok, M; Covarelli, L

    2018-04-01

    Durum wheat samples harvested in central Italy (Umbria) were analyzed to: evaluate the occurrence of the fungal community in the grains, molecularly identify the Fusarium spp. which are part of the Fusarium head blight (FHB) complex and characterize the in vitro secondary metabolite profiles of a subset of Fusarium strains. The Fusarium genus was one of the main components of the durum wheat fungal community. The FHB complex was composed of eight species: Fusarium avenaceum (61%), F. graminearum (22%), F. poae (9%), F. culmorum (4%), F. proliferatum (2%), F. sporotrichioides (1%), F. sambucinum (0.5%) and F. langsethiae (0.5%). F. graminearum population was mainly composed of the 15-acetyldeoxynivalenol chemotype, while, F. culmorum population was composed of the 3-acetyldeoxynivalenol chemotype. In vitro characterization of secondary metabolite biosynthesis was conducted for a wide spectrum of substances, showing the mycotoxigenic potential of the species complex. F. avenaceum strains were characterized by high enniantin and moniliformin production. F. graminearum strains were in prevalence deoxynivalenol producers. F. poae strains were characterized by a high biosynthesis of beauvericin like the F. sporotrichioides strain which was also found to be a high T-2/HT-2 toxins producer. Production of aurofusarin, butenolide, gibepyrone D, fusarin C, apicidin was also reported for the analyzed strains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Assessment and Reaction of Triticum aestivum Genotypes to Fusarium graminearum and effects on Traits Related to Grain Yield and Seed Quality

    OpenAIRE

    Chappell, Matthew Randolph

    2001-01-01

    Fusarium graminearum (Schwabe), causal organism of fusarium head blight (FHB), has become a major pathogen of wheat (Triticum aestivum L.) throughout North America. Since its discovery in the United States, the disease has spread south and east until at present it is an annual threat for growers of winter wheat in the Mid-Atlantic region. Yield losses for soft red winter (SRW) wheat averaged 908 kg ha-1 in the FHB outbreak of 1998 (Griffey et al., 1999). The economic loss from this single FHB...

  2. Comparison of the Fungicide Sensitivity of Alberta and Prince Edward Island Isolates of Fusarium graminearum Producing Either 3- or 15-acetyl Deoxynivalenol

    Science.gov (United States)

    Fusarium graminearum Schwabe of the ‘3ADON’ chemotype is now displacing ‘15ADON’ isolates in Canada. One concern regarding this shift in chemotypes is related to potential differences in fungicide sensitivity. This could have significant implications as fungicide application is an important strate...

  3. Two Cdc2 Kinase Genes with Distinct Functions in Vegetative and Infectious Hyphae in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Huiquan Liu

    2015-06-01

    Full Text Available Eukaryotic cell cycle involves a number of protein kinases important for the onset and progression through mitosis, most of which are well characterized in the budding and fission yeasts and conserved in other fungi. However, unlike the model yeast and filamentous fungi that have a single Cdc2 essential for cell cycle progression, the wheat scab fungus Fusarium graminearum contains two CDC2 orthologs. The cdc2A and cdc2B mutants had no obvious defects in growth rate and conidiation but deletion of both of them is lethal, indicating that these two CDC2 orthologs have redundant functions during vegetative growth and asexual reproduction. However, whereas the cdc2B mutant was normal, the cdc2A mutant was significantly reduced in virulence and rarely produced ascospores. Although deletion of CDC2A had no obvious effect on the formation of penetration branches or hyphopodia, the cdc2A mutant was limited in the differentiation and growth of infectious growth in wheat tissues. Therefore, CDC2A plays stage-specific roles in cell cycle regulation during infectious growth and sexual reproduction. Both CDC2A and CDC2B are constitutively expressed but only CDC2A was up-regulated during plant infection and ascosporogenesis. Localization of Cdc2A- GFP to the nucleus but not Cdc2B-GFP was observed in vegetative hyphae, ascospores, and infectious hyphae. Complementation assays with chimeric fusion constructs showed that both the N- and C-terminal regions of Cdc2A are important for its functions in pathogenesis and ascosporogenesis but only the N-terminal region is important for its subcellular localization. Among the Sordariomycetes, only three Fusarium species closely related to F. graminearum have two CDC2 genes. Furthermore, F. graminearum uniquely has two Aurora kinase genes and one additional putative cyclin gene, and its orthologs of CAK1 and other four essential mitotic kinases in the budding yeast are dispensable for viability. Overall, our data

  4. Two Cdc2 Kinase Genes with Distinct Functions in Vegetative and Infectious Hyphae in Fusarium graminearum.

    Science.gov (United States)

    Liu, Huiquan; Zhang, Shijie; Ma, Jiwen; Dai, Yafeng; Li, Chaohui; Lyu, Xueliang; Wang, Chenfang; Xu, Jin-Rong

    2015-06-01

    Eukaryotic cell cycle involves a number of protein kinases important for the onset and progression through mitosis, most of which are well characterized in the budding and fission yeasts and conserved in other fungi. However, unlike the model yeast and filamentous fungi that have a single Cdc2 essential for cell cycle progression, the wheat scab fungus Fusarium graminearum contains two CDC2 orthologs. The cdc2A and cdc2B mutants had no obvious defects in growth rate and conidiation but deletion of both of them is lethal, indicating that these two CDC2 orthologs have redundant functions during vegetative growth and asexual reproduction. However, whereas the cdc2B mutant was normal, the cdc2A mutant was significantly reduced in virulence and rarely produced ascospores. Although deletion of CDC2A had no obvious effect on the formation of penetration branches or hyphopodia, the cdc2A mutant was limited in the differentiation and growth of infectious growth in wheat tissues. Therefore, CDC2A plays stage-specific roles in cell cycle regulation during infectious growth and sexual reproduction. Both CDC2A and CDC2B are constitutively expressed but only CDC2A was up-regulated during plant infection and ascosporogenesis. Localization of Cdc2A- GFP to the nucleus but not Cdc2B-GFP was observed in vegetative hyphae, ascospores, and infectious hyphae. Complementation assays with chimeric fusion constructs showed that both the N- and C-terminal regions of Cdc2A are important for its functions in pathogenesis and ascosporogenesis but only the N-terminal region is important for its subcellular localization. Among the Sordariomycetes, only three Fusarium species closely related to F. graminearum have two CDC2 genes. Furthermore, F. graminearum uniquely has two Aurora kinase genes and one additional putative cyclin gene, and its orthologs of CAK1 and other four essential mitotic kinases in the budding yeast are dispensable for viability. Overall, our data indicate that cell cycle

  5. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Han Jigang

    2012-03-01

    Full Text Available Abstract Background The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Using the tools of plant genetic engineering, a broad-spectrum antimicrobial gene was tested for resistance against head blight caused by Fusarium graminearum Schwabe, a devastating disease of wheat (Triticum aestivum L. and barley (Hordeum vulgare L. that reduces both grain yield and quality. Results A construct containing a bovine lactoferrin cDNA was used to transform wheat using an Agrobacterium-mediated DNA transfer system to express this antimicrobial protein in transgenic wheat. Transformants were analyzed by Northern and Western blots to determine lactoferrin gene expression levels and were inoculated with the head blight disease fungus F. graminearum. Transgenic wheat showed a significant reduction of disease incidence caused by F. graminearum compared to control wheat plants. The level of resistance in the highly susceptible wheat cultivar Bobwhite was significantly higher in transgenic plants compared to control Bobwhite and two untransformed commercial wheat cultivars, susceptible Wheaton and tolerant ND 2710. Quantification of the expressed lactoferrin protein by ELISA in transgenic wheat indicated a positive correlation between the lactoferrin gene expression levels and the levels of disease resistance. Conclusions Introgression of the lactoferrin gene into elite commercial wheat, barley and other susceptible cereals may enhance resistance to F. graminearum.

  6. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat.

    Science.gov (United States)

    Zhu, Xiuliang; Li, Zhao; Xu, Huijun; Zhou, Miaoping; Du, Lipu; Zhang, Zengyan

    2012-08-01

    The fungus Cochliobolus sativus is the main pathogen of common root rot, a serious soil-borne disease of wheat (Triticum aestivum L.). The fungus Fusarium graminearum is the primary pathogen of Fusarium head blight, a devastating disease of wheat worldwide. In this study, the wheat lipid transfer protein gene, TaLTP5, was cloned and evaluated for its ability to suppress disease development in transgenic wheat. TaLTP5 expression was induced after C. sativus infection. The TaLTP5 expression vector, pA25-TaLTP5, was constructed and bombarded into Chinese wheat variety Yangmai 18. Six TaLTP5 transgenic wheat lines were established and characterized. PCR and Southern blot analyses indicated that the introduced TaLTP5 gene was integrated into the genomes of six transgenic wheat lines by distinct patterns, and heritable. RT-PCR and real-time quantitative RT-PCR revealed that the TaLTP5 gene was over-expressed in the transgenic wheat lines compared to segregants lacking the transgene and wild-type wheat plants. Following challenge with C. sativus or F. graminearum, all six transgenic lines overexpressing TaLTP5 exhibited significantly enhanced resistance to both common root rot and Fusarium head blight compared to the untransformed wheat Yangmai 18.

  7. Evaluation of deoxynivalenol production in dsRNA Carrying and Cured Fusarium graminearum isolates by AYT1 expressing transformed tobacco

    Directory of Open Access Journals (Sweden)

    Samira Shahbazi

    2015-12-01

    Full Text Available Introduction: Fusarium head blight (FHB, is the most destructive disease of wheat, producing the mycotoxin deoxynivalenol, a protein synthesis inhibitor, which is harmful to humans and livestock. dsRNAmycoviruses-infected-isolates of Fusariumgraminearum, showed changes in morphological and pathogenicity phenotypes including reduced virulence towards wheat and decreased production of trichothecene mycotoxin (deoxynivalenol: DON. Materials and methods: Previous studies indicated that over expression of yeast acetyl transferase gene (ScAYT1 encoding a 3-O trichothecene acetyl transferase that converts deoxynivalenol to a less toxic acetylated form, leads to suppression of the deoxynivalenol sensitivity in pdr5 yeast mutants. To identify whether ScAYT1 over-expression in transgenic tobacco plants can deal with mycotoxin (deoxynivalenol in fungal extract and studying the effect of dsRNA contamination on detoxification and resistance level, we have treated T1 AYT1 transgenic tobacco seedlings with complete extraction of normal F. graminearum isolate carrying dsRNA metabolites. First, we introduced AYT1into the model tobacco plants through Agrobacterium-mediated transformation in an attempt to detoxify deoxynivalenol. Results: In vitro tests with extraction of dsRNA carrying and cured isolates of F. graminearum and 10 ppm of deoxynivalenol indicated variable resistance levels in transgenic plants. Discussion and conclusion: The results of this study indicate that the transgene expression AYT1 and Fusarium infection to dsRNA can induce tolerance to deoxynivalenol, followed by increased resistance to Fusarium head blight disease of wheat.

  8. Transgenic Wheat Expressing a Barley UDP-Glucosyltransferase Detoxifies Deoxynivalenol and Provides High Levels of Resistance to Fusarium graminearum.

    Science.gov (United States)

    Li, Xin; Shin, Sanghyun; Heinen, Shane; Dill-Macky, Ruth; Berthiller, Franz; Nersesian, Natalya; Clemente, Thomas; McCormick, Susan; Muehlbauer, Gary J

    2015-11-01

    Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is a devastating disease of wheat that results in economic losses worldwide. During infection, F. graminearum produces trichothecene mycotoxins, including deoxynivalenol (DON), that increase fungal virulence and reduce grain quality. Transgenic wheat expressing a barley UDP-glucosyltransferase (HvUGT13248) were developed and evaluated for FHB resistance, DON accumulation, and the ability to metabolize DON to the less toxic DON-3-O-glucoside (D3G). Point-inoculation tests in the greenhouse showed that transgenic wheat carrying HvUGT13248 exhibited significantly higher resistance to disease spread in the spike (type II resistance) compared with nontransformed controls. Two transgenic events displayed complete suppression of disease spread in the spikes. Expression of HvUGT13248 in transgenic wheat rapidly and efficiently conjugated DON to D3G, suggesting that the enzymatic rate of DON detoxification translates to type II resistance. Under field conditions, FHB severity was variable; nonetheless, transgenic events showed significantly less-severe disease phenotypes compared with the nontransformed controls. In addition, a seedling assay demonstrated that the transformed plants had a higher tolerance to DON-inhibited root growth than nontransformed plants. These results demonstrate the utility of detoxifying DON as a FHB control strategy in wheat.

  9. 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) inhibits trichothecene production by Fusarium graminearum through suppression of Tri6 expression

    DEFF Research Database (Denmark)

    Etzerodt, Thomas; Maeda, Kazuyuki; Nakajima, Yuichi

    2015-01-01

    Fusarium head blight (FHB) is a devastating disease of wheat (Triticum aestivum L.) caused by a mycotoxigenic fungus Fusarium graminearum resulting in significantly decreased yields and accumulation of toxic trichothecenes in grains. We tested 7 major secondary metabolites from wheat for their ef...... role against the accumulation of trichothecenes in wheat grain. Breeding or engineering of wheat with increased levels of benzoxazinoids could provide varieties with increased resistance against trichothecene contamination of grain and lower susceptibility to FHB...... for their effect on trichothecene production in liquid cultures of F. graminearum producing trichothecene 15-acetyldeoxynivalenol (15-ADON). 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) benzoxazinoid completely abolished toxin production without any apparent effect on fungal growth. DIMBOA strongly...

  10. Fusarium proliferatum and fumonisin B1 co-occur with Fusarium species causing Fusarium Head Blight in durum wheat in Italy

    OpenAIRE

    Amato, Barbara; Pfohl, Katharina; Tonti, Stefano; Nipoti, Paola; Dastjerdi, Raana; Pisi, Annamaria; Karlovsky, Petr; Prodi, Antonio

    2015-01-01

    Fusarium Head Blight caused by phytopathogenic Fusarium spp. with Fusarium graminearum as main causal agent is a major disease of durum wheat (Triticum durum Desf.). Mycotoxins in wheat are dominated by trichothecenes B. Fumonisins have only occasionally been reported from wheat; their occurrence was attributed to Fusarium proliferatum and Fusarium verticillioides. We investigated kernels of durum wheat grown in Italy in 2008 - 2010 for colonization with Fusarium spp. and for the content o...

  11. L-Threonine and its analogue added to autoclaved solid medium suppress trichothecene production by Fusarium graminearum.

    Science.gov (United States)

    Maeda, Kazuyuki; Nakajima, Yuichi; Tanahashi, Yoshikazu; Kitou, Yoshiyuki; Miwa, Akihiro; Kanamaru, Kyoko; Kobayashi, Tetsuo; Nishiuchi, Takumi; Kimura, Makoto

    2017-08-01

    Fusarium graminearum produces trichothecene mycotoxins under certain nutritional conditions. When L-Thr and its analogue L-allo-threonine were added to brown rice flour solid medium before inoculation, trichothecene production after 4 days of incubation was suppressed. A time-course analysis of gene expression demonstrated that L-Thr suppressed transcription of Tri6, a trichothecene master regulator gene, and a terpene cyclase Tri5 gene. Regulation of trichothecene biosynthesis by altering major primary metabolic processes may open up the possibility to develop safe chemicals for the reduction of mycotoxin contamination might be developed.

  12. Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests.

    Science.gov (United States)

    Comby, Morgane; Gacoin, Marie; Robineau, Mathilde; Rabenoelina, Fanja; Ptas, Sébastien; Dupont, Joëlle; Profizi, Camille; Baillieul, Fabienne

    2017-09-01

    In order to find biological control agents (BCAs) for the management of Fusarium head blight (FHB), a major disease on wheat crops worldwide, 86 microorganisms isolated from inner tissues of wheat plants were discriminated for their ability to inhibit the growth of Fusarium graminearum and Fusarium culmorum by in vitro dual culture assays. A group of 22 strains appeared very effective to inhibit F. graminearum (inhibition of 30-51%) and they were also globally effective in controlling F. culmorum (inhibition of 15-53%). Further evaluation of a subselection of strains by screening on detached spikelets in vitro confirmed three species, namely Phoma glomerata, Aureobasidium proteae and Sarocladium kiliense, that have not yet been reported for their efficacy against Fusarium spp., indicating that looking for BCAs toward FHB among wheat endophytes proved to be promising. The efficacy of some strains turned out different between both in vitro screening approaches, raising the importance of finding the most appropriate screening approach for the search of BCAs. This study pointed out the interest of the test on detached wheat spikelets that provided information about a potential pathogenicity, the growth capacity and efficacy of the endophyte strains on the targeted plant, before testing them on whole plants. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Relationship between Fusarium spp. diversity and mycotoxin contents of mature grains in southern Belgium.

    Science.gov (United States)

    Hellin, Pierre; Dedeurwaerder, Géraldine; Duvivier, Maxime; Scauflaire, Jonathan; Huybrechts, Bart; Callebaut, Alfons; Munaut, Françoise; Legrève, Anne

    2016-07-01

    Over a 4-year period (2010-13), a survey aiming at determining the occurrence of Fusarium spp. and their relations to mycotoxins in mature grains took place in southern Belgium. The most prevalent species were F. graminearum, F. avenaceum, F. poae and F. culmorum, with large variations between years and locations. An even proportion of mating type found for F. avenaceum, F. culmorum, F. cerealis and F. tricinctum is usually a sign of ongoing sexual recombination. In contrast, an unbalanced proportion of mating type was found for F. poae and no MAT1-2 allele was present in the F. langsethiae population. Genetic chemotyping indicates a majority of deoxynivalenol (DON)-producing strains in F. culmorum (78%, all 3-ADON producers) and F. graminearum (95%, mostly 15-ADON producers), while all F. cerealis strains belong to the nivalenol (NIV) chemotype. Between 2011 and 2013, DON, NIV, enniatins (ENNs) and moniliformin (MON) were found in each field in various concentrations. By comparison, beauvericin (BEA) was scarcely detected and T-2 toxin, zearalenone and α- and β-zearalenols were never detected. Principal component analysis revealed correlations of DON with F. graminearum, ENNs and MON with F. avenaceum and NIV with F. culmorum, F. cerealis and F. poae. BEA was associated with the presence of F. tricinctum and, to a lesser extent, with the presence of F. poae. The use of genetic chemotype data revealed that DON concentrations were mostly influenced by DON-producing strains of F. graminearum and F. culmorum, whereas the concentrations of NIV were influenced by the number of NIV-producing strains of both species added to the number of F. cerealis and F. poae strains. This study emphasises the need to pay attention to less-studied Fusarium spp. for future Fusarium head blight management strategies, as they commonly co-occur in the field and are associated with a broad spectrum of mycotoxins.

  14. Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function.

    Science.gov (United States)

    Fan, Jieru; Urban, Martin; Parker, Josie E; Brewer, Helen C; Kelly, Steven L; Hammond-Kosack, Kim E; Fraaije, Bart A; Liu, Xili; Cools, Hans J

    2013-05-01

    CYP51 encodes the cytochrome P450 sterol 14α-demethylase, an enzyme essential for sterol biosynthesis and the target of azole fungicides. In Fusarium species, including pathogens of humans and plants, three CYP51 paralogues have been identified with one unique to the genus. Currently, the functions of these three genes and the rationale for their conservation within the genus Fusarium are unknown. Three Fusarium graminearum CYP51s (FgCYP51s) were heterologously expressed in Saccharomyces cerevisiae. Single and double FgCYP51 deletion mutants were generated and the functions of the FgCYP51s were characterized in vitro and in planta. FgCYP51A and FgCYP51B can complement yeast CYP51 function, whereas FgCYP51C cannot. FgCYP51A deletion increases the sensitivity of F. graminearum to the tested azoles. In ΔFgCYP51B and ΔFgCYP51BC mutants, ascospore formation is blocked, and eburicol and two additional 14-methylated sterols accumulate. FgCYP51C deletion reduces virulence on host wheat ears. FgCYP51B encodes the enzyme primarily responsible for sterol 14α-demethylation, and plays an essential role in ascospore formation. FgCYP51A encodes an additional sterol 14α-demethylase, induced on ergosterol depletion and responsible for the intrinsic variation in azole sensitivity. FgCYP51C does not encode a sterol 14α-demethylase, but is required for full virulence on host wheat ears. This is the first example of the functional diversification of a fungal CYP51. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  15. Occurrence of Fusarium spp. and fumonisins in stored wheat grains marketed in Iran.

    Science.gov (United States)

    Chehri, Khosrow; Jahromi, Saeed Tamadoni; Reddy, Kasa R N; Abbasi, Saeed; Salleh, Baharuddin

    2010-12-01

    Wheat grains are well known to be invaded by Fusarium spp. under field and storage conditions and contaminated with fumonisins. Therefore, determining Fusarium spp. and fumonisins in wheat grains is of prime importance to develop suitable management strategies and to minimize risk. Eighty-two stored wheat samples produced in Iran were collected from various supermarkets and tested for the presence of Fusarium spp. by agar plate assay and fumonisins by HPLC. A total of 386 Fusarium strains were isolated and identified through morphological characteristics. All these strains belonged to F. culmorum, F. graminearum, F. proliferatum and F.verticillioides. Of the Fusarium species, F. graminearum was the most prevalent species, followed by F. verticillioides, F. proliferatum and then F. culmorum. Natural occurrence of fumonisin B1 (FB1) could be detected in 56 (68.2%) samples ranging from 15-155 μg/kg, fumonisin B2 (FB2) in 35 (42.6%) samples ranging from 12-86 μg/kg and fumonisin B3 (FB3) in 26 (31.7%) samples ranging from 13-64 μg/kg. The highest FB1 levels were detected in samples from Eilam (up to 155 μg/kg) and FB2 and FB3 in samples from Gilan Gharb (up to 86 μg/kg and 64 μg/kg).

  16. Occurrence of Fusarium spp. and Fumonisins in Stored Wheat Grains Marketed in Iran

    Directory of Open Access Journals (Sweden)

    Baharuddin Salleh

    2010-12-01

    Full Text Available Wheat grains are well known to be invaded by Fusarium spp. under field and storage conditions and contaminated with fumonisins. Therefore, determining Fusarium spp. and fumonisins in wheat grains is of prime importance to develop suitable management strategies and to minimize risk. Eighty-two stored wheat samples produced in Iran were collected from various supermarkets and tested for the presence of Fusarium spp. by agar plate assay and fumonisins by HPLC. A total of 386 Fusarium strains were isolated and identified through morphological characteristics. All these strains belonged to F. culmorum, F. graminearum, F. proliferatum and F. verticillioides. Of the Fusarium species, F. graminearum was the most prevalent species, followed by F. verticillioides, F. proliferatum and then F. culmorum. Natural occurrence of fumonisin B1 (FB1 could be detected in 56 (68.2% samples ranging from 15–155 μg/kg, fumonisin B2 (FB2 in 35 (42.6% samples ranging from 12–86 μg/kg and fumonisin B3 (FB3 in 26 (31.7% samples ranging from 13–64 μg/kg. The highest FB1 levels were detected in samples from Eilam (up to 155 μg/kg and FB2 and FB3 in samples from Gilan Gharb (up to 86 μg/kg and 64 μg/kg.

  17. Occurrence of Fusarium spp. and Fumonisins in Stored Wheat Grains Marketed in Iran

    Science.gov (United States)

    Chehri, Khosrow; Jahromi, Saeed Tamadoni; Reddy, Kasa R. N.; Abbasi, Saeed; Salleh, Baharuddin

    2010-01-01

    Wheat grains are well known to be invaded by Fusarium spp. under field and storage conditions and contaminated with fumonisins. Therefore, determining Fusarium spp. and fumonisins in wheat grains is of prime importance to develop suitable management strategies and to minimize risk. Eighty-two stored wheat samples produced in Iran were collected from various supermarkets and tested for the presence of Fusarium spp. by agar plate assay and fumonisins by HPLC. A total of 386 Fusarium strains were isolated and identified through morphological characteristics. All these strains belonged to F. culmorum, F. graminearum, F. proliferatum and F. verticillioides. Of the Fusarium species, F. graminearum was the most prevalent species, followed by F. verticillioides, F. proliferatum and then F. culmorum. Natural occurrence of fumonisin B1 (FB1) could be detected in 56 (68.2%) samples ranging from 15–155 μg/kg, fumonisin B2 (FB2) in 35 (42.6%) samples ranging from 12–86 μg/kg and fumonisin B3 (FB3) in 26 (31.7%) samples ranging from 13–64 μg/kg. The highest FB1 levels were detected in samples from Eilam (up to 155 μg/kg) and FB2 and FB3 in samples from Gilan Gharb (up to 86 μg/kg and 64 μg/kg). PMID:22069576

  18. The MADS-box transcription factor FgMcm1 regulates cell identity and fungal development in Fusarium graminearum.

    Science.gov (United States)

    Yang, Cui; Liu, Huiquan; Li, Guotian; Liu, Meigang; Yun, Yingzi; Wang, Chenfang; Ma, Zhonghua; Xu, Jin-Rong

    2015-08-01

    In eukaryotic cells, MADS-box genes are known to play major regulatory roles in various biological processes by combinatorial interactions with other transcription factors. In this study, we functionally characterized the FgMCM1 MADS-box gene in Fusarium graminearum, the causal agent of wheat and barley head blight. Deletion of FgMCM1 resulted in the loss of perithecium production and phialide formation. The Fgmcm1 mutant was significantly reduced in virulence, deoxynivalenol biosynthesis and conidiation. In yeast two-hybrid assays, FgMcm1 interacted with Mat1-1-1 and Fst12, two transcription factors important for sexual reproduction. Whereas Fgmcm1 mutants were unstable and produced stunted subcultures, Fgmcm1 mat1-1-1 but not Fgmcm1 fst12 double mutants were stable. Furthermore, spontaneous suppressor mutations occurred frequently in stunted subcultures to recover growth rate. Ribonucleic acid sequencing analysis indicated that a number of sexual reproduction-related genes were upregulated in stunted subcultures compared with the Fgmcm1 mutant, which was downregulated in the expression of genes involved in pathogenesis, secondary metabolism and conidiation. We also showed that culture instability was not observed in the Fvmcm1 mutants of the heterothallic Fusarium verticillioides. Overall, our data indicate that FgMcm1 plays a critical role in the regulation of cell identity, sexual and asexual reproduction, secondary metabolism and pathogenesis in F. graminearum. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. The antibiotic polymyxin B exhibits novel antifungal activity against Fusarium species.

    Science.gov (United States)

    Hsu, Li-Hang; Wang, Hsuan-Fu; Sun, Pei-Lun; Hu, Fung-Rong; Chen, Ying-Lien

    2017-06-01

    The genus Fusarium comprises many species, including Fusarium oxysporum, Fusarium solani, Fusarium graminearum and Fusarium verticillioides, and causes severe infections in plants and humans. In clinical settings, Fusarium is the third most frequent mould to cause invasive fungal infections after Aspergillus and the Mucorales. F. solani and F. oxysporum are the most prevalent Fusarium spp. causing clinical disease. However, few effective antifungal drugs are available to treat human and plant Fusarium infections. The cationic peptide antibiotic polymyxin B (PMB) exhibits antifungal activity against the human fungal pathogens Candida albicans and Cryptococcus neoformans, but its efficacy against Fusarium spp. is unknown. In this study, the antifungal activity of PMB was tested against 12 Fusarium strains that infect humans and plants (banana, tomato, melon, pea, wheat and maize). PMB was fungicidal against all 12 Fusarium strains, with minimum fungicidal concentrations of 32 µg/mL or 64 µg/mL for most strains tested, as evidenced by broth dilution, methylene blue staining and XTT reduction assays. PMB can reduce the germination rates of conidia, but not chlamydospores, and can cause defects in cell membrane integrity in Fusarium strains. PMB exhibits synergistic activity with posaconazole and can potentiate the effect of fluconazole, voriconazole or amphotericin B against Fusarium spp. However, PMB does not show synergistic effects with fluconazole against Fusarium spp. as it does against Candida glabrata and C. neoformans, indicating evolutionary divergence of mechanisms between yeast pathogens and the filamentous fungus Fusarium. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  20. Suppressive Effect of Trichoderma spp. on toxigenic Fusarium species.

    Science.gov (United States)

    Błaszczyk, Lidia; Basińska-Barczak, Aneta; Ćwiek-Kupczyńska, Hanna; Gromadzka, Karolina; Popiel, Delfina; Stępień, Łukasz

    2017-03-30

    The aim of the present study was to examine the abilities of twenty-four isolates belonging to ten different Trichoderma species (i.e., Trichoderma atroviride, Trichoderma citrinoviride, Trichoderma cremeum, Trichoderma hamatum, Trichoderma harzianum, Trichoderma koningiopsis, Trichoderma longibrachiatum, Trichoderma longipile, Trichoderma viride and Trichoderma viridescens) to inhibit the mycelial growth and mycotoxin production by five Fusarium strains (i.e., Fusarium avenaceum, Fusarium cerealis, Fusarium culmorum, Fusarium graminearum and Fusarium temperatum). Dual-culture bioassay on potato dextrose agar (PDA) medium clearly documented that all of the Trichoderma strains used in the study were capable of influencing the mycelial growth of at least four of all five Fusarium species on the fourth day after co-inoculation, when there was the first apparent physical contact between antagonist and pathogen. The qualitative evaluation of the interaction between the colonies after 14 days of co-culturing on PDA medium showed that ten Trichoderma strains completely overgrew and sporulated on the colony at least one of the tested Fusarium species. Whereas, the microscopic assay provided evidence that only T. atroviride AN240 and T. viride AN255 formed dense coils around the hyphae of the pathogen from where penetration took place. Of all screened Trichoderma strains, T. atroviride AN240 was also found to be the most efficient (69-100% toxin reduction) suppressors of mycotoxins (deoxynivalenol, 3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, nivalenol, zearalenone, beauvericin, moniliformin) production by all five Fusarium species on solid substrates. This research suggests that T. atroviride AN240 can be a promising candidate for the biological control of toxigenic Fusarium species.

  1. Transcription factor ART1 mediates starch hydrolysis and mycotoxin production in Fusarium graminearum and F. verticillioides.

    Science.gov (United States)

    Oh, Mira; Son, Hokyoung; Choi, Gyung Ja; Lee, Chanhui; Kim, Jin-Cheol; Kim, Hun; Lee, Yin-Won

    2016-06-01

    Molecular mechanisms underlying the responses to environmental factors, such as nitrogen, carbon and pH, involve components that regulate the production of secondary metabolites, including mycotoxins. In this study, we identified and characterized a gene in the FGSG_02083 locus, designated as FgArt1, which was predicted to encode a Zn(II)2 Cys6 zinc finger transcription factor. An FgArt1 deletion mutant of Fusarium graminearum exhibited impaired starch hydrolysis as a result of significantly reduced α-amylase gene expression. The deletion strain was unable to produce trichothecenes and exhibited low Tri5 and Tri6 expression levels, whereas the complemented strain showed a similar ability to produce trichothecenes as the wild-type strain. In addition, FgArt1 deletion resulted in impairment of germination in starch liquid medium and reduced pathogenicity on flowering wheat heads. To investigate the roles of the FgArt1 homologue in F. verticillioides, we deleted the FVEG_02083 gene, and the resulting strain showed defects in starch hydrolysis, similar to the FgArt1 deletion strain, and produced no detectable level of fumonisin B1 . Fum1 and Fum12 expression levels were undetectable in the deletion strain. However, when the FvArt1-deleted F. verticillioides strain was complemented with FgArt1, the resulting strain was unable to recover the production of fumonisin B1 , although FgArt1 expression and starch hydrolysis were induced. Thus, our results suggest that there are different regulatory pathways governed by each ART1 transcription factor in trichothecene and fumonisin biosynthesis. Taken together, we suggest that ART1 plays an important role in both trichothecene and fumonisin biosynthesis by the regulation of genes involved in starch hydrolysis. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  2. Analysis of Quality-Related Parameters in Mature Kernels of Polygalacturonase Inhibiting Protein (PGIP) Transgenic Bread Wheat Infected with Fusarium graminearum.

    Science.gov (United States)

    Masci, Stefania; Laino, Paolo; Janni, Michela; Botticella, Ermelinda; Di Carli, Mariasole; Benvenuto, Eugenio; Danieli, Pier Paolo; Lilley, Kathryn S; Lafiandra, Domenico; D'Ovidio, Renato

    2015-04-22

    Fusarium head blight, caused by the fungus Fusarium graminearum, has a detrimental effect on both productivity and qualitative properties of wheat. To evaluate its impact on wheat flour, we compared its effect on quality-related parameters between a transgenic bread wheat line expressing a bean polygalacturonase inhibiting protein (PGIP) and its control line. We have compared metabolic proteins, the amounts of gluten proteins and their relative ratios, starch content, yield, extent of pathogen contamination, and deoxynivalenol (DON) accumulation. These comparisons showed that Fusarium significantly decreases the amount of starch in infected control plants, but not in infected PGIP plants. The flour of PGIP plants contained also a lower amount of pathogen biomass and DON accumulation. Conversely, both gluten and metabolic proteins were not significantly influenced either by the transgene or by fungal infection. These results indicate that the transgenic PGIP expression reduces the level of infection, without changing significantly the wheat seed proteome and other quality-related parameters.

  3. Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum.

    Science.gov (United States)

    Paper, Janet M; Scott-Craig, John S; Adhikari, Neil D; Cuomo, Christina A; Walton, Jonathan D

    2007-09-01

    High-throughput MS/MS was used to identify proteins secreted by Fusarium graminearum (Gibberella zeae) during growth on 13 media in vitro and in planta during infection of wheat heads. In vitro secreted proteins were collected from the culture filtrates, and in planta proteins were collected by vacuum infiltration. A total of 289 proteins (229 in vitro and 120 in planta) were identified with high statistical confidence. Forty-nine of the in planta proteins were not found in any of the in vitro conditions. The majority (91-100%) of the in vitro proteins had predicted signal peptides, but only 56% of the in planta proteins. At least 13 of the nonsecreted proteins found only in planta were single-copy housekeeping enzymes, including enolase, triose phosphate isomerase, phosphoglucomutase, calmodulin, aconitase, and malate dehydrogenase. The presence of these proteins in the in planta but not in vitro secretome might indicate that significant fungal lysis occurs during pathogenesis. On the other hand, several of the proteins lacking signal peptides that were found in planta have been reported to be potent immunogens secreted by animal pathogenic fungi, and therefore could be important in the interaction between F. graminearum and its host plants.

  4. Chemical Composition and Antifungal Effect of Echinophora platyloba Essential Oil against Aspergillus flavus, Penicillium expansum and Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Mohammad Hashemi

    2016-03-01

    Full Text Available Molds are one of the most important causes of food spoilage that produce toxic substances called mycotoxins, which endanger the consumer health. The adverse effects of synthetic food preservatives consumption made researches to focus on application of natural preservatives in order to increase shelf life of food as well as prevention of harmful effects of chemical preservatives. The present study was conducted to investigate the effects of Echinophora platyloba essential oil on spore growth of Aspergillus flavus, Penicillium expansum and Fusarium graminearum. The essential oil composition of E. platyloba was analyzed by gas chromatography–mass spectrometry (GC-MS and its antifungal effect was evaluated by disk diffusion and micro dilution methods. Results revealed that the MIC values of essential oil for A. flavus, P. expansum and F. graminearum were 0.625 mg.mL-1, 0.625 mg.mL-1 and 0.3125 mg.mL-1 and the MFC values were 0.625 mg.mL-1, 1.250 mg.mL-1 and 0.625 mg.mL-1. The essential oil had the highest and the lowest anti-fungal effect on F. graminearum and A. flavus respectively. In conclusion, due to notable antifungal effects of E. platyloba essential oil, it can be practically applied as a natural alternative to chemical preservatives in food industry.

  5. Systemic Growth of F. graminearum in Wheat Plants and Related Accumulation of Deoxynivalenol

    Directory of Open Access Journals (Sweden)

    Antonio Moretti

    2014-04-01

    Full Text Available Fusarium head blight (FHB is an important disease of wheat worldwide caused mainly by Fusarium graminearum (syn. Gibberella zeae. This fungus can be highly aggressive and can produce several mycotoxins such as deoxynivalenol (DON, a well known harmful metabolite for humans, animals, and plants. The fungus can survive overwinter on wheat residues and on the soil, and can usually attack the wheat plant at their point of flowering, being able to infect the heads and to contaminate the kernels at the maturity. Contaminated kernels can be sometimes used as seeds for the cultivation of the following year. Poor knowledge on the ability of the strains of F. graminearum occurring on wheat seeds to be transmitted to the plant and to contribute to the final DON contamination of kernels is available. Therefore, this study had the goals of evaluating: (a the capability of F. graminearum causing FHB of wheat to be transmitted from the seeds or soil to the kernels at maturity and the progress of the fungus within the plant at different growth stages; (b the levels of DON contamination in both plant tissues and kernels. The study has been carried out for two years in a climatic chamber. The F. gramineraum strain selected for the inoculation was followed within the plant by using Vegetative Compatibility technique, and quantified by Real-Time PCR. Chemical analyses of DON were carried out by using immunoaffinity cleanup and HPLC/UV/DAD. The study showed that F. graminearum originated from seeds or soil can grow systemically in the plant tissues, with the exception of kernels and heads. There seems to be a barrier that inhibits the colonization of the heads by the fungus. High levels of DON and F. graminearum were found in crowns, stems, and straw, whereas low levels of DON and no detectable levels of F. graminearum were found in both heads and kernels. Finally, in all parts of the plant (heads, crowns, and stems at milk and vitreous ripening stages, and straw at

  6. FgLPMO9A from Fusarium graminearum cleaves xyloglucan independently of the backbone substitution pattern

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Petrović, Dejan M.; Westereng, Bjørge

    2016-01-01

    Lytic polysaccharide monooxygenases (LPMOs) are important for the enzymatic conversion of biomass and seem to play a key role in degradation of the plant cell wall. In this study, we characterize an LPMO from the fungal plant pathogen Fusarium graminearum (FgLPMO9A) that catalyzes the mixed C1/C4...... that when incubated with a mixture of xyloglucan and cellulose, FgLPMO9A efficiently attacks the xyloglucan, whereas cellulose conversion is inhibited. This suggests that removal of hemicellulose may be the true function of this LPMO during biomass conversion....

  7. Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum).

    Science.gov (United States)

    Zalila-Kolsi, Imen; Ben Mahmoud, Afif; Ali, Hacina; Sellami, Sameh; Nasfi, Zina; Tounsi, Slim; Jamoussi, Kaïs

    2016-11-01

    Bacillus species are attractive due to their potential use in the biological control of fungal diseases. Bacillus amyloliquefaciens strain BLB369, Bacillus subtilis strain BLB277, and Paenibacillus polymyxa strain BLB267 were isolated and identified using biochemical and molecular (16S rDNA, gyrA, and rpoB) approaches. They could produce, respectively, (iturin and surfactin), (surfactin and fengycin), and (fusaricidin and polymyxin) exhibiting broad spectrum against several phytopathogenic fungi. In vivo examination of wheat seed germination, plant height, phenolic compounds, chlorophyll, and carotenoid contents proved the efficiency of the bacterial cells and the secreted antagonist activities to protect Tunisian durum wheat (Triticum turgidum L. subsp. durum) cultivar Om Rabiia against F. graminearum fungus. Application of single bacterial culture medium, particularly that of B. amyloliquefaciens, showed better protection than combinations of various culture media. The tertiary combination of B. amyloliquefaciens, B. subtilis, and P. polymyxa bacterial cells led to the highest protection rate which could be due to strains synergistic or complementary effects. Hence, combination of compatible biocontrol agents could be a strategic approach to control plant diseases. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Evidence of an Unidentified Extracellular Heat-Stable Factor Produced by Lysobacter enzymogenes (OH11) that Degrade Fusarium graminearum PH1 Hyphae.

    Science.gov (United States)

    Odhiambo, Benard Omondi; Xu, Gaoge; Qian, Guoliang; Liu, Fengquan

    2017-04-01

    Lysobacter enzymogenes OH11 produces heat-stable antifungal factor (HSAF) and lytic enzymes possessing antifungal activity. This study bio-prospected for other potential antifungal factors besides those above. The cells and extracellular metabolites of L. enzymogenes OH11 and the mutants ΔchiA, ΔchiB, ΔchiC, Δclp, Δpks, and ΔpilA were examined for antifungal activity against Fusarium graminearum PH1, the causal agent of Fusarium head blight (FHB). Results evidenced that OH11 produces an unidentified extracellular heat-stable degrading metabolite (HSDM) that exhibit degrading activity on F. graminearum PH1 chitinous hyphae. Interestingly, both heat-treated and non-heat-treated extracellular metabolites of OH11 mutants exhibited hyphae-degrading activity against F. graminearum PH1. Enzyme activity detection of heat-treated metabolites ruled out the possibility of enzyme degradation activity. Remarkably, the PKS-NRPS-deficient mutant Δpks cannot produce HSAF or analogues, yet its metabolites exhibited hyphae-degrading activity. HPLC analysis confirmed no HSAF production by Δpks. Δclp lacks hyphae-degrading ability. Therefore, clp regulates HSDM and extracellular lytic enzymes production in L. enzymogenes OH11. ΔpilA had impaired surface cell motility and significantly reduced antagonistic properties. ΔchiA, ΔchiB, and ΔchiC retained hyphae-degrading ability, despite having reduced abilities to produce chitinase enzymes. Ultimately, L. enzymogenes OH11 can produce other unidentified HSDM independent of the PKS-NRPS genes. This suggests HSAF and lytic enzymes production are a fraction of the antifungal mechanisms in OH11. Characterization of HSDM, determination of its biosynthetic gene cluster and understanding its mode of action will provide new leads in the search for effective drugs for FHB management.

  9. Agresividad, producción de micotoxinas y diversidad en las poblaciones de Fusarium graminearum de la región triguera argentina

    OpenAIRE

    Malbrán, Ismael

    2013-01-01

    La fusariosis de la espiga de trigo (FET)o golpe blanco, ocasionada por Fusarium graminearum Schwabe, es una enfermedad que afecta al cultivo de trigo (Triticum aestivum L. en todo el mundo, incluyendo la Argentina. La enfermedad ocasiona disminuciones del rendimiento, perjuicios sobre la calidad del trigo y la contaminación del grano con micotoxinas, que constituyen un riesgo para la salud y comprometen su utilización en la alimentación. Estos metabolitos, principalmente el deoxinivalenol (D...

  10. Disruption of the GABA shunt affects mitochondrial respiration and virulence in the cereal pathogen Fusarium graminearum.

    Science.gov (United States)

    Bönnighausen, Jakob; Gebhard, Daniel; Kröger, Cathrin; Hadeler, Birgit; Tumforde, Thomas; Lieberei, Reinhard; Bergemann, Jörg; Schäfer, Wilhelm; Bormann, Jörg

    2015-12-01

    The cereal pathogen Fusarium graminearum threatens food and feed production worldwide. It reduces the yield and poisons the remaining kernels with mycotoxins, notably deoxynivalenol (DON). We analyzed the importance of gamma-aminobutanoic acid (GABA) metabolism for the life cycle of this fungal pathogen. GABA metabolism in F. graminearum is partially regulated by the global nitrogen regulator AreA. Genetic disruption of the GABA shunt by deletion of two GABA transaminases renders the pathogen unable to utilize the plant stress metabolites GABA and putrescine. The mutants showed increased sensitivity against oxidative stress, GABA accumulation in the mycelium, downregulation of two key enzymes of the TCA cycle, disturbed potential gradient in the mitochondrial membrane and lower mitochondrial oxygen consumption. In contrast, addition of GABA to the wild type resulted in its rapid turnover and increased mitochondrial steady state oxygen consumption. GABA concentrations are highly upregulated in infected wheat tissues. We conclude that GABA is metabolized by the pathogen during infection increasing its energy production, whereas the mutants accumulate GABA intracellularly resulting in decreased energy production. Consequently, the GABA mutants are strongly reduced in virulence but, because of their DON production, are able to cross the rachis node. © 2015 John Wiley & Sons Ltd.

  11. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses

    Directory of Open Access Journals (Sweden)

    Deising Holger B

    2011-01-01

    Full Text Available Abstract Background The toxigenic fungal plant pathogen Fusarium graminearum compromises wheat production worldwide. Azole fungicides play a prominent role in controlling this pathogen. Sequencing of its genome stimulated the development of high-throughput technologies to study mechanisms of coping with fungicide stress and adaptation to fungicides at a previously unprecedented precision. DNA-microarrays have been used to analyze genome-wide gene expression patterns and uncovered complex transcriptional responses. A recently developed one-color multiplex array format allowed flexible, effective, and parallel examinations of eight RNA samples. Results We took advantage of the 8 × 15 k Agilent format to design, evaluate, and apply a novel microarray covering the whole F. graminearum genome to analyze transcriptional responses to azole fungicide treatment. Comparative statistical analysis of expression profiles uncovered 1058 genes that were significantly differentially expressed after azole-treatment. Quantitative RT-PCR analysis for 31 selected genes indicated high conformity to results from the microarray hybridization. Among the 596 genes with significantly increased transcript levels, analyses using GeneOntology and FunCat annotations detected the ergosterol-biosynthesis pathway genes as the category most significantly responding, confirming the mode-of-action of azole fungicides. Cyp51A, which is one of the three F. graminearum paralogs of Cyp51 encoding the target of azoles, was the most consistently differentially expressed gene of the entire study. A molecular phylogeny analyzing the relationships of the three CYP51 proteins in the context of 38 fungal genomes belonging to the Pezizomycotina indicated that CYP51C (FGSG_11024 groups with a new clade of CYP51 proteins. The transcriptional profiles for genes encoding ABC transporters and transcription factors suggested several involved in mechanisms alleviating the impact of the fungicide

  12. Polyketide synthase from Fusarium

    DEFF Research Database (Denmark)

    Kvesel, Kasper; Wimmer, Reinhard; Sørensen, Jens Laurids

    described, even fewer from fungi and none from Fusarium species. Multidomain proteins can be quite challenging to work with, which is why the project intends to solve the 3D-structures of single domains of PKS’s. In this project, the plan is to clone, express and purify the Acyl-carrier protein (ACP) domain...... from PKS6 in Fusarium graminearum for structural analysis....

  13. Genome-wide characterization of pectin methyl esterase genes reveals members differentially expressed in tolerant and susceptible wheats in response to Fusarium graminearum.

    Science.gov (United States)

    Zega, Alessandra; D'Ovidio, Renato

    2016-11-01

    Pectin methyl esterase (PME) genes code for enzymes that are involved in structural modifications of the plant cell wall during plant growth and development. They are also involved in plant-pathogen interaction. PME genes belong to a multigene family and in this study we report the first comprehensive analysis of the PME gene family in bread wheat (Triticum aestivum L.). Like in other species, the members of the TaPME family are dispersed throughout the genome and their encoded products retain the typical structural features of PMEs. qRT-PCR analysis showed variation in the expression pattern of TaPME genes in different tissues and revealed that these genes are mainly expressed in flowering spikes. In our attempt to identify putative TaPME genes involved in wheat defense, we revealed a strong variation in the expression of the TaPME following Fusarium graminearum infection, the causal agent of Fusarium head blight (FHB). Particularly interesting was the finding that the expression profile of some PME genes was markedly different between the FHB-resistant wheat cultivar Sumai3 and the FHB-susceptible cultivar Bobwhite, suggesting a possible involvement of these PME genes in FHB resistance. Moreover, the expression analysis of the TaPME genes during F. graminearum progression within the spike revealed those genes that responded more promptly to pathogen invasion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Light affects fumonisin production in strains of Fusarium fujikuroi, Fusarium proliferatum, and Fusarium verticillioides isolated from rice.

    Science.gov (United States)

    Matić, Slavica; Spadaro, Davide; Prelle, Ambra; Gullino, Maria Lodovica; Garibaldi, Angelo

    2013-09-16

    Three Fusarium species associated with bakanae disease of rice (Fusarium fujikuroi, Fusarium proliferatum, and Fusarium verticillioides) were investigated for their ability to produce fumonisins (FB1 and FB2) under different light conditions, and for pathogenicity. Compared to darkness, the conditions that highly stimulated fumonisin production were yellow and green light in F. verticillioides strains; white and blue light, and light/dark alternation in F. fujikuroi and F. proliferatum strains. In general, all light conditions positively influenced fumonisin production with respect to the dark. Expression of the FUM1 gene, which is necessary for the initiation of fumonisin production, was in accordance with the fumonisin biosynthetic profile. High and low fumonisin-producing F. fujikuroi strains showed typical symptoms of bakanae disease, abundant fumonisin-producing F. verticillioides strains exhibited chlorosis and stunting of rice plants, while fumonisin-producing F. proliferatum strains were asymptomatic on rice. We report that F. fujikuroi might be an abundant fumonisin producer with levels comparable to that of F. verticillioides and F. proliferatum, highlighting the need of deeper mycotoxicological analyses on rice isolates of F. fujikuroi. Our results showed for the first time the influence of light on fumonisin production in isolates of F. fujikuroi, F. proliferatum, and F. verticillioides from rice. © 2013 Elsevier B.V. All rights reserved.

  15. In vitro sensitivity of Fusarium graminearum isolates to fungicides

    Directory of Open Access Journals (Sweden)

    Aveline Avozani

    2014-09-01

    Full Text Available Head blight of wheat is a disease of global importance. In Brazil, it can cause damage of up to 27%. As resistant cultivars are not available yet, short-term disease control relies on the use of fungicides. The first step to reach effective management is to identify potent fungicides. In vitro experiments were conducted to determine the inhibitory concentration 50% (IC50 for mycelial growth or conidial germination, according to the chemical group of fungicides, of five Fusarium graminearum isolates of different origins. The following demethylation inhibitor (DMI fungicides were tested: epoxiconazole, cyproconazole, metconazole, prochloraz, protioconazole and tebuconazole. In addition, azoxystrobin, kresoxim-methyl, pyraclostrobin and trifloxystrobin were included in the study, representing Quinone outside inhibitor fungicides (QoI, as well as a tubulin synthesis inhibitor, carbendazim and two ready mixtures, trifloxystrobin + tebuconazole or trifloxistrobin + prothioconazole. DMI's showed lower IC50 values compared to the QoI's. For the five tested isolates, in the overall mean, IC50 considering mycelial growth ranged for DMI's from 0.01 mg/L (metconazole, prochloraz and prothioconazole to 0.12 mg/L (cyproconazole and considering conidial germination for QoI's from 0.21 mg/L (azoxystrobin to 1.33 mg/L (trifloxystrobin. The IC50 for carbendazim was 0.07 mg/L. All tested isolates can be considered sensitive to the studied DMI's, although certain differences in sensitivity could be detected between the isolates originating from one same state.

  16. Real-time imaging of hydrogen peroxide dynamics in vegetative and pathogenic hyphae of Fusarium graminearum.

    Science.gov (United States)

    Mentges, Michael; Bormann, Jörg

    2015-10-08

    Balanced dynamics of reactive oxygen species in the phytopathogenic fungus Fusarium graminearum play key roles for development and infection. To monitor those dynamics, ratiometric analysis using the novel hydrogen peroxide (H2O2) sensitive fluorescent indicator protein HyPer-2 was established for the first time in phytopathogenic fungi. H2O2 changes the excitation spectrum of HyPer-2 with an excitation maximum at 405 nm for the reduced and 488 nm for the oxidized state, facilitating ratiometric readouts with maximum emission at 516 nm. HyPer-2 analyses were performed using a microtiter fluorometer and confocal laser scanning microscopy (CLSM). Addition of external H2O2 to mycelia caused a steep and transient increase in fluorescence excited at 488 nm. This can be reversed by the addition of the reducing agent dithiothreitol. HyPer-2 in F. graminearum is highly sensitive and specific to H2O2 even in tiny amounts. Hyperosmotic treatment elicited a transient internal H2O2 burst. Hence, HyPer-2 is suitable to monitor the intracellular redox balance. Using CLSM, developmental processes like nuclear division, tip growth, septation, and infection structure development were analyzed. The latter two processes imply marked accumulations of intracellular H2O2. Taken together, HyPer-2 is a valuable and reliable tool for the analysis of environmental conditions, cellular development, and pathogenicity.

  17. The secreted antifungal protein thionin 2.4 in Arabidopsis thaliana suppresses the toxicity of a fungal fruit body lectin from Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Tomoya Asano

    Full Text Available Plants possess active defense systems and can protect themselves from pathogenic invasion by secretion of a variety of small antimicrobial or antifungal proteins such as thionins. The antibacterial and antifungal properties of thionins are derived from their ability to induce open pore formation on cell membranes of phytopathogens, resulting in release of potassium and calcium ions from the cell. Wheat thionin also accumulates in the cell walls of Fusarium-inoculated plants, suggesting that it may have a role in blocking pathogen infection at the plant cell walls. Here we developed an anti-thionin 2.4 (Thi2.4 antibody and used it to show that Thi2.4 is localized in the cell walls of Arabidopsis and cell membranes of F. graminearum, when flowers are inoculated with F. graminearum. The Thi2.4 protein had an antifungal effect on F. graminearum. Next, we purified the Thi2.4 protein, conjugated it with glutathione-S-transferase (GST and coupled the proteins to an NHS-activated column. Total protein from F. graminearum was applied to GST-Thi2.4 or Thi2.4-binding columns, and the fungal fruit body lectin (FFBL of F. graminearum was identified as a Thi2.4-interacting protein. This interaction was confirmed by a yeast two-hybrid analysis. To investigate the biological function of FFBL, we infiltrated the lectin into Arabidopsis leaves and observed that it induced cell death in the leaves. Application of FFBL at the same time as inoculation with F. graminearum significantly enhanced the virulence of the pathogen. By contrast, FFBL-induced host cell death was effectively suppressed in transgenic plants that overexpressed Thi2.4. We found that a 15 kD Thi2.4 protein was specifically expressed in flowers and flower buds and suggest that it acts not only as an antifungal peptide, but also as a suppressor of the FFBL toxicity. Secreted thionin proteins are involved in this dual defense mechanism against pathogen invasion at the plant-pathogen interface.

  18. Action and reaction of host and pathogen during Fusarium head blight disease

    DEFF Research Database (Denmark)

    Walter, Stephanie; Nicholson, Paul; Doohan, Fiona M

    2010-01-01

    The Fusarium species Fusarium graminearum and Fusarium culmorum, Which are responsible for Fusarium head blight (FHB) disease, reduced world-wide cereal crop yield and, as a consequence of their mycotoxin production in cereal grain, impact on both human and animal health. Their study is greatly p...

  19. Harnessing the microbiome to reduce Fusarium head blight

    Science.gov (United States)

    Fusarium graminearum (Fg), the primary fungal pathogen responsible for Fusarium head blight (FHB), reduces crop yield and contaminates grain with trichothecene mycotoxins that are deleterious to plant, human and animal health. In this presentation, we will discuss two different research projects tha...

  20. The fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death.

    Directory of Open Access Journals (Sweden)

    Mark Diamond

    Full Text Available The Fusarium genus of fungi is responsible for commercially devastating crop diseases and the contamination of cereals with harmful mycotoxins. Fusarium mycotoxins aid infection, establishment, and spread of the fungus within the host plant. We investigated the effects of the Fusarium mycotoxin deoxynivalenol (DON on the viability of Arabidopsis cells. Although it is known to trigger apoptosis in animal cells, DON treatment at low concentrations surprisingly did not kill these cells. On the contrary, we found that DON inhibited apoptosis-like programmed cell death (PCD in Arabidopsis cells subjected to abiotic stress treatment in a manner independent of mitochondrial cytochrome c release. This suggested that Fusarium may utilise mycotoxins to suppress plant apoptosis-like PCD. To test this, we infected Arabidopsis cells with a wild type and a DON-minus mutant strain of F. graminearum and found that only the DON producing strain could inhibit death induced by heat treatment. These results indicate that mycotoxins may be capable of disarming plant apoptosis-like PCD and thereby suggest a novel way that some fungi can influence plant cell fate.

  1. Combined Metabonomic and Quantitative RT-PCR Analyses Revealed Metabolic Reprogramming Associated with Fusarium graminearum Resistance in Transgenic Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Fangfang Chen

    2018-01-01

    Full Text Available Fusarium head blight disease resulting from Fusarium graminearum (FG infection causes huge losses in global production of cereals and development of FG-resistant plants is urgently needed. To understand biochemistry mechanisms for FG resistance, here, we have systematically investigated the plant metabolomic phenotypes associated with FG resistance for transgenic Arabidopsis thaliana expressing a class-I chitinase (Chi, a Fusarium-specific recombinant antibody gene (CWP2 and fused Chi-CWP2. Plant disease indices, mycotoxin levels, metabonomic characteristics, and expression levels of several key genes were measured together with their correlations. We found that A. thaliana expressing Chi-CWP2 showed higher FG resistance with much lower disease indices and mycotoxin levels than the wild-type and the plants expressing Chi or CWP2 alone. The combined metabonomic and quantitative RT-PCR analyses revealed that such FG-resistance was closely associated with the promoted biosynthesis of secondary metabolites (phenylpropanoids, alkanoids and organic osmolytes (proline, betaine, glucose, myo-inositol together with enhanced TCA cycle and GABA shunt. These suggest that the concurrently enhanced biosyntheses of the shikimate-mediated secondary metabolites and organic osmolytes be an important strategy for A. thaliana to develop and improve FG resistance. These findings provide essential biochemical information related to FG resistance which is important for developing FG-resistant cereals.

  2. Updated survey of Fusarium species and toxins in Finnish cereal grains.

    Science.gov (United States)

    Hietaniemi, Veli; Rämö, Sari; Yli-Mattila, Tapani; Jestoi, Marika; Peltonen, Sari; Kartio, Mirja; Sieviläinen, Elina; Koivisto, Tauno; Parikka, Päivi

    2016-05-01

    The aim of the project was to produce updated information during 2005-14 on the Fusarium species found in Finnish cereal grains, and the toxins produced by them, as the last comprehensive survey study of Fusarium species and their toxins in Finland was carried out at the turn of the 1960s and the 1970s. Another aim was to use the latest molecular and chemical methods to investigate the occurrence and correlation of Fusarium species and their mycotoxins in Finland. The most common Fusarium species found in Finland in the FinMyco project 2005 and 2006 were F. avenaceum, F. culmorum, F. graminearum, F. poae, F. sporotrichioides and F. langsethiae. F. avenaceum was the most dominant species in barley, spring wheat and oat samples. The occurrence of F. culmorum and F. graminearum was high in oats and barley. Infection by Fusarium fungi was the lowest in winter cereal grains. The incidence of Fusarium species in 2005 was much higher than in 2006 due to weather conditions. F. langsethiae has become much more common in Finland since 2001. F. graminearum has also risen in the order of importance. A highly significant correlation was found between Fusarium graminearum DNA and deoxynivalenol (DON) levels in Finnish oats, barley and wheat. When comparing the FinMyco data in 2005-06 with the results of the Finnish safety monitoring programme for 2005-14, spring cereals were noted as being more susceptible to infection by Fusarium fungi and the formation of toxins. The contents of T-2 and HT-2 toxins and the frequency of exceptionally high DON concentrations all increased in Finland during 2005-14. Beauvericin (BEA), enniatins (ENNs) and moniliformin (MON) were also very common contaminants of Finnish grains in 2005-06. Climate change is leading to warmer weather, and this may indicate more changes in Finnish Fusarium mycobiota and toxin contents and profiles in the near future.

  3. The complete mitogenome of Fusarium gerlachii

    NARCIS (Netherlands)

    Kulik, Tomasz; Brankovics, Balázs; Sawicki, Jakub; van Diepeningen, Anne D

    2014-01-01

    Abstract The structure of the Fusarium gerlachii mitogenome is similar to that of closely related Fusarium graminearum; it has a total length of 93,428 bp, the base composition of the genome is: A (35.3%), T (32.8%), C (14.7%) and G (17.2%). The mitogenome contains 13 protein-coding genes, 2

  4. Production, characterization, and identification using proteomic tools of a polygalacturonase from Fusarium graminearum.

    Science.gov (United States)

    Ortega, Leonel M; Kikot, Gisele E; Rojas, Natalia L; López, Laura M I; Astoreca, Andrea L; Alconada, Teresa M

    2014-07-01

    Since enzymatic degradation is a mechanism or component of the aggressiveness of a pathogen, enzymatic activities from a Fusarium graminearum isolate obtained from infected wheat spikes of Argentina Pampa region were studied in order to understand the disease progression, tending to help disease control. In particular, the significance of the study of polygalacturonase activity is based on that such activity is produced in the early stages of infection on the host, suggesting a crucial role in the establishment of disease. In this sense, polygalacturonase activity produced by this microorganism has been purified 375 times from 2-day-old culture filtrates by gel filtration and ion-exchange chromatography successively. The purified sample showed two protein bands in sodium dodecyl sulfate-polyacrylamide gels, with a molecular mass of 40 and 55 kDa. The protein bands were identified as an endopolygalacturonase and as a serine carboxypeptidase of F. graminearum, respectively, by peptide mass fingerprinting (matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF/TOF) fragment ion analysis). The pattern of substrate degradation analyzed by thin layer chromatography confirmed the mode of action of the enzyme as an endopolygalacturonase. High activity of the polygalacturonase against polygalacturonic acid was observed between 4 and 6 of pH, and between 30 and 50 °C, being 5 and 50 °C the optimum pH and temperature, respectively. The enzyme was fully stable at pH 5 for 120 min and 30 °C and sensible to the presence of some metal ions. This information would contribute to understand the most favorable environmental conditions for establishment of the disease. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Antagonistic activity of Ocimum sanctum L. essential oil on growth and zearalenone production by Fusarium graminearum in maize grains

    Directory of Open Access Journals (Sweden)

    Naveen Kumar eKalagatur

    2015-09-01

    Full Text Available The present study was aimed to establish the antagonistic effects of Ocimum sanctum L. essential oil (OSEO on growth and zearalenone (ZEA production of Fusarium graminearum. GC-MS chemical profiling of OSEO revealed the existence of 43 compounds and the major compound was found to be eugenol (34.7%. DPPH free radical scavenging activity (IC50 of OSEO was determined to be 8.5µg/mL. Minimum inhibitory concentration (MIC and minimum fungicidal concentration (MFC of OSEO on F. graminearum were recorded as 1250 µg/mL and 1800 µg/mL, respectively. Scanning electron microscope observations showed significant micro morphological damage in OSEO exposed mycelia and spores compared to untreated control culture. Quantitative UHPLC studies revealed that OSEO negatively effected the production of ZEA; the concentration of toxin production was observed to be insignificant at 1500 µg/mL concentration of OSEO. On other hand ZEA concentration was quantified as 3.23 µg/mL in OSEO untreated control culture. Reverse transcriptase qPCR analysis of ZEA metabolic pathway genes (PKS4 and PKS13 revealed that increase in OSEO concentration (250 µg/mL to 1500 µg/mL significantly downregulated the expression of PKS4 and PKS13. These results were in agreement with the artificially contaminated maize grains as well. In conlusion, the antifungal and antimycotoxic effects of OSEO on F. graminearum in the present study reiterated that, the essential oil of O. sanctum could be a promising herbal fungicide in food processing industries as well as grain storage centers.

  6. Molecular Characterization and Functional Analysis of PR-1-Like Proteins Identified from the Wheat Head Blight Fungus Fusarium graminearum.

    Science.gov (United States)

    Lu, Shunwen; Edwards, Michael C

    2018-04-01

    The group 1 pathogenesis-related (PR-1) proteins originally identified from plants and their homologs are also found in other eukaryotic kingdoms. Studies on nonplant PR-1-like (PR-1L) proteins have been pursued widely in humans and animals but rarely in filamentous ascomycetes. Here, we report the characterization of four PR-1L proteins identified from the ascomycete fungus Fusarium graminearum, the primary cause of Fusarium head blight of wheat and barley (designated FgPR-1L). Molecular cloning revealed that the four FgPR-1L proteins are all encoded by small open reading frames (612 to 909 bp) that are often interrupted by introns, in contrast to plant PR-1 genes that lack introns. Sequence analysis indicated that all FgPR-1L proteins contain the PR-1-specific three-dimensional structure, and one of them features a C-terminal transmembrane (TM) domain that has not been reported for any stand-alone PR-1 proteins. Transcriptional analysis revealed that the four FgPR-1L genes are expressed in axenic cultures and in planta with different spatial or temporal expression patterns. Phylogenetic analysis indicated that fungal PR-1L proteins fall into three major groups, one of which harbors FgPR-1L-2-related TM-containing proteins from both phytopathogenic and human-pathogenic ascomycetes. Low-temperature sodium dodecyl sulfate polyacrylamide gel electrophoresis and proteolytic assays indicated that the recombinant FgPR-1L-4 protein exists as a monomer and is resistant to subtilisin of the serine protease family. Functional analysis confirmed that deletion of the FgPR-1L-4 gene from the fungal genome results in significantly reduced virulence on susceptible wheat. This study provides the first example that the F. graminearum-wheat interaction involves a pathogen-derived PR-1L protein that affects fungal virulence on the host.

  7. The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production.

    Science.gov (United States)

    Giese, Henriette; Sondergaard, Teis Esben; Sørensen, Jens Laurids

    2013-01-01

    Growth conditions are known to affect the production of secondary metabolites in filamentous fungi. The influence of different nitrogen sources and the transcription factor AreA on the production of mycotoxins in Fusarium graminearum was examined. Growth on glutamine or NH4-sources was poor and asparagine was found to be a preferential nitrogen source for F. graminearum. Deletion of areA led to poor growth on NaNO₃ suggesting its involvement in regulation of the nitrate reduction process. In addition utilization of aspartic acid, histidine, isoleucine, leucine, threonine, tyrosine, and valine as nitrogen sources was shown to depend of a functional AreA. AreA was shown to be required for the production of the mycotoxins deoxynivalenol (DON), zearalenone, and fusarielin H regardless of the nutrient medium. Deletion of nmr, the repressor of AreA under nitrogen sufficient conditions, had little effect on either growth or toxin production. AreA appears to regulate production of some mycotoxins directly or indirectly independent on nitrogen status and plays a role in utilization of certain amino acids. Copyright © 2013 The British Mycological Society. All rights reserved.

  8. Effect of soil biochar amendment on grain crop resistance to Fusarium mycotoxin contamination

    Science.gov (United States)

    Mycotoxin contamination of food and feed is among the top food safety concerns. Fusarium spp. cause serious diseases in cereal crops reducing yield and contaminating grain with mycotoxins that can be deleterious to human and animal health. Fusarium graminearum and Fusarium verticillioides infect whe...

  9. Fungal Cytochrome P450s and the P450 Complement (CYPome of Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Jiyoung Shin

    2018-03-01

    Full Text Available Cytochrome P450s (CYPs, heme-containing monooxygenases, play important roles in a wide variety of metabolic processes important for development as well as biotic/trophic interactions in most living organisms. Functions of some CYP enzymes are similar across organisms, but some are organism-specific; they are involved in the biosynthesis of structural components, signaling networks, secondary metabolisms, and xenobiotic/drug detoxification. Fungi possess more diverse CYP families than plants, animals, or bacteria. Various fungal CYPs are involved in not only ergosterol synthesis and virulence but also in the production of a wide array of secondary metabolites, which exert toxic effects on humans and other animals. Although few studies have investigated the functions of fungal CYPs, a recent systematic functional analysis of CYP genes in the plant pathogen Fusarium graminearum identified several novel CYPs specifically involved in virulence, asexual and sexual development, and degradation of xenobiotics. This review provides fundamental information on fungal CYPs and a new platform for further metabolomic and biochemical studies of CYPs in toxigenic fungi.

  10. The fungal myosin I is essential for Fusarium toxisome formation

    Science.gov (United States)

    The mycotoxin deoxynivalenol (DON) is the most frequently detected secondary metabolite produced by Fusarium graminearum and other Fusarium spp. To date, relatively few studies have addressed how mycotoxin biosynthesis occurs in fungal cells. Here we found that myosin I governs translation of DON bi...

  11. Glycosylphosphatidylinositol-Anchored Proteins in Fusarium graminearum: Inventory, Variability, and Virulence

    Science.gov (United States)

    Rittenour, William R.; Harris, Steven D.

    2013-01-01

    The contribution of cell surface proteins to plant pathogenicity of fungi is not well understood. As such, the objective of this study was to investigate the functions and importance of glycosylphosphatidylinositol-anchored proteins (GPI-APs) in the wheat pathogen F. graminearum. GPI-APs are surface proteins that are attached to either the membrane or cell wall. In order to simultaneously disrupt several GPI-APs, a phosphoethanolamine transferase-encoding gene gpi7 was deleted and the resultant mutant characterized in terms of growth, development, and virulence. The Δgpi7 mutants exhibited slower radial growth rates and aberrantly shaped macroconidia. Furthermore, virulence tests and microscopic analyses indicated that Gpi7 is required for ramification of the fungus throughout the rachis of wheat heads. In parallel, bioinformatics tools were utilized to predict and inventory GPI-APs within the proteome of F. graminearum. Two of the genes identified in this screen (FGSG_01588 and FGSG_08844) displayed isolate-specific length variability as observed for other fungal cell wall adhesion genes. Nevertheless, deletion of these genes failed to reveal obvious defects in growth, development, or virulence. This research demonstrates the global importance of GPI-APs to in planta proliferation in F. graminearum, and also highlights the potential of individual GPI-APs as diagnostic markers. PMID:24312325

  12. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li Jun; van der Does, H. C.; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Jose; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Wolochuk, Charles; Xie, Xiaohui; Xu, Jin Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald; Goff, Steven; Hammond-Kossack, Kim; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. C.; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, Barbara G.; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2010-03-18

    Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, members of the F. oxysporum species complex exhibit wide host range but discontinuously distributed host specificity, reflecting remarkable genetic adaptability. To understand the molecular underpinnings of diverse phenotypic traits and their evolution in Fusarium, we compared the genomes of three economically important and phylogenetically related, yet phenotypically diverse plant-pathogenic species, F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici. Our analysis revealed greatly expanded lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes, accounting for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity. Experimentally, we demonstrate for the first time the transfer of two LS chromosomes between strains of F. oxysporum, resulting in the conversion of a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in the F. oxysporum species complex, putting the evolution of fungal pathogenicity into a new perspective.

  13. Occurrence and infection of Cladosporium, Fusarium, Epicoccum and Aureobasidium in withered rotten grapes during post-harvest dehydration.

    Science.gov (United States)

    Lorenzini, Marilinda; Zapparoli, Giacomo

    2015-11-01

    Fungi like Cladosporium, Fusarium, Epicoccum and Aureobasidium can occur on withered grapes causing spoilage of passito wine. There is little or no information on the pathogenic role of these fungi. This study describes the isolation, incidence and identification of several isolates from different withered rotten grapes. Representative isolates grouped in several phenotypes were identified by phylogenetic analysis of internal transcribed spacer, actin or elongation factor gene sequences. Isolates of Cladosporium and Fusarium were ascribed to different species, of these C. ramotenellum, C. halotolerans and F. graminearum were isolated from Vitis vinifera for the first time. All Epicoccum and Aureobasidium isolates belonged to E. nigrum and A. pullulans, respectively. Random amplified DNA polymorphism analysis showed high level of heterogenicity among Epicoccum and Fusarium isolates. Infection assays were carried out to evaluate infectivity in some strains under different withering conditions. Fusarium spp. strains had similar infectivity, while significant variability was observed among Cladosporium spp. and E. nigrum strains. A. pullulans resulted particularly infective. This study provided insights into the occurrence and infection of these fungi in fruit-drying rooms with important implications towards control management during the withering.

  14. In-Vitro Inhibition of Pythium ultimum, Fusarium graminearum, and Rhizoctonia solani by a Stabilized Lactoperoxidase System alone and in Combination with Synthetic Fungicides

    Directory of Open Access Journals (Sweden)

    Zachariah R. Hansen

    2017-11-01

    Full Text Available Advances in enzyme stabilization and immobilization make the use of enzymes for industrial applications increasingly feasible. The lactoperoxidase (LPO system is a naturally occurring enzyme system with known antimicrobial activity. Stabilized LPO and glucose oxidase (GOx enzymes were combined with glucose, potassium iodide, and ammonium thiocyanate to create an anti-fungal formulation, which inhibited in-vitro growth of the plant pathogenic oomycete Pythium ultimum, and the plant pathogenic fungi Fusarium graminearum and Rhizoctonia solani. Pythium ultimum was more sensitive than F. graminearum and R. solani, and was killed at LPO and GOx concentrations of 20 nM and 26 nM, respectively. Rhizoctonia solani and F. graminearum were 70% to 80% inhibited by LPO and GOx concentrations of 242 nM and 315 nM, respectively. The enzyme system was tested for compatibility with five commercial fungicides as co-treatments. The majority of enzyme + fungicide co-treatments resulted in additive activity. Synergism ranging from 7% to 36% above the expected additive activity was observed when P. ultimum was exposed to the enzyme system combined with Daconil® (active ingredient (AI: chlorothalonil 29.6%, GardenTech, Lexington, KY, USA, tea tree oil, and mancozeb at select fungicide concentrations. Antagonism was observed when the enzyme system was combined with Tilt® (AI: propiconazole 41.8%, Syngenta, Basel, Switzerland at one fungicide concentration, resulting in activity 24% below the expected additive activity at that concentration.

  15. Efeito de Fusarium graminearum e índice de infecção na germinação e vigor de sementes de milho

    OpenAIRE

    Galli, Juliana A; Fessel, Simone A; Panizzi, Rita C

    2005-01-01

    Patógenos em sementes de milho (Zea mays) causam sérios problemas, como a perda de sua capacidade germinativa. O objetivo do trabalho foi determinar qual o melhor tempo para infecção das sementes de milho com Fusarium graminearum, para posterior avaliação dos danos causados pelo fungo na germinação e vigor das mesmas. As sementes foram colocadas sobre meio de BDA contendo o patógeno e incubadas por 4, 8, 16 e 32 h. Após os respectivos períodos de incubação, estas foram submetidas ao teste de ...

  16. Effectiveness of composts and Trichoderma strains for control of Fusarium wilt of tomato

    Directory of Open Access Journals (Sweden)

    Yousra TAGHDI

    2015-09-01

    Full Text Available Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (FOL is a major limiting disease in tomato production in Morocco. Commercial and locally produced Moroccan composts and peat were found to reduce Fusarium wilt in tomato plants. We explored the presence of Trichoderma strains in these materials, and in six soils sampled in the North West of Morocco, where a low incidence of Fusarium wilt had been previously observed. The most abundant Trichoderma-like fungus was selected from each soil, compost or peat sample. Twelve Trichoderma strains were isolated and identified molecularly. Trichoderma asperellum CT9 and Trichoderma virens ST11 showed the greatest overall antagonistic activity against FOL, Rhizoctonia solani, Botrytis cinerea and Pythium ultimum. The three strains evaluated in in planta tests, CT9, ST11 and T. virens ST10, reduced tomato Fusarium wilt, and strain ST11  also promoted growth of tomato plants.

  17. Agricultural factors affecting Fusarium communities in wheat kernels.

    Science.gov (United States)

    Karlsson, Ida; Friberg, Hanna; Kolseth, Anna-Karin; Steinberg, Christian; Persson, Paula

    2017-07-03

    Fusarium head blight (FHB) is a devastating disease of cereals caused by Fusarium fungi. The disease is of great economic importance especially owing to reduced grain quality due to contamination by a range of mycotoxins produced by Fusarium. Disease control and prediction is difficult because of the many Fusarium species associated with FHB. Different species may respond differently to control methods and can have both competitive and synergistic interactions. Therefore, it is important to understand how agricultural practices affect Fusarium at the community level. Lower levels of Fusarium mycotoxin contamination of organically produced cereals compared with conventionally produced have been reported, but the causes of these differences are not well understood. The aim of our study was to investigate the effect of agricultural factors on Fusarium abundance and community composition in different cropping systems. Winter wheat kernels were collected from 18 organically and conventionally cultivated fields in Sweden, paired based on their geographical distance and the wheat cultivar grown. We characterised the Fusarium community in harvested wheat kernels using 454 sequencing of translation elongation factor 1-α amplicons. In addition, we quantified Fusarium spp. using real-time PCR to reveal differences in biomass between fields. We identified 12 Fusarium operational taxonomic units (OTUs) with a median of 4.5 OTUs per field. Fusarium graminearum was the most abundant species, while F. avenaceum had the highest occurrence. The abundance of Fusarium spp. ranged two orders of magnitude between fields. Two pairs of Fusarium species co-occurred between fields: F. poae with F. tricinctum and F. culmorum with F. sporotrichoides. We could not detect any difference in Fusarium communities between the organic and conventional systems. However, agricultural intensity, measured as the number of pesticide applications and the amount of nitrogen fertiliser applied, had an

  18. Comparison of Fusarium graminearum transcriptomes on living or dead wheat differentiates substrate-responsive and defense-responsive genes.

    Directory of Open Access Journals (Sweden)

    Stefan Boedi

    2016-07-01

    Full Text Available Fusarium graminearum is an opportunistic pathogen of cereals where it causes severe yield losses and concomitant mycotoxin contamination of the grains. The pathogen has mixed biotrophic and necrotrophic (saprophytic growth phases during infection and the regulatory networks associated with these phases have so far always been analyzed together. In this study we compared the transcriptomes of fungal cells infecting a living, actively defending plant representing the mixed live style (pathogenic growth on living flowering wheat heads to the response of the fungus infecting identical, but dead plant tissues (cold-killed flowering wheat heads representing strictly saprophytic conditions. We found that the living plant actively suppressed fungal growth and promoted much higher toxin production in comparison to the identical plant tissue without metabolism suggesting that molecules signaling secondary metabolite induction are not pre-existing or not stable in the plant in sufficient amounts before infection. Differential gene expression analysis was used to define gene sets responding to the active or the passive plant as main impact factor and driver for gene expression. We correlated our results to the published F. graminearum transcriptomes, proteomes and secretomes and found that only a limited number of in planta- expressed genes require the living plant for induction but the majority uses simply the plant tissue as signal. Many secondary metabolite (SM gene clusters show a heterogeneous expression pattern within the cluster indicating that different genetic or epigenetic signals govern the expression of individual genes within a physically linked cluster. Our bioinformatic approach also identified fungal genes which were actively repressed by signals derived from the active plant and may thus represent direct targets of the plant defense against the invading pathogen.

  19. Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes.

    Science.gov (United States)

    Chetouhi, Cherif; Bonhomme, Ludovic; Lasserre-Zuber, Pauline; Cambon, Florence; Pelletier, Sandra; Renou, Jean-Pierre; Langin, Thierry

    2016-03-01

    In many plant/pathogen interactions, host susceptibility factors are key determinants of disease development promoting pathogen growth and spreading in plant tissues. In the Fusarium head blight (FHB) disease, the molecular basis of wheat susceptibility is still poorly understood while it could provide new insights into the understanding of the wheat/Fusarium graminearum (Fg) interaction and guide future breeding programs to produce cultivars with sustainable resistance. To identify the wheat grain candidate genes, a genome-wide gene expression profiling was performed in the French susceptible wheat cultivar, Recital. Gene-specific two-way ANOVA of about 40 K transcripts at five grain developmental stages identified 1309 differentially expressed genes. Out of these, 536 were impacted by the Fg effect alone. Most of these Fg-responsive genes belonged to biological and molecular functions related to biotic and abiotic stresses indicating the activation of common stress pathways during susceptibility response of wheat grain to FHB. This analysis revealed also 773 other genes displaying either specific Fg-responsive profiles along with grain development stages or synergistic adjustments with the grain development effect. These genes were involved in various molecular pathways including primary metabolism, cell death, and gene expression reprogramming. An increasingly complex host response was revealed, as was the impact of both Fg infection and grain ontogeny on the transcription of wheat genes. This analysis provides a wealth of candidate genes and pathways involved in susceptibility responses to FHB and depicts new clues to the understanding of the susceptibility determinism in plant/pathogen interactions.

  20. A proteomics survey on wheat susceptibility to Fusarium head blight during grain development.

    Science.gov (United States)

    Chetouhi, Cherif; Bonhomme, Ludovic; Lecomte, Philippe; Cambon, Florence; Merlino, Marielle; Biron, David Georges; Langin, Thierry

    2015-02-01

    The mycotoxigenic fungal species Fusarium graminearum is able to attack several important cereal crops, such as wheat and barley. By causing Fusarium Head Blight (FHB) disease, F. graminearum induces yield and quality losses and poses a public health concern due to in planta mycotoxin production. The molecular and physiological plant responses to FHB, and the cellular biochemical pathways used by F. graminearum to complete its infectious process remain still unknown. In this study, a proteomics approach, combining 2D-gel approach and mass spectrometry, has been used to determine the specific protein patterns associated with the development of the fungal infection during grain growth on susceptible wheat. Our results reveal that F. graminearum infection does not deeply alter the grain proteome and does not significantly disturb the first steps of grain ontogeny but impacts molecular changes during the grain filling stage (impact on starch synthesis and storage proteins). The differentially regulated proteins identified were mainly involved in stress and defence mechanisms, primary metabolism, and main cellular processes such as signalling and transport. Our survey suggests that F. graminearum could take advantage of putative susceptibility factors closely related to grain development processes and thus provide new insights into key molecular events controlling the susceptible response to FHB in wheat grains.

  1. A European Database of Fusarium graminearum and F-culmorum Trichothecene Genotypes

    DEFF Research Database (Denmark)

    Pasquali, Matias; Beyer, Marco; Logrieco, Antonio

    2016-01-01

    variables (sampling method, host cultivar, previous crop, etc.) that would allow more effective analysis of factors influencing the spatial and temporal population distribution, is lacking. Consequently, based on the available data, it is difficult to identify factors influencing chemotype distribution...... information on the strains was collected in a freely accessible and updatable database (www.catalogueeu.luxmcc.lu), which will serve as a starting point for epidemiological analysis of potential spatial and temporal trichothecene genotype shifts in Europe. The analysis of the currently available European...... and spread at the European level. Here we describe the results of a collaborative integrated work which aims (1) to characterize the trichothecene genotypes of strains from three Fusarium species, collected over the period 2000-2013 and (2) to enhance the standardization of epidemiological data collection...

  2. RNA-Seq Revealed Differences in Transcriptomes between 3ADON and 15ADON Populations of Fusarium graminearum In Vitro and In Planta.

    Science.gov (United States)

    Puri, Krishna D; Yan, Changhui; Leng, Yueqiang; Zhong, Shaobin

    2016-01-01

    Fusarium graminearum is the major causal agent of Fusarium head blight (FHB) in barley and wheat in North America. The fungus not only causes yield loss of the crops but also produces harmful trichothecene mycotoxins [Deoxynivalenol (DON) and its derivatives-3-acetyldeoxynivalenol (3ADON) and 15-acetyldeoxynivalenol (15ADON), and nivalenol (NIV)] that contaminate grains. Previous studies showed a dramatic increase of 3ADON-producing isolates with higher aggressiveness and DON production than the 15ADON-producing isolates in North America. However, the genetic and molecular basis of differences between the two types of isolates is unclear. In this study, we compared transcriptomes of the 3ADON and 15ADON isolates in vitro (in culture media) and in planta (during infection on the susceptible wheat cultivar 'Briggs') using RNA-sequencing. The in vitro gene expression comparison identified 479 up-regulated and 801 down-regulated genes in the 3ADON isolates; the up-regulated genes were mainly involved in C-compound and carbohydrate metabolism (18.6%), polysaccharide metabolism (7.7%) or were of unknown functions (57.6%). The in planta gene expression analysis revealed that 185, 89, and 62 genes were up-regulated in the 3ADON population at 48, 96, and 144 hours after inoculation (HAI), respectively. The up-regulated genes were significantly enriched in functions for cellular import, C-compound and carbohydrate metabolism, allantoin and allantoate transport at 48 HAI, for detoxification and virulence at 96 HAI, and for metabolism of acetic acid derivatives, detoxification, and cellular import at 144 HAI. Comparative analyses of in planta versus in vitro gene expression further revealed 2,159, 1,981 and 2,095 genes up-regulated in the 3ADON isolates, and 2,415, 2,059 and 1,777 genes up-regulated in the 15ADON isolates at the three time points after inoculation. Collectively, our data provides a foundation for further understanding of molecular mechanisms involved in

  3. RNA-Seq Revealed Differences in Transcriptomes between 3ADON and 15ADON Populations of Fusarium graminearum In Vitro and In Planta.

    Directory of Open Access Journals (Sweden)

    Krishna D Puri

    Full Text Available Fusarium graminearum is the major causal agent of Fusarium head blight (FHB in barley and wheat in North America. The fungus not only causes yield loss of the crops but also produces harmful trichothecene mycotoxins [Deoxynivalenol (DON and its derivatives-3-acetyldeoxynivalenol (3ADON and 15-acetyldeoxynivalenol (15ADON, and nivalenol (NIV] that contaminate grains. Previous studies showed a dramatic increase of 3ADON-producing isolates with higher aggressiveness and DON production than the 15ADON-producing isolates in North America. However, the genetic and molecular basis of differences between the two types of isolates is unclear. In this study, we compared transcriptomes of the 3ADON and 15ADON isolates in vitro (in culture media and in planta (during infection on the susceptible wheat cultivar 'Briggs' using RNA-sequencing. The in vitro gene expression comparison identified 479 up-regulated and 801 down-regulated genes in the 3ADON isolates; the up-regulated genes were mainly involved in C-compound and carbohydrate metabolism (18.6%, polysaccharide metabolism (7.7% or were of unknown functions (57.6%. The in planta gene expression analysis revealed that 185, 89, and 62 genes were up-regulated in the 3ADON population at 48, 96, and 144 hours after inoculation (HAI, respectively. The up-regulated genes were significantly enriched in functions for cellular import, C-compound and carbohydrate metabolism, allantoin and allantoate transport at 48 HAI, for detoxification and virulence at 96 HAI, and for metabolism of acetic acid derivatives, detoxification, and cellular import at 144 HAI. Comparative analyses of in planta versus in vitro gene expression further revealed 2,159, 1,981 and 2,095 genes up-regulated in the 3ADON isolates, and 2,415, 2,059 and 1,777 genes up-regulated in the 15ADON isolates at the three time points after inoculation. Collectively, our data provides a foundation for further understanding of molecular mechanisms involved

  4. Investigation of the effect of nitrogen on severity of Fusarium Head Blight in barley

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, J.D.; Spliid, N.H.

    2010-01-01

    The effect of nitrogen on Fusarium Head Blight (FHB) in a susceptible barley cultivar was investigated using gel-based proteomics. Barley grown with either 15 or 100 kg ha(-1)N fertilizer was inoculated with Fusarium graminearum (Fg). The storage protein fraction did not change significantly...

  5. An antibody that confers plant disease resistance targets a membrane-bound glyoxal oxidase in Fusarium.

    Science.gov (United States)

    Song, Xiu-Shi; Xing, Shu; Li, He-Ping; Zhang, Jing-Bo; Qu, Bo; Jiang, Jin-He; Fan, Chao; Yang, Peng; Liu, Jin-Long; Hu, Zu-Quan; Xue, Sheng; Liao, Yu-Cai

    2016-05-01

    Plant germplasm resources with natural resistance against globally important toxigenic Fusarium are inadequate. CWP2, a Fusarium genus-specific antibody, confers durable resistance to different Fusarium pathogens that infect cereals and other crops, producing mycotoxins. However, the nature of the CWP2 target is not known. Thus, investigation of the gene coding for the CWP2 antibody target will likely provide critical insights into the mechanism underlying the resistance mediated by this disease-resistance antibody. Immunoblots and mass spectrometry analysis of two-dimensional electrophoresis gels containing cell wall proteins from Fusarium graminearum (Fg) revealed that a glyoxal oxidase (GLX) is the CWP2 antigen. Cellular localization studies showed that GLX is localized to the plasma membrane. This GLX efficiently catalyzes hydrogen peroxide production; this enzymatic activity was specifically inhibited by the CWP2 antibody. GLX-deletion strains of Fg, F. verticillioides (Fv) and F. oxysporum had significantly reduced virulence on plants. The GLX-deletion Fg and Fv strains had markedly reduced mycotoxin accumulation, and the expression of key genes in mycotoxin metabolism was downregulated. This study reveals a single gene-encoded and highly conserved cellular surface antigen that is specifically recognized by the disease-resistance antibody CWP2 and regulates both virulence and mycotoxin biosynthesis in Fusarium species. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Investigations on Fusarium spp. and their mycotoxins causing Fusarium ear rot of maize in Kosovo.

    Science.gov (United States)

    Shala-Mayrhofer, Vitore; Varga, Elisabeth; Marjakaj, Robert; Berthiller, Franz; Musolli, Agim; Berisha, Defrime; Kelmendi, Bakir; Lemmens, Marc

    2013-01-01

    After wheat, maize (Zea mays L.) is the second most important cereal crop in Kosovo and a major component of animal feed. The purpose of this study was to analyse the incidence and identity of the Fusarium species isolated from naturally infected maize kernels in Kosovo in 2009 and 2010, as well as the mycotoxin contamination. The disease incidence of Fusarium ear rot (from 0.7% to 40% diseased ears) on maize in Kosovo is high. The most frequently Fusarium spp. identified on maize kernels were Fusarium subglutinans, F. verticillioides/F. proliferatum and F. graminearum. Maize kernel samples were analysed by LC-MS/MS and found to be contaminated with deoxynivalenol (DON), DON-3-glucoside, 3-acetyl-DON, 15-acetyl-DON, zearalenone, zearalenone-14-sulphate, moniliformin, fumonisin B1 and fumonisin B2. This is the first report on the incidence and identification of Fusarium species isolated from naturally infected maize as well as the mycotoxin contamination in Kosovo.

  7. In vitro competition between Fusarium graminearum and Epicoccum nigrum on media and wheat grains

    DEFF Research Database (Denmark)

    Jensen, Brita Dahl; Knorr, Kamilla; Nicolaisen, Mogens

    2016-01-01

    showed hyphae of F. graminearum and E. nigrum with many side branches when in close proximity, in contrast to pronounced apical hyphal growth when growing alone. Combinations of F. graminearum and E. nigrum on sterilised wheat grains were studied over time by qPCR. F. graminearum biomass...

  8. TAXONOMY OF FUSARIUM SPECIES ISOLATED FROM CULTIVATED PLANTS, WEEDS AND THEIR PATHOGENICITY FOR WHEAT

    Directory of Open Access Journals (Sweden)

    Jasenka Ćosić

    2002-06-01

    Full Text Available Fusarium species are wide-spread and known to be pathogenic agents to cultivated plants in various agroclimatic areas. During a four year investigation 10 Fusarium species and Microdochium nivale were isolated from wheat, barley, maize and soybean as well as from 10 weeds collected from 10 locations in Slavonia and Baranya. Fusarium graminearum was dominant on wheat and barley, F. moniliforme on maize and F. oxysporum on soybean. Regarding weeds, the presence of the following Fusarium species was established: F. graminearum on Amaranthus hybridus, Capsella bursa-pastoris, Lamium purpureum, Sorghum halepense and Urtica dioica, F. moniliforme on Abutilon theophrasti, F. subglutinans on Polygonum aviculare, F. avenaceum on Capsella bursa-pastoris, Rumex crispus and Matricaria sp., F. culmorum on Abutilon theophrasti, F. sporotrichioides on Polygonum aviculare, F. proliferatum and F. poae on Artemisia vulgaris. Pathogenicity test to wheat seedlings was done in our laboratory on winter wheat cultivars Slavonija and Demetra (totally 146 isolates. The most pathogenic species to wheat seedilings were F. graminearum, F. culmorum and F. sporotrichioides and the least pathogenic F. moniliforme, F. solani, F. oxysporum and F. poae. Pathogenicity test for wheat ears was done on genotypes Osk.8c9/3-94 and Osk.6.11/2 (totally 25 isolates. The results obtained by our investigation showed that there were no significant differences in pathogenicity of Fusarium species isolated from both cultivated plants and weeds. Weeds represent a constant source of inoculum of F. species for cultivated plants and they serve as epidemiologic bridges among vegetations.

  9. Influence of Agronomic and Climatic Factors on Fusarium Infestation and Mycotoxin Contamination of Cereals in Norway

    Science.gov (United States)

    Bernhoft, A.; Torp, M.; Clasen, P.-E.; Løes, A.-K.; Kristoffersen, A.B.

    2012-01-01

    A total of 602 samples of organically and conventionally grown barley, oats and wheat was collected at grain harvest during 2002–2004 in Norway. Organic and conventional samples were comparable pairs regarding cereal species, growing site and harvest time, and were analysed for Fusarium mould and mycotoxins. Agronomic and climatic factors explained 10–30% of the variation in Fusarium species and mycotoxins. Significantly lower Fusarium infestation and concentrations of important mycotoxins were found in the organic cereals. The mycotoxins deoxynivalenol (DON) and HT-2 toxin (HT-2) constitute the main risk for human and animal health in Norwegian cereals. The impacts of various agronomic and climatic factors on DON and HT-2 as well as on their main producers F. graminearum and F. langsethiae and on total Fusarium were tested by multivariate statistics. Crop rotation with non-cereals was found to reduce all investigated characteristics significantly – mycotoxin concentrations as well as various Fusarium infestations. No use of mineral fertilisers and herbicides was also found to decrease F. graminearum, whereas lodged fields increased the occurrence of this species. No use of herbicides was also found to decrease F. langsethiae, but for this species the occurrence was lower in lodged fields. Total Fusarium infestation was decreased with no use of fungicides or mineral fertilisers, and with crop rotation, as well as by using herbicides and increased by lodged fields. Clay and to some extent silty soils seemed to reduce F. graminearum in comparison with sandy soils. Concerning climate factors, low temperature before grain harvest was found to increase DON; and high air humidity before harvest to increase HT-2. F. graminearum was negatively correlated with precipitation in July but correlated with air humidity before harvest. F. langsethiae was correlated with temperature in July. Total Fusarium increased with increasing precipitation in July. Organic cereal

  10. Cellular Development Associated with Induced Mycotoxin Synthesis in the Filamentous Fungus Fusarium graminearum

    Science.gov (United States)

    Menke, Jon; Weber, Jakob; Broz, Karen; Kistler, H. Corby

    2013-01-01

    Several species of the filamentous fungus Fusarium colonize plants and produce toxic small molecules that contaminate agricultural products, rendering them unsuitable for consumption. Among the most destructive of these species is F. graminearum, which causes disease in wheat and barley and often infests the grain with harmful trichothecene mycotoxins. Synthesis of these secondary metabolites is induced during plant infection or in culture in response to chemical signals. Our results show that trichothecene biosynthesis involves a complex developmental process that includes dynamic changes in cell morphology and the biogenesis of novel subcellular structures. Two cytochrome P-450 oxygenases (Tri4p and Tri1p) involved in early and late steps in trichothecene biosynthesis were tagged with fluorescent proteins and shown to co-localize to vesicles we provisionally call “toxisomes.” Toxisomes, the inferred site of trichothecene biosynthesis, dynamically interact with motile vesicles containing a predicted major facilitator superfamily protein (Tri12p) previously implicated in trichothecene export and tolerance. The immediate isoprenoid precursor of trichothecenes is the primary metabolite farnesyl pyrophosphate. Changes occur in the cellular localization of the isoprenoid biosynthetic enzyme HMG CoA reductase when cultures non-induced for trichothecene biosynthesis are transferred to trichothecene biosynthesis inducing medium. Initially localized in the cellular endomembrane system, HMG CoA reductase, upon induction of trichothecene biosynthesis, increasingly is targeted to toxisomes. Metabolic pathways of primary and secondary metabolism thus may be coordinated and co-localized under conditions when trichothecene biosynthesis occurs. PMID:23667578

  11. Combining fluorescent Pseudomonas spp. strains to enhance suppression of fusarium wilt of radish

    NARCIS (Netherlands)

    Boer, Marjan de; Sluis, Ientse van der; Loon, L.C. van; Bakker, P.A.H.M.

    1999-01-01

    Fusarium wilt diseases, caused by the fungus Fusarium oxysporum, lead to significant yield losses of crops. One strategy to control fusarium wilt is the use of antagonistic, root-colonizing Pseudomonas spp. It has been demonstrated that different strains of these bacteria suppress disease by

  12. Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum.

    Science.gov (United States)

    Ali, M Liakat; Taylor, Jeff H; Jie, Liu; Sun, Genlou; William, Manilal; Kasha, Ken J; Reid, Lana M; Pauls, K Peter

    2005-06-01

    Gibberella ear rot, caused by the fungus Fusarium graminearum Schwabe, is a serious disease of corn (Zea mays) grown in northern climates. Infected corn is lower yielding and contains toxins that are dangerous to livestock and humans. Resistance to ear rot in corn is quantitative, specific to the mode of fungal entry (silk channels or kernel wounds), and highly influenced by the environment. Evaluations of ear rot resistance are complex and subjective; and they need to be repeated over several years. All of these factors have hampered attempts to develop F. graminearum resistant corn varieties. The aim of this study was to identify molecular markers linked to the genes for resistance to Gibberella ear rot. A recombinant inbred (RI) population, produced from a cross between a Gibberella ear rot resistant line (CO387) and a susceptible line (CG62), was field-inoculated and scored for Gibberella ear rot symptoms in the F4, F6, and F7 generations. The distributions of disease scores were continuous, indicating that resistance is probably conditioned by multiple loci. A molecular linkage map, based on segregation in the F5 RI population, contained 162 markers distributed over 10 linkage groups and had a total length of 2237 cM with an average distance between markers of 13.8 cM. Composite interval mapping identified 11 quantitative trait loci (QTLs) for Gibberella ear rot resistance following silk inoculation and 18 QTLs following kernel inoculation in 4 environments that accounted for 6.7%-35% of the total phenotypic variation. Only 2 QTLs (on linkage group 7) were detected in more than 1 test for silk resistance, and only 1 QTL (on linkage group 5) was detected in more than 1 test for kernel resistance, confirming the strong influence of the environment on these traits. The majority of the favorable alleles were derived from the resistant parent (CO387). The germplasm and markers for QTLs with significant phenotypic effects may be useful for marker-assisted selection

  13. Fusarium and Aspergillus mycotoxins contaminating wheat silage for dairy cattle feeding in Uruguay

    Directory of Open Access Journals (Sweden)

    Agustina del Palacio

    Full Text Available Abstract Wheat is one of the most important cultivated cereals in Uruguay for human consumption; however, when harvest yields are low, wheat is usually used in ensiling for animal feeding. Ensiling is a forage preservation method that allows for storage during extended periods of time while maintaining nutritional values comparable to fresh pastures. Silage is vulnerable to contamination by spoilage molds and mycotoxins because ensilage materials are excellent substrates for fungal growth. The aim of the study was to identify the mycobiota composition and occurrence of aflatoxins and DON from wheat silage. A total of 220 samples of wheat were collected from four farms in the southwest region of Uruguay were silage practices are developed. The main fungi isolated were Fusarium (43% and Aspergillus (36%, with Fusarium graminearum sensu lato and Aspergillus section Flavi being the most prevalent species. Aflatoxin concentrations in silo bags ranged from 6.1 to 23.3 µg/kg, whereas DON levels ranged between 3000 µg/kg and 12,400 µg/kg. When evaluating aflatoxigenic capacity, 27.5% of Aspergillus section Flavi strains produced AFB1, 5% AFB2, 10% AFG1 and 17.5% AFG2. All isolates of F. graminearum sensu lato produced DON and 15-AcDON. The results from this study contribute to the knowledge of mycobiota and mycotoxins present in wheat silage.

  14. Fusarium ear rot and how to screen for resistance in open pollinated maize in the Andean regions

    NARCIS (Netherlands)

    Silva, E.; Mora, E.A.; Medina, A.; Vasquez, J.; Valdez, D.; Danial, D.L.; Parlevliet, J.E.

    2007-01-01

    Ears infected with ear rot were collected from five provinces in Ecuador. Of the 44 samples analysed 26 carried Fusarium verticillioides, 11 F. subglutinans, two F. graminearum and five carried fungi different from Fusarium. The pathogenicity of ten isolates, seven of F. verticillioides and three of

  15. Quick guide to polyketide synthase and nonribosomal synthetase genes in Fusarium

    DEFF Research Database (Denmark)

    Hansen, Jørgen T.; Sørensen, Jens L.; Giese, Henriette

    2012-01-01

    Fusarium species produce a plethora of bioactive polyketides and nonribosomal peptides that give rise to health problems in animals and may have drug development potential. Using the genome sequences for Fusarium graminearum, F. oxysporum, F. solani and F. verticillioides we developed a framework...... and NRPS genes in sequenced Fusarium species and their known products. With the rapid increase in the number of sequenced fungal genomes a systematic classification will greatly aid the scientific community in obtaining an overview of the number of different NRPS and PKS genes and their potential...

  16. Mycotoxins produced by Fusarium spp. associated with Fusarium head blight of wheat in Western Australia.

    Science.gov (United States)

    Tan, Diana C; Flematti, Gavin R; Ghisalberti, Emilio L; Sivasithamparam, Krishnapillai; Chakraborty, Sukumar; Obanor, Friday; Jayasena, Kithsiri; Barbetti, Martin J

    2012-05-01

    An isolated occurrence of Fusarium head blight (FHB) of wheat was detected in the south-west region of Western Australia during the 2003 harvest season. The molecular identity of 23 isolates of Fusarium spp. collected from this region during the FHB outbreak confirmed the associated pathogens to be F. graminearum, F. acuminatum or F. tricinctum. Moreover, the toxicity of their crude extracts from Czapek-Dox liquid broth and millet seed cultures to brine shrimp (Artemia franciscana) was associated with high mortality levels. The main mycotoxins detected were type B trichothecenes (deoxynivalenol and 3-acetyldeoxynivalenol), enniatins, chlamydosporol and zearalenone. This study is the first report on the mycotoxin profiles of Fusarium spp. associated with FHB of wheat in Western Australia. This study highlights the need for monitoring not just for the presence of the specific Fusarium spp. present in any affected grain but also for their potential mycotoxin and other toxic secondary metabolites.

  17. Involvement of a velvet protein FgVeA in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Jinhua Jiang

    Full Text Available The velvet protein, VeA, is involved in the regulation of diverse cellular processes. In this study, we explored functions of FgVeA in the wheat head blight pathogen, Fusarium graminearum,using a gene replacement strategy. The FgVEA deletion mutant exhibited a reduction in aerial hyphae formation, hydrophobicity, and deoxynivalenol (DON biosynthesis. Deletion of FgVEA gene led to an increase in conidial production, but a delay in conidial germination. Pathogencity assays showed that the mutant was impaired in virulence on flowering wheat head. Sensitivity tests to various stresses exhibited that the FgVEA deletion mutant showed increased resistance to osmotic stress and cell wall-damaging agents, but increased sensitivity to iprodione and fludioxonil fungicides. Ultrastructural and histochemical analyses revealed that conidia of FgVeA deletion mutant contained an unusually high number of large lipid droplets, which is in agreement with the observation that the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Serial analysis of gene expression (SAGE in the FgVEA mutant confirmed that FgVeA was involved in various cellular processes. Additionally, six proteins interacting with FgVeA were identified by yeast two hybrid assays in current study. These results indicate that FgVeA plays a critical role in a variety of cellular processes in F. graminearum.

  18. Fusarium head blight of cereals in Denmark

    DEFF Research Database (Denmark)

    Kærgaard Nielsen, Linda; Jensen, Jens Due; Nielsen, Ghita Cordsen

    2011-01-01

    Quantitative real-time polymerase chain reaction differentiating 10 Fusarium spp. and Microdochium nivale or M. majus was applied to a total of 396 grain samples of wheat, barley, triticale, oat, and rye sampled across Denmark from 2003 to 2007, along with selected samples of wheat and barley from...... 1957 to 2000, to determine incidence and abundance of individual Fusarium spp. The mycotoxins deoxynivalenol (DON), nivalenol, zearalenone, T-2, and HT-2 were quantified using liquid chromatography–double mass spectrometry. Major differences in the Fusarium species complex among the five cereals...... as well as great yearly variation were seen. Fusarium graminearum, F. culmorum, and F. avenaceum were dominant in wheat, with DON as the dominant mycotoxin. F. langsethiae, F. culmorum, and F. avenaceum were dominant in barley and oat, leading to relatively high levels of the mycotoxins T-2 and HT-2. F...

  19. Impact of selected antagonistic fungi on Fusarium species – toxigenic cereal pathogens

    Directory of Open Access Journals (Sweden)

    Delfina Popiel

    2013-12-01

    Full Text Available Fusarium-ear blight is a destructive disease in various cereal-growing regions and leads to significant yield and quality losses for farmers and to contamination of cereal grains with mycotoxins, mainly deoxynivalenol and derivatives, zearalenone and moniliformin. Fusarium pathogens grow well and produce significant inoculum on crop resiudues. Reduction of mycotoxins production and pathogen sporulation may be influenced by saprophytic fungi, exhibiting antagonistic effect. Dual culture bioassays were used to examine the impact of 92 isolates (belonging to 29 fungal species against three toxigenic species, i.e. Fusarium avenaceum (Corda Saccardo, F. culmorum (W.G.Smith Saccardo and F. graminearum Schwabe. Both F.culmorum and F. graminearum isolates produce trichothecene mycotoxins and mycohormone zearalenone and are considered to be the most important cereal pathogens worldwide. Infection with those pathogens leads to accumulation of mycotoxins: deoxynivalenol (DON and zearalenone (ZEA in grains. Fusarium avenaceum isolates are producers of moniliformin (MON and enniatins. Isolates of Trichoderma sp. were found to be the most effective ones to control the growth of examined Fusarium species. The response of Fusarium isolates to antagonistic activity of Trichoderma isolates varied and also the isolates of Trichoderma differed in their antagonistic activity against Fusarium isolates. The production of MON by two isolates of F. avenaceum in dual culture on rice was reduced by 95% to 100% by T. atroviride isolate AN 35. The same antagonist reduced the amount of moniliformin from 100 μg/g to 6.5 μg/g when inoculated to rice culture contaminated with MON, which suggests the possible decomposition of this mycotoxin.

  20. A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Jinhua Jiang

    Full Text Available Type 2C protein phosphatases (PP2Cs play important roles in regulating many biological processes in eukaryotes. Currently, little is known about functions of PP2Cs in filamentous fungi. The causal agent of wheat head blight, Fusarium graminearum, contains seven putative PP2C genes, FgPTC1, -3, -5, -5R, -6, -7 and -7R. In order to investigate roles of these PP2Cs, we constructed deletion mutants for all seven PP2C genes in this study. The FgPTC3 deletion mutant (ΔFgPtc3-8 exhibited reduced aerial hyphae formation and deoxynivalenol (DON production, but increased production of conidia. The mutant showed increased resistance to osmotic stress and cell wall-damaging agents on potato dextrose agar plates. Pathogencity assays showed that ΔFgPtc3-8 is unable to infect flowering wheat head. All of the defects were restored when ΔFgPtc3-8 was complemented with the wild-type FgPTC3 gene. Additionally, the FgPTC3 partially rescued growth defect of a yeast PTC1 deletion mutant under various stress conditions. Ultrastructural and histochemical analyses showed that conidia of ΔFgPtc3-8 contained an unusually high number of large lipid droplets. Furthermore, the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Quantitative real-time PCR assays showed that basal expression of FgOS2, FgSLT2 and FgMKK1 in the mutant was significantly higher than that in the wild-type strain. Serial analysis of gene expression in ΔFgPtc3-8 revealed that FgPTC3 is associated with various metabolic pathways. In contrast to the FgPTC3 mutant, the deletion mutants of FgPTC1, FgPTC5, FgPTC5R, FgPTC6, FgPTC7 or FgPTC7R did not show aberrant phenotypic features when grown on PDA medium or inoculated on wheat head. These results indicate FgPtc3 is the key PP2C that plays a critical role in a variety of cellular and biological functions, including cell wall integrity, lipid and secondary metabolisms, and virulence in F. graminearum.

  1. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity

    Science.gov (United States)

    Sperschneider, Jana; Gardiner, Donald M.; Thatcher, Louise F.; Lyons, Rebecca; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.

    2015-01-01

    Pathogens and hosts are in an ongoing arms race and genes involved in host–pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host–pathogen interactions for experimental verification. PMID:25994930

  2. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways.

    Science.gov (United States)

    Yun, Yingzi; Liu, Zunyong; Zhang, Jingze; Shim, Won-Bo; Chen, Yun; Ma, Zhonghua

    2014-07-01

    Mitogen-activated protein (MAP) kinases play crucial roles in regulating fungal development, growth and pathogenicity, and in responses to the environment. In this study, we characterized a MAP kinase kinase FgMkk1 in Fusarium graminearum, the causal agent of wheat head blight. Phenotypic analyses of the FgMKK1 mutant (ΔFgMKK1) showed that FgMkk1 is involved in the regulation of hyphal growth, pigmentation, conidiation, deoxynivalenol biosynthesis and virulence of F. graminearum. ΔFgMKK1 also showed increased sensitivity to cell wall-damaging agents, and to osmotic and oxidative stresses, but exhibited decreased sensitivity to the fungicides iprodione and fludioxonil. In addition, the mutant revealed increased sensitivity to a biocontrol agent, Trichoderma atroviride. Western blot assays revealed that FgMkk1 positively regulates phosphorylation of the MAP kinases Mgv1 and FgOs-2, the key component in the cell wall integrity (CWI) and high-osmolarity glycerol (HOG) signalling pathway respectively. Yeast two-hybrid assay indicated that Mgv1 interacts with a transcription factor FgRlm1. The FgRLM1 mutant (ΔFgRLM1) showed increased sensitivity to cell wall-damaging agents and exhibited decreased virulence. Taken together, our data indicated that FgMkk1 is an upstream component of Mgv1, and regulates vegetative differentiation, multiple stress response and virulence via the CWI and HOG signalling pathways. FgRlm1 may be a downstream component of Mgv1 in the CWI pathway in F. graminearum. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Overexpression of NRPS4 leads to increased surface hydrophobicity in fusarium graminearum

    DEFF Research Database (Denmark)

    Hansen, Frederik Teilfeldt; Droce, Aida; Sørensen, Jens Laurids

    2012-01-01

    ). Most of these are unknown as F. graminearum contains 19 NRPS encoding genes, but only three have been assigned products. For the first time, we use deletion and overexpression mutants to investigate the functions and product of NRPS4 in F. graminearum. Deletion of NRPS4 homologues in Alternaria...... brassicicola and Cochloibolus heterostrophus has been shown to result in mutants unable to repel water. In a time study of surface hydrophobicity we observed that water droplets could penetrate 7 d old colonies of the NRPS4 deletion mutants. Loss in ability to repel water was first observed on 13 d old...

  4. Acetohydroxyacid synthase FgIlv2 and FgIlv6 are involved in BCAA biosynthesis, mycelial and conidial morphogenesis, and full virulence in Fusarium graminearum.

    Science.gov (United States)

    Liu, Xin; Han, Qi; Xu, Jianhong; Wang, Jian; Shi, Jianrong

    2015-11-10

    In this study, we characterized FgIlv2 and FgIlv6, the catalytic and regulatory subunits of acetohydroxyacid synthase (AHAS) from the important wheat head scab fungus Fusarium graminearum. AHAS catalyzes the first common step in the parallel pathways toward branched-chain amino acids (BCAAs: isoleucine, leucine, valine) and is the inhibitory target of several commercialized herbicides. Both FgILV2 and FgILV6 deletion mutants were BCAA-auxotrophic and showed reduced aerial hyphal growth and red pigmentation when cultured on PDA plates. Conidial formation was completely blocked in the FgILV2 deletion mutant ΔFgIlv2-4 and significantly reduced in the FgILV6 deletion mutant ΔFgIlv6-12. The auxotrophs of ΔFgIlv2-4 and ΔFgIlv6-12 could be restored by exogenous addition of BCAAs but relied on the designated nitrogen source the medium contained. Deletion of FgILV2 or FgILV6 also leads to hypersensitivity to various cellular stresses and reduced deoxynivalenol production. ΔFgIlv2-4 lost virulence completely on flowering wheat heads, whereas ΔFgIlv6-12 could cause scab symptoms in the inoculated spikelet but lost its aggressiveness. Taken together, our study implies the potential value of antifungals targeting both FgIlv2 and FgIlv6 in F. graminearum.

  5. MORPHOLOGICAL AND MOLECULAR IDENTIFICATION OF Fusarium SPECIES AND THEIR PATHOGENICITY FOR WHEAT

    Directory of Open Access Journals (Sweden)

    Jelena Poštić

    2012-12-01

    Full Text Available From the root and lower stem parts of weeds and plant debris of maize, wheat, oat and sunflower we isolated 300 isolates of Fusarium spp. and performed morphological and molecular identification. With molecular identification using AFLP method we determined 14 Fusarium species: F. acuminatum, F. avenaceum, F. concolor, F. crookwellense, F. equiseti, F. graminearum, F. oxysporum, F. proliferatum, F. semitectum, F. solani, F. sporotrichioides, F. subglutinans, F. venenatum and F. verticillioides.By comparing results of morphological and molecular identification we found out that determination of 16,7% isolates was incorrect. Out of 300 isolates identified with molecular methods, 50 did not belong to the species determined with morphological determination.With pathogenicity tests of 30 chosen Fusarium isolates we determined that many of them were pathogenic to wheat and maize seedlings and to wheat heads. The most pathogenic were isolates of F. graminearum from A. retroflexus, A. theophrasti and C. album, F. venenatum from maize debris and and A. theophrasti, F. crookwellense from A. lappa. Antifungal influence of 11 essential oils on mycelia growth and sporulation of chosen Fusarium isolates determined that essential oils of T. vulgaris, P. anisum and E. caryophyllus had the strongest effect on mycelial growth. Influence of essential oils on sporulation was not statistically significant.

  6. Genomic analysis of Bacillus subtilis OH 131.1 and coculturing with Cryptococcus flavescens for control of fusarium head blight

    Science.gov (United States)

    Bacillus subtilis OH131.1 is a bacterial antagonist of Fusarium graminearum, a plant pathogen which causes Fusarium head blight in wheat. The genome of B. subtilis OH131.1 was sequenced, annotated and analyzed to understand its potential to produce bioactive metabolites. The analysis identified 6 sy...

  7. The xylanase inhibitor TAXI-III counteracts the necrotic activity of a Fusarium graminearum xylanase in vitro and in durum wheat transgenic plants.

    Science.gov (United States)

    Moscetti, Ilaria; Faoro, Franco; Moro, Stefano; Sabbadin, Davide; Sella, Luca; Favaron, Francesco; D'Ovidio, Renato

    2015-08-01

    The xylanase inhibitor TAXI-III has been proven to delay Fusarium head blight (FHB) symptoms caused by Fusarium graminearum in transgenic durum wheat plants. To elucidate the molecular mechanism underlying the capacity of the TAXI-III transgenic plants to limit FHB symptoms, we treated wheat tissues with the xylanase FGSG_03624, hitherto shown to induce cell death and hydrogen peroxide accumulation. Experiments performed on lemmas of flowering wheat spikes and wheat cell suspension cultures demonstrated that pre-incubation of xylanase FGSG_03624 with TAXI-III significantly decreased cell death. Most interestingly, a reduced cell death relative to control non-transgenic plants was also obtained by treating, with the same xylanase, lemmas of TAXI-III transgenic plants. Molecular modelling studies predicted an interaction between the TAXI-III residue H395 and residues E122 and E214 belonging to the active site of xylanase FGSG_03624. These results provide, for the first time, clear indications in vitro and in planta that a xylanase inhibitor can prevent the necrotic activity of a xylanase, and suggest that the reduced FHB symptoms on transgenic TAXI-III plants may be a result not only of the direct inhibition of xylanase activity secreted by the pathogen, but also of the capacity of TAXI-III to avoid host cell death. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  8. Fusarium and Aspergillus mycotoxins contaminating wheat silage for dairy cattle feeding in Uruguay.

    Science.gov (United States)

    Del Palacio, Agustina; Bettucci, Lina; Pan, Dinorah

    Wheat is one of the most important cultivated cereals in Uruguay for human consumption; however, when harvest yields are low, wheat is usually used in ensiling for animal feeding. Ensiling is a forage preservation method that allows for storage during extended periods of time while maintaining nutritional values comparable to fresh pastures. Silage is vulnerable to contamination by spoilage molds and mycotoxins because ensilage materials are excellent substrates for fungal growth. The aim of the study was to identify the mycobiota composition and occurrence of aflatoxins and DON from wheat silage. A total of 220 samples of wheat were collected from four farms in the southwest region of Uruguay were silage practices are developed. The main fungi isolated were Fusarium (43%) and Aspergillus (36%), with Fusarium graminearum sensu lato and Aspergillus section Flavi being the most prevalent species. Aflatoxin concentrations in silo bags ranged from 6.1 to 23.3μg/kg, whereas DON levels ranged between 3000μg/kg and 12,400μg/kg. When evaluating aflatoxigenic capacity, 27.5% of Aspergillus section Flavi strains produced AFB1, 5% AFB2, 10% AFG1 and 17.5% AFG2. All isolates of F. graminearum sensu lato produced DON and 15-AcDON. The results from this study contribute to the knowledge of mycobiota and mycotoxins present in wheat silage. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. Protein kinase FgSch9 serves as a mediator of the target of rapamycin and high osmolarity glycerol pathways and regulates multiple stress responses and secondary metabolism in Fusarium graminearum.

    Science.gov (United States)

    Gu, Qin; Zhang, Chengqi; Yu, Fangwei; Yin, Yanni; Shim, Won-Bo; Ma, Zhonghua

    2015-08-01

    Saccharomyces cerevisiae protein kinase Sch9 is one of the downstream effectors of the target of rapamycin (TOR) complex 1 and plays multiple roles in stress resistance, longevity and nutrient sensing. However, the functions of Sch9 orthologs in filamentous fungi, particularly in pathogenic species, have not been characterized to date. Here, we investigated biological and genetic functions of FgSch9 in Fusarium graminearum. The FgSCH9 deletion mutant (ΔFgSch9) was defective in aerial hyphal growth, hyphal branching and conidial germination. The mutant exhibited increased sensitivity to osmotic and oxidative stresses, cell wall-damaging agents, and to rapamycin, while showing increased thermal tolerance. We identified FgMaf1 as one of the FgSch9-interacting proteins that plays an important role in regulating mycotoxin biosynthesis and virulence of F. graminearum. Co-immunoprecipitation and affinity capture-mass spectrometry assays showed that FgSch9 also interacts with FgTor and FgHog1. More importantly, both ΔFgSch9 and FgHog1 null mutant (ΔFgHog1) exhibited increased sensitivity to osmotic and oxidative stresses. This defect was more severe in the FgSch9/FgHog1 double mutant. Taken together, we propose that FgSch9 serves as a mediator of the TOR and high osmolarity glycerol pathways, and regulates vegetative differentiation, multiple stress responses and secondary metabolism in F. graminearum. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. pH regulation of recombinant glucoamylase production in Fusarium venenatum JeRS 325, a transformant with a Fusarium oxysporum alkaline (trypsin-like) protease promoter.

    Science.gov (United States)

    Wiebe, M G; Robson, G D; Shuster, J R; Trinci, A P

    1999-08-05

    Fusarium venenatum (formerly Fusarium graminearum) JeRS 325 produces heterologous glucoamylase (GAM) under the regulation of a Fusarium oxysporum alkaline (trypsin-like) protease promoter. The glucoamylase gene was used as a reporter gene to study the effects of ammonium and pH on GAM production under the control of the alkaline protease promoter. Between pH 4.0 and 5.8, GAM production in glucose-limited chemostat cultures of JeRS 325 grown at a dilution rate of 0.10 h-1 (doubling time, 6.9 h) on (NH4)2SO4 medium increased in a linear manner with increase in pH. However, at pH 4.0 and below GAM production was almost completely repressed in glucose-limited chemostat cultures grown on (NH4)2SO4 or NaNO3 medium. Thus GAM production in JeRS 325 is regulated by culture pH, not by the nature of the nitrogen source in the medium. The difficulty of using unbuffered medium when investigating putative ammonium repression is also shown. The study demonstrates the potential for use of the alkaline protease promoter in F. graminearum for the production of recombinant proteins in a pH dependent man ner. Copyright 1999 John Wiley & Sons, Inc.

  11. OPTIMIZATION OF ENNIATINS PRODUCTION BY AN ENDOPHYTIC STRAIN FUSARIUM DIMERUM

    Directory of Open Access Journals (Sweden)

    Eva Buchtová

    2014-10-01

    Full Text Available The goal of this study was to find suitable composition of cultivation media for enniatin production by isolated endophytic strain Fusarium dimerum. In order to find optimal cultivation media, mono- and di- saccharides, complex nitrogen sources and L-amino acids directed biosynthesis of enniatins were tested. Submerged cultivation experiments were carried out in cultivation flasks. Most promising medium for enniatin accumulation contained fructose, malt extract and peptone for bacteriology. Finally, quite expensive carbon source fructose was replaced by more available syrups. Optimization resulted in 4-times elevated enniatin biosynthesis by metabolites production microorganism. Moreover, this is the strain obtained from Magnolia soulangeana, which has similar metabolites spectrum as the isolated Fusarium dimerum. Comparison of these results with published ones revealed that this endophyte is a potential strain for enniatins biosynthesis in submerged cultivation in which the maximum accumulation 1.27 g.L-1 of enniatin in culture medium was reached in a short period (96 h. The results proved that the endophytic strain F. dimerum may potentially be applied for efficient production of bioactive enniatins.

  12. Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides

    DEFF Research Database (Denmark)

    Thrane, Ulf; Adler, A.; Clasen, P.E.

    2004-01-01

    The production of mycotoxins and other metabolites by 109 strains of Fusarium langsethiae, Fusarium poae, Fusarium sporotrichioides, and F. kyushuense was investigated independently in four laboratories by liquid or gas chromatography analyses of cultural extracts with UV diode array, electron...

  13. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Potential Mycotoxin Production in China.

    Science.gov (United States)

    Duan, Canxing; Qin, Zihui; Yang, Zhihuan; Li, Weixi; Sun, Suli; Zhu, Zhendong; Wang, Xiaoming

    2016-06-21

    Ear rot is a serious disease that affects maize yield and grain quality worldwide. The mycotoxins are often hazardous to humans and livestock. In samples collected in China between 2009 and 2014, Fusarium verticillioides and F. graminearum species complex were the dominant fungi causing ear rot. According to the TEF-1α gene sequence, F. graminearum species complex in China included three independent species: F. graminearum, F. meridionale, and F. boothii. The key gene FUM1 responsible for the biosynthesis of fumonisin was detected in all 82 F. verticillioides isolates. Among these, 57 isolates mainly produced fumonisin B₁, ranging from 2.52 to 18,416.44 µg/g for each gram of dry hyphal weight, in vitro. Three different toxigenic chemotypes were detected among 78 F. graminearum species complex: 15-ADON, NIV and 15-ADON+NIV. Sixty and 16 isolates represented the 15-ADON and NIV chemotypes, respectively; two isolates carried both 15-ADON and NIV-producing segments. All the isolates carrying NIV-specific segment were F. meridionale. The in vitro production of 15-ADON, 3-ADON, DON, and ZEN varied from 5.43 to 81,539.49; 6.04 to 19,590.61; 13.35 to 19,795.33; and 1.77 to 430.24 µg/g of dry hyphal weight, respectively. Altogether, our present data demonstrate potential main mycotoxin production of dominant pathogenic Fusarium in China.

  14. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Potential Mycotoxin Production in China

    Science.gov (United States)

    Duan, Canxing; Qin, Zihui; Yang, Zhihuan; Li, Weixi; Sun, Suli; Zhu, Zhendong; Wang, Xiaoming

    2016-01-01

    Ear rot is a serious disease that affects maize yield and grain quality worldwide. The mycotoxins are often hazardous to humans and livestock. In samples collected in China between 2009 and 2014, Fusarium verticillioides and F. graminearum species complex were the dominant fungi causing ear rot. According to the TEF-1α gene sequence, F. graminearum species complex in China included three independent species: F. graminearum, F. meridionale, and F. boothii. The key gene FUM1 responsible for the biosynthesis of fumonisin was detected in all 82 F. verticillioides isolates. Among these, 57 isolates mainly produced fumonisin B1, ranging from 2.52 to 18,416.44 µg/g for each gram of dry hyphal weight, in vitro. Three different toxigenic chemotypes were detected among 78 F. graminearum species complex: 15-ADON, NIV and 15-ADON+NIV. Sixty and 16 isolates represented the 15-ADON and NIV chemotypes, respectively; two isolates carried both 15-ADON and NIV-producing segments. All the isolates carrying NIV-specific segment were F. meridionale. The in vitro production of 15-ADON, 3-ADON, DON, and ZEN varied from 5.43 to 81,539.49; 6.04 to 19,590.61; 13.35 to 19,795.33; and 1.77 to 430.24 µg/g of dry hyphal weight, respectively. Altogether, our present data demonstrate potential main mycotoxin production of dominant pathogenic Fusarium in China. PMID:27338476

  15. Fusarium and mycotoxin spectra in Swiss barley are affected by various cropping techniques.

    Science.gov (United States)

    Schöneberg, Torsten; Martin, Charlotte; Wettstein, Felix E; Bucheli, Thomas D; Mascher, Fabio; Bertossa, Mario; Musa, Tomke; Keller, Beat; Vogelgsang, Susanne

    2016-10-01

    Fusarium head blight is one of the most important cereal diseases worldwide. Cereals differ in terms of the main occurring Fusarium species and the infection is influenced by various factors, such as weather and cropping measures. Little is known about Fusarium species in barley in Switzerland, hence harvest samples from growers were collected in 2013 and 2014, along with information on respective cropping factors. The incidence of different Fusarium species was obtained by using a seed health test and mycotoxins were quantified by LC-MS/MS. With these techniques, the most dominant species, F. graminearum, and the most prominent mycotoxin, deoxynivalenol (DON), were identified. Between the three main Swiss cropping systems, Organic, Extenso and Proof of ecological performance, we observed differences with the lowest incidence and toxin accumulation in organically cultivated barley. Hence, we hypothesise that this finding was based on an array of growing techniques within a given cropping system. We observed that barley samples from fields with maize as previous crop had a substantially higher F. graminearum incidence and elevated DON accumulation compared with other previous crops. Furthermore, the use of reduced tillage led to a higher disease incidence and toxin content compared with samples from ploughed fields. Further factors increasing Fusarium infection were high nitrogen fertilisation as well as the application of fungicides and growth regulators. Results from the current study can be used to develop optimised cropping systems that reduce the risks of mycotoxin contamination.

  16. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains

    Directory of Open Access Journals (Sweden)

    De Souza Gabriel IH

    2005-07-01

    Full Text Available Abstract Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver nanoparticles were in the range of 20–50 nm in dimensions. The reduction of the metal ions occurs by a nitrate-dependent reductase and a shuttle quinone extracellular process. The potentialities of this nanotechnological design based in fugal biosynthesis of nanoparticles for several technical applications are important, including their high potential as antibacterial material.

  17. Architecture and Distribution of Introns in Core Genes of Four Fusarium Species

    Directory of Open Access Journals (Sweden)

    Mmatshepho M. Phasha

    2017-11-01

    Full Text Available Removal of introns from transcribed RNA represents a crucial step during the production of mRNA in eukaryotes. Available whole-genome sequences and expressed sequence tags (ESTs have increased our knowledge of this process and revealed various commonalities among eukaryotes. However, certain aspects of intron structure and diversity are taxon-specific, which can complicate the accuracy of in silico gene prediction methods. Using core genes, we evaluated the distribution and architecture of Fusarium circinatum spliceosomal introns, and linked these characteristics to the accuracy of the predicted gene models of the genome of this fungus. We also evaluated intron distribution and architecture in F. verticillioides, F. oxysporum, and F. graminearum, and made comparisons with F. circinatum. Results indicated that F. circinatum and the three other Fusarium species have canonical 5′ and 3′ splice sites, but with subtle differences that are apparently not shared with those of other fungal genera. The polypyrimidine tract of Fusarium introns was also found to be highly divergent among species and genes. Furthermore, the conserved adenosine nucleoside required during the first step of splicing is contained within unique branch site motifs in certain Fusarium introns. Data generated here show that introns of F. circinatum, as well as F. verticillioides, F. oxysporum, and F. graminearum, are characterized by a number of unique features such as the CTHAH and ACCAT motifs of the branch site. Incorporation of such information into genome annotation software will undoubtedly improve the accuracy of gene prediction methods used for Fusarium species and related fungi.

  18. Fusarium graminearum in Stored Wheat: Use of CO₂ Production to Quantify Dry Matter Losses and Relate This to Relative Risks of Zearalenone Contamination under Interacting Environmental Conditions.

    Science.gov (United States)

    Garcia-Cela, Esther; Kiaitsi, Elsa; Sulyok, Michael; Medina, Angel; Magan, Naresh

    2018-02-17

    Zearalenone (ZEN) contamination from Fusarium graminearum colonization is particularly important in food and feed wheat, especially during post-harvest storage with legislative limits for both food and feed grain. Indicators of the relative risk from exceeding these limits would be useful. We examined the effect of different water activities (a w ; 0.95-0.90) and temperature (10-25 °C) in naturally contaminated and irradiated wheat grain, both inoculated with F. graminearum and stored for 15 days on (a) respiration rate; (b) dry matter losses (DML); (c) ZEN production and (d) relationship between DML and ZEN contamination relative to the EU legislative limits. Gas Chromatography was used to measure the temporal respiration rates and the total accumulated CO₂ production. There was an increase in temporal CO₂ production rates in wetter and warmer conditions in all treatments, with the highest respiration in the 25 °C × 0.95 a w treatments + F. graminearum inoculation. This was reflected in the total accumulated CO₂ in the treatments. The maximum DMLs were in the 0.95 a w /20-25 °C treatments and at 10 °C/0.95 a w . The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Contamination with ZEN/ZEN-related compounds were quantified. Maximum production was at 25 °C/0.95-0.93 a w and 20 °C/0.95 a w . ZEN contamination levels plotted against DMLs for all the treatments showed that at ca 1.0% DML, the risk was high. This type of data is important in building a database for the development of a post-harvest decision support system for relative risks of different mycotoxins.

  19. Salicylic acid regulates basal resistance to Fusarium head blight in wheat.

    Science.gov (United States)

    Makandar, Ragiba; Nalam, Vamsi J; Lee, Hyeonju; Trick, Harold N; Dong, Yanhong; Shah, Jyoti

    2012-03-01

    Fusarium head blight (FHB) is a destructive disease of cereal crops such as wheat and barley. Previously, expression in wheat of the Arabidopsis NPR1 gene (AtNPR1), which encodes a key regulator of salicylic acid (SA) signaling, was shown to reduce severity of FHB caused by Fusarium graminearum. It was hypothesized that SA signaling contributes to wheat defense against F. graminearum. Here, we show that increased accumulation of SA in fungus-infected spikes correlated with elevated expression of the SA-inducible pathogenesis-related 1 (PR1) gene and FHB resistance. In addition, FHB severity and mycotoxin accumulation were curtailed in wheat plants treated with SA and in AtNPR1 wheat, which is hyper-responsive to SA. In support of a critical role for SA in basal resistance to FHB, disease severity was higher in wheat expressing the NahG-encoded salicylate hydroxylase, which metabolizes SA. The FHB-promoting effect of NahG was overcome by application of benzo (1,2,3), thiadiazole-7 carbothioic acid S-methyl ester, a synthetic functional analog of SA, thus confirming an important role for SA signaling in basal resistance to FHB. We further demonstrate that jasmonate signaling has a dichotomous role in wheat interaction with F. graminearum, constraining activation of SA signaling during early stages of infection and promoting resistance during the later stages of infection.

  20. The endosomal recycling of FgSnc1 by FgSnx41-FgSnx4 heterodimer is essential for polarized growth and pathogenicity in Fusarium graminearum.

    Science.gov (United States)

    Zheng, Wenhui; Lin, Yahong; Fang, Wenqin; Zhao, Xu; Lou, Yi; Wang, Guanghui; Zheng, Huawei; Liang, Qifu; Abubakar, Yakubu Saddeeq; Olsson, Stefan; Zhou, Jie; Wang, Zonghua

    2018-04-20

    Endosomal sorting machineries regulate the transport of their cargoes among intracellular compartments. However, the molecular nature of such intracellular trafficking processes in pathogenic fungal development and pathogenicity remains unclear. Here, we dissect the roles and molecular mechanisms of two sorting nexin proteins and their cargoes in endosomal recycling in Fusarium graminearum using high-resolution microscopy and high-throughput co-immunoprecipitation strategies. We show that the sorting nexins, FgSnx41 and FgSnx4, interact with each other and assemble into a functionally interdependent heterodimer through their respective BAR domains. Further analyses demonstrate that the dimer localizes to the early endosomal membrane and coordinates endosomal sorting. The small GTPase FgRab5 regulates the correct localization of FgSnx41-FgSnx4 and is consequently required for its trafficking function. The protein FgSnc1 is a cargo of FgSnx41-FgSnx4 and regulates the fusion of secreted vesicles with the fungal growing apex and plasma membrane. In the absence of FgSnx41 or FgSnx4, FgSnc1 is mis-sorted and degraded in the vacuole, and null deletion of either component causes defects in the fungal polarized growth and virulence. Overall, for the first time, our results reveal the mechanism of FgSnc1 endosomal recycling by FgSnx41-FgSnx4 heterodimer which is essential for polarized growth and pathogenicity in F. graminearum. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  1. Real-time imaging of the growth-inhibitory effect of JS399-19 on Fusarium.

    Science.gov (United States)

    Wollenberg, Rasmus D; Donau, Søren S; Nielsen, Thorbjørn T; Sørensen, Jens L; Giese, Henriette; Wimmer, Reinhard; Søndergaard, Teis E

    2016-11-01

    Real-time imaging was used to study the effects of a novel Fusarium-specific cyanoacrylate fungicide (JS399-19) on growth and morphology of four Fusarium sp. This fungicide targets the motor domain of type I myosin. Fusarium graminearum PH-1, Fusarium solani f. sp. pisi 77-13-4, Fusarium avenaceum IBT8464, and Fusarium avenaceum 05001, which has a K216Q amino-acid substitution at the resistance-implicated site in its myosin type I motor domain, were analyzed. Real-time imaging shows that JS399-19 inhibits fungal growth but not to the extent previously reported. The fungicide causes the hypha to become entangled and unable to extend vertically. This implies that type I myosin in Fusarium is essential for hyphal and mycelia propagation. The K216Q substitution correlates with reduced susceptibility in F. avenaceum. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Fusarium graminearum in Stored Wheat: Use of CO2 Production to Quantify Dry Matter Losses and Relate This to Relative Risks of Zearalenone Contamination under Interacting Environmental Conditions

    Science.gov (United States)

    Kiaitsi, Elsa; Magan, Naresh

    2018-01-01

    Zearalenone (ZEN) contamination from Fusarium graminearum colonization is particularly important in food and feed wheat, especially during post-harvest storage with legislative limits for both food and feed grain. Indicators of the relative risk from exceeding these limits would be useful. We examined the effect of different water activities (aw; 0.95–0.90) and temperature (10–25 °C) in naturally contaminated and irradiated wheat grain, both inoculated with F. graminearum and stored for 15 days on (a) respiration rate; (b) dry matter losses (DML); (c) ZEN production and (d) relationship between DML and ZEN contamination relative to the EU legislative limits. Gas Chromatography was used to measure the temporal respiration rates and the total accumulated CO2 production. There was an increase in temporal CO2 production rates in wetter and warmer conditions in all treatments, with the highest respiration in the 25 °C × 0.95 aw treatments + F. graminearum inoculation. This was reflected in the total accumulated CO2 in the treatments. The maximum DMLs were in the 0.95 aw/20–25 °C treatments and at 10 °C/0.95 aw. The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Contamination with ZEN/ZEN-related compounds were quantified. Maximum production was at 25 °C/0.95–0.93 aw and 20 °C/0.95 aw. ZEN contamination levels plotted against DMLs for all the treatments showed that at ca. 1.0% DML, the risk was high. This type of data is important in building a database for the development of a post-harvest decision support system for relative risks of different mycotoxins. PMID:29462982

  3. Fusarium graminearum in Stored Wheat: Use of CO2 Production to Quantify Dry Matter Losses and Relate This to Relative Risks of Zearalenone Contamination under Interacting Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Esther Garcia-Cela

    2018-02-01

    Full Text Available Zearalenone (ZEN contamination from Fusarium graminearum colonization is particularly important in food and feed wheat, especially during post-harvest storage with legislative limits for both food and feed grain. Indicators of the relative risk from exceeding these limits would be useful. We examined the effect of different water activities (aw; 0.95–0.90 and temperature (10–25 °C in naturally contaminated and irradiated wheat grain, both inoculated with F. graminearum and stored for 15 days on (a respiration rate; (b dry matter losses (DML; (c ZEN production and (d relationship between DML and ZEN contamination relative to the EU legislative limits. Gas Chromatography was used to measure the temporal respiration rates and the total accumulated CO2 production. There was an increase in temporal CO2 production rates in wetter and warmer conditions in all treatments, with the highest respiration in the 25 °C × 0.95 aw treatments + F. graminearum inoculation. This was reflected in the total accumulated CO2 in the treatments. The maximum DMLs were in the 0.95 aw/20–25 °C treatments and at 10 °C/0.95 aw. The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Contamination with ZEN/ZEN-related compounds were quantified. Maximum production was at 25 °C/0.95–0.93 aw and 20 °C/0.95 aw. ZEN contamination levels plotted against DMLs for all the treatments showed that at ca. <1.0% DML, there was a low risk of ZEN contamination exceeding EU legislative limits, while at >1.0% DML, the risk was high. This type of data is important in building a database for the development of a post-harvest decision support system for relative risks of different mycotoxins.

  4. Prevalence, Characterization, and Mycotoxin Production Ability of Fusarium Species on Korean Adlay (Coix lacrymal-jobi L. Seeds

    Directory of Open Access Journals (Sweden)

    Tae Jin An

    2016-10-01

    Full Text Available Adlay seed samples were collected from three adlay growing regions (Yeoncheon, Hwasun, and Eumseong region in Korea during 2012. Among all the samples collected, 400 seeds were tested for fungal occurrence by standard blotter and test tube agar methods and different taxonomic groups of fungal genera were detected. The most predominant fungal genera encountered were Fusarium, Phoma, Alternaria, Cladosporium, Curvularia, Cochliobolus and Leptosphaerulina. Fusarium species accounted for 45.6% of all species found; and, with phylogenetic analysis based on the combined sequences of two protein coding genes (EF-1α and β-tubulin, 10 Fusarium species were characterized namely, F. incarnatum (11.67%, F. kyushuense (10.33%, F. fujikuroi (8.67%, F. concentricum (6.00%, F. asiaticum (5.67%, F. graminearum (1.67%, F. miscanthi (0.67%, F. polyphialidicum (0.33%, F. armeniacum (0.33%, and F. thapsinum (0.33%. The Fusarium species were then examined for their morphological characteristics to confirm their identity. Morphological observations of the species correlated well with and confirmed their molecular identification. The ability of these isolates to produce the mycotoxins fumonisin (FUM and zearalenone (ZEN was tested by the ELISA quantitative analysis method. The result revealed that FUM was produced only by F. fujikuroi and that ZEN was produced by F. asiaticum and F. graminearum.

  5. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Poten tial Mycotoxin Production in China

    Directory of Open Access Journals (Sweden)

    Canxing Duan

    2016-06-01

    Full Text Available Ear rot is a serious disease that affects maize yield and grain quality worldwide. The mycotoxins are often hazardous to humans and livestock. In samples collected in China between 2009 and 2014, Fusarium verticillioides and F. graminearum species complex were the dominant fungi causing ear rot. According to the TEF-1α gene sequence, F. graminearum species complex in China included three independent species: F. graminearum, F. meridionale, and F. boothii. The key gene FUM1 responsible for the biosynthesis of fumonisin was detected in all 82 F. verticillioides isolates. Among these, 57 isolates mainly produced fumonisin B1, ranging from 2.52 to 18,416.44 µg/g for each gram of dry hyphal weight, in vitro. Three different toxigenic chemotypes were detected among 78 F. graminearum species complex: 15-ADON, NIV and 15-ADON+NIV. Sixty and 16 isolates represented the 15-ADON and NIV chemotypes, respectively; two isolates carried both 15-ADON and NIV-producing segments. All the isolates carrying NIV-specific segment were F. meridionale. The in vitro production of 15-ADON, 3-ADON, DON, and ZEN varied from 5.43 to 81,539.49; 6.04 to 19,590.61; 13.35 to 19,795.33; and 1.77 to 430.24 µg/g of dry hyphal weight, respectively. Altogether, our present data demonstrate potential main mycotoxin production of dominant pathogenic Fusarium in China.

  6. Effect of Environmental Factors on Fusarium Species and Associated Mycotoxins in Maize Grain Grown in Poland.

    Directory of Open Access Journals (Sweden)

    Elżbieta Czembor

    Full Text Available Maize is one of the most important crops and Poland is the fifth largest producing country in Europe. Diseases caused by Fusarium spp. can affect the yield and grain quality of maize because of contamination with numerous mycotoxins produced by these fungi. The present study was performed to identify the prevailing Fusarium species and the environmental factors affecting their frequencies and the contamination of grain with the main mycotoxins deoxynivalenol (DON, zearalenone (ZON and fumonisin B1 (FB1. Thirty kernel samples were collected in three locations in 2011 and in seven locations in 2012 from three hybrids. On average, 25.24% kernels were colonized by Fusarium spp. (424 strains were isolated. Fusarium verticillioides and F. temperatum were the most prevalent species, F. subglutinans, F. proliferatum and F. graminearum were in minor abundance. In total, 272 isolates of F. verticillioides and 81 isolates of F. temperatum were identified. Fusarium temperatum frequency ranged from 1.70% to 28.57% and differences between locations were significant. Fumonisin B1 was found in all tested samples. DON was found in 66.67% and ZON in 43.33% of samples. Rainfall amount positively affected F. temperatum and F. subglutinans frequency in opposite to mean temperatures in July. On the other hand, relationships between frequency of these species and historical data from 1950-2000 for annual temperature range were negative in contrast to the coldest quarter temperatures.

  7. Effect of Environmental Factors on Fusarium Species and Associated Mycotoxins in Maize Grain Grown in Poland

    Science.gov (United States)

    Czembor, Elżbieta; Stępień, Łukasz; Waśkiewicz, Agnieszka

    2015-01-01

    Maize is one of the most important crops and Poland is the fifth largest producing country in Europe. Diseases caused by Fusarium spp. can affect the yield and grain quality of maize because of contamination with numerous mycotoxins produced by these fungi. The present study was performed to identify the prevailing Fusarium species and the environmental factors affecting their frequencies and the contamination of grain with the main mycotoxins deoxynivalenol (DON), zearalenone (ZON) and fumonisin B1 (FB1). Thirty kernel samples were collected in three locations in 2011 and in seven locations in 2012 from three hybrids. On average, 25.24% kernels were colonized by Fusarium spp. (424 strains were isolated). Fusarium verticillioides and F. temperatum were the most prevalent species, F. subglutinans, F. proliferatum and F. graminearum were in minor abundance. In total, 272 isolates of F. verticillioides and 81 isolates of F. temperatum were identified. Fusarium temperatum frequency ranged from 1.70% to 28.57% and differences between locations were significant. Fumonisin B1 was found in all tested samples. DON was found in 66.67% and ZON in 43.33% of samples. Rainfall amount positively affected F. temperatum and F. subglutinans frequency in opposite to mean temperatures in July. On the other hand, relationships between frequency of these species and historical data from 1950–2000 for annual temperature range were negative in contrast to the coldest quarter temperatures. PMID:26225823

  8. Multiplex polymerase chain reaction assay for the differential detection of trichothecene- and fumonisin-producing species of Fusarium in cornmeal.

    Science.gov (United States)

    Bluhm, B H; Flaherty, J E; Cousin, M A; Woloshuk, C P

    2002-12-01

    The genus Fusarium comprises a diverse group of fungi including several species that produce mycotoxins in food commodities. In this study, a multiplex polymerase chain reaction (PCR) assay was developed for the group-specific detection of fumonisin-producing and trichothecene-producing species of Fusarium. Primers for genus-level recognition of Fusarium spp. were designed from the internal transcribed spacer regions (ITS1 and ITS2) of rDNA. Primers for group-specific detection were designed from the TRI6 gene involved in trichothecene biosynthesis and the FUM5 gene involved in fumonisin biosynthesis. Primer specificity was determined by testing for cross-reactivity against purified genomic DNA from 43 fungal species representing 14 genera, including 9 Aspergillus spp., 9 Fusarium spp., and 10 Penicillium spp. With purified genomic DNA as a template, genus-specific recognition was observed at 10 pg per reaction; group-specific recognition occurred at 100 pg of template per reaction for the trichothecene producer Fusarium graminearum and at 1 ng of template per reaction for the fumonisin producer Fusarium verticillioides. For the application of the PCR assay, a protocol was developed to isolate fungal DNA from cornmeal. The detection of F. graminearum and its differentiation from F. verticillioides were accomplished prior to visible fungal growth at cornmeal. This level of detection is comparable to those of other methods such as enzyme-linked immunosorbent assay, and the assay described here can be used in the food industry's effort to monitor quality and safety.

  9. Natural incidence of Fusarium species and fumonisins B1 and B2 associated with maize kernels from nine provinces in China in 2012.

    Science.gov (United States)

    Fu, Meng; Li, Renjie; Guo, Congcong; Pang, Minhao; Liu, Yingchao; Dong, Jingao

    2015-01-01

    Fusarium species, which can produce mycotoxins, are the predominant pathogens causing maize ear rot, a disease that results in severe economic losses and serves as a potential health risk for humans and animals. A survey was conducted in 2012 to investigate the contamination of maize by Fusarium species and fumonisins B1 and B2. A total of 250 maize samples were randomly collected from nine provinces (Hebei, Shanxi, Inner Mongolia, Yunnan, Sichuan, Guizhou, Heilongjiang, Liaoning and Ningxia) in China. Fusarium species were isolated and identified using morphological (electron microscope) and molecular methods (polymerase chain reaction (PCR) and sequencing). Fumonisins B1 and B2 were analysed using high-performance liquid chromatography with fluorescence detection (HPLC-FLD) with OPA (2-Mercaptoethanol, o-phthaldialdehyde) post-column derivatisation. A total of 2321 Fusarium isolates (20.7%) were obtained from all the samples. These isolates included nine Fusarium species, namely, F. graminearum, F. verticillioides, F. subglutinans, F. proliferatum, F. temperatum, F. oxysporum, F. equiseti, F. meridionale and F. chlamydosporum. The incidence of occurrence of Fusarium species in Guizhou was the highest, while in Inner Mongolia it was the lowest. F. verticillioides was the dominant species of maize ear rot in Liaoning, Sichuan, Hebei and Ningxia. F. graminearum was the dominant species in Yunnan, Guizhou and Shanxi. F. subglutinans was the dominant species in Heilongjiang. F. verticillioides and F. graminearum percentages were the same in Inner Mongolia. The incidence of fumonisins in Liaoning was high (up to 81.0%) and in Heilongjiang low (up to 10.3%). Except Shanxi, more than 50% of maize samples from other provinces were contaminated with fumonisins, with concentrations less than 500 ng g(-1). About 33% of maize samples from Yunnan were contaminated with high levels of fumonisins, and average of fumonisin levels were 5191 ng g(-1). Fusarium species causing maize

  10. Method evaluation of Fusarium DNA extraction from mycelia and wheat for down-stream real-time PCR quantification and correlation to mycotoxin levels.

    Science.gov (United States)

    Fredlund, Elisabeth; Gidlund, Ann; Olsen, Monica; Börjesson, Thomas; Spliid, Niels Henrik Hytte; Simonsson, Magnus

    2008-04-01

    Identification of Fusarium species by traditional methods requires specific skill and experience and there is an increased interest for new molecular methods for identification and quantification of Fusarium from food and feed samples. Real-time PCR with probe technology (Taqman) can be used for the identification and quantification of several species of Fusarium from cereal grain samples. There are several critical steps that need to be considered when establishing a real-time PCR-based method for DNA quantification, including extraction of DNA from the samples. In this study, several DNA extraction methods were evaluated, including the DNeasy Plant Mini Spin Columns (Qiagen), the Bio robot EZ1 (Qiagen) with the DNeasy Blood and Tissue Kit (Qiagen), and the Fast-DNA Spin Kit for Soil (Qbiogene). Parameters such as DNA quality and stability, PCR inhibitors, and PCR efficiency were investigated. Our results showed that all methods gave good PCR efficiency (above 90%) and DNA stability whereas the DNeasy Plant Mini Spin Columns in combination with sonication gave the best results with respect to Fusarium DNA yield. The modified DNeasy Plant Mini Spin protocol was used to analyse 31 wheat samples for the presence of F. graminearum and F. culmorum. The DNA level of F. graminearum could be correlated to the level of DON (r(2) = 0.9) and ZEN (r(2) = 0.6) whereas no correlation was found between F. culmorum and DON/ZEA. This shows that F. graminearum and not F. culmorum, was the main producer of DON in Swedish wheat during 2006.

  11. Screening of Lactic Acid Bacteria for Anti-Fusarium Activity and Optimization of Incubation Conditions.

    Science.gov (United States)

    Zhao, Hui; Vegi, Anuradha; Wolf-Hall, Charlene

    2017-10-01

    Anti-Fusarium activities of lactic acid bacteria (LAB) Lactobacillus plantarum 299V, L. plantarum NRRL-4496, and Lactobacillus rhamnosus VT1 were determined by a microdilution assay developed in this study against Fusarium graminearum 08/RG/BF/51. A cell-free Lactobacillus culture supernatant (CFLCS) of L. rhamnosus VT1 had the highest anti-Fusarium activity. Response surface methodology was used to optimize the incubation conditions for production of CFLCS. A Box-Behnken factorial design was used to investigate the effects of incubation time, shaking speed, and incubation temperature on the inhibition rate of CFLCS. A model equation was generated to predict the inhibition rate of CFLCS under various incubation conditions. A low probability value (0.0012) and associated F value of 25.10 suggested that the model was highly significant. A high R 2 value (0.978) indicated a very satisfactory model performance. Response surface methodology analysis suggested that an incubation temperature at 34°C, a shaking speed at 170 rpm, and an incubation time of 55 h were the best combination for production of CFLCS from L. rhamnosus VT1. Under these incubation conditions, a 10% L. rhamnosus VT1 CFLCS solution was predicted to inhibit the growth of F. graminearum by 75.6% in vitro and inhibited 83.7% of the growth in the validation experiment. Thus, the CFLCS of L. rhamnosus VT1 was an effective anti-Fusarium mixture.

  12. An optimized protocol for DNA extraction from wheat seeds and Loop-Mediated Isothermal Amplification (LAMP) to detect Fusarium graminearum contamination of wheat grain.

    Science.gov (United States)

    Abd-Elsalam, Kamel; Bahkali, Ali; Moslem, Mohamed; Amin, Osama E; Niessen, Ludwig

    2011-01-01

    A simple, rapid, and efficient method for isolating genomic DNA from germinated seeds of wheat that is free from polysaccharides and polyphenols is reported. DNA was extracted, treated with RNase, measured and tested for completeness using agarose gel electrophoresis. DNA purification from wheat grains yielded abundant, amplifiable DNA with yields typically between 100 and 200 ng DNA/mg. The effectiveness and reliability of the method was tested by assessing quantity and quality of the isolated DNA using three PCR-based markers. Inter-simple sequence repeats (ISSRs) were used to assess the genetic diversity between different wheat varieties. Specific PCR primer pair Tox5-1/Tox5-2 and a loop-mediated isothermal amplification (LAMP) procedure were used to detect genomic DNA of Fusarium graminearum in contaminated wheat seeds. In this method there is no need to use liquid nitrogen for crushing germinated seedlings. The protocol takes approximately one hour to prepare high quality DNA. In combination with the LAMP assay it is a fast and cost-effective alternative to traditional diagnostic methods for the early detection of toxigenic fusaria in cereals.

  13. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles.

    Science.gov (United States)

    Palazzini, Juan M; Dunlap, Christopher A; Bowman, Michael J; Chulze, Sofía N

    2016-11-01

    Bacillus subtilis RC 218 was originally isolated from wheat anthers as a potential antagonist of Fusarium graminearum, the causal agent of Fusarium head blight (FHB). It was demonstrated to have antagonist activity against the plant pathogen under in vitro and greenhouse assays. The current study extends characterizing B. subtilis RC 218 with a field study and genome sequencing. The field study demonstrated that B. subtilis RC 218 could reduce disease severity and the associated mycotoxin (deoxynivalenol) accumulation, under field conditions. The genome sequencing allowed us to accurately determine the taxonomy of the strain using a phylogenomic approach, which places it in the Bacillus velezensis clade. In addition, the draft genome allowed us to use bioinformatics to mine the genome for potential metabolites. The genome mining allowed us to identify 9 active secondary metabolites conserved by all B. velezensis strains and one additional secondary metabolite, the lantibiotic ericin, which is unique to this strain. This study represents the first confirmed production of ericin by a B. velezensis strain. The genome also allowed us to do a comparative genomics with its closest relatives and compare the secondary metabolite production of the publically available B. velezensis genomes. The results showed that the diversity in secondary metabolites of strains in the B. velezensis clade is driven by strains making different antibacterials. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Multiplexed imaging surface plasmon resonance (iSPR) biosensor assay for the detection of Fusarium toxins in wheat

    Science.gov (United States)

    Certain Fusarium species (F. graminearum and F. verticilloides in particular) infest grains and can produce a wide range of fungal (myco)-toxins, causing huge economic losses worldwide. A reproducible and sensitive imaging surface plasmon resonance (iSPR) assay was developed and validated for three ...

  15. GPCRs from fusarium graminearum detection, modeling and virtual screening - the search for new routes to control head blight disease.

    Science.gov (United States)

    Bresso, Emmanuel; Togawa, Roberto; Hammond-Kosack, Kim; Urban, Martin; Maigret, Bernard; Martins, Natalia Florencio

    2016-12-15

    Fusarium graminearum (FG) is one of the major cereal infecting pathogens causing high economic losses worldwide and resulting in adverse effects on human and animal health. Therefore, the development of new fungicides against FG is an important issue to reduce cereal infection and economic impact. In the strategy for developing new fungicides, a critical step is the identification of new targets against which innovative chemicals weapons can be designed. As several G-protein coupled receptors (GPCRs) are implicated in signaling pathways critical for the fungi development and survival, such proteins could be valuable efficient targets to reduce Fusarium growth and therefore to prevent food contamination. In this study, GPCRs were predicted in the FG proteome using a manually curated pipeline dedicated to the identification of GPCRs. Based on several successive filters, the most appropriate GPCR candidate target for developing new fungicides was selected. Searching for new compounds blocking this particular target requires the knowledge of its 3D-structure. As no experimental X-Ray structure of the selected protein was available, a 3D model was built by homology modeling. The model quality and stability was checked by 100 ns of molecular dynamics simulations. Two stable conformations representative of the conformational families of the protein were extracted from the 100 ns simulation and were used for an ensemble docking campaign. The model quality and stability was checked by 100 ns of molecular dynamics simulations previously to the virtual screening step. The virtual screening step comprised the exploration of a chemical library with 11,000 compounds that were docked to the GPCR model. Among these compounds, we selected the ten top-ranked nontoxic molecules proposed to be experimentally tested to validate the in silico simulation. This study provides an integrated process merging genomics, structural bioinformatics and drug design for proposing innovative

  16. Fungal community, Fusarium head blight complex and secondary metabolites associated with malting barley grains harvested in Umbria, central Italy.

    Science.gov (United States)

    Beccari, Giovanni; Senatore, Maria Teresa; Tini, Francesco; Sulyok, Michael; Covarelli, Lorenzo

    2018-05-20

    In recent years, due to the negative impact of toxigenic mycobiota and of the accumulation of their secondary metabolites in malting barley grains, monitoring the evolution of fungal communities in a certain cultivation area as well as detecting the different mycotoxins present in the raw material prior to malting and brewing processes have become increasingly important. In this study, a survey was carried out on malting barley samples collected after their harvest in the Umbria region (central Italy). Samples were analyzed to determine the composition of the fungal community, to identify the isolated Fusarium species, to quantify fungal secondary metabolites in the grains and to characterize the in vitro mycotoxigenic profile of a subset of the isolated Fusarium strains. The fungal community of barley grains was mainly composed of microorganisms belonging to the genus Alternaria (77%), followed by those belonging to the genus Fusarium (27%). The Fusarium head blight (FHB) complex was represented by nine species with the predominance of Fusarium poae (37%), followed by Fusarium avenaceum (23%), Fusarium graminearum (22%) and Fusarium tricinctum (7%). Secondary metabolites biosynthesized by Alternaria and Fusarium species were present in the analyzed grains. Among those biosynthesized by Fusarium species, nivalenol and enniatins were the most prevalent ones. Type A trichothecenes (T-2 and HT-2 toxins) as well as beauvericin were also present with a high incidence. Conversely, the number of samples contaminated with deoxynivalenol was low. Conjugated forms, such as deoxynivalenol-3-glucoside and HT-2-glucoside, were detected for the first time in malting barley grains cultivated in the surveyed area. In addition, strains of F. avenaceum and F. tricinctum showed the ability to biosynthesize in vitro high concentrations of enniatins. The analysis of fungal secondary metabolites, both in the grains and in vitro, revealed also the presence of other compounds, for which

  17. Inoculum Potential of Fusarium spp. Relates to Tillage and Straw Management in Norwegian Fields of Spring Oats

    Science.gov (United States)

    Hofgaard, Ingerd S.; Seehusen, Till; Aamot, Heidi U.; Riley, Hugh; Razzaghian, Jafar; Le, Vinh H.; Hjelkrem, Anne-Grete R.; Dill-Macky, Ruth; Brodal, Guro

    2016-01-01

    The increased occurrence of Fusarium-mycotoxins in Norwegian cereals over the last decade, is thought to be caused by increased inoculum resulting from more cereal residues at the soil surface as a result of reduced tillage practices. In addition, weather conditions have increasingly promoted inoculum development and infection by Fusarium species. The objective of this work was to elucidate the influence of different tillage regimes (autumn plowing; autumn harrowing; spring plowing; spring harrowing) on the inoculum potential (IP) and dispersal of Fusarium spp. in spring oats. Tillage trials were conducted at two different locations in southeast Norway from 2010 to 2012. Oat residues from the previous year’s crop were collected within a week after sowing for evaluation. IP was calculated as the percentage of residues infested with Fusarium spp. multiplied by the proportion of the soil surface covered with residues. Fusarium avenaceum and F. graminearum were the most common Fusarium species recovered from oat residues. The IP of Fusarium spp. was significantly lower in plowed plots compared to those that were harrowed. Plowing in either the autumn or spring resulted in a low IP. Harrowing in autumn was more effective in reducing IP than the spring harrowing, and IP levels for the spring harrowed treatments were generally higher than all other tillage treatments examined. Surprisingly low levels of F. langsethiae were detected in the residues, although this species is a common pathogen of oat in Norway. The percentage of the residues infested with F. avenaceum, F. graminearum, F. culmorum, and F. langsethiae generally related to the quantity of DNA of the respective Fusarium species determined using quantitative PCR (qPCR). Fusarium dispersal, quantified by qPCR analysis of spore trap samples collected at and after heading, generally corresponded to the IP. Fusarium dispersal was also observed to increase after rainy periods. Our findings are in line with the

  18. Antifungal Activity of a Synthetic Cationic Peptide against the Plant Pathogens Colletotrichum graminicola and Three Fusarium Species

    Directory of Open Access Journals (Sweden)

    Eric T. Johnson

    2015-09-01

    Full Text Available A small cationic peptide (JH8944 was tested for activity against a number of pathogens of agricultural crops. JH8944 inhibited conidium growth in most of the tested plant pathogens with a dose of 50 μg/ml, although one isolate of Fusarium oxysporum was inhibited at 5 μg/ml of JH8944. Most conidia of Fusarium graminearum were killed within 6 hours of treatment with 50 μg/ml of JH8944. Germinating F. graminearum conidia required 238 μg/ml of JH8944 for 90% growth inhibition. The peptide did not cause any damage to tissues surrounding maize leaf punctures when tested at a higher concentration of 250 μg/ml even after 3 days. Liposomes consisting of phosphatidylglycerol were susceptible to leakage after treatment with 25 and 50 μg/ml of JH8944. These experiments suggest this peptide destroys fungal membrane integrity and could be utilized for control of crop fungal pathogens.

  19. Infection of corn ears by Fusarium spp. induces the emission of volatile sesquiterpenes.

    Science.gov (United States)

    Becker, Eva-Maria; Herrfurth, Cornelia; Irmisch, Sandra; Köllner, Tobias G; Feussner, Ivo; Karlovsky, Petr; Splivallo, Richard

    2014-06-04

    Infection of corn (Zea mays L.) ears with fungal pathogens of the Fusarium genus might result in yield losses and in the accumulation of mycotoxins. The aim of this study was to investigate whether volatile profiles could be used to identify Fusarium-infected corn ears. The volatiles released by corn ears infected by Fusarium graminearum, Fusarium verticillioides, and Fusarium subglutinans were studied. Volatile emission was recorded at 24 days postinoculation (dpi) and in a time series (from 4 to 24 dpi). Twenty-two volatiles were differentially emitted from Fusarium-infected versus healthy corn ears. These included C6-C8 compounds and sesquiterpenoids. All volatiles indicative of Fusarium infection were detectable as early as 4-8 dpi and continued to be produced to the final sampling time (early milk maturity stage). The induced emission of β-macrocarpene and β-bisabolene correlated with an increased transcript accumulation of corn terpene synthase 6/11 (tps6/11). Additionally, the modification of volatile profiles after Fusarium infection was accompanied by the induction of plant defense compounds such as zealexins and oxylipins. Together, these results reveal a broad metabolic response of the plant to pathogen attack. Volatile biomarkers of Fusarium infection are promising indicators for the early detection of fungal infection before disease symptoms become visible.

  20. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana).

    Science.gov (United States)

    Mousa, Walaa Kamel; Schwan, Adrian L; Raizada, Manish N

    2016-09-03

    Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s) of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H)-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone), and harpagoside (an iridoide glycoside). Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum.

  1. Inoculum potential of Fusarium spp. relates to tillage and straw management in Norwegian fields of spring oats

    Directory of Open Access Journals (Sweden)

    Ingerd Skow Hofgaard

    2016-04-01

    Full Text Available The increased occurrence of Fusarium-mycotoxins in Norwegian cereals over the last decade, is thought to be caused by increased inoculum resulting from more cereal residues at the soil surface as a result of reduced tillage practices. In addition, weather conditions have increasingly promoted inoculum development and infection by Fusarium species. The objective of this work was to elucidate the influence of different tillage regimes (autumn plowing; autumn harrowing; spring plowing; spring harrowing on the inoculum potential (IP and dispersal of Fusarium spp. in spring oats. Tillage trials were conducted at two different locations in southeast Norway from 2010 to 2012. Oat residues from the previous year’s crop were collected within a week after sowing for evaluation. IP was calculated as the percentage of residues infested with Fusarium spp. multiplied by the proportion of the soil surface covered with residues. F. avenaceum and F. graminearum were the most common Fusarium species recovered from oat residues. The IP of Fusarium spp. was significantly lower in plowed plots compared to those that were harrowed. Plowing in either the autumn or spring resulted in a low IP. Harrowing in autumn was more effective in reducing IP than the spring harrowing, and IP levels for the spring harrowed treatments were generally higher than all other tillage treatments examined. Surprisingly low levels of F. langsethiae were detected in the residues, although this species is a common pathogen of oat in Norway. The percentage of the residues infested with F. avenaceum, F. graminearum, F. culmorum and F. langsethiae generally related to the quantity of DNA of the respective Fusarium species determined using qPCR. Fusarium dispersal, quantified by quantitative PCR analysis of spore trap samples collected at and after heading, generally corresponded to IP. Fusarium dispersal was also observed to increase after rainy periods. Our findings are in line with the

  2. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum

    DEFF Research Database (Denmark)

    Josefsen, Lone; Droce, Aida; Sondergaard, Teis Esben

    2012-01-01

    starvation is severely inhibited in the Delta Fgatg8 strain demonstrating autophagy-dependent lipid utilization, lipophagy, in fungi. Radial growth rate of the Delta Fgatg8 strain is reduced compared with the wild type and the mutant does not grow over inert plastic surfaces in contrast to the wild type....... The ability to infect barley and wheat is normal but the mutant is unable to spread from spikelet to spikelet in wheat. Complementation by inserting the F. graminearum atg8 gene into a region adjacent to the actin gene in Delta Fgatg8 fully restores the WT phenotype. The results showed that autophagy plays...

  3. Two novel classes of enzymes are required for the biosynthesis of aurofusarin in Fusarium graminearum

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Schütt, Claes; Lund, Birgitte W.

    2011-01-01

    genes, aurZ and aurS. Targeted gene replacement of aurZ resulted in the discovery that the compound YWA1, rather than nor-rubrofusarin, is the primary product of F. graminearum polyketide synthase 12 (FgPKS12). AurZ is the first representative of a novel class of dehydratases that act on hydroxylated γ...

  4. Morphological and molecular characterization of Fusarium spp pathogenic to pecan tree in Brazil.

    Science.gov (United States)

    Lazarotto, M; Milanesi, P M; Muniz, M F B; Reiniger, L R S; Beltrame, R; Harakava, R; Blume, E

    2014-11-11

    The occurrence of Fusarium spp associated with pecan tree (Carya illinoinensis) diseases in Brazil has been observed in recent laboratory analyses in Rio Grande do Sul State. Thus, in this study, we i) obtained Fusarium isolates from plants with disease symptoms; ii) tested the pathogenicity of these Fusarium isolates to pecan; iii) characterized and grouped Fusarium isolates that were pathogenic to the pecan tree based on morphological characteristics; iv) identified Fusarium spp to the species complex level through TEF-1α sequencing; and v) compared the identification methods used in the study. Fifteen isolates collected from the inflorescences, roots, and seeds of symptomatic plants (leaf necrosis or root rot) were used for pathogenicity tests. Morphological characterization was conducted using only pathogenic isolates, for a total of 11 isolates, based on the mycelial growth rate, sporulation, colony pigmentation, and conidial length and width variables. Pathogenic isolates were grouped based on morphological characteristics, and molecular characterization was performed by sequencing TEF-1α genes. Pathogenic isolates belonging to the Fusarium chlamydosporum species complex, Fusarium graminearum species complex, Fusarium proliferatum, and Fusarium oxysporum were identified based on the TEF-1α region. Morphological characteristics were used to effectively differentiate isolates and group the isolates according to genetic similarity, particularly conidial width, which emerged as a key morphological descriptor in this study.

  5. Fusarium species and fumonisins associated with maize kernels produced in Rio Grande do Sul State for the 2008/09 and 2009/10 growing seasons

    Directory of Open Access Journals (Sweden)

    R. Stumpf

    2013-01-01

    Full Text Available Ear rots caused by Fusarium spp. are among the main fungal diseases that contribute to poor quality and the contamination of maize grains with mycotoxins. This study aimed to determine the visual incidence of fungal-damaged kernels (FDKs, the incidence of two main Gibberella (a teleomorph of Fusarium complexes (G. fujikuroi and G. zeae associated with maize using a seed health blotter test, and the fumonisin levels, using high performance liquid chromatography, in samples of maize grains grown across 23 municipalities during the 2008/09 and 2009/10 growing seasons. Additionally, 104 strains that were representative of all of the analysed samples were identified to species using PCR assays. The mean FDK was seven per cent, and only six of the samples had levels greater than six per cent. Fusarium spp. of the G. fujikuroi complex were present in 96% of the samples, and G. zeae was present in 18% of the samples (5/27. The mean incidence of G. fujikuroi was 58%, and the incidence of G. zeae varied from 2 to 6%. FB1 was found in 58.6%, FB2 in 37.9%, and both toxins in 37.9% of the samples. The FB1 and FB2 levels were below the quantification limits for 41.3% of the samples, and the mean FB1 levels (0.66 µg/g were higher than the mean FB2 levels (0.42 µg/g. The PCR identification separated the 104 isolates into three of the G. fujikuroi complex: F. verticillioides (76%, F. subglutinans (4% and F. proliferatum (2%; and G. zeae (anamorph = F. graminearum (18%. Our results confirmed the dominance of F. verticillioides, similar to other regions of Brazil, but they differed due to the relatively higher incidence of F. graminearum. Total fumonisin levels were below the maximum limit determined by current Brazilian regulations.

  6. An Optimized Protocol for DNA Extraction from Wheat Seeds and Loop-Mediated Isothermal Amplification (LAMP to Detect Fusarium graminearum Contamination of Wheat Grain

    Directory of Open Access Journals (Sweden)

    Mohamed Moslem

    2011-06-01

    Full Text Available A simple, rapid, and efficient method for isolating genomic DNA from germinated seeds of wheat that is free from polysaccharides and polyphenols is reported. DNA was extracted, treated with RNase, measured and tested for completeness using agarose gel electrophoresis. DNA purification from wheat grains yielded abundant, amplifiable DNA with yields typically between 100 and 200 ng DNA/mg. The effectiveness and reliability of the method was tested by assessing quantity and quality of the isolated DNA using three PCR-based markers. Inter-simple sequence repeats (ISSRs were used to assess the genetic diversity between different wheat varieties. Specific PCR primer pair Tox5-1/Tox5-2 and a loop-mediated isothermal amplification (LAMP procedure were used to detect genomic DNA of Fusarium graminearum in contaminated wheat seeds. In this method there is no need to use liquid nitrogen for crushing germinated seedlings. The protocol takes approximately one hour to prepare high quality DNA. In combination with the LAMP assay it is a fast and cost-effective alternative to traditional diagnostic methods for the early detection of toxigenic fusaria in cereals.

  7. Black perithecial pigmentation in Fusarium species is due to the accumulation of 5-deoxybostrycoidin-based melanin

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Rasmussen, Silas Anselm; Knudsen, Peter Boldsen

    2016-01-01

    Biosynthesis of the black perithecial pigment in the filamentous fungus Fusarium graminearum is dependent on the polyketide synthase PGL1 (oPKS3). A seven-membered PGL1 gene cluster was identified by over-expression of the cluster specific transcription factor pglR. Targeted gene replacement showed...... anthrone (4) and purpurfusarin (5). The novel dimeric bostrycoidin purpurfusarin (5) was found to inhibit the growth of Candida albicans with an IC50 of 8.0 +/-1.9 mu M. The results show that Fusarium species with black perithecia have a previously undescribed form of 5-deoxybostrycoidin based melanin...

  8. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2016-09-01

    Full Text Available Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone, and harpagoside (an iridoide glycoside. Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum.

  9. Antifungal and antimycotoxigenic metabolites in Anacardiaceae species from northwest Argentina: isolation, identification and potential for control of Fusarium species.

    Science.gov (United States)

    Aristimuño Ficoseco, M E; Vattuone, M A; Audenaert, K; Catalán, C A N; Sampietro, D A

    2014-05-01

    The purpose of this research was to identify antifungal compounds from leaves of Schinus and Schinopsis species useful for the control of toxigenic Fusarium species responsible of ear rot diseases. Leaves of Schinopsis (S. lorentzii and S. haenkeana) and Schinus (S. areira, S. gracilipes and S. fasciculatus) were sequentially extracted with dichloromethane, ethyl acetate and methanol. The antifungal activity of the fraction soluble in methanol of these extracts (fCH2Cl2, fAcEt and fMeOH, respectively) was determined by the broth microdilution method and the disc-diffusion method. The minimum inhibitory dose (MID), the diameter of growth inhibition (DGI) and the minimum concentration for 50% inhibition of fungal growth (MIC50) were calculated. The fCH2Cl2 and fAcEt of the Schinopsis species had the lowest MID and MIC50 values and the highest DGI. The antifungal compounds were identified as lupeol and a mix of phenolic lipids. The last one had the highest antifungal activity with MIC50 31-28 μg g(-1) and 165-150 μg g(-1) on Fusarium graminearum and Fusarium verticillioides, respectively. The identified metabolites completely inhibited fumonisin and deoxynivalenol production at lower concentrations than ferulic acid, a natural antimycotoxigenic compound. It was proven that lupeol and phenolic lipids were inhibitors of both fungal growth and mycotoxin production of toxigenic Fusarium species. This fact is specially interesting in the control of the toxigenic Fusarium species because several commercial antifungals showed to stimulate mycotoxin biosynthesis at sublethal concentrations. Control of toxigenic Fusarium species requires compounds able to inhibit both fungal growth and mycotoxin production. Our results suggest that the use of lupeol as food preservative and the phenolic lipids as fungal growth inhibitors of F. verticillioides and F. graminearum did not imply an increase in mycotoxin accumulation. © 2014 The Society for Applied Microbiology.

  10. Colonization of Tomato Root by Antagonistic Bacterial Strains to Fusarium Wilt of Tomato

    Directory of Open Access Journals (Sweden)

    Arif Wibowo

    2005-12-01

    Full Text Available Fusarium wilt of tomato caused by Fusarium oxysporum f.sp. lycopersici (Fol is an important disease in tomato which cause a significant loss of yield in major growing regions of the world. This study examined the ability of bacterial strains antagonistic to F. oxysporum f.sp. lycopersici (H5, H22, H63, H71, Burkholderia cepacia strain 65 and 526 to colonize tomato seedlings and the effect of plant growth. The effect of bacterial population size and air temperature on the bacterial colonization and their spread along the root systems was also assessed.The results of this study showed that the bacterial population at 28°/23° C day/night temperature 14 days after planting was significantly greater than 23°/18° C for 4 of 6 strains tested. Although there was no significant effect of temperature on bacterial population observed in this study, the ability of the baacterial strains to colonize the rhizosphere was significantly different. Three strains (H5, B. cepacia strain 65 and 526 survived well in the rhizosphere and at 4 weeks after planting rhizosphere populations per gram fresh root were not significantly different from those recovered 2 weeks after planting. The largest population of the bacterial inoculants developed in the basal region of the roots and this differed between strains by log10 2.7 cfu/cm root. The bacterial populations in other parts of the root were also strain dependent. Strain H71, for example, was able to colonize the root segments at a high population level. However strain H63 was recovered only in small number in all root segments.

  11. Mycological analysis of cereal samples and screening of Fusarium strains' ability to form deoxynivalenole (DON) and zearalenone (ZEA) mycotoxins--a pilot study.

    Science.gov (United States)

    Kłyszejko, Adriana; Kubus, Zaneta; Zakowska, Zofia

    2005-01-01

    Filamentous fungi are cosmopolitan microorganisms found in almost all environments. It should be pointed out that occurance of moulds on food or feed may cause health disorders in humans and animals. Mycoflora appears as a source of toxic methabolites, mycotoxins, which hepatotoxic, genotoxic, nefrotoxic and carcinogenic abilities were already proven in several studies. Hense mycological analysis of cereal grains raises as an important manner in evaluation of food and feed health features. Among the most frequent cereal contaminants Alternaria, Aspergillus, Fusarium and Penicillium strains are mentioned. Due to their ability to grow on cereals during both its field growth and storage, Fusarium moulds occure to be an important contamination factors in food and feed industry. In this study Fusarium strains isolates from wheat and maize were examined in order to recognize their abilities to produce two toxins: zearalenon (ZEA) and deoxynivalenole (DON). Mycological analysis shown differentiation within fungal microflora occuring in samples of different storage conditions, where Fusarium strains represented aproximately 20-70% of all mould species present. In purpose of Fusarium strains species evaluation, isolates were mycologically analysed. In the second step of the project, toxicological screening of isolates was performed using Thin Liquid Chromatography (TLC) evaluating toxigenic potential of single strains' production of ZEA and DON. This data gives the possibility of pointing the most toxigenic strains and also shows differentiations in their occurance in cereals. This paper presents introductory research data, which can be useful in recognition of cereal contamination with moulds and their toxic methabolites.

  12. Relationship between mycoparasites lifestyles and biocontrol behaviors against Fusarium spp. and mycotoxins production.

    Science.gov (United States)

    Kim, Seon Hwa; Vujanovic, Vladimir

    2016-06-01

    Global food security research is seeking eco-friendly solutions to control mycotoxins in grain infected by fungi (molds). In particular, mycotoxigenic Fusarium spp. outbreak is a chronic threat for cereal grain production, human, and animal health. In this review paper, we discuss up-to-date biological control strategies in applying mycoparasites as biological control agents (BCA) to prevent plant diseases in crops and mycotoxins in grain, food, and feed. The aim is to increase food safety and to minimize economic losses due to the reduced grain yield and quality. However, recent papers indicate that the study of the BCA specialists with biotrophic lifestyle lags behind our understanding of the BCA generalists with necrotrophic lifestyle. We examine critical behavioral traits of the two BCA groups of mycoparasites. The goal is to highlight their major characteristics in the context of future research towards an efficient biocontrol strategy against mycotoxin-producing Fusarium species. The emphasis is put on biocontrol of Fusarium graminearum, F. avenaceum, and F. culmorum causing Fusarium head blight (FHB) in cereals and their mycotoxins.

  13. Biocontrol of Fusarium Crown and Root Rot and Promotion of Growth of Tomato by Paenibacillus Strains Isolated from Soil

    Science.gov (United States)

    Xu, Sheng Jun

    2014-01-01

    In this study, bacterial strains were isolated from soils from 30 locations of Samcheok, Gangwon province. Of the isolated strains, seven showed potential plant growth promoting and antagonistic activities. Based on cultural and morphological characterization, and 16S rRNA gene sequencing, these strains were identified as Paenibacillus species. All seven strains produced ammonia, cellulase, hydrocyanic acid, indole-3-acetic acid, protease, phosphatase, and siderophores. They also inhibited the mycelial growth of Fusarium oxysporum f. sp. radicis-lycopersici in vitro. The seven Paenibacillus strains enhanced a range of growth parameters in tomato plants under greenhouse conditions, in comparison with non-inoculated control plants. Notably, treatment of tomato plants with one identified strain, P. polymyxa SC09-21, resulted in 80.0% suppression of fusarium crown and root rot under greenhouse conditions. The plant growth promoting and antifungal activity of P. polymyxa SC09-21 identified in this study highlight its potential suitability as a bioinoculant. PMID:25071385

  14. Constitutive expression of the xylanase inhibitor TAXI-III delays Fusarium head blight symptoms in durum wheat transgenic plants.

    Science.gov (United States)

    Moscetti, Ilaria; Tundo, Silvio; Janni, Michela; Sella, Luca; Gazzetti, Katia; Tauzin, Alexandra; Giardina, Thierry; Masci, Stefania; Favaron, Francesco; D'Ovidio, Renato

    2013-12-01

    Cereals contain xylanase inhibitor (XI) proteins which inhibit microbial xylanases and are considered part of the defense mechanisms to counteract microbial pathogens. Nevertheless, in planta evidence for this role has not been reported yet. Therefore, we produced a number of transgenic plants constitutively overexpressing TAXI-III, a member of the TAXI type XI that is induced by pathogen infection. Results showed that TAXI-III endows the transgenic wheat with new inhibition capacities. We also showed that TAXI-III is correctly secreted into the apoplast and possesses the expected inhibition parameters against microbial xylanases. The new inhibition properties of the transgenic plants correlate with a significant delay of Fusarium head blight disease symptoms caused by Fusarium graminearum but do not significantly influence leaf spot symptoms caused by Bipolaris sorokiniana. We showed that this contrasting result can be due to the different capacity of TAXI-III to inhibit the xylanase activity of these two fungal pathogens. These results provide, for the first time, clear evidence in planta that XI are involved in plant defense against fungal pathogens and show the potential to manipulate TAXI-III accumulation to improve wheat resistance against F. graminearum.

  15. Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, Magnaporthe oryzae (Pyricularia oryzae) and Fusarium asiaticum.

    Science.gov (United States)

    Maeda, K; Izawa, M; Nakajima, Y; Jin, Q; Hirose, T; Nakamura, T; Koshino, H; Kanamaru, K; Ohsato, S; Kamakura, T; Kobayashi, T; Yoshida, M; Kimura, M

    2017-11-01

    Histone deacetylases (HDACs) play an important role in the regulation of chromatin structure and gene expression. We found that dark pigmentation of Magnaporthe oryzae (anamorph Pyricularia oryzae) ΔMohda1, a mutant strain in which an orthologue of the yeast HDA1 was disrupted by double cross-over homologous recombination, was significantly stimulated in liquid culture. Analysis of metabolites in a ΔMohda1 mutant culture revealed that the accumulation of shunt products of the 1,8-dihydroxynaphthalene melanin and ergosterol pathways were significantly enhanced compared to the wild-type strain. Northern blot analysis of the ΔMohda1 mutant revealed transcriptional activation of three melanin genes that are dispersed throughout the genome of M. oryzae. The effect of deletion of the yeast HDA1 orthologue was also observed in Fusarium asiaticum from the Fusarium graminearum species complex; the HDF2 deletion mutant produced increased levels of nivalenol-type trichothecenes. These results suggest that histone modification via HDA1-type HDAC regulates the production of natural products in filamentous fungi. Natural products of fungi have significant impacts on human welfare, in both detrimental and beneficial ways. Although HDA1-type histone deacetylase is not essential for vegetative growth, deletion of the gene affects the expression of clustered secondary metabolite genes in some fungi. Here, we report that such phenomena are also observed in physically unlinked genes required for melanin biosynthesis in the rice blast fungus. In addition, production of Fusarium trichothecenes, previously reported to be unaffected by HDA1 deletion, was significantly upregulated in another Fusarium species. Thus, the HDA1-inactivation strategy may be regarded as a general approach for overproduction and/or discovery of fungal metabolites. © 2017 The Society for Applied Microbiology.

  16. Changes in the Fusarium Head Blight Complex of Malting Barley in a Three-Year Field Experiment in Italy

    Directory of Open Access Journals (Sweden)

    Giovanni Beccari

    2017-03-01

    Full Text Available In this study, conducted for three years on eleven malting barley varieties cultivated in central Italy, the incidence of different mycotoxigenic fungal genera, the identification of the Fusarium species associated with the Fusarium Head Blight (FHB complex, and kernels contamination with deoxynivalenol (DON and T-2 mycotoxins were determined. The influence of climatic conditions on Fusarium infections and FHB complex composition was also investigated. Fusarium species were always present in the three years and the high average and maximum temperatures during anthesis mainly favored their occurrence. The FHB complex was subject to changes during the three years and the main causal agents were F. poae, F. avenaceum, F. tricinctum and F. graminearum, which, even if constantly present, never represented the principal FHB agent. The relative incidence of Fusarium species changed because of climatic conditions occurring during the seasons. The FHB complex was composed of many different Fusarium species and some of them were associated with a specific variety and/or with specific weather parameters, indicating that the interaction between a certain plant genotype and climatic conditions may influence the presence of Fusarium spp. causing infections. With regard to mycotoxin contamination, T-2 toxin, in some cases, was found in kernels at levels that exceeded EU recommended values.

  17. Changes in the Fusarium Head Blight Complex of Malting Barley in a Three-Year Field Experiment in Italy

    Science.gov (United States)

    Beccari, Giovanni; Prodi, Antonio; Tini, Francesco; Bonciarelli, Umberto; Onofri, Andrea; Oueslati, Souheib; Limayma, Marwa; Covarelli, Lorenzo

    2017-01-01

    In this study, conducted for three years on eleven malting barley varieties cultivated in central Italy, the incidence of different mycotoxigenic fungal genera, the identification of the Fusarium species associated with the Fusarium Head Blight (FHB) complex, and kernels contamination with deoxynivalenol (DON) and T-2 mycotoxins were determined. The influence of climatic conditions on Fusarium infections and FHB complex composition was also investigated. Fusarium species were always present in the three years and the high average and maximum temperatures during anthesis mainly favored their occurrence. The FHB complex was subject to changes during the three years and the main causal agents were F. poae, F. avenaceum, F. tricinctum and F. graminearum, which, even if constantly present, never represented the principal FHB agent. The relative incidence of Fusarium species changed because of climatic conditions occurring during the seasons. The FHB complex was composed of many different Fusarium species and some of them were associated with a specific variety and/or with specific weather parameters, indicating that the interaction between a certain plant genotype and climatic conditions may influence the presence of Fusarium spp. causing infections. With regard to mycotoxin contamination, T-2 toxin, in some cases, was found in kernels at levels that exceeded EU recommended values. PMID:28353653

  18. Phylogenomic and functional domain analysis of polyketide synthases in Fusarium

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daren W.; Butchko, Robert A.; Baker, Scott E.; Proctor, Robert H.

    2012-02-01

    Fusarium species are ubiquitous in nature, cause a range of plant diseases, and produce a variety of chemicals often referred to as secondary metabolites. Although some fungal secondary metabolites affect plant growth or protect plants from other fungi and bacteria, their presence in grain based food and feed is more often associated with a variety of diseases in plants and in animals. Many of these structurally diverse metabolites are derived from a family of related enzymes called polyketide synthases (PKSs). A search of genomic sequence of Fusarium verticillioides, F. graminearum, F. oxysporum and Nectria haematococca (anamorph F. solani) identified a total of 58 PKS genes. To gain insight into how this gene family evolved and to guide future studies, we conducted a phylogenomic and functional domain analysis. The resulting genealogy suggested that Fusarium PKSs represent 34 different groups responsible for synthesis of different core metabolites. The analyses indicate that variation in the Fusarium PKS gene family is due to gene duplication and loss events as well as enzyme gain-of-function due to the acquisition of new domains or of loss-of-function due to nucleotide mutations. Transcriptional analysis indicate that the 16 F. verticillioides PKS genes are expressed under a range of conditions, further evidence that they are functional genes that confer the ability to produce secondary metabolites.

  19. Anthesis, the infectious process and disease progress curves for fusarium head blight in wheat

    Directory of Open Access Journals (Sweden)

    Erlei Melo Reis

    2016-06-01

    Full Text Available ABSTRACT Fusarium head blight of wheat (Triticum aestivum, caused by the fungus Gibberella zeae, is a floral infecting disease that causes quantitative and qualitative losses to winter cereals. In Brazil, the sanitary situation of wheat has led to research in order to develop strategies for sustainable production, even under adverse weather conditions. To increase the knowledge of the relationship among the presence of anthesis, the infectious process, the disease progress and the saprophytic fungi present in wheat anthers, studies were conducted in the experimental field of University of Passo Fundo (UPF, using the cultivar Marfim, in the 2011 growing season. The disease incidence in spikes and spikelets was evaluated. The presence of exserted anthers increased the spike exposure time to the inoculum. The final incidence of fusarium head blight, in the field, was dependent on the presence of exserted anthers. The disease followed an aggregation pattern and its evolution increased with time, apparently showing growth according to secondary cycles. The fungi isolated from exserted anthers (Alternaria sp., Fusarium sp., Drechslera spp. and Epicoccum sp. did not compete for the infection site of fusarium head blight in wheat, not interfering with the incidence of F. graminearum.

  20. Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1 contributes to resistance against Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Raghavendra Gunnaiah

    Full Text Available BACKGROUND: Resistance in plants to pathogen attack can be qualitative or quantitative. For the latter, hundreds of quantitative trait loci (QTLs have been identified, but the mechanisms of resistance are largely unknown. Integrated non-target metabolomics and proteomics, using high resolution hybrid mass spectrometry, were applied to identify the mechanisms of resistance governed by the fusarium head blight resistance locus, Fhb1, in the near isogenic lines derived from wheat genotype Nyubai. FINDINGS: The metabolomic and proteomic profiles were compared between the near isogenic lines (NIL with resistant and susceptible alleles of Fhb1 upon F. graminearum or mock-inoculation. The resistance-related metabolites and proteins identified were mapped to metabolic pathways. Metabolites of the shunt phenylpropanoid pathway such as hydroxycinnamic acid amides, phenolic glucosides and flavonoids were induced only in the resistant NIL, or induced at higher abundances in resistant than in susceptible NIL, following pathogen inoculation. The identities of these metabolites were confirmed, with fragmentation patterns, using the high resolution LC-LTQ-Orbitrap. Concurrently, the enzymes of phenylpropanoid biosynthesis such as cinnamyl alcohol dehydrogenase, caffeoyl-CoA O-methyltransferase, caffeic acid O-methyltransferase, flavonoid O-methyltransferase, agmatine coumaroyltransferase and peroxidase were also up-regulated. Increased cell wall thickening due to deposition of hydroxycinnamic acid amides and flavonoids was confirmed by histo-chemical localization of the metabolites using confocal microscopy. CONCLUSION: The present study demonstrates that the resistance in Fhb1 derived from the wheat genotype Nyubai is mainly associated with cell wall thickening due to deposition of hydroxycinnamic acid amides, phenolic glucosides and flavonoids, but not with the conversion of deoxynivalenol to less toxic deoxynivalenol 3-O-glucoside.

  1. Media for identification of Gibberella zeae and production of F-2-(Zearalenone).

    Science.gov (United States)

    Bacon, C W; Robbins, J D; Porter, J K

    1977-02-01

    Media are described for the isolaton of Fusarium graminearum in the perithecial state, Gibberella zeae, and for the production of F-2 (zearalenone) by Fusarium species. On soil extract-corn meal agar isolated medium, G. Zeae produced perithecia in 9 to 14 days under a 12-h photoperiod. Species of Fusarium were screened for F-2 production on a liquid medium. From strains that produced F-2, the yields, from stationary cultures of G. zeae and F. culmorum after 12 days of incubation, ranged from 22 to 86 mg/liter. Three strains produced no F-2. Glumatic acid, starch, yeast extract,and the proper ratio of medium volume-to-flask volume were necessary for F-2 synthesis.

  2. Differences in Fusarium Species in brown midrib Sorghum and in Air Populations in Production Fields.

    Science.gov (United States)

    Funnell-Harris, Deanna L; Scully, Erin D; Sattler, Scott E; French, Roy C; O'Neill, Patrick M; Pedersen, Jeffrey F

    2017-11-01

    Several Fusarium spp. cause sorghum (Sorghum bicolor) grain mold, resulting in deterioration and mycotoxin production in the field and during storage. Fungal isolates from the air (2005 to 2006) and from leaves and grain from wild-type and brown midrib (bmr)-6 and bmr12 plants (2002 to 2003) were collected from two locations. Compared with the wild type, bmr plants have reduced lignin content, altered cell wall composition, and different levels of phenolic intermediates. Multilocus maximum-likelihood analysis identified two Fusarium thapsinum operational taxonomic units (OTU). One was identified at greater frequency in grain and leaves of bmr and wild-type plants but was infrequently detected in air. Nine F. graminearum OTU were identified: one was detected at low levels in grain and leaves while the rest were only detected in air. Wright's F statistic (F ST ) indicated that Fusarium air populations differentiated between locations during crop anthesis but did not differ during vegetative growth, grain development, and maturity. F ST also indicated that Fusarium populations from wild-type grain were differentiated from those in bmr6 or bmr12 grain at one location but, at the second location, populations from wild-type and bmr6 grain were more similar. Thus, impairing monolignol biosynthesis substantially effected Fusarium populations but environment had a strong influence.

  3. Effect of antagonistic fungi against Fusarium graminearum and F. culmorum on stubble of different cereals and at different temperatures

    NARCIS (Netherlands)

    El-Naggar, M.; Haas, de B.H.; Köhl, J.

    2003-01-01

    Bioassays were carried out with antagonists to suppress sporulation by F. culmorum and F. graminearum on cereal debris. A differential effect was found for temperatures on the effect of antagonistic fungal isolates. Isolates 10 and 11 were more effective at low temperature of 5 °C, while isolate 2

  4. N-(2-PIRYDYLAMINO METHYLENEBISPHOSPHONIC ACID AS A SOLE SOURCE OF A FUNGI FUSARIUM STRAINS GROWING

    Directory of Open Access Journals (Sweden)

    Teresa Krzyśko-Łupicka

    2016-09-01

    The results of growth kinetics of the studied Fusarium fungi in the presence of N-(2-pirydyloamino methyle-nobisphosphonic acid, were expressed by dry weight [g·dm-3]. Only Fusarium oxysporum XVI has been capa-ble to grow in acidic medium (pH 4.0 using N-(2-pirydylamino methylene-bisphosphonic acid as an alterna-tive source of phosphorus. In these conditions the N-(2-pirydylamino methylenebisphosphonic acid degrada-tion was carried out to utilize phosphorus compounds as a source of nutrient components for this strain. The presence of N-(2-pirydylamino methylenebisphosphonic acid receded a growth rate of mycelium but did not have an effect on spores of tested fungi.

  5. Antioxidant Secondary Metabolites in Cereals: Potential Involvement in Resistance to Fusarium and Mycotoxin Accumulation

    Directory of Open Access Journals (Sweden)

    Vessela eATANASOVA-PENICHON

    2016-04-01

    Full Text Available Gibberella and Fusarium Ear Rot and Fusarium Head Blight are major diseases affecting European cereals. These diseases are mainly caused by fungi of the Fusarium genus, primarily Fusarium graminearum and Fusarium verticillioides. These Fusarium species pose a serious threat to food safety because of their ability to produce a wide range of mycotoxins, including type B trichothecenes and fumonisins. Many factors such as environmental, agronomic or genetic ones may contribute to high levels of accumulation of mycotoxins in the grain and there is an urgent need to implement efficient and sustainable management strategies to reduce mycotoxin contamination. Actually, fungicides are not fully efficient to control the mycotoxin risk. In addition, because of harmful effects on human health and environment, their use should be seriously restricted in the near future. To durably solve the problem of mycotoxin accumulation, the breeding of tolerant genotypes is one of the most promising strategies for cereals. A deeper understanding of the molecular mechanisms of plant resistance to both Fusarium and mycotoxin contamination will shed light on plant-pathogen interactions and provide relevant information for improving breeding programs. Resistance to Fusarium depends on the plant ability in preventing initial infection and containing the development of the toxigenic fungi while resistance to mycotoxin contamination is also related to the capacity of plant tissues in reducing mycotoxin accumulation. This capacity can result from two mechanisms: metabolic transformation of the toxin into less toxic compounds and inhibition of toxin biosynthesis. This last mechanism involves host metabolites able to interfere with mycotoxin biosynthesis. This review aims at gathering the latest scientific advances that support the contribution of grain antioxidant secondary metabolites to the mechanisms of plant resistance to Fusarium and mycotoxin accumulation.

  6. Variability of Pathogenicity of Fusarium spp. Originating from Maize and Wheat Grains

    Directory of Open Access Journals (Sweden)

    Sonja Tančić

    2009-01-01

    Full Text Available Differences in the pathogenicity of 93 isolates of seven species belonging to the genus Fusarium (F. graminearum, F. verticillioides, F. proliferatum, F. subglutinans, F. sporotrichioides, F. semitectum and F. equiseti, originating from maize kernels (61 and wheat grains (32, were examined based on the germination percentage of inoculated seeds. The studied species demonstrated inter- and intraspecies variability regarding the effects on maize seed germination. On the average, the greatest germination reduction was found in seeds inoculated with the spore suspensions of F. sporotrichioides and F. graminearum. A similar reduction was detected in seeds inoculated with F. proliferatum and F. subglutinans. The effect of F. subglutinans on seed germination reduction was higher compared to the two latter species, while the effects of F. semitectum and F. equiseti were smallest. The majority of isolates were of moderate pathogenicity, while the lowest number of isolates was either very pathogenic (7 or apathogenic (10. Pathogenicity of the isolates originating from wheat grains was generally lower than the pathogenicity of isolates originating from maize kernels, with the exception of F. sporotrichioides.

  7. Wildly Growing Asparagus (Asparagus officinalis L.) Hosts Pathogenic Fusarium Species and Accumulates Their Mycotoxins.

    Science.gov (United States)

    Stępień, Łukasz; Waśkiewicz, Agnieszka; Urbaniak, Monika

    2016-05-01

    Asparagus officinalis L. is an important crop in many European countries, likely infected by a number of Fusarium species. Most of them produce mycotoxins in plant tissues, thus affecting the physiology of the host plant. However, there is lack of information on Fusarium communities in wild asparagus, where they would definitely have considerable environmental significance. Therefore, the main scientific aim of this study was to identify the Fusarium species and quantify their typical mycotoxins present in wild asparagus plants collected at four time points of the season. Forty-four Fusarium strains of eight species--Fusarium acuminatum, Fusarium avenaceum, Fusarium culmorum, Fusarium equiseti, Fusarium oxysporum, Fusarium proliferatum, Fusarium sporotrichioides, and Fusarium tricinctum--were isolated from nine wild asparagus plants in 2013 season. It is the first report of F. sporotrichioides isolated from this particular host. Fumonisin B1 was the most abundant mycotoxin, and the highest concentrations of fumonisins B1-B3 and beauvericin were found in the spears collected in May. Moniliformin and enniatins were quantified at lower concentrations. Mycotoxins synthesized by individual strains obtained from infected asparagus tissues were assessed using in vitro cultures on sterile rice grain. Most of the F. sporotrichioides strains synthesized HT-2 toxin and F. equiseti strains were found to be effective zearalenone producers.

  8. The cold-induced defensin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat.

    Science.gov (United States)

    Sasaki, Kentaro; Kuwabara, Chikako; Umeki, Natsuki; Fujioka, Mari; Saburi, Wataru; Matsui, Hirokazu; Abe, Fumitaka; Imai, Ryozo

    2016-06-20

    TAD1 (Triticum aestivum defensin 1) is induced during cold acclimation in winter wheat and encodes a plant defensin with antimicrobial activity. In this study, we demonstrated that recombinant TAD1 protein inhibits hyphal growth of the snow mold fungus, Typhula ishikariensis in vitro. Transgenic wheat plants overexpressing TAD1 were created and tested for resistance against T. ishikariensis. Leaf inoculation assays revealed that overexpression of TAD1 confers resistance against the snow mold. In addition, the TAD1-overexpressors showed resistance against Fusarium graminearum, which causes Fusarium head blight, a devastating disease in wheat and barley. These results indicate that TAD1 is a candidate gene to improve resistance against multiple fungal diseases in cereal crops. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. INK128 Exhibits Synergy with Azoles against Exophiala spp. and Fusarium spp.

    Science.gov (United States)

    Gao, Lujuan; Sun, Yi; He, Chengyan; Li, Ming; Zeng, Tongxiang; Lu, Qiaoyun

    2016-01-01

    Infections of Exophiala spp. and Fusarium spp. are often chronic and recalcitrant. Systemic disseminations, which mostly occur in immunocompromised patients, are often refractory to available antifungal therapies. The conserved target of rapamycin (TOR) orchestrates cell growth and proliferation in response to nutrients and growth factors, which are important for pathogenicity and virulence. INK128 is a second-generation ATP-competitive TOR inhibitor, which binds the TOR catalytic domain and selectively inhibits TOR. In the present study, we investigated the in vitro activities of INK128 alone and the interactions of INK128 with conventional antifungal drugs including itraconazole, voriconazole, posaconazole, and amphotericin B against 18 strains of Exophiala spp. and 10 strains of Fusarium spp. via broth microdilution checkerboard technique system adapted from Clinical and Laboratory Standards Institute broth microdilution method M38-A2. INK128 alone was inactive against all isolates tested. However, favorable synergistic effects between INK128 and voriconazole were observed in 61% Exophiala strains and 60% Fusarium strains, despite Fusarium strains exhibited high MIC values (4-8 μg/ml) against voriconazole. In addition, synergistic effects of INK128/itraconazole were shown in 33% Exophiala strains and 30% Fusarium strains, while synergy of INK128/posaconazole were observed in 28% Exophiala strains and 30% Fusarium strains. The effective working ranges of INK128 were 0.125-2 μg/ml and 1-4 μg/ml against Exophiala isolates and Fusarium isolates, respectively. No synergistic effect was observed when INK128 was combined with amphotericin B. No antagonism was observed in all combinations. In conclusion, INK128 could enhance the in vitro antifungal activity of voriconazole, itraconazole and posaconazole against Exophiala spp. and Fusarium spp., suggesting that azoles, especially voriconazole, combined with TOR kinase inhibitor might provide a potential strategy to

  10. A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB.

    Science.gov (United States)

    López-Berges, Manuel S; Rispail, Nicolas; Prados-Rosales, Rafael C; Di Pietro, Antonio

    2010-07-01

    During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source-independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the DeltameaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi.

  11. PATHOGENICITY OF FUSARIUM SPP. ISOLATED FROM WEEDS AND PLANT DEBRIS IN EASTERN CROATIA TO WHEAT AND MAIZE

    Directory of Open Access Journals (Sweden)

    Jelena Ilić

    2012-12-01

    Full Text Available Pathogenicity of thirty isolates representing 14 Fusarium species isolated from weeds and plant debris in eastern Croatia was investigated in the laboratory. Pathogenicity tests were performed on wheat and maize seedlings. The most pathogenic Fusarium spp. was F. graminearum isolated from Amaranthus retroflexus, Abutilon theophrasti and Chenopodium album. There was a noticeable inter- and intraspecies variability in pathogenicity towards wheat and maize. Isolates of F. solani from Sonchus arvensis and F. verticillioides from C. album were highly pathogenic to wheat seedlings and apathogenic to maize seedlings. Isolates of F. venenatum were very pathogenic to wheat and maize being the first report about pathogenicity of this species. This experiment proves that weeds and plant debris can serve as alternate hosts and source of inoculum of plant pathogens.

  12. Pasinler İlçesi (Erzurum’nde Şeker Pancarı (Beta vulgaris Bitkilerinden İzole Edilen Fusarium spp. ve Patojeniteleri

    Directory of Open Access Journals (Sweden)

    Ömer Faruk KARYAĞDI

    2016-05-01

    Full Text Available Bu çalışma Pasinler ilçesi (Erzurum’nde şeker pancarı (Beta vulgaris L. bitkilerinden izole edilen Fusarium türlerini ve patojenitelerini belirlemek amacıyla 2009 yılında yürütülmüştür. Şeker pancarı bitkisinden yapılan izolasyon çalışmaları sonucunda 194 Fusarium izolatı elde edilmiştir. Çalışmada elde edilen izolatların %37,63’ü F. equiseti, %31,44’ü F. oxysporum, %13,92’i F. acuminatum, %10,82’si F. solani, %4,12’si F. heterosporum, %1,55’i F. avenaceum ve %0,52’si F. graminearum olarak saptanmıştır. Yapılan patojenite testlerinde F. acuminatum (P2-8A1, F. equiseti (P1-6, F. heterosporum (P10-30, F. oxysporum (P8-24, P9-36 ve F. solani (P8-2 izolatları en yüksek hastalık şiddeti oluşturmuştur. F. acuminatum ve F. graminearum için şeker pancarı bitkisi, Türkiye’de yeni konukçu kaydı olarak belirlenmiştir.

  13. Single Nucleotide Polymorphisms in B-Genome Specific UDP-Glucosyl Transferases Associated with Fusarium Head Blight Resistance and Reduced Deoxynivalenol Accumulation in Wheat Grain.

    Science.gov (United States)

    Sharma, Pallavi; Gangola, Manu P; Huang, Chen; Kutcher, H Randy; Ganeshan, Seedhabadee; Chibbar, Ravindra N

    2018-01-01

    An in vitro spike culture method was optimized to evaluate Fusarium head blight (FHB) resistance in wheat (Triticum aestivum) and used to screen a population of ethyl methane sulfonate treated spike culture-derived variants (SCDV). Of the 134 SCDV evaluated, the disease severity score of 47 of the variants was ≤30%. Single nucleotide polymorphisms (SNP) in the UDP-glucosyltransferase (UGT) genes, TaUGT-2B, TaUGT-3B, and TaUGT-EST, differed between AC Nanda (an FHB-susceptible wheat variety) and Sumai-3 (an FHB-resistant wheat cultivar). SNP at 450 and 1,558 bp from the translation initiation site in TaUGT-2B and TaUGT-3B, respectively were negatively correlated with FHB severity in the SCDV population, whereas the SNP in TaUGT-EST was not associated with FHB severity. Fusarium graminearum strain M7-07-1 induced early expression of TaUGT-2B and TaUGT-3B in FHB-resistant SCDV lines, which were associated with deoxynivalenol accumulation and reduced FHB disease progression. At 8 days after inoculation, deoxynivalenol concentration varied from 767 ppm in FHB-resistant variants to 2,576 ppm in FHB-susceptible variants. The FHB-resistant SCDV identified can be used as new sources of FHB resistance in wheat improvement programs.

  14. IGS-RFLP analysis and development of molecular markers for identification of Fusarium poae, Fusarium langsethiae, Fusarium sporotrichioides and Fusarium kyushuense

    NARCIS (Netherlands)

    Konstantinova, P.S.; Yli-Mattila, T.

    2004-01-01

    The intergenic spacer (IGS) regions of the rDNA of several Fusarium spp. strains obtained from the collaborative researchers (Int. J. Food Microbiol. (2003)) were amplified by polymerase chain reaction (PCR), and an IGS¿RFLP analysis was performed. Restriction digestion with AluI, MspI and PstI

  15. Fusarium graminearum PKS14 is involved in orsellinic acid and orcinol synthesis

    DEFF Research Database (Denmark)

    Jørgensen, Simon Hartung; Frandsen, Rasmus John Normand; Nielsen, Kristian Fog

    2014-01-01

    and cultivated two of the resulting mutants on RM medium. This led to the production of two compounds, which were only detected in the PKS14 overexpressing mutants and not in the wild type or PKS14 deletion mutants. The two compounds were tentatively identified as orsellinic acid and orcinol by comparing...... spectroscopic data (mass spectroscopy and chromatography) to authentic standards. NMR analysis of putative orcinol isolated from the PKS14 overexpressing mutant supported our identification. Orcinol and orsellinic acid, not previously detected in Fusarium, have primarily been detected in lichen fungi...

  16. Antagonism of Trichoderma spp. strains against pea (Pisum sativum L. Fusarium wilt caused by Fusarium oxysporum f. sp. pisi.

    Directory of Open Access Journals (Sweden)

    Oscar Eduardo Checa Coral

    2017-07-01

    Full Text Available The antagonistic effectiveness of native strains of Trichoderma spp. on Fusarium oxysporum f. sp. pisi. in vitro, greenhouse and field conditions, were evaluated. in vitro conditions, the antagonistic capacity of 12 strains of Trichoderma spp., C2, C7, C12 and C21 strains, exhibited a better behavior measured by the following variables: inhibition halo and mycelial growth. In greenhouse conditions, the four strains, which showed the best in vitro antagonistic behavior, were evaluated using a DIA experimental design with factorial arrangement for three factors, which corresponded to strain, concentration and dose. The results of this evaluation, showed that C12 and C21 strains at doses of 20 mL, and at concentrations of 108 and 106 conidia.mL-1, respectively. The best antagonistic response was determined by variables as follows: plant height, fresh root weight and incidence. Under field conditions, the evaluations were carried out in the municipalities of Ipiales, Pupiales and Gualmatán, in the department of Nariño, Colombia. In each location, a BCA experimental design was used with four treatments and five replicates, treatments were as follows: C12 strains at 108 concentration, C21 at 106 concentration, chemical control and absolute control. In Gualmatan location, C12 and C21 strains, showed no antagonistic capacity, whereas in Ipiales and Pupiales locations, strain C12, presented a lower incidence of F. oxysporum than the control, but with no effect on yields. In Pupiales location, C21 strain surpassed in performance to the control treatment, even though the two treatments had similar incidence.

  17. A Nitrogen Response Pathway Regulates Virulence Functions in Fusarium oxysporum via the Protein Kinase TOR and the bZIP Protein MeaB[C][W

    Science.gov (United States)

    López-Berges, Manuel S.; Rispail, Nicolas; Prados-Rosales, Rafael C.; Di Pietro, Antonio

    2010-01-01

    During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source–independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the ΔmeaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi. PMID:20639450

  18. Biofilm Formation and Resistance to Fungicides in Clinically Relevant Members of the Fungal Genus Fusarium

    Directory of Open Access Journals (Sweden)

    Hafize Sav

    2018-01-01

    Full Text Available Clinically relevant members of the fungal genus, Fusarium, exhibit an extraordinary genetic diversity and cause a wide spectrum of infections in both healthy individuals and immunocompromised patients. Generally, Fusarium species are intrinsically resistant to all systemic antifungals. We investigated whether the presence or absence of the ability to produce biofilms across and within Fusarium species complexes is linked to higher resistance against antifungals. A collection of 41 Fusarium strains, obtained from 38 patients with superficial and systemic infections, and three infected crops, were tested, including 25 species within the Fusarium fujikuroi species complex, 14 from the Fusarium solani species complex (FSSC, one Fusarium dimerum species complex, and one Fusarium oxysporum species complex isolate. Of all isolates tested, only seven strains from two species of FSSC, five F. petroliphilum and two F. keratoplasticum strains, recovered from blood, nail scrapings, and nasal biopsy samples, could produce biofilms under the tested conditions. In the liquid culture tested, sessile biofilm-forming Fusarium strains exhibited elevated minimum inhibitory concentrations (MICs for amphotericin B, voriconazole, and posaconazole, compared to their planktonic counterparts, indicating that the ability to form biofilm may significantly increase resistance. Collectively, this suggests that once a surface adherent biofilm has been established, therapies designed to kill planktonic cells of Fusarium are ineffective.

  19. Unique Phylogenetic Lineage Found in the Fusarium-like Clade after Re-examining BCCM/IHEM Fungal Culture Collection Material.

    Science.gov (United States)

    Triest, David; De Cremer, Koen; Piérard, Denis; Hendrickx, Marijke

    2016-09-01

    Recently, the Fusarium genus has been narrowed based upon phylogenetic analyses and a Fusarium -like clade was adopted. The few species of the Fusarium -like clade were moved to new, re-installed or existing genera or provisionally retained as " Fusarium ." Only a limited number of reference strains and DNA marker sequences are available for this clade and not much is known about its actual species diversity. Here, we report six strains, preserved by the Belgian fungal culture collection BCCM/IHEM as a Fusarium species, that belong to the Fusarium -like clade. They showed a slow growth and produced pionnotes, typical morphological characteristics of many Fusarium -like species. Multilocus sequencing with comparative sequence analyses in GenBank and phylogenetic analyses, using reference sequences of type material, confirmed that they were indeed member of the Fusarium -like clade. One strain was identified as "Fusarium" ciliatum whereas another strain was identified as Fusicolla merismoides . The four remaining strains were shown to represent a unique phylogenetic lineage in the Fusarium -like clade and were also found morphologically distinct from other members of the Fusarium -like clade. Based upon phylogenetic considerations, a new genus, Pseudofusicolla gen. nov., and a new species, Pseudofusicolla belgica sp. nov., were installed for this lineage. A formal description is provided in this study. Additional sampling will be required to gather isolates other than the historical strains presented in the present study as well as to further reveal the actual species diversity in the Fusarium -like clade.

  20. Fusarium proliferatum strains change fumonisin biosynthesis and accumulation when exposed to host plant extracts.

    Science.gov (United States)

    Górna, Karolina; Pawłowicz, Izabela; Waśkiewicz, Agnieszka; Stępień, Łukasz

    2016-01-01

    Fumonisin concentrations in mycelia and media were studied in liquid Fusarium proliferatum cultures supplemented with host plant extracts. Furthermore, the kinetics of fumonisin accumulation in media and mycelia collected before and after extract addition was analysed as well as the changes in the expression of the FUM1 gene. Fumonisin content in culture media increased in almost all F. proliferatum strains shortly after plant extracts were added. The asparagus extract induced the highest FB level increase and the garlic extract was the second most effective inducer. Fumonisin level decreased constantly until 14th day of culturing, though for some strains also at day 8th an elevated FB level was observed. Pineapple extract induced the highest increase of fum1 transcript levels as well as fumonisin synthesis in many strains, and the peas extract inhibited fungal growth and fumonisin biosynthesis. Moreover, fumonisins were accumulated in mycelia of studied strains and in the respective media. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  1. Tissue-specific and pathogen-inducible expression of a fusion protein containing a Fusarium-specific antibody and a fungal chitinase protects wheat against Fusarium pathogens and mycotoxins.

    Science.gov (United States)

    Cheng, Wei; Li, He-Ping; Zhang, Jing-Bo; Du, Hong-Jie; Wei, Qi-Yong; Huang, Tao; Yang, Peng; Kong, Xian-Wei; Liao, Yu-Cai

    2015-06-01

    Fusarium head blight (FHB) in wheat and other small grain cereals is a globally devastating disease caused by toxigenic Fusarium pathogens. Controlling FHB is a challenge because germplasm that is naturally resistant against these pathogens is inadequate. Current control measures rely on fungicides. Here, an antibody fusion comprised of the Fusarium spp.-specific recombinant antibody gene CWP2 derived from chicken, and the endochitinase gene Ech42 from the biocontrol fungus Trichoderma atroviride was introduced into the elite wheat cultivar Zhengmai9023 by particle bombardment. Expression of this fusion gene was regulated by the lemma/palea-specific promoter Lem2 derived from barley; its expression was confirmed as lemma/palea-specific in transgenic wheat. Single-floret inoculation of independent transgenic wheat lines of the T3 to T6 generations revealed significant resistance (type II) to fungal spreading, and natural infection assays in the field showed significant resistance (type I) to initial infection. Gas chromatography-mass spectrometry analysis revealed marked reduction of mycotoxins in the grains of the transgenic wheat lines. Progenies of crosses between the transgenic lines and the FHB-susceptible cultivar Huamai13 also showed significantly enhanced FHB resistance. Quantitative real-time PCR analysis revealed that the tissue-specific expression of the antibody fusion was induced by salicylic acid drenching and induced to a greater extent by F. graminearum infection. Histochemical analysis showed substantial restriction of mycelial growth in the lemma tissues of the transgenic plants. Thus, the combined tissue-specific and pathogen-inducible expression of this Fusarium-specific antibody fusion can effectively protect wheat against Fusarium pathogens and reduce mycotoxin content in grain. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Microbial Inhibition of Fusarium Pathogens and Biological Modification of Trichothecenes in Cereal Grains

    Directory of Open Access Journals (Sweden)

    Urszula Wachowska

    2017-12-01

    Full Text Available Fungi of the genus Fusarium infect cereal crops during the growing season and cause head blight and other diseases. Their toxic secondary metabolites (mycotoxins contaminate grains. Several dozen toxic compounds produced by fungal pathogens have been identified to date. Type B trichothecenes—deoxynivalenol, its acetyl derivatives and nivalenol (produced mainly by F. graminearum and F. culmorum—are most commonly detected in cereal grains. “T-2 toxin” (produced by, among others, F. sporotrichioides belongs to type-A trichothecenes which are more toxic than other trichothecenes. Antagonistic bacteria and fungi can affect pathogens of the genus Fusarium via different modes of action: direct (mycoparasitism or hyperparasitism, mixed-path (antibiotic secretion, production of lytic enzymes and indirect (induction of host defense responses. Microbial modification of trichothecenes involves acetylation, deacetylation, oxidation, de-epoxidation, and epimerization, and it lowers the pathogenic potential of fungi of the genus Fusarium. Other modifing mechanisms described in the paper involve the physical adsorption of mycotoxins in bacterial cells and the conjugation of mycotoxins to glucose and other compounds in plant and fungal cells. The development of several patents supports the commercialization and wider application of microorganisms biodegrading mycotoxins in grains and, consequently, in feed additives.

  3. The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK

    Science.gov (United States)

    Nielsen, L.K.; Cook, D.J.; Edwards, S.G.; Ray, R.V.

    2014-01-01

    Fusarium head blight (FHB) caused by Fusarium and Microdochium species can significantly affect the yield of barley grain as well as the quality and safety of malt and beer. The present study provides new knowledge on the impacts of the FHB pathogen complex on the malting and brewing quality parameters of naturally infected barley. Quantitative real-time PCR and liquid chromatography double mass spectrometry were used to quantify the predominant FHB pathogens and Fusarium mycotoxins, respectively, in commercially grown UK malting barley samples collected between 2007 and 2011. The predominant Fusarium species identified across the years were F. poae, F. tricinctum and F. avenaceum. Microdochium majus was the predominant Microdochium species in 2007, 2008, 2010 and 2011 whilst Microdochium nivale predominated in 2009. Deoxynivalenol and zearalenone quantified in samples collected between 2007 and 2009 were associated with F. graminearum and F. culmorum, whilst HT-2 and T-2, and nivalenol in samples collected between 2010 and 2011 correlated positively with F. langsethiae and F. poae, respectively. Analysis of the regional distribution and yearly variation in samples from 2010 to 2011 showed significant differences in the composition of the FHB species complex. In most regions (Scotland, the South and North of England) the harvest in 2010 had higher concentrations of Fusarium spp. than in 2011, although no significant difference was observed in the Midlands between the two years. Microdochium DNA was significantly higher in 2011 and in the North of England and Scotland compared to the South or Midlands regions. Pathogens of the FHB complex impacted negatively on grain yield and quality parameters. Thousand grain weight of malting barley was affected significantly by M. nivale and M. majus whilst specific weight correlated negatively with F. avenaceum and F. graminearum. To determine the impact of sub-acute infections of the identified Fusarium and Microdochium

  4. Unique Phylogenetic Lineage Found in the Fusarium-like Clade after Re-examining BCCM/IHEM Fungal Culture Collection Material

    Science.gov (United States)

    De Cremer, Koen; Piérard, Denis; Hendrickx, Marijke

    2016-01-01

    Recently, the Fusarium genus has been narrowed based upon phylogenetic analyses and a Fusarium-like clade was adopted. The few species of the Fusarium-like clade were moved to new, re-installed or existing genera or provisionally retained as "Fusarium." Only a limited number of reference strains and DNA marker sequences are available for this clade and not much is known about its actual species diversity. Here, we report six strains, preserved by the Belgian fungal culture collection BCCM/IHEM as a Fusarium species, that belong to the Fusarium-like clade. They showed a slow growth and produced pionnotes, typical morphological characteristics of many Fusarium-like species. Multilocus sequencing with comparative sequence analyses in GenBank and phylogenetic analyses, using reference sequences of type material, confirmed that they were indeed member of the Fusarium-like clade. One strain was identified as "Fusarium" ciliatum whereas another strain was identified as Fusicolla merismoides. The four remaining strains were shown to represent a unique phylogenetic lineage in the Fusarium-like clade and were also found morphologically distinct from other members of the Fusarium-like clade. Based upon phylogenetic considerations, a new genus, Pseudofusicolla gen. nov., and a new species, Pseudofusicolla belgica sp. nov., were installed for this lineage. A formal description is provided in this study. Additional sampling will be required to gather isolates other than the historical strains presented in the present study as well as to further reveal the actual species diversity in the Fusarium-like clade. PMID:27790062

  5. Analysis of potential fumonisin-producing Fusarium species in corn products from three main maize-producing areas in eastern China.

    Science.gov (United States)

    Zhang, Liping; Wang, Jiansheng; Zhang, Chulong; Wang, Qiaomei

    2013-02-01

    Fusarium species are common fungal contaminants of maize and a number of them can produce mycotoxin fumonisins. China is one of the largest maize producers in the world. This study investigated the contamination of maize samples from three areas in eastern China by Fusarium and fumonisin-producing fungi as well as their fumonisin-producing potential. A total of 22 Fusarium strains were isolated, 19 of which were able to produce fumonisin. Among the 19 strains, 16 belonged to F. verticillioides, two to F. subglutinans and one to F. proliferatum. The majority (17/19) of the fumonisin-forming strains were high FB(1) producers, which is a potential health risk for the population in these areas. Fusarium contamination in samples from the mideastern area was the most serious (11 Fusarium strains, with nine producing fumonisin, isolated from 24 samples), followed by the northeastern area (nine Fusarium strains, with all nine producing fumonisin, isolated from 21 samples) and the southeastern area (two Fusarium strains, with one producing fumonisin, isolated from 19 samples). Although the overall levels of FBs and contamination by fumonisin-producing fungi in corn samples were not serious, the contaminating Fusarium strains possessed fairly strong toxicogenic ability and potential risk for food safety. Copyright © 2012 Society of Chemical Industry.

  6. Interacting Environmental Stress Factors Affects Targeted Metabolomic Profiles in Stored Natural Wheat and That Inoculated with F. graminearum

    Directory of Open Access Journals (Sweden)

    Esther Garcia-Cela

    2018-01-01

    Full Text Available Changes in environmental stress impact on secondary metabolite (SM production profiles. Few studies have examined targeted SM production patterns in relation to interacting environmental conditions in stored cereals. The objectives were to examine the effect of water activity (aw; 0.95–0.90 x temperature (10–25 °C on SM production on naturally contaminated stored wheat and that inoculated with Fusarium graminearum. Samples were analysed using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS on (a total number of known SMs, (b their concentrations and (c changes under environmental stress. 24 Fusarium metabolites were quantified. Interestingly, statistical differences (ChisSq., p < 0.001 were observed in the number of SMs produced under different sets of interacting environmental conditions. The dominant metabolites in natural stored grain were deoxynivalenol (DON and nivalenol (NIV followed by a range of enniatins (A, A1, B, B1, apicidin and DON-3-glucoside at 10 °C. Increasing temperature promoted the biosynthesis of other SMs such as aurofusarin, moniliformin, zearalenone (ZEN and their derivatives. Natural wheat + F. graminearum inoculation resulted in a significant increase in the number of metabolites produced (ChisSq., p < 0.001. For ZEN and its derivatives, more was produced under cooler storage conditions. Fusarin C was enhanced in contrast to that for the enniatin group. The relative ratios of certain groups of targeted SM changed with environmental stress. Both temperature and aw affected the amounts of metabolites present, especially of DON and ZEN. This study suggests that the dominant SMs produced in stored temperate cereals are the mycotoxins for which legislation exists. However, there are changes in the ratios of key metabolites which could influence the relative contamination with individual compounds. Thus, in the future, under more extreme environmental stresses, different dominant SMs may be formed which could

  7. Podredumbres basales de Gypsophila paniculata (Caryophyllaceae: Agentes causales y su patogenicidad potencial sobre Dianthus caryophyllus (Caryophyllaceae Basal rots of Gypsophila paniculata (Caryophyllaceae: Causal agents and its potential pathogenicity on Dianthus caryophyllus (Caryophyllaceae

    Directory of Open Access Journals (Sweden)

    Silvia María Wolcan

    Full Text Available Los objetivos del trabajo fueron identificar a los agentes causales de las podredumbres basales de Gypsophila paniculata en la Argentina y probar su posible patogenicidad sobre Dianthus caryophyllus . A partir de plantas con síntomas de «podredumbre de la corona» (la más importante se aislaron en orden decreciente: Fusarium solani , F. oxysporum , Phytophthora nicotianae , Rhizoctonia solani , F. graminearum , F. verticillioides, F. equiseti y Pythium sp. y de plantas con «podredumbre basal del tallo» F. graminearum , F. oxysporum y F. solani . Con distintas cepas de cada hongo se hicieron pruebas de patogenicidad mediante la infestación del suelo y el depósito de inóculo en heridas producidas en los tallos. En la «podredumbre de la corona» fueron patógenos P. nicotianae causando decaimiento rápido de la parte aérea y podredumbre blanda de la corona y R. solani causando una pudrición más lenta y tejidos desintegrados. F. graminearum fue el patógeno de la «podredumbre basal del tallo» de gipsofila, que se describe por primera vez en este hospedante , comprobando que el hongo penetra sólo por heridas del tallo. En condiciones de inoculación se confirmó que algunas cepas de R. solani y de F. graminearum aisladas de gipsofila pueden ser patógenas de clavel mientras que sólo algunas de P. nicotianae resultaron patógenas débiles.The aims of the paper were to determine the causal agents of basal rots of Gypsophila paniculata in Argentina, and to evaluate its possible pathogenicity on Dianthus caryophyllus. Fusarium solani, F. oxysporum , Phytophthora nicotianae , Rhizoctonia solani , F. graminearum , F. verticilloides, F. equiseti and Pythium sp. were isolated in decreasing order from plants with symptoms of «crown rot» (the major basal rot. F. graminearum , F. oxysporum and F. solani were isolated from plants with «basal stem rot». Inoculations of gypsophila were performed by soil infestation and by placing inoculum on

  8. Fusarium verticillioides from finger millet in Uganda.

    Science.gov (United States)

    Saleh, Amgad A; Esele, J P; Logrieco, Antonio; Ritieni, Alberto; Leslie, John F

    2012-01-01

    Finger millet (Eleusine coracana) is a subsistence crop grown in Sub-Saharan Africa and the Indian Sub-continent. Fusarium species occurring on this crop have not been reported. Approximately 13% of the Fusarium isolates recovered from finger millet growing at three different locations in eastern Uganda belong to Fusarium verticillioides, and could produce up to 18,600 µg/g of total fumonisins when cultured under laboratory conditions. These strains are all genetically unique, based on AFLP analyses, and form fertile perithecia when crossed with the standard mating type tester strains for this species. All but one of the strains is female-fertile and mating-type segregates 13:20 Mat-1:Mat-2. Three new sequences of the gene encoding translation elongation factor 1-α were found within the population. These results indicate a potential health risk for infants who consume finger millet gruel as a weaning food, and are consistent with the hypothesis that F. verticillioides originated in Africa and not in the Americas, despite its widespread association with maize grown almost anywhere worldwide.

  9. Identification of an Endophytic Antifungal Bacterial Strain Isolated from the Rubber Tree and Its Application in the Biological Control of Banana Fusarium Wilt.

    Directory of Open Access Journals (Sweden)

    Deguan Tan

    Full Text Available Banana Fusarium wilt (also known as Panama disease is one of the most disastrous plant diseases. Effective control methods are still under exploring. The endophytic bacterial strain ITBB B5-1 was isolated from the rubber tree, and identified as Serratia marcescens by morphological, biochemical, and phylogenetic analyses. This strain exhibited a high potential for biological control against the banana Fusarium disease. Visual agar plate assay showed that ITBB B5-1 restricted the mycelial growth of the pathogenic fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4. Microscopic observation revealed that the cell wall of the FOC4 mycelium close to the co-cultured bacterium was partially decomposed, and the conidial formation was prohibited. The inhibition ratio of the culture fluid of ITBB B5-1 against the pathogenic fungus was 95.4% as estimated by tip culture assay. Chitinase and glucanase activity was detected in the culture fluid, and the highest activity was obtained at Day 2 and Day 3 of incubation for chitinase and glucanase, respectively. The filtrated cell-free culture fluid degraded the cell wall of FOC4 mycelium. These results indicated that chitinase and glucanase were involved in the antifungal mechanism of ITBB B5-1. The potted banana plants that were inoculated with ITBB B5-1 before infection with FOC4 showed 78.7% reduction in the disease severity index in the green house experiments. In the field trials, ITBB B5-1 showed a control effect of approximately 70.0% against the disease. Therefore, the endophytic bacterial strain ITBB B5-1 could be applied in the biological control of banana Fusarium wilt.

  10. Biological control of Egyptian broomrape (Orobanche aegyptiaca using Fusarium spp.

    Directory of Open Access Journals (Sweden)

    I. Ghannam

    2007-08-01

    Full Text Available The broomrape (Orobanche spp. is an obligate holoparasitic weed that causes severe damage to many important vegetable crops. Many broomrape control strategies have been tested over the years. In this investigation, 125 Fusarium spp. isolates were recovered from diseased broomrape spikes collected from fields in agricultural areas near Hebron. The pathogenicity of isolates on broomrape was evaluated using an inoculum suspension containing mycelia and conidia. The most effective Fusarium isolates significantly increased the dead spikes of broomrape by 33.6–72.7% compared to the control; there was no obvious pathogenic effect on the tomato plants. Fusarium spp. isolates Fu 20, 25 and 119 were identified as F. solani, while Fu 30, 52, 59, 87 and 12-04 were F. oxysporum. In addition, the two previously known Fusarium strains, F. oxysporum strain EId (CNCM-I-1622 (Foxy and F. arthrosporioides strain E4a (CNCM-I-1621 (Farth were equally effective in controlling broomrape parasitizing tomato plants grown in pots, where the dead spikes of broomrape increased by 50.0 and 51.6%, respectively.

  11. Mycotoxigenic Potentials of Fusarium Species in Various Culture Matrices Revealed by Mycotoxin Profiling

    Science.gov (United States)

    Shi, Wen; Tan, Yanglan; Wang, Shuangxia; Gardiner, Donald M.; De Saeger, Sarah; Liao, Yucai; Wang, Cheng; Fan, Yingying; Wang, Zhouping; Wu, Aibo

    2016-01-01

    In this study, twenty of the most common Fusarium species were molecularly characterized and inoculated on potato dextrose agar (PDA), rice and maize medium, where thirty three targeted mycotoxins, which might be the secondary metabolites of the identified fungal species, were detected by liquid chromatography–tandem mass spectrometry (LC-MS/MS). Statistical analysis was performed with principal component analysis (PCA) to characterize the mycotoxin profiles for the twenty fungi, suggesting that these fungi species could be discriminated and divided into three groups as follows. Group I, the fusaric acid producers, were defined into two subgroups, namely subgroup I as producers of fusaric acid and fumonisins, comprising of F. proliferatum, F. verticillioides, F. fujikuroi and F. solani, and subgroup II considered to only produce fusaric acid, including F. temperatum, F. subglutinans, F. musae, F. tricinctum, F. oxysporum, F. equiseti, F. sacchari, F. concentricum, F. andiyazi. Group II, as type A trichothecenes producers, included F. langsethiae, F. sporotrichioides, F. polyphialidicum, while Group III were found to mainly produce type B trichothecenes, comprising of F. culmorum, F. poae, F. meridionale and F. graminearum. A comprehensive picture, which presents the mycotoxin-producing patterns by the selected fungal species in various matrices, is obtained for the first time, and thus from an application point of view, provides key information to explore mycotoxigenic potentials of Fusarium species and forecast the Fusarium infestation/mycotoxins contamination. PMID:28035973

  12. Detection of Fusarium spp. and Trichoderma spp. and antagonism of Trichoderma sp. in soybean under no-tillage

    Directory of Open Access Journals (Sweden)

    Paola Mendes Milanesi

    2013-12-01

    Full Text Available This study aimed i to quantify the occurrence of Fusarium spp. and Trichoderma spp. in rhizospheric soil, with and without symptoms of Sudden Death Syndrome (SDS in eight soybean genotypes; ii morphologically identify isolates of Fusarium spp. from roots with SDS; iii evaluate the antagonism between Trichoderma spp. and Fusarium spp. isolates from rhizospheric soil and roots from with and without SDS, respectively; and iv characterize through the ITS1-5.8S-ITS2 region of rDNA the isolates of Trichoderma spp. with better performance in the direct confrontation. The sampling of soil and roots was performed in an experimental area located in Cruz Alta, RS, Brazil. In the laboratory, serial dilutions of soil samples, counting of the number of Colony Forming Units (UFCs/g-1 of rhizospheric soil were performed as well as isolation for identification of isolates of Fusarium spp. and Trichoderma spp. and testing of direct confrontation. There were significant differences between the population of Trichoderma spp. in the rhizosphere of plants with and without symptoms of SDS. For the population of Fusarium spp., significant difference was observed only in the rhizosphere of plants without symptoms of SDS. In diseased roots the following species were identified: F. solani, F. avenaceum, F. graminearum, F. oxysporum and F. verticillioides. In the test of direct confrontation, eight isolates of Trichoderma spp. achieved the best performance in the antagonism to Fusarium spp. and Trichoderma spp. from areas with symptoms of SDS had a higher control efficiency in vitro. These isolates showed high similarity to the species of T. koningii agregate.

  13. Fumonisins B, A and C profile and masking in Fusarium verticillioides strains on fumonisin-inducing and maize-based media.

    Science.gov (United States)

    Lazzaro, Irene; Falavigna, Claudia; Dall'asta, Chiara; Proctor, Robert H; Galaverna, Gianni; Battilani, Paola

    2012-10-01

    The production of fumonisin B, A and C and hidden and partially hydrolysed fumonisin occurrence was investigated in 3 strains of Fusarium verticillioides isolated from maize, cultured for 21-45days on malt extract medium at 25°C and 0.955-0.990 water activity (a(w)). Fumonisin A-B and C series were produced by all the strains in all conditions studied, with B-fumonisin≫C-fumonisin>A-fumonisin following a similar trend. The dynamic of fumonisin production was significantly influenced by factors considered and their interaction, with a(w)=0.990 as favourable condition in ITEM 10026 and ITEM 10027. All fumonisins were maximised at 30days incubation in ITEM 10027 and ITEM 1744 and at 45days incubation in ITEM 10026. Partially hydrolysed fumonisins were detected only for the B-group. Hidden fumonisins were never observed in Fusarium cultures grown on malt extract medium but were detected in the additional trial on maize-based medium, suggesting that the masking phenomenon can occur only in a complex matrix. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Effect of Gamma Rays on the Distribution of Toxigenic Fusarium Moulds and Chemical Changes in Whole and Dry Milled Fractions of Wheat

    International Nuclear Information System (INIS)

    Mahrous, S.R.

    2008-01-01

    The influence of gamma-irradiation on Fusarium-mycotoxins and the chemical composition of whole and dry-milled fractions of wheat grains was investigated. Wheat samples collected from the Egyptian markets were found to be heavily contaminated by, Fusarium graminearum (70-100%), F. moniliforme (40-60%) and F.subglutinilils (10-30%). Fusarium counts in wheat fractions were 1.1-2.7 x 10 1 CFU/g in flour; 1.1 x 10 3 to 3.7 X 10 4 CFU/g in bran and 1.4 x 10 2 to 1.6 X 10 3 in shorts. The levels of deoxynivalenol (DON) and zearalenone were generally highest in the bran and lowest in the flour. The levels of DON and zearalenone. in whole wheat samples were generally lower than the levels in the bran and shorts. Irradiation at a dose 5.0 kGy reduced the Fusarium moulds growth greatly relative to unirradiated controls and there was no growth at 7.0 kGy. Application of radiation at 15.0 kGy reduced the levels of DON and zearalenon by less than 1 ppm and Fusarium toxins were eliminated at 20.0 kGy. The chemical composition of the raw and irradiated whole and dry- milled fractions of-wheat grains up to 20.0 kGy was similar

  15. The Shewanella algae strain YM8 produces volatiles with strong inhibition activity against Aspergillus pathogens and aflatoxins

    Directory of Open Access Journals (Sweden)

    Andong eGong

    2015-10-01

    Full Text Available Aflatoxigenic Aspergillus fungi and associated aflatoxins are ubiquitous in the production and storage of food/feed commodities. Controlling these pests is a challenge. In this study, the Shewanella algae strain YM8 was found to produce volatiles that have strong antifungal activity against Aspergillus pathogens. Gas chromatography-mass spectrometry profiling revealed 15 volatile organic compounds (VOCs emitted from YM8, of which dimethyl trisulfide was the most abundant. We obtained authentic reference standards for six of the VOCs; these all significantly reduced mycelial growth and conidial germination in Aspergillus; dimethyl trisulfide and 2,4-bis(1,1-dimethylethyl-phenol showed the strongest inhibitory activity. YM8 completely inhibited Aspergillus growth and aflatoxin biosynthesis in maize and peanut samples stored at different water activity levels, and scanning electron microscopy revealed severely damaged conidia and a complete lack of mycelium development and conidiogenesis. YM8 also completely inhibited the growth of eight other agronomically important species of phytopathogenic fungi: A. parasiticus, A. niger, Alternaria alternate, Botrytis cinerea, Fusarium graminearum, Fusarium oxysporum, Monilinia fructicola, and Sclerotinia sclerotiorum. This study demonstrates the susceptibility of Aspergillus and other fungi to VOCs from marine bacteria and indicates a new strategy for effectively controlling these pathogens and the associated mycotoxin production in the field and during storage.

  16. Evaluation of the significance of cell wall polymers in flax infected with a pathogenic strain of Fusarium oxysporum.

    Science.gov (United States)

    Wojtasik, Wioleta; Kulma, Anna; Dymińska, Lucyna; Hanuza, Jerzy; Czemplik, Magdalena; Szopa, Jan

    2016-03-22

    Fusarium oxysporum infection leads to Fusarium-derived wilt, which is responsible for the greatest losses in flax (Linum usitatissimum) crop yield. Plants infected by Fusarium oxysporum show severe symptoms of dehydration due to the growth of the fungus in vascular tissues. As the disease develops, vascular browning and leaf yellowing can be observed. In the case of more virulent strains, plants die. The pathogen's attack starts with secretion of enzymes degrading the host cell wall. The main aim of the study was to evaluate the role of the cell wall polymers in the flax plant response to the infection in order to better understand the process of resistance and develop new ways to protect plants against infection. For this purpose, the expression of genes involved in cell wall polymer metabolism and corresponding polymer levels were investigated in flax seedlings after incubation with Fusarium oxysporum. This analysis was facilitated by selecting two groups of genes responding differently to the infection. The first group comprised genes strongly affected by the infection and activated later (phenylalanine ammonia lyase and glucosyltransferase). The second group comprised genes which are slightly affected (up to five times) and their expression vary as the infection progresses. Fusarium oxysporum infection did not affect the contents of cell wall polymers, but changed their structure. The results suggest that the role of the cell wall polymers in the plant response to Fusarium oxysporum infection is manifested through changes in expression of their genes and rearrangement of the cell wall polymers. Our studies provided new information about the role of cellulose and hemicelluloses in the infection process, the change of their structure and the expression of genes participating in their metabolism during the pathogen infection. We also confirmed the role of pectin and lignin in this process, indicating the major changes at the mRNA level of lignin metabolism genes

  17. Phytotoxic activity against Bromus tectorum for secondary metabolites of a seed-pathogenic Fusarium strain belonging to the F. tricinctum species complex.

    Science.gov (United States)

    Masi, Marco; Meyer, Susan; Pescitelli, Gennaro; Cimmino, Alessio; Clement, Suzette; Peacock, Beth; Evidente, Antonio

    2017-12-01

    The winter annual grass Bromus tectorum (cheatgrass) has become highly invasive in semiarid ecosystems of western North America. In these areas, a natural phenomenon, complete cheatgrass stand failure ('die-off'), is apparently caused by a complex interaction among soilborne fungal pathogens. Several Fusarium strains belonging to the Fusarium tricinctum species complex were isolated from these soils and found to be pathogenic on B. tectorum seeds. One of these strains was produced in cheatgrass seed culture to evaluate its ability to produce phytotoxins. Six metabolites were isolated and identified by spectroscopic methods (essentially 1D and 2D NMR and ESIMS) as acuminatopyrone (1), blumenol A (2), chlamydosporol (3), isochlamydosporol (4), ergosterol (5) and 4-hydroxybenzaldehyde (6). Upon testing against B. tectorum in a seedling bioassay, (6) the coleoptile and radicle length of cheatgrass seedlings were significantly reduced. Compounds 1 and 2 showed moderate activity, while 3-5 were not significantly different from the control.

  18. Effect of temperature and water activity on the production of fumonisins by Aspergillus niger and different Fusarium species

    DEFF Research Database (Denmark)

    Mogensen, Jesper Mølgaard; Nielsen, Kristian Fog; Samson, Robert A.

    2009-01-01

    Background Fumonisins are economically important mycotoxins which until recently were considered to originate from only a few Fusarium species. However recently a putative fumonisin gene cluster was discovered in two different Aspergillus niger strains followed by detection of an actual fumonisin B......2 (FB2) production in four strains of this biotechnologically important workhorse. Results In the present study, a screening of 5 A. niger strains and 25 assumed fumonisin producing Fusarium strains from 6 species, showed that all 5 A. niger strains produced FB2 and 23 of 25 Fusarium produced...... fumonisin B1 and other isoforms (fumonisin B2 and B3). Five A. niger and five Fusarium spp. were incubated at six different temperatures from 15-42°C on Czapek Yeast Agar +5% salt or Potato Dextrose Agar. A. niger had the highest production of FB2 at 25-30°C whereas Fusarium spp. had the maximal production...

  19. Deoxynivalenol in wheat and wheat products from a harvest affected by fusarium head blight

    Directory of Open Access Journals (Sweden)

    Lidiane Viera MACHADO

    Full Text Available Abstract Fusarium head blight is an important disease occurring in wheat, caused mainly by the fungus Fusarium graminearum. In addition to direct damage to crops, reduced quality and yield losses, the infected grains can accumulate mycotoxins (toxic metabolites originating from prior fungal growth, especially deoxynivalenol (DON. Wheat crops harvested in 2014/2015 in southern Brazil were affected by high levels of Fusarium head blight. In this context, the aim of this study was evaluate the mycotoxicological quality of Brazilian wheat grains and wheat products (wheat flour and wheat bran for DON. DON contamination was evaluated in 1,504 wheat and wheat product samples produced in Brazil during 2014. It was determined by high performance liquid chromatograph fitted to a mass spectrometer (LC-MS / MS. The results showed that 1,000 (66.5% out of the total samples tested were positive for DON. The mean level of sample contamination was 1047 µg.kg-1, but only 242 samples (16.1% had contamination levels above the maximum permissible levels (MPL - the maximum content allowed by current Brazilian regulation. As of 2017, MPL will be stricter. Thus, research should be conducted on DON contamination of wheat and wheat products, since wheat is a raw material widely used in the food industry, and DON can cause serious harm to public health.

  20. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions.

    Science.gov (United States)

    Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna

    2015-01-01

    Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four

  1. Use of Comparative Genomics-Based Markers for Discrimination of Host Specificity in Fusarium oxysporum.

    Science.gov (United States)

    van Dam, Peter; de Sain, Mara; Ter Horst, Anneliek; van der Gragt, Michelle; Rep, Martijn

    2018-01-01

    The polyphyletic nature of many formae speciales of Fusarium oxysporum prevents molecular identification of newly encountered strains based on conserved, vertically inherited genes. Alternative molecular detection methods that could replace labor- and time-intensive disease assays are therefore highly desired. Effectors are functional elements in the pathogen-host interaction and have been found to show very limited sequence diversity between strains of the same forma specialis , which makes them potential markers for host-specific pathogenicity. We therefore compared candidate effector genes extracted from 60 existing and 22 newly generated genome assemblies, specifically targeting strains affecting cucurbit plant species. Based on these candidate effector genes, a total of 18 PCR primer pairs were designed to discriminate between each of the seven Cucurbitaceae-affecting formae speciales When tested on a collection of strains encompassing different clonal lineages of these formae speciales , nonpathogenic strains, and strains of other formae speciales , they allowed clear recognition of the host range of each evaluated strain. Within Fusarium oxysporum f. sp. melonis more genetic variability exists than anticipated, resulting in three F. oxysporum f. sp. melonis marker patterns that partially overlapped with the cucurbit-infecting Fusarium oxysporum f. sp. cucumerinum , Fusarium oxysporum f. sp. niveum , Fusarium oxysporum f. sp. momordicae , and/or Fusarium oxysporum f. sp. lagenariae For F. oxysporum f. sp. niveum , a multiplex TaqMan assay was evaluated and was shown to allow quantitative and specific detection of template DNA quantities as low as 2.5 pg. These results provide ready-to-use marker sequences for the mentioned F. oxysporum pathogens. Additionally, the method can be applied to find markers distinguishing other host-specific forms of F. oxysporum IMPORTANCE Pathogenic strains of Fusarium oxysporum are differentiated into formae speciales based on

  2. Suppression of crown and root rot of wheat by the rhizobacterium Paenibacillus polymyxa

    Directory of Open Access Journals (Sweden)

    Lamia LOUNACI

    2017-01-01

    Full Text Available A seedling bioassay was developed for screening a wheat root-associated rhizobacterial strain of Paenibacillus polymyxa for ability to suppress crown and root rot pathogens of wheat. The primary aim was to evaluate the ability of P. polymyxa to suppress Fusarium graminearum, F. culmorum, F. verticillioides and Microdochium nivale, the fungal pathogens responsible for Fusarium crown and root rot and head blight of wheat in Algeria. Bioassays conducted under controlled conditions indicated that seed treatments with P. polymyxa strain SGK2 significantly reduced disease symptoms caused by all four fungal pathogens. Plant growth promotion (increased shoot and root dry weights, however, depended on the pathogen tested. Our results indicate that seed treatments with a biocontrol agent could be an additional strategy for management of wheat crown and root rot pathogens.

  3. Lipid transfer proteins and protease inhibitors as key factors in the priming of barley responses to Fusarium head blight disease by a biocontrol strain of Pseudomonas fluorescens.

    Science.gov (United States)

    Petti, Carloalberto; Khan, Mojibur; Doohan, Fiona

    2010-11-01

    Strains of non-pathogenic pseudomonad bacteria, can elicit host defence responses against pathogenic microorganisms. Pseudomonas fluorescens strain MKB158 can protect cereals from pathogenesis by Fusarium fungi, including Fusarium head blight which is an economically important disease due to its association with both yield loss and mycotoxin contamination of grain. Using the 22 K barley Affymetrix chip, trancriptome studies were undertaken to determine the local effect of P. fluorescens strain MKB158 on the transcriptome of barley head tissue, and to discriminate transcripts primed by the bacterium to respond to challenge by Fusarium culmorum, a causal agent of the economically important Fusarium head blight disease of cereals. The bacterium significantly affected the accumulation of 1203 transcripts and primed 74 to positively, and 14 to negatively, respond to the pathogen (P = 0.05). This is the first study to give insights into bacterium priming in the Triticeae tribe of grasses and associated transcripts were classified into 13 functional classes, associated with diverse functions, including detoxification, cell wall biosynthesis and the amplification of host defence responses. In silico analysis of Arabidopsis homologs of bacterium-primed barley genes indicated that, as is the case in dicots, jasmonic acid plays a role in pseudomonad priming of host responses. Additionally, the transcriptome studies described herein also reveal new insights into bacterium-mediated priming of host defences against necrotrophs, including the positive effects on grain filling, lignin deposition, oxidative stress responses, and the inhibition of protease inhibitors and proteins that play a key role in programmed cell death.

  4. Fusarium head blight incidence and mycotoxin accumulation in three durum wheat cultivars in relation to sowing date and density

    Science.gov (United States)

    Gorczyca, Anna; Oleksy, Andrzej; Gala-Czekaj, Dorota; Urbaniak, Monika; Laskowska, Magdalena; Waśkiewicz, Agnieszka; Stępień, Łukasz

    2018-02-01

    Durum wheat ( Triticum turgidum var. durum) is an important crop in Europe, particularly in the Mediterranean countries. Fusarium head blight (FHB) is considered as one of the most damaging diseases, resulting in yield and quality reduction as well as contamination of grain with mycotoxins. Three winter durum wheat cultivars originating from Austria, Slovakia, and Poland were analyzed during 2012-2014 seasons for FHB incidence and Fusarium mycotoxin accumulation in harvested grain. Moreover, the effects of sowing density and delayed sowing date were evaluated in the climatic conditions of Southern Poland. Low disease severity was observed in 2011/2012 in all durum wheat cultivars analyzed, and high FHB occurrence was recorded in 2012/2013 and 2013/2014 seasons. Fusarium graminearum was the most abundant pathogen, followed by Fusarium avenaceum. Through all three seasons, cultivar Komnata was the most susceptible to FHB and to mycotoxin accumulation, while cultivars Auradur and IS Pentadur showed less symptoms. High susceptibility of cv. Komnata was reflected by the number of Fusarium isolates and elevated mycotoxin (deoxynivalenol, zearalenone, and moniliformin) content in the grain of this cultivar across all three seasons. Nivalenol was identified in the samples of cv. Komnata only. Genotype-dependent differences in FHB susceptibility were observed for the plants sown at optimal date but not at delayed sowing date. It can be hypothesized that cultivars bred in Austria and Slovakia show less susceptibility towards FHB than the cultivar from Poland because of the environmental conditions allowing for more efficient selection of breeding materials.

  5. Evolution of a recombinant (gucoamylase-producing) strain of Fusarium venenatum A3/5 in chemostat culture.

    Science.gov (United States)

    Wiebe, M G; Robson, G D; Shuster, J; Trinci, A P

    2001-04-20

    Fusarium venenatum JeRS 325 is a transformant of strain A3/5 which produces Aspergillus niger glucoamylase (GAM) under the control of a Fusarium oxysporum trypsin-like protease promoter. The evolution of JeRS 325 was studied in glucose-limited chemostat cultures grown on NaNO3 or (NH4)2SO4 as the nitrogen source. Thirteen mutants which were more highly branched and four mutants which were more sparsely branched than the parental strain were isolated from the NaNO3 chemostat. The highly branched mutants detected in this chemostat did not displace the sparsely branched population. The mutants isolated from the NaNO3 chemostat complemented representative strains previously isolated from glucose-limited chemostat cultures of F. venenatum A3/5 grown on (NH4)2SO4, but showed little complementation between themselves. By contrast, a highly branched mutant isolated from the (NH4)2SO4 chemostat culture displaced the sparsely branched mycelial population. None of the mutants isolated from the NaNO3 or (NH4)2SO4 chemostats produced as much GAM as JeRS 325. Southern blot analysis showed that all except one mutant had lost copies of both the glucoamylase and the acetamidase (the selectable marker) genes. However, specific GAM production was not necessarily correlated with the extent of glaA gene loss observed. Further, 10 of the mutants had lost the ability to grow on acetamide as the sole nitrogen source, although they retained copies of the amdS gene. In competition studies, mutants which could not utilize acetamide displaced mutants which could. The presence of foreign DNA in JeRS 325 resulted in a reduced specific growth rate (compared to A3/5), but the presence of the foreign DNA did not prevent the evolution of the strain or the isolation of mutants which had improved growth rates. Copyright 2001 John Wiley & Sons, Inc.

  6. Strain of Fusarium oxysporum Isolated From Almond Hulls Produces Styrene and 7-Methyl-1,3,5-Cyclooctatriene as the Principal Volatile Components

    Science.gov (United States)

    An isolated strain of Fusarium oxysporum from the hulls of Prunus dulcis (sweet almond) was found to produce relatively large quantities of the hydrocarbons styrene and three isomers of 7-methyl-1,3,5-cyclooctatriene (MCOT). Production of styrene and MCOT was reproduced on small scale using potato d...

  7. Cutinase of Fusarium solani F. sp. pisi: mechanism of induction and relatedness to other Fusarium species

    International Nuclear Information System (INIS)

    Woloshuk, C.P.

    1986-01-01

    Three studies were made on the extracellular cutinase of the phytopathogenic fungus Fusarium solani f. sp. pisi. I. The production of cutinase was found to be induced in spores of F. solani f. sp. pisi, strain T-8, by cutin and cutin hydrolysate. Fractionation and analysis of the cutin hydrolysate indicated that dihydroxy-C 16 acid and trihydroxy-C 18 acid were the cutin monomers most active for inducing cutinase. Measurement of cutinase-specific RNA levels by dot-blot hybridization with a [ 32 P]-labeled cutinase cDNA showed that the cutinase gene transcripts could be detected within 15 min after addition of the inducers. The results indicated that the fungal spores have the capacity to recognize the unique monomer components of the plant cuticle and rapidly respond by the synthesis of cutinase. II. Analysis of the genomic DNA's of seven strains of F. solani f. sp. pisi indicated that both high and low cutinase-producing strains contain at least one copy of the cutinase structural gene and a homologous promoter region. The data suggest a different promoter sequence exists in these additional copies. III. Relatedness of five phytopathogenic Fusarium species to F. solani f. sp. pisi was determined by their cutinase antigenic properties and gene homologies of cutinase cDNA from F. solani f. sp. pisi. The results suggest that formae specialis of F. solani are phylogenetically identical and that F. solani is quite distinct from the other Fusarium species tested

  8. Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production

    Directory of Open Access Journals (Sweden)

    Rusu Anca

    2010-12-01

    Full Text Available Abstract Background The fungal pathogen Fusarium graminearum causes Fusarium Head Blight (FHB disease on wheat which can lead to trichothecene mycotoxin (e.g. deoxynivalenol, DON contamination of grain, harmful to mammalian health. DON is produced at low levels under standard culture conditions when compared to plant infection but specific polyamines (e.g. putrescine and agmatine and amino acids (e.g. arginine and ornithine are potent inducers of DON by F. graminearum in axenic culture. Currently, host factors that promote mycotoxin synthesis during FHB are unknown, but plant derived polyamines could contribute to DON induction in infected heads. However, the temporal and spatial accumulation of polyamines and amino acids in relation to that of DON has not been studied. Results Following inoculation of susceptible wheat heads by F. graminearum, DON accumulation was detected at two days after inoculation. The accumulation of putrescine was detected as early as one day following inoculation while arginine and cadaverine were also produced at three and four days post-inoculation. Transcripts of ornithine decarboxylase (ODC and arginine decarboxylase (ADC, two key biosynthetic enzymes for putrescine biosynthesis, were also strongly induced in heads at two days after inoculation. These results indicated that elicitation of the polyamine biosynthetic pathway is an early response to FHB. Transcripts for genes encoding enzymes acting upstream in the polyamine biosynthetic pathway as well as those of ODC and ADC, and putrescine levels were also induced in the rachis, a flower organ supporting DON production and an important route for pathogen colonisation during FHB. A survey of 24 wheat genotypes with varying responses to FHB showed putrescine induction is a general response to inoculation and no correlation was observed between the accumulation of putrescine and infection or DON accumulation. Conclusions The activation of the polyamine biosynthetic

  9. Especies de Fusarium en granos de maíz recién cosechado y desgranado en el campo en la región de Ciudad Serdán, Puebla Fusarium species from corn kernels recently harvested and shelled in the fields in the Ciudad Serdán Region, Puebla

    Directory of Open Access Journals (Sweden)

    Genoveva García-Aguirre

    2010-04-01

    Full Text Available Se analizaron 16 muestras de maíz, 10 de maíz blanco nacional y 6 de maíz criollo blanco para determinar las especies de Fusarium presentes en los granos, en especial aquellas registradas como inductoras de pudriciones de mazorca y grano, principalmente las que producen micotoxinas. Las especies identificadas en orden del número de aislamientos obtenidos fueron: Fusarium oxysporum, F. subglutinans, F. moniliforme, F. graminearum, F. anthophilum, F. poae, F. tricinctum, F. sporotrichioides y F. proliferatum. Con excepción de F. oxysporum, F. tricinctum y F. anthophilum, las demás han sido registradas como inductoras de pudriciones de mazorca, grano y de tallo, y la mayoría son productoras de diversas micotoxinas, algunas de las cuales pueden ocasionar problemas a la salud humana y animal.Sixteen corn samples, 10 of national white corn and 6 of "criollo" white were analyzed to determine the Fusaria species present on the kernels, especially those reported as ear and kernel rot inducers, mainly those mycotoxin producers. The identified species, ordered in relation to the number of obtained isolates were F. oxysporum, F. subglutinans, F. moniliforme, F. graminearum, F. anthophilum, F. poae, F. tricinctum, F. sporotrichioides, and F. proliferatum. The species F. oxysporum, F. tricinctum, and F. anthophilum have not been reported causing ear or kernel rots. All of the others have been reported as ear and kernel rots inducers, as well as stalk rots. Besides, most of these species produce various mycotoxins, many of which are capable of causing health problems to humans and animals.

  10. The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production

    DEFF Research Database (Denmark)

    Giese, Nanna Henriette; Sondergaard, Teis Esben; Sorensen, Jens Laurids

    2013-01-01

    and asparagine was found to be a preferential nitrogen source for F. graminearum. Deletion of areA led to poor growth on NaNO3 suggesting its involvement in regulation of the nitrate reduction process. In addition utilization of aspartic acid, histidine, isoleucine, leucine, threonine, tyrosine, and valine...... as nitrogen sources was shown to depend of a functional AreA. AreA was shown to be required for the production of the mycotoxins deoxynivalenol (DON), zearalenone, and fusarielin H regardless of the nutrient medium. Deletion of nmr, the repressor of AreA under nitrogen sufficient conditions, had little effect...

  11. Influence of fungicides on occurence of Fusarium spp. and other stem base diseases on winter wheat

    Directory of Open Access Journals (Sweden)

    Václav Sklenář

    2008-01-01

    Full Text Available From 1999 to 2004 the occurence of fungi: Pseudocercosporella herpotrichoides (Fron. and Fusarium spp. was evaluated in small plot field trials on seven varieties of winter wheat. The efficacy of fungicide protection against stem base diseases and influence on yields was monitored in field conditions in Velká Bystřice near Olomouc.For diagnostic of casual fungi two methods were used: 1. Method of coloring mycelium in stems, 2. Method of cultivation of mycelim on agar.Results from detection of casual fungi are following: Pseudocercosporella herpotrichoides (Fron., Fusarium culmorum (W. G. Sm. Sacc. and Fusarium graminearum Schwabe.For high efficacy of protection against roots and stem base disease the following fungicide variants should be applied: Sportak Alpha 1.5 l . ha−1 (BBCH 30/Cerelux Plus 0.7 l . ha−1 (BBCH 51, Sportak HF 1 l . ha−1 (BBCH 30/Cerelux Plus 0.7 l . ha−1, Alert S 1.0 l . ha−1 (BBCH 30/Cerelux Plus 0.7 l . ha−1 (BBCH 51. The application of fungicides positively influenced yields. Yield increased at average by10–20 % after the aplication but the rise in yields was not in total correlation with the efficacy. These results can be possibly used in the system of integral control of winter wheat against stem base disease in wheat.

  12. Degradation of the benzoxazolinone class of phytoalexins is important for virulence of Fusarium pseudograminearum towards wheat.

    Science.gov (United States)

    Kettle, Andrew J; Batley, Jacqueline; Benfield, Aurelie H; Manners, John M; Kazan, Kemal; Gardiner, Donald M

    2015-12-01

    Wheat, maize, rye and certain other agriculturally important species in the Poaceae family produce the benzoxazolinone class of phytoalexins on pest and pathogen attack. Benzoxazolinones can inhibit the growth of pathogens. However, certain fungi can actively detoxify these compounds. Despite this, a clear link between the ability to detoxify benzoxazolinones and pathogen virulence has not been shown. Here, through comparative genome analysis of several Fusarium species, we have identified a conserved genomic region around the FDB2 gene encoding an N-malonyltransferase enzyme known to be involved in benzoxazolinone degradation in the maize pathogen Fusarium verticillioides. Expression analyses demonstrated that a cluster of nine genes was responsive to exogenous benzoxazolinone in the important wheat pathogen Fusarium pseudograminearum. The analysis of independent F. pseudograminearum FDB2 knockouts and complementation of the knockout with FDB2 homologues from F. graminearum and F. verticillioides confirmed that the N-malonyltransferase enzyme encoded by this gene is central to the detoxification of benzoxazolinones, and that Fdb2 contributes quantitatively to virulence towards wheat in head blight inoculation assays. This contrasts with previous observations in F. verticillioides, where no effect of FDB2 mutations on pathogen virulence towards maize was observed. Overall, our results demonstrate that the detoxification of benzoxazolinones is a strategy adopted by wheat-infecting F. pseudograminearum to overcome host-derived chemical defences. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  13. Introduction of Fusarium sp. UTMC 5039 as a potent fungal strain for biosurfactant production and evaluation of its potential for crude oil bioremediation

    Directory of Open Access Journals (Sweden)

    Hamid Moghimi

    2017-09-01

    Full Text Available Introduction: Biosurfactants are biological surface active agents which are used in many applications such as oil bioremediation of contaminated soils. Materials and methods: In this study, first soil samples were collected from crude oil contaminated regions of Iran. Fungal isolates were enriched in MSM medium supplemented with crude oil and purified and then all isolates were screened for biosurfactant activity. Then, the capacity of crude oil degradation in the selected isolate was measured using Total Petroleum Hydrocarbon (TPH assay by spectrophotometry and FT-IR analysis. Finally, morphological and molecular identification was carried out by sequencing amplification of beta-tubuline beta-tubulin and ITS gene. Results: Among 40 purified fungal isolated, the isolate SH-02 was selected as the best strain according to the oil spreading and parafilm M test., This isolate was purified from petroleum contaminated soil of Arak refinery. Morphological and molecular identification revealed that this isolate has 99% similarity to Fusarium redolens in ITS geneand was deposited in the University of Tehran Microorganisms Collection under the accession number, UTMC 5039. Measurement of surface tension reduction by Du Nouy Ring method showed that Fusarium sp. UTMC 5039 can reduce surface tension to 26.6 mN/m and this reduction amount is significant compared with the previous reports. According to the obtained results from TPH and FTIR assays,  60 % of crude oil was degraded biodegradation was measured for by  Fusarium sp. UTMC 5039. Discussion and conclusion: The current study results indicate that Fusarium sp. UTMC 5039 has a high capacity in biosurfactant production and introduced as a potent fungal strain for crude oil bioremediation.

  14. An endophytic fungus isolated from finger millet (Eleucine coracona produces anti-fungal natural products

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes that contribute to the antifungal activity. Here we report the first isolation of endophyte(s from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp. was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  15. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products.

    Science.gov (United States)

    Mousa, Walaa K; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N

    2015-01-01

    Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  16. Effect of temperature and water activity on the production of fumonisins by Aspergillus niger and different Fusarium species

    Science.gov (United States)

    2009-01-01

    Background Fumonisins are economically important mycotoxins which until recently were considered to originate from only a few Fusarium species. However recently a putative fumonisin gene cluster was discovered in two different Aspergillus niger strains followed by detection of an actual fumonisin B2 (FB2) production in four strains of this biotechnologically important workhorse. Results In the present study, a screening of 5 A. niger strains and 25 assumed fumonisin producing Fusarium strains from 6 species, showed that all 5 A. niger strains produced FB2 and 23 of 25 Fusarium produced fumonisin B1 and other isoforms (fumonisin B2 and B3). Five A. niger and five Fusarium spp. were incubated at six different temperatures from 15-42°C on Czapek Yeast Agar +5% salt or Potato Dextrose Agar. A. niger had the highest production of FB2 at 25-30°C whereas Fusarium spp. had the maximal production of FB1 and FB2 at 20-25°C. Addition of 2.5-5% NaCl, or 10-20% sucrose increased the FB2 production of A. niger, whereas addition of glycerol reduced FB2 production. All three water activity lowering solutes reduced the fumonisin production of the Fusarium species. Conclusion The present study shows that the regulation of fumonisin production is very different in A. niger and Fusarium, and that food and feeds preserved by addition of sugar or salts may be good substrates for fumonisin B2 production by A. niger. PMID:20043849

  17. Effect of temperature and water activity on the production of fumonisins by Aspergillus niger and different Fusarium species

    Directory of Open Access Journals (Sweden)

    Frisvad Jens C

    2009-12-01

    Full Text Available Abstract Background Fumonisins are economically important mycotoxins which until recently were considered to originate from only a few Fusarium species. However recently a putative fumonisin gene cluster was discovered in two different Aspergillus niger strains followed by detection of an actual fumonisin B2 (FB2 production in four strains of this biotechnologically important workhorse. Results In the present study, a screening of 5 A. niger strains and 25 assumed fumonisin producing Fusarium strains from 6 species, showed that all 5 A. niger strains produced FB2 and 23 of 25 Fusarium produced fumonisin B1 and other isoforms (fumonisin B2 and B3. Five A. niger and five Fusarium spp. were incubated at six different temperatures from 15-42°C on Czapek Yeast Agar +5% salt or Potato Dextrose Agar. A. niger had the highest production of FB2 at 25-30°C whereas Fusarium spp. had the maximal production of FB1 and FB2 at 20-25°C. Addition of 2.5-5% NaCl, or 10-20% sucrose increased the FB2 production of A. niger, whereas addition of glycerol reduced FB2 production. All three water activity lowering solutes reduced the fumonisin production of the Fusarium species. Conclusion The present study shows that the regulation of fumonisin production is very different in A. niger and Fusarium, and that food and feeds preserved by addition of sugar or salts may be good substrates for fumonisin B2 production by A. niger.

  18. Host specificity in Fusarium oxysporum

    NARCIS (Netherlands)

    van Dam, P.

    2017-01-01

    Fusarium oxysporum is a fungal pathogen that can cause severe wilt disease and root rot in various plant species. Every individual strain is restricted to causing disease in only one or a few plant species. In this thesis, we focused on identifying novel virulence factors (‘effectors’) secreted by

  19. Evaluation of Trichoderma spp. strains for control yellowing pea caused by Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Christian Eraso Insuasty

    2014-07-01

    Full Text Available The yellowing of pea caused by the fungus Fusarium oxysporum f. sp. pisi is considered the most damaging disease of this crop. This study took place at the plant health laboratory and greenhouse of the Universidad de Nariño, and the experimental stage was conducted at the Granja experimental Botana. Its purpose was to evaluate the antagonistic ability of the fungi Trichoderma spp. to F. oxysporum. Isolation of F. oxysporum was made from diseased tissue; Trichoderma strains were obtained from the rhizosphere of healthy plants (collected in the towns of Potosi, Córdoba, Gualmatán, Ipiales and Puerres in the state of Nariño, Colombia, and a commercial strain from laboratory Perkins Ltda. In laboratory, unrestrictedly randomized design with 21 treatments (strains was used. Mycelial growth and inhibition zone were evaluated in dual plantings, which served as selection criteria for greenhouse test where plant height, root length, root dry matter and percentage of incidence were evaluated. In the field, a randomized block design was used to evaluate yield components, plant height and root length with the best strains. In the laboratory, C2 (Córdoba 2, C7 (Gualmatán 3, C14 (Puerres 2, C20 (Potosi 4 and C21 (Perkins Lab. showed antagonistic activity in the greenhouse, C7, C14 and C21 were the best; in field, significant differences between C14 and C21, compared to C7 and the control, were obtained. Strains C14 and C21 have consistent antagonistic capacity and can be used to control F. oxysporum in pea.

  20. Fusarium ershadii sp. nov., a Pathogen on Asparagus officinalis and Musa acuminata

    NARCIS (Netherlands)

    Papizadeh, Moslem; Diepeningen, van Anne D.; Zamanizadeh, Hamid Reza; Saba, Farkhondeh; Ramezani, Hossein

    2018-01-01

    Two Fusarium strains, isolated from Asparagus in Italy and Musa in Vietnam respectively, proved to be members of an undescribed clade within the Fusarium solani species complex based on phylogenetic species recognition on ITS, partial RPB2 and EF-1α gene fragments. Macro- and micro-morphological

  1. Research regarding the antimicrobial activity of essential oils against food borne bacteria and toxigenic fungi

    Directory of Open Access Journals (Sweden)

    ALINA A. DOBRE

    2011-12-01

    Full Text Available The aim of this research was to evaluate the in vitro antimicrobial activity of seven essential oils against four different bacterial and five fungal strains that are involved in food poisoning and/or food decay: Staphylococcus aureus, Bacillus cereus, Escherichia coli, Salmonella enteritidis, Fusarium graminearum, Fusarium culmorum, Aspergillus flavus, Aspergillus oryzae and Aspergillus brasiliensis, using two methods: agar disc diffusion method and disc volatilization method. The majority of the selected essential oils presented inhibitory activity against all the microorganisms tested but essential oils of oregano, thyme and clove proved to develop the best antibacterial and antifungal activity both in direct contact and volatilization method and could be used for further investigation in active packaging of food.

  2. Genetic variability and fumonisin production by Fusarium proliferatum isolated from durum wheat grains in Argentina.

    Science.gov (United States)

    Palacios, S A; Susca, A; Haidukowski, M; Stea, G; Cendoya, E; Ramírez, M L; Chulze, S N; Farnochi, M C; Moretti, A; Torres, A M

    2015-05-18

    Fusarium proliferatum is a member of the Fusarium fujikuroi species complex (FFSC) involved in the maize ear rot together with Fusarium verticillioides, which is a very closely related species. Recently, different studies have detected natural fumonisin contamination in wheat kernels and most of them have shown that the main species isolated was F. proliferatum. Fusarium strains obtained from freshly harvested durum wheat samples (2008 to 2011 harvest seasons) from Argentina were characterized through a phylogenetic analysis based on translation elongation factor-1 alpha (EF-1α) and calmodulin (CaM) genes, determination of mating type alleles, and evaluation of fumonisin production capability. The strains were identified as F. proliferatum (72%), F. verticillioides (24%) and other Fusarium species. The ratio of mating type alleles (MAT-1 and MAT-2) obtained for both main populations suggests possible occurrence of sexual reproduction in the wheat fields, although this seems more frequent in F. proliferatum. Phylogenetic analysis revealed greater nucleotide variability in F. proliferatum strains than in F. verticillioides, however this was not related to origin, host or harvest year. The fumonisin-producing ability was detected in 92% of the strains isolated from durum wheat grains. These results indicate that F. proliferatum and F. verticillioides, among the fumonisin producing species, frequently contaminate durum wheat grains in Argentina, presenting a high risk for human and animal health. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. An Interspecies Signaling System Mediated by Fusaric Acid Has Parallel Effects on Antifungal Metabolite Production by Pseudomonas protegens Strain Pf-5 and Antibiosis of Fusarium spp.

    Science.gov (United States)

    Quecine, Maria Carolina; Kidarsa, Teresa A.; Goebel, Neal C.; Shaffer, Brenda T.; Henkels, Marcella D.; Zabriskie, T. Mark

    2015-01-01

    Pseudomonas protegens strain Pf-5 is a rhizosphere bacterium that suppresses soilborne plant diseases and produces at least seven different secondary metabolites with antifungal properties. We derived mutants of Pf-5 with single and multiple mutations in biosynthesis genes for seven antifungal metabolites: 2,4-diacetylphoroglucinol (DAPG), pyrrolnitrin, pyoluteorin, hydrogen cyanide, rhizoxin, orfamide A, and toxoflavin. These mutants were tested for inhibition of the pathogens Fusarium verticillioides and Fusarium oxysporum f. sp. pisi. Rhizoxin, pyrrolnitrin, and DAPG were found to be primarily responsible for fungal antagonism by Pf-5. Previously, other workers showed that the mycotoxin fusaric acid, which is produced by many Fusarium species, including F. verticillioides, inhibited the production of DAPG by Pseudomonas spp. In this study, amendment of culture media with fusaric acid decreased DAPG production, increased pyoluteorin production, and had no consistent influence on pyrrolnitrin or orfamide A production by Pf-5. Fusaric acid also altered the transcription of biosynthetic genes, indicating that the mycotoxin influenced antibiotic production by Pf-5 at the transcriptional level. Addition of fusaric acid to the culture medium reduced antibiosis of F. verticillioides by Pf-5 and derivative strains that produce DAPG but had no effect on antibiosis by Pf-5 derivatives that suppressed F. verticillioides due to pyrrolnitrin or rhizoxin production. Our results demonstrated the importance of three compounds, rhizoxin, pyrrolnitrin, and DAPG, in suppression of Fusarium spp. by Pf-5 and confirmed that an interspecies signaling system mediated by fusaric acid had parallel effects on antifungal metabolite production and antibiosis by the bacterial biological control organism. PMID:26655755

  4. The fungal myosin I is essential for Fusarium toxisome formation.

    Directory of Open Access Journals (Sweden)

    Guangfei Tang

    2018-01-01

    Full Text Available Myosin-I molecular motors are proposed to function as linkers between membranes and the actin cytoskeleton in several cellular processes, but their role in the biosynthesis of fungal secondary metabolites remain elusive. Here, we found that the myosin I of Fusarium graminearum (FgMyo1, the causal agent of Fusarium head blight, plays critical roles in mycotoxin biosynthesis. Inhibition of myosin I by the small molecule phenamacril leads to marked reduction in deoxynivalenol (DON biosynthesis. FgMyo1 also governs translation of the DON biosynthetic enzyme Tri1 by interacting with the ribosome-associated protein FgAsc1. Disruption of the ATPase activity of FgMyo1 either by the mutation E420K, down-regulation of FgMyo1 expression or deletion of FgAsc1 results in reduced Tri1 translation. The DON biosynthetic enzymes Tri1 and Tri4 are mainly localized to subcellular structures known as toxisomes in response to mycotoxin induction and the FgMyo1-interacting protein, actin, participates in toxisome formation. The actin polymerization disruptor latrunculin A inhibits toxisome assembly. Consistent with this observation, deletion of the actin-associated proteins FgPrk1 and FgEnd3 also results in reduced toxisome formation. Unexpectedly, the FgMyo1-actin cytoskeleton is not involved in biosynthesis of another secondary metabolite tested. Taken together, this study uncovers a novel function of myosin I in regulating mycotoxin biosynthesis in filamentous fungi.

  5. The fungal myosin I is essential for Fusarium toxisome formation.

    Science.gov (United States)

    Tang, Guangfei; Chen, Yun; Xu, Jin-Rong; Kistler, H Corby; Ma, Zhonghua

    2018-01-01

    Myosin-I molecular motors are proposed to function as linkers between membranes and the actin cytoskeleton in several cellular processes, but their role in the biosynthesis of fungal secondary metabolites remain elusive. Here, we found that the myosin I of Fusarium graminearum (FgMyo1), the causal agent of Fusarium head blight, plays critical roles in mycotoxin biosynthesis. Inhibition of myosin I by the small molecule phenamacril leads to marked reduction in deoxynivalenol (DON) biosynthesis. FgMyo1 also governs translation of the DON biosynthetic enzyme Tri1 by interacting with the ribosome-associated protein FgAsc1. Disruption of the ATPase activity of FgMyo1 either by the mutation E420K, down-regulation of FgMyo1 expression or deletion of FgAsc1 results in reduced Tri1 translation. The DON biosynthetic enzymes Tri1 and Tri4 are mainly localized to subcellular structures known as toxisomes in response to mycotoxin induction and the FgMyo1-interacting protein, actin, participates in toxisome formation. The actin polymerization disruptor latrunculin A inhibits toxisome assembly. Consistent with this observation, deletion of the actin-associated proteins FgPrk1 and FgEnd3 also results in reduced toxisome formation. Unexpectedly, the FgMyo1-actin cytoskeleton is not involved in biosynthesis of another secondary metabolite tested. Taken together, this study uncovers a novel function of myosin I in regulating mycotoxin biosynthesis in filamentous fungi.

  6. Poly-γ-glutamic acid productivity of Bacillus subtilis BsE1 has positive function in motility and biocontrol against Fusarium graminearum.

    Science.gov (United States)

    Wang, Luyao; Wang, Ning; Mi, Dandan; Luo, Yuming; Guo, Jianhua

    2017-07-01

    In this study, we investigate the relationship between γ-PGA productivity and biocontrol capacity of Bacillus subtilis BsE1; one bacterial isolate displayed 62.14% biocontrol efficacy against Fusarium root rot. The γ-PGA yield assay, motility assay, wheat root colonization assay, and biological control assay were analysed in different γ-PGA yield mutants of BsE1. The pgsB (PGA-synthase-CapB gene) deleted mutant of BsE1 reduced γ-PGA yield and exhibited apparent decline of in vitro motile ability. Deletion of pgsB impaired colonizing capacity of BsE1 on wheat root in 30 days, also lowered biocontrol efficacies from 62.08% (wild type BsE1) to 14.22% in greenhouse experiment against Fusarium root rot. The knockout of pgdS and ggt (genes relate to two γ-PGA degrading enzymes) on BsE1, leads to a considerable improvement in polymer yield and biocontrol efficacy, which attains higher level compared with wild type BsE1. Compared with ΔpgsB mutant, defense genes related to reactive oxygen species (ROS) and phytoalexin expressed changes by notable levels on wheat roots treated with BsE1, demonstrating the functional role γ-PGA plays in biocontrol against Fusarium root rot. γ-PGA is not only important to the motile and plant root colonization ability of BsE1, but also essential to the biological control performed by BsE1 against Fusarium root rot. Our goal in this study is to reveals a new perspective of BCAs screening on bacterial isolates, without good performance during pre-assays of antagonism ability.

  7. Disease control effect of strevertenes produced by Streptomyces psammoticus against tomato fusarium wilt.

    Science.gov (United States)

    Kim, Jeong Do; Han, Jae Woo; Lee, Sung Chul; Lee, Dongho; Hwang, In Cheon; Kim, Beom Seok

    2011-03-09

    During screening of microorganisms producing antifungal metabolites, Streptomyces psammoticus strain KP1404 was isolated. The culture extract of this strain showed potent disease control efficacy against Fusarium wilt on tomato plants. The antifungal metabolites ST-1 and ST-2 were isolated from the culture extract using a variety of chromatographic procedures. On the basis of MS and NMR spectrometric analysis, the structures of the antifungal active compounds ST-1 and ST-2 were determined to be the polyene antibiotics strevertene A and strevertene B, respectively. In vitro, strevertenes A and B showed inhibitory effects against the mycelial growth of Alternaria mali , Aspergillus oryzae , Cylindrocarpon destructans , Colletotrichum orbiculare , Fusarium oxysporum f.sp. lycopersici, and Sclerotinia sclerotiorum , even at concentrations of 4-16 μg/mL. Fusarium wilt development on tomato plants was strongly retarded by treatment with 1 μg/mL of these strevertenes. The disease control efficacies of strevertenes on Fusarium wilt were as remarkable as that of benomyl.

  8. Isolation and characterization of two mitoviruses and a putative alphapartitivirus from Fusarium spp.

    Science.gov (United States)

    Osaki, Hideki; Sasaki, Atsuko; Nomiyama, Koji; Sekiguchi, Hiroyuki; Tomioka, Keisuke; Takehara, Toshiaki

    2015-06-01

    The filamentous fungus Fusarium spp. includes several important plant pathogens. We attempted to reveal presence of double-stranded (ds) RNAs in the genus. Thirty-seven Fusarium spp. at the MAFF collection were analyzed. In the strains of Fusarium coeruleum, Fusarium globosum and Fusarium solani f. sp. pisi, single dsRNA bands were detected. The strains of F. coeruleum and F. solani f. sp. pisi cause potato dry rot and mulberry twig blight, respectively. Sequence analyses revealed that dsRNAs in F. coeruleum and F. globosum consisted of 2423 and 2414 bp, respectively. Using the fungal mitochondrial translation table, the positive strands of these cDNAs were found to contain single open reading frames with the potential to encode a protein of putative 757 and 717 amino acids (molecular mass 88.5 and 84.0 kDa, respectively), similar to RNA-dependent RNA polymerases of members of the genus Mitovirus. These dsRNAs in F. coeruleum and F. globosum were assigned to the genus Mitovirus (family Narnaviridae), and these two mitoviruses were designated as Fusarium coeruleum mitovirus 1 and Fusarium globosum mitovirus 1. On the other hand, a positive strand of cDNA (1950 bp) from dsRNA in F. solani f. sp. pisi contained an ORF potentially encoding a putative RdRp of 608 amino acids (72.0 kDa). The putative RdRp was shown to be related to those of members of the genus of Alphapartitivirus (family Partitiviridae). We coined the name Fusarium solani partitivirus 2 for dsRNA in F. solani f. sp. pisi.

  9. Incidence and distribution of seed-borne fungi associated with ...

    African Journals Online (AJOL)

    Isolation and identification of seed-borne fungi were conducted according to standard tests described by the International Seed Testing Association (ISTA). ... tritici, Ustilago tritici, Fusarium graminearum, Fusarium culmorum, Microdochium nivale, Bipolaris sorokiniana, Alternaria alternata, Curvularia sp., Aspergillus niger, ...

  10. Fusarium oxysporum and the Fusarium Wilt Syndrome.

    Science.gov (United States)

    Gordon, Thomas R

    2017-08-04

    The Fusarium oxysporum species complex (FOSC) comprises a multitude of strains that cause vascular wilt diseases of economically important crops throughout the world. Although sexual reproduction is unknown in the FOSC, horizontal gene transfer may contribute to the observed diversity in pathogenic strains. Development of disease in a susceptible crop requires F. oxysporum to advance through a series of transitions, beginning with spore germination and culminating with establishment of a systemic infection. In principle, each transition presents an opportunity to influence the risk of disease. This includes modifications of the microbial community in soil, which can affect the ability of pathogen propagules to survive, germinate, and infect plant roots. In addition, many host attributes, including the composition of root exudates, the structure of the root cortex, and the capacity to recognize and respond quickly to invasive growth of a pathogen, can impede development of F. oxysporum.

  11. An Interspecies Signaling System Mediated by Fusaric Acid Has Parallel Effects on Antifungal Metabolite Production by Pseudomonas protegens Strain Pf-5 and Antibiosis of Fusarium spp.

    Science.gov (United States)

    Quecine, Maria Carolina; Kidarsa, Teresa A; Goebel, Neal C; Shaffer, Brenda T; Henkels, Marcella D; Zabriskie, T Mark; Loper, Joyce E

    2015-12-11

    Pseudomonas protegens strain Pf-5 is a rhizosphere bacterium that suppresses soilborne plant diseases and produces at least seven different secondary metabolites with antifungal properties. We derived mutants of Pf-5 with single and multiple mutations in biosynthesis genes for seven antifungal metabolites: 2,4-diacetylphoroglucinol (DAPG), pyrrolnitrin, pyoluteorin, hydrogen cyanide, rhizoxin, orfamide A, and toxoflavin. These mutants were tested for inhibition of the pathogens Fusarium verticillioides and Fusarium oxysporum f. sp. pisi. Rhizoxin, pyrrolnitrin, and DAPG were found to be primarily responsible for fungal antagonism by Pf-5. Previously, other workers showed that the mycotoxin fusaric acid, which is produced by many Fusarium species, including F. verticillioides, inhibited the production of DAPG by Pseudomonas spp. In this study, amendment of culture media with fusaric acid decreased DAPG production, increased pyoluteorin production, and had no consistent influence on pyrrolnitrin or orfamide A production by Pf-5. Fusaric acid also altered the transcription of biosynthetic genes, indicating that the mycotoxin influenced antibiotic production by Pf-5 at the transcriptional level. Addition of fusaric acid to the culture medium reduced antibiosis of F. verticillioides by Pf-5 and derivative strains that produce DAPG but had no effect on antibiosis by Pf-5 derivatives that suppressed F. verticillioides due to pyrrolnitrin or rhizoxin production. Our results demonstrated the importance of three compounds, rhizoxin, pyrrolnitrin, and DAPG, in suppression of Fusarium spp. by Pf-5 and confirmed that an interspecies signaling system mediated by fusaric acid had parallel effects on antifungal metabolite production and antibiosis by the bacterial biological control organism. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron.

    Science.gov (United States)

    Segarra, Guillem; Casanova, Eva; Avilés, Manuel; Trillas, Isabel

    2010-01-01

    Trichoderma asperellum strain T34 has been reported to control the disease caused by Fusarium oxysporum f.sp. lycopersici (Fol) on tomato plants. To study the importance of iron concentration in the growth media for the activity and competitiveness of T34 and the pathogen, we tested four iron concentrations in the nutrient solution [1, 10, 100, and 1000 microM provided as EDTA/Fe(III)] in a biological control experiment with T34 and Fol in tomato plants. The reduction of the Fusarium-infected shoot by T34 was only significant at 10 microM Fe. We hypothesized that Fe competition is one of the key factors in the biocontrol activity exerted by T34 against Fol, as an increase in Fe concentration over 10 microM would lead to the suppression of T34 siderophore synthesis and thus inhibition of Fe competition with Fol. T34 significantly reduced the populations of Fol at all the doses of Fe assayed. In contrast, Fol enhanced the populations of T34 at 1 and 10 microM Fe. Nevertheless, several plant physiological parameters like net CO(2) assimilation (A), stomatal conductance (g(s)), relative quantum efficiency of PSII (Phi(PSII)), and efficiency of excitation energy capture by open PSII reactive centers (Fv'/Fm') demonstrated the protection against Fol damage by treatment with T34 at 100 microM Fe. The first physiological parameter affected by the disease progression was g(s). Plant dry weight was decreased by Fe toxicity at 100 and 1,000 microM. T34-treated plants had significantly greater heights and dry weights than control plants at 1,000 microM Fe, even though T34 did not reduce the Fe content in leaves or stems. Furthermore, T34 enhanced plant height even at the optimal Fe concentration (10 microM) compared to control plants. In conclusion, T. asperellum strain T34 protected tomato plants from both biotic (Fusarium wilt disease) and abiotic stress [Fe(III) toxic effects].

  13. Relationships between Fusarium population structure, soil nutrient status and disease incidence in field-grown asparagus

    NARCIS (Netherlands)

    Yergeau, E.; Sommerville, D.W.; Maheux, E.; Vujanovic, V.; Hamel, C.; Whalen, J.K.; St-Arnaud, M.

    2006-01-01

    Fusarium species cause important diseases in many crops. Lack of knowledge on how Fusarium species and strains interact with their environment hampers growth management strategies to control root diseases. A field experiment involving asparagus as host plant and three phosphorus fertilization levels

  14. Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation.

    Science.gov (United States)

    Nam, Myeong Hyeon; Park, Myung Soo; Kim, Hong Gi; Yoo, Sung Joon

    2009-05-01

    Two isolates, Bacillus sp. BS87 and RK1, selected from soil in strawberry fields in Korea, showed high levels of antagonism towards Fusarium oxysporum f. sp. fragariae in vitro. The isolates were identified as B. velezensis based on the homology of their gyrA sequences to reference strains. BS87 and RK1 were evaluated for control of Fusarium wilt in strawberries in pot trials and field trials conducted in Nonsan, Korea. In the pot trials, the optimum applied concentration of BS87 and RK1 for pre-plant root-dip application to control Fusarium wilt was 10(5) and 10(6) colony-forming units (CFU)/ml, respectively. Meanwhile, in the 2003 and 2005 field trials, the biological control efficacies of formulations of RK1 were similar to that of a conventional fungicide (copper hydroxide) when compared with a non-treated control. The RK1 formulation was also more effective than BS87 in suppressing Fusarium wilt under field conditions. Therefore, the results indicated that formulation of B.velezensis BS87 and RK1 may have potential to control Fusarium wilt in strawberries.

  15. Management of Fusarium Wilt using mycolytic enzymes produced by ...

    African Journals Online (AJOL)

    Aghomotsegin

    Trichoderma strain to manage the Fusarium wilt disease of Cicer aritenum under in vitro conditions. We also studied ... antibiosis, competition, parasitism and cell lysis can ideally be ... hydrolytic enzymes associated with fungal cell wall lysis,.

  16. Microbial inoculants for the biocontrol of Fusarium spp. in durum wheat.

    Science.gov (United States)

    Baffoni, Loredana; Gaggia, Francesca; Dalanaj, Nereida; Prodi, Antonio; Nipoti, Paola; Pisi, Annamaria; Biavati, Bruno; Di Gioia, Diana

    2015-10-30

    Fusarium head blight (FHB) is a severe disease caused by different Fusarium species, which affects a wide range of cereal crops, including wheat. It determines from 10 to 30% of yield loss in Europe. Chemical fungicides are mainly used to reduce the incidence of FHB, but low environmental impact solutions are looked forward. Applications of soil/rhizobacteria as biocontrol agents against FHB in wheat are described in literature, whereas the potential use of lactobacilli in agriculture has scarcely been explored. The aim of this work was to study the inhibitory effect of two bacterial strains, Lactobacillus plantarum SLG17 and Bacillus amyloliquefaciens FLN13, against Fusarium spp. in vitro and to assess their efficacy in field, coupled to the study of the microbial community profile of wheat seeds. Antimicrobial assays were performed on agar plates and showed that the two antagonistic strains possessed antimicrobial activity against Fusarium spp. In the field study, a mixture of the two strains was applied to durum wheat i) weekly from heading until anthesis and ii) at flowering, compared to untreated and fungicide treated plots. The FHB index, combining both disease incidence and disease severity, was used to evaluate the extent of the disease on wheat. A mixture of the two microorganisms, when applied in field from heading until anthesis, was capable of reducing the FHB index. Microbial community profile of seeds was studied via PCR-DGGE, showing the presence of L. plantarum SLG17 in wheat seeds and thus underlining an endophytic behavior of the strain. L. plantarum SLG17 and B. amyloliquefaciens FLN13, applied as biocontrol agents starting from the heading period until anthesis of wheat plants, are promising agents for the reduction of FHB index.

  17. Sorne aspects of Fusarium genus and the Fusarium oxysporum species Algunos aspectos de los hongos del genero Fusarium y de la especie Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Arbeláez Torres Germán

    2000-12-01

    Full Text Available Since the proposal of the utilization of the fungus Fusarium oxysporum for biological control of coca plants in Colombia, there is a serious discussion on different Colombian meetings about the advantages and disadvantages of its application. However in these discussions there was not enough knowledge of the fungus Fusarium oxysporum. This paper presents sorne biological and pathological aspects ofthe genus Fusarium and the species Fusarium oxysporum.Ante la propuesta de utilizar el hongo Fusarium oxysporum
    f.sp. erythoxyli para el control biológico de las plantas de
    coca en Colombia, se ha abierto una amplia discusión en distintos ámbitos nacionales sobre las bondades y los aspectos
    negativos de su aplicación. Sin embargo, en dicha discusión
    se ha notado un gran desconocimiento sobre el hongo
    Fusarium oxysporum. En este artículo se presentan diversos
    aspectos biológicos y patológicos del género Fusarium y de
    la especie Fusarium oxysporum.

  18. Cytotoxicity assays for mycotoxins produced by Fusarium strains: a review

    NARCIS (Netherlands)

    Gutleb, A.C.; Morrison, E.; Murk, A.J.

    2002-01-01

    Mycotoxins are naturally occurring toxic secondary metabolites of fungi that may be present in food and feed. Several of these mycotoxins have been associated with human and animal diseases. Fusarium species, found worldwide in cereals and other food types for human and animal consumption, are the

  19. Regional differences in the composition of Fusarium Head Blight pathogens and mycotoxins associated with wheat in Mexico.

    Science.gov (United States)

    Cerón-Bustamante, Minely; Ward, Todd J; Kelly, Amy; Vaughan, Martha M; McCormick, Susan P; Cowger, Christina; Leyva-Mir, Santos G; Villaseñor-Mir, Héctor E; Ayala-Escobar, Victoria; Nava-Díaz, Cristian

    2018-05-20

    Fusarium Head Blight (FHB) is a destructive disease of small grain cereals and a major food safety concern. Epidemics result in substantial yield losses, reduction in crop quality, and contamination of grains with trichothecenes and other mycotoxins. A number of different fusaria can cause FHB, and there are significant regional differences in the occurrence and prevalence of FHB pathogen species and their associated mycotoxins. Information on FHB pathogen and mycotoxin diversity in Mexico has been extremely limited, but is needed to improve disease and mycotoxin control efforts. To address this, we used a combination of DNA sequence-based methods and in-vitro toxin analyses to characterize FHB isolates collected from symptomatic wheat in Mexico during the 2013 and 2014 growing seasons. Among 116 Fusarium isolates, we identified five species complexes including nine named Fusarium species and 30 isolates representing unnamed or potentially novel species. Significant regional differences (P 90% of isolates from the Mixteca region in southern Mexico, whereas F. avenaceum and related members of the F. tricinctum species complex (FTSC) accounted for nearly 75% of isolates from the Highlands region in Central Mexico. F. graminearum, which is the dominant FHB pathogen in other parts of North America, was not present among the isolates from Mexico. F. boothii isolates had the 15-acetyldeoxynivalenol toxin type, and some of the minor FHB species produced trichothecenes, such as nivalenol, T-2 toxin and diacetoxyscirpenol. None of the FTSC isolates tested was able to produce trichothecenes, but many produced chlamydosporol and enniatin B. Published by Elsevier B.V.

  20. Fusarium pathogenesis investigated using Galleria mellonella as a heterologous host

    Science.gov (United States)

    Coleman, Jeffrey J.; Muhammed, Maged; Kasperkovitz, Pia V.; Vyas, Jatin M.; Mylonakis, Eleftherios

    2011-01-01

    Members of the fungal genus Fusarium are capable of manifesting in a multitude of clinical infections, most commonly in immunocompromised patients. In order to better understand the interaction between the fungus and host, we have developed the larvae of the greater wax moth, Galleria mellonella, as a heterologous host for fusaria. When conidia are injected into the hemocoel of this Lepidopteran system, both clinical and environmental isolates of the fungus are able to kill the larvae at 37°C, although killing occurs more rapidly when incubated at 30°C. This killing was dependent on several other factors besides temperature, including the Fusarium strain, the number of conidia injected, and the conidia morphology, where macroconidia are more virulent than their microconidia counterpart. There was a correlation in the killing rate of Fusarium spp. when evaluated in G. mellonella and a murine model. In vivo studies indicated G. mellonella hemocytes were capable of initially phagocytosing both conidial morphologies. The G. mellonella system was also used to evaluate antifungal agents, and amphotericin B was able to confer a significant increase in survival to Fusarium infected-larvae. The G. mellonella-Fusarium pathogenicity system revealed that virulence of Fusarium spp. is similar, regardless of the origin of the isolate, and that mammalian endothermy is a major deterrent for Fusarium infection and therefore provides a suitable alternative to mammalian models to investigate the interaction between the host and this increasingly important fungal pathogen. PMID:22115447

  1. Mild hydrolysis of nitriles by Fusarium solani strain O1

    Czech Academy of Sciences Publication Activity Database

    Vejvoda, Vojtěch; Kaplan, Ondřej; Klozová, Jana; Masák, J.; Čejková, A.; Jirků, V.; Stloukal, R.; Martínková, Ludmila

    2006-01-01

    Roč. 51, č. 4 (2006), s. 251-256 ISSN 0015-5632 R&D Projects: GA AV ČR IAA4020213; GA ČR GA203/05/2267; GA MŠk LC06010 Institutional research plan: CEZ:AV0Z50200510 Keywords : fusarium solani Subject RIV: EE - Microbiology, Virology Impact factor: 0.963, year: 2006

  2. Transcriptome analysis of trichothecene-induced gene expression in barley.

    Science.gov (United States)

    Boddu, Jayanand; Cho, Seungho; Muehlbauer, Gary J

    2007-11-01

    Fusarium head blight, caused primarily by Fusarium graminearum, is a major disease problem on barley (Hordeum vulgare L.). Trichothecene mycotoxins produced by the fungus during infection increase the aggressiveness of the fungus and promote infection in wheat (Triticum aestivum L.). Loss-of-function mutations in the TRI5 gene in F. graminearum result in the inability to synthesize trichothecenes and in reduced virulence on wheat. We examined the impact of pathogen-derived trichothecenes on virulence and the transcriptional differences in barley spikes infected with a trichothecene-producing wild-type strain and a loss-of-function tri5 trichothecene nonproducing mutant. Disease severity, fungal biomass, and floret necrosis and bleaching were reduced in spikes inoculated with the tri5 mutant strain compared with the wild-type strain, indicating that the inability to synthesize trichothecenes results in reduced virulence in barley. We detected 63 transcripts that were induced during trichothecene accumulation, including genes encoding putative trichothecene detoxification and transport proteins, ubiquitination-related proteins, programmed cell death-related proteins, transcription factors, and cytochrome P450s. We also detected 414 gene transcripts that were designated as basal defense response genes largely independent of trichothecene accumulation. Our results show that barley exhibits a specific response to trichothecene accumulation that can be separated from the basal defense response. We propose that barley responds to trichothecene accumulation by inducing at least two general responses. One response is the induction of genes encoding trichothecene detoxification and transport activities that may reduce the impact of trichothecenes. The other response is to induce genes encoding proteins associated with ubiquitination and cell death which may promote successful establishment of the disease.

  3. The role of mycelium production and a MAPK-mediated immune response in the C. elegans-Fusarium model system

    Science.gov (United States)

    Muhammed, Maged; Fuchs, Beth Burgwyn; WU, Michael P.; Breger, Julia; Coleman, Jeffrey J.; Mylonakis, Eleftherios

    2013-01-01

    Fusariosis is an emerging infectious complication of immune deficiency, but models to study this infection are lacking. The use of the soil nematode Caenorhabditis elegans as a model host to study the pathogenesis of Fusarium spp. was investigated. We observed that Fusarium conidia consumed by C. elegans can cause a lethal infection and result in more than 90% killing of the host within 120 hours, and the nematode had a significantly longer survival when challenged with Fusarium proliferatum compared to other species. Interestingly, mycelium production appears to be a major contributor in nematode killing in this model system, and C. elegans mutant strains with the immune response genes, tir-1 (encoding a protein containing a TIR domain that functions upstream of PMK-1) and pmk-1 (the homolog of the mammalian p38 MAPK) lived significantly shorter when challenged with Fusarium compared to the wild type strain. Furthermore, we used the C. elegans model to assess the efficacy and toxicity of various compounds against Fusarium. We demonstrated that amphotericin B, voriconazole, mancozeb, and phenyl mercury acetate significantly prolonged the survival of Fusarium-infected C. elegans, although mancozeb was toxic at higher concentrations. In conclusion, we describe a new model system for the study of Fusarium pathogenesis and evolutionarily preserved host responses to this important fungal pathogen. PMID:22225407

  4. Fusarium

    DEFF Research Database (Denmark)

    Thrane, Ulf

    2014-01-01

    The genus Fusarium is one of the most important mycotoxigenic fungal genera in food and feed. Nearly all species are able to produce mycotoxins of which many are under international regulation. Well-known Fusarium mycotoxins are fumonisins, zearalenone, deoxynivalenol, and additional trichothecenes...

  5. Draft Genome Sequence of Rhizobium sp. Strain TBD182, an Antagonist of the Plant-Pathogenic Fungus Fusarium oxysporum, Isolated from a Novel Hydroponics System Using Organic Fertilizer.

    Science.gov (United States)

    Iida, Yuichiro; Fujiwara, Kazuki; Someya, Nobutaka; Shinohara, Makoto

    2017-03-16

    Rhizobium sp. strain TBD182, isolated from a novel hydroponics system, is an antagonistic bacterium that inhibits the mycelial growth of Fusarium oxysporum but does not eliminate the pathogen. We report the draft genome sequence of TBD182, which may contribute to elucidation of the molecular mechanisms of its fungistatic activity. Copyright © 2017 Iida et al.

  6. Reduction of Fusarium wilt in watermelon by Pseudomonas chlororaphis PCL1391 and P. fluorescens WCS365

    Directory of Open Access Journals (Sweden)

    G.T. Tziros

    2007-12-01

    Full Text Available Fusarium wilt of watermelon (Citrullus lanatus caused by Fusarium oxysporum f. sp. niveum is a devastatine soil-borne disease that causes extensive losses throughout the world. Two known Pseudomonas biocontrol strains were used separately and in combination to assess their antagonistic effectiveness against F. oxysporum f. sp. niveum in pot experiments. P. chlororaphis PCL1391 signifi cantly reduced disease severity. P. fl uorescens WCS365 was less effective in disease suppression, while a combination of the two bacteria had intermediate effects. The biological control of Fusarium wilt with P. chlororaphis offers a potentially useful tool in an integrated pest management program to control Fusarium wilt of watermelon.

  7. Fusarium verticillioides strains isolated from corn feed: characterization by fumonisin production and RAPD fingerprinting

    Directory of Open Access Journals (Sweden)

    Elisabete Yurie Sataque Ono

    2010-08-01

    Full Text Available In this study a total of 16 Fusarium verticillioides strains isolated from corn feed samples were characterized by fumonisin (FB production and random amplified polymorphic DNA (RAPD. All the strains produced FB1 and FB2 with levels ranging from 2.41 to 3996.36 µg/g, and from 1.18 to 1209.91 µg/g, respectively. From the 16 F. verticillioides strains, four were identified as low (3.59 to 1289.84 µg/g, eight as intermediate (>1289.84 to 3772.44 µg/g and four strains as high (>3772.44 µg/g fumonisin producers. From the total of 105 loci amplified, 60 (57.14% were polymorphic. RAPD analysis showed very similar patterns among low, moderate and high fumonisin-producing strains. Although RAPD markers were capable of discriminating the different F. verticillioides strains, there was no clear association between these makers and fumonisin production.Neste estudo, 16 cepas de F. verticillioides isoladas de amostras de ração de milho foram caracterizadas com base na produção de fumonisinas (FB e em marcadores de polimorfismos de DNA amplificado ao acaso (RAPD. Todas as cepas produziram FB1 e FB2, com níveis variando, respectivamente, de 2,41 a 3996,36 µg/g e 1,18 a 1209,91 µg/g. De acordo com a produção de fumonisinas totais (FB1 + FB2 e a distribuição por análise de quartis, do total de 16 cepas de F. verticillioides, quatro foram identificadas como baixas produtoras de fumonisinas (3,59 a 1289,84 µg/g, oito como intermediárias (>1289,84 a 3772,44 µg/g e quatro como altas produtoras de fumonisinas (>3772,44 µg/g. Os 10 primers utilizados amplificaram 105 locos, 60 (57,14% dos quais foram polimórficos. As análises de RAPD mostraram padrões muito similares entre as cepas baixas, médias e altas produtoras de fumonisinas. Embora os marcadores RAPD tenham se mostrado capazes de discriminar as diferentes cepas de F. verticillioides, não foi detectada nenhuma associação entre estes marcadores e a produção de fumonisinas.

  8. Gebruik van TaqMan PCR voor het kwantificeren van Fusarium spp. en Microdochium nivale in gewassen en gewasresten van tarwe

    NARCIS (Netherlands)

    Köhl, J.; Haas, de B.H.; Kastelein, P.; Burgers, S.L.G.E.; Waalwijk, C.

    2005-01-01

    Samenvattingen van 5 presentaties: 'Heterogenity of Dutch Fusarium oxysporum strains isolated as forma specialis radicis-lycopersici';'Een proteomics benadering om eiwitten te identificeren die door Fusarium oxysporum worden uitgescheiden in xyleemsap van tomaat'; 'Ontwikkeling en implementatie van

  9. Incidence of Fusarium spp. and Levels of Fumonisin B1 in Maize in Western Kenya

    Science.gov (United States)

    Kedera, C. J.; Plattner, R. D.; Desjardins, A. E.

    1999-01-01

    Maize kernel samples were collected in 1996 from smallholder farm storages in the districts of Bomet, Bungoma, Kakamega, Kericho, Kisii, Nandi, Siaya, Trans Nzoia, and Vihiga in the tropical highlands of western Kenya. Two-thirds of the samples were good-quality maize, and one-third were poor-quality maize with a high incidence of visibly diseased kernels. One hundred fifty-three maize samples were assessed for Fusarium infection by culturing kernels on a selective medium. The isolates obtained were identified to the species level based on morphology and on formation of the sexual stage in Gibberella fujikuroi mating population tests. Fusarium moniliforme (G. fujikuroi mating population A) was isolated most frequently, but F. subglutinans (G. fujikuroi mating population E), F. graminearum, F. oxysporum, F. solani, and other Fusarium species were also isolated. The high incidence of kernel infection with the fumonisin-producing species F. moniliforme indicated a potential for fumonisin contamination of Kenyan maize. However, analysis of 197 maize kernel samples by high-performance liquid chromatography found little fumonisin B1 in most of the samples. Forty-seven percent of the samples contained fumonisin B1 at levels above the detection limit (100 ng/g), but only 5% were above 1,000 ng/g, a proposed level of concern for human consumption. The four most-contaminated samples, with fumonisin B1 levels ranging from 3,600 to 11,600 ng/g, were from poor-quality maize collected in the Kisii district. Many samples with a high incidence of visibly diseased kernels contained little or no fumonisin B1, despite the presence of F. moniliforme. This result may be attributable to the inability of F. moniliforme isolates present in Kenyan maize to produce fumonisins, to the presence of other ear rot fungi, and/or to environmental conditions unfavorable for fumonisin production. PMID:9872757

  10. Vom work Book Journal 2011, 2010 4th Edition PDF

    African Journals Online (AJOL)

    USER

    in their being used for animal feed rather than for human consumption (Charmley et al., 1994). ... Because of their apparent tolerance for higher levels of dietary. DON, Fusarium-infested grains are often fed to ... Fusarium graminearum in a Papilloma Virus Infected Friesian Bull in Vom, Nigeria: Case Report. 1. 2. 2. 1. 3. 1.

  11. Antifungal activity of magnetically separable Fe3O4/ZnO/AgBr nanocomposites prepared by a facile microwave-assisted method

    Directory of Open Access Journals (Sweden)

    Abolghasem Hoseinzadeh

    2016-08-01

    Full Text Available In the present work, magnetically separable Fe3O4/ZnO/AgBr nanocomposites with different weight ratios of Fe3O4 to ZnO/AgBr were prepared by a facile microwave-assisted method. The resultant samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive analysis of X-rays (EDX, and vibrating sample magnetometery (VSM. Antifungal activity of the as-prepared samples was evaluated against Fusarium graminearum and Fusarium oxysporum as two phytopathogenic fungi. Among the nanocomposites, the sample with 1:8 weight ratio of Fe3O4 to ZnO/AgBr was selected as the best nanocomposite. This nanocomposite inactivates Fusarium graminearum and Fusarium oxysporum at 120 and 60 min, respectively. Moreover, it was observed that the microwave irradiation time has considerable influence on the antifungal activity and the sample prepared by irradiation for 10 min showed the best activity. Moreover, the nanocomposite without any thermal treatment displayed the superior activity.

  12. Molecular identification and characterization of Fusarium spp. associated with sorghum seeds.

    Science.gov (United States)

    Divakara, Shetty Thimmappa; Santosh, Parthasarathy; Aiyaz, Mohammed; Ramana, Mudili Venkata; Hariprasad, Puttaswamy; Nayaka, Siddaih Chandra; Niranjana, Siddapura Ramachandrappa

    2014-04-01

    Fusarium spp. are not only pathogenic to plants but are also known as toxin producers that negatively affect animal and human health. The identification of Fusarium spp. remains one of the most critical issues in fungal taxonomy. In this study, different strains of Fusarium spp. were isolated from sorghum seed samples and identified at the molecular level by tef-1α gene amplification. A multiplex polymerase chain reaction (mPCR) assay was developed to differentiate toxigenic and non-toxigenic Fusarium spp. by designing a primer for the Fum21 gene along with the Fum1 and Fum8 genes. A competitive direct enzyme-linked immunosorbent assay (CD-ELISA) was employed to assess the fumonisin-producing ability of Fusarium spp. Phylogenetic analyses were performed using partial sequences of tef-1α and inter-simple sequence repeat (ISSR) markers of different Fusarium spp. All 27 isolates of Fusarium spp. were positive for the tef-1α gene and revealed the presence of F. verticillioides, F. thapsina and F. cf. incarnatum-equiseti complex. The standardized mPCR assay distinguished toxigenic and non-toxigenic F. verticillioides. Further, mPCR fumonisin-positive F. verticillioides isolates were also positive by CD-ELISA. The tef-1α gene sequence was found to be useful in revealing intraspecific polymorphism to some extent. ISSR markers revealed a high level of polymorphism among different isolates of Fusarium spp., and the dendrogram of ISSR analyses grouped the 27 isolates into two major clusters. The present method provided rapid and reliable detection of fumonisin-producing Fusarium spp. The mPCR assay could be an alternative strategy to current conventional mycotoxin analytical techniques and a reliable tool for high-throughput monitoring of major mycotoxin-producing fungi during the processing steps of food and feed commodities. © 2013 Society of Chemical Industry.

  13. Isolation, identification, and the growth promoting effects of two antagonistic actinomycete strains from the rhizosphere of Mikania micrantha Kunth.

    Science.gov (United States)

    Han, Dandan; Wang, Lanying; Luo, Yanping

    2018-03-01

    Actinomycetes are an important group of gram-positive bacteria that play an essential role in the rhizosphere ecosystem. The confrontation culture and Oxford cup method were used to evaluate the antagonistic activities of strains, which were isolated from the rhizosphere soil of Mikania micrantha. The two isolates were identified using morphological and physiological tests combined with 16S rRNA-based molecular analysis, respectively. The type I polyketone synthase (PKS-I) was amplified. The constituents of fermentation metabolites were analyzed by gas chromatography mass spectrometry. The plant growth promoting effect was determined. Finally, the growth of wheat seedlings was assessed using the Petri dish method. Overall, of the isolated twelve strains, WZS1-1 and WZS2-1 could significantly inhibit target fungi. Isolate WZS1-1 was identified as Streptomyces rochei, and WZS2-1 was identified as Streptomyces sundarbansensis. In particular, Fusarium graminearum (FG) from wheat was inhibited by more than 80%, and the inhibitory bandwidths against FG were 31 ± 0.3 mm and 19 ± 0.5 mm, respectively. The genes PKS-I were successfully amplified, confirming that these strains are capable of producing biosynthetic secondary metabolites. Major component analysis revealed aliphatic ketones, carboxylic acids, and esters, with n-hexadecanoic acid being the most abundant compound. Plant growth promoting test indicated that both strains produced IAA, presented with orange loops on CAS plates, dissolved phosphorus and potassium, fixed nitrogen, but did not generate organic acids; both strains colonized in soil, while only WZS1-1 colonized in wheat roots. Additionally, the fermentation broth significantly promoted the growth of wheat. Copyright © 2018 Elsevier GmbH. All rights reserved.

  14. Bioinformatic as a tool to highlight and characterize extragenomic sequences within Fusarium verticillioides strains isolated from Italian Zea mays kernels

    Science.gov (United States)

    Fusarium Link is a genus including ubiquitous plant-pathogenic fungi that may cause severe crop losses. The Fusarium genus is divided in species complexes; the species are grouped by physiological, biological, ecological and genetic similarity. The Fusarium fujikuroi species complex (FFSC) is one of...

  15. Influence of Bacillus polymyxa on the growth and development of Fusarium oxysporum f. sp. tulipae

    Directory of Open Access Journals (Sweden)

    Alicja Saniewska

    2013-12-01

    Full Text Available Antagonistic effect of Bacillus polymyxa, strain S13, toward Fusarium oxysporum f. sp. tulipae was evaluated iii vitro and in vivo. The growth of the pathogen was greatly inhibited in dual cultures with Bacillus polymyxa on potato dextrose agar. Suspension of B. polymyxa and its filtrate substantially inhibited spore germination and development of Fusarium oxysporuum f. sp. tulipae on tulip bulbs.

  16. [Fusarium species associated with basal rot of garlic in North Central Mexico and its pathogenicity].

    Science.gov (United States)

    Delgado-Ortiz, Juan C; Ochoa-Fuentes, Yisa M; Cerna-Chávez, Ernesto; Beltrán-Beache, Mariana; Rodríguez-Guerra, Raúl; Aguirre-Uribe, Luis A; Vázquez-Martínez, Otilio

    Garlic in Mexico is one of the most profitable vegetable crops, grown in almost 5,451ha; out of which more than 83% are located in Zacatecas, Guanajuato, Sonora, Puebla, Baja California and Aguascalientes. Blossom-end rot caused by Fusarium spp is widely distributed worldwide and has been a limiting factor in onion and garlic production regions, not only in Mexico but also in other countries. The presence of Fusarium oxysporum has been reported in Guanajuato and Aguascalientes. Fusarium culmorum has been reported in onion cultivars of Morelos; and Fusarium proliferatum, Fusarium verticillioides, Fusarium solani and Fusarium acuminatum have been previously reported in Aguascalientes. The goal of this work was identifying the Fusarium species found in Zacatecas, Guanajuato and Aguascalientes, to assess their pathogenicity. Plants with disease symptoms were collected from hereinabove mentioned States. The samples resulted in the identification of: F. oxysporum, F. proliferatum, F. verticillioides, F. solani and F. acuminatum species; out of which Aguascalientes AGS1A (F. oxysporum), AGS1B (F. oxysporum) and AGSY-10 (F. acuminatum) strains showed higher severity under greenhouse conditions. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Présence en Tunisie d'isolats de Fusarium sambucinum résistants aux benzimidazoles : développement in vitro et agressivité sur tubercules de pomme de terre

    Directory of Open Access Journals (Sweden)

    El Mahjoub M.

    2006-01-01

    Full Text Available Presence in Tunisia of Fusarium sambucinum isolates resistant to benzimidazoles: in vitro growth and aggressiveness on potato tubers. The behaviour of 55 isolates of Fusarium spp. causing dry rot of the potato tubers, is studied against some enzimidazoles fungicides. Tunisian isolates of F. solani (12, F. oxysporum (23 and F. graminearum (10 are sensitive in vitro to carbendazime and benomyl at 5 mg.l-1. Their interaction with thiophanate-methyl is different; a complete inhibition of their mycelial growth is observed at doses higher than 500 mg.l-1. Tunisian isolates of F. sambucinum collected during 2002, 2003 and 2004 are resistant to these benzimidazoles showing existence of a cross-resistance. In fact, these isolates tolerated carbendazime (and benomyl at 200 mg.l-1 and thiophanate-methyl at 1000 mg.l-1. This is the first study in Tunisia indicating emergence of this type of F. sambucinum resistance. Control isolates of F. sambucinum and those treated with carbendazime at 100 mg.l-1 showed a similar aggressiveness on potato tubers of the Spunta cultivar.

  18. Synthesis and characterization of chitosan nanoparticles and their effect on Fusarium head blight and oxidative activity in wheat.

    Science.gov (United States)

    Kheiri, A; Moosawi Jorf, S A; Malihipour, A; Saremi, H; Nikkhah, M

    2017-09-01

    The main aim of present study was to prepare chitosan (CS) and chitosan nanoparticles (CS/NPs) to evaluate their antifungal and oxidative activity. CS/NPs were prepared based on the ionic gelation of CS with tripolyphosphate (TPP) anions by using centrifugation and pH change. The obtained nanoparticles (NPs) were characterized by size and zeta potential analysis. The antifungal activity of the CS and CS/NPs were evaluated on the Fusarium graminearum, which causes Fusarium head blight (FHB) on wheat by the method of spraying on the Potato dextrose agar (PDA) medium. The Dynamic light scattering (DLS) indicated that particle diameter (z-average) was approximately 180.9±35.5-339.4±50.9 and 225.7±42.81-595.7±81.7nm for NPs prepared from CS with different molecular weights by using centrifugation and pH change methods, respectively. Different concentrations of CS and NPs were tested to know the inhibitory effect of F. graminearum. Low molecular weight (LMW) CS and its NPs had high potential of antifungal activity on suppress of fungus growth. The maximum percentage of growth reduction was 68.18%, and 77.5% by CS and its NPs at concentrations of 1000 and 5000ppm, respectively. In greenhouse trials, at 28days after inoculation (dpi), the area under the disease progress curve (AUDPC) from 7 dpi to 28 dpi of control plants treated with acetic acid aqueous solution and distilled water was almost up to 7.36 and 7.7, respectively, while plants treated with CS and NPs only had approximately 3.61 and 3.34, respectively. Results revealed that H 2 O 2 accumulations displayed a different pattern during the activation of plant defense systems, it had brownish sites on the infected palea. Since 24h post inoculation (hpi), the H 2 O 2 accumulations were shown in both CS and NPs, and the elevated H 2 O 2 accumulation appeared in 72 hpi in both treatments. CS and NPs at high concentration increased the degree of tissue and cell injury. The obtained results clearly suggest that CS

  19. Outbreak of Fusarium oxysporum infections in children with cancer: an experience with 7 episodes of catheter-related fungemia.

    Science.gov (United States)

    Carlesse, Fabianne; Amaral, Anna-Paula C; Gonçalves, Sarah S; Xafranski, Hemilio; Lee, Maria-Lucia M; Zecchin, Victor; Petrilli, Antonio S; Al-Hatmi, Abdullah M; Hagen, Ferry; Meis, Jacques F; Colombo, Arnaldo L

    2017-01-01

    Fusarium species are widely spread in nature as plant pathogens but are also able to cause opportunistic fungal infections in humans. We report a cluster of Fusarium oxysporum bloodstream infections in a single pediatric cancer center. All clinical and epidemiological data related to an outbreak involving seven cases of fungemia by Fusarium oxysporum during October 2013 and February 2014 were analysed. All cultured isolates ( n  = 14) were identified to species level by sequencing of the TEF1 and RPB2 genes. Genotyping of the outbreak isolates was performed by amplified fragment length polymorphism fingerprinting. In a 5-month period 7 febrile pediatric cancer patients were diagnosed with catheter-related Fusarium oxysporum bloodstream infections. In a time span of 11 years, only 6 other infections due to Fusarium were documented and all were caused by a different species, Fusarium solani . None of the pediatric cancer patients had neutropenia at the time of diagnosis and all became febrile within two days after catheter manipulation in a specially designed room. Extensive environmental sampling in this room and the hospital did not gave a clue to the source. The outbreak was terminated after implementation of a multidisciplinary central line insertion care bundle. All Fusarium strains from blood and catheter tips were genetically related by amplified fragment length polymorphism fingerprinting. All patients survived the infection after prompt catheter removal and antifungal therapy. A cluster with, genotypical identical, Fusarium oxysporum strains infecting 7 children with cancer, was most probably catheter-related. The environmental source was not discovered but strict infection control measures and catheter care terminated the outbreak.

  20. Outbreak of Fusarium oxysporum infections in children with cancer: an experience with 7 episodes of catheter-related fungemia

    Directory of Open Access Journals (Sweden)

    Fabianne Carlesse

    2017-09-01

    Full Text Available Abstract Background Fusarium species are widely spread in nature as plant pathogens but are also able to cause opportunistic fungal infections in humans. We report a cluster of Fusarium oxysporum bloodstream infections in a single pediatric cancer center. Methods All clinical and epidemiological data related to an outbreak involving seven cases of fungemia by Fusarium oxysporum during October 2013 and February 2014 were analysed. All cultured isolates (n = 14 were identified to species level by sequencing of the TEF1 and RPB2 genes. Genotyping of the outbreak isolates was performed by amplified fragment length polymorphism fingerprinting. Results In a 5-month period 7 febrile pediatric cancer patients were diagnosed with catheter-related Fusarium oxysporum bloodstream infections. In a time span of 11 years, only 6 other infections due to Fusarium were documented and all were caused by a different species, Fusarium solani. None of the pediatric cancer patients had neutropenia at the time of diagnosis and all became febrile within two days after catheter manipulation in a specially designed room. Extensive environmental sampling in this room and the hospital did not gave a clue to the source. The outbreak was terminated after implementation of a multidisciplinary central line insertion care bundle. All Fusarium strains from blood and catheter tips were genetically related by amplified fragment length polymorphism fingerprinting. All patients survived the infection after prompt catheter removal and antifungal therapy. Conclusion A cluster with, genotypical identical, Fusarium oxysporum strains infecting 7 children with cancer, was most probably catheter-related. The environmental source was not discovered but strict infection control measures and catheter care terminated the outbreak.

  1. A γ-lactamase from cereal infecting Fusarium spp. catalyses the first step in the degradation of the benzoxazolinone class of phytoalexins.

    Science.gov (United States)

    Kettle, Andrew J; Carere, Jason; Batley, Jacqueline; Benfield, Aurelie H; Manners, John M; Kazan, Kemal; Gardiner, Donald M

    2015-10-01

    The benzoxazolinone class of phytoalexins are released by wheat, maize, rye and other agriculturally important species in the Poaceae family upon pathogen attack. Benzoxazolinones show antimicrobial effects on plant pathogens, but certain fungi have evolved mechanisms to actively detoxify these compounds which may contribute to the virulence of the pathogens. In many Fusarium spp. a cluster of genes is thought to be involved in the detoxification of benzoxazolinones. However, only one enzyme encoded in the cluster has been unequivocally assigned a role in this process. The first step in the detoxification of benzoxazolinones in Fusarium spp. involves the hydrolysis of a cyclic ester bond. This reaction is encoded by the FDB1 locus in F. verticillioides but the underlying gene is yet to be cloned. We previously proposed that FDB1 encodes a γ-lactamase, and here direct evidence for this is presented. Expression analyses in the important wheat pathogen F. pseudograminearum demonstrated that amongst the three predicted γ-lactamase genes only the one designated as FDB1, part of the proposed benzoxazolinone cluster in F. pseudograminearum, was strongly responsive to exogenous benzoxazolinone application. Analysis of independent F. pseudograminearum and F. graminearum FDB1 gene deletion mutants, as well as biochemical assays, demonstrated that the γ-lactamase enzyme, encoded by FDB1, catalyses the first step in detoxification of benzoxazolinones. Overall, our results support the notion that Fusarium pathogens that cause crown rot and head blight on wheat have adopted strategies to overcome host-derived chemical defences. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Biological control of fusarium seedling blight disease of wheat and barley.

    Science.gov (United States)

    Khan, Mojibur R; Fischer, Sven; Egan, Damian; Doohan, Fiona M

    2006-04-01

    ABSTRACT Fusarium fungi, including F. culmorum, cause seedling blight, foot rot, and head blight diseases of cereals, resulting in yield loss. In a screen for potential disease control organisms and agents, Pseudomonas fluorescens strains MKB 100 and MKB 249, P. frederiksbergensis strain 202, Pseudomonas sp. strain MKB 158, and chitosan all significantly reduced the extent of both wheat coleoptile growth retardation and wheat and barley seedling blight caused by F. culmorum (by 53 to 91%). Trichodiene synthase is a Fusarium enzyme necessary for trichothecene mycotoxin biosynthesis; expression of the gene encoding this enzyme in wheat was 33% lower in stem base tissue coinoculated with Pseudomonas sp. strain MKB 158 and F. culmorum than in wheat treated with bacterial culture medium and F. culmorum. When wheat and barley were grown in soil amended with either chitosan, P. fluorescens strain MKB 249, Pseudomonas sp. strain MKB 158, or culture filtrates of these bacteria, the level of disease symptoms on F. culmorum-inoculated stem base tissue (at 12 days post- F. culmorum inoculation) was >/=31% less than the level on F. culmorum-inoculated plants grown in culture medium-amended soil. It seems likely that at least part of the biocontrol activity of these bacteria and chitosan may be due to the induction of systemic disease resistance in host plants. Also, in coinoculation studies, Pseudomonas sp. strain MKB 158 induced the expression of a wheat class III plant peroxidase gene (a pathogenesis-related gene).

  3. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum

    NARCIS (Netherlands)

    Schmidt, S.M.; Houterman, P.M.; Schreiver, I.; Ma, L.; Amyotte, S.; Chellappan, B.; Boeren, S.; Takken, F.L.W.; Rep, M.

    2013-01-01

    Background The plant-pathogenic fungus Fusarium oxysporum f.sp.lycopersici (Fol) has accessory, lineage-specific (LS) chromosomes that can be transferred horizontally between strains. A single LS chromosome in the Fol4287 reference strain harbors all known Fol effector genes. Transfer of this

  4. Fungal cultivation on glass-beads

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, Henriette

    Transcription of various bioactive compounds and enzymes are dependent on fungal cultivation method. In this study we cultivate Fusarium graminearum and Fusarium solani on glass-beads with liquid media in petri dishes as an easy and inexpensive cultivation method, that resembles in secondary...... metabolite production to agar-cultivation but with an easier and more pure RNA-extraction of total fungal mycelia....

  5. Evolution and Diversity of Biosynthetic Gene Clusters in Fusarium

    Directory of Open Access Journals (Sweden)

    Koen Hoogendoorn

    2018-06-01

    Full Text Available Plant pathogenic fungi in the Fusarium genus cause severe damage to crops, resulting in great financial losses and health hazards. Specialized metabolites synthesized by these fungi are known to play key roles in the infection process, and to provide survival advantages inside and outside the host. However, systematic studies of the evolution of specialized metabolite-coding potential across Fusarium have been scarce. Here, we apply a combination of bioinformatic approaches to identify biosynthetic gene clusters (BGCs across publicly available genomes from Fusarium, to group them into annotated families and to study gain/loss events of BGC families throughout the history of the genus. Comparison with MIBiG reference BGCs allowed assignment of 29 gene cluster families (GCFs to pathways responsible for the production of known compounds, while for 57 GCFs, the molecular products remain unknown. Comparative analysis of BGC repertoires using ancestral state reconstruction raised several new hypotheses on how BGCs contribute to Fusarium pathogenicity or host specificity, sometimes surprisingly so: for example, a gene cluster for the biosynthesis of hexadehydro-astechrome was identified in the genome of the biocontrol strain Fusarium oxysporum Fo47, while being absent in that of the tomato pathogen F. oxysporum f.sp. lycopersici. Several BGCs were also identified on supernumerary chromosomes; heterologous expression of genes for three terpene synthases encoded on the Fusarium poae supernumerary chromosome and subsequent GC/MS analysis showed that these genes are functional and encode enzymes that each are able to synthesize koraiol; this observed functional redundancy supports the hypothesis that localization of copies of BGCs on supernumerary chromosomes provides freedom for evolutionary innovations to occur, while the original function remains conserved. Altogether, this systematic overview of biosynthetic diversity in Fusarium paves the way for

  6. Production of T-2 toxin and deoxynivalenol in the presence of different disinfectants

    Directory of Open Access Journals (Sweden)

    Dana Hrubošová

    2015-03-01

    Full Text Available The aim of the work was to examine the effect of different disinfectants on production trichothecenes (especially of T-2 toxin and deoxynivalenol. Lipophilicity, chemical structure, the presence of bioactive groups and functional groups in their structure modifies biological activity and toxic potency of trichothecenes. For this reason, limits have been established designating maximum levels of mycotoxins in cereals while maintaining proper growing practices. Appropriate nutritive media were prepared with different concentration of tested disinfectants (Desanal A  plus, ProCura spray and Guaa-Pool and were inoculated using  Fusarium strains. The density of  Fusarium was 105 spores per mililitre. Nutrient media was cultivated at 15 °C and 25 °C for seven days. The strains of Fusarium graminearum CCM F-683 and Fusarium species (isolated from barley produced quantities of deoxynivalenol. Fusarium poae CCM F-584 and Fusarium species (isolated from malthouse air produced quantities of T-2 toxin. Desanal A plus prevented Fusarium growth and production of T-2 toxin and deoxynivalenol at the concentration 10%. It is an alkaline disinfectant on the basis of active chlorine and the surfactant that contains ˂5% of NaClO. ProCura spray at the concentration 0.6% proved to be very effective. This disinfectant contains 35% of propan-1-ol and 25% of propan-2-ol.  Guaa-Pool at the concentration 0.004% proved to be very effective. It is a polymeric disinfectant with anion surface-acting agent and it contains ˂0.9% of polyhexamethylene guanidine hydrochloride and ˂0.2% of alkyl (C12-C16 dimethylbenzyl ammonium chloride. Lower contentration of  disinfectants that  not prevented growth of Fusarium caused higher production  of T-2 toxin and deoxynivalenol. The contents of T-2 toxin and deoxynivalenol were analyzed by enzyme-linked immunosorbent assay (ELISA using commercially produced kits (Agra Quant® Deoxynivalenol Test kit and Agra Quant® T-2 toxin

  7. Phylogenetic analysis, fumonisin production and pathogenicity of Fusarium fujikuroi strains isolated from rice in the Philippines.

    Science.gov (United States)

    Cruz, Alejandra; Marín, Patricia; González-Jaén, M Teresa; Aguilar, Kristel Grace I; Cumagun, Christian Joseph R

    2013-09-01

    Fusarium fujikuroi Nirenberg is a maize and rice pathogen causing important agricultural losses and produces fumonisins - mycotoxins which pose health risk to humans and farm animals. However, little information is available about the phylogenetics of this species and its ability to produce fumonisins in rice. We studied 32 strains isolated from rice in the Philippines and performed a phylogenetic analysis using the partial sequence of Elongation Factor 1 alpha (EF-1α) including isolates belonging to closely related species. Fumonisin B1 (FB1 ) production was analyzed in 7-day-old cultures grown in fumonisin-inducing medium by an enzyme-linked immunosorbent assay-based method and by real-time reverse transcriptase-polymerase chain reaction using primers for FUM1 gene, a key gene in fumonisin biosynthesis. Nucleotide diversities per site (π) were 0.00024 ± 0.00022 (standard deviation) for the 32 F. fujikuroi strains from the Philippines and 0.00189 ± 0.00143 for all 34 F. fujikuroi strains, respectively. F. fujikuroi isolates grouped into one cluster separated from the rest of isolates belonging to the closely related F. proliferatum and showed very low variability, irrespective of their geographic origin. The cluster containing strains of F. proliferatum showed higher intraspecific variability than F. fujikuroi. Thirteen of the 32 strains analyzed were FB1 producers (40.62%), with production ranging from 0.386 to 223.83 ppm. All isolates analyzed showed FUM1 gene expression above 1 and higher than the CT value of the non-template control sample. Both seedling stunting and elongation were induced by the isolates in comparison with the control. F. fujikuroi are distinct from F. proliferatum isolates based on phytogenetic analysis and are potential fumonisin producers because all are positive for FUM1 gene expression. No relationship between fumonisin production and pathogenicity could be observed. © 2013 Society of Chemical Industry.

  8. Indole-3-acetic acid biosynthesis in Fusarium delphinoides strain GPK, a causal agent of Wilt in Chickpea.

    Science.gov (United States)

    Kulkarni, Guruprasad B; Sanjeevkumar, S; Kirankumar, B; Santoshkumar, M; Karegoudar, T B

    2013-02-01

    Fusarium delphinoides (Ascomycota; Nectriaceae) is an indole-3-acetic acid (IAA) producing plant pathogen and a causal agent of wilt in chickpea. The IAA biosynthetic pathway in F. delphinoides strain GPK (FDG) was examined by analyzing metabolic intermediates and by feeding experiments. Gas chromatograph (GC) analysis of FDG culture filtrates showed the presence of metabolic intermediates of indole-3-pyruvic acid (IPyA), indole-3-acetamide (IAM), and tryptamine (TRA) pathways. The different IAA biosynthetic pathways were further confirmed by identifying the presence of different enzymes of these pathways. Substrate specificity study of aromatic amino acid aminotransferase revealed that the enzyme is highly specific for tryptophan (Trp) and α-ketoglutarate (α-kg) as amino group donor and acceptor, respectively. Furthermore, the concentration-dependent effect of exogenous IAA on fungal growth was established. Low concentration of exogenous IAA increases the fungal growth and at high concentration it decreases the growth of FDG.

  9. Molecular characterization of Fusarium oxysporum and fusarium commune isolates from a conifer nursery

    Science.gov (United States)

    Jane E. Stewart; Mee-Sook Kim; Robert L. James; R. Kasten Dumroese; Ned B. Klopfenstein

    2006-01-01

    Fusarium species can cause severe root disease and damping-off in conifer nurseries. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Isolates of Fusarium spp. can differ in virulence; however, virulence and...

  10. Composts containing fluorescent pseudomonads suppress fusarium root and stem rot development on greenhouse cucumber.

    Science.gov (United States)

    Bradley, Geoffrey G; Punja, Zamir K

    2010-11-01

    Three composts (Ball, dairy, and greenhouse) were tested for the ability to suppress the development of Fusarium root and stem rot (caused by Fusarium oxysporum f. sp. radicis-cucumerinum) on greenhouse cucumber. Dairy and greenhouse composts significantly reduced disease severity (P = 0.05), while Ball compost had no effect. Assessment of total culturable microbes in the composts showed a positive relationship between disease suppressive ability and total population levels of pseudomonads. In vitro antagonism assays between compost-isolated bacterial strains and the pathogen showed that strains of Pseudomonas aeruginosa exhibited the greatest antagonism. In growth room trials, strains of P. aeruginosa and nonantagonistic Pseudomonas maculicola, plus 2 biocontrol strains of Pseudomonas fluorescens, were tested for their ability to reduce (i) survival of F. oxysporum, (ii) colonization of plants by the pathogen, and (iii) disease severity. Cucumber seedlings grown in compost receiving P. aeruginosa and P. fluorescens had reduced disease severity index scores after 8 weeks compared with control plants without bacteria. Internal stem colonization by F. oxysporum was significantly reduced by P. aeruginosa. The bacteria colonized plant roots at 1.9 × 10(6) ± 0.73 × 10(6) CFU·(g root tissue)-1 and survival was >107 CFU·(g compost)-1 after 6 weeks. The locus for 2,4-diacetylphloroglucinol production was detected by Southern blot analysis and confirmed by PCR. The production of the antibiotic 2,4-diacetylphloroglucinol in liquid culture by P. aeruginosa was confirmed by thin layer chromatography. These results demonstrate that composts containing antibiotic-producing P. aeruginosa have the potential to suppress diseases caused by Fusarium species.

  11. Management of Fusarium oxysporum f. sp. capsici by leaf extract of Eucalyptus citriodora

    International Nuclear Information System (INIS)

    Shafique, S.; Asif, M.; Shafique, S.

    2015-01-01

    Fusarium wilt of chili (Capsicum annum L.) is an important disease in Pakistan that causes significant yield losses. In the present study, pathogenicity test was conducted using four strains of Fusarium oxysporum f.sp. capsici and ten chili varieties. It revealed that strain B was the most pathogenic strain and variety sky red was the most susceptible while variety Anchal was the most resistant against F. oxysporum strain B. Antifungal bioassays were conducted to find out antimycotic effect of extracts of fruit, bark and leaves of Eucalyptus citriodora (Hook.) against F. oxysporum. Ten concentrations (0, 1.0, 1.5, 2.0, 2.5 and 5%) of methanolic extracts of each plant part were employed against the target pathogen. Leaf extract imparted the maximum (up to 98%) and significant suppression in fungal growth while fruit and bark extracts proved less effective exhibiting only 50-60% reduction in fungal mycelial growth. The work concludes that methanolic extract of leaves of E. citriodora have potential to restrain the disastrous effects of the pathogenic fungus as the plant extracts of Eucalyptus conferred about 85% disease control in chilli plants with significantly high intensity of defense related enzymes under pathogenic stress. (author)

  12. VULVOVAGINITIS IN SWINE – AN OCCURENCE REPORT VULVOVAGINITES EM SUÍNOS – RELATO DE UM CASO

    Directory of Open Access Journals (Sweden)

    Clóvis Alves Pereira

    2007-09-01

    Full Text Available

    A case of vulvovaginitis in a four months old Landrace gilt due to ingestion of contaminated corn by the toxine zearalenone, produced by the fungus Fusarium graminearum, has its clinical evidence based in the lack of symptoms after the change of food.

    Relata-se um caso de vulvovaginite em uma marrã de quatro meses de idade da raça Landrace, devido à ingestão de milho contaminado pela toxina zearalenone, produzida pelo fungo Fusarium graminearum. O diagnóstico foi fundamentado na sintomatologia clínica e no desaparecimento dos sintomas após a mudança da alimentação.

  13. Synthesis of Novel (E) -α-(methoxyimino) Benzeneacetate Derivatives and their Fungicidal Activities

    International Nuclear Information System (INIS)

    Wang, X.; Chen, P.; Pang, Y.; Zhao, Z.; Wu, G.; Wang, H.

    2015-01-01

    In order to find novel strobilurin derivatives with good fungicidal activities, a series of (E)-α-(methoxyimino)benzeneacetate analogues containing 1,2,4-triazole Schiff base moiety were designed and synthesized. Their structures were confirmed by IR,1H-NMR, HRMS or elemental analyses. The antifungal activities indicated that compounds 6 showed moderate to good fungicidal activities against Rhizoctonia solani, Botrytis cinereapers, Fusarium graminearum and Blumeria graminis at the concentration 50 μ g/mL. For example, compounds 6e and 6h exhibited promising antifungal activity against Rhizoctonia solani, Botrytis cinereapers and Fusarium graminearum. Compounds 6g and 6j had higher fungicidal activities against Blumeria graminis at the concentration of 50 μ g/ml, inhibitory rate is 95.32 percentage and 89.67 percentage, respectively. (author)

  14. Aphid Infestation Increases Fusarium langsethiae and T-2 and HT-2 Mycotoxins in Wheat

    Science.gov (United States)

    Drakulic, Jassy; Ajigboye, Olubukola; Swarup, Ranjan; Bruce, Toby

    2016-01-01

    ABSTRACT Fusarium langsethiae is a fungal pathogen of cereal crops that is an increasing problem in northern Europe, but much of its epidemiology is poorly understood. The species produces the mycotoxins T-2 and HT-2, which are highly toxic. It was hypothesized that grain aphids, Sitobion avenae, may transmit F. langsethiae inoculum between wheat plants, and a series of transmission experiments and volatile chemical analyses was performed to test this. Manual translocation of aphids from inoculated to uninfected hosts resulted in pathogen DNA accumulation in hosts. However, the free movement of wingless aphids from infected to healthy plants did not. The addition of winged aphids reared on F. langsethiae-inoculated wheat seedlings to wheat plants also did not achieve successful pathogen transfer. While our data suggested that aphid transmission of the pathogen was not very efficient, we observed an increase in disease when aphids were present. After seedling inoculation, an increase in pathogen DNA accumulation in seedling leaves was observed upon treatment with aphids. Furthermore, the presence of aphids on wheat plants with F. langsethiae-inoculated ears not only led to a rise in the amount of F. langsethiae DNA in infected grain but also to an increase in the concentrations of T-2 and HT-2 toxins, with more than 3-fold higher toxin levels than diseased plants without aphids. This work highlights that aphids increase the susceptibility of wheat host plants to F. langsethiae and that aphid infestation is a risk factor for accumulating increased levels of T-2 and HT-2 in wheat products. IMPORTANCE Fusarium langsethiae is shown here to cause increased contamination levels of grain with toxins produced by fungus when aphids share the host plant. This effect has also recently been demonstrated with Fusarium graminearum, yet the two fungal species show stark differences in their effect on aphid populations. In both cases, aphids improve the ability of the pathogens to

  15. Распространенность грибов рода Fusarium в зерне яровой пшеницы в южной лесостепи республики Башкортостан

    OpenAIRE

    ХАЙРУЛЛИН Р.М.; КУТЛУБЕРДИНА Д.Р.

    2008-01-01

    Проведен анализ распространения фузариоза зерна яровой пшеницы репродукции 2007 года южной лесостепной природно-сельскохозяйственной зоны Республики Башкортостан. Выявлены виды Fusarium sporotrichioides, Fusarium poae, Fusarium oxysporum, Fusarium avenaceum, Fusarium graminearum, Fusarium сulmorum, Fusarium acuminatum, Fusarium tricinctum, Fusarium sambucinum, Fusarium subglutinans, Fusarium equiseti. Средняя зараженность зерна составила 12,7%. По частоте встречаемости доминировали виды F. sp...

  16. Suppressive effects of mycoviral proteins encoded by Magnaporthe oryzae chrysovirus 1 strain A on conidial germination of the rice blast fungus.

    Science.gov (United States)

    Urayama, Syun-Ichi; Kimura, Yuri; Katoh, Yu; Ohta, Tomoko; Onozuka, Nobuya; Fukuhara, Toshiyuki; Arie, Tsutomu; Teraoka, Tohru; Komatsu, Ken; Moriyama, Hiromitsu

    2016-09-02

    Magnaporthe oryzae chrysovirus 1 strain A (MoCV1-A) is the causal agent of growth repression and attenuated virulence (hypovirulence) of the rice blast fungus, Magnaporthe oryzae. We previously revealed that heterologous expression of the MoCV1-A ORF4 protein resulted in cytological damage to the yeasts Saccharomyces cerevisiae and Cryptococcus neoformans. Since the ORF4 protein is one of the components of viral particles, we evaluated the inhibitory effects of the purified virus particle against the conidial germination of M. oryzae, and confirmed its suppressive effects. Recombinant MoCV1-A ORF4 protein produced in Pichia pastoris was also effective for suppression of conidial germination of M. oryzae. MoCV1-A ORF4 protein sequence showed significant similarity to 6 related mycoviral proteins; Botrysphaeria dothidea chrysovirus 1, two Fusarium graminearum viruses, Fusarium oxysporum f. sp. dianthi mycovirus 1, Penicillium janczewski chrysovirus and Agaricus bisporus virus 1 in the Chrysoviridae family. Multiple alignments of the ORF4-related protein sequences showed that their central regions (210-591 aa in MoCV1-A ORF4) are relatively conserved. Indeed, yeast transformants expressing the conserved central region of MoCV1-A ORF4 protein (325-575 aa) showed similar impaired growth phenotypes as those observed in yeasts expressing the full-length MoCV1-A ORF4 protein. These data suggest that the mycovirus itself and its encoded viral protein can be useful as anti-fungal proteins to control rice blast disease caused by M. oryzae and other pathogenic fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Fungemia Due to Fusarium sacchari in an Immunosuppressed Patient

    Science.gov (United States)

    Guarro, Josep; Nucci, Marcio; Akiti, Tiyomi; Gené, Josepa; Barreiro, M. Da Gloria C.; Gonçalves, Renato T.

    2000-01-01

    The fungus Fusarium sacchari was isolated repeatedly from the blood of an immunosuppressed host. The infection was treated successfully with a small dose of amphotericin B. The strain was resistant to this antifungal in vitro. MICs and minimum fungicidal concentrations of six antifungals for the clinical isolate are provided. To our knowledge, this is the first report involving this fungus in a case of fungemia. PMID:10618130

  18. Genome Sequence of an Endophytic Fungus, Fusarium solani JS-169, Which Has Antifungal Activity.

    Science.gov (United States)

    Kim, Jung A; Jeon, Jongbum; Park, Sook-Young; Kim, Ki-Tae; Choi, Gobong; Lee, Hyun-Jung; Kim, Yangsun; Yang, Hee-Sun; Yeo, Joo-Hong; Lee, Yong-Hwan; Kim, Soonok

    2017-10-19

    An endophytic fungus, Fusarium solani strain JS-169, isolated from a mulberry twig, showed considerable antifungal activity. Here, we report the draft genome sequence of this strain. The assembly comprises 17 scaffolds, with an N 50 value of 4.93 Mb. The assembled genome was 45,813,297 bp in length, with a G+C content of 49.91%. Copyright © 2017 Kim et al.

  19. Possibility of biological control of primocane fruiting raspberry disease caused by Fusarium sambucinum.

    Science.gov (United States)

    Shternshis, Margarita V; Belyaev, Anatoly A; Matchenko, Nina S; Shpatova, Tatyana V; Lelyak, Anastasya A

    2015-10-01

    Biological control agents are a promising alternative to chemical pesticides for plant disease suppression. The main advantage of the natural biocontrol agents, such as antagonistic bacteria compared with chemicals, includes environmental pollution prevention and a decrease of chemical residues in fruits. This study is aimed to evaluate the impact of three Bacillus strains on disease of primocane fruiting raspberry canes caused by Fusarium sambucinum under controlled infection load and uncontrolled environmental factors. Bacillus subtilis, Bacillus licheniformis, and Bacillus amyloliquefaciens were used for biocontrol of plant disease in 2013 and 2014 which differed by environmental conditions. The test suspensions were 10(5) CFU/ml for each bacterial strain. To estimate the effect of biological agents on Fusarium disease, canes were cut at the end of vegetation, and the area of outer and internal lesions was measured. In addition to antagonistic effect, the strains revealed the ability to induce plant resistance comparable with chitosan-based formulation. Under variable ways of cane treatment by bacterial strains, the more effective were B. subtilis and B. licheniformis demonstrating dual biocontrol effect. However, environmental factors were shown to impact the strain biocontrol ability; changes in air temperature and humidity led to the enhanced activity of B. amyloliquefaciens. For the first time, the possibility of replacing chemicals with environmentally benign biological agents for ecologically safe control of the raspberry primocane fruiting disease was shown.

  20. Challenges in Fusarium, a Trans-Kingdom Pathogen.

    Science.gov (United States)

    van Diepeningen, Anne D; de Hoog, G Sybren

    2016-04-01

    Fusarium species are emerging human pathogens, next to being plant pathogens. Problems with Fusarium are in their diagnostics and in their difficult treatment, but also in what are actual Fusarium species or rather Fusarium-like species. In this issue Guevara-Suarez et al. (Mycopathologia. doi: 10.1007/s11046-016-9983-9 , 2016) characterized 89 isolates of Fusarium from Colombia showing especially lineages within the Fusarium solani and oxysporum species complexes to be responsible for onychomycosis.

  1. Deciphering the genome and secondary metabolome of the plant pathogen Fusarium culmorum

    NARCIS (Netherlands)

    Schmidt, R.L.; Durling, M.; de Jager, V.C.L.; Menezes, R. C.; Nordkvist, E.; Svatos, A.; Dubey, Mohit; Lauterbach, L.; Dikschat, J.S.; Karlsson, M.; Garbeva, P.V.

    2018-01-01

    Fusarium culmorum is one of the most important fungal plant pathogens that causes diseases on a wide diversity of cereal and non-cereal crops. We report herein for the first time the genome sequence of F. culmorum strain PV and its associated secondary metabolome that plays a role in the interaction

  2. Evaluation of two novel barcodes for species recognition of opportunistic pathogens in Fusarium.

    Science.gov (United States)

    Al-Hatmi, Abdullah M S; Van Den Ende, A H G Gerrits; Stielow, J Benjamin; Van Diepeningen, Anne D; Seifert, Keith A; McCormick, Wayne; Assabgui, Rafik; Gräfenhan, Tom; De Hoog, G Sybren; Levesque, C André

    2016-02-01

    The genus Fusarium includes more than 200 species of which 73 have been isolated from human infections. Fusarium species are opportunistic human pathogens with variable aetiology. Species determination is best made with the combined phylogeny of protein-coding genes such as elongation factor (TEF1), RNA polymerase (RPB2) and the partial β-tubulin (BT2) gene. The internal transcribed spacers 1, 2 and 5.8S rRNA gene (ITS) have also been used, however, ITS cannot discriminate several closely related species and has nonorthologous copies in Fusarium. Currently, morphological approaches and tree-building methods are in use to define species and to discover hitherto undescribed species. Aftter a species is defined, DNA barcoding approaches can be used to identify species by the presence or absence of discrete nucleotide characters. We demonstrate the potential of two recently discovered DNA barcode loci, topoisomerase I (TOP1) and phosphoglycerate kinase (PGK), in combination with other routinely used markers such as TEF1, in an analysis of 144 Fusarium strains belonging to 52 species. Our barcoding study using TOP1 and PKG provided concordance of molecular data with TEF1. The currently accepted Fusarium species sampled were well supported in phylogenetic trees of both new markers. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. Influence of gamma-rays and some cultural conditions on the enhancement of cellulase production by some fungal strains isolated from cellulosic wastes

    International Nuclear Information System (INIS)

    Aziz, N.H.; Abo-State, M.A.; Girigs, A.M.P.; Youssef, Kh.A.; El-Mahalawy, A.A.

    2010-01-01

    In the present study, out of 51 fungal strains isolated from the cellulosic wastes, only 19 were CMCase-producers. Aspergillus, Fusarium and Penicillium were the most common fungal genera isolated from the cellulosic wastes. Fusarium neoceras, Aspergillus fumigatus and Fusarium oxysporium produced CMCase activity than Trichoderma viride. Out of 23 gamma-irradiated survivors from A.fumigatus and F. neoceras showing CMCase production, only two mutant strains A.fumigatus 8G-2 and F. neoceras 4G-2 produced the highest levels of CMCase than the parent strains. The results indicated that the maximum level of of CMCase activity was produced by A.fumigatus and F. neoceras strains under optiminizing conditions.

  4. Banana infecting fungus, Fusarium musae, is also an opportunistic human pathogen: are bananas potential carriers and source of fusariosis?

    Science.gov (United States)

    Triest, David; Stubbe, Dirk; De Cremer, Koen; Piérard, Denis; Detandt, Monique; Hendrickx, Marijke

    2015-01-01

    During re-identification of Fusarium strains in the BCCM™/IHEM fungal collection by multilocus sequence-analysis we observed that five strains, previously identified as Fusarium verticillioides, were Fusarium musae, a species described in 2011 from banana fruits. Four strains were isolated from blood samples or biopsies of immune-suppressed patients and one was isolated from the clinical environment, all originating from different hospitals in Belgium or France, 2001-2008. The F. musae identity of our isolates was confirmed by phylogenetic analysis using reference sequences of type material. Absence of the gene cluster necessary for fumonisin biosynthesis, characteristic to F. musae, was also the case for our isolates. In vitro antifungal susceptibility testing revealed no important differences in their susceptibility compared to clinical F. verticillioides strains and terbinafine was the most effective drug. Additional clinical F. musae strains were searched by performing BLAST queries in GenBank. Eight strains were found, of which six were keratitis cases from the U.S. multistate contact lens-associated outbreak in 2005 and 2006. The two other strains were also from the U.S., causing either a skin infection or sinusitis. This report is the first to describe F. musae as causative agent of superficial and opportunistic, disseminated infections in humans. Imported bananas might act as carriers of F. musae spores and be a potential source of infection with F. musae in humans. An alternative hypothesis is that the natural distribution of F. musae is geographically a lot broader than originally suspected and F. musae is present on different plant hosts. © 2015 by The Mycological Society of America.

  5. Antagonistic Activities of Novel Peptides from Bacillus amyloliquefaciens PT14 against Fusarium solani and Fusarium oxysporum.

    Science.gov (United States)

    Kim, Young Gwon; Kang, Hee Kyoung; Kwon, Kee-Deok; Seo, Chang Ho; Lee, Hyang Burm; Park, Yoonkyung

    2015-12-09

    Bacillus species have recently drawn attention due to their potential use in the biological control of fungal diseases. This paper reports on the antifungal activity of novel peptides isolated from Bacillus amyloliquefaciens PT14. Reverse-phase high-performance liquid chromatography revealed that B. amyloliquefaciens PT14 produces five peptides (PT14-1, -2, -3, -4a, and -4b) that exhibit antifungal activity but are inactive against bacterial strains. In particular, PT14-3 and PT14-4a showed broad-spectrum antifungal activity against Fusarium solani and Fusarium oxysporum. The PT14-4a N-terminal amino acid sequence was identified through Edman degradation, and a BLAST homology analysis showed it not to be identical to any other protein or peptide. PT14-4a displayed strong fungicidal activity with minimal inhibitory concentrations of 3.12 mg/L (F. solani) and 6.25 mg/L (F. oxysporum), inducing severe morphological deformation in the conidia and hyphae. On the other hand, PT14-4a had no detectable hemolytic activity. This suggests PT14-4a has the potential to serve as an antifungal agent in clinical therapeutic and crop-protection applications.

  6. Fusarium Keratitis in Germany

    Science.gov (United States)

    Stasch, Serena; Kaerger, Kerstin; Hamprecht, Axel; Roth, Mathias; Cornely, Oliver A.; Geerling, Gerd; Mackenzie, Colin R.; Kurzai, Oliver; von Lilienfeld-Toal, Marie

    2017-01-01

    ABSTRACT Fusarium keratitis is a destructive eye infection that is difficult to treat and results in poor outcome. In tropical and subtropical areas, the infection is relatively common and associated with trauma or chronic eye diseases. However, in recent years, an increased incidence has been reported in temperate climate regions. At the German National Reference Center, we have observed a steady increase in case numbers since 2014. Here, we present the first German case series of eye infections with Fusarium species. We identified Fusarium isolates from the eye or eye-related material from 22 patients in 2014 and 2015. Thirteen isolates belonged to the Fusarium solani species complex (FSSC), 6 isolates belonged to the Fusarium oxysporum species complex (FOSC), and three isolates belonged to the Fusarium fujikuroi species complex (FFSC). FSSC was isolated in 13 of 15 (85%) definite infections and FOSC in 3 of 4 (75%) definite contaminations. Furthermore, diagnosis from contact lens swabs or a culture of contact lens solution turned out to be highly unreliable. FSSC isolates differed from FOSC and FFSC by a distinctly higher MIC for terbinafine. Outcome was often adverse, with 10 patients requiring keratoplasty or enucleation. The use of natamycin as the most effective agent against keratitis caused by filamentous fungi was rare in Germany, possibly due to restricted availability. Keratitis caused by Fusarium spp. (usually FSSC) appears to be a relevant clinical problem in Germany, with the use of contact lenses as the predominant risk factor. Its outcome is often adverse. PMID:28747368

  7. Using Spores for Fusarium spp. Classification by MALDI-Based Intact Cell/Spore Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Wolfgang Winkler

    2012-01-01

    Full Text Available Fusarium is a widespread genus of filamentous fungi and a member of the soil microbial community. Certain subspecies are health threatening because of their mycotoxin production that affects the human and animal food chain. Thus, for early and effective pest control, species identification is of particular interest; however, differentiation on the subspecies level is challenging and time-consuming for this fungus. In the present study, we show the possibilities of intact cell mass spectrometry for spore analysis of 22 different Fusarium strains belonging to six Fusarium subspecies. We found that species differentiation is possible if mass spectrometric analyses are performed under well-defined conditions with fixed parameters. A critical point for analysis is a proper sample preparation of spores, which increases the quality of mass spectra with respect to signal intensity and m/z value variations. It was concluded that data acquistion has to be performed automatically; otherwise, user-specific variations are introduced generating data which cannot fit the existing datasets. Data that show clearly that matrix-assisted laser desorption ionization-based intact cell/intact spore mass spectrometry (IC/ISMS can be applied to differentiate closely related Fusarium spp. are presented. Results show a potential to build a database on Fusarium species for accurate species identification, for fast response in the case of infections in the cornfield. We furthermore demonstrate the high precision of our approach in classification of intact Fusarium species according to the location of their collection.

  8. Conservation and divergence of the cyclic adenosine monophosphate–protein kinase A (cAMP–PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides

    Science.gov (United States)

    The importance of cAMP signaling in fungal development and pathogenesis has been well documented in many fungal species including several phytopathogenic Fusarium spp. Two key components of the cAMP-PKA pathway, adenylate cyclase (AC) and catalytic subunit of PKA (CPKA), have been functionally chara...

  9. The prevalence of selected genes involved in the biosynthesis of trichothecenes assessed with the specific PCR tests in Fusarium spp. isolated from cereals in southern Poland.

    Science.gov (United States)

    Wolny-Koładka, Katarzyna A

    2015-01-01

    The analysis was conducted using 50 isolates of fungi of the genus Fusarium belonging to the species classified as major trichothecene mycotoxin producers: F. graminearum, F. culmorum, F. sporotrichioides, and F. poae. The tested fungi were isolated from ears of cereal crops in southern Poland during the two growing seasons (2011 and 2012). The aim of this study was to evaluate the prevalence of genes involved in the biosynthesis of trichothecene mycotoxins using the specific PCR tests. Molecular analyses indicated that the genes responsible for the production of trichothecenes (Tri3, Tri5, Tri7, Tri13) were abundant in the examined genetic material. The tested fungal isolates were characterized by a large diversity in terms of the number and composition of the possessed Tri genes. On the other hand, 14 of 50 isolates were found not to carry any of Tri genes.

  10. Morphological and physiological investigations on mutants of Fusarium monoliforme IM

    International Nuclear Information System (INIS)

    Gancheva, V.

    1996-01-01

    High-producing mutants of Fusarium moniliforme IM are obtained as a result of gamma irradiation. The cultural characteristics of mutant strains 3284, 3211 and 76 following incubation of the producers for 14 days on potato-glucose agar are described. The colour of the aerial and substrate mycelium and the ability of the mutant strains to form conidiae and pigments are discussed in detail. The differences in the ability of mutants to assimilate different carbon and nitrogen sources are of specific importance for modelling nutrient media for submerged cultivation of F. moniliforme. 2 tabs., 2 figs. 7 refs

  11. A RALDH-like enzyme involved in Fusarium verticillioides development

    KAUST Repository

    Dí az-Sá nchez, Violeta; Carmen Limó n, M.; Schaub, Patrick; Al-Babili, Salim; Avalos, Javier

    2015-01-01

    Retinaldehyde dehydrogenases (RALDHs) convert retinal to retinoic acid, an important chordate morphogen. Retinal also occurs in some fungi, such as Fusarium and Ustilago spp., evidenced by the presence of rhodopsins and β–carotene cleaving, retinal-forming dioxygenases. Based on the assumption that retinoic acid may also be formed in fungi, we searched the Fusarium protein databases for RALDHs homologs, focusing on Fusarium verticillioides. Using crude lysates of Escherichia coli cells expressing the corresponding cDNAs, we checked the capability of best matches to convert retinal into retinoic acid in vitro. Thereby, we identified an aldehyde dehydrogenase, termed CarY, as a retinoic acid-forming enzyme, an activity that was also exerted by purified CarY. Targeted mutation of the carY gene in F. verticillioides resulted in alterations of mycelia development and conidia morphology in agar cultures, and reduced capacity to produce perithecia as a female in sexual crosses. Complementation of the mutant with a wild-type carY allele demonstrated that these alterations are caused by the lack of CarY. However, retinoic acid could not be detected by LC-MS analysis either in the wild type or the complemented carY strain in vivo, making elusive the connection between CarY enzymatic activity and retinoic acid formation in the fungus.

  12. A RALDH-like enzyme involved in Fusarium verticillioides development

    KAUST Repository

    Díaz-Sánchez, Violeta

    2015-12-11

    Retinaldehyde dehydrogenases (RALDHs) convert retinal to retinoic acid, an important chordate morphogen. Retinal also occurs in some fungi, such as Fusarium and Ustilago spp., evidenced by the presence of rhodopsins and β–carotene cleaving, retinal-forming dioxygenases. Based on the assumption that retinoic acid may also be formed in fungi, we searched the Fusarium protein databases for RALDHs homologs, focusing on Fusarium verticillioides. Using crude lysates of Escherichia coli cells expressing the corresponding cDNAs, we checked the capability of best matches to convert retinal into retinoic acid in vitro. Thereby, we identified an aldehyde dehydrogenase, termed CarY, as a retinoic acid-forming enzyme, an activity that was also exerted by purified CarY. Targeted mutation of the carY gene in F. verticillioides resulted in alterations of mycelia development and conidia morphology in agar cultures, and reduced capacity to produce perithecia as a female in sexual crosses. Complementation of the mutant with a wild-type carY allele demonstrated that these alterations are caused by the lack of CarY. However, retinoic acid could not be detected by LC-MS analysis either in the wild type or the complemented carY strain in vivo, making elusive the connection between CarY enzymatic activity and retinoic acid formation in the fungus.

  13. First report of Fusarium wilt of alfalfa caused by Fusarium oxysporum f. sp. medicaginis in Wisconsin

    Science.gov (United States)

    Fusarium wilt, caused by Fusarium oxysporum f. sp. medicaginis, is an economically important vascular disease of alfalfa (Medicago sativa) throughout the world. Alfalfa plants with foliar wilt symptoms and reddish-brown arcs in roots consistent with Fusarium wilt were observed in disease assessment ...

  14. Study of the Vapor Phase Over Fusarium Fungi Cultured on Various Substrates.

    Science.gov (United States)

    Savelieva, Elena I; Gustyleva, Liudmila K; Kessenikh, Elizaveta D; Khlebnikova, Natalya S; Leffingwell, John; Gavrilova, Olga P; Gagkaeva, Tatiana Yu

    2016-07-01

    The compositions of volatile organic compounds (VOCs) emitted by Fusarium fungi (F. langsethiae, F. sibiricum, F. poae, and F. sporotrichioides) grown on two nutritive substrates: potato sucrose agar (PSA) and autoclaved wheat kernels (WK) were investigated. The culturing of fungi and study of their VOC emissions were performed in chromatographic vials at room temperature (23 - 24 °C) and the VOCs were sampled by a solid-phase microextraction on a 85 μm carboxen/polydimethylsiloxane fiber. GC/MS was performed using a 60-m HP-5 capillary column. Components of the VOC mixture were identified by electron impact mass spectra and chromatographic retention indices (RIs). The most abundant components of the VOC mixture emitted by Fusarium fungi are EtOH, AcOH, (i) BuOH, 3-methylbutan-1-ol, 2-methylbutan-1-ol, ethyl 3-methylbutanoate, terpenes with M 136, sesquiterpenes with M 204 (a total of about 25), and trichodiene. It was found that the strains grown on PSA emit a wider spectrum and larger amount of VOCs compared with those grown on wheat kernels. F. langsethiae strain is the most active VOC producer on both substrates. The use of SPME and GC/MS also offers the potential for differentiation of fungal species and strains. © 2016 Wiley-VHCA AG, Zürich.

  15. Challenges in Fusarium, a Trans-Kingdom Pathogen

    NARCIS (Netherlands)

    van Diepeningen, Anne D; de Hoog, G Sybren

    Fusarium species are emerging human pathogens, next to being plant pathogens. Problems with Fusarium are in their diagnostics and in their difficult treatment, but also in what are actual Fusarium species or rather Fusarium-like species. In this issue Guevara-Suarez et al. (Mycopathologia. doi:

  16. Distribution Frequency and Incidence of Seed-borne Pathogens of Some Cereals and Industrial Crops in Serbia

    Directory of Open Access Journals (Sweden)

    Jelena Lević

    2012-01-01

    Full Text Available A total of 41 species of fungi were isolated from seed samples of barley, maize, soybean,and sunflower collected at different locations in Serbia. The majority of detected speciesoccurred on barley (35 of 41 species or 87.8% comparing to soybean (17 of 41 species or41.5%, sunflower (16 of 41 species or 39.0% and maize (15 of 41 species or 36.9%. Speciesbelonging to genera Alternaria, Chaetomium, Epicoccum, Fusarium, Penicillium and Rhizopuswere present on seeds of all four plant species. Alternaria species were dominant on soybean,barley and sunflower seeds (85.7%, 84.7% and 76.9%. F. verticillioides and Penicilliumspp. were mainly isolated from maize seeds (100 and 92.3% respectively, while other specieswere isolated up to 38.5% (Chaetomium spp. and Rhizopus spp.. F. graminearum, F. proliferatum,F. poae and F. sporotrichioides were the most common Fusarium species isolatedfrom barley (51.1-93.3%, while on the soybean seeds F. oxysporum (71.4%, F. semitectum(57.1% and F. sporotrichioides (57.1% were prevalent. Frequency of Fusarium species onsunflower seeds varied from 7% (F. equiseti, F. graminearum, F. proliferatum and F. subglutinansto 15.4% (F. verticillioides. Statistically significant negative correlation (r = –0.678* wasdetermined for the incidence of F. graminearum and Alternaria spp., as well as, Fusarium spp.and Alternaria spp. (r = –0.614*, on barley seeds. The obtained results revealed that seedbornepathogens were present in most seed samples of important cereals and industrialcrops grown under different agroecological conditions in Serbia. Some of the identifiedfungi are potential producers of mycotoxins, thus their presence is important in termsof reduced food safety for humans and animals. Therefore, an early and accurate diagnosisand pathogen surveillance will provide time for the development and the applicationof disease strategies.

  17. Non-pathogenic Fusarium solani represses the biosynthesis of nematicidal compounds in vitro and reduces the biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato.

    Science.gov (United States)

    Siddiqui, I A; Shaukat, S S

    2003-01-01

    The aim of the present investigation was to determine the influence of various Fusarium solani strains on the production of nematicidal agent(s) in vitro and biocontrol of Meloidogyne javanica in tomato by Pseudomonas fluorescens strains CHA0 and CHA0/pME3424. Culture filtrates (CF) of P. fluorescens strain CHA0 and its diacetylphloroglucinol-overproducing derivative CHA0/pME3424 caused substantial mortality of M. javanica juveniles in vitro. Bacterial growth medium amended with the growth medium of F. solani repressed the nematicidal activity of the bacteria. Methanol extract of F. solani CF resulting from Czapek's Dox liquid (CDL) medium without zinc amendment repressed the nematicidal activity of the bacteria while the CF obtained from CDL medium amended with zinc did not. Conidial suspension of F. solani strain Fs5 (repressor strain for the biosynthesis of nematicidal compounds in P. fluorescens) reduced biocontrol potential of the bacterial inoculants against M. javanica in tomato while strain Fs3 (non-repressor) did not. Fusarium solani strains with increased nematicidal activity repress the biosynthesis of nematicidal compounds by P. fluorescens strains in vitro and greatly alter its biocontrol efficacy against root-knot nematode under natural conditions. Fusarium solani strains are distributed worldwide and found in almost all the agricultural fields which suggest that some mycotoxin-producing strains will also be found in almost any soil sample taken. Besides the suppressive effect of these metabolite-producing strains on the production of nematicidal compound(s) critical in biocontrol, F. solani strains may also affect the performance of mycotoxin-sensitive biocontrol bacteria effective against plant-parasitic nematodes.

  18. Fusarium dimerum Species Complex (Fusarium penzigii) Keratitis After Corneal Trauma.

    Science.gov (United States)

    do Carmo, Anália; Costa, Esmeralda; Marques, Marco; Quadrado, Maria João; Tomé, Rui

    2016-12-01

    We report a case of a keratitis associated with a Fusarium penzigii-a Fusarium dimerum species complex (FDSC)-in a 81-year-old woman after a corneal trauma with a tree branch. At patient admittance, slit lamp biomicroscopy revealed an exuberant chemosis, an inferior corneal ulcer with an associated inflammatory infiltrate, a central corneal abscess, bullous keratopathy and posterior synechiae. Corneal scrapes were obtained for identification of bacteria and fungi, and the patient started antibiotic treatment on empirical basis. Few days later, the situation worsened with the development of hypopyon. By that time, Fusarium was identified in cultures obtained from corneal scrapes and the patient started topical amphotericin B 0.15 %. Upon the morphological identification of the Fusarium as a FDSC, and since there was no clinical improvement, the treatment with amphotericin B was suspended and the patient started voriconazole 10 mg/ml, eye drops, hourly and voriconazole 200 mg iv, every 12 h for 1 month. The hypopyon resolved and the inflammatory infiltrate improved, but the abscess persisted at the last follow-up visit. The molecular identification revealed that the FDSC was a F. penzigii.

  19. Fusarium oxysporum protects Douglas-fir (Pseudotsuga menziesii) seedlings from root disease caused by Fusarium commune

    Science.gov (United States)

    R. Kasten Dumroese; Mee-Sook Kim; Robert L. James

    2012-01-01

    Fusarium root disease can be a serious problem in forest and conservation nurseries in the western United States. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Fusarium spp. within the F. oxysporum species complex have been recognized as pathogens for more than a...

  20. Fate of Fusarium Toxins during Brewing.

    Science.gov (United States)

    Habler, Katharina; Geissinger, Cajetan; Hofer, Katharina; Schüler, Jan; Moghari, Sarah; Hess, Michael; Gastl, Martina; Rychlik, Michael

    2017-01-11

    Some information is available about the fate of Fusarium toxins during the brewing process, but only little is known about the single processing steps in detail. In our study we produced beer from two different barley cultivars inoculated with three different Fusarium species, namely, Fusarium culmorum, Fusarium sporotrichioides, and Fusarium avenaceum, producing a wide range of mycotoxins such as type B trichothecenes, type A trichothecenes, and enniatins. By the use of multi-mycotoxin LC-MS/MS stable isotope dilution methods we were able to follow the fate of Fusarium toxins during the entire brewing process. In particular, the type B trichothecenes deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol showed similar behaviors. Between 35 and 52% of those toxins remained in the beer after filtration. The contents of the potentially hazardous deoxynivalenol-3-glucoside and the type A trichothecenes increased during mashing, but a rapid decrease of deoxynivalenol-3-glucoside content was found during the following steps of lautering and wort boiling. The concentration of enniatins greatly decreased with the discarding of spent grains or finally with the hot break. The results of our study show the retention of diverse Fusarium toxins during the brewing process and allow for assessing the food safety of beer regarding the monitored Fusarium mycotoxins.

  1. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    Science.gov (United States)

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  2. Induction of chlamydospore formation in fusarium by cyclic lipopeptide antibiotics from Bacillus subtilis C2.

    Science.gov (United States)

    Li, Lei; Ma, Mingchuan; Huang, Rong; Qu, Qing; Li, Guohong; Zhou, Jinwei; Zhang, Keqin; Lu, Kaiping; Niu, Xuemei; Luo, Jun

    2012-08-01

    The culture filtrate of Bacillus subtilis strain C2 showed strong activity against the pathogenic fungus Fusarium solani f. sp. radicicola. A partially purified fraction (PPF) from the extract induced chlamydospore formation in Fusarium. Reverse-phase high performance liquid chromatography yielded 8 different fractions, six of which had chlamydospore-inducing activity. Mass spectrometry and nuclear magnetic resonance analyses identified the main active constituent as C(17) fengycin A (FA17), a cyclic lipopeptide. The effect of FA17 on morphology and physiology of two Fusarium species was dependent on the lipopeptide concentration. When challenged with FA17 at concentrations (0.5, 8, 64 μg ml(-1)) below the minimum inhibitory concentration (MIC) (128 μg ml(-1)), two species of Fusarium formed chlamydospores from hyphae, germ tubes, or inside the conidia within 2 days. At concentrations close to the MIC, FA17 caused Fusarium to form sparse and swollen hyphae or lysed conidia. The other five fractions were identified as fengycin A homologues. The homologues could also induce chlamydospore-like structures in 17 species of filamentous fungi including some specimens that do not normally produce chlamydospores, according to their taxonomic descriptions. Like other chlamydospores, these structures contained nuclei and lipid bodies as revealed by DAPI and Nile Red staining, and could germinate. This is the first study to demonstrate that under laboratory conditions fengycin, an antifungal lipopeptide produced by B. subtilis, can induce chlamydospore formation in Fusarium and chlamydospore-like structures in many filamentous fungi.

  3. Variation in sequence and location of the fumonisin mycotoxin niosynthetic gene cluster in Fusarium

    NARCIS (Netherlands)

    Proctor, R.H.; Hove, van F.; Susca, A.; Stea, A.; Busman, M.; Lee, van der T.A.J.; Waalwijk, C.; Moretti, A.

    2010-01-01

    In Fusarium, the ability to produce fumonisins is governed by a 17-gene fumonisin biosynthetic gene (FUM) cluster. Here, we examined the cluster in F. oxysporum strain O-1890 and nine other species selected to represent a wide range of the genetic diversity within the GFSC.

  4. Fumonisin and T-2 toxin production of Fusarium spp. isolated from complete feed and individual agricultural commodities used in shrimp farming.

    Science.gov (United States)

    Anukul, Nampeung; Maneeboon, Thanapoom; Roopkham, Chanram; Chuaysrinule, Chananya; Mahakarnchanakul, Warapa

    2014-02-01

    Fusarium spp. are plant pathogens producing fumonisins and trichothecenes that both affect human and animal health. In the present study, 40 fungal strains were isolated and species identified from 35 shrimp feed samples and from 61 agricultural raw materials. F. verticillioides was the predominant species (85 %) mostly found in corn and soybean meal, while no Fusarium contamination was detected in shrimp feed. Levels of 10 % of F. oxysporum were isolated from peanut and 5 % of F. equiseti contamination in corn and peanut. To determine the ability of toxin production, enzyme-linked immunosorbent assay, polymerase chain reaction, and ultra-pressure liquid chromatography-tandem mass spectrometry were performed. All but four of the fumonisin-producing strains contained the FUM1 gene. No Fusarium synthesized T-2 toxin nor contained the Tri5 gene. This survey brings more data on mycotoxin contamination in the food chain of animal feed production, and leads to the awareness of the use of contaminated raw materials in shrimp farming.

  5. Screenhouse and field persistence of nonpathogenic endophytic Fusarium oxysporum in Musa tissue culture plants.

    Science.gov (United States)

    Paparu, Pamela; Dubois, Thomas; Gold, Clifford S; Niere, Björn; Adipala, Ekwamu; Coyne, Daniel

    2008-04-01

    Two major biotic constraints to highland cooking banana (Musa spp., genome group AAA-EA) production in Uganda are the banana weevil Cosmopolites sordidus and the burrowing nematode Radopholus similis. Endophytic Fusarium oxysporum strains inoculated into tissue culture banana plantlets have shown control of the banana weevil and the nematode. We conducted screenhouse and field experiments to investigate persistence in the roots and rhizome of two endophytic Fusarium oxysporum strains, V2w2 and III4w1, inoculated into tissue-culture banana plantlets of highland cooking banana cultivars Kibuzi and Nabusa. Re-isolation of F. oxysporum showed that endophyte colonization decreased faster from the rhizomes than from the roots of inoculated plants, both in the screenhouse and in the field. Whereas rhizome colonization by F. oxysporum decreased in the screenhouse (4-16 weeks after inoculation), root colonization did not. However, in the field (17-33 weeks after inoculation), a decrease was observed in both rhizome and root colonization. The results show a better persistence in the roots than rhizomes of endophytic F. oxysporum strains V2w2 and III4w1.

  6. Fusarium basal rot in the Netherlands

    NARCIS (Netherlands)

    Visser, de C.L.M.; Broek, van den R.C.F.M.; Brink, van den L.

    2006-01-01

    Fusarium basal rot of onion, caused by Fusarium oxysporum f.sp. cepae, is a steadily increasing problem in The Netherlands. Financial losses for Dutch farmers confronted with Fusarium basal rot is substantial, due to yield reduction and high storage costs. This paper describes the development and

  7. Biosynthesis and Characterization of Zearalenone-14-Sulfate, Zearalenone-14-Glucoside and Zearalenone-16-Glucoside Using Common Fungal Strains

    Directory of Open Access Journals (Sweden)

    Antje Borzekowski

    2018-03-01

    Full Text Available Zearalenone (ZEN and its phase II sulfate and glucoside metabolites have been detected in food and feed commodities. After consumption, the conjugates can be hydrolyzed by the human intestinal microbiota leading to liberation of ZEN that implies an underestimation of the true ZEN exposure. To include ZEN conjugates in routine analysis, reliable standards are needed, which are currently not available. Thus, the aim of the present study was to develop a facilitated biosynthesis of ZEN-14-sulfate, ZEN-14-glucoside and ZEN-16-glucoside. A metabolite screening was conducted by adding ZEN to liquid fungi cultures of known ZEN conjugating Aspergillus and Rhizopus strains. Cultivation conditions and ZEN incubation time were varied. All media samples were analyzed for metabolite formation by HPLC-MS/MS. In addition, a consecutive biosynthesis was developed by using Fusarium graminearum for ZEN biosynthesis with subsequent conjugation of the toxin by utilizing Aspergillus and Rhizopus species. ZEN-14-sulfate (yield: 49% is exclusively formed by Aspergillus oryzae. ZEN-14-glucoside (yield: 67% and ZEN-16-glucoside (yield: 39% are formed by Rhizopus oryzae and Rhizopus oligosporus, respectively. Purities of ≥73% ZEN-14-sulfate, ≥82% ZEN-14-glucoside and ≥50% ZEN-16-glucoside were obtained by 1H-NMR. In total, under optimized cultivation conditions, fungi can be easily utilized for a targeted and regioselective synthesis of ZEN conjugates.

  8. Aspects of resistance to fusarium head blight caused by Fusarium culmorum in wheat

    NARCIS (Netherlands)

    Snijders, C.H.A.

    1990-01-01

    In the Netherlands, Fusarium head blight of wheat is predominantly caused by Fusarium culmorum . A low infection level leads to important yield losses and contaminates the grain with mycotoxins, particularly deoxynivalenol. This mycotoxin is suggested to have toxic

  9. Inhibitory effects of antimicrobial agents against Fusarium species.

    Science.gov (United States)

    Kawakami, Hideaki; Inuzuka, Hiroko; Hori, Nobuhide; Takahashi, Nobumichi; Ishida, Kyoko; Mochizuki, Kiyofumi; Ohkusu, Kiyofumi; Muraosa, Yasunori; Watanabe, Akira; Kamei, Katsuhiko

    2015-08-01

    We investigated the inhibitory effects of antibacterial, biocidal, and antifungal agents against Fusarium spp. Seven Fusarium spp: four F. falciforme (Fusarium solani species complex), one Fusarium spp, one Fusarium spp. (Fusarium incarnatum-equiseti species complex), and one F. napiforme (Gibberella fujikuroi species complex), isolated from eyes with fungal keratitis were used in this study. Their susceptibility to antibacterial agents: flomoxef, imipenem, gatifloxacin, levofloxacin, moxifloxacin, gentamicin, tobramycin, and Tobracin® (contained 3,000 μg/ml of tobramycin and 25 μg/ml of benzalkonium chloride (BAK), a biocidal agent: BAK, and antifungal agents: amphotericin B, pimaricin (natamycin), fluconazole, itraconazole, miconazole, voriconazole, and micafungin, was determined by broth microdilution tests. The half-maximal inhibitory concentration (IC50), 100% inhibitory concentration (IC100), and minimum inhibitory concentration (MIC) against the Fusarium isolates were determined. BAK had the highest activity against the Fusarium spp. except for the antifungal agents. Three fluoroquinolones and two aminoglycosides had inhibitory effects against the Fusarium spp. at relatively high concentrations. Tobracin® had a higher inhibitory effect against Fusarium spp. than tobramycin alone. Amphotericin B had the highest inhibitory effect against the Fusarium spp, although it had different degrees of activity against each isolate. Our findings showed that fluoroquinolones, aminoglycosides, and BAK had some degree of inhibitory effect against the seven Fusarium isolates, although these agents had considerably lower effect than amphotericin B. However, the inhibitory effects of amphotericin B against the Fusarium spp. varied for the different isolates. Further studies for more effective medications against Fusarium, such as different combinations of antibacterial, biocidal, and antifungal agents are needed. © The Author 2015. Published by Oxford University Press on

  10. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance.

    Science.gov (United States)

    Zhang, Xincheng; Lin, Li; Chen, Mingyue; Zhu, Zhiqiang; Yang, Weidong; Chen, Bao; Yang, Xiaoe; An, Qianli

    2012-08-30

    Low biomass and shallow root systems limit the application of heavy metal phytoextraction by hyperaccumulators. Plant growth-promoting microbes may enhance hyperaccumulators'phytoextraction. A heavy metal-resistant fungus belonged to the Fusarium oxysporum complex was isolated from the Zn/Cd co-hyperaccumulator Sedum alfredii Hance grown in a Pb/Zn mined area. This Fusarium fungus was not pathogenic to plants but promoted host growth. Hydroponic experiments showed that 500 μM Zn(2+) or 50 μM Cd(2+) combined with the fungus increased root length, branches, and surface areas, enhanced nutrient uptake and chlorophyll synthesis, leading to more vigorous hyperaccumulators with greater root systems. Soil experiments showed that the fungus increased root and shoot biomass and S. alfredii-mediated heavy metal availabilities, uptake, translocation or concentrations, and thus increased phytoextraction of Zn (144% and 44%), Cd (139% and 55%), Pb (84% and 85%) and Cu (63% and 77%) from the original Pb/Zn mined soil and a multi-metal contaminated paddy soil. Together, the nonpathogenic Fusarium fungus was able to increase S. alfredii root systems and function, metal availability and accumulation, plant biomass, and thus phytoextraction efficiency. This study showed a great application potential for culturable indigenous fungi other than symbiotic mycorrhizas to enhance the phytoextraction by hyperaccumulators. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Volatile induction of infected and neighbouring uninfected plants potentially influence attraction/repellence of a cereal herbivore

    Science.gov (United States)

    Plant infection by pathogens can induce volatile organic compounds (VOCs). We infected ‘McNeal’ wheat and ‘Harrington’ barley with a Fusarium spp. blend (graminearum, avenaceum, and culmorum). Both cereals had highest VOC induction 14 d after pathogen introduction, significantly slightly lower induc...

  12. Stability of the Trichothecene, Deoxynivalenol in Processed Foods and Wheat Flake Cereal

    Science.gov (United States)

    Deoxynivalenol (DON) is a trichothecene mycotoxin produced by Fusarium species, principally F. graminearum and F. culmorum. These fungi are natural contaminants of wheat, barley and corn and, consequently, DON is found in cereal-based foods. The effect of thermal processing on DON is variable: som...

  13. Nutrient acquisition and secondary metabolites in plant pathogenic fungi

    DEFF Research Database (Denmark)

    Droce, Aida

    Fusarium graminearum is a necrotrophic plant pathogen that leads to severe infections of cereals contaminating them with mycotoxins harmful to human and animal. Blumeria graminis f. sp. hordei is an obligate biotroph that causes powdery mildew infections of barley. In this thesis, lifecycles and ...

  14. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of molds of the Fusarium genus.

    Science.gov (United States)

    Triest, David; Stubbe, Dirk; De Cremer, Koen; Piérard, Denis; Normand, Anne-Cécile; Piarroux, Renaud; Detandt, Monique; Hendrickx, Marijke

    2015-02-01

    The rates of infection with Fusarium molds are increasing, and a diverse number of Fusarium spp. belonging to different species complexes can cause infection. Conventional species identification in the clinical laboratory is time-consuming and prone to errors. We therefore evaluated whether matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a useful alternative. The 289 Fusarium strains from the Belgian Coordinated Collections of Microorganisms (BCCM)/Institute of Hygiene and Epidemiology Mycology (IHEM) culture collection with validated sequence-based identities and comprising 40 species were used in this study. An identification strategy was developed, applying a standardized MALDI-TOF MS assay and an in-house reference spectrum database. In vitro antifungal testing was performed to assess important differences in susceptibility between clinically relevant species/species complexes. We observed that no incorrect species complex identifications were made by MALDI-TOF MS, and 82.8% of the identifications were correct to the species level. This success rate was increased to 91% by lowering the cutoff for identification. Although the identification of the correct species complex member was not always guaranteed, antifungal susceptibility testing showed that discriminating between Fusarium species complexes can be important for treatment but is not necessarily required between members of a species complex. With this perspective, some Fusarium species complexes with closely related members can be considered as a whole, increasing the success rate of correct identifications to 97%. The application of our user-friendly MALDI-TOF MS identification approach resulted in a dramatic improvement in both time and accuracy compared to identification with the conventional method. A proof of principle of our MALDI-TOF MS approach in the clinical setting using recently isolated Fusarium strains demonstrated its validity. Copyright © 2015

  15. Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identification of Molds of the Fusarium Genus

    Science.gov (United States)

    Stubbe, Dirk; De Cremer, Koen; Piérard, Denis; Normand, Anne-Cécile; Piarroux, Renaud; Detandt, Monique; Hendrickx, Marijke

    2014-01-01

    The rates of infection with Fusarium molds are increasing, and a diverse number of Fusarium spp. belonging to different species complexes can cause infection. Conventional species identification in the clinical laboratory is time-consuming and prone to errors. We therefore evaluated whether matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a useful alternative. The 289 Fusarium strains from the Belgian Coordinated Collections of Microorganisms (BCCM)/Institute of Hygiene and Epidemiology Mycology (IHEM) culture collection with validated sequence-based identities and comprising 40 species were used in this study. An identification strategy was developed, applying a standardized MALDI-TOF MS assay and an in-house reference spectrum database. In vitro antifungal testing was performed to assess important differences in susceptibility between clinically relevant species/species complexes. We observed that no incorrect species complex identifications were made by MALDI-TOF MS, and 82.8% of the identifications were correct to the species level. This success rate was increased to 91% by lowering the cutoff for identification. Although the identification of the correct species complex member was not always guaranteed, antifungal susceptibility testing showed that discriminating between Fusarium species complexes can be important for treatment but is not necessarily required between members of a species complex. With this perspective, some Fusarium species complexes with closely related members can be considered as a whole, increasing the success rate of correct identifications to 97%. The application of our user-friendly MALDI-TOF MS identification approach resulted in a dramatic improvement in both time and accuracy compared to identification with the conventional method. A proof of principle of our MALDI-TOF MS approach in the clinical setting using recently isolated Fusarium strains demonstrated its validity. PMID:25411180

  16. Comparative genomics and transcriptomics of sexual development in a nematode-associated strain of Fusarium neocosmosporiellum

    Science.gov (United States)

    Fusarium neocosmosporiellum (formerly Neocosmospora vasinfecta) is a ubiquitous saprobic fungus that has been isolated from plants, fungi, nematodes, dung and soil. This homothallic species is nested in a clade within the F. solani species complex near a lineage of fusaria farmed by ambrosia beetles...

  17. Genetic mapping of resistance to Fusarium oxysporum f. sp. tulipae in tulip.

    Science.gov (United States)

    Tang, Nan; van der Lee, Theo; Shahin, Arwa; Holdinga, Maarten; Bijman, Paul; Caser, Matteo; Visser, Richard G F; van Tuyl, Jaap M; Arens, Paul

    Fusarium oxysporum is a major problem in the production of tulip bulbs. Breeding for resistant cultivars through a conventional approach is a slow process due to the long life cycle of tulip. Until now, marker-assisted selection (MAS) has been hampered by the large genome size and the absence of a genetic map. This study is aimed at construction of the first genetic map for tulip and at the identification of loci associated with resistance to F. oxysporum . A cross-pollinated population of 125 individuals segregating for Fusarium resistance was obtained from Tulipa gesneriana "Kees Nelis" and T. fosteriana "Cantata." Fusarium resistance of the mapping population was evaluated through a soil infection test in two consecutive years, and a spot inoculation test in which a green fluorescent protein tagged Fusarium strain was used for inoculation. The genetic maps have been constructed for the parents separately. The genetic map of "Kees Nelis" comprised 342 markers on 27 linkage groups covering 1707 cM, while the map of "Cantata" comprised 300 markers on 21 linkage groups covering 1201 cM. Median distance between markers was 3.9 cM for "Kees Nelis" and 3.1 cM for "Cantata." Six putative quantitative trait loci (QTLs) for Fusarium resistance were identified, derived from both parents. QTL2, QTL3, and QTL6 were significant in all disease tests. For the flanking markers of the QTLs, phenotypic means of the two allelic groups, segregating from a parent for such a marker, were significantly different. These markers will be useful for the development of MAS in tulip breeding.

  18. Essential oils from Schinus species of northwest Argentina: Composition and antifungal activity.

    Science.gov (United States)

    Sampietro, Diego A; Belizana, Maria Melina E; Baptista, Zareath P Terán; Vattuone, Marta A; Catalán, Cesar A N

    2014-07-01

    The composition of the essential oils from leaves (Sal) and fruits of S. areira (Saf), and fruits of S. fasciculatus (Sff) and S. gracilipes (Sgf) were analyzed by GC/MS. The major compounds identified were sabinene (26.0 +/- 0.5%), bicyclogermacrene (14.5 +/- 0.4%), and E-citral (6.7+/- 0.2%) in Sal oil, limonene (27.7 +/- 0.7%), sabinene (16.0+/- 0.5%), beta-phellandrene (14.6 +/- 0.8%) and bicyclogermacrene (8.1 +/- 0.2%) in Saf oil, sabinene (22.7 +/- 0.6%), alpha-phellandrene (18.7 +/- 0.3%), beta-phellandrene (15.7 +/- 0.4%), and bicyclogermacrene (8.1 +/- 0.2%) in Sff oil and beta-pinene (25.4 +/- 0.8%), alpha-pinene (24.7 +/- 0.7%), and sabinene (13.6 +/- 0.4%) in Sgf oil.The antifungal activity of the four oils was evaluated on strains of Fusarium verticillioides and F. graminearum, and the results compared with the effect of epoxyconazole, pyraclostrobin and thyme oil. The Sff oil had the highest antifungal activity among the Schinus oils tested, with MIC100 (F. graminearum) = 6 per thousand and MIC100 (F. verticillioides) = 12 per thousand. A principal component analysis suggests that 9 constituents (alpha-thujene, alpha-terpinene, p-cymene, gamma-terpinene, terpinolene, 1-terpineol, alpha-calacorene, alpha-phellandrene, and terpinen-4-ol) explain the higher antifungal effect of Sff. The MIC100s of Schinus oils were on average 30-60 and 8.5-17 fold lower than those obtained for thyme oil on F. verticillioides and F. graminearum, respectively. In the case of commercial fungicides, their MIC100s were three orders of magnitude lower than those of Schinus oils. The last ones showed an additive interaction when assayed in mixtures with the commecial fungicides and thyme oil. The results suggest that the doses of fungicides required for control of the Fusarium species can be reduced when they are assayed in mixtures with the Schinus oils.

  19. Identification and regulation of fusA, the polyketide synthase gene responsible for fusarin production in Fusarium fujikuroi.

    Science.gov (United States)

    Díaz-Sánchez, Violeta; Avalos, Javier; Limón, M Carmen

    2012-10-01

    Fusarins are a class of mycotoxins of the polyketide family produced by different Fusarium species, including the gibberellin-producing fungus Fusarium fujikuroi. Based on sequence comparisons between polyketide synthase (PKS) enzymes for fusarin production in other Fusarium strains, we have identified the F. fujikuroi orthologue, called fusA. The participation of fusA in fusarin biosynthesis was demonstrated by targeted mutagenesis. Fusarin production is transiently stimulated by nitrogen availability in this fungus, a regulation paralleled by the fusA mRNA levels in the cell. Illumination of the cultures results in a reduction of the fusarin content, an effect partially explained by a high sensitivity of these compounds to light. Mutants of the fusA gene exhibit no external phenotypic alterations, including morphology and conidiation, except for a lack of the characteristic yellow and/or orange pigmentation of fusarins. Moreover, the fusA mutants are less efficient than the wild type at degrading cellophane on agar cultures, a trait associated with pathogenesis functions in Fusarium oxysporum. The fusA mutants, however, are not affected in their capacities to grow on plant tissues.

  20. Variability of composition and effects of essential oils from Rhanterium adpressum Coss. & Durieu against mycotoxinogenic Fusarium strains.

    Science.gov (United States)

    Elhouiti, Fatiha; Tahri, Djilali; Takhi, Djalila; Ouinten, Mohamed; Barreau, Christian; Verdal-Bonnin, Marie-Noëlle; Bombarda, Isabelle; Yousfi, Mohamed

    2017-12-01

    The antifungal potency of the essential oils of Rhanterium adpressum was evaluated against four mycotoxigenic strains of the genus Fusarium. The essential oils were obtained, separately, by hydro-distillation of the aerial parts of R. adpressum (leaves and flowers). The parts were collected during the period of bloom (3 months) for 3 years. The GC-MS analysis revealed thirty-six compounds for the essential oils, divided into four classes of chemical compounds, with variable percentages according to the month of extraction. The monoterpene hydrocarbons form the main class in these oils. On the other hand, the highest percentages of the oxygenated compounds are observed in the samples collected during the month of May. The direct contact method was used to evaluate the antifungal activity of the essential oils. The activity can be attributed to their relatively high composition of oxygenated monoterpenes. Flowers extract showed strong inhibitory activity, with very interesting concentrations of IC50 and MIC for both tests on solid and liquid medium. The effect of these oils on the production of type B trichothecenes (TCTBs) was evaluated, showing a significant inhibitory effect on TCTBs production, for both extracts (leaves and flowers). The rates of inhibition were 66-97 and 76-100% of FX, 3-ADON and 15-ADON, respectively. The inhibition of fungal biomass and the production of TCTBs depended on the used concentration of the essential oils. These results suggest that the essential oils from R. adpressum are able to control the growth of the tested strains and their subsequent production of TCTB mycotoxins.

  1. Production of fusarielins by Fusarium

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Akk, Elina; Thrane, Ulf

    2013-01-01

    conditions being: pH6, 25°C, 26days and 60mg fructose/mL. Wheat spikes were inoculated with F. graminearum to determine whether fusarielins are produced in infected cereals and fusarielin H was detected in all samples ranging from 392 to 1865ng/g (mean: 989ng/g) indicating that fusarielins are produced...

  2. IDENTIFICATION OF DIFFERENT FUSARIUM SPP. IN ALLIUM SPP. IN GERMANY.

    Science.gov (United States)

    Boehnke, B; Karlovsky, P; Pfohl, K; Gamliel, A; Isack, Y; Dehne, H W

    2015-01-01

    In 2013 Allium cepa bulbs from different fields in Northern and Southern Germany, seeds and sets from onion breeders were analysed for infestation with Fusarium species. The same investigation was done in 2014 with different edible Allium spp. from local markets. Different Fusarium spp. were isolated and identified by morphological characterisation. 24 different Fusarium spp. were identified. The diversity of Fusarium spp. and the intensity of infestation was higher on edible bulbs compared to the younger sets and seeds. The analysed onions and other edible Allium spp. from local markets showed also high contents of different Fusarium species. The most prevalent identified Fusarium sp. in the analysed Allium spp. in Germany was Fusarium oxysporum which can cause the Fusarium Basal Rot, followed by Fusarium solani. Fusarium proliferatum, which can cause the Fusarium Salmon Blotch in onions, could be detected in about half of the sampled onion fields and in approximately 10% of all analysed onions from fields. Also in the onion sets, on the surface of the seeds and in other edible Allium spp. F. proliferatum could be identified. Besides F. proliferatum, further mycotoxin producing Fusarium spp. like Fusarium equiseti or Fusarium tricinctum were identified. Other Fusarium spp. like Fusarium sporotrichioides and Fusarium poae were first described in Allium sp. in this study. The two most prevalent Fusarium spp. F. oxysporum and F. solani are able to produce mycotoxins like enniatins, fumonisins, moniliformin and T-2 toxins. Fusarium sp. like F. proliferatum, F. equiseti and F. tricinctum are able to produce additional toxins like beauvericins, zearalenone and diacetoscirpenol. This high number of Fusarium spp., which are able to produce a broad spectrum of different mycotoxins, could be a potential health risk for human beings and livestock.

  3. Fulltext PDF

    Indian Academy of Sciences (India)

    2016-05-08

    May 8, 2016 ... Fusarium graminearum, a pathogen of wheat and barley, is a haploid homothallic ascomycete filamentous fungus (Goswami and Kistler 2004). It overwinters as saprophytic hyphae in plant debris and undergoes the sexual cycle in spring to produce fruiting bodies (perithecia) bearing the progeny ...

  4. Stress-induced rearrangement of Fusarium retrotransposon sequences.

    Science.gov (United States)

    Anaya, N; Roncero, M I

    1996-11-27

    Rearrangement of fusarium oxysporum retrotransposon skippy was induced by growth in the presence of potassium chlorate. Three fungal strains, one sensitive to chlorate (Co60) and two resistant to chlorate and deficient for nitrate reductase (Co65 and Co94), were studied by Southern analysis of their genomic DNA. Polymorphism was detected in their hybridization banding pattern, relative to the wild type grown in the absence of chlorate, using various enzymes with or without restriction sites within the retrotransposon. Results were consistent with the assumption that three different events had occurred in strain Co60: genomic amplification of skippy yielding tandem arrays of the element, generation of new skippy sequences, and deletion of skippy sequences. Amplification of Co60 genomic DNA using the polymerase chain reaction and divergent primers derived from the retrotransposon generated a new band, corresponding to one long terminal repeat plus flanking sequences, that was not present in the wild-type strain. Molecular analysis of nitrate reductase-deficient mutants showed that generation and deletion of skippy sequences, but not genomic amplification in tandem repeats, had occurred in their genomes.

  5. Survey of Aspergillus and Fusarium species and their mycotoxins in raw materials and poultry feeds from Córdoba, Argentina.

    Science.gov (United States)

    Monge, María Del Pilar; Magnoli, Carina Elizabeth; Chiacchiera, Stella Maris

    2012-05-01

    The aims of the present work were: (1) to determine both mycobiota in raw materials and finisher poultry feed, as well as the ability to produce aflatoxin B1 by A. flavus strains, and (2) to evaluate the natural co-occurrence of aflatoxins (AFs), fumonisins (FBs), gliotoxin, diacetoxyscirpenol (DAS), HT-2 toxin, and T-2 toxin in poultry feed by LC-MS/MS. Nineteen percent of raw materials and 79% of finisher poultry feed samples exceeded the maximum allowed total fungal count (1 × 10(4) CFU g(-1)) to ensure hygienic quality. Aspergillus flavus was the only species belonging to section Flavi which was isolated while Fusarium verticilliodes was the prevalent species. Forty-seven percent of A. flavus strains were aflatoxin B1 producers and the highest frequency of aflatoxigenic strains was isolated from finisher poultry feeds. Principal component analysis showed that corn grains are closely related with total fungal and Fusarium counts. This positive relationship suggests that total fungal and Fusarium spp. counts in poultry feed might come mainly from corn grains. Regarding poultry feeds, in ground finisher type, Aspergillus spp. counts increased as water activity (aw) diminished. A positive relationship among aw, total fungal and Fusarium spp. counts was observed in both ground finisher and ground starter feed. Several mycotoxins were monitored in feeds by applying the LC MS/MS technique. One hundred percent of poultry samples were contaminated with FB1, and the highest levels were detected in pelleted finisher poultry. AFB1, gliotoxin, DAS, HT-2 toxin, and T-2 toxin were not detected in any poultry feed. The scarcity of available mycotoxicological studies from Argentinean poultry feed using a multitoxin analysis technique enhances the contribution of the findings of this report.

  6. Molecular identification of Fusarium spp. causing wilt of chickpea and the first report of Fusarium redolens in Turkey

    Science.gov (United States)

    Chickpea (Cicer arietinum L.) is an important food legume crop and Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris is one of the most important diseases of chickpea in Turkey. Fusarium redolens is known to cause wilt-like disease of chickpea in other countries, but has not been reported fr...

  7. Higher Fusarium Toxin Accumulation in Grain of Winter Triticale Lines Inoculated with Fusarium culmorum as Compared with Wheat.

    Science.gov (United States)

    Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota

    2016-10-18

    Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain.

  8. Fusarium spp. associated with rice Bakanae: ecology, genetic diversity, pathogenicity and toxigenicity

    DEFF Research Database (Denmark)

    Wulff, E.G.; Sørensen, Jens Laurids; Lubeck, M.

    2010-01-01

    symptoms of Bakanae on rice, some species (i.e. F. fujikuroi) being more pathogenic than others. The ability to produce fumonisins (FB1 and FB2) and gibberellin A3 in vitro also differed according to the Fusarium species. While fumonisins were produced by most of the strains of F. verticillioides and F....... proliferatum, gibberellin A3 was only produced by F. fujikuroi. Neither fumonisin nor gibberellin was synthesized by most of the strains of F. andiyazi. These findings provide new information on the variation within the G. fujikuroi species complex associated with rice seed and Bakanae disease....

  9. Fusarium growth on culture media made of tissue juice from irradiated and unirradiated potato tubers

    International Nuclear Information System (INIS)

    Taczanowski, M.

    1994-01-01

    Fusarium Sulphureum Schlecht is one of the tuber pathogens causing potato storage disease knowing as dry rot. Because irradiation can disturb the tissue defence mechanism against the pathogen, it was decided to carry out experiments on influence of the treatment on subsequent tuber tissue reaction to a maceration process. The maceration as a physical stress was a substitute for the pathogen activity. Tubers of two potato varieties were tested: Mila -a resistant variety to Fusarium and Atol - susceptible one. Tubers of both varieties were irradiated with a dose of 105 kGy. Unirradiated tubers were taken as a control. A day after irradiation the cortex tissue was macerated using an ordinary rasper and the resulted tissue pulp was strained through medical gauze to obtain crude juice. The juice was clarified by centrifugation and then added to dissolved PDA. The volume ratio of juice to PDA was 1:1. The prepared media were dispensed into Petri dishes. Small pieces of the Fusarium culture were put on the surface of the medium at the centre of each Petri dish. Subsequent growth of the fungus was assessed by measurement of culture diameters every 24 hours. Linear functions of the Fusarium growth were obtained for Mila control and Atol control. In the case of Mila, the Fusarium found more favourable conditions for its growth in the presence of juice from irradiated tubers than from the control ones. Making the same comparison for Atol, no difference was detected. (author)

  10. A genotype-by-sequencing-single nucleotide polymorphism based linkage map and quantitative trait loci (QTL) associated with resistance to Fusarium oxysporum f. sp. niveum race 2 identified in Citrullus lanatus var. citroides

    Science.gov (United States)

    Fusarium wilt, a fungal disease caused by Fusarium oxysporum f. sp. niveum (Fon), devastates watermelon crop production worldwide. Several races, which are differentiated by host range, of the pathogen exist. Resistance to Fon race 2, a particularly virulent strain prevalent in the United States, do...

  11. 7 CFR 2.21 - Under Secretary for Research, Education, and Economics.

    Science.gov (United States)

    2010-01-01

    ... with agricultural research efforts to identify compounds in vegetables and fruits that prevent these... caused by Fusarium graminearum and related fungi or Tilletia indica and related fungi (7 U.S.C. 7628... participants in the food programs administered by the Department; and (C) Research on the factors affecting...

  12. Formation of trichothecenes by Fusarium solani var. coeruleum and Fusarium sambucinum in potatoes.

    OpenAIRE

    el-Banna, A A; Scott, P M; Lau, P Y; Sakuma, T; Platt, H W; Campbell, V

    1984-01-01

    Fusarium solani var. coeruleum can form deoxynivalenol in potato tubers and in liquid medium, although concentrations observed in the rot were highly variable; acetyldeoxynivalenol and HT-2 toxin were detected in 1 to 3 tubers only (of 57). Trichothecenes were also detected in a very few (3 of 20) cultures of Fusarium sambucinum in potato tubers.

  13. Effect of temperature and water activity on the production of fumonisins by Aspergillus niger and different Fusarium species

    NARCIS (Netherlands)

    Mogensen, J.M.; Nielsen, K.F.; Samson, R.A.; Frisvad, J.C.; Thrane, U.

    2009-01-01

    ABSTRACT: BACKGROUND: Fumonisins are economically important mycotoxins which until recently were considered to originate from only a few Fusarium species. However recently a putative fumonisin gene cluster was discovered in two different Aspergillus niger strains followed by detection of an actual

  14. Screen for soil fungi highly resistant to dichloroaniline uncovers mostly Fusarium species.

    Science.gov (United States)

    Chan Ho Tong, Laetitia; Dairou, Julien; Bui, Linh-Chi; Bouillon, Julien; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Silar, Philippe

    2015-08-01

    Arylamines are frequent pollutants in soils. Fungi have proven to be efficient in detoxifying these chemicals by acetylating them using arylamine N-acetyl transferase enzymes. Here, we selected from natural soils fungi highly resistant to 3,4-dichloroaniline (DCA). Fusarium species were the most frequently isolated species, especially Fusarium solani. The sequenced strain of F. solani contains five NAT genes, as did all the DCA-resistant isolates. RT-PCR analysis showed that the five genes were expressed in F. solani. Expression of the F. solani genes in Podospora anserina and analysis of acetylation directly in F. solani showed that only the NhNAT2B gene conferred significant resistance to DCA and that F. solani likely uses pathways different from acetylation to resist high doses of DCA, as observed previously for Trichoderma. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The induction of mycotoxins by trichothecene producing Fusarium species.

    Science.gov (United States)

    Lowe, Rohan; Jubault, Mélanie; Canning, Gail; Urban, Martin; Hammond-Kosack, Kim E

    2012-01-01

    In recent years, many Fusarium species have emerged which now threaten the productivity and safety of small grain cereal crops worldwide. During floral infection and post-harvest on stored grains the Fusarium hyphae produce various types of harmful mycotoxins which subsequently contaminate food and feed products. This article focuses specifically on the induction and production of the type B sesquiterpenoid trichothecene mycotoxins. Methods are described which permit in liquid culture the small or large scale production and detection of deoxynivalenol (DON) and its various acetylated derivatives. A wheat (Triticum aestivum L.) ear inoculation assay is also explained which allows the direct comparison of mycotoxin production by species, chemotypes and strains with different growth rates and/or disease-causing abilities. Each of these methods is robust and can be used for either detailed time-course studies or end-point analyses. Various analytical methods are available to quantify the levels of DON, 3A-DON and 15A-DON. Some criteria to be considered when making selections between the different analytical methods available are briefly discussed.

  16. Bioproduction of 3-acetyldeoxynivalenol and its metabolic regulation in the submerged cultures of Fusarium graminearum R 2118

    International Nuclear Information System (INIS)

    Vasavada, A.B.

    1988-01-01

    3-Acetyldeoxynivalenol (3-ADN) is a highly toxic secondary metabolite elaborated by several species of the filamentous fungus, Fusarium. The present research was aimed at investigating the cultural conditions governing the production of 3-ADN, and to elucidate the mechanism and metabolic regulation of the toxin production in submerged cultures. A two-stage submerged culture was developed in which the biosynthetically active mycelium from YEPD medium was transferred to the production medium to achieve as much as 90-105 mg/l 3-ADN. Phosphate inhibition was found to be a regulatory factor in 3-ADN biosynthesis. While Mg +2 and Zn +2 at 1 mM increased 3-ADN yields by 60% and 76% respectively, and Fe +2 at 5 mM doubled 3-ADN yields, Mn +2 completely inhibited 3-ADN biosynthesis at all concentrations used suggesting its regulatory role in the toxin production. Modulation of 3-ADN biosynthesis by using various metabolic inhibitors and stimulators of the TCA cycle, fatty acid biosynthesis, and ergosterol biosynthesis yielded increased levels of 3-ADN possibly by channelling more acetyl Co-A into the toxin production pathway. This was further evidenced by 14 C-acetate pulse-feeding studies where highly labelled 3-ADN was obtained by using known metabolic inhibitors of the competing pathways thereby specifically channelling the label into 3-ADN synthesis

  17. Effector profiles distinguish formae speciales of Fusarium oxysporum.

    Science.gov (United States)

    van Dam, Peter; Fokkens, Like; Schmidt, Sarah M; Linmans, Jasper H J; Kistler, H Corby; Ma, Li-Jun; Rep, Martijn

    2016-11-01

    Formae speciales (ff.spp.) of the fungus Fusarium oxysporum are often polyphyletic within the species complex, making it impossible to identify them on the basis of conserved genes. However, sequences that determine host-specific pathogenicity may be expected to be similar between strains within the same forma specialis. Whole genome sequencing was performed on strains from five different ff.spp. (cucumerinum, niveum, melonis, radicis-cucumerinum and lycopersici). In each genome, genes for putative effectors were identified based on small size, secretion signal, and vicinity to a "miniature impala" transposable element. The candidate effector genes of all genomes were collected and the presence/absence patterns in each individual genome were clustered. Members of the same forma specialis turned out to group together, with cucurbit-infecting strains forming a supercluster separate from other ff.spp. Moreover, strains from different clonal lineages within the same forma specialis harbour identical effector gene sequences, supporting horizontal transfer of genetic material. These data offer new insight into the genetic basis of host specificity in the F. oxysporum species complex and show that (putative) effectors can be used to predict host specificity in F. oxysporum. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Higher Fusarium Toxin Accumulation in Grain of Winter Triticale Lines Inoculated with Fusarium culmorum as Compared with Wheat †

    Science.gov (United States)

    Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota

    2016-01-01

    Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain. PMID:27763547

  19. Metabolomics and Cheminformatics Analysis of Antifungal Function of Plant Metabolites.

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava; Rajagopalan, NandhaKishore; Tulpan, Dan; Loewen, Michele C

    2016-09-30

    Fusarium head blight (FHB), primarily caused by Fusarium graminearum , is a devastating disease of wheat. Partial resistance to FHB of several wheat cultivars includes specific metabolic responses to inoculation. Previously published studies have determined major metabolic changes induced by pathogens in resistant and susceptible plants. Functionality of the majority of these metabolites in resistance remains unknown. In this work we have made a compilation of all metabolites determined as selectively accumulated following FHB inoculation in resistant plants. Characteristics, as well as possible functions and targets of these metabolites, are investigated using cheminformatics approaches with focus on the likelihood of these metabolites acting as drug-like molecules against fungal pathogens. Results of computational analyses of binding properties of several representative metabolites to homology models of fungal proteins are presented. Theoretical analysis highlights the possibility for strong inhibitory activity of several metabolites against some major proteins in Fusarium graminearum , such as carbonic anhydrases and cytochrome P450s. Activity of several of these compounds has been experimentally confirmed in fungal growth inhibition assays. Analysis of anti-fungal properties of plant metabolites can lead to the development of more resistant wheat varieties while showing novel application of cheminformatics approaches in the analysis of plant/pathogen interactions.

  20. Seed abnormalities and associated mycoflora of rain- fed wheat ...

    African Journals Online (AJOL)

    Owner

    seeds with discoloured embryo (germ) (1.2 – 1.5%) and brush (0.25 – 1.25%) ends. Fusarium graminearum and Helminthosporium sativum were associated with all seeds, ... Key words: Fungi, seed health testing, seed discolouration, wheat. INTRODUCTION. Abnormality in seeds is a major constraint in crop production in ...

  1. Nigerian Veterinary Journal - Vol 31, No 4 (2010)

    African Journals Online (AJOL)

    Fusarium graminearum in a Papilloma Virus Infected Friesian Bull in Vom, Nigeria: Case Report · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. IO Fagbamila, CA Meseko, JA Adedeji, SS Ngulukun, Y Akalusi, JS Dalis, BO Akanbi, NJ Zwandor, J Okpara, PI Ankeli, ...

  2. What influences the composition of fungi in wheat grains?

    Directory of Open Access Journals (Sweden)

    Biruta Bankina

    2017-12-01

    Full Text Available Wheat grains are inhabited by different fungi, including plant pathogens and fungi – mycotoxin producers. The composition of seed mycobiota can be influenced by different factors, including agronomic practices, but the results are still contradictory. The aim of this study was to evaluate the mycobiota of wheat grains depending on agroecological conditions. Wheat grains were obtained from a two-factorial field trial: A – tillage system (A1 – ploughing at a depth of 22–24 cm; A2 – harrowing at a depth of up to 10 cm; B – crop rotation (B1 – continuous wheat; B2 – oilseed rape and wheat; B3 – crop rotation. The mycobiota of grain were determined by mycological and molecular methods. The most abundant and widespread of the mycobiota were Pyrenophora tritici-repentis, Alternaria spp., Arthrinium spp., and Fusarium avenaceum. Higher amounts of precipitation increased the infection of grains with Fusarium fungi. Seven species of Fusarium were identified in the grain samples: F. avenaceum, F. poae, F. graminearum, F. culmorum, F. acuminatum, F. sporotrichioides, and F. tricinctum. The soil tillage method and crop rotation did not influence the total incidence of Fusarium spp., but the abundance of a particular species differed depending on agronomic practice. The research suggests that continuous wheat sowing under conditions of reduced soil tillage can increase the level of risk of grain infection with F. graminearum and, consequently, the accumulation of mycotoxins.

  3. Fusarium species as pathogen on orchids.

    Science.gov (United States)

    Srivastava, Shikha; Kadooka, Chris; Uchida, Janice Y

    2018-03-01

    The recent surge in demand for exotic ornamental crops such as orchids has led to a rise in international production, and a sharp increase in the number of plant and plant products moving between countries. Along with the plants, diseases are also being transported and introduced into new areas. Fusarium is one of the major diseases causing pathogens infecting orchids that is spreading through international trade. Studies have identified several species of Fusarium associated with orchids, some are pathogenic and cause symptoms such as leaf and flower spots, leaf or sheath blights, pseudostem or root rots, and wilts. Infection and damage caused by Fusarium reduces the quality of plants and flowers, and can cause severe economic losses. This review documents the current status of the Fusarium-orchid interaction, and illustrates challenges and future perspectives based on the available literature. This review is the first of Fusarium and orchid interactions, and integrates diverse results that both furthers the understanding and knowledge of this disease complex, and will enable the development of effective disease management practices. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Identification of an attenuated barley stripe mosaic virus for the virus-induced gene silencing of pathogenesis-related wheat genes.

    Science.gov (United States)

    Buhrow, Leann M; Clark, Shawn M; Loewen, Michele C

    2016-01-01

    Virus-induced gene silencing (VIGS) has become an emerging technology for the rapid, efficient functional genomic screening of monocot and dicot species. The barley stripe mosaic virus (BSMV) has been described as an effective VIGS vehicle for the evaluation of genes involved in wheat and barley phytopathogenesis; however, these studies have been obscured by BSMV-induced phenotypes and defense responses. The utility of BSMV VIGS may be improved using a BSMV genetic background which is more tolerable to the host plant especially upon secondary infection of highly aggressive, necrotrophic pathogens such as Fusarium graminearum. BSMV-induced VIGS in Triticum aestivum (bread wheat) cv. 'Fielder' was assessed for the study of wheat genes putatively related to Fusarium Head Blight (FHB), the necrotrophism of wheat and other cereals by F. graminearum. Due to the lack of 'Fielder' spike viability and increased accumulation of Fusarium-derived deoxynivalenol contamination upon co-infection of BSMV and FHB, an attenuated BSMV construct was generated by the addition of a glycine-rich, C-terminal peptide to the BSMV γ b protein. This attenuated BSMV effectively silenced target wheat genes while limiting disease severity, deoxynivalenol contamination, and yield loss upon Fusarium co-infection compared to the original BSMV construct. The attenuated BSMV-infected tissue exhibited reduced abscisic, jasmonic, and salicylic acid defense phytohormone accumulation upon secondary Fusarium infection. Finally, the attenuated BSMV was used to investigate the role of the salicylic acid-responsive pathogenesis-related 1 in response to FHB. The use of an attenuated BSMV may be advantageous in characterizing wheat genes involved in phytopathogenesis, including Fusarium necrotrophism, where minimal viral background effects on defense are required. Additionally, the attenuated BSMV elicits reduced defense hormone accumulation, suggesting that this genotype may have applications for the

  5. Control of fusarium moulds and fumonisin B1 in grains by gamma Irradiation * Key words: Irradiated grains, Mycotoxins, Fusarium moulds, Fumonisins

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, N H; Shahin, A A.M.; Mahrous, S R [National Centre for Radiation Research and Technology, Nasr City, Cairo (Egypt); El-Far, F M [Animal Health Research Institute, Dokki, Giza (Egypt)

    2007-07-01

    The distribution of naturally occurring Fusarium moulds producing fumonisin B1 in seeds was determined. Fusarium infection of grain samples ranged from 10 to 60% and F.moniliforme was the predominant species. Fusarium counts in wheat grains were 8.1 x 10{sup 4} cfu/g, 6.3 x 10{sup 6} cfu/g in maize and 4.8 x 10{sup 3} cfu/g in barley. Wheat, maize and barley grains naturally contaminated with varying levels of fumonisin B1 (1.4 - 5.8, 8.0 - 13.8 and 0.1 - 0.5 {mu}g/g, respectively). Fusarium moniliforme and F. proliferatum were the major Fusarium contaminants producing fumonisin B1 . The effect of gamma irradiation on Fusarium moulds and levels of fumonisin B1 were also determined. The viable counts of Fusarium in grains was decreased by increasing the radiation dose levels, and the growth of Fusarium spp was inhibited at 4.0 KGy for barley and 6.0 KGy for wheat and maize. Application of gamma radiation dose at 5 KGy inactivated fumonisin B1 by 96.6, 87.1 and 100% for wheat, maize and barley, respectively, and a dose of 7 KGy was sufficient for complete destruction of fumonisin B1 in wheat and maize.

  6. Control of fusarium moulds and fumonisin B1 in grains by gamma Irradiation * Key words: Irradiated grains, Mycotoxins, Fusarium moulds, Fumonisins

    International Nuclear Information System (INIS)

    Aziz, N.H.; Shahin, A.A.M.; Mahrous, S.R.; El-Far, F.M.

    2007-01-01

    The distribution of naturally occurring Fusarium moulds producing fumonisin B1 in seeds was determined. Fusarium infection of grain samples ranged from 10 to 60% and F.moniliforme was the predominant species. Fusarium counts in wheat grains were 8.1 x 10 4 cfu/g, 6.3 x 10 6 cfu/g in maize and 4.8 x 10 3 cfu/g in barley. Wheat, maize and barley grains naturally contaminated with varying levels of fumonisin B1 (1.4 - 5.8, 8.0 - 13.8 and 0.1 - 0.5 μg/g, respectively). Fusarium moniliforme and F. proliferatum were the major Fusarium contaminants producing fumonisin B1 . The effect of gamma irradiation on Fusarium moulds and levels of fumonisin B1 were also determined. The viable counts of Fusarium in grains was decreased by increasing the radiation dose levels, and the growth of Fusarium spp was inhibited at 4.0 KGy for barley and 6.0 KGy for wheat and maize. Application of gamma radiation dose at 5 KGy inactivated fumonisin B1 by 96.6, 87.1 and 100% for wheat, maize and barley, respectively, and a dose of 7 KGy was sufficient for complete destruction of fumonisin B1 in wheat and maize

  7. A Study on Strategies Applied for Enhancing Anthraquinones Production by Fusarium spp

    International Nuclear Information System (INIS)

    El-Fouly, M.Z.; Shahin, A.A.M.; El-Bialy, H.A.; Alsharqawey, A.A.A.; Hassan, E.A.; Ramadan, E.M.

    2017-01-01

    Sixty Fusarium isolates were selected from different isolation sources and screened for their ability to produce anthraquinones; seventeen of which showed high or a moderate ability to produce anthraquinones. Selected Fusarium isolates were screened for Fusaric acid production to exclude toxin synthesis isolates. F. arthosporoides and F. verticellioides showed the highest anthraquinones production since their production yields were 649.1 and 275.7 μg/g; respectively. The anthraquinones derivatives produced by selected Fusarium strains were characterized by HPLC and GC-MS. The optimization of fermentation conditions for F. arthosporoides revealed that the maximum anthraquinones titer was achieved at 10 days of incubation period, ph 6.5 and 30 ° C and under shaking and light conditions. For F. verticellioides, the highest anthraquinones yield was accomplished after the same incubation period at ph 6.0, 25 °C and under static and dark conditions. Results evaluated the positive effect of ionizing (gamma) and non ionizing (UV) irradiations on the anthraquinones production by F. verticellioides since 0.25 kGy and 50 J/m"2 enhanced the anthraquinone yield by nearly 30%. The antimicrobial and dyeing properties of the produced anthraquinone are also studied. The present study succeeded to reduce the cost of anthraquinones production by using kitchen garbage

  8. Mitochondrial genomes reveal recombination in the presumed asexual Fusarium oxysporum species complex.

    Science.gov (United States)

    Brankovics, Balázs; van Dam, Peter; Rep, Martijn; de Hoog, G Sybren; J van der Lee, Theo A; Waalwijk, Cees; van Diepeningen, Anne D

    2017-09-18

    The Fusarium oxysporum species complex (FOSC) contains several phylogenetic lineages. Phylogenetic studies identified two to three major clades within the FOSC. The mitochondrial sequences are highly informative phylogenetic markers, but have been mostly neglected due to technical difficulties. A total of 61 complete mitogenomes of FOSC strains were de novo assembled and annotated. Length variations and intron patterns support the separation of three phylogenetic species. The variable region of the mitogenome that is typical for the genus Fusarium shows two new variants in the FOSC. The variant typical for Fusarium is found in members of all three clades, while variant 2 is found in clades 2 and 3 and variant 3 only in clade 2. The extended set of loci analyzed using a new implementation of the genealogical concordance species recognition method support the identification of three phylogenetic species within the FOSC. Comparative analysis of the mitogenomes in the FOSC revealed ongoing mitochondrial recombination within, but not between phylogenetic species. The recombination indicates the presence of a parasexual cycle in F. oxysporum. The obstacles hindering the usage of the mitogenomes are resolved by using next generation sequencing and selective genome assemblers, such as GRAbB. Complete mitogenome sequences offer a stable basis and reference point for phylogenetic and population genetic studies.

  9. Evaluation of biocontrol ability of native strains of Trichoderma spp on Rhizoctonia and Fusarium sp in coffee (Coffea arabica in experimental conditions

    Directory of Open Access Journals (Sweden)

    Nina Rudy

    2016-06-01

    Full Text Available Due to the indiscriminate use agrochemicals in conventional agriculture, it is causing pollution problems in the environment (soil, air and water, hence the search for alternatives that contribute to agricultural production by agro-chemical free sustainable production. This paper studies the biological control of damping off in coffee (Coffea arabica by applying antagonistic fungus Trichoderma sp. Under experimental conditions at laboratory facilities of the Academic Unit Carmen Pampa Campesina, a community of Carmen Pampa, Township Coroico. The aim of this study was to biologically control the "damping off", they found two genera that cause damping off in seedbed of coffee: Rhizoctonia sp. and Fusarium sp.To determine the percentage of growth and control in the culture medium, we used the method of counting quarters, where they gave the mycelial growth of antagonistic fungus Trichoderma sp., And the fungal pathogens Rhizoctonia sp. and Fusarium sp. Statistically there was a highly significant difference in the variable growth rate of Trichoderma sp. on pathogenic fungi Rhizoctonia sp. and Fusarium sp. at 3, 6 and 9 days that announces the time factor and treatments are interdependent. The control variable showed a highly significant difference in the time factor and treatment, but the interaction shows no significant difference this makes known factors that are independent, so the fungus Trichoderma sp. not depend on time in treatment, thus showing its inhibitory power to Rhizoctonia sp. and Fusarium sp .. This test gives references that there is antagonistic fungus control on the fungal pathogens Rhizoctonia sp. and Fusarium sp.

  10. Identification and Characterization of Spontaneous Auxotrophic Mutants in Fusarium langsethiae

    Directory of Open Access Journals (Sweden)

    Olga Gavrilova

    2017-03-01

    Full Text Available Analysis of 49 strains of Fusarium langsethiae originating from northern Europe (Russia, Finland, Sweden, UK, Norway, and Latvia revealed the presence of spontaneous auxotrophic mutants that reflect natural intraspecific diversity. Our investigations detected that 49.0% of F. langsethiae strains were auxotrophic mutants for biotin, and 8.2% of the strains required thiamine as a growth factor. They failed to grow on vitamin-free media. For both prototrophic and auxotrophic strains, no growth defect was observed in rich organic media. Without essential vitamins, a significant reduction in the growth of the auxotrophic strains results in a decrease of the formation of T-2 toxin and diacetoxyscirpenol. In addition, all analysed F. langsethiae strains were distinguished into two subgroups based on PCR product sizes. According to our results, 26 and 23 strains of F. langsethiae belong to subgroups I and II respectively. We determined that the deletion in the intergenic spacer (IGS region of the rDNA of F. langsethiae belonging to subgroup II is linked with temperature sensitivity and causes a decrease in strain growth at 30 °C. Four thiamine auxotrophic strains were found in subgroup I, while 21 biotin auxotrophic strains were detected in subgroups II. To the best of our knowledge, the spontaneous mutations in F. langsethiae observed in the present work have not been previously reported.

  11. Fusarium Rot of Orobanche ramosa Parasitizing Tobacco in Southern Italy

    Directory of Open Access Journals (Sweden)

    B. Nanni

    2005-08-01

    Full Text Available In tobacco crops grown in the province of Caserta (southern Italy, we noted, for the first time in Italy, very many broomrape (Orobanche ramosa plants exhibiting mycosis caused by a strain of Fusarium oxysporum that is not pathogenic to tobacco. After a brief description of the symptoms of the disease and its incidence in the field, we discuss, on the basis of the observations made and the data supplied by the literature, the feasibility of using this fungus in programmes to control Orobanche.

  12. Induction of Phytoalexins in Seabrook Sea Island, Pima S-7 and Pima S-6 Cottons after Inoculation with Fusarium oxysporum f. sp. vasinfectum Race-4

    Science.gov (United States)

    In 2002, a strain of Fusarium oxysporum f. sp. vasinfectum was found in California cotton fields and identified as race 4. Stem inoculations with isolates of the California strain (CA Fov-4) do not elicit symptoms in controlled-environmental chamber experiments, while stem inoculations with Fov rac...

  13. Fate of Fusarium Toxins during the Malting Process.

    Science.gov (United States)

    Habler, Katharina; Hofer, Katharina; Geißinger, Cajetan; Schüler, Jan; Hückelhoven, Ralph; Hess, Michael; Gastl, Martina; Rychlik, Michael

    2016-02-17

    Little is known about the fate of Fusarium mycotoxins during the barley malting process. To determine the fungal DNA and mycotoxin concentrations during malting, we used barley grain harvested from field plots that we had inoculated with Fusarium species that produce type A or type B trichothecenes or enniatins. Using a recently developed multimycotoxin liquid chromatography-tandem mass stable isotope dilution method, we identified Fusarium-species-specific behaviors of mycotoxins in grain and malt extracts and compared toxin concentrations to amounts of fungal DNA in the same samples. In particular, the type B trichothecenes and Fusarium culmorum DNA contents were increased dramatically up to 5400% after kilning. By contrast, the concentrations of type A trichothecenes and Fusarium sporotrichioides DNA decreased during the malting process. These data suggest that specific Fusarium species that contaminate the raw grain material might have different impacts on malt quality.

  14. Transforming a NEP1 toxin gene into two Fusarium spp. to enhance mycoherbicide activity on Orobanche--failure and success.

    Science.gov (United States)

    Meir, Sagit; Amsellem, Ziva; Al-Ahmad, Hani; Safran, Einat; Gressel, Jonathan

    2009-05-01

    The NEP1 gene encoding a fungal toxin that successfully conferred hypervirulence when transformed into Colletotrichum coccodes (Wallr.) Hughes attacking Abutilon theophrasti (L.) Medic. was tested to ascertain if it would enhance pathogenicity of Fusarium species to Orobanche aegyptiaca Pers. parasitising crops. None of the Fusarium oxysporum (#CNCM I-1622) NEP1 transformants was hypervirulent. NEP1 transformants of a new but unnamed Fusarium sp. (#CNCM I-1621--previously identified as F. arthrosporioides) killed Orobanche more rapidly than the wild type. Transformed lines of both species were NEP1 PCR positive, as was the wild type of F. oxysporum #CNCM I-1622 and five other formae speciales of F. oxysporum. All six wild-type formae speciales of F. oxysporum tested excrete minute amounts of immunologically and bioassay-detectable NEP1-like protein. NEP1 expression of most F. oxysporum transformants was suppressed, suggesting that the native gene and the transgene silence each other. The sequence of the putative NEP1 gene in Fusarium oxysporum #CNCM I-1622 differs from the sequence in the toxin-overproducing strain of F. oxysporum f. sp. erythroxyli in four or five amino acids in the first exon. Wild-type Fusarium sp. #CNCM I-1621 does not contain a NEP1-like gene, explaining why it seemed amenable to transformation with high expression, and its virulence was probably enhanced by not cosuppressing the endogenous gene as occurred with Fusarium oxysporum #CNCM I-1622.

  15. Studies on sterol-ester hydrolase from Fusarium oxysporum. I. Partial purification and properties.

    Science.gov (United States)

    Okawa, Y; Yamaguchi, T

    1977-05-01

    1. A search for a long chain fatty acyl sterol-ester hydrolase in microorganisms led to the isolation from soil of five strains belonging to Fusarium sp. which produced strong activity in the culture medium. 2. The cholesterol esterase from Fusarium oxysporum IGH-2 was purified about 270-fold by means of CaCl2 precipitation and Sephadex G-75 column chromatography. 3. The cholesterol esterase was activated by adekatol and Triton X-100. It was inhibited by lecithin and lysolecithin, and completely inactivated by heat treatment (60 degrees C for 30 min, at pH 7.0). 4. The optimum pH of the enzyme was found to be around 7.0. 5. Among various cholesterol esters tested, cholesterol linoleate was the most suitable substrate. 6. Cholesterol esters in serum were also hydrolyzed by this enzyme.

  16. Evaluation of Trichoderma spp. and Clonostachys spp. Strains to Control Fusarium circinatum in Pinus radiata Seedlings Evaluación de Cepas de Trichoderma spp. y Clonostachys spp. para Controlar Fusarium circinatum en Plántulas de Pinus radiata

    Directory of Open Access Journals (Sweden)

    Priscila Moraga-Suazo

    2011-09-01

    Full Text Available The fungus Fusarium circinatum Nirenberg & O’Donnell causes pine pitch canker, an important disease for conifers worldwide. F. circinatum was first detected in Chile in 2001 and to date is present in nurseries and clonal hedges from Libertador General Bernardo O’Higgins Region to Los Rios Region. The purpose of this study was to evaluate the potential of Trichoderma spp. and Clonostachys spp. strains to control F. circinatum in Pinus radiata D. Don seedlings in the absence of other effective control methods. Eighty-one Trichoderma spp. and Clonostachys spp. strains were evaluated through in vitro assays to determine their ability to act as antagonists of F. circinatum and 21 strains were tested for their ability to reduce post-emergence mortality and increase P. radiata survival under greenhouse conditions. During in vitro experiments, 15 strains of Trichoderma inhibited mycelial growth of the pathogen by more than 60% and one strain of Clonostachys showed parasitism of F. circinatum hyphae. Greenhouse experiments showed no control of the disease when the antagonists were added to substrate after the pathogen. However, when the antagonists were added before the pathogen, four strains (Clonostachys UDC-32 and UDC-222 and Trichoderma UDC-23 and UDC-408 reduced post-emergence mortality between 80 and 100%. Among these strains, only Clonostachys UDC-222 significantly increased the survival of P. radiata seedlings. These results showed that Clonostachys UDC-222 has the potential to be used as a biocontrol agent against F. circinatum in the production of P. radiata plants.Fusarium circinatum Nirenberg & O’Donnell es el hongo que causa el cancro resinoso del pino, una enfermedad de importancia mundial en coníferas. En Chile, F. cicirnatum fue detectado por primera vez el año 2001 y a la fecha se encuentra presente en algunos viveros y huertos clonales desde la Región del Libertador General Bernardo O’Higgins hasta la Región de Los R

  17. Vegetative compatibility group of Fusarium solani pathogenic to tobacco plant in peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Norhafeez bin Jusoh

    2013-12-01

    Full Text Available Five strains of Fusarium solani isolated from root rot of tobacco from Kelantan and Terengganu, Malaysia were tested for the pathogenicity on tobacco seedlings by root dipping method. All 5 isolates showed discoloration on the roots. The nitrate non-utilizing (nit mutants were generated from these pathogenic strains of F. solani and a compatible nit1 and NitM pair was obtained in each strain. Vegetative Compatible Groups (VCGs by nit mutants were determined. All 5 strains of F. solani were assigned to the independent VCGs. Non-pathogenic strains of F. solani previously isolated from root rot of tobacco in Malaysia also generated nit mutants and were assigned to 10 different VCGs. However, complementation of nit mutants between 5 pathogenic strains and 7 non-pathogenic strains of F. solani was not achieved. Both pathogenic and nonpathogenic strains were assigned to the independent VCGs. This suggested that the isolates of F. solani pathogenic to tobacco were derived from the progenies of crossing in the field. However, perithecium formation was not observed in their cultures.

  18. Photodynamic treatment with phenothiazinium photosensitizers kills both ungerminated and germinated microconidia of the pathogenic fungi Fusarium oxysporum, Fusarium moniliforme and Fusarium solani.

    Science.gov (United States)

    de Menezes, Henrique Dantas; Tonani, Ludmilla; Bachmann, Luciano; Wainwright, Mark; Braga, Gilberto Úbida Leite; von Zeska Kress, Marcia Regina

    2016-11-01

    The search for alternatives to control microorganisms is necessary both in clinical and agricultural areas. Antimicrobial photodynamic treatment (APDT) is a promising light-based approach that can be used to control both human and plant pathogenic fungi. In the present study, we evaluated the effects of photodynamic treatment with red light and four phenothiazinium photosensitizers (PS): methylene blue (MB), toluidine blue O (TBO), new methylene blue N (NMBN) and the phenothiazinium derivative S137 on ungerminated and germinated microconidia of Fusarium oxysporum, F. moniliforme, and F. solani. APDT with each PS killed efficiently both the quiescent ungerminated microconidia and metabolically active germinated microconidia of the three Fusarium species. Washing away the unbound PS from the microconidia (both ungerminated and germinated) before red light exposure reduced but did not prevent the effect of APDT. Subcelullar localization of PS in ungerminated and germinated microconidia and the effects of photodynamic treatment on cell membranes were also evaluated in the three Fusarium species. APDT with MB, TBO, NMBN or S137 increased the membrane permeability in microconidia and APDT with NMBN or S137 increased the lipids peroxidation in microconidia of the three Fusarium species. These findings expand the understanding of photodynamic inactivation of filamentous fungi with phenothiazinium PS. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Penicillium sp. mitigates Fusarium-induced biotic stress in sesame plants.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Pae, Suk-Bok; Shim, Kang-Bo; Baek, In-Youl

    2013-07-01

    Fusarium-infected sesame plants have significantly higher contents of amino acids (Asp, Thr, Ser, Asn, Glu, Gly, Ala, Val, Met, Ile, Leu, Tyr, Phe, Lys, His, Try, Arg, and Pro), compared with their respective levels in the healthy control. These higher levels of amino acids induced by Fusarium infection were decreased when Penicillium was co-inoculated with Fusarium. Compared with the control, Fusarium-infected plants showed higher contents of palmitic (8%), stearic (8%), oleic (7%), and linolenic acids (4%), and lower contents of oil (4%) and linoleic acid (11%). Co-inoculation with Penicillium mitigated the Fusarium-induced changes in fatty acids. The total chlorophyll content was lower in Fusarium- and Penicillium-infected plants than in the healthy control. The accumulation of carotenoids and γ-amino butyric acid in Fusarium-infected plants was slightly decreased by co-inoculation with Penicillium. Sesamin and sesamolin contents were higher in Penicillium- and Fusarium- infected plants than in the control. To clarify the mechanism of the biocontrol effect of Penicillium against Fusarium by evaluating changes in primary and secondary metabolite contents in sesame plants.

  20. Abiotic conditions leading to FUM gene expression and fumonisin accumulation by Fusarium proliferatum strains grown on a wheat-based substrate.

    Science.gov (United States)

    Cendoya, Eugenia; Pinson-Gadais, Laetitia; Farnochi, María C; Ramirez, María L; Chéreau, Sylvain; Marcheguay, Giselè; Ducos, Christine; Barreau, Christian; Richard-Forget, Florence

    2017-07-17

    Fusarium proliferatum produces fumonisins B not only on maize but also on diverse crops including wheat. Using a wheat-based medium, the effects of abiotic factors, temperature and water activity (a W ), on growth, fumonisin biosynthesis, and expression of FUM genes were compared for three F. proliferatum strains isolated from durum wheat in Argentina. Although all isolates showed similar profiles of growth, the fumonisin production profiles were slightly different. Regarding FUM gene transcriptional control, both FUM8 and FUM19 expression showed similar behavior in all tested conditions. For both genes, expression at 25°C correlated with fumonisin production, regardless of the a w conditions. However, at 15°C, these two genes were as highly expressed as at 25°C although the amounts of toxin were very weak, suggesting that the kinetics of fumonisin production was slowed at 15°C. This study provides useful baseline data on conditions representing a low or a high risk for contamination of wheat kernels with fumonisins. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Production of diketopiperazine derivative cyclo (l-leu-l-arg) by streptomyces sp. tn262 after exposure to heat-killed fungus fusarium sp

    International Nuclear Information System (INIS)

    Elleuch, L.; Smaoui, S.; Najah, S.; Sellem, I

    2013-01-01

    In a screening program for new active secondary metabolites producers, a strain of Streptomyces called TN262 was isolated from Tunisian soil and selected for its ability to produce eleven active compounds in pure culture conditions. In this work, the effect of different concentrations of heat-killed fungus Fusarium sp. on the production of active compounds by TN262 strain was studied. The ethyl acetate extract from the culture of Streptomyces sp. TN262 combined with heat-killed Fusarium sp. at 50 micro g/ml inhibited the growth of the three used indicator microorganisms. In fact, an increase of 36%, 21% and 20% in inhibitory activity was obtained against Micrococcus luteus LB 14110, Escherichia coli ATCC 8739 and Fusarium sp. respectively. The HPLC chromatographic profiles of the ethyl acetate extracts from both culture conditions were different and an additional active compound was produced only under induced conditions. This active component was isolated and identified as Cyclo (L-Leu-L-Arg) (1), a diketopiperazine derivative, possessing antibacterial and antifungal activity. Consequently, this study showed that the addition of heat-killed fungus is a useful method for inducing the production of bioactive compounds. (author)

  2. [Enniatin B synthesis by a Fusarium sambucinum Fuck culture].

    Science.gov (United States)

    Minasian, A E; Chermenskiĭ, D N; Ellanskaia, I A

    1978-01-01

    Three fungal strains belonging to the genus Fusarium Lk. ex. Fr. (F. sambucinum Fuck. 52377, F. avenaceum (Fr. Sacc.) 52311, F. gibbosum App. et. Wr. emend Bilai 52021) whcih form 800-1200 mg of enniatin B per litre during submerged cultivation have been selected. The morphology of F. sambucinum 52377 in the course of growth and production of enniatin B on the selected medium is described. The maximum accumulation of the product is found at the stationary growth phase. The active accumulation of fatty inclusions during this period suggests the participation of metabolism of fatty acids in the biosynthesis of enniatin B.

  3. Isolation and identification of biocontrol agent Streptomyces rimosus M527 against Fusarium oxysporum f. sp. cucumerinum.

    Science.gov (United States)

    Lu, Dandan; Ma, Zheng; Xu, Xianhao; Yu, Xiaoping

    2016-08-01

    Actinomycetes have received considerable attention as biocontrol agents against fungal plant pathogens and as plant growth promoters. In this study, a total of 320 actinomycetes were isolated from various habitats in China. Among which, 77 strains have been identified as antagonistic activities against Fusarium oxysporum f. sp. cucumerinum which usually caused fusarium wilt of cucumber. Of these, isolate actinomycete M527 not only displayed broad-spectrum antifungal activity but also showed the strongest antagonistic activity against the spore germination of F. oxysporum f. sp. cucumerinum. In pot experiments, the results indicated that isolate M527 could promote the shoot growth and prevent the development of the disease on cucumber caused by F. oxysporum f. sp. cucumerinum. The control efficacy against seedling fusarium wilt of cucumber after M527 fermentation broth root-irrigation was up to 72.1% as compared to control. Based on 16S rDNA sequence analysis, the isolate M527 was identified as Streptomyces rimosus. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Study on mutagenic breeding of bacillus subtilis and properties of its antifungal substances

    International Nuclear Information System (INIS)

    Liu Jing; Yao Jianming

    2004-01-01

    Bacillus subtilis JA isolated by our laboratory produced a large amount of antifungal substances, which had strong inhibitory activity against various plant pathogenic fungi, such as Rhizoctonia solani, Fusarium graminearum and so on. Ion beam implantation as a new mutagenic methods was applied in our study. After B. subtilis JA was implanted by N + ions, a strain designated as B. Subtilis JA-026 was screened and obtained, which had a higher ability to produce those antifungal substances. A series of experiments indicated that the antifungal substances were thermostable and partially sensitive to proteinases K and tryproteinase. When the fermentating broth was fractionated with ammonium sulphate of a final saturation of 70%, the precipitate enhanced inhibitory activity while the supernatant lost this activity. It appeared that the antifungal substances were likely to be protein. (authors)

  5. Design, Synthesis and Fungicidal Activities of Some Novel Pyrazole Derivatives

    Directory of Open Access Journals (Sweden)

    Xue-Ru Liu

    2014-09-01

    Full Text Available In order to discover new compounds with good fungicidal activities, 32 pyrazole derivatives were designed and synthesized. The structures of the target compounds were confirmed by 1H-NMR, 13C-NMR, and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS, and their fungicidal activities against Botrytis cinerea, Rhizoctonia solani Kuhn, Valsa mali Miyabe et Yamada, Thanatephorus cucumeris (Frank Donk, Fusarium oxysporum (S-chl f.sp. cucumerinum Owen, and Fusarium graminearum Schw were tested. The bioassay results indicated that most of the derivatives exhibited considerable antifungal activities, especially compound 26 containing a p-trifluoromethyl- phenyl moiety showed the highest activity, with EC50 values of 2.432, 2.182, 1.787, 1.638, 6.986, and 6.043 μg/mL against B. cinerea, R. solani, V. mali, T. cucumeris, F. oxysporum, and F. graminearum, respectively. Moreover, the activities of compounds such as compounds 27–32 were enhanced by introducing isothiocyanate and carboxamide moieties to the 5-position of the pyrazole ring.

  6. Genus-Specific Primers for Study of Fusarium Communities in Field Samples

    Science.gov (United States)

    Edel-Hermann, Véronique; Gautheron, Nadine; Durling, Mikael Brandström; Kolseth, Anna-Karin; Steinberg, Christian; Persson, Paula; Friberg, Hanna

    2015-01-01

    Fusarium is a large and diverse genus of fungi of great agricultural and economic importance, containing many plant pathogens and mycotoxin producers. To date, high-throughput sequencing of Fusarium communities has been limited by the lack of genus-specific primers targeting regions with high discriminatory power at the species level. In the present study, we evaluated two Fusarium-specific primer pairs targeting translation elongation factor 1 (TEF1). We also present the new primer pair Fa+7/Ra+6. Mock Fusarium communities reflecting phylogenetic diversity were used to evaluate the accuracy of the primers in reflecting the relative abundance of the species. TEF1 amplicons were subjected to 454 high-throughput sequencing to characterize Fusarium communities. Field samples from soil and wheat kernels were included to test the method on more-complex material. For kernel samples, a single PCR was sufficient, while for soil samples, nested PCR was necessary. The newly developed primer pairs Fa+7/Ra+6 and Fa/Ra accurately reflected Fusarium species composition in mock DNA communities. In field samples, 47 Fusarium operational taxonomic units were identified, with the highest Fusarium diversity in soil. The Fusarium community in soil was dominated by members of the Fusarium incarnatum-Fusarium equiseti species complex, contradicting findings in previous studies. The method was successfully applied to analyze Fusarium communities in soil and plant material and can facilitate further studies of Fusarium ecology. PMID:26519387

  7. Pentamidine is active in vitro against Fusarium species.

    Science.gov (United States)

    Lionakis, Michail S; Lewis, Russell E; Samonis, George; Kontoyiannis, Dimitrios P

    2003-10-01

    Fusariosis is an emerging opportunistic mycosis against which currently used antifungals have limited activity. Here, we investigated the in vitro activities of pentamidine (PNT) against 10 clinical isolates of Fusarium species (five Fusarium solani isolates and five non-F. solani isolates) by using the National Committee for Clinical Laboratory Standards microdilution method in three different media (RPMI, RPMI-2, and a yeast nitrogen base medium), disk diffusion testing, and viability dye staining. PNT had significant activities against all 10 Fusarium isolates. Non-F. solani isolates were more susceptible than F. solani isolates (P Fusarium isolates was confirmed microscopically after staining of PNT-treated Fusarium oxysporum hyphae with the fluorescent viability dyes 5,(6)-carboxyfluorescein diacetate (CFDA) and bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC). The MICs at which 50% of the isolates were inhibited (2 micro g/ml for non-F. solani isolates and 4 micro g/ml for F. solani isolates) and the minimum fungicidal concentration at which 50% of the isolates were killed (8 micro g/ml for non-F. solani isolates) were much lower than the PNT tissue concentrations previously reported in humans using conventional daily intravenous PNT dosing. Finally, PNT was more active against Fusarium isolates in a hypoxic environment of in vitro growth (P Fusarium, an angiotropic mold, causes tissue infarcts with resultant low tissue perfusion. Our findings suggest that PNT may have a role in the management of Fusarium infections. Future in vivo studies are needed to verify these in vitro findings.

  8. Optimization of Xylanase Production through Response Surface Methodology by Fusarium sp. BVKT R2 Isolated from forest soil and its applications in saccharification

    Directory of Open Access Journals (Sweden)

    Ramanjaneyulu Golla

    2016-09-01

    Full Text Available AbstractXylanses are hydrolytic enzymes with wide applications in several industries like biofuels, paper and pulp, deinking, food and feed. The present study was aimed at hitting at high yield xylanase producing fungi from natural resources. Two highest xylanase producing fungal isolates - Q12 and L1were picked from collection of 450 fungal cultures for the utilization of xylan. These fungal isolates - Q12 and L1 were identified basing on ITS gene sequencing analysis as Fusarium sp. BVKT R2 (KT119615 and Fusarium strain BRR R6 (KT119619, respectively with construction of phylogenetic trees. Fusarium sp. BVKT R2 was further optimized for maximum xylanase production and the interaction effects between variables on production of xylanase were studied through response surface methodology. The optimal conditions for maximal production of xylanase were sorbitol 1.5%, yeast extract 1.5%, pH of 5.0, Temperature of 32.5ºC, and agitation of 175 rpm. Under optimal conditions, the yields of xylanase production by Fusarium sp. BVKT R2 was as high as 4560 U/ml in SmF. Incubation of different lignocellulosic biomasses with crude enzyme of Fusarium sp. BVKT R2 at 37°C for 72 h could achieve about 45% saccharification. The results suggest that Fusarium sp. BVKT R2 has potential applications in saccharification process of biomass.Key words: Fusarium sp., Optimization, Response Surface Methodology, Saccharification, Submerged fermentation, Xylanase

  9. Essential oil composition, phytotoxic and antifungal activities of Ruta chalepensis L. leaves from High Atlas Mountains (Morocco).

    Science.gov (United States)

    Bouajaj, Sana; Romane, Abderrahmane; Benyamna, Abdennaji; Amri, Ismail; Hanana, Mohsen; Hamrouni, Lamia; Romdhane, Mehrez

    2014-01-01

    This study aimed at the determination of chemical composition of essential oil obtained by hydrodistillation, and to evaluate their phytotoxic and antifungal activities. Leaves of Ruta chalepensis L. were collected from the region of Tensift Al Haouz (High Atlas Mountains) Marrakech, Morocco. The essential oil (oil yield is 0.56%) was analysed by GC-FID and GC/MS. Twenty-two compounds were identified and accounted for 92.4% of the total oil composition. The major components were undecan-2-one (49.08%), nonan-2-one (33.15%), limonene (4.19%) and decanone (2.71%). Antifungal ability of essential oils was tested by disc agar diffusion against five plant pathogenic fungi: Fusarium proliferatum, Fusarium pseudograminearum, Fusarium culmorum, Fusarium graminearum and Fusarium polyphialidicum. The oils were also tested in vitro for herbicidal activity by determining their influence on the germination and the shoot and root growth of two weed species, Triticum durum and Phalaris canariensis L.

  10. Fusarium Infection in Lung Transplant Patients

    Science.gov (United States)

    Carneiro, Herman A.; Coleman, Jeffrey J.; Restrepo, Alejandro; Mylonakis, Eleftherios

    2013-01-01

    Fusarium is a fungal pathogen of immunosuppressed lung transplant patients associated with a high mortality in those with severe and persistent neutropenia. The principle portal of entry for Fusarium species is the airways, and lung involvement almost always occurs among lung transplant patients with disseminated infection. In these patients, the immunoprotective mechanisms of the transplanted lungs are impaired, and they are, therefore, more vulnerable to Fusarium infection. As a result, fusariosis occurs in up to 32% of lung transplant patients. We studied fusariosis in 6 patients following lung transplantation who were treated at Massachusetts General Hospital during an 8-year period and reviewed 3 published cases in the literature. Cases were identified by the microbiology laboratory and through discharge summaries. Patients presented with dyspnea, fever, nonproductive cough, hemoptysis, and headache. Blood tests showed elevated white blood cell counts with granulocytosis and elevated inflammatory markers. Cultures of Fusarium were isolated from bronchoalveolar lavage, blood, and sputum specimens. Treatments included amphotericin B, liposomal amphotericin B, caspofungin, voriconazole, and posaconazole, either alone or in combination. Lung involvement occurred in all patients with disseminated disease and it was associated with a poor outcome. The mortality rate in this group of patients was high (67%), and of those who survived, 1 patient was treated with a combination of amphotericin B and voriconazole, 1 patient with amphotericin B, and 1 patient with posaconazole. Recommended empirical treatment includes voriconazole, amphotericin B or liposomal amphotericin B first-line, and posaconazole for refractory disease. High-dose amphotericin B is recommended for treatment of most cases of fusariosis. The echinocandins (for example, caspofungin, micafungin, anidulafungin) are generally avoided because Fusarium species have intrinsic resistance to them. Treatment

  11. Comparative studies with regard to the influence of carbon and nitrogen ratio on sporulation in Fusarium oxysporum and Fusarium moniliforme v. subglutinans.

    Science.gov (United States)

    Prasad, M

    1979-01-01

    Carbon/nitrogen ratio as a factor for sporulation, expressed in terms of magnitude of population variation of macroconidia and microconidia in the cultures of Eusarium oxysporum Schlecht ex. Fr., Fusarium moniliforme v. subglutinans Wr. and Rg., and of chlamydospores (only in Fusarium oxysporum) was investigated. It has been found that the amount of carbon source shapes the course of macro- and micro. conidial production in a linear fashion, being enhanced parallel to the increase in its amount-Nitrogen level, limiting proliferation and effectively diminishing the macro- and micro-conidial population, varies for the two species, namely Fusarium oxysporum and Fusarium moniliforme v-subglutinans. For chlamydomspore production, higher carbon and still higher nitrogen concentration favours profuse proliferation in case of Fusarium oxysporum.

  12. Bilateral endogenous Fusarium solani endophthalmitis in a liver-transplanted patient

    DEFF Research Database (Denmark)

    Jørgensen, Jesper Skovlund; Prause, Jan Ulrik; Kiilgaard, Jens Folke

    2014-01-01

    Endogenous Fusarium endophthalmitis is a rare disease predominantly described in immunocompromised patients often due to leukemia. We report a case of bilateral endogenous Fusarium solani endophthalmitis in a liver-transplanted patient.......Endogenous Fusarium endophthalmitis is a rare disease predominantly described in immunocompromised patients often due to leukemia. We report a case of bilateral endogenous Fusarium solani endophthalmitis in a liver-transplanted patient....

  13. Antibody-mediated Prevention of Fusarium Mycotoxins in the Field

    Directory of Open Access Journals (Sweden)

    Yu-Cai Liao

    2008-10-01

    Full Text Available Fusarium mycotoxins directly accumulated in grains during the infection of wheat and other cereal crops by Fusarium head blight (FHB pathogens are detrimental to humans and domesticated animals. Prevention of the mycotoxins via the development of FHB-resistant varieties has been a challenge due to the scarcity of natural resistance against FHB pathogens. Various antibodies specific to Fusarium fungi and mycotoxins are widely used in immunoassays and antibody-mediated resistance in planta against Fusarium pathogens has been demonstrated. Antibodies fused to antifungal proteins have been shown to confer a very significantly enhanced Fusarium resistance in transgenic plants. Thus, antibody fusions hold great promise as an effective tool for the prevention of mycotoxin contaminations in cereal grains. This review highlights the utilization of protective antibodies derived from phage display to increase endogenous resistance of wheat to FHB pathogens and consequently to reduce mycotoxins in field. The role played by Fusarium-specific antibody in the resistance is also discussed.

  14. Glass bead cultivation of fungi

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, H.

    2013-01-01

    Production of bioactive compounds and enzymes from filamentous fungi is highly dependent on cultivation conditions. Here we present an easy way to cultivate filamentous fungi on glass beads that allow complete control of nutrient supply. Secondary metabolite production in Fusarium graminearum...... and Fusarium solani cultivated on agar plates, in shaking liquid culture or on glass beads was compared. Agar plate culture and glass bead cultivation yielded comparable results while liquid culture had lower production of secondary metabolites. RNA extraction from glass beads and liquid cultures was easier...... to specific nutrient factors. •Fungal growth on glass beads eases and improves fungal RNA extraction....

  15. Influence of water activity and temperature on growth and fumonisin production by Fusarium proliferatum strains on irradiated wheat grains.

    Science.gov (United States)

    Cendoya, Eugenia; Monge, María Del Pilar; Chiacchiera, Stella Maris; Farnochi, María Cecilia; Ramirez, María Laura

    2018-02-02

    Wheat is the most important cereal consumed by the Argentine population. In previous studies performed in durum and common wheat grains in this country it has been observed fumonisin contamination as well as high incidence of Fusarium proliferatum. Fumonisins are toxic fungal metabolites, and consumption of fumonisin-contaminated maize has been epidemiologically associated with oesophageal cancer and neural tube defects in some human populations. Using irradiated wheat-grains, the effects of abiotic factors, temperature (15, 25, and 30°C) and water activity (a W ; 0.995, 0.98, 0.96, 0.94, 0.92, and 0.88), on mycelial growth and fumonisin biosynthesis were compared for three F. proliferatum strains isolated from wheat grains in Argentina. Although all isolates showed similar profiles of growth, the fumonisin production profiles were slightly different. Maximum growth rates were obtained at the highest a W (0.995) and 25°C, with growth decreasing as the a W of the medium was reduced. Maximum amounts of total fumonisins (FB 1 , FB 2 and FB 3 ) were produced at 0.995 a W and 15°C for 2 strains, and at 25°C and 0.995 a W for the third one. Fumonisins concentrations varied considerably depending on the a W and temperature interactions assayed. Studied strains showed different fumonisin production profiles. Two-dimensional profiles of a W by temperature interactions were developed from these data to identify areas where conditions indicate a significant risk of fumonisins accumulation on wheat. As a result, temperature and a W conditions that resulted in fumonisins production are those found during wheat grain development (especially milk and dough stages) in the field. This is the first study made using irradiated wheat grains and provides useful baseline data on conditions representing a low or a high risk for fumonisins contamination of wheat grains which is of concern because this cereal is destined mainly for human consumption. Copyright © 2017 Elsevier B.V. All

  16. Pathogenic ability and saline stress tolerance of two Fusarium isolates from Odontesthes bonariensis eggs.

    Science.gov (United States)

    Pacheco Marino, Suani G; Cabello, Marta N; Dinolfo, María I; Stenglein, Sebastián A; Saparrat, Mario C N; Salibián, Alfredo

    2016-01-01

    Several fungal species represent a potential risk to embryos of Odontesthes bonariensis (Cuvier and Valenciennes, 1835), a euryhaline freshwater fish that lives in the Pampean inland waters and has potential economic relevance. To identify two fungi isolated from O. bonariensis eggs exposed to saline conditions and to characterize their pathogenicity and tolerance to sodium chloride solutions. The isolates were identified by morphological features, and a preliminar phylogenetic analysis using sequences of translation elongation factor 1-alpha (EF-1α) and calmodulin (CAM) was performed. Koch's postulates were tested to identify the causative agent of fungal infection. The influence of NaCl on the fungal growth was evaluated in in vitro assays. The isolates LPSC 1001 and 1002 were identified as representatives of the genus Fusarium, and belonging to the Fusarium incarnatum-Fusarium equiseti species complex (FIESC) and the Fusarium solani species complex (FSSC), respectively. Histological observations on eggs exposed in vitro to both isolates in infectivity assays confirmed the ability of the fungal isolates to penetrate to egg's chorionic membrane, leading to the death of embryos. Increasing NaCl concentration in the culture medium reduced the growth of the isolates LPSC 1001 and 1002, being completely inhibited at 160 and 120g/l NaCl respectively. The isolates LPSC 1001 (FIESC) and 1002 (FSSC) were identified as fungal pathogens to O. bonariensis eggs. The use of NaCl solutions as antifungal treatment was not effective to control the infection with these strains. Copyright © 2014 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  17. Genomic comparisons of two Bacillus subtilis biocontrol strains with different modes of actions

    Science.gov (United States)

    Bacillus subtilis strains AS 43.3 and OH131.1 were isolated from wheat anthers and shown to be efficacious in managing Fusarium head blight in greenhouse and some field trials. Chemical analysis of the cell-free culture supernatant identified B. subtilis strain AS 43.3 to be a potent producer of the...

  18. Adventitious sporulation in Fusarium: The yeast that were not

    Directory of Open Access Journals (Sweden)

    Matthew B. Lockwood

    2016-01-01

    Full Text Available In immunocompromised patients, Fusarium species cause infections that lead to high mortality. Our case report describes a case of disseminated fusariosis in a neutropenic patient with AML after myelosuppressive chemotherapy, and a neutropenic multiple myeloma patient with Fusarium fungemia awaiting stem cell collection. Both cases highlight the fact that Fusarium can grow as yeast-like structures in the blood causing a delay in diagnosis, and that Fusarium has a tendency to be a resistant organism. Fusarium was only susceptible to amphotericin B in both cases, but we chose to continue treatment with voriconazole in the first case with disseminated infection, despite culture results, in view of his good clinical response. Despite high mortality rates in disseminated infection, our two patients had good outcomes.

  19. HYPOVIRULENT ISOLATES OF FUSARIUM COLLECTED FROM CHILI CROPS IN BOYOLALI REGENCY, CENTRAL JAVA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Supyani

    2015-02-01

    Full Text Available Fusarium, a genus of filamentous fungi, has many species which serving as important pathogens to many diseases in crops. Till today, there have not been effective and efficient control methods for such fungi. Recently, scientists agree that application of biological agents is a tactful choice. Development of hypovirulent strains of fungus as biocontrol agents is very limited. This research was aimed to find hypovirulent isolates of Fusarium from field as biological agents. A hundred isolates of Fusarium from chili were collected in Boyolali, Central Java. Morphological characterization revealed that isolates performed varied colony phenotypes. Based on colony phenotype pattern, isolates were classified into five groups. From each group, one hypovirulent isolate was selected based on colony growth rate on potato dextrose agar media. The selected hypovirulent isolates were used for virulence assay in apple. The result showed that there were four hypovirulent isolates i.e.: B6, C15, D19, and E20 isolates. Total RNA extraction of the identified hypovirulent isolates revealed the existence of viral RNA in C15 isolate. Based on the existence of viral RNA in C15 isolate, the hypovirulent traits were due to mycoviral infection, whereas the hypovirulent traits performed by the other three were due to genetic factors.

  20. Development of a hydrolysis probe-based real-time assay for the detection of tropical strains of Fusarium oxysporum f. sp. cubense race 4

    Science.gov (United States)

    Cerf-Wendling, Isabelle; Hostachy, Bruno; Viljoen, Altus; Ioos, Renaud

    2017-01-01

    Fusarium oxysporum f. sp. cubense (Foc) is one of the most important threats to global banana production. Strategies to control the pathogen are lacking, with plant resistance offering the only long-term solution, if sources of resistance are available. Prevention of introduction of Foc into disease-free areas thus remains a key strategy to continue sustainable banana production. In recent years, strains of Foc affecting Cavendish bananas have destroyed plantations in a number of countries in Asia and in the Middle East, and one African country. One vegetative compatibility group (VCG), 01213/16, is considered the major threat to bananas in tropical and subtropical climatic conditions. However, other genetically related VCGs, such as 0121, may potentially jeopardize banana cultures if they were introduced into disease-free areas. To prevent the introduction of these VCGs into disease-free Cavendish banana-growing countries, a real-time PCR test was developed to accurately detect both VCGs. A previously described putative virulence gene was used to develop a specific combination of hydrolysis probe/primers for the detection of tropical Foc race 4 strains. The real-time PCR parameters were optimized by following a statistical approach relying on orthogonal arrays and the Taguchi method in an attempt to enhance sensitivity and ensure high specificity of the assay. This study also assessed critical performance criteria, such as repeatability, reproducibility, robustness, and specificity, with a large including set of 136 F. oxysporum isolates, including 73 Foc pathogenic strains representing 24 VCGs. The validation data demonstrated that the new assay could be used for regulatory testing applications on banana plant material and can contribute to preventing the introduction and spread of Foc strains affecting Cavendish bananas in the tropics. PMID:28178348

  1. Production of extracellular lipase by the phytopathogenic fungus Fusarium solani FS1 Produção de lipase extracelular pelo fungo fitopatogênico Fusarium solani FS1

    OpenAIRE

    Maria de Mascena Diniz Maia; Marcia Maria Camargo de Morais; Marcos Antonio de Morais Jr.; Eduardo Henrique Magalhães Melo; José Luiz de Lima Filho

    1999-01-01

    A Brazilian strain of Fusarium solani was tested for extracellular lipase production in peptone-olive oil medium. The fungus produced 10,500 U.l-1 of lipase after 72 hours of cultivation at 25oC in shake-flask at 120 rpm in a medium containing 3% (w/v) peptone plus 0.5% (v/v) olive oil. Glucose (1% w/v) was found to inhibit the inductive effect of olive oil. Peptone concentrations below 3% (w/v) resulted in a reduced lipase production while increased olive oil concentration (above 0.5%) did n...

  2. Fusarium Species and Their Associated Mycotoxins.

    Science.gov (United States)

    Munkvold, Gary P

    2017-01-01

    The genus Fusarium includes numerous toxigenic species that are pathogenic to plants or humans, and are able to colonize a wide range of environments on earth. The genus comprises around 70 well-known species, identified by using a polyphasic approach, and as many as 300 putative species, according to phylogenetic species concepts; many putative species do not yet have formal names. Fusarium is one of the most economically important fungal genera because of yield loss due to plant pathogenic activity; mycotoxin contamination of food and feed products which often render them unaccep for marketing; and health impacts to humans and livestock, due to consumption of mycotoxins. Among the most important mycotoxins produced by species of Fusarium are the trichothecenes and the fumonisins. Fumonisins cause fatal livestock diseases and are considered potentially carcinogenic mycotoxins for humans, while trichothecenes are potent inhibitors of protein synthesis. This chapter summarizes the main aspects of morphology, pathology, and toxigenicity of the main Fusarium species that colonize different agricultural crops and environments worldwide, and cause mycotoxin contamination of food and feed.

  3. Temporal Variation of Mycotoxin Producing Fungi in Norwegian Cereals

    Directory of Open Access Journals (Sweden)

    Leif Sundheim

    2013-12-01

    Full Text Available Spring barley is grown on about half of the Norwegian cereal area. The rest of the area is equally divided between wheat and oats. Most years the domestic production provides 70%–80% of the domestic market for bread wheat. Barley and oats are mainly grown for animal feed. During the years 2008–2012, severe epidemics of Fusarium head blight have led to increased mycotoxin contamination of cereals. During that period, precipitation was above normal during anthesis and grain maturation. The most important mycotoxin producers have been F. avenaceum, F. culmorum, F. graminearum and F. langsethiae. Increased deoxynivalenol contamination of Norwegian cereals during recent years is due to severe F. graminearum epidemics.

  4. PCR identification of Fusarium genus based on nuclear ribosomal ...

    African Journals Online (AJOL)

    We have developed two taxon-selective primers for quick identification of the Fusarium genus. These primers, ITS-Fu-f and ITS-Fu-r were designed by comparing the aligned sequences of internal transcribed spacer regions (ITS) of a range of Fusarium species. The primers showed good specificity for the genus Fusarium, ...

  5. Pengendalian Hayati Penyakit Layu Fusarium Pisang (Fusarium Oxysporum F.sp. Cubense) dengan Trichoderma SP.

    OpenAIRE

    Sudirman, Albertus; Sumardiyono, Christanti; Widyastuti, Siti Muslimah

    2011-01-01

    The aim of this research was to study the inhibiting ability of Trichoderma sp. to control fusarium wilt of banana in greenhouse condition. The experiments consisted of the antagonism test between Trichoderma sp. and Fusarium oxysporum f.sp. cubense (Foc) in vitro using dual culture method and glass house experiment which was arranged in 3×3 Factorial Complete Randomized Design. First factor of the latter experiment was the dose of Trichoderma sp. culture (0, 25, and 50 g per polybag), second...

  6. Comparative Microbiome Analysis of a Fusarium Wilt Suppressive Soil and a Fusarium Wilt Conducive Soil From the Châteaurenard Region

    Directory of Open Access Journals (Sweden)

    Katarzyna Siegel-Hertz

    2018-04-01

    Full Text Available Disease-suppressive soils are soils in which specific soil-borne plant pathogens cause only limited disease although the pathogen and susceptible host plants are both present. Suppressiveness is in most cases of microbial origin. We conducted a comparative metabarcoding analysis of the taxonomic diversity of fungal and bacterial communities from suppressive and non-suppressive (conducive soils as regards Fusarium wilts sampled from the Châteaurenard region (France. Bioassays based on Fusarium wilt of flax confirmed that disease incidence was significantly lower in the suppressive soil than in the conducive soil. Furthermore, we succeeded in partly transferring Fusarium wilt-suppressiveness to the conducive soil by mixing 10% (w/w of the suppressive soil into the conducive soil. Fungal diversity differed significantly between the suppressive and conducive soils. Among dominant fungal operational taxonomic units (OTUs affiliated to known genera, 17 OTUs were detected exclusively in the suppressive soil. These OTUs were assigned to the Acremonium, Chaetomium, Cladosporium, Clonostachys, Fusarium, Ceratobasidium, Mortierella, Penicillium, Scytalidium, and Verticillium genera. Additionally, the relative abundance of specific members of the bacterial community was significantly higher in the suppressive and mixed soils than in the conducive soil. OTUs found more abundant in Fusarium wilt-suppressive soils were affiliated to the bacterial genera Adhaeribacter, Massilia, Microvirga, Rhizobium, Rhizobacter, Arthrobacter, Amycolatopsis, Rubrobacter, Paenibacillus, Stenotrophomonas, and Geobacter. Several of the fungal and bacterial genera detected exclusively or more abundantly in the Fusarium wilt-suppressive soil included genera known for their activity against F. oxysporum. Overall, this study supports the potential role of known fungal and bacterial genera in Fusarium wilt suppressive soils from Châteaurenard and pinpoints new bacterial and fungal

  7. Sharing mutants and experimental information prepublication using FgMutantDb (https://scabusa.org/FgMutantDb).

    Science.gov (United States)

    Baldwin, Thomas T; Basenko, Evelina; Harb, Omar; Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E; Bregitzer, Phil P

    2018-06-01

    There is no comprehensive storage for generated mutants of Fusarium graminearum or data associated with these mutants. Instead, researchers relied on several independent and non-integrated databases. FgMutantDb was designed as a simple spreadsheet that is accessible globally on the web that will function as a centralized source of information on F. graminearum mutants. FgMutantDb aids in the maintenance and sharing of mutants within a research community. It will serve also as a platform for disseminating prepublication results as well as negative results that often go unreported. Additionally, the highly curated information on mutants in FgMutantDb will be shared with other databases (FungiDB, Ensembl, PhytoPath, and PHI-base) through updating reports. Here we describe the creation and potential usefulness of FgMutantDb to the F. graminearum research community, and provide a tutorial on its use. This type of database could be easily emulated for other fungal species. Published by Elsevier Inc.

  8. The complete mitogenome of Fusarium culmorum

    NARCIS (Netherlands)

    Kulik, Tomasz; Brankovics, Balázs; Sawicki, Jakub; van Diepeningen, A.D.

    2015-01-01

    The structure of the Fusarium culmorum mitogenome is similar to that of closely related Fusarium spp.: it has a total length of 103,844 bp, the base composition of the genome is the following: A (35.4%), T (32.9%), C (14.6%), and G (17.1%). The mitogenome contains 13 protein-coding genes, 2

  9. Genetic diversity and antifungal susceptibility of Fusarium isolates in onychomycosis.

    Science.gov (United States)

    Rosa, Priscila D; Heidrich, Daiane; Corrêa, Carolina; Scroferneker, Maria Lúcia; Vettorato, Gerson; Fuentefria, Alexandre M; Goldani, Luciano Z

    2017-09-01

    Fusarium species have emerged as an important human pathogen in skin disease, onychomycosis, keratitis and invasive disease. Onychomycosis caused by Fusarium spp. The infection has been increasingly described in the immunocompetent and immunosuppressed hosts. Considering onychomycosis is a difficult to treat infection, and little is known about the genetic variability and susceptibility pattern of Fusarium spp., further studies are necessary to understand the pathogenesis and better to define the appropriate antifungal treatment for this infection. Accordingly, the objective of this study was to describe the in vitro susceptibility to different antifungal agents and the genetic diversity of 35 Fusarium isolated from patients with onychomycosis. Fusarium spp. were isolated predominantly from female Caucasians, and the most frequent anatomical location was the nail of the hallux. Results revealed that 25 (71.4%) of isolates belonged to the Fusarium solani species complex, followed by 10 (28.5%) isolates from the Fusarium oxysporum species complex. Noteworthy, the authors report the first case of Neocosmospora rubicola isolated from a patient with onychomycosis. Amphotericin B was the most effective antifungal agent against the majority of isolates (60%, MIC ≤4 μg/mL), followed by voriconazole (34.2%, MIC ≤4 μg/mL). In general, Fusarium species presented MIC values >64 μg/mL for fluconazole, itraconazole and terbinafine. Accurate pathogen identification, characterisation and susceptibility testing provide a better understanding of pathogenesis of Fusarium in onychomycosis. © 2017 Blackwell Verlag GmbH.

  10. Evaluation of the Effects of Photodynamic Therapy Alone and Combined with Standard Antifungal Therapy on Planktonic Cells and Biofilms of Fusarium spp. and Exophiala spp.

    Science.gov (United States)

    Gao, Lujuan; Jiang, Shaojie; Sun, Yi; Deng, Meiqi; Wu, Qingzhi; Li, Ming; Zeng, Tongxiang

    2016-01-01

    Infections of Fusarium spp. and Exophiala spp. are often chronic, recalcitrant, resulting in significant morbidity, causing discomfort, disfigurement, social isolation. Systemic disseminations happen in compromised patients, which are often refractory to available antifungal therapies and thereby lead to death. The antimicrobial photodynamic therapy (aPDT) has been demonstrated to effectively inactivate multiple pathogenic fungi and is considered as a promising alternative treatment for mycoses. In the present study, we applied methylene blue (8, 16, and 32 μg/ml) as a photosensitizing agent and light emitting diode (635 ± 10 nm, 12 and 24 J/cm(2)), and evaluated the effects of photodynamic inactivation on five strains of Fusarium spp. and five strains of Exophiala spp., as well as photodynamic effects on in vitro susceptibility to itraconazole, voriconazole, posaconazole and amphotericin B, both planktonic and biofilm forms. Photodynamic therapy was efficient in reducing the growth of all strains tested, exhibiting colony forming unit-reductions of up to 6.4 log10 and 5.6 log10 against planktonic cultures and biofilms, respectively. However, biofilms were less sensitive since the irradiation time was twice longer than that of planktonic cultures. Notably, the photodynamic effects against Fusarium strains with high minimal inhibitory concentration (MIC) values of ≥16, 4-8, 4-8, and 2-4 μg/ml for itraconazole, voriconazole, posaconazole and amphotericin B, respectively, were comparable or even superior to Exophiala spp., despite Exophiala spp. showed relatively better antifungal susceptibility profile. MIC ranges against planktonic cells of both species were up to 64 times lower after aPDT treatment. Biofilms of both species showed high sessile MIC50 (SMIC50) and SMIC80 of ≥16 μg/ml for all azoles tested and variable susceptibilities to amphotericin B, with SMIC ranging between 1 and 16 μg/ml. Biofilms subjected to aPDT exhibited a distinct reduction in

  11. Pengendalian Hayati Penyakit Layu Fusarium Pisang (Fusarium oxysporum f.sp. cubense dengan Trichoderma sp.

    Directory of Open Access Journals (Sweden)

    Albertus Sudirman

    2011-07-01

    Full Text Available The aim of this research was to study the inhibiting ability of Trichoderma sp. to control fusarium wilt of banana in greenhouse condition. The experiments consisted of the antagonism test between Trichoderma sp. and Fusarium oxysporum f.sp. cubense (Foc in vitro using dual culture method and glass house experiment which was arranged in 3×3 Factorial Complete Randomized Design. First factor of the latter experiment was the dose of Trichoderma sp. culture (0, 25, and 50 g per polybag, second factor was time of Trichoderma culture application (2 weeks before Foc inoculation, at same time with Foc inoculation and 2 weeks after Foc inoculation. Trichoderma sp. was cultured in mixed rice brand and chaff medium. The disease intensity was observed with scoring system of wilting leaves (0–4. The results showed that Trichoderma sp. was antagonistic against Foc in vitro and inhibited 86% of Foc colony development. Mechanism of antagonism between Trichoderma sp. and Foc was hyperparasitism. Trichoderma hyphae coiled around Foc hyphae. Lysis of Foc hyphae was occurred at the attached site of Trichoderma hyphae on Foc hyphae. Added banana seedling with Trichoderma sp. Culture reduced disease intensity of Fusarium wilt. Suggested dose of Trichoderma culture application in glass house was 25 g/polybag, given at the same time with Foc inoculation. Penelitian ini bertujuan untuk mengetahui kemampuan Trichoderma sp. untuk pengendalian penyakit layu fusarium pisang di rumah kaca. Penelitian meliputi pengujian daya hambat Fusarium oxysporum f.sp. cubense (Foc in vitro dan kemampuan menekan intensitas penyakit di rumah kaca. Penelitian in vitro meliputi uji antagonisme dan mekanismenya yang dilakukan secara dual culture. Uji pengaruh Trichoderma sp. terhadap penyakit layu Fusarium dilakukan di rumah kaca dengan Rancangan Acak Lengkap Faktorial. Faktor pertama adalah dosis biakan Trichoderma sp., dengan tiga aras (0, 25, 50 g/per bibit dalam polibag. Faktor kedua

  12. Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize

    DEFF Research Database (Denmark)

    Nayaka, S.Chandra; Niranjana, S.R.; Shankar, A.C. Uday

    2010-01-01

    Fusarium verticillioides is one of the most important fungal pathogens in maize causing both pre- and post-harvest losses and also capable of producing Fumonisins. In the present study attempts have been made for screening potential T. harzianum from native rhizosphere and to study its effect...... on Fusarium ear rot disease, fumonisin accumulation in different maize cultivars grown in India. Eight isolates of T. harzianum were isolated and T. harzianum isolate Th-8 exhibited better antifungal activity than carbendizim. Th-8 was formulated in different solid substrates like wheat bran, paddy husk...... of 10 g/kg. Treated seeds were subjected to evaluate F. verticillioides incidence, seed germination, seedling vigour and field emergence, yield, thousand seed weight and fumonisin production. It was found that the pure culture of T. harzianum was more effective in reducing the F. verticillioides...

  13. Multi-locus sequence typing provides epidemiological insights for diseased sharks infected with fungi belonging to the Fusarium solani species complex.

    Science.gov (United States)

    Desoubeaux, Guillaume; Debourgogne, Anne; Wiederhold, Nathan P; Zaffino, Marie; Sutton, Deanna; Burns, Rachel E; Frasca, Salvatore; Hyatt, Michael W; Cray, Carolyn

    2018-07-01

    Fusarium spp. are saprobic moulds that are responsible for severe opportunistic infections in humans and animals. However, we need epidemiological tools to reliably trace the circulation of such fungal strains within medical or veterinary facilities, to recognize environmental contaminations that might lead to infection and to improve our understanding of factors responsible for the onset of outbreaks. In this study, we used molecular genotyping to investigate clustered cases of Fusarium solani species complex (FSSC) infection that occurred in eight Sphyrnidae sharks under managed care at a public aquarium. Genetic relationships between fungal strains were determined by multi-locus sequence typing (MLST) analysis based on DNA sequencing at five loci, followed by comparison with sequences of 50 epidemiologically unrelated FSSC strains. Our genotyping approach revealed that F. keratoplasticum and F. solani haplotype 9x were most commonly isolated. In one case, the infection proved to be with another Hypocrealian rare opportunistic pathogen Metarhizium robertsii. Twice, sharks proved to be infected with FSSC strains with the same MLST sequence type, supporting the hypothesis the hypothesis that common environmental populations of fungi existed for these sharks and would suggest the longtime persistence of the two clonal strains within the environment, perhaps in holding pools and life support systems of the aquarium. This study highlights how molecular tools like MLST can be used to investigate outbreaks of microbiological disease. This work reinforces the need for regular controls of water quality to reduce microbiological contamination due to waterborne microorganisms.

  14. Wheat Intercropping Enhances the Resistance of Watermelon to Fusarium Wilt

    OpenAIRE

    Huifang Lv; Huifang Lv; Haishun Cao; Muhammad A. Nawaz; Hamza Sohail; Yuan Huang; Fei Cheng; Qiusheng Kong; Zhilong Bie

    2018-01-01

    A fungus Fusarium oxysporum F. sp. niveum (FON) is the causal organism of Fusarium wilt in watermelon. In this study, we evaluated the effect of wheat intercropping on the Fusarium wilt of watermelon. Our results showed that wheat intercropping decreases the incidence of Fusarium wilt of watermelon, likely due to the secretion of coumaric acid from the roots of wheat that dramatically inhibits FON spore germination, sporulation, and growth. The secretion of p-hydroxybenzoic acid, ferulic acid...

  15. Characterization of Fusarium isolates from asparagus fields in southwestern Ontario and influence of soil organic amendments on Fusarium crown and root rot.

    Science.gov (United States)

    Borrego-Benjumea, Ana; Basallote-Ureba, María J; Melero-Vara, José M; Abbasi, Pervaiz A

    2014-04-01

    Fusarium crown and root rot (FCRR) of asparagus has a complex etiology with several soilborne Fusarium spp. as causal agents. Ninety-three Fusarium isolates, obtained from plant and soil samples collected from commercial asparagus fields in southwestern Ontario with a history of FCRR, were identified as Fusarium oxysporum (65.5%), F. proliferatum (18.3%), F. solani (6.4%), F. acuminatum (6.4%), and F. redolens (3.2%) based on morphological or cultural characteristics and polymerase chain reaction (PCR) analysis with species-specific primers. The intersimple-sequence repeat PCR analysis of the field isolates revealed considerable variability among the isolates belonging to different Fusarium spp. In the in vitro pathogenicity screening tests, 50% of the field isolates were pathogenic to asparagus, and 22% of the isolates caused the most severe symptoms on asparagus. The management of FCRR with soil organic amendments of pelleted poultry manure (PPM), olive residue compost, and fish emulsion was evaluated in a greenhouse using three asparagus cultivars of different susceptibility in soils infested with two of the pathogenic isolates (F. oxysporum Fo-1.5 and F. solani Fs-1.12). Lower FCRR symptom severity and higher plant weights were observed for most treatments on 'Jersey Giant' and 'Grande' but not on 'Mary Washington'. On all three cultivars, 1% PPM consistently reduced FCRR severity by 42 to 96% and increased plant weights by 77 to 152% compared with the Fusarium control treatment. Populations of Fusarium and total bacteria were enumerated after 1, 3, 7, and 14 days of soil amendment. In amended soils, the population of Fusarium spp. gradually decreased while the population of total culturable bacteria increased. These results indicate that soil organic amendments, especially PPM, can decrease disease severity and promote plant growth, possibly by decreasing pathogen population and enhancing bacterial activity in the soil.

  16. Production of extracellular lipase by the phytopathogenic fungus Fusarium solani FS1

    OpenAIRE

    Maia, Maria de Mascena Diniz; Morais, Marcia Maria Camargo de; Morais Jr., Marcos Antonio de; Melo, Eduardo Henrique Magalhães; Lima Filho, José Luiz de

    1999-01-01

    A Brazilian strain of Fusarium solani was tested for extracellular lipase production in peptone-olive oil medium. The fungus produced 10,500 U.l-1 of lipase after 72 hours of cultivation at 25oC in shake-flask at 120 rpm in a medium containing 3% (w/v) peptone plus 0.5% (v/v) olive oil. Glucose (1% w/v) was found to inhibit the inductive effect of olive oil. Peptone concentrations below 3% (w/v) resulted in a reduced lipase production while increased olive oil concentration (above 0.5%) did n...

  17. Multidrug resistant Fusarium keratitis.

    Science.gov (United States)

    Antequera, P; Garcia-Conca, V; Martín-González, C; Ortiz-de-la-Tabla, V

    2015-08-01

    We report a case of keratitis in a female contact lens wearer, who developed a deep corneal abscess. The culture of a corneal biopsy scraping was positive for multiresistant Fusarium solani. The patient has a complicated clinical course and failed to respond to local and systemic antifungal treatment, requiring eye enucleation. Fusarium keratitis may progress to severe endophthalmitis. Clinical suspicion is paramount in order to start antifungal therapy without delay. Therapy is complex due to the high resistance of this organism to usual antifungal drugs. Copyright © 2014 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  18. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia

    Science.gov (United States)

    Molina, Agustin B.; Daniells, Jeff; Fourie, Gerda; Hermanto, Catur; Chao, Chih-Ping; Fabregar, Emily; Sinohin, Vida G.; Masdek, Nik; Thangavelu, Raman; Li, Chunyu; Yi, Ganyun; Mostert, Lizel; Viljoen, Altus

    2017-01-01

    Fusarium oxysporum formae specialis cubense (Foc) is a soil-borne fungus that causes Fusarium wilt, which is considered to be the most destructive disease of bananas. The fungus is believed to have evolved with its host in the Indo-Malayan region, and from there it was spread to other banana-growing areas with infected planting material. The diversity and distribution of Foc in Asia was investigated. A total of 594 F. oxysporum isolates collected in ten Asian countries were identified by vegetative compatibility groups (VCGs) analysis. To simplify the identification process, the isolates were first divided into DNA lineages using PCR-RFLP analysis. Six lineages and 14 VCGs, representing three Foc races, were identified in this study. The VCG complex 0124/5 was most common in the Indian subcontinent, Vietnam and Cambodia; whereas the VCG complex 01213/16 dominated in the rest of Asia. Sixty-nine F. oxysporum isolates in this study did not match any of the known VCG tester strains. In this study, Foc VCG diversity in Bangladesh, Cambodia and Sri Lanka was determined for the first time and VCGs 01221 and 01222 were first reported from Cambodia and Vietnam. New associations of Foc VCGs and banana cultivars were recorded in all the countries where the fungus was collected. Information obtained in this study could help Asian countries to develop and implement regulatory measures to prevent the incursion of Foc into areas where it does not yet occur. It could also facilitate the deployment of disease resistant banana varieties in infested areas. PMID:28719631

  19. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia.

    Directory of Open Access Journals (Sweden)

    Diane Mostert

    Full Text Available Fusarium oxysporum formae specialis cubense (Foc is a soil-borne fungus that causes Fusarium wilt, which is considered to be the most destructive disease of bananas. The fungus is believed to have evolved with its host in the Indo-Malayan region, and from there it was spread to other banana-growing areas with infected planting material. The diversity and distribution of Foc in Asia was investigated. A total of 594 F. oxysporum isolates collected in ten Asian countries were identified by vegetative compatibility groups (VCGs analysis. To simplify the identification process, the isolates were first divided into DNA lineages using PCR-RFLP analysis. Six lineages and 14 VCGs, representing three Foc races, were identified in this study. The VCG complex 0124/5 was most common in the Indian subcontinent, Vietnam and Cambodia; whereas the VCG complex 01213/16 dominated in the rest of Asia. Sixty-nine F. oxysporum isolates in this study did not match any of the known VCG tester strains. In this study, Foc VCG diversity in Bangladesh, Cambodia and Sri Lanka was determined for the first time and VCGs 01221 and 01222 were first reported from Cambodia and Vietnam. New associations of Foc VCGs and banana cultivars were recorded in all the countries where the fungus was collected. Information obtained in this study could help Asian countries to develop and implement regulatory measures to prevent the incursion of Foc into areas where it does not yet occur. It could also facilitate the deployment of disease resistant banana varieties in infested areas.

  20. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia.

    Science.gov (United States)

    Mostert, Diane; Molina, Agustin B; Daniells, Jeff; Fourie, Gerda; Hermanto, Catur; Chao, Chih-Ping; Fabregar, Emily; Sinohin, Vida G; Masdek, Nik; Thangavelu, Raman; Li, Chunyu; Yi, Ganyun; Mostert, Lizel; Viljoen, Altus

    2017-01-01

    Fusarium oxysporum formae specialis cubense (Foc) is a soil-borne fungus that causes Fusarium wilt, which is considered to be the most destructive disease of bananas. The fungus is believed to have evolved with its host in the Indo-Malayan region, and from there it was spread to other banana-growing areas with infected planting material. The diversity and distribution of Foc in Asia was investigated. A total of 594 F. oxysporum isolates collected in ten Asian countries were identified by vegetative compatibility groups (VCGs) analysis. To simplify the identification process, the isolates were first divided into DNA lineages using PCR-RFLP analysis. Six lineages and 14 VCGs, representing three Foc races, were identified in this study. The VCG complex 0124/5 was most common in the Indian subcontinent, Vietnam and Cambodia; whereas the VCG complex 01213/16 dominated in the rest of Asia. Sixty-nine F. oxysporum isolates in this study did not match any of the known VCG tester strains. In this study, Foc VCG diversity in Bangladesh, Cambodia and Sri Lanka was determined for the first time and VCGs 01221 and 01222 were first reported from Cambodia and Vietnam. New associations of Foc VCGs and banana cultivars were recorded in all the countries where the fungus was collected. Information obtained in this study could help Asian countries to develop and implement regulatory measures to prevent the incursion of Foc into areas where it does not yet occur. It could also facilitate the deployment of disease resistant banana varieties in infested areas.

  1. Identification and pathogenicity assessment of Fusarium spp ...

    African Journals Online (AJOL)

    Durum wheat is the major cereal crop cultivated in Tunisia; covering over 40% of the cereal growing areas. Durum wheat production remains below expectation due to its low productivity that is attributed to the chronically abiotic and biotic stresses. Fusarium head blight (FHB) caused by Fusarium spp. has become an ...

  2. Evaluating Genetic Association between Fusarium and Pythium ...

    African Journals Online (AJOL)

    Resistance to Fusarium root rot (Fusarium solani f.s.p phaseoli) has been reported in common bean (Phaseolus vulgaris L.) sources and is usually associated with Pythium root rot resistance. Pythium root rot (Pythium ultimum var ultimum) resistance is controlled by a single dominant gene, marked by a SCAR marker ...

  3. [Interdigital tinea pedis resulting from Fusarium spp. in Dakar, Senegal].

    Science.gov (United States)

    Diongue, K; Diallo, M A; Ndiaye, M; Seck, M C; Badiane, A S; Ndiaye, D

    2018-03-01

    Fungal interdigital tinea pedis (ITP) is a common pathology mainly due to dermatophytes and yeasts. Fusarium sp. is rarely incriminated in the genesis of intertrigo. In Dakar, a recent study conducted in 2016 on fungal ITP showed that Fusarium were more involved in the etiology of ITP than dermatophytes, coming just after yeasts dominated by Candida. Following this, we wanted to draw attention to the increasing incidence of ITP resulting from Fusarium spp., in Dakar, Senegal, and to analyze the epidemiological and mycological particularities of these ITP due to Fusarium spp. A retrospective study including all patients received at the laboratory for suspicion of ITP between January 1st, 2014 and June 30th, 2017 was conducted. Diagnosis was based on mycological examination, including direct examination and culture. Mycological analysis was considered positive when direct examination and culture were positive after at least one repeat. Twenty-nine cases of Fusarium ITP accounting for 44.6% of all ITP in the study period were diagnosed in 15 men and 14 women. The mean age of the patients was 48.4 years. Fusarium ITP were diagnosed in immunocompetent patients except in two diabetics. The mean duration of the lesions was 6.83 years. The most frequent species isolated belonged to the Fusarium solani complex with 19 cases. Fusarium ITP in a healthy subject requires regular monitoring because any subsequent decrease in immune defenses could lead to fatal hematogenous spread. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Effect van temperatuur op groei en sporulatie van Fusarium foetens : onderzoek naar ontwikkeling en bestrijding/beheersing Fusarium foetens in Begonia

    NARCIS (Netherlands)

    Wubben, J.P.; Bosker, I.; Lanser, C.

    2002-01-01

    Sinds twee jaar wordt in de begoniateelt uitval gevonden veroorzaakt door een nieuwe Fusarium vaatschimmel welke recentelijk de naam Fusarium foetens gekregen heeft. Uitval op verschillende bedrijven is aanzienlijk en aantasting is moeilijk te beheersen en te bestrijden. In dit verslag worden de

  5. Crystallization and preliminary crystallographic analysis of Gibberella zeae extracellular lipase

    International Nuclear Information System (INIS)

    Sun, Yuna; Li, Ming; Zhang, Yan; Liu, Lifang; Liu, Ye; Liu, Zheng; Li, Xumei; Lou, Zhiyong

    2008-01-01

    G. zeae extracellular lipase has been overexpressed, purified and crystallized. Diffraction data were collected to 2.8 Å resolution. Fusarium head blight, one of the most destructive crop diseases, is mainly caused by Fusarium graminearum (known in its sexual stage as Gibberella zeae). F. graminearum secretes various extracellular enzymes that have been hypothesized to be involved in host infection. One of the extracellular enzymes secreted by this organism is the G. zeae extracellular lipase (GZEL), which is encoded by the FGL1 gene. In order to solve the crystal structure of GZEL and to gain a better understanding of the biological functions of the protein and of possible inhibitory mechanisms of lipase inhibitors, recombinant GZEL was crystallized at 291 K using PEG 3350 as a precipitant. A data set was collected to 2.8 Å resolution from a single flash-cooled crystal (100 K). The crystal belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 78.4, b = 91.0, c = 195.8 Å, α = β = γ = 90°. The presence of four molecules was assumed per asymmetric unit, which gave a Matthews coefficient of 2.6 Å 3 Da −1

  6. Synthesis and bioactivities of Phenazine-1-carboxylic acid derivatives based on the modification of PCA carboxyl group.

    Science.gov (United States)

    Xiong, Zhipeng; Niu, Junfan; Liu, Hao; Xu, Zhihong; Li, Junkai; Wu, Qinglai

    2017-05-01

    Phenazine-1-carboxylic acid (PCA) as a natural product widely exists in microbial metabolites of Pseudomonads and Streptomycetes and has been registered for the fungicide against rice sheath blight in China. To find higher fungicidal activities compounds and study the effects on fungicidal activities after changing the carboxyl group of PCA, we synthesized a series of PCA derivatives by modifying the carboxyl group of PCA and their structures were confirmed by 1 H NMR and HRMS. Most compounds exhibited significant fungicidal activities in vitro. In particular, compound 6 exhibited inhibition effect against Rhizoctonia solani with EC 50 values of 4.35mg/L and compound 3b exhibited effect against Fusarium graminearum with EC 50 values of 8.30mg/L, compared to the positive control PCA with its EC 50 values of 7.88mg/L (Rhizoctonia solani) and 127.28mg/L (Fusarium graminearum), respectively. The results indicated that the carboxyl group of PCA could be modified to be amide group, acylhydrazine group, ester group, methyl, hydroxymethyl, chloromethyl and ether group etc. And appropriate modifications on carboxyl group of PCA were useful to extend the fungicidal scope. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Characterization of Novel Di-, Tri-, and Tetranucleotide Microsatellite Primers Suitable for Genotyping Various Plant Pathogenic Fungi with Special Emphasis on Fusaria and Mycospherella graminicola

    Directory of Open Access Journals (Sweden)

    Joseph-Alexander Verreet

    2012-03-01

    Full Text Available The goals of this investigation were to identify and evaluate the use of polymorphic microsatellite marker (PMM analysis for molecular typing of seventeen plant pathogenic fungi. Primers for di-, tri-, and tetranucleotide loci were designed directly from the recently published genomic sequence of Mycospherlla graminicola and Fusarium graminearum. A total of 20 new microsatellite primers as easy-to-score markers were developed. Microsatellite primer PCR (MP-PCR yielded highly reproducible and complex genomic fingerprints, with several bands ranging in size from 200 to 3000 bp. Of the 20 primers tested, only (TAGG4, (TCC5 and (CA7T produced a high number of polymorphic bands from either F. graminearum or F. culmorum. (ATG5 led to successful amplifications in M. graminicola isolates collected from Germany. Percentage of polymorphic bands among Fusarium species ranged from 9 to 100%. Cluster analysis of banding patterns of the isolates corresponded well to the established species delineations based on morphology and other methods of phylogenetic analysis. The current research demonstrates that the newly designed microsatellite primers are reliable, sensitive and technically simple tools for assaying genetic variability in plant pathogenic fungi.

  8. Environmental Influences on Pigeonpea-Fusarium udum Interactions and Stability of Genotypes to Fusarium Wilt

    Science.gov (United States)

    Sharma, Mamta; Ghosh, Raju; Telangre, Rameshwar; Rathore, Abhishek; Saifulla, Muhammad; Mahalinga, Dayananda M.; Saxena, Deep R.; Jain, Yogendra K.

    2016-01-01

    Fusarium wilt (Fusarium udum Butler) is an important biotic constraint to pigeonpea (Cajanus cajan L.) production worldwide. Breeding for fusarium wilt resistance continues to be an integral part of genetic improvement of pigeonpea. Therefore, the study was aimed at identifying and validating resistant genotypes to fusarium wilt and determining the magnitude of genotype × environment (G × E) interactions through multi-environment and multi-year screening. A total of 976 genotypes including germplasm and breeding lines were screened against wilt using wilt sick plot at Patancheru, India. Ninety two genotypes resistant to wilt were tested for a further two years using wilt sick plot at Patancheru. A Pigeonpea Wilt Nursery (PWN) comprising of 29 genotypes was then established. PWN was evaluated at nine locations representing different agro-climatic zones of India for wilt resistance during two crop seasons 2007/08 and 2008/09. Genotypes (G), environment (E), and G × E interactions were examined by biplot which partitioned the main effect into G, E, and G × E interactions with significant levels (p ≤ 0.001) being obtained for wilt incidence. The genotype contributed 36.51% of resistance variation followed by the environment (29.32%). A GGE biplot integrated with a boxplot and multiple comparison tests enabled us to identify seven stable genotypes (ICPL 20109, ICPL 20096, ICPL 20115, ICPL 20116, ICPL 20102, ICPL 20106, and ICPL 20094) based on their performance across diverse environments. These genotypes have broad based resistance and can be exploited in pigeonpea breeding programs. PMID:27014287

  9. Bioactive extracts and chemical constituents of two endophytic strains of Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Andréa M. do Nascimento

    2012-12-01

    Full Text Available Ethyl acetate extracts of cultures grown in liquid Czapek and on solid rice media of the fungal endophyte Fusarium oxysporum SS46 isolated from the medicinal plant Smallanthus sonchifolius (Poepp. H. Rob., Asteraceae, exhibited considerable cytotoxic activity when tested in vitro against human cancer cells. Chromatographic separation yielded anhydrofusarubin (1 and beauvericin (2 that were identified based on their ¹H and 13C NMR data. Compounds 1 and 2 showed the strongest cytotoxic activity against different cancer cell lines. Compound 2 also showed promising activity against Leishmania braziliensis. Hexanic extract of F. oxysporum SS50 grown on solid rice media also afforded a mixture of compounds that displayed cytotoxic activity against different cancer cell lines. Chemical analysis of the mixture of compounds, investigated by gas chromatography-mass spectrometry (GC-MS, showed that there was a predominance of methyl esters of fatty acids and alkanes.

  10. Infection of tubercles of the parasitic weed Orobanche aegyptiaca by mycoherbicidal Fusarium species.

    Science.gov (United States)

    Cohen, Barry A; Amsellem, Ziva; Lev-Yadun, Simcha; Gressel, Jonathan

    2002-11-01

    Progression of the infection by host-specific strains of Fusarium oxysporum and Fusarium arthrosporioides of Orobanche aegyptiaca (Egyptian broomrape) tubercles attached to tomato roots was tracked using light, confocal and electron microscopy. Mycelia transformed with the gene for green fluorescent protein were viewed using a confocal microscope. Fungal penetration was preceded by a rapid loss of starch, with approx. 10 % remaining at 9 h and no measurable starch at 24 h. Penetration into the Orobanche tubercles began by 12 h after inoculation. Hyphae penetrated the outer six cell layers by 24 h, reaching the centre of the tubercles by 48 h and infecting nearly all cells by 72 h. Most of the infected tubercles were dead by 96 h. Breakdown of cell walls and the disintegration of cytoplasm in and around the infected cells occurred between 48 and 96 h. Lignin-like material increased in tubercle cells of infected tissues over time, but did not appear to be effective in limiting fungal penetration or spread. Callose, suberin, constitutive toxins and phytoalexins were not detected in infected tubercles, suggesting that there are no obvious defence mechanisms to overcome. Both Fusarium spp. pathogenic on Orobanche produced fumonisin-like ceramide synthase inhibitors, while fusaric acid was produced only by F. oxysporum in liquid culture. The organisms do not have sufficient virulence for field use (based on glasshouse testing), suggesting that virulence should be transgenically enhanced or additional isolates sought.

  11. Integrated Metabolo-Transcriptomics Reveals Fusarium Head Blight Candidate Resistance Genes in Wheat QTL-Fhb2.

    Directory of Open Access Journals (Sweden)

    Dhananjay Dhokane

    Full Text Available Fusarium head blight (FHB caused by Fusarium graminearum not only causes severe losses in yield, but also reduces quality of wheat grain by accumulating mycotoxins. Breeding for host plant resistance is considered as the best strategy to manage FHB. Resistance in wheat to FHB is quantitative in nature, involving cumulative effects of many genes governing resistance. The poor understanding of genetics and lack of precise phenotyping has hindered the development of FHB resistant cultivars. Though more than 100 QTLs imparting FHB resistance have been reported, none discovered the specific genes localized within the QTL region, nor the underlying mechanisms of resistance.In our study recombinant inbred lines (RILs carrying resistant (R-RIL and susceptible (S-RIL alleles of QTL-Fhb2 were subjected to metabolome and transcriptome profiling to discover the candidate genes. Metabolome profiling detected a higher abundance of metabolites belonging to phenylpropanoid, lignin, glycerophospholipid, flavonoid, fatty acid, and terpenoid biosynthetic pathways in R-RIL than in S-RIL. Transcriptome analysis revealed up-regulation of several receptor kinases, transcription factors, signaling, mycotoxin detoxification and resistance related genes. The dissection of QTL-Fhb2 using flanking marker sequences, integrating metabolomic and transcriptomic datasets, identified 4-Coumarate: CoA ligase (4CL, callose synthase (CS, basic Helix Loop Helix (bHLH041 transcription factor, glutathione S-transferase (GST, ABC transporter-4 (ABC4 and cinnamyl alcohol dehydrogenase (CAD as putative resistance genes localized within the QTL-Fhb2 region.Some of the identified genes within the QTL region are associated with structural resistance through cell wall reinforcement, reducing the spread of pathogen through rachis within a spike and few other genes that detoxify DON, the virulence factor, thus eventually reducing disease severity. In conclusion, we report that the wheat

  12. A functional bikaverin biosynthesis gene cluster in rare strains of Botrytis cinerea is positively controlled by VELVET.

    Directory of Open Access Journals (Sweden)

    Julia Schumacher

    Full Text Available The gene cluster responsible for the biosynthesis of the red polyketidic pigment bikaverin has only been characterized in Fusarium ssp. so far. Recently, a highly homologous but incomplete and nonfunctional bikaverin cluster has been found in the genome of the unrelated phytopathogenic fungus Botrytis cinerea. In this study, we provided evidence that rare B. cinerea strains such as 1750 have a complete and functional cluster comprising the six genes orthologous to Fusarium fujikuroi ffbik1-ffbik6 and do produce bikaverin. Phylogenetic analysis confirmed that the whole cluster was acquired from Fusarium through a horizontal gene transfer (HGT. In the bikaverin-nonproducing strain B05.10, the genes encoding bikaverin biosynthesis enzymes are nonfunctional due to deleterious mutations (bcbik2-3 or missing (bcbik1 but interestingly, the genes encoding the regulatory proteins BcBIK4 and BcBIK5 do not harbor deleterious mutations which suggests that they may still be functional. Heterologous complementation of the F. fujikuroi Δffbik4 mutant confirmed that bcbik4 of strain B05.10 is indeed fully functional. Deletion of bcvel1 in the pink strain 1750 resulted in loss of bikaverin and overproduction of melanin indicating that the VELVET protein BcVEL1 regulates the biosynthesis of the two pigments in an opposite manner. Although strain 1750 itself expresses a truncated BcVEL1 protein (100 instead of 575 aa that is nonfunctional with regard to sclerotia formation, virulence and oxalic acid formation, it is sufficient to regulate pigment biosynthesis (bikaverin and melanin and fenhexamid HydR2 type of resistance. Finally, a genetic cross between strain 1750 and a bikaverin-nonproducing strain sensitive to fenhexamid revealed that the functional bikaverin cluster is genetically linked to the HydR2 locus.

  13. Plant diversity and plant identity influence Fusarium communities in soil.

    Science.gov (United States)

    LeBlanc, Nicholas; Kinkel, Linda; Kistler, H Corby

    2017-01-01

    Fusarium communities play important functional roles in soil and in plants as pathogens, endophytes, and saprotrophs. This study tests how rhizosphere Fusarium communities may vary with plant species, changes in the diversity of the surrounding plant community, and soil physiochemical characteristics. Fusarium communities in soil associated with the roots of two perennial prairie plant species maintained as monocultures or growing within polyculture plant communities were characterized using targeted metagenomics. Amplicon libraries targeting the RPB2 locus were generated from rhizosphere soil DNAs and sequenced using pyrosequencing. Sequences were clustered into operational taxonomic units (OTUs) and assigned a taxonomy using the Evolutionary Placement Algorithm. Fusarium community composition was differentiated between monoculture and polyculture plant communities, and by plant species in monoculture, but not in polyculture. Taxonomic classification of the Fusarium OTUs showed a predominance of F. tricinctum and F. oxysporum as well of the presence of a clade previously only found in the Southern Hemisphere. Total Fusarium richness was not affected by changes in plant community richness or correlated with soil physiochemical characteristics. However, OTU richness within two predominant phylogenetic lineages within the genus was positively or negatively correlated with soil physiochemical characteristics among samples within each lineage. This work shows that plant species, plant community richness, and soil physiochemical characteristics may all influence the composition and richness of Fusarium communities in soil.

  14. Integrated management of Fusarium wilt of chickpea (Cicer ...

    African Journals Online (AJOL)

    user

    2013-07-17

    Jul 17, 2013 ... Key words: Integrated management, Fusarium wilt, Fusarium oxysporum f. sp. ciceris, chickpea (Cicer arietinum L.), antagonists, botanicals, fungicides. INTRODUCTION. Chickpea (Cicer arietinum L.) is a vital source of plant- derived edible protein in many countries. Chickpea also has advantages in the ...

  15. Cloning of a novel xylanase gene from a newly isolated Fusarium sp. Q7-31 and its expression in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Zhan-Ling Xie

    2012-03-01

    Full Text Available A strain of Q7-31 was isolated from Qinghai-Tibet Plateau and was identified as Fusarium sp. based on its morphological characteristics and ITS rDNA gene sequence analysis. It has the highest capacity of degrading cell wall activity compared with other 11 strains. To do research on its xylanase activity of Fusarium sp. Q7-31 while the degrading the rice cell walls, the complete gene xyn8 that encodes endo-1, 4-β-xylanase secreted by Fusarium sp. Q7-31 was cloned and sequenced. The coding region of the gene is separated by two introns of 56bp and 55bp. It encodes 230 amino acid residues of a protein with a calculated molecular weight of 25.7 kDa. The animo acids sequence of xyn8 gene has higher similarity with those of family 11 of glycosyl hydrolases reported from other microorganisms. The nature peptide encodeing cDNA was subcloned into pGEX5x-1 expression vector. The recombinant plasmid was expressed in Escherichia coli BL21-CodonPlus (DE3-RIL, and xylanase activity was measured. The expression fusion protein was identified by SDS-PAGE and Western blotting, a new specific band of about 52kDa was identified when induced by IPTG. Enzyme activity assay verified the recombinants proteins as a xylanase. A maxium activity of 2.34U/ mg, the xylanase had optimal activity at pH 6.0 and temperature 40ºC .

  16. Use of AFLPs to differentiate between Fusarium species causing ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Fusarium spp. and. Helmintosporium sativum) diseases are common. The aim of this study was to use the AFLP technique to determine variation and genetic relationships between Syrian Fusarium isolates; and compare them.

  17. Original Article. Geographic distribution of Fusarium culmorum chemotypes associated with wheat crown rot in Iraq

    Directory of Open Access Journals (Sweden)

    Matny Oadi N.

    2016-08-01

    Full Text Available Fusarium crown rot (FCR is an important disease of wheat and other grains that has had a significant impact on cereal crop production worldwide. Fusarium species associated with FCR can also produce powerful trichothecenes mycotoxins that pose a considerable health risk to humans and animals that consume infected grains. In this study we examined Fusarium species of wheat from different regions of Iraq that showed FCR symptoms. Twenty-nine isolates were collected overall, and the marker gene translation elongation factor 1 alpha (TEF-1α was sequenced in order to determine their taxonomic identities. All isolates were determined to be F. culmorum, and primers targeting tri-cluster genes were used in order to further characterize isolates into specific trichothecene chemotype strains. Five of the 29 isolates were determined to be the nivalenol (NIV chemotype, while the rest of the isolates recovered were the deoxynivalenol (DON chemotype. All DON-type isolates produced 3Ac-DON, while the 15Ac-DON-type was not detected. The majority of the NIV-type isolates originated from wheat growing regions in the mid-latitudes of Iraq, while the DON-type isolates were recovered from areas distributed broadly across the country. To the best of our knowledge, this study is the first to report on the distribution of specific F. culmorum chemotypes from FCR diseased wheat in Iraq.

  18. Influence of Carbohydrates on Secondary Metabolism in Fusarium avenaceum

    Directory of Open Access Journals (Sweden)

    Jens Laurids Sørensen

    2013-09-01

    Full Text Available Fusarium avenaceum is a widespread pathogen of important crops in the temperate climate zones that can produce many bioactive secondary metabolites, including moniliformin, fusarin C, antibiotic Y, 2-amino-14,16-dimethyloctadecan-3-ol (2-AOD-3-ol, chlamydosporol, aurofusarin and enniatins. Here, we examine the production of these secondary metabolites in response to cultivation on different carbon sources in order to gain insight into the regulation and production of secondary metabolites in F. avenaceum. Seven monosaccharides (arabinose, xylose, fructose, sorbose, galactose, mannose, glucose, five disaccharides (cellobiose, lactose, maltose, sucrose and trehalose and three polysaccharides (dextrin, inulin and xylan were used as substrates. Three F. avenaceum strains were used in the experiments. These were all able to grow and produce aurofusarin on the tested carbon sources. Moniliformin and enniatins were produced on all carbon types, except on lactose, which suggest a common conserved regulation mechanism. Differences in the strains was observed for production of fusarin C, 2-AOD-3-ol, chlamydosporol and antibiotic Y, which suggests that carbon source plays a role in the regulation of their biosynthesis.

  19. Influence of carbohydrates on secondary metabolism in Fusarium avenaceum.

    Science.gov (United States)

    Sørensen, Jens Laurids; Giese, Henriette

    2013-09-24

    Fusarium avenaceum is a widespread pathogen of important crops in the temperate climate zones that can produce many bioactive secondary metabolites, including moniliformin, fusarin C, antibiotic Y, 2-amino-14,16-dimethyloctadecan-3-ol (2-AOD-3-ol), chlamydosporol, aurofusarin and enniatins. Here, we examine the production of these secondary metabolites in response to cultivation on different carbon sources in order to gain insight into the regulation and production of secondary metabolites in F. avenaceum. Seven monosaccharides (arabinose, xylose, fructose, sorbose, galactose, mannose, glucose), five disaccharides (cellobiose, lactose, maltose, sucrose and trehalose) and three polysaccharides (dextrin, inulin and xylan) were used as substrates. Three F. avenaceum strains were used in the experiments. These were all able to grow and produce aurofusarin on the tested carbon sources. Moniliformin and enniatins were produced on all carbon types, except on lactose, which suggest a common conserved regulation mechanism. Differences in the strains was observed for production of fusarin C, 2-AOD-3-ol, chlamydosporol and antibiotic Y, which suggests that carbon source plays a role in the regulation of their biosynthesis.

  20. Down-regulatory effect of Thymus vulgaris L. on growth and Tri4 gene expression in Fusarium oxysporum strains.

    Science.gov (United States)

    Divband, Kolsum; Shokri, Hojjatollah; Khosravi, Ali Reza

    2017-03-01

    The aims of this study were to evaluate the efficacy of Thymus vulgaris (T. vulgaris) essential oil on the fungal growth and Tri4 gene expression in Fusarium oxysporum (F. oxysporum) strains. The oil was obtained by water-distillation using a Clevenger-type system. The chemical composition of the essential oil was obtained by gas chromatography- mass spectroscopy (GC-MS) and by retention indices. The antifungal activity was evaluated by broth microdilution assay. A quantitative real time RT-PCR (qRT-PCR) assay was also developed specific for F. oxysporum on the basis of trichothecene biosynthetic gene, Tri4, which allowed discrimination from F. oxysporum. Results showed thymol (32.67%) and p-cymene (16.68%) as the main components of T. vulgaris. Minimum inhibitory concentration (MIC) values varied from 5 to 20 μg/ml with T. vulgaris (mean: 10.50 μg/ml), while minimum fungicidal concentration (MFC) values ranged from 8 to 30 μg/ml with mean value of 16.20 μg/ml qRT-PCR results revealed a downregulation from 4.04 to 6.27 fold of Tri4 gene expression of the fungi exposed to T. vulgaris essential oil. The results suggest that T. vulgaris oil can be considered potential alternative natural fungicide to the synthetic chemicals that are currently used to prevent and control seed-borne diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.