WorldWideScience

Sample records for furnace sorbent injection

  1. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  2. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL; SEMIANNUAL

    International Nuclear Information System (INIS)

    Gary M. Blythe

    2002-01-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO(sub X) selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO(sub 3) formed across the SCR system installed on the unit for NO(sub X) control than at removing SO(sub 3) formed in the furnace. The SO(sub 3) removal results were presented in the

  3. Characterization of calcium carbonate sorbent particle in furnace environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Soo [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Jung, Jae Hee [Environment Sensor System Research Center, KIST 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791 (Korea, Republic of); Keel, Sang In; Yun, Jin Han; Min, Tai Jin [Environmental Systems Research Division, KIMM 104 Sinseongno, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Kim, Sang Soo, E-mail: sskim@kaist.ac.kr [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2012-07-01

    The oxy-fuel combustion system is a promising technology to control CO{sub 2} and NO{sub X} emissions. Furthermore, sulfation reaction mechanism under CO{sub 2}-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO{sub 3}) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO{sub 3}, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO{sub 3} sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO{sub 2} atmosphere due to the higher CO{sub 2} partial pressure. Instead, the sintering effect was dominant in the CO{sub 2} atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain-subgrain structure model in both the air and CO{sub 2} atmospheres.

  4. Characterization of calcium carbonate sorbent particle in furnace environment

    International Nuclear Information System (INIS)

    Lee, Kang Soo; Jung, Jae Hee; Keel, Sang In; Yun, Jin Han; Min, Tai Jin; Kim, Sang Soo

    2012-01-01

    The oxy-fuel combustion system is a promising technology to control CO 2 and NO X emissions. Furthermore, sulfation reaction mechanism under CO 2 -rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO 3 ) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO 3 , which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO 3 sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO 2 atmosphere due to the higher CO 2 partial pressure. Instead, the sintering effect was dominant in the CO 2 atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain–subgrain structure model in both the air and CO 2 atmospheres.

  5. Retrofit acid gas emission control for municipal waste incineration application of dry sorbent injection

    International Nuclear Information System (INIS)

    Zmuda, J.T.; Smith, P.V.

    1991-01-01

    Dry sorbent injection (DSI) has been successfully demonstrated on coal fired boiler applications as a means of reducing sulfur dioxide emissions. More recently, the dry sorbent injection process was applied to an existing municipal waste incinerator to provide acid gas emission controls. The results obtained from the successful demonstration of the sorbent injection system on an existing municipal incinerator are presented. Removal efficiencies of compounds such as HCl, SO 2 , SO 3 , mercury, and others by the use of sorbent injection are shown. Effects of the DSI system on downstream equipment, such as electrostatic precipitators, fabric filters, ash handling systems, and waste management is included. The impacts of the DSI system on the furnace is also discussed. In this paper a discussion of dry sorbent injection as a means of reducing acid gas and other emissions from existing municipal waste incinerators which may be affected by the regulations is presented. An application case study will outline typical exhaust conditions, expected pollution reductions, capital and operating costs, and type of available sorbents and their costs

  6. Laboratory study on the high-temperature capture of HCl gas by dry-injection of calcium-based sorbents.

    Science.gov (United States)

    Shemwell, B; Levendis, Y A; Simons, G A

    2001-01-01

    This is a laboratory study on the reduction of combustion-generated hydrochloric acid (HCl) emissions by in-furnace dry-injection of calcium-based sorbents. HCl is a hazardous gaseous pollutant emitted in significant quantities by municipal and hazardous waste incinerators, coal-fired power plants, and other industrial furnaces. Experiments were conducted in a laboratory furnace at gas temperatures of 600-1000 degrees C. HCl gas diluted with N2, and sorbent powders fluidized in a stream of air were introduced into the furnace concurrently. Chlorination of the sorbents occurred in the hot zone of the furnace at gas residence times approximately 1 s. The sorbents chosen for these experiments were calcium formate (CF), calcium magnesium acetate (CMA), calcium propionate (CP), calcium oxide (CX), and calcium carbonate (CC). Upon release of organic volatiles, sorbents calcine to CaO at approximately 700 degrees C, and react with the HCl according to the reaction CaO + 2HCl CaCl2 + H2O. At the lowest temperature case examined herein, 600 degrees C, direct reaction of HCl with CaCO3 may also be expected. The effectiveness of the sorbents to capture HCl was interpreted using the "pore tree" mathematical model for heterogeneous diffusion reactions. Results show that the thin-walled, highly porous cenospheres formed from the pyrolysis and calcination of CF, CMA, and CP exhibited high relative calcium utilization at the upper temperatures of this study. Relative utilizations under these conditions reached 80%. The less costly low-porosity sorbents, calcium carbonate and calcium oxide also performed well. Calcium carbonate reached a relative utilization of 54% in the mid-temperature range, while the calcium oxide reached an 80% relative utilization at the lowest temperature examined. The data matched theoretical predictions of sorbent utilization using the mathematical model, with activation energy and pre-exponential factors for the calcination reaction of 17,000 K and 300

  7. Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-05-01

    This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

  8. IEA low NOx combustion project Stage III. Low NOx combustion and sorbent injection demonstration projects. V.2

    International Nuclear Information System (INIS)

    Payne, R.

    1991-03-01

    This report summarizes the main results from an IES project concerning the demonstration of low-NO x combustion and sorbent injection as techniques for the control of NO x and SO x emissions from pulverized coal fired utility boilers. The project has built upon information generated in two previous stages of activity, where NO x and SO x control processes were evaluated at both fundamental and pilot-scales. The concept for this stage of the project was for a unique collaboration, where the participating countries (Canada, Denmark and Sweden, together with the United States) have pooled information from full scale boiler demonstrations of low-NO x burner and sorbent injection technologies, and have jointly contributed to establishing a common basis for data evaluation. Demonstration testing was successfully carried out on five wall-fired commercial boiler systems which ranged in size from a 20 MW thermal input boiler used for district heating, up to a 300 MW electric utility boiler. All of these units were fired on high-volatile bituminous coals with sulfur contents ranging from 0.6-3.2 percent. At each site the existing burners were either modified or replaced to provide for low-NO x combustion, and provisions were made to inject calcium based sorbent materials into the furnace space for SO 2 emission control. The results of sorbent injection testing showed moderate levels of SO 2 removal which ranged from approximately 15 to 55 percent at an injected calcium to sulfur molar ratio to 2.0 and with boiler operation at nominal full load. Sulfur capture was found to depend upon the combined effects of parameters such as: sorbent type and reactivity; peak sorbent temperature; coal sulfur content; and the thermal characteristics of the boilers. (8 refs., 58 figs., 6 tabs.)

  9. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS; VOLUME 2. TESTING IN A 100 MILLION BTU/HR EXPERIMENTAL FURNACE

    Science.gov (United States)

    The report givesresults of100 million Btu/hr (29 MWt) experimental furnace to explore methods for achieving effective S02 removal in a coalfired utility boiler using calcium-based sorbents, through appropriate selection of injection location and injector design/operating paramete...

  10. An update on blast furnace granular coal injection

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.G. [Bethlehem Steel Corp., Burns Harbor, IN (United States); Strayer, T.J.; Bouman, R.W. [Bethlehem Steel Corp., PA (United States)

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  11. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  12. SORBENT/UREA SLURRY INJECTION FOR SIMULTANEOUS SO2/NOX REMOVAL

    Science.gov (United States)

    The combination of sorbent injection and selective noncatalytic reduction (SNCR) technologies has been investigated for simulataneous SO2/NOx removal. A slurry composed of a urea-based solution and various Ca-based sorbents was injected at a range of tempera...

  13. Oil injection into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dongsheng Liao; Mannila, P.; Haerkki, J.

    1997-12-31

    Fuel injection techniques have been extensively used in the commercial blast furnaces, a number of publications concerning the fuels injection have been reported. This present report only summarizes the study achievements of oil injection due to the research need the of authors, it includes the following parts: First, the background and the reasons reducing coke rate of oil injection are analyzed. Reducing coke rate and decreasing the ironmaking costs are the main deriving forces, the contents of C, H and ash are direct reasons reducing coke rate. It was also found that oil injection had great effects on the state of blast furnace, it made operation stable, center gas flow develop fully, pressure drop increase, descent speed of burden materials decrease and generation of thermal stagnation phenomena, the quality of iron was improved. Based on these effects, as an ideal mean, oil injection was often used to adjust the state of blast furnace. Secondly, combustion behavior of oil in the raceway and tuyere are discussed. The distribution of gas content was greatly changed, the location of CO, H{sub 2} generation was near the tuyere; the temperature peak shifts from near the raceway boundary to the tuyere. Oxygen concentration and blast velocity were two important factors, it was found that increasing excess oxygen ratio 0.9 to 1.3, the combustion time of oil decreases 0.5 msec, an increase of the blast velocity results in increasing the flame length. In addition, the nozzle position and oil rate had large effects on the combustion of oil. Based on these results, the limit of oil injection is also discussed, soot formation is the main reason limiting to further increase oil injection rate, it was viewed that there were three types of soot which were generated under blast furnace operating conditions. The reason generating soot is the incomplete conversion of the fuel. Finally, three methods improving combustion of oil in the raceway are given: Improvement of oil

  14. Simulation of mercury capture by sorbent injection using a simplified model.

    Science.gov (United States)

    Zhao, Bingtao; Zhang, Zhongxiao; Jin, Jing; Pan, Wei-Ping

    2009-10-30

    Mercury pollution by fossil fuel combustion or solid waste incineration is becoming the worldwide environmental concern. As an effective control technology, powdered sorbent injection (PSI) has been successfully used for mercury capture from flue gas with advantages of low cost and easy operation. In order to predict the mercury capture efficiency for PSI more conveniently, a simplified model, which is based on the theory of mass transfer, isothermal adsorption and mass balance, is developed in this paper. The comparisons between theoretical results of this model and experimental results by Meserole et al. [F.B. Meserole, R. Chang, T.R. Carrey, J. Machac, C.F.J. Richardson, Modeling mercury removal by sorbent injection, J. Air Waste Manage. Assoc. 49 (1999) 694-704] demonstrate that the simplified model is able to provide good predictive accuracy. Moreover, the effects of key parameters including the mass transfer coefficient, sorbent concentration, sorbent physical property and sorbent adsorption capacity on mercury adsorption efficiency are compared and evaluated. Finally, the sensitive analysis of impact factor indicates that the injected sorbent concentration plays most important role for mercury capture efficiency.

  15. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates

  16. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Tervola, K.; Haerkki, J.

    1996-12-31

    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquids temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) (14 refs.)

  17. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J.; Tervola, K. [Oulu Univ. (Finland). Dept. of Process Engineering

    1996-12-31

    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquidus temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) SULA 2 Research Programme; 2 refs.

  18. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J; Tervola, K [Oulu Univ. (Finland). Dept. of Process Engineering

    1997-12-31

    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquidus temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) SULA 2 Research Programme; 2 refs.

  19. The fate of injectant coal in blast furnaces: The origin of extractable materials of high molecular mass in blast furnace carryover dusts

    Energy Technology Data Exchange (ETDEWEB)

    Dong, S.N.; Wu, L.; Paterson, N.; Herod, A.A.; Dugwell, D.R.; Kandiyoti, R. [University of London Imperial College of Science & Technology, London (United Kingdom). Dept. of Chemical Engineering

    2005-07-01

    The aim of the work was to investigate the fate of injectant coal in blast furnaces and the origin of extractable materials in blast furnace carryover dusts. Two sets of samples including injectant coal and the corresponding carryover dusts from a full sized blast furnace and a pilot scale rig have been examined. The samples were extracted using 1-methyl-2-pyrrolidinone (NMP) solvent and the extracts studied by size exclusion chromatography (SEC). The blast furnace carryover dust extracts contained high molecular weight carbonaceous material, of apparent mass corresponding to 10{sup 7}-10{sup 8} u, by polystyrene calibration. In contrast, the feed coke and char prepared in a wire mesh reactor under high temperature conditions did not give any extractable material. Meanwhile, controlled combustion experiments in a high-pressure wire mesh reactor suggest that the extent of combustion of injectant coal in the blast furnace tuyeres and raceways is limited by time of exposure and very low oxygen concentration. It is thus likely that the extractable, soot-like material in the blast furnace dust originated in tars is released by the injectant coal. Our results suggest that the unburned tars were thermally altered during the upward path within the furnace, giving rise to the formation of heavy molecular weight (soot-like) materials.

  20. Development of the advanced coolside sorbent injection process for SO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Withum, J.A.; Maskew, J.T.; Rosenhoover, W.A. [Consol, Inc., Library, PA (United States)] [and others

    1995-11-01

    The goal of this work was to develop a low-capital-cost process capable of over 90% SO{sub 2} removal as an economically attractive option for compliance with the Clean Air Act. The Advanced Coolside Process uses a contactor to simultaneously remove fly ash and saturate the flue gas with water, followed by sorbent injection into the highly humid flue gas and collection of the sorbent by the existing particulate collector High sorbent utilization is achieved by sorbent recycle. The original performance targets of 90% SO{sub 2} removal and 60% sorbent utilization were exceeded in 1000 acfm pilot plant operations using commercial hydrated lime as the only sorbent. Process optimization simplified the process equipment, resulting in significant cost reduction. Recent accomplishments include completion of equipment testing and sorbent optimization, a waste management study, and a long-term performance test. An economic evaluation for the optimized process projects capital costs 55% to 60 % less than those of limestone forced oxidation wet FGD. The projected levelized control cost is 15% to 35% lower than wet FGD (25% lower for a 260 MWe plant burning a 2.5% sulfur coal), depending on plant size and coal sulfur content.

  1. Thermal valorisation of automobile shredder residue: injection in blast furnace.

    Science.gov (United States)

    Mirabile, Daphne; Pistelli, Maria Ilaria; Marchesini, Marina; Falciani, Roberta; Chiappelli, Lisa

    2002-01-01

    Wastes with residual heating value, according to the trend of the world legislation, could be thermally reused. The present study is conducted to verify the possibility of thermal valorisation of a waste, denominated fluff, by injection in blast furnace. The fluff, arising from the automobile shredder operations, is a waste characterised by a high organic matrix and is potentially dangerous due to the heavy metals, oils filter and halogenated plastics content. The first step of the work is the chemical, physical and toxicological characterisation of this material. Then the fluff injection in a blast furnace tuyere is theoretically analysed with a mathematical model. Finally, experimental trials are conducted in a pilot plant, simulating the most important part of the blast furnace: the raceway, in order to analyse process and industrial aspects. In view of an industrial application a first economical evaluation is carried out on the basis of model and experimental results.

  2. Exergo-Ecological Assessment Of Auxiliary Fuel Injection Into Blast-Furnace

    Directory of Open Access Journals (Sweden)

    Stanek W.

    2015-06-01

    Full Text Available Metallurgy represents complex technological chain supplied with different kinds of primary resources. Iron metallurgy based on blast-furnace process, dominates in world steel production. Metallurgical coke is the basic fuel in this case. Its production is connected with several environmental disadvantageous impacts. One of them is the extended production chain from primary energy to final energy. The reduction of coke consumption in the process can be achieved e.g. by injection of auxiliary fuels or increasing the thermal parameters in the process. In present injection of pulverised coal dominates while recirculation of top-gas seems to be future technology. However, the latter one requires the CO2 removal that additionally extended the production chain. The evaluation of resources management in complex energy-technological systems required application of advanced method based on thermodynamics. In the paper the system exergo-ecological assessment of pulverised coal injection into blast-furnace and top-gas recirculation has been applied. As a comparative criterion the thermo-ecological cost has been proposed.

  3. Massive injection of coal and superoxygenated blast into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Toxopeus, H.L.; Danloy, G.; Franssen, R.; Havelange, O. [Corus, IJmuiden (Netherlands)

    2002-07-01

    The aim of the present project was to demonstrate the industrial feasibility of a massive injection of coal, {+-}270 kg/tHM, combined with a high O{sub 2} enrichment of the blast. The coke rate would thus be reduced to well below 250 kg/tHM. A reference level of 200-220 kg coal/tHM was successfully accomplished. However, the technical condition of the blast furnace hearths overruled all ambitions, the anticipated trial scheme had to be abandoned and no further trials were performed. A very short trial was aborted shortly after reaching an injection level of around 265 coal/tHM, due to excessive generation of very fine sludge originating from incomplete combustion. This forced the operators to investigate the merits of combustion more in depth. At the aimed low coke-rate detailed information about the gas distribution is of utmost importance. Therefore, in conjunction with the industrial tests, CRM designed a gas tracing method. Measurement of the transfer time between the injection point (a tuyere) and the sampling points (on an above-burden probe) would allow deduction of the radial gas distribution. CRM made the design and the start-up of an installation built by Hoogovens on blast furnace 7 of IJmuiden. Since then, repeated measurements have shown that the gas transfer time profiles are consistent with the data measured at the blast furnace top and at the wall. The modifications of the moveable armour position are reflected better and faster on the gas distribution as measured by helium tracing than on the skin flow temperatures.

  4. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS, VOLUME 1, TESTING IN A 10 MILLION BTU/HR EXPERIMENTAL FURNACE

    Science.gov (United States)

    The document gives results of tests conducted in a 2 MWt experimental furnace to: (1) investigate ways to reduce NOx emissions from utility coal burners without external air ports (i.e., with internal fuel/air staging); and (2) improve the performance of calcium-based sorbents fo...

  5. Integrated dry NO{sub x}/SO{sub 2} emissions control system sodium-based dry sorbent injection test report. Test period: August 4, 1993--July 29, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.A.; Shimoto, G.H.; Muzio, L.J. [Fossil Energy Research Corp., Laguna Hills, CA (United States); Hunt, T. [Public Service Co. of Colorado, Denver, CO (United States)

    1997-04-01

    The project goal is to demonstrate up to 70% reductions in NOx and SO{sub 2} emissions through the integration of: (1) down-fired low-NOx burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NOx removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. This report documents the sixth phase of the test program, where the performance of dry sorbent injection with sodium compounds was evaluated as a SO{sub 2} removal technique. Dry sorbent injection was performed in-duct downstream of the air heater (ahead of the fabric filter), as well as at a higher temperature location between the economizer and air heater. Two sodium compounds were evaluated during this phase of testing: sodium sesquicarbonate and sodium bicarbonate. In-duct sodium injection with low levels of humidification was also investigated. This sixth test phase was primarily focused on a parametric investigation of sorbent type and feed rate, although boiler load and sorbent preparation parameters were also varied.

  6. Lance for injecting highly-loaded coal slurries into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Illuminati, D.

    1991-10-29

    A lance is used to inject fuel oil into a blast furnace. This simple design permits conversion of coal water and coal tar slurries to a fine mist at very low flow rates. This design prevents the build-up of deposits which increases service life and steadies the flow rate.

  7. A new concept of auxiliary fuel injection through tuyeres in blast furnaces developed by numerical simulations

    Directory of Open Access Journals (Sweden)

    Bruno Orlando de Almeida Santos

    2014-04-01

    Full Text Available The Injection of powdered materials in blast furnaces is a great option for reducing costs, increasing productivity and satisfy the environmental norms. Thus, this paper presents a study on the use of a flame stabilization system with rotation, designed to promote greater coal injection in the combustion zone, reducing losses and increasing the efficiency of the equipment. A physical model was used to evaluate scattering of pulverized fuel and is compared with numerical results in the same scale. In the second step, a combustion model was added to the numerical simulation, using dimensions of a real blast furnace. Fields like temperature, velocity and behavior of chemical reactions were analyzed. The results showed that double lances promote better particle injection when compared with simple lance for reduced material injection. The new injection system proposed, with swirl numbers of 0.12 and 0.24, promoted a better injection of both reduced material and temperature in the raceway zone. The swirl 0.24 showed superior performance when compared to other injection systems.

  8. Industrial study of iron oxide reduction by injection of carbon particles into the electric arc furnace

    International Nuclear Information System (INIS)

    Conejo, A. N.; Torres, R.; Cuellar, E.

    1999-01-01

    An industrial study was conducted in electric arc furnaces (EAF) employing 100% direct reduced iron to evaluate the oxidation level of the slag-metal system. Energy consumption is decreased by injecting gaseous oxygen, however, slag oxidation also increases. In order to reduce the extent of oxidation while keeping a high volume of the oxygen injected , it is required: a) to optimize the carbon injection practice, b) to increase the carbon concentration of sponge iron, c) to operate with soluble carbon in both the metal and the slag beyond a critical level and d) to employ a low temperature profile, on average 1,650 degree centigrade. A method to define the proper amount of carbon in sponge iron which considers their metallization as well as the amount of oxygen injected is proposed. The position of the lance is critical in order to optimize the practice of carbon injection and assure a better residence time of the carbon particles within the furnace. (Author) 23 refs

  9. Modelling of limestone injection for SO2 capture in a coal fired utility boiler

    International Nuclear Information System (INIS)

    Kovacik, G.J.; Reid, K.; McDonald, M.M.; Knill, K.

    1997-01-01

    A computer model was developed for simulating furnace sorbent injection for SO 2 capture in a full scale utility boiler using TASCFlow TM computational fluid dynamics (CFD) software. The model makes use of a computational grid of the superheater section of a tangentially fired utility boiler. The computer simulations are three dimensional so that the temperature and residence time distribution in the boiler could be realistically represented. Results of calculations of simulated sulphur capture performance of limestone injection in a typical utility boiler operation were presented

  10. Automated magnetic sorbent extraction based on octadecylsilane functionalized maghemite magnetic particles in a sequential injection system coupled with electrothermal atomic absorption spectrometry for metal determination.

    Science.gov (United States)

    Giakisikli, Georgia; Anthemidis, Aristidis N

    2013-06-15

    A new automatic sequential injection (SI) system for on-line magnetic sorbent extraction coupled with electrothermal atomic absorption spectrometry (ETAAS) has been successfully developed for metal determination. In this work, we reported effective on-line immobilization of magnetic silica particles into a microcolumn by the external force of two strong neodymium iron boron (NdFeB) magnets across it, avoiding the use of frits. Octadecylsilane functionalized maghemite magnetic particles were used as sorbent material. The potentials of the system were demonstrated for trace cadmium determination in water samples. The method was based on the on-line complex formation with diethyldithiocarbamate (DDTC), retention of Cd-DDTC on the surface of the MPs and elution with isobutyl methyl ketone (IBMK). The formation mechanism of the magnetic solid phase packed column and all critical parameters (chemical, flow, graphite furnace) influencing the performance of the system were optimized and offered good analytical characteristics. For 5 mL sample volume, a detection limit of 3 ng L(-1), a relative standard deviation of 3.9% at 50 ng L(-1) level (n=11) and a linear range of 9-350 ng L(-1) were obtained. The column remained stable for more than 600 cycles keeping the cost down in routine analysis. The proposed method was evaluated by analyzing certified reference materials and natural waters. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Coal char combustion under a CO{sub 2}-rich atmosphere: Implications for pulverized coal injection in a blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Borrego, A.G.; Casal, M.D. [Instituto Nacional del Carbon, CSIC. P.O. Box 73, 33080 Oviedo (Spain); Osorio, E.; Vilela, A.C.F. [Laboratorio de Siderurgia, DEMET/PPGEM - Universidade Federal do Rio Grande do Sul. P.O. Box 15021, 91501-970 Porto Alegre (Brazil)

    2008-11-15

    Pulverized coal injection (PCI) is employed in blast furnace tuyeres attempting to maximize the injection rate without increasing the amount of unburned char inside the stack of the blast furnace. When coal is injected with air through the injection lance, the resolidified char will burn in an atmosphere with a progressively lower oxygen content and higher CO{sub 2} concentration. In this study an experimental approach was followed to separate the combustion process into two distinct devolatilization and combustion steps. Initially coal was injected into a drop tube furnace (DTF) operating at 1300 C in an atmosphere with a low oxygen concentration to ensure the combustion of volatiles and prevent the formation of soot. Then the char was refired into the DTF at the same temperature under two different atmospheres O{sub 2}/N{sub 2} (typical combustion) and O{sub 2}/CO{sub 2} (oxy-combustion) with the same oxygen concentration. Coal injection was also performed under a higher oxygen concentration in atmospheres typical for both combustion and oxy-combustion. The fuels tested comprised a petroleum coke and coals currently used for PCI injection ranging from high volatile to low volatile bituminous rank. Thermogravimetric analyses and microscopy techniques were used to establish the reactivity and appearance of the chars. Overall similar burnouts were achieved with N{sub 2} and CO{sub 2} for similar oxygen concentrations and therefore no loss in burnout should be expected as a result of enrichment in CO{sub 2} in the blast furnace gas. The advantage of increasing the amount of oxygen in a reacting atmosphere during burnout was found to be greater, the higher the rank of the coal. (author)

  12. LIFAC sorbent injection desulfurization demonstration project. Final report, volume II: Project performance and economics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This publication discusses the demonstration of the LIFAC sorbent injection technology at Richmond Power and Light`s Whitewater Valley Unit No. 2, performed under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5 to 1. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North America (LIFAC NA), a joint venture partnership of Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Public Design Report Volume 2: Project Performance and Economics is to consolidate, for public use, the technical efficiency and economy of the LIFAC Process. The report has been prepared pursuant to the Cooperative Agreement No. DE-FC22-90PC90548 between LIFAC NA and the U.S. Department of Energy.

  13. Toward an understanding of coal combustion in blast furnace tuyere injection

    Energy Technology Data Exchange (ETDEWEB)

    John G. Mathieson; John S. Truelove; Harold Rogers [BlueScope Steel Research, Port Kembla, NSW (Australia)

    2005-07-01

    The former Broken Hill Proprietary Company Limited, along with its successors BlueScope Steel and BHP Billiton, like many of their iron and steel making counterparts, has had a long history of investigating pulverised coal injection and combustion under the conditions of blast furnace tuyere injection. A succession of pilot scale hot models and combustion test rigs have been constructed and operated at the company's Newcastle Laboratories beginning with the pilot scale hot raceway model in 1981. Each successive generation of test rig has attempted to provide a closer approximation to the actual blast furnace situation with the current test rig (1998 to present) seeking to promote an 'expanding' combusting coal plume. Test rig configuration is demonstrated to have a significant effect on coal burnout at a nominal transit time of 20 ms. The development of the combustion test rigs has been supported through the co-development of a range of sampling and measuring techniques and the application of a number of numerical combustion models. This paper reviews some of the milestones along the path of these investigations, the current understandings and what the future potentially holds. It's not solved yet! 17 refs., 11 figs.

  14. Mercury removal sorbents

    Science.gov (United States)

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  15. Experimental research on combustion fluorine retention using calcium-based sorbents during coal combustion (II)

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Q.; Ma, X.; Liu, J.; Wu, X.; Zhou, J.; Cen, K. [Liaoning Technical University, Fuxin (China). College of Resource and Environment Engineering

    2008-12-15

    Fluoride pollution produced by coal burning can be controlled with the calcium-based sorbent combustion fluorine technique in which calcium-based sorbents are mixed with the coal or sprayed into the combustion chamber. In a fixed bed tube furnace combustion experiment using one calcium-based natural mineral, limestone and one calcium-based building material, it was shown that the calcium-based sorbent particle grain size and pore structure have a big influence on the combustion fluorine retention effect. Reducing the calcium-based sorbent particle grain size and improving the calcium sorbent structure characteristics at very high temperature to enhance the fluorine retention effect is the important approach to the fluorine retention agent development. 8 refs., 1 fig., 5 tabs.

  16. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, July 1, 1996--September 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, T.; Sjostrom, S.; Smith, J. [and others

    1996-11-06

    The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine the mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.

  17. Status of the tangentially fired LIMB Demonstration Program at Yorktown Unit No. 2: An update

    International Nuclear Information System (INIS)

    Clark, J.P.; Gogineni, M.R.; Koucky, R.W.; Gootzait, E.; Lachapelle, D.G.

    1992-01-01

    Combustion Engineering, Inc., under EPA sponsorship, is conducting a program to demonstrate furnace sorbent injection on a tangentially fired, coal-burning utility boiler, Virginia Power's 180 MW(e) Yorktown Unit No. 2. The overall objective of the program is to demonstrate significant reductions in sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) while minimizing any negative impacts on boiler performance. Engineering and procurement activities and baseline testing have been completed. Construction and installation of the sorbent injection and low-NO x equipment is nearly complete. An 8-month demonstration of furnace sorbent injection plus flue gas humidification will be conducted in 1992. Details of the sorbent injection concept to be tested at Yorktown, results of baseline testing, overall demonstration program organization and schedule, and preliminary plans for the 8-month demonstration test are discussed in the paper

  18. Waste and dust utilisation in shaft furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Senk, D.; Babich, A.; Gudenau, H.W. [Rhein Westfal TH Aachen, Aachen (Germany)

    2005-07-01

    Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilised e.g. in agglomeration processes (sintering, pelletising or briquetting) and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverised coal (PC) has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

  19. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) to Blast Furnaces

    International Nuclear Information System (INIS)

    Zhou, Chenn

    2008-01-01

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process

  20. Kinetics of the reaction of iron blast furnace slag/hydrated lime sorbents with SO{sub 2} at low temperatures: effects of the presence of CO{sub 2}, O{sub 2}, and NOx

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.F.; Shih, S.M. [Industrial Technological Research Institute, Hsinchu (Taiwan)

    2009-09-15

    The effects of the presence of CO{sub 2}, O{sub 2}, and NOx in the flue gas on the kinetics of the sulfation of blast furnace slag/hydrated lime sorbents at low temperatures were studied using a differential fixed-bed reactor. When O{sub 2} and NOx were not present simultaneously, the reaction kinetics was about the same as that under the gas mixtures containing SO{sub 2}, H{sub 2}O, and N{sub 2} only, being affected mainly by the relative humidity. The sulfation of sorbents can be described by the surface coverage model and the model equations derived for the latter case. When both O{sub 2} and NOx, were present, the sulfation of sorbents was greatly enhanced, forming a great amount of sulfate in addition to sulfite. The surface coverage model is still valid in this case, but the model equations obtained show a more marked effect of relative humidity and negligible effects of SO{sub 2} concentration and temperature on the reaction. The effect of sorbent composition on the reaction kinetics was entirely represented by the effects of the initial specific surface area (S{sub g0}) and the Ca molar content (M{sup -1}) of sorbent. The initial conversion rate of sorbent increased linearly with increasing S{sub g0}, and the ultimate conversion increased linearly with increasing S{sub g0}M{sup -1}. The model equations obtained in this work are applicable to describe the kinetics of the sulfation of the sorbents in the low-temperature dry and semidry fine gas desulfurization processes either with an upstream NOx, removal unit or without.111

  1. The injection of ultrahigh rates of reducing gas into a modern blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Buergler, T.; Skoeld, B.E. [Voestalpine, Linz (Austria)

    2007-07-01

    The pilot plant for gas injection consists of a screw compressor unit to supply two blast furnaces with reduction gas. Almost all of the reducing gas will react in the raceway; only a small part will combust inside the tuyere. Comparing different injection systems in the case with two lances, the gas will react faster than for the one lance system where the gas is more trapped inside a beam. During the project the melting rate of the furnace was increased by more than 30 %. Injecting reducing gas compensates increased raceway adiabatic flame temperature, RAFT by higher oxygen enrichment rates. The operation results showed that a lower RAFT and low-quality raw material result in increased consumption of reducing agents. 1 kg coke oven gas, COG substitutes 0.81 kg oil and 1.03 kg coke. Sulfur input was reduced by 40 % in comparison with heavy fuel oil operation. The top-gas calorific value is increased up to 30 %. This reduces the consumption of natural gas used to control a constant calorific value in the gas network. A high hydrogen content up to 12 % is no problem for the gas consumers. Tests with simultaneous COG/BOF gas injection have shown that a decrease in the oil rate can be compensated. The replacement of a carbon-rich resultant such as coke and oil in the BF process with a carbon-lean resultant such as COG leads to an absolute reduction in the CO{sub 2} emissions of the BF process and the power plant of approximately 184.000 t/a for both BFs or 102 kg/tHM. 3 refs., 98 figs., 16 tabs., 1 annex.

  2. Thermal analysis evaluation of the reactivity of coal mixtures for injection in the blast furnace

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Ilha Gomes

    2006-03-01

    Full Text Available Pulverized Coal Injection (PCI is an important standard technology replacing coke partially by pulverized coal into the blast furnace that allows a significant reduction of hot metal costs and environmental impact, contributing to a decrease of coke requirements for ironmaking. Coals typically used in this process in Brazil are, at current time, exclusively imported from many countries, although economic important coal-measures occur in the southern part of the country. The Brazilian coals have a low rank, higher contents of inert components, proportioning nocoking properties and an expected high reactivity. Due to these caractheristics, these coals could be used for injection in the blast furnaces in order to decrease the dependency on high cost imported coals. The efficiency in the combustion and the coal reactivity are considered important parameters in the blast furnace, since a larger amount of char (unburned coal causes severe problems to the furnace operation. The aim of the present work is to compare the reactivity of a south Brazilian coal, obtained from Faxinal mine, with two imported coals and the blends of the Brazilian coal with the imported ones. The reactivity of these coals and their blends were evaluated in a thermogravimetric analyzer. In the experiments, various mass ratios of Faxinal coal and the imported coals were used to compose the blends. The gasification reaction with pure CO2 was conducted under isothermal conditions at 1050 °C and atmospheric pressure. The experimental results show the greater reactivity of the Faxinal coal. The additive behavior was confirmed. The blends with a composition of up to 50% Faxinal coal have parameters according to the usual limits used for PCI.

  3. Volatile release and particle formation characteristics of injected pulverized coal in blast furnaces

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Du, Shan-Wen; Yang, Tsung-Han

    2007-01-01

    Volatiles release and particle formation for two kinds of pulverized coals (a high volatile bituminous coal and a low volatile bituminous coal) in a drop tube furnace are investigated to account for the reactions of pulverized coal injected in blast furnaces. Two different sizes of feed particles are considered; one is 100-200 mesh and the other is 200-325 mesh. By evaluating the R-factor, the devolatilization extent of the larger feed particles is found to be relatively poor. However, the swelling behavior of individual or two agglomerated particles is pronounced, which is conducive to gasification of the chars in blast furnaces. In contrast, for the smaller feed particles, volatiles liberated from the coal particles can be improved in a significant way as a result of the amplified R-factor. This enhancement can facilitate the performance of gas phase combustion. Nevertheless, the residual char particles are characterized by agglomeration, implying that the reaction time of the char particles will be lengthened, thereby increasing the possibility of furnace instability. Double peak distributions in char particle size are observed in some cases. This possibly results from the interaction of the plastic state and the blowing effect at the particle surface. Considering the generation of tiny aerosols composed of soot particles and tar droplets, the results indicate that their production is highly sensitive to the volatile matter and elemental oxygen contained in the coal. Comparing the reactivity of the soot to that of the unburned char, the former is always lower than the latter. Consequently, the lower is the soot formation, the better is the blast furnace stability

  4. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T. [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J.; Mannila, P.; Laukkanen, J. [Oulu Univ. (Finland)

    1996-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  5. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J; Mannila, P; Laukkanen, J [Oulu Univ. (Finland)

    1997-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  6. Non-carbon sorbents for mercury removal from flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, G.O.; Dubovik, M.; Cesario, M. [TDA Research Inc., Wheat Ridge, CO (United States)

    2005-07-01

    TDA Research Inc. is developing a new sorbent that can effectively remove mercury from flue gases. It is made of non-carbon based materials and will therefore not alter the properties of the fly ash. The sorbent can be produced as an injectable powder. The paper summarises the initial testing results of the new sorbent. The sorbent exhibited 7.5 to 11.0 mg/g mercury absorption capacity under representative flue gas streams depending on the operating temperature and gas hourly space velocity. The sorbent also showed resistance to sulfur poisoning by sulfur dioxide. 6 refs., 3 figs., 1 tab.

  7. Flow-injection determination of total organic fluorine with off-line defluorination reaction on a solid sorbent bed.

    Science.gov (United States)

    Musijowski, Jacek; Trojanowicz, Marek; Szostek, Bogdan; da Costa Lima, José Luis Fontes; Lapa, Rui; Yamashita, Hiroki; Takayanagi, Toshio; Motomizu, Shoji

    2007-09-26

    Considering recent reports on widespread occurrence and concerns about perfluoroalkyl substances (PFAS) in environmental and biological systems, analysis of these compounds have gained much attention in recent years. Majority of analyte-specific methods are based on a LC/MS/MS or a GC/MS detection, however many environmental or biological studies would benefit from a total organic fluorine (TOF) determination. Presented work was aimed at developing a method for TOF determination. TOF is determined as an amount of inorganic fluoride obtained after defluorination reaction conducted off-line using sodium biphenyl reagent directly on the sorbent without elution of retained analytes. Recovered fluoride was analyzed using flow-injection system with either fluorimetric or potentiometric detection. The TOF method was tested using perfluorocarboxylic acids (PFCA), including perfluorooctanoic acid (PFOA), as model compounds. Considering low concentrations of PFAS in natural samples, solid-phase extraction as a preconcentration procedure was evaluated. Several carbon-based sorbents were tested, namely multi-wall carbon nanotubes, carbon nanofibres and activated carbon. Good sorption of all analytes was achieved and defluorination reaction was possible to carry out directly on a sorbent bed. Recoveries obtained for PFCAs, adsorbed on an activated carbon sorbent, and measured as TOF, were 99.5+/-1.7, 110+/-9.4, 95+/-26, 120+/-32, 110+/-12 for C4, C6, C8, C10 and C12-PFCA, respectively. Two flow systems that would enable the defluorination reaction and fluoride determination in a single system were designed and tested.

  8. Simultaneous removal of Ni(II), As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers.

    Science.gov (United States)

    Luukkonen, Tero; Runtti, Hanna; Niskanen, Mikko; Tolonen, Emma-Tuulia; Sarkkinen, Minna; Kemppainen, Kimmo; Rämö, Jaakko; Lassi, Ulla

    2016-01-15

    The mining industry is a major contributor of various toxic metals and metalloids to the aquatic environment. Efficient and economical water treatment methods are therefore of paramount importance. The application of natural or low-cost sorbents has attracted a great deal of interest due to the simplicity of its process and its potential effectiveness. Geopolymers represent an emerging group of sorbents. In this study, blast-furnace-slag and metakaolin geopolymers and their raw materials were tested for simultaneous removal of Ni(II), As(III) and Sb(III) from spiked mine effluent. Blast-furnace-slag geopolymer proved to be the most efficient of the studied materials: the experimental maximum sorption capacities for Ni, As and, Sb were 3.74 mg/g, 0.52 mg/g, and 0.34 mg/g, respectively. Although the capacities were relatively low due to the difficult water matrix, 90-100% removal of Ni, As, and Sb was achieved when the dose of sorbent was increased appropriately. Removal kinetics fitted well with the pseudo-second-order model. Our results indicate that geopolymer technology could offer a simple and effective way to turn blast-furnace slag to an effective sorbent with a specific utilization prospect in the mining industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  10. Data for generation of all Tables and Figures for AIMS-ES publication in 2016 pertaining to dry sorbent injection of trona for acid gas control

    Data.gov (United States)

    U.S. Environmental Protection Agency — emissions data and removal efficiencies for coal combustion utilizing PM control devices and dry sorbent injection of trona specifically for acid gas control. This...

  11. Injection of natural gas in the blast furnace tuyeres three of the Usiminas, Ipatinga Plant; Injecao de gas natural nas ventaneiras do alto-forno 3 da Usiminas, Usina de Ipatinga

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Murilo Alves Tito de; Rosa, Ericson Rimen Ribeiro; Oliveira, Claudiney Freitas de; Hostt, Helton [USIMINAS, Ipatinga, MG (Brazil). Gerencia Geral de Reducao

    2011-12-21

    The reduction in production costs is a major strategic objectives of Usiminas and the use of natural gas in the Blast Furnace 3 (BF 3) contribute to achieve this goal. The use of natural gas as fuel in the BF 3 to reduce the use of metallurgical coke (main fuel) and reduces production losses during periods of maintenance in the pulverized coal injection system and improving operational control of the Blast Furnace. The work presents the deployment of the natural gas injection and the performance obtained by the BF 3 from the start of injection, with a focus on reducing consumption of metallurgical coke and stable operation of blast furnace (author)

  12. Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Carl [URS Group, Inc., Austin, TX (United States); Steen, William [URS Group, Inc., Austin, TX (United States); Triana, Eugenio [URS Group, Inc., Austin, TX (United States); Machalek, Thomas [URS Group, Inc., Austin, TX (United States); Davila, Jenny [URS Group, Inc., Austin, TX (United States); Schmit, Claire [URS Group, Inc., Austin, TX (United States); Wang, Andrew [URS Group, Inc., Austin, TX (United States); Temple, Brian [URS Group, Inc., Austin, TX (United States); Lu, Yongqi [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Lu, Hong [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Zhang, Luzheng [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ruhter, David [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Rostam-Abadi, Massoud [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Sayyah, Maryam [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ito, Brandon [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Suslick, Kenneth [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States)

    2013-09-30

    This document summarizes the work performed on Cooperative Agreement DE-FE0000465, “Evaluation of Dry Sorbent Technology for Pre-Combustion CO{sub 2} Capture,” during the period of performance of January 1, 2010 through September 30, 2013. This project involves the development of a novel technology that combines a dry sorbent-based carbon capture process with the water-gas-shift reaction for separating CO{sub 2} from syngas. The project objectives were to model, develop, synthesize and screen sorbents for CO{sub 2} capture from gasified coal streams. The project was funded by the DOE National Energy Technology Laboratory with URS as the prime contractor. Illinois Clean Coal Institute and The University of Illinois Urbana-Champaign were project co-funders. The objectives of this project were to identify and evaluate sorbent materials and concepts that were suitable for capturing carbon dioxide (CO{sub 2}) from warm/hot water-gas-shift (WGS) systems under conditions that minimize energy penalties and provide continuous gas flow to advanced synthesis gas combustion and processing systems. Objectives included identifying and evaluating sorbents that efficiently capture CO{sub 2} from a gas stream containing CO{sub 2}, carbon monoxide (CO), and hydrogen (H{sub 2}) at temperatures as high as 650 °C and pressures of 400-600 psi. After capturing the CO{sub 2}, the sorbents would ideally be regenerated using steam, or other condensable purge vapors. Results from the adsorption and regeneration testing were used to determine an optimal design scheme for a sorbent enhanced water gas shift (SEWGS) process and evaluate the technical and economic viability of the dry sorbent approach for CO{sub 2} capture. Project work included computational modeling, which was performed to identify key sorbent properties for the SEWGS process. Thermodynamic modeling was used to identify optimal physical properties for sorbents and helped down-select from the universe of possible sorbent

  13. Dry sorbent injection of trona to control acid gases from a pilot-scale coal-fired combustion facility

    Directory of Open Access Journals (Sweden)

    Tiffany L. B. Yelverton

    2016-01-01

    Full Text Available  Gaseous and particulate emissions from the combustion of coal have been associated with adverse effects on human and environmental health, and have for that reason been subject to regulation by federal and state governments. Recent regulations by the United States Environmental Protection Agency have further restricted the emissions of acid gases from electricity generating facilities and other industrial facilities, and upcoming deadlines are forcing industry to consider both pre- and post-combustion controls to maintain compliance. As a result of these recent regulations, dry sorbent injection of trona to remove acid gas emissions (e.g. HCl, SO2, and NOx from coal combustion, specifically 90% removal of HCl, was the focus of the current investigation. Along with the measurement of HCl, SO2, and NOx, measurements of particulate matter (PM, elemental (EC, and organic carbon (OC were also accomplished on a pilot-scale coal-fired combustion facility. Gaseous and particulate emissions from a coal-fired combustor burning bituminous coal and using dry sorbent injection were the focus of the current study. From this investigation it was shown that high levels of trona were needed to achieve the goal of 90% HCl removal, but with this increased level of trona injection the ESP and BH were still able to achieve greater than 95% fine PM control. In addition to emissions reported, measurement of acid gases by standard EPA methods were compared to those of an infrared multi-component gas analyzer. This comparison revealed good correlation for emissions of HCl and SO2, but poor correlation in the measurement of NOx emissions.

  14. MERCURY CONTROL WITH CALCIUM-BASED SORBENTS AND OXIDIZING AGENTS

    Energy Technology Data Exchange (ETDEWEB)

    Thomas K. Gale

    2002-06-01

    The initial tasks of this DOE funded project to investigate mercury removal by calcium-based sorbents have been completed, and initial testing results have been obtained. Mercury monitoring capabilities have been obtained and validated. An approximately 1MW (3.4 Mbtu/hr) Combustion Research Facility at Southern Research Institute was used to perform pilot-scale investigations of mercury sorbents, under conditions representative of full-scale boilers. The initial results of ARCADIS G&M proprietary sorbents, showed ineffective removal of either elemental or oxidized mercury. Benchscale tests are currently underway to ascertain the importance of differences between benchscale and pilot-scale experiments. An investigation of mercury-capture temperature dependence using common sorbents has also begun. Ordinary hydrated lime removed 80 to 90% of the mercury from the flue gas, regardless of the temperature of injection. High temperature injection of hydrated lime simultaneously captured SO{sub 2} at high temperatures and Hg at low temperatures, without any deleterious effects on mercury speciation. Future work will explore alternative methods of oxidizing elemental mercury.

  15. Choice of technological regimes of a blast furnace operation with injection of hot reducing gases

    Directory of Open Access Journals (Sweden)

    Babich, A. I.

    2002-08-01

    Full Text Available Injection rate of fossil fuels is limited because of drop in the flame temperature in the raceway and problems in the deadman region and the cohesive zone. The next step for obtaining a considerable coke saving, a better operation in the deadman as an well as increase in blast furnace productivity and minimizing the environmental impact due to a decrease in carbon dioxide emmision would be injection by tuyeres of hot reducing gases (HRG which are produced by low grade coal gasification or top gas regenerating. Use of HRG in combination with high pulverized coal inyection PCI rate and oxigen enrichment in the blast could allow to keep and to increase the competitiveness of the blast furnace process. Calculations using a mathematical model show that the HRG injection in combination with pulverized coal (PC and enriching blast with oxigen can provide an increase in PC rate up to 300-400 kg/tHM and a rise in the furnace productivity by 40-50 %. Blast furnace operation with full oxigen blast (100 % of process oxigen with the exception for the hot blast is possible when HRG is injected.

    La tasa de inyección de combustibles fósiles está limitada a causa de la caída de la temperatura de llama en el raceway (cavidad frente a las toberas y a problemas en la región del "hombre muerto" y en la zona cohesiva. La inyección por tobera de gases reductores calientes (GRC, que se producen por gasificación de carbón de bajo grado o generación de gas de tragante, será la próxima etapa para lograr un considerable ahorro adicional de coque, una zona del "hombre muerto" bien definida, además de un aumento en la productividad del horno alto y para minimizar el impacto ambiental debido a una disminución de la emisión de dióxido de carbono. El uso de GRC en combinación con una tasa elevada de inyección de carbón pulverizado (ICP con viento enriquecido en oxígeno, podrá permitir mantener y aumentar la competitividad del proceso del horno

  16. PROTOTYPE SCALE TESTING OF LIMB TECHNOLOGY FOR A PULVERIZED-COAL-FIRED BOILER

    Science.gov (United States)

    The report summarizes results of an evaluation of furnace sorbent injection (FSI) to control sulfur dioxide (SO2) emissions from coal-fired utility boilers. (NOTE: FSI of calcium-based sorbents has shown promise as a moderate SO2 removal technology.) The Electric Power Research I...

  17. Performance analysis of K-based KEP-CO2P1 solid sorbents in a bench-scale continuous dry-sorbent CO{sub 2} capture process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Cheol; Jo, Sung-Ho; Lee, Seung-Yong; Moon, Jong-Ho; Yi, Chang-Keun [Korea Institute of Energy Research, 152, Gajeong-ro, Yuseong-gu, Daejeon (Korea, Republic of); Ryu, Chong Kul; Lee, Joong Beom [Korea Electric Power Corporation Research Institute, Daejeon (Korea, Republic of)

    2016-01-15

    Korea Institute of Energy Research (KIER) and Korea Electric Power Corporation Research Institute (KEPCORI) have been developing a CO{sub 2} capture technology using dry sorbents. In this study, KEP-CO2P1, a potassium-based dry sorbent manufactured by a spray-drying method, was used. We employed a bench-scale dry-sorbent CO{sub 2} capture fluidized-bed process capable of capturing 0.5 ton CO{sub 2}/day at most. We investigated the sorbent performance in continuous operation mode with solid circulation between a fast fluidized-bed-type carbonator and a bubbling fluidizedbed- type regenerator. We used a slip stream of a real flue gas from 2MWe coal-fired circulating fluidized-bed (CFB) power facilities installed at KIER. Throughout more than 50 hours of continuous operation, the temperature of the carbonator was maintained around 70-80 .deg. C using a jacket-type heat exchanger, while that of the regenerator was kept above 180 .deg. C using an electric furnace. The differential pressure of both the carbonator and regenerator was maintained at a stable level. The maximum CO{sub 2} removal was greater than 90%, and the average CO{sub 2} removal was about 83% during 50 hours of continuous operation.

  18. Biomass as blast furnace injectant – Considering availability, pretreatment and deployment in the Swedish steel industry

    International Nuclear Information System (INIS)

    Wang, Chuan; Mellin, Pelle; Lövgren, Jonas; Nilsson, Leif; Yang, Weihong; Salman, Hassan; Hultgren, Anders; Larsson, Mikael

    2015-01-01

    Highlights: • Injection of biofuels was modeled, using real blast furnace data as reference. • For charcoal, torrefied and pelletized biomass; a replacement limit was predicted. • As expected, reduced CO 2 emissions are possible, especially when using charcoal. • We also found that substantial energy savings can be made, using any of the biofuels. • Circumstances today and biomass availability tomorrow are encouraging for deployment. - Abstract: We have investigated and modeled the injection of biomass into blast furnaces (BF), in place of pulverized coal (PC) from fossil sources. This is the easiest way to reduce CO 2 emissions, beyond efficiency-improvements. The considered biomass is either pelletized, torrefied or pyrolyzed. It gives us three cases where we have calculated the maximum replacement ratio for each. It was found that charcoal from pyrolysis can fully replace PC, while torrefied material and pelletized wood can replace 22.8% and 20.0% respectively, by weight. Our energy and mass balance model (MASMOD), with metallurgical sub-models for each zone, further indicates that (1) more Blast Furnace Gas (BFG) will be generated resulting in reduced fuel consumption in an integrated plant, (2) lower need of limestone can be expected, (3) lower amount of generated slag as well, and (4) reduced fuel consumption for heating the hot blast is anticipated. Overall, substantial energy savings are possible, which is one of the main findings in this paper. Due to the high usage of PC in Sweden, large amounts of biomass is required if full substitution by charcoal is pursued (6.19 TWh/y). But according to our study, it is likely available in the long term for the blast furnace designated M3 (located in Luleå). Finally, over a year with almost fully used production capacity (2008 used as reference), a 28.1% reduction in on-site emissions is possible by using charcoal. Torrefied material and wood pellets can reduce the emissions by 6.4% and 5.7% respectively

  19. Iron making technology with fuels and other materials injection in blast furnace tuyeres. Part 1. Auxiliary fuels characteristics and its influence in the blast furnace process; Tecnologia de fabricacion de arrabio con la inyeccion de combustibles y otros materiales por toberas en el horno alto. I parte. Caracteristicas de los combustibles auxiliares y su influencia en el proceso del horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L. [Union de Empresas de Recuperacion de Materias Primas. Ciudad de La Habana (Cuba); Cores, A.; Formoso, A. [Centro Nacional de Investigaciones Metalurgicas. Madrid (Spain); Babich, A.; Yaroshevskii, S. [Universidad Estatal Tecnologica de Donetsk. Ucrania (Ukraine)

    1998-06-01

    The injection of fuels by tuyeres in the blast furnace is a used practice in most furnaces with the principal aim to reduce the coke consumption by ton of pig iron produced. The nature of these fuels is very diverse and depends on the resources of each country and of the fuel price. At this moment the coal injection (pulverized and granular) is the most extended practice, and the number of furnaces with facilities for coal injection increases continuously. (Author) 14 refs.

  20. Characterization of gas reburning-sorbent injection technology by-products

    International Nuclear Information System (INIS)

    Mattigod, S.V.; Rai, D.

    1992-01-01

    This paper reports that three samples of fly ashes from pilot-scale tests of gas reburning and sorbent injection (GR-SI) technology were characterized physically, chemically, and mineralogically. Texturally, the samples consist of approximately 97% of the total mass of the sample on average. Approximately 3% of the sample mass consisted of the elements Cl, Mg, P, K, Na, and Ti, and ).4% consisted of trace elements. Major crystalline compounds found in these samples were lime (CaO), anhydrite (CaSO 4 ), and calcium carbonate (CaCO 3 ). The morphology and chemistry of particles in GR-SI samples were similar to those of particles in conventional coal fly ashes. Most of the particles were calcerous. Silicate and alumino-silicate particles were fewer in number, and iron-rich particles were rare. The EP test indicated that extract concentrations of Ag, As, Ba, Cd, Cr, Pb, and Se were sell below the EPA regulatory levels. Predictions of leachate compositions from these types of fly ashes, if disposed of as a landfill at a midwestern U.S. site indicate, that during the first ten years the concentrations of Ca, SO 4 , Na, b, and OH would remain high. The concentrations of minor constituents (As, Ba, Cd, Cd, cu, Cr, Fe, Ni, and Se) in the leachate are predicted to be at trace levels

  1. Use of coal-water mixtures in blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Malgarini, G; Giuli, M; Davide, A; Carlesi, C [Centro Sviluppo Materiali, Rome (Italy); Italsider, Genoa [Italy; Deltasider, Piombino [Italy

    1989-03-01

    At the present time, an ironworks blast furnace employing a pulverized coal injection (PCI) system is in operation at the Piombino Works (Italy). A wide development, within this industry, of PCI techniques is expected in the near future to limit, as much as possible, the rebuilding of coke ovens. Research activities and industrial trials aimed at maximizing the use of coal injection into blast furnaces are in course of development. This paper uses flowsheets to illustrate such a system and provides graphs to indicate the economic convenience of PCI systems as compared with systems using naphtha as an injected fuel.

  2. CFD modelling and analysis of pulverized coal injection in blast furnace: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yansong; Yu, Aibing [Laboratory for Simulation and Modelling of Particulate Systems, School of Materials Science and Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052 (Australia); Zulli, Paul [BlueScope Steel Research (BSR), P.O. Box 202, Port Kembla, NSW 2505 (Australia)

    2011-05-15

    In order to understand the complicated phenomena of pulverized coal injection (PCI) process in blast furnace (BF), several mathematical models have been developed by the UNSW and BSR cooperation. These models are featuring from coal combustion in a pilot-scale test rig, to coal combustion in a real BF, and then to coal/coke combustion in a real BF, respectively. This paper reviews these PCI models in aspects of model developments and model applicability. The model development is firstly discussed in terms of model formulation, their new features and geometry/regions considered. The model applicability is then discussed in terms of main findings followed by the model evaluation on their advantages and limitations. It is indicated that the three PCI models are all able to describe PCI operation qualitatively. The model of coal/coke combustion in a real BF is more reliable for simulating in-furnace phenomena of PCI operation qualitatively and quantitatively. Such model gives a more reliable burnout prediction over the raceway surface, which could better represent the amount of unburnt char entering the coke bed. These models are useful for understanding the flow-thermo-chemical behaviours and then optimising the PCI operation in practice. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Advanced Utility Mercury-Sorbent Field-Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was

  4. High SO{sub 2} removal duct injection: A low-cost FGD alternative

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.G. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1995-12-01

    Sorbent Technologies Corporation, of the United States, is currently developing and demonstrating a new waste free, retrofitable, high-SO{sub 2} removal duct-injection process. Up to 85 percent SO{sub 2} removal is achieved by simply injecting a new dry lime-based sorbent into the flue-gas duct, collecting the sorbent downstream in a particulate collector, and then recycling the sorbent. By avoiding large, expensive components, the process can have low capital costs, making it especially appropriate for smaller, older, less-utilized plants. The key to the new technology is the use of sorbent supports. Supported sorbents are produced by coating hydrated lime onto inexpensive mineral supports, such as exfoliated vermiculite or perlite. Consequently, there are no liquid, sludge, or solid wastes with the new technology. Once saturated with SO{sub 2}, the spent sorbent can be easily pelletized into a valuable soil-conditioning agricultural by-product, for the sustainable development that the future requires. This paper describes Sorbent Technologies` pilot demonstration of supported sorbent injection at the Ohio Edison Company`s R.E. Burger station. The Burger effort is also the first demonstration of the Electric Power Research Institute`s new {open_quotes}COHPAC{close_quotes} baghouse technology in a sorbent-injection desulfurization application.

  5. SO{sub 2} Retention by CaO-Based Sorbent Spent in CO{sub 2} Looping Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Manovic, V.; Anthony, E.J.; Loncarevic, D.

    2009-07-15

    CaO-based looping cycles are promising processes for CO{sub 2} Capture from both syngas and flue gas. The technology is based on cyclical carbonation of CaO and regeneration of CaCO{sub 3} in a dual fluidized-bed reactor to produce a pure CO{sub 2} stream suitable for sequestration. Use of spent sorbent from CO{sub 2} looping cycles for SO{sub 2} capture is investigated. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain), and Katowice (Poland, Upper Silesia). Carbonation/calcination cycles were performed in a tube furnace with both the original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbent samples were sulfated in a thermogravimetric analyzer (TGA). The changes in the resulting sorbent pore structure were then investigated using mercury porosimetry. It has been shown that the sulfation rates of both thermally pretreated and spent sorbent samples are lower in comparison with those of the original samples. However, final conversions of both spent and pretreated sorbents after longer sulfation time were comparable or higher than those observed for the original sorbents under comparable conditions. Maximum sulfation levels strongly depend on sorbent porosity and pore surface area. The results showed that spent sorbent samples from CO{sub 2} looping cycles can be used as sorbents for SO{sub 2} retention in cases where significant porosity loss does not occur during CO{sub 2} reaction cycles. In the case of spent Kelly Rock and Katowice samples, sorbent particles are practically uniformly sulfated, achieving final conversions that are determined by the total pore volume available for the bulky CaSO{sub 4} product.

  6. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    Science.gov (United States)

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin

    2016-05-01

    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  7. SO{sub 2} retention by reactivated CaO-based sorbent from multiple CO{sub 2} capture cycles

    Energy Technology Data Exchange (ETDEWEB)

    Vasilije Manovic; Edward J. Anthony [CANMET Energy Technology Centre-Ottawa, Ottawa, ON (Canada). Natural Resources Canada

    2007-06-15

    This paper examines the reactivation of spent sorbent, produced from multiple CO{sub 2} capture cycles, for use in SO{sub 2} capture. CaO-based sorbent samples were obtained from Kelly Rock limestone using three particle size ranges, each containing different impurities levels. Using a thermogravimetric analyzer (TGA), the sulfation behavior of partially sulfated and unsulfated samples obtained after multiple calcination-carbonation cycles in a tube furnace (TF), following steam reactivation in a pressurized reactor, is examined. In addition, samples calcined/sintered under different conditions after hydration are also examined. The results show that suitably treated spent sorbent has better sulfation characteristics than that of the original sorbent. Thus for example, after 2 h sulfation, {gt} 80% of the CaO was sulfated. In addition, the sorbent showed significant activity even after 4 h when {gt} 95% CaO was sulfated. The results were confirmed by X-ray diffraction (XRD) analysis, which showed that, by the end of the sulfation process, samples contained CaSO{sub 4} with only traces of unreacted CaO. The superior behavior of spent reactivated sorbent appears to be due to swelling of the sorbent particles during steam hydration. The surface area morphology of sorbent after reactivation was examined by scanning electron microscopy (SEM). Ca(OH){sub 2} crystals were seen, which displayed their regular shape, and their elemental composition was confirmed by energy-dispersive X-ray (EDX) analysis. These results allow the proposal of a new process for the use of CaO-based sorbent in fluidized bed combustion (FBC) systems, which incorporates CO{sub 2} capture, sorbent reactivation, and SO{sub 2} retention. 26 refs., 4 figs., 2 tabs.

  8. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    OpenAIRE

    Jovanović Filip P.; Berić Ivana M.; Jovanović Petar M.; Jovanović Aca D.

    2016-01-01

    This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reductio...

  9. Waste and dust utilisation in shaft furnaces

    Directory of Open Access Journals (Sweden)

    Senk, D.

    2005-12-01

    Full Text Available Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilized e.g. in agglomeration processes (sintering, pelletizing or briquetting and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverized coal (PC has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

    Los residuos y polvos de filtro provenientes de la industria siderúrgica, de la obtención de metales no ferrosos y de otras industrias, pueden ser utilizados, por ejemplo, en procesos de aglomeración como sintetizado, peletizado o briqueteado. En su caso, estos pueden ser inyectados en los hornos de cuba. Este artículo se enfoca a la inyección de estos materiales en los hornos de cuba. El comportamiento de la combustión y reducción de los polvos ricos en hierro y carbono y también lodos que contienen plomo, zinc y compuestos alcalinos y otros residuos con o sin carbón pulverizado (CP fue examinado, cuando se inyectaron en hornos de cuba. Los siguientes hornos de cuba fueron examinados: Horno alto, cubilote, OxiCup y horno de cuba Imperial Smelting. Las investigaciones se llevaron a cabo a escala de laboratorio e industrial. Algunos residuos y polvos bajo ciertas condiciones, no sólo pueden ser reciclados, sino también mejoran la eficiencia de combustión en las toberas, la operación y productividad del horno.

  10. Internal heat exchange tubes for industrial furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1992-05-26

    This patent describes a method for cooling the work within an industrial furnace. It comprises providing a longitudinally extending outer tube which extends into the furnace having a closed axial end and an open axial end; providing a preformed inner tube open at both ends within the outer tube; injecting a coolant into the inner tube so that the coolant flows from one axial end of the tube out the opposite end adjacent the closed end of the outer tube, and from the closed end of the outer tube to the open end thereof; circulating a gas within the furnace against the outer tube to effect heat transfer therewith.

  11. Aerogel sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Begag, Redouane; Rhine, Wendell E.; Dong, Wenting

    2018-04-03

    The current invention describes methods and compositions of various sorbents based on aerogels of various silanes and their use as sorbent for carbon dioxide. Methods further provide for optimizing the compositions to increase the stability of the sorbents for prolonged use as carbon dioxide capture matrices.

  12. The Relative Influence of Turbulence and Turbulent Mixing on the Adsorption of Mercury within a Gas-Sorbent Suspension

    Science.gov (United States)

    Our previous investigations demonstrated that entrained flow or in-flight adsorption can be a more effective and flexible approach to trace gas adsorption than fixed sorbent beds. The present investigation establishes the turbulent mixing that accompanies sorbent injection is an ...

  13. Sorbent suppliers

    International Nuclear Information System (INIS)

    Vedder, M.

    1994-01-01

    Sorbents are used to absorb or contain spilled and leaking chemicals, oils, lubricants and other process fluids. They are commonly used around the base of machinery in industrial applications, and in remediating oil spills on land and water. Sorbents are made from biodegradable, inorganic or synthetic materials. Organic materials include corn cobs, wood pulp, paper fiber and cotton. Inorganic materials include clay, perlite, expanded silicates and expanded mica. Synthetic sorbents are made from petroleum- or plastic-based materials such as polyurethane, polyethylene or polypropylene. Sorbents are available in a variety of forms, including pads, rolls, booms, pillows and loose particulate

  14. International blast furnace hearth and raceway symposium

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Papers presented discussed some of the physical and chemical processes occuring in the raceway and hearths of blast furnaces. The injection of coal or fuel slurries to replace some of the coke was also covered. Fourteen papers are abstracted separately.

  15. Rubber Fruit Shell (Hevea brasiliensis) as bio sorbent to remove FFA (Free Fatty Acid) content in CPO (Crude Palm Oil)

    Science.gov (United States)

    Pandia, S.; Sinaga, M. S.; Masyithah, Z.; Husin, A.; Nurfadilla, S.; Fitriani; Sipahutar, B. K. S.

    2018-02-01

    This study aimed to discover the effectiveness of the shell of rubber fruit as bio sorbent for removing FFA (Free Fatty Acid) content in CPO (Crude Palm Oil). Methods used in this study were pretreatment, activation (carbonating and chemically) and adsorption process at room temperature. In the beginning, the shell of rubber fruit was cleaned and dried under the sun. Then the shell was cut for about 0.5 cm of length and carbonated in a furnace for 1h at 600°C. After that, they were crushed to pass through 140 meshes and activated using three variations of chemical such as 6 of HNO3, 6N of KOH and 6N of H3PO4 at certain ratio as 1:3, 1:4, and 1:5 (b/v). The adsorption process was carried out using bio sorbent with the highest iodine number in varying bio sorbent dosage and contact time. The highest iodine number was 913.680 mg/g and obtained at the ratio of bio sorbent to 6N of KOH as 1:5. The best removal of FFA content was 91.94% and at 1% bio sorbent dose and 30 min of contact time.

  16. Pulverized coal burnout in blast furnace simulated by a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shan-Wen [Steel and Aluminum Research and Development Department, China Steel Corporation, Kaohsiung 812 (China); Chen, Wei-Hsin [Department of Greenergy, National University of Tainan, Tainan 700 (China); Lucas, John A. [School of Engineering of the University of Newcastle, Callaghan, NSW 2308 (Australia)

    2010-02-15

    Reactions of pulverized coal injection (PCI) in a blast furnace were simulated using a drop tube furnace (DTF) to investigate the burnout behavior of a number of coals and coal blends. For the coals with the fuel ratio ranging from 1.36 to 6.22, the experimental results indicated that the burnout increased with decreasing the fuel ratio, except for certain coals departing from the general trend. One of the coals with the fuel ratio of 6.22 has shown its merit in combustion, implying that the blending ratio of the coal in PCI operation can be raised for a higher coke replacement ratio. The experiments also suggested that increasing blast temperature was an efficient countermeasure for promoting the combustibility of the injected coals. Higher fuel burnout could be achieved when the particle size of coal was reduced from 60-100 to 100-200 mesh. However, once the size of the tested coals was in the range of 200 and 325 mesh, the burnout could not be improved further, resulting from the agglomeration of fine particles. Considering coal blend reactions, the blending ratio of coals in PCI may be adjusted by the individual coal burnout rather than by the fuel ratio. (author)

  17. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    Directory of Open Access Journals (Sweden)

    Jovanović Filip P.

    2016-01-01

    Full Text Available This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reduction of the quantity of coke, whose production requires large amounts of energy, reduction of harmful exhaust emission and increase productivity of blast furnaces through the reduction of production costs. The project was complex and had high costs, so that it was necessary to predict risk events and plan responses to identified risks at an early stage of implementation, in the course of the project design, in order to minimise losses and implement the project in accordance with the defined time and cost limitations. [Projekat Ministarstva nauke Republike Srbije, br. 179081: Researching contemporary tendencies of strategic management using specialized management disciplines in function of competitiveness of Serbian economy

  18. PETROBRAS green petroleum coke used as partial replacement for coal injected mixtures in blast furnaces; Utilizacao do coque verde de petroleo da PETROBRAS em substituicao parcial ao carvao mineral das misturas injetadas em altos fornos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Agenor Medrado da; Medrado, Swami Botelho; Noblat, Sebastiao Jorge Xavier [Companhia Siderurgia Nacional. CSN. Gerencia Geral de Processos Siderurgicos. RJ (Brazil)], e-mails: ams@csn.com.br, swami@csn.com.br, s.noblat@csn.com.br; Carvalho Junior, Joao Andrade de [Universidade Estadual Paulista Julio de Mesquita Filho. Faculdade de Engenharia de Guaratingueta. Departamento de Energia, SP (Brazil)], e-mail: joao@feg.unesp.br

    2010-04-15

    The PETROBRAS produced green petroleum coke (GPC) is a carbon rich fuel, virtually ash-free, with low sulfur content and is a fuel suitable to replace metallurgical coke in blast furnaces. The GPC was tested in a pulverized coal injection simulator built in the Volta Redonda research center. It presented a low burning efficiency due to low volatile material content and high substitution rate by the carbon content. The industrial-scale tests were carried out in blast furnaces with up to 50% PETROBRAS GPC in the coal blends, which has never been done before in the steel industry. The injected coal/CVP mixtures produced no negative side effects in the blast furnace grinding systems, pneumatic conveying or operating process. The mixture burning process inside the blast furnace, showed a decrease in fuel consumption, with a significant reduction in metallurgical coke consumption. The industrial-scale tests of the GPC mixtures did not reach the 70% maximum for lack of the GPC feedstock, it being necessary to continue with standard coal mixtures. (author)

  19. Sorbent Scoping Studies

    International Nuclear Information System (INIS)

    Chancellor, Christopher John

    2016-01-01

    The Los Alamos National Laboratory-Carlsbad Operations (LANL-CO) office was tasked by the DOE CBFO, Office of the Manager to perform a review of the acceptable knowledge (AK) to identify the oxidizers and sorbents in transuranic (TRU) waste streams, to conduct scoping studies on the oxidizers and sorbents identified in AK review to inform the Quality Level 1 (QL1) testing, and to conduct a series of QL1 tests to provide the scientific data to support a basis of knowledge document for determining the criteria for (1) accepting waste at the Waste Isolation Pilot Plant (WIPP) without treatment, (2) determining waste that will require treatment, and (3) if treatment is required, how the treatment must be performed. The purpose of this report is to present the results of the AK review of sorbents present in active waste streams, provide a technical analysis of the sorbent list, report the results of the scoping studies for the fastest-burning organic sorbent, and provide the list of organic and inorganic sorbents to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-001, Oxidizer Scoping Studies, has similar information for oxidizers identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.

  20. Sorbent Scoping Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chancellor, Christopher John [Los Alamos National Lab. (LANL), Carlsbad, NM (United States). Difficult Waste Team

    2016-11-14

    The Los Alamos National Laboratory–Carlsbad Operations (LANL-CO) office was tasked by the DOE CBFO, Office of the Manager to perform a review of the acceptable knowledge (AK) to identify the oxidizers and sorbents in transuranic (TRU) waste streams, to conduct scoping studies on the oxidizers and sorbents identified in AK review to inform the Quality Level 1 (QL1) testing, and to conduct a series of QL1 tests to provide the scientific data to support a basis of knowledge document for determining the criteria for (1) accepting waste at the Waste Isolation Pilot Plant (WIPP) without treatment, (2) determining waste that will require treatment, and (3) if treatment is required, how the treatment must be performed. The purpose of this report is to present the results of the AK review of sorbents present in active waste streams, provide a technical analysis of the sorbent list, report the results of the scoping studies for the fastest-burning organic sorbent, and provide the list of organic and inorganic sorbents to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-001, Oxidizer Scoping Studies, has similar information for oxidizers identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.

  1. TRICHLOROETHYLENE SORPTION AND OXIDATION USING A DUAL FUNCTION SORBENT/CATALYST IN A FALLING FURNACE REACTOR

    Science.gov (United States)

    A dual function medium (Cr-ZSM-5), capable of physisorbing trichloroethylene (TCE) at ambient temperature and catalytically oxidizing it at elevated temperature (-350 degrees C) was utilized in a novel continuous falling furnace reactor system to store and periodically destroy t...

  2. Simulation for the powder movement and accumulation in the lower part of blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takashi [Mineral Resources Research Center, Nippon Steel Technoresearch, Futtsu-shi Chiba (Japan)

    1998-12-31

    The behavior of unburnt char and coke powder in the blast furnace becomes material for discussion with the increase in injection rate of pulverized coal into the blast furnace. An analysis was made as to the simulation of powder accumulation at the deadman and dripping zone of blast furnace by using a powder/gas two-phases flow experimental data. When an excessive powder has penetrated at a low gas velocity, it brings an increment in holdup and the controlling factors are powder/gas ratio and gas velocity. An empirical formula used for estimating the powder hold-up in the blast furnace internal conditions has proposed based on similarity. The controlling {pi} numbers are Floude number, powder/gas ratio and particle diameter ratio of powder/lump. This empirical formular was connected with Blast Furnace Total Model `BRIGHT` for the simulation of powder amount distribution in the lower part of blast furnace. When Powder diameter Dk exceeds 100 {mu} and gas velocity becomes lower than 0.7m/s at PC1OOkg/T, the powder tends to accumulate in the deadman. These results was available for the decision of optimum blast conditions and optimum powder diameter in the high amount of pulverized coal injection to the blast furnace. (author) 10 refs.

  3. Simulation for the powder movement and accumulation in the lower part of blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takashi [Mineral Resources Research Center, Nippon Steel Technoresearch, Futtsu-shi Chiba (Japan)

    1997-12-31

    The behavior of unburnt char and coke powder in the blast furnace becomes material for discussion with the increase in injection rate of pulverized coal into the blast furnace. An analysis was made as to the simulation of powder accumulation at the deadman and dripping zone of blast furnace by using a powder/gas two-phases flow experimental data. When an excessive powder has penetrated at a low gas velocity, it brings an increment in holdup and the controlling factors are powder/gas ratio and gas velocity. An empirical formula used for estimating the powder hold-up in the blast furnace internal conditions has proposed based on similarity. The controlling {pi} numbers are Floude number, powder/gas ratio and particle diameter ratio of powder/lump. This empirical formular was connected with Blast Furnace Total Model `BRIGHT` for the simulation of powder amount distribution in the lower part of blast furnace. When Powder diameter Dk exceeds 100 {mu} and gas velocity becomes lower than 0.7m/s at PC1OOkg/T, the powder tends to accumulate in the deadman. These results was available for the decision of optimum blast conditions and optimum powder diameter in the high amount of pulverized coal injection to the blast furnace. (author) 10 refs.

  4. Study and modeling of the reduction of sulfur dioxide, nitrogen oxides and hydrogen chloride by dry injection technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wuyin

    1997-05-01

    The potential and mechanism to reduce acid gases, such as sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}) and hydrogen chloride (HCl), by dry Ca-based sorbents have been studied to improve the efficiency of the process and sorbent utilization. Several natural limestones were tested for SO{sub 2} removal. Calcium conversion as high as 45 % was achieved in the first 0.3 s at 1000 deg C, 1000 ppm SO{sub 2} and Ca/S=1. A SO{sub 2} removal efficiency of 95 % was reached at Ca/S=2. Two models for estimating the sulfation of CaO at high temperature are presented. Short-residence-time sulfation is described by a pore size distribution model and long-residence-time sulfation by a particle expansion model. The pore size distribution model explains the effects of particle size, pore size distribution and partial pressure of SO{sub 2}, suggesting these three factors be the most important for CaO conversion. For particles larger than 1-2 {mu}m in furnace sorbent injection, pore diameters of 50-300 Aa are desirable. When large particles or long residence times are used, as in fluidized bed combustion, the particle expansion model shows the particle size and the sorbent type to be the main factors affecting the reaction. By using the selected limestone and additives the simultaneous SO{sub 2}/NO{sub x} removal was also measured. Several ammonium salts as well as urea were tested. Urea was found to give the highest NO{sub x} removal efficiency. To fully utilize the unreacted Ca-based sorbents, the spent sorbents from SO{sub 2} reduction processes were tested in a fixed-bed reactor to measure the capacity for HCl removal at 150-600 deg C. The results showed that all spent materials could react with HCl to some extent. After being calcined and slaked, they even showed the same reactivity as pure Ca(OH){sub 2}. A shrinking core model was derived for fixed-bed reactor. For the best sorbent tested, the multiple sorbent utilization reached about 80 %. 100 refs, 42 figs, 12 tabs

  5. Pilot-scale demonstration of the OSCAR process for high-temperature multipollutant control of coal combustion flue gas, using carbonated fly ash and mesoporous calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, H.; Thomas, T.J.; Park, A.H.A.; Iyer, M.V.; Gupta, P.; Agnihotri, R.; Jadhav, R.A.; Walker, H.W.; Weavers, L.K.; Butalia, T.; Fan, L.S. [Ohio State University, Columbus, OH (United States)

    2007-07-15

    A pilot-scale study of the Ohio State Carbonation Ash Reactivation (OSCAR) process was performed to demonstrate the reactivity of two novel calcium-based sorbents toward sulfur and trace heavy metal (arsenic, selenium, and mercury) capture in the furnace sorbent injection (FSI) mode on a 0.365 m{sup 3}/s slipstream of a bituminous coal-fired stoker boiler. The sorbents were synthesized by bubbling CO{sub 2} to precipitate calcium carbonate (a) from the unreacted calcium present in the lime spray dryer ash and (b) from calcium hydroxide slurry that contained a negatively charged dispersant. The heterogeneous reaction between these sorbents and SO{sub 2} gas occurred under entrained flow conditions by injecting fine sorbent powders into the flue gas slipstream. The reacted sorbents were captured either in a hot cyclone (about 650{sup o}C) or in the relatively cooler downstream baghouse (about 230{sup o}C). The baghouse samples indicated about 90% toward sulfation and captured arsenic, selenium and mercury to 800 ppmw, 175 ppmw and 3.6 ppmw, respectively.

  6. Desulfurization sorbent regeneration

    Science.gov (United States)

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  7. Flue gas desulfurization: Physicochemical and biotechnological approaches

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, R.A.; Biswas, R.; Chakrabarti, T.; Devotta, S. [National Environmental Engineering Research Institute, Nagpur (India)

    2005-07-01

    Various flue gas desulfurization processes - physicochemical, biological, and chemobiological - for the reduction of emission of SO{sub 2} with recovery of an economic by-product have been reviewed. The physicochemical processes have been categorized as 'once-through' and 'regenerable.' The prominent once-through technologies include wet and dry scrubbing. The wet scrubbing technologies include wet limestone, lime-inhibited oxidation, limestone forced oxidation, and magnesium-enhanced lime and sodium scrubbing. The dry scrubbing constitutes lime spray drying, furnace sorbent injection, economizer sorbent injection, duct sorbent injection, HYPAS sorbent injection, and circulating fluidized bed treatment process. The regenerable wet and dry processes include the Wellman Lord's process, citrate process, sodium carbonate eutectic process, magnesium oxide process, amine process, aqueous ammonia process, Berglau Forchung's process, and Shell's process. Besides these, the recently developed technologies such as the COBRA process, the OSCAR process, and the emerging biotechnological and chemobiological processes are also discussed. A detailed outline of the chemistry, the advantages and disadvantages, and the future research and development needs for each of these commercially viable processes is also discussed.

  8. CFD study of temperature distribution in full scale boiler adopting in-furnace coal blending

    International Nuclear Information System (INIS)

    Fadhil, S S A; Hasini, H; Shuaib, N H

    2013-01-01

    This paper describes the investigation of temperature characteristics of an in-furnace combustion using different coals in a 700 MW full scale boiler. Single mixture fraction approach is adopted for combustion model of both primary and secondary coals. The primary coal was based on the properties of Adaro which has been used as the design coal for the boiler under investigation. The secondary blend coal was selected based on sub-bituminous coal with higher calorific value. Both coals are simultaneously injected into the furnace at alternate coal burner elevations. The general prediction of the temperature contours at primary combustion zone shows identical pattern compared with conventional single coal combustion in similar furnace. Reasonable agreement was achieved by the prediction of the average temperature at furnace exit. The temperature distribution is at different furnace elevation is non-uniform with higher temperature predicted at circumferential 'ring-like' region at lower burner levels for both cases. The maximum flame temperature is higher at the elevation where coal of higher calorific value is injected. The temperature magnitude is within the accepTable limit and the variations does not differ much compared to the conventional single coal combustion.

  9. Space-filling polyhedral sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Haaland, Peter

    2016-06-21

    Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.

  10. Design of engineered sorbent barriers

    International Nuclear Information System (INIS)

    Jones, E.O.; Freeman, H.D.

    1988-01-01

    A sorbent barrier uses sorbent material such as activated carbon or natural zeolites to prevent the migration of radionuclides from a low-level waste site to the aquifer. The sorbent barrier retards the movement of radioactive contaminants, thereby providing time for the radionuclides to decay. Sorbent barriers can be a simple, effective, and inexpensive method for reducing the migration of radionuclides to the environment. Designing a sorbent barrier consists of using soil and sorbent material properties and site conditions as input to a model which will determine the necessary sorbent barrier thickness to meet contaminant limits. The paper covers the following areas: techniques for measuring sorption properties of barrier materials and underlying soils, use of a radionuclide transport model to determine the required barrier thickness and performance under a variety of site conditions, and cost estimates for applying the barrier

  11. Study on solid phase extraction and graphite furnace atomic absorption spectrometry for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent

    International Nuclear Information System (INIS)

    Yang Guangyu; Fen Weibo; Lei Chun; Xiao Weilie; Sun Handong

    2009-01-01

    A solid phase extraction and graphite furnace atomic absorption spectrometry (GFAAS) for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent was studied. Trace amounts of chromium, nickel, silver, cobalt, copper, cadmium and lead were reacted with 2-(2-quinolinil-azo)-4-methyl-1,3-dihydroxidobenzene (QAMDHB) followed by adsorption onto MCI GEL CHP 20Y solid phase extraction column, and 1.0 mol L -1 HNO 3 was used as eluent. The metal ions in 300 mL solution can be concentrated to 1.0 mL, representing an enrichment factor of 300 was achieved. The recoveries of analytes at pH 8.0 with 1.0 g of resin were greater than 95% without interference from alkaline, earth alkaline and some metal ions. When detected with graphite furnace atomic absorption spectrometry, the detection limits in the original samples were 1.4 ng L -1 for Cr(III), 1.0 ng L -1 for Ni(II), 0.85 ng L -1 for Ag(I), 1.2 ng L -1 for Co(II), 1.0 ng L -1 for Cu(II), 1.2 ng L -1 for Cd(II) and 1.3 ng L -1 for Pb(II). The validation of the procedure was performed by the analysis of the certified standard reference materials, and the presented procedure was applied to the determination of analytes in biological, water and soil samples with good results (recoveries range from 89 to 104%, and R.S.D.% lower than 3.2%. The results agreed with the standard value or reference method)

  12. Arrangement of furnaces and retorts for the distillation of shale, etc. [injection of hot air

    Energy Technology Data Exchange (ETDEWEB)

    Lahore, M

    1846-01-31

    The patent is concerned with the distillation of dried materials, the distillation being facilitated by injection of hot air into the retorts. Figures show apparatus for heating the air, consisting of a series of pipes, connected together and placed horizontally in the interior of the furnace on bricks arranged in such a way that the flames and smoke circulate, as shown, around each pipe, touching first all the surface of the large one placed in the center. The air enters this tube, and from it passes into the others which it runs through successively, coming finally into the last pipe, being heated in this journey to a very high temperature. The last tube ends in a bell from which different branches start, each supplied with stop-cocks, to lead this hot air into the different sections of the retort. With the stop-cocks the quantity of air can be regulated at will, in the compartment of the retort, for accelerating the operation more or less.

  13. Fuel sparing: Control of industrial furnaces using process gas as supplemental fuel

    International Nuclear Information System (INIS)

    Boisvert, Patrick G.; Runstedtler, Allan

    2014-01-01

    Combustible gases from industrial processes can be used to spare purchased fuels such as natural gas and avoid wasteful flaring of the process gases. One of the challenges of incorporating these gases into other furnaces is their intermittent availability. In order to incorporate the gases into a continuously operating furnace, the furnace control system must be carefully designed so that the payload is not affected by the changing fuel. This paper presents a transient computational fluid dynamics (CFD) model of an industrial furnace that supplements natural gas with carbon monoxide during furnace operation. A realistic control system of the furnace is simulated as part of the CFD calculation. The time dependent changes in fuels and air injection on the furnace operation is observed. It is found that there is a trade-off between over-controlling the furnace, which results in too sensitive a response to normal flow oscillations, and under-controlling, which results in a lagged response to the fuel change. - Highlights: •Intermittently available process gases used in a continuously operating furnace. •Study shows a trade-off between over-controlling and under-controlling the furnace. •Over-controlling: response too sensitive to normal flow oscillations. •Under-controlling: lagged response to changing fuel composition. •Normal flow oscillations in furnace would not be apparent in steady-state model

  14. Sorbent Structural Impacts Due to Humidity on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    Science.gov (United States)

    Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.

  15. Sequential SO{sub 2}/CO{sub 2} capture enhanced by steam reactivation of a CaO-based sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Vasilije Manovic; Edward J. Anthony [CANMET Energy Technology Centre-Ottawa, Ottawa, ON (Canada). Natural Resources Canada

    2008-07-15

    The steam hydration reactivation characteristics of three limestone samples after multiple CO{sub 2} looping cycles are presented here. The CO{sub 2} cycles were performed in a tube furnace (TF) and the resulting samples were hydrated by steam in a pressure reactor (PR). The reactivation was performed with spent samples after carbonation and calcination stages. The reactivation tests were done with a saturated steam pressure at 200{sup o}C and also at atmospheric pressure and 100 {sup o}C. The characteristics of the reactivation samples were examined using BET and BJH pore characterization (for the original and spent samples, and samples reactivated under different conditions) and also by means of a thermogravimetric analyzer (TGA). The levels of hydration achieved by the reactivated samples were determined as well as the conversions during sulphation and multiple carbonation cycles. It was found that the presence of a CaCO{sub 3} layer strongly hinders sorbent hydration and adversely affects the properties of the reactivated sorbent with regard to its behavior in sulphation and multiple carbonation cycles. Here, hydration of calcined samples under pressure is the most effective method to produce superior sulphur sorbents. However, reactivation of calcined samples under atmospheric conditions also produces sorbents with significantly better properties in comparison to those of the original sorbents. These results show that separate CO{sub 2} capture and SO{sub 2} retention in fluidized bed systems enhanced by steam reactivation is promising even for atmospheric conditions if the material for hydration is taken from the calciner. 49 refs., 5 figs., 3 tabs.

  16. Design of engineered sorbent barriers

    International Nuclear Information System (INIS)

    Jones, E.O.; Freeman, H.D.

    1988-08-01

    A sorbent barrier uses sorbent material such as activated carbon or natural zeolites to prevent the migration of radionuclides from a low-level waste site to the aquifer. The sorbent barrier retards the movement of radioactive contaminants, thereby providing time for the radionuclides to decay. Sorbent barriers can be a simple, effective, and inexpensive method for reducing the migration of radionuclides to the environment. Designing a sorbent barrier consists of using soil and sorbent material properties and site conditions as input to a model which will determine the necessary sorbent barrier thickness to meet contaminant limits. The paper will cover the following areas: techniques for measuring sorption properties of barrier materials and underlying soils, use of a radionuclide transport model to determine the required barrier thickness and performance under a variety of site conditions, and cost estimates for applying the barrier. 8 refs., 6 figs., 1 tab

  17. Lance for fuel and oxygen injection into smelting or refining furnace

    Science.gov (United States)

    Schlichting, Mark R.

    1994-01-01

    A furnace 10 for smelting iron ore and/or refining molten iron 20 is equipped with an overhead pneumatic lance 40, through which a center stream of particulate coal 53 is ejected at high velocity into a slag layer 30. An annular stream of nitrogen or argon 51 enshrouds the coal stream. Oxygen 52 is simultaneously ejected in an annular stream encircling the inert gas stream 51. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus 84 to react with carbon monoxide gas rising from slag layer 30, thereby adding still more heat to the furnace.

  18. Experimental evaluation of sorbents for sulfur control in a coal-fueled gas turbine slagging combustor

    International Nuclear Information System (INIS)

    Cowell, L.H.; Wen, C.S.; LeCren, R.T.

    1992-01-01

    This paper reports on a slagging combustor that has been used to evaluate three calcium-based sorbents for sulfur capture efficiency in order to assess their applicability for use in a oil-fueled gas turbine. Testing is competed in a bench-scale combustor with one-tenth the heat input needed for the full-scale gas turbine. The bench-scale rig is a two-stage combustor featuring a fuel-rich primary zone an a fuel-lean secondary zone. The combustor is operated at 6.5 bars with inlet air preheated to 600 K. Gas temperatures of 1840 K are generated in the primary zone and 1280 K in the secondary zone. Sorbents are either fed into the secondary zone or mixed with the coal-water mixture and fed into the primary zone. Dry powered sorbents are fed into the secondary zone by an auger into one of six secondary air inlet ports. The three sorbents tested in the secondary zone include dolomite, pressure-hydrated dolomitic lime, and hydrated lime. Sorbents have been tested while burning coal-water mixtures with coal sulfur loadings of 0.56 to 3.13 weight percent sulfur. Sorbents are injected into the secondary zone at varying flow rates such that the calcium/sulfur ratio varies from 0.5 to 10.0

  19. Blast furnace residues for arsenic removal from mining-contaminated groundwater.

    Science.gov (United States)

    Carrillo-Pedroza, Fco Raúl; Soria-Aguilar, Ma de Jesús; Martínez-Luevanos, Antonia; Narvaez-García, Víctor

    2014-01-01

    In this work, blast furnace (BF) residues were well characterized and then evaluated as an adsorbent material for arsenic removal from a mining-contaminated groundwater. The adsorption process was analysed using the theories of Freundlich and Langmuir. BF residues were found to be an effective sorbent for As (V) ions. The modelling of adsorption isotherms by empirical models shows that arsenate adsorption is fitted by the Langmuir model, suggesting a monolayer adsorption of arsenic onto adsorbents. Arsenate adsorption onto BF residue is explained by the charge density surface affinity and by the formation of Fe (II) and Fe (III) corrosion products onto BF residue particles. The results indicate that BF residues represent an attractive low-cost absorbent option for the removal of arsenic in wastewater treatment.

  20. Sorbents for mercury removal from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  1. Blast furnace top gas and dusts; Masuunin huippukaasu ja poelyt

    Energy Technology Data Exchange (ETDEWEB)

    Lohi, T.K.; Mannila, P.; Karjalahti, T.; Haerkki, J.

    1997-12-31

    This report is related to the `Gas Phase Reactions in a Blast Furnace` project. The aim of the project is to clarify the behaviour of gas phase in a blast furnace with high oil injection rate. The effect of blast furnace operation, iron reduction reactions, the amount of oil injected, alkalis, zinc and sulfur on the formation of top gas and dusts has been examined in this work. In addition, the gas cleaning system, i.e. the dust sack, gas scrubber, venturi scrubbers and an electric filter, of the blast furnaces of Rautaruukki Oy is presented. The composition of the top gas as well as the amount and composition of the dust from the gas cleaners were investigates in the experimental part of the research. The work has been focused on the analysis of carbon, iron, zinc, sulfur and alkalis. In addition to this, possible systematic variations caused by the discharge of hot metal were investigated. The experiments were made at blast furnaces no 1 and 2 of Rautaruukki Raahe Steel. The relationship between dust quantity and composition in the dust sack and the quantity of oil injected was analyzed on the basis of collected data. On the basis of experimental results, hot metal discharge has no effect on the composition or quantity of the top gas and dust. The composition of the dust varied between different gas cleaners. The coarsest and heaviest material remains in the dust sack. The lightest material separates at the electric filter. The main components at every gas cleaner were iron (9.4 - 38.1 %) and carbon (31.5 - 63.7 %). Particles with zinc and sulfur were separated at the venturi scrubbers (Zn = 3.0 % and S = 2.2 %) and the electric filter (Zn = 3.2 % and S = 2.6 %). Particles with alkalis were separated at the end of the gas cleaning process. The amount of sodium at the venturi scrubbers and the electric filter was 1.0 % on average. The average amount of potassium was 0.5 % at the venturi scrubber and 1.4 % at the electric filter 28 refs., 31 figs.

  2. Multi-fuel furnace. Demonstration project. Final rapport; Multibraendselsovn - Demonstrationsprojekt. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Dall Bentzen, J.

    2012-06-15

    It has been verified that the Dall Energy Furnace have unique features: - The furnace will accept biomass fuel with moisture content in range 20% to 60% and still keep the flue gas temperature within +-10 deg. Celsius (for pre-set temperature 900 to 975 deg. Celsius); - The ash quality from the furnace is very good with no excessive sintering and without carbon in the ash; - Flue gas dust content at the furnace exit is below 50 mg/Nm3, while the content of NO{sub x} and CO is below 175 mg/Nm3 and 20 mg/Nm3, respectively. The Dall Energy biomass furnace consists of two separate stages which are combined in a single aggregate: an updraft gasification process and a gas combustion process. As the furnace is refractory lined and as the furnace can operate at low excess air it is possible to burn biomass with water content above 60%. No mechanical parts are used at temperatures above 200 deg. Celsius. This provides a very rugged system. In the gasifier section a combustible gas is produced with a low velocity at the top of the gasifier bed. This gas is combusted to a flue gas with extremely low dust content. Also, the NO{sub x} and CO content is very low. The temperature of the flue gas at the exit is kept low by injecting water spray together with the secondary air. (Author)

  3. Modeling of aerodynamics in vortex furnace

    Energy Technology Data Exchange (ETDEWEB)

    Anufriev, I.; Krasinsky, D. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Salomatov, V.; Anikin, Y.; Sharypov, O. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Novosibirsk State Univ. (Russian Federation); Enkhjargal, Kh. [Mongol Univ. of Science and Technology, Ulan Bator (Mongolia)

    2013-07-01

    At present, the torch burning technology of pulverized-coal fuel in vortex flow is one of the most prospective and environmentally-friendly combustion technologies of low-grade coals. Appropriate organization of aerodynamics may influence stability of temperature and heat flux distributions, increase slag catching, and reduce toxic emissions. Therefore, from scientific point of view it is interesting to investigate aerodynamics in the devices aiming at justification of design and operating parameters for new steam generators with vortex furnace, and upgrade of existing boiler equipment. The present work is devoted to physical and mathematical modeling of interior aerodynamics of vortex furnace of steam generator of thermal power plants. Research was carried out on the air isothermal model which geometry was similar to one section of the experimental- industrial boiler TPE-427 of Novosibirsk TPS-3. Main elements of vortex furnace structure are combustion chamber, diffuser, and cooling chamber. The model is made from organic glass; on the front wall two rectangular nozzles (through which compressed air is injected) are placed symmetrically at 15 to the horizon. The Laser Doppler Velocimeter LAD-05 was used for non-contact measurement of vortex flow characteristics. Two velocity components in the XY-plane (in different cross- sections of the model) were measured in these experiments. Reynolds number was 3.10{sup 5}. Numerical simulation of 3-D turbulent isothermal flow was performed with the use of CFD package FLUENT. Detailed structure of the flow in vortex furnace model has been obtained in predictions. The distributions of main flow characteristics (pressure, velocity and vorticity fields, turbulent kinetic energy) are presented. The obtained results may be used at designing boilers with vortex furnace. Computations were performed using the supercomputer NKS-160.

  4. Advanced sorbent development progam; development of sorbents for moving-bed and fluidized-bed applications

    International Nuclear Information System (INIS)

    Ayala, R.E.; Venkataramani, V.S.

    1998-01-01

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and

  5. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2008-10-14

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  6. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2012-05-01

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  7. Sorbents for the oxidation and removal of mercur

    Science.gov (United States)

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

    2017-09-12

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  8. Numerical Investigation of Novel Oxygen Blast Furnace Ironmaking Processes

    Science.gov (United States)

    Li, Zhaoyang; Kuang, Shibo; Yu, Aibing; Gao, Jianjun; Qi, Yuanhong; Yan, Dingliu; Li, Yuntao; Mao, Xiaoming

    2018-04-01

    Oxygen blast furnace (OBF) ironmaking process has the potential to realize "zero carbon footprint" production, but suffers from the "thermal shortage" problem. This paper presents three novel OBF processes, featured by belly injection of reformed coke oven gas, burden hot-charge operation, and their combination, respectively. These processes were studied by a multifluid process model. The applicability of the model was confirmed by comparing the numerical results against the measured key performance indicators of an experimental OBF operated with or without injection of reformed coke oven gas. Then, these different OBF processes together with a pure OBF were numerically examined in aspects of in-furnace states and global performance, assuming that the burden quality can be maintained during the hot-charge operation. The numerical results show that under the present conditions, belly injection and hot charge, as auxiliary measures, are useful for reducing the fuel rate and increasing the productivity for OBFs but in different manners. Hot charge should be more suitable for OBFs of different sizes because it improves the thermochemical states throughout the dry zone rather than within a narrow region in the case of belly injection. The simultaneous application of belly injection and hot charge leads to the best process performance, at the same time, lowering down hot-charge temperature to achieve the same carbon consumption and hot metal temperature as that achieved when applying the hot charge alone. This feature will be practically beneficial in the application of hot-charge operation. In addition, a systematic study of hot-charge temperature reveals that optimal hot-charge temperatures can be identified according to the utilization efficiency of the sensible heat of hot burden.

  9. Heat treatment furnace

    Science.gov (United States)

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  10. High Temperature Transparent Furnace Development

    Science.gov (United States)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  11. HAZARDOUS WASTE INCINERATION: THE IN-SITU CAPTURE OF LEAD BY SORBENTS IN A LABORATORY DOWNFLOW COMBUSTOR

    Science.gov (United States)

    The paper discusses experiments on a 17-kW downflow combustor to determine how sorbent injection into the postflame influenced the particle size distribution of a lead (Pb) aerosol formed from a surrogate Pb-containing waste. n the absence of chlorine (CI), the Pb aerosol size di...

  12. [The electric furnace of Henri Moissan at one hundred years: connection with the electric furnace, the solar furnace, the plasma furnace?].

    Science.gov (United States)

    Royère, C

    1999-03-01

    The trace of Henri Moissan's pioneer work 100 years ago is clearly evidenced by an overview of achievements in high temperature devices; 1987: "Le four électrique" by Henri Moissan; 1948-1952: "High temperature heating in a cavity rotary kiln using focusing of solar radiation" by Félix Trombe; 1962: "The cavity rotary kiln using focused solar radiation jointly with a plasma gun" by Marc Foëx; 1970: "The rotary kiln with two plasma guns and arc transfer" by Marc Foëx; 1984: "The plasma furnace" by Electricité de France (EDF) at Renardières; 1997: "The plasma furnace" by the Atomic Energy Center (CEA) at Cadarache, the VULCANO program. The first part of this contribution is devoted to Henri Moissan. Re-reading his early book on the electric furnace, especially the first chapter and the sections on silica, carbon vapor and experiments performed in casting molten metal--the conclusions are outstanding--provides modern readers with an amazing insight into future developments. The last two parts are devoted to Félix Trombe and Marc Foëx, tracing the evolution of high temperature cavity processus leading to the solar furnace and the present day plasma furnace at the CEA. Focus is placed on research conducted by the French National Center for Scientific Research (CNRS) with the solar and plasma furnaces at Odeillo. The relationships with Henri Moissan's early work are amazing, offering a well deserved homage to this pioneer researcher.

  13. Long Life Moving-Bed Zinc Titanate Sorbent

    International Nuclear Information System (INIS)

    Copeland, Robert J.; Cesario, Mike; Feinberg, Daniel A.; Sibold, Jack; Windecker, Brian; Yang, Jing

    1997-01-01

    The objective of this work was to develop and test long-life sorbents for hot gas cleanup. Specifically, we measured the sulfur loading at space velocities typically used for absorption of H 2 S and regenerated the sorbent with diluted air for multiple cycles. Based on the experimental results, we prepared a conceptual design of the sorbent-fabrication system, and estimated the cost of sorbent production and of sulfur removal

  14. The ADESORB Process for Economical Production of Sorbents for Mercury Removal from Coal Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Robin Stewart

    2008-03-12

    The DOE's National Energy Technology Laboratory (NETL) currently manages the largest research program in the country for controlling coal-based mercury emissions. NETL has shown through various field test programs that the determination of cost-effective mercury control strategies is complex and highly coal- and plant-specific. However, one particular technology has the potential for widespread application: the injection of activated carbon upstream of either an electrostatic precipitator (ESP) or a fabric filter baghouse. This technology has potential application to the control of mercury emissions on all coal-fired power plants, even those with wet and dry scrubbers. This is a low capital cost technology in which the largest cost element is the cost of sorbents. Therefore, the obvious solutions for reducing the costs of mercury control must focus on either reducing the amount of sorbent needed or decreasing the cost of sorbent production. NETL has researched the economics and performance of novel sorbents and determined that there are alternatives to the commercial standard (NORIT DARCO{reg_sign} Hg) and that this is an area where significant technical improvements can still be made. In addition, a key barrier to the application of sorbent injection technology to the power industry is the availability of activated carbon production. Currently, about 450 million pounds ($250 million per year) of activated carbon is produced and used in the U.S. each year - primarily for purification of drinking water, food, and beverages. If activated carbon technology were to be applied to all 1,100 power plants, EPA and DOE estimate that it would require an additional $1-$2 billion per year, which would require increasing current capacity by a factor of two to eight. A new facility to produce activated carbon would cost approximately $250 million, would increase current U.S. production by nearly 25%, and could take four to five years to build. This means that there could be

  15. Novel sorbents for environmental remediation

    Science.gov (United States)

    Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Werner, David

    2014-05-01

    Nowadays, one of the major environmental problems is the pollution of aquatic systems and soil by persistent pollutants. Persistent pollutants have been found widespread in sediments, surface waters, and drinking water supplies. The removal of pollutants can be accomplished prior to their discharge to receiving bodies or by immobilizing them onto soil. Sorption is the most commonly applied process, and activated carbons have been widely used. Rapid progress in nanotechnology and a new focus on biomass-based instead of non-renewable starting materials have produced a wide range of novel engineered sorbents including biosorbents, biochars, carbon-based nanoparticles, bio-nano hybrid materials, and iron-impregnated activated carbons. Sorbent materials have been used in environmental remediation processes and especially in agricultural soil, sediments and contaminated soil, water treatment, and industrial wastewater treatment. Furthermore, sorbents may enhance the synergistic action of other processes, such as volatilization and biodegradation. Novel sorbents have been employed for the removal or immobilization of persistent pollutants such as and include heavy metals (As, Cr, Cu, Pb, Cd, and Hg), halogenated organic compounds, endocrine disrupting chemicals, metalloids and non-metallic elements, and other organic pollutants. The development and evaluation of novel sorbents requires a multidisciplinary approach encompassing environmental, nanotechnology, physical, analytical, and surface chemistry. The necessary evaluations encompass not only the efficiency of these materials to remove pollutants from surface waters and groundwater, industrial wastewater, polluted soils and sediments, etc., but also the potential side-effects of their environmental applications. The aim of this work is to present the results of the use of biochar and impregnated carbon sorbents for the removal of organic pollutants and metals. Furthermore, the new findings from the forthcoming session

  16. Furnace for the continuous sintering of pellets of ceramic nuclear fuel material

    International Nuclear Information System (INIS)

    Heyraud, J.

    1977-01-01

    The furnace comprises a hearth for the longitudinal displacement of pellet containers, means for injecting gas at both ends of the furnace, for sucking gas between preheating and sintering zones and for condensing the binder, means for displacing the containers from an introduction lock-chamber to an extraction lock-chamber, a conveyor belt which passes through a glove box and provides a leak-tight connection between the lock-chambers. A station for loading containers with pellet sub-containers prior to sintering and a station for unloading the pellet sub-containers after sintering are juxtaposed within the glove box. 3 claims, 1 drawing figure

  17. The behavior of potassium in the blast furnace deduced from isotope tracers

    International Nuclear Information System (INIS)

    Barnes, I; Botha, D.W.S.; Farquharson, D.C.; Gordon, P.T.

    1978-01-01

    Two tracer tests were done with radioactive potassium (42 K) on blast furnace no. 1, Pretoria Works. Some 80% of the injected 42 K was recovered in 2 1/2 days. About 95% of both radioactive and natural potassium reported in the slag. Mean residence times of 18 and 25 hours confirmed the accumulation of potassium in the furnace. In these tests the slag basicity appeared to be an adequate indicator of furnace conditions governing the behaviour of potassium. A quantitative discontinious model with varying volume CSTR's and interflow controlled according to slag basicity - could be made to fit the results of both tests. The total amounts of K 2 O required by the model - 4 and 9 t respectively - were larger than estimates from input/output imbalance, or from mean residence time of the tracer

  18. CO2 removal from biogas with supported amine sorbents : First technical evaluation based on experimental data

    NARCIS (Netherlands)

    Sutanto, Stevia; Dijkstra, J. W.; Pieterse, J. A.Z.; Boon, J; Hauwert, P.; Brilman, D. W.F.

    2017-01-01

    Biogas from fermentation of manure and organic residues produces a gas stream that can be fed into the natural gas grid, provided impurities (CO2, H2S and H2O) are removed according to specifications prior to grid injection. Compared to conventional technologies, supported amine sorbents (SAS) seem

  19. Emissions control of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans at municipal waste combustors

    International Nuclear Information System (INIS)

    Tseng, S.C.; Jozewicz, W.; Sedman, C.B.

    1991-01-01

    This paper gives the results of an analysis of available emission data of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/PCDF) from municipal waste combustors (MWCs) to evaluate the effectiveness of various air pollution control devices on PCDD/PCDF removal. The effects of flue gas temperature, recycling fabric filter ash, and process additives such as ammonia and Tesisorb powder were also analyzed. The analysis shows that MWCs equipped with a spray dryer followed by fabric filters can achieve PCDD/PCDF removal efficiencies (REs) of 97% and higher. A RE of 94% has been achieved at a combustor equipped with a Thermal DeNO x system followed by a spray dryer and fabric filters. MWCs equipped with a duct sorbent injection system followed by fabric filters can potentially achieve a RE of 99%. A combustor equipped with a spray dryer followed by electrostatic precipitators (ESPs) has achieved a RE of 64%. Neither a duct sorbent injection system followed by ESPs nor a furnace sorbent injection system followed by ESPs could effectively remove PCDD/PCDF. PCDD/PCDF were not effectively removed from MWCs equipped with ESPs as the only devices to control air pollution

  20. An experimental investigation of concentrated slop combustion characteristics in cyclone furnace

    Science.gov (United States)

    Panpokha, Suphaopich; Wongwuttanasatian, Tanakorn; Tangchaichit, Kiatfa

    2018-02-01

    Slop is a by-product in alcoholic industries requiring costly waste management. An idea of using slop as a fuel in a boiler for the industries was proposed. Due to high content of ash, a cyclone furnace was designed to combust the slop. This study aims to examine the concentrated slop combustion in a designed cyclone furnace, consisting of combustion temperature and exhaust gases. The tests were carried out under 4 different air-fuel ratios. Fuels injected into the furnace were 3 g/s of concentrated slop and 1 g/s of diesel. The air-fuel ratios were corresponding to 100, 120, 140 and 160 percent theoretical air. The results demonstrated that combustion of concentrated slop can gave temperature of 800-1000°C and a suitable theoretical air was 100%-120%, because the combustion temperature was higher than that of other cases. In cyclone combustion, excess air is not recommended because it affects a reduction in overall temperature inside the cyclone furnace. It is expected that utilization of the concentrated slop (by-product) will be beneficial in the development of green and zero waste factory.

  1. Hot metal temperature prediction and simulation by fuzzy logic in a blast furnace

    International Nuclear Information System (INIS)

    Romero, M. A.; Jimenez, J.; Mochon, J.; Formoso, A.; Bueno, F.; Menendez, J. L.

    2000-01-01

    This work describes the development and further validation of a model devoted to blast furnace hot metal temperature forecast, based on Fuzzy logic principles. The model employs as input variables, the control variables of an actual blast furnace: Blast volume, moisture, coal injection, oxygen addition, etc. and it yields as a result the hot metal temperature with a forecast horizon of forty minutes. As far as the variables used to develop the model have been obtained from data supplied by an actual blast furnaces sensors, it is necessary to properly analyse and handle such data. Especial attention was paid to data temporal correlation, fitting by interpolation the different sampling rates. In the training stage of the model the ANFIS (Adaptive Neuro-Fuzzy Inference System) and the Subtractive Clustering algorithms have been used. (Author) 9 refs

  2. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry

    Science.gov (United States)

    Krawczyk-Coda, Magdalena

    2017-03-01

    In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).

  3. Metallurgy of mercury in Almaden: from aludel furnaces until Pacific furnaces

    International Nuclear Information System (INIS)

    Tejero-Manzanares, J.; Garrido Saenz, I.; Mata Cabrera, F.; Rubio Mesas, M. L.

    2014-01-01

    This paper shows the different types of furnaces for roasting cinnabar, used in the metallurgy of quicksilver over the centuries of exploitation of the Almaden Mines (Spain). Some of these techniques are part of our industrial heritage. They have contributed to name UNESCO World Heritage Site the vast technological legacy of these mines recently. This research contributes to close the long way of metallurgical activity from aludel furnaces until Pacif furnaces, first and lasted technology to produce on an industrial scale. It is delved into the most relevant aspects having to do with the type, evolution and number of furnaces existing on each of the periods. (Author)

  4. Methods of steel manufacturing - The electric arc furnace

    Science.gov (United States)

    Dragna, E. C.; Ioana, A.; Constantin, N.

    2018-01-01

    Initially, the carbon content was reduced by mixing “the iron” with metallic ingots in ceramic crucibles/melting pots, with external heat input. As time went by the puddling procedure was developed, a procedure which also assumes a mixture with oxidized iron ore. In 1856 Bessemer invented the convertor, thus demonstrating that steel can be obtained following the transition of an air stream through the liquid pig iron. The invention of Thomas, a slightly modified basic-lined converter, fostered the desulphurization of the steel and the removal of the phosphate from it. During the same period, in 1865, in Sireuil, the Frenchman Martin applies Siemens’ heat regeneration invention and brings into service the furnace with a charge composed of iron pig, scrap iron and iron ore, that produces a high quality steel [1]. An act worthy of being highlighted within the scope of steelmaking is the start-up of the converter with oxygen injection at the upper side, as there are converters that can produce 400 tons of steel in approximately 50 minutes. Currently, the share of the steel produced in electric arc furnaces with a charge composed of scrap iron has increased. Due to this aspect, the electric arc furnace was able to impose itself on the market.

  5. PROCEEDINGS: MULTIPOLLUTANT SORBENT REACTIVITY ...

    Science.gov (United States)

    The report is a compilation of technical papers and visual aids presented by representatives of industry, academia, and government agencies at a workshop on multipollutant sorbent reactivity that was held at EPA's Environmental Research Center in Research Triangle Park, NC, on July 19-20, 1994. There were 16 technical presentations in three sessions, and a panel discussion between six research experts. The workshop was a forum for the exchange of ideas and information on the use of sorbents to control air emissions of acid gases (sulfur dioxide, nitrogen oxides, and hydrogen chloride); mercury and dioxins; and toxic metals, primarily from fossil fuel combustion. A secondary purpose for conducting the workshop was to help guide EPA's research planning activities. A general theme of the workshop was that a strategy of controlling many pollutants with a single system rather than systems to control individual pollutants should be a research goal. Some research needs cited were: hazardous air pollutant removal by flue gas desulfurization systems, dioxin formation and control, mercury control, waste minimization, impact of ash recycling on metals partitioning, impact of urea and sorbents on other pollutants, high temperature filtration, impact of coal cleaning on metals partitioning, and modeling dispersion of sorbents in flue gas. information

  6. Sol-gel derived sorbents

    Science.gov (United States)

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  7. Sorbent-based Oxygen Production for Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Vijay [Western Research Inst. (WRI), Laramie, WY (United States)

    2017-01-31

    Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a major advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.

  8. Exploiting the bead-injection approach in the integrated sequential injection Lab-on-Valve format using hydrophobic packing materials for on-line matrix removal and preconcentration of trace levels of cadmium in environmental and biological samples via formation of non-charged chelates prior

    DEFF Research Database (Denmark)

    Miró, Manuel; Jonczyk, Sylwia; Wang, Jianhua

    2003-01-01

    The concept of renewable microcolumns within the conduits of an automated single injection lab-on-valve system was exploited in a sorption/elution fashion using sorbents of hydrophobic nature. The scheme's practical applicability was demonstrated for the electrothermal atomic absorption spectrome......The concept of renewable microcolumns within the conduits of an automated single injection lab-on-valve system was exploited in a sorption/elution fashion using sorbents of hydrophobic nature. The scheme's practical applicability was demonstrated for the electrothermal atomic absorption...

  9. Utility boiler computer modeling experience in the USA for practical furnace air port and low NOx burner field design

    Energy Technology Data Exchange (ETDEWEB)

    Breen, B.P.; Urich, J.A.; Krippene, B.C. [ESA, Inc. (United States)

    2000-07-01

    This paper presents several examples of where effective furnace and low NOx burner modeling has produced substantial advantages to the low NOx combustion system designer. Using practical boiler furnace air injection port and low NOx burner maths modeling as an integral part of the design process has often made the difference between a successful low NOx combustion system field conversion project and an unsuccessful one.

  10. Advanced steel reheat furnace

    Energy Technology Data Exchange (ETDEWEB)

    Moyeda, D.; Sheldon, M.; Koppang, R. [Energy and Environmental Research Corp., Irvine, CA (United States); Lanyi, M.; Li, X.; Eleazer, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  11. Sorption of methylxanthines by different sorbents

    Science.gov (United States)

    Dmitrienko, S. G.; Andreeva, E. Yu.; Tolmacheva, V. V.; Terent'eva, E. A.

    2013-05-01

    Sorption of caffeine, theophylline, theobromine, diprophylline, and pentoxyphylline on different sorbents (supercross-linked polystyrene, surface-modified copolymer of styrene and divinylbenzene Strata-X, and carbon nanomaterials Taunit and Diasorb-100-C16T) was studied in a static mode in an effort to find new sorbents suitable for sorption isolation and concentration of methylxanthines. The peculiarities of sorption of methylxanthines were explained in relation to the solution acidity, the nature of the sorbates and their concentration, the nature of the solvent, and the structural characteristics of the sorbents.

  12. On-line preconcentration using a resin functionalized with 3,4-dihydroxybenzoic acid for the determination of trace elements in biological samples by thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Lemos, Valfredo A.; Bezerra, Marcos A.; Amorim, Fabio A.C.

    2008-01-01

    In the present paper, an on-line preconcentration procedure for determination of cadmium, copper and zinc by thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) is proposed. Amberlite XAD-4 functionalized with 3,4-dihydroxybenzoic acid (XAD4-DHB) packed in a minicolumn was used as sorbent material. The metals were retained on the XAD-DHB resin, from which it could be eluted directly to the thermospray flame furnace system. The detection limits were 28 (Cd), 100 (Cu) and 77 ng L -1 (Zn) for 60 s preconcentration time, at a sample flow rate of 7.0 mL min -1 . Enrichment factors were 102, 91 and 62, for cadmium, copper and zinc, respectively. The procedure has been applied successfully to metal determination in biological standard reference materials

  13. A Water Model Study on Mixing Behavior of the Two-Layered Bath in Bottom Blown Copper Smelting Furnace

    Science.gov (United States)

    Shui, Lang; Cui, Zhixiang; Ma, Xiaodong; Jiang, Xu; Chen, Mao; Xiang, Yong; Zhao, Baojun

    2018-05-01

    The bottom-blown copper smelting furnace is a novel copper smelter developed in recent years. Many advantages of this furnace have been found, related to bath mixing behavior under its specific gas injection scheme. This study aims to use an oil-water double-phased laboratory-scale model to investigate the impact of industry-adjustable variables on bath mixing time, including lower layer thickness, gas flow rate, upper layer thickness and upper layer viscosity. Based on experimental results, an overall empirical relationship of mixing time in terms of these variables has been correlated, which provides the methodology for industry to optimize mass transfer in the furnace.

  14. Characterization of core-drilled cokes in a working blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shanning Dong; Nigel Paterson; Denis R. Dugwell; Rafael Kandiyoti [Imperial College London, London (United Kingdom). Dept. of Chemical Engineering

    2007-07-01

    A batch of tuyere-level core-drilled cokes, taken from a blast furnace working with coal injection has been characterized using a battery of analytical techniques. These included size exclusion chromatography (SEC), FT-Raman Spectroscopy (FT-RS) and X-ray Powder Diffraction (XRD). SEC tests on NMP-extracts of cokes taken from zones where temperatures were ca. 1500{sup o}C, showed the presence of heavy soot-like material (ca. 107-108 u apparent mass). By contrast, cokes in higher temperature zones (ca. 2000{sup o}C), only gave small amounts of extractable material with up to ca. 105 u apparent mass. The presence of soot-like material indicated the conversion-unfavoured locations at the tuyere-level. FT-Raman spectra of NMP-extracted cokes varied: the area ratios of D (at 1288-1295cm{sup -1}) to G (at ca. 1596cm{sup -1}) bands decreased as the exposure temperature increased. The random (r) fractions decreased with increasing exposure temperature, whereas, the graphitic (G) fractions increased whilst the defect (D) fraction showed a more complex variation with temperature. The latter is a likely indicator of graphitization of tuyere-level cokes in the blast furnace. The Raman spectral results were validated by XRD analyses of the demineralised and NMP-extracted cokes. Raceway coke possessed the largest crystalline dimensions and closest inter-layer spacing because it had encountered highest temperatures as well as iron catalysis. The combination of SEC and Raman spectrometry on core-drill samples has provided information relevant for maintaining stable operation in a blast-furnace operating with coal injection. 13 refs., 7 figs., 6 tabs.

  15. Comparison of a burning mass ceramics coating in laboratory furnace and instrustrial furnace

    International Nuclear Information System (INIS)

    Soares, R.A.L.; Castro, J.R. de S.

    2012-01-01

    This work intends to analyze the differences obtained in the technological properties of a ceramic coating after firing in two distinct environments, laboratory furnace and industrial furnace. For this, was characterized a ceramic mass used in the production of porous coating. The analyzes were performed chemical, mineralogical and thermal mass in that. The specimens were obtained by compacting and burned in the maximum temperature of 1140 deg C in two furnaces, laboratory and industrial. The technological tests were performed linear shrinkage, water absorption, bulk density and mechanical strength. The microstructure was evaluated by ray-X diffraction and scanning electron microscopy. The results showed that both furnaces provided significant differences in analyzed specimens, such as increased strength and low water absorption in the fired samples in a laboratory furnace, for example. (author)

  16. EFFECTS OF THE LITHIUM – CONTAINING SORBENT ON TERMS OF BEHAVIORAL REACTIONS UNDER CHRONIC ALCOHOL INTOXICATION MODEL

    Directory of Open Access Journals (Sweden)

    A. A. Kotlyarova

    2016-01-01

    Full Text Available Lithium preparations are widely used for stabilize mood in case of bipolar affective disorder. Currently neuroprotective and neuroregenerative effects of lithium are of interest as in case of acute brain injury, also in chronic neurodegenerative diseases such as dementia, alcoholism, Alzheimer disease, etc. [1–5]. In clinical practice use of lithium preparations is limited due to difficult adjustment of drug dosage, necessity of monitoring its concentration in blood, side effects development as a result of accumulation of lithium in a body. For the purpose of improvement of pharmacologic properties lithium is combined with other agents (for example modifying sorbent thus it can produce longer-term and more harmless (less side reactions effect in the long view. Lithium immobilization on sorption basis will allow to use sorbent as detoxicant and carrying agent of drugs to body. The purpose of the work is studying the effect of the lithium – containing sorbent on terms of behavioral reactions under chronic alcohol intoxication model.Materials and methods. During the work we used nonlinear mice – males, which weight 25–30 g (180 animals. Chronic alcohol intoxication was precipitated via 40% proof spirit injections (oral supplementation in quantity of 3 g/kg during 2 weeks, additionally mice drunk 5% proof spirit from drinking bowl. Each experimental group consisted of 10 animals. Study drugs were inserted inside while ethanol injecting. Control animals were inserted 0,9% salin solution. Emotional state of animals was assessed through forced swim test, short – term memory assessment was performed through conditioned passive avoidance reflex. Effect of chronic alcohol intoxication on the parameters of conditioned reflex activity was measured every 7 days.Results. It was found that the investigated lithium-containing sorbent increases: the number of mice are trained passive avoidance reflex, remembering percent of electric shock

  17. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Mitchell, S.J.; Freeman, H.D.; Buelt, J.L.

    1987-01-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is developing sorbent materials to prevent the migration of radionuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Screening studies identified promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite of clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent, adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 2 references, 6 figures, 3 tables

  18. Engineered sorbent barriers for low-level waste disposal.

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs.

  19. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs

  20. Properties and reactivity of reactivated calcium-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Davini, P. [Pisa University, Pisa (Italy). Dept. of Chemical Engineering

    2002-04-01

    Calcium-based sorbents used in the process of high temperature desulfurisation of flue gases are partly regenerable by hydration with steam; the best results are obtained for treatment temperatures of approximately 300{degree}C. The regeneration process, and the consequent increase in the sorbent consumption can be correlated to the surface characteristics (BET surface area, porosity and pore size distribution) of the sorbents themselves. In particular, the presence of suitable pore structure, also having pores large enough to let molecules easily penetrate the inner part of the sorbent particles, is very important. 27 refs., 9 figs., 2 tabs.

  1. Cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry after ultrasound-assisted sample preparation

    International Nuclear Information System (INIS)

    Aleixo, Poliana Carolina; Junior, Dario Santos; Tomazelli, Andrea Cristina; Rufini, Iolanda A.; Berndt, Harald; Krug, Francisco Jose

    2004-01-01

    A simple method for cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry (BIFF-AAS) was proposed. Food slurries were prepared by transferring an exact amount of cryogenic-ground homogenized material (50-100 mg) to centrifuge tubes, followed by addition of 5 ml (up to 2.8 mol l -1 ) nitric acid solution and sonication in an ultrasonic bath during 5-10 min. Thereafter, slurries were diluted with water to 10 ml, centrifuged during 5 min at 5400 rpm and 400 μl aliquot of the supernatant was analyzed by BIFF-AAS. The detection limits based on peak height measurements were 0.03 μg g -1 Cd and 1.6 μg g -1 Pb for 2% (m/v) slurry (200 mg/10 ml). For method validation, the certified reference materials Pig Kidney (BCR 186) and Rice Flour (NIES 10) were used. Quantitative cadmium and lead recoveries were obtained and no statistical differences were found at 95% level by applying the t-test

  2. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    Science.gov (United States)

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  3. CO2 Capacity Sorbent Analysis Using Volumetric Measurement Approach

    Science.gov (United States)

    Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Knox, Jim

    2017-01-01

    In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various solid sorbents to complement structural strength tests conducted at Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13X, Honeywell UOP APG III, LiLSX VSA-10, BASF 13X, and Grace Davison Grade 522 5A. CO2 capacity was for all sorbent materials using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0C, 10C, 25C, 50C, and 75C isotherms. These data are to be used for modeling data and to provide a basis for continued sorbent research. The volumetric analysis method proved to be effective in generating consistent and repeatable data for the 13X sorbents, but the method needs to be refined to tailor to different sorbents.

  4. NIFSIL - a composite sorbent for caesium - properties and application

    International Nuclear Information System (INIS)

    Rajec, P.; Orechovska, J.

    1998-01-01

    Samples of the potassium-nickel ferrocyanides K 2 NiFe(CN) 6 , KNi 1,5 Fe(CN) 6 and Ni 2 Fe(CN) 6 were prepared and their properties studied with respect to their use as sorbents for caesium. Caesium is fixed on mixed alkaline-nickel ferrocyanide without structural change. The capacity of Cs retention never reached the theoretic value corresponding to a total release of the monovalent ions of the solid. High distribution coefficients (K D in the order of 10 4 cm 3 /g) determined in batch experiments show that these sorbents have a very high affinity for caesium ions, even in the presence of competing K + , Na + and Ca 2+ ions. The sorbents have a good chemical stability in a wide pH-range (2-12). The irradiation of some sorbent samples with high energy gamma-rays ( 60 Co) of a total dose of 1.10 5 Gy caused no remarkable changes in the sorbent properties (K D , sorption capacity and kinetics, mechanical stability). The sorbents were also tested for 85 Sr and 239 Pu and the results carried out under dynamic and batch experiments have shown that sorbents are not suitable for removal of these radionuclides. Potassium nickel hexacyanoferrate incorporated in silica-gel matrix could compete with others sorbents based on insoluble hexacyanoferrates, has the advantage of good radiation stability and suitable granulometry. The sorbent was prepared on a pilot scale with a capacity about 1000 kg per year with the prospect that it could be easily upgraded to an industrial scale

  5. Water purification from radionuclides with using fibroid sorbents

    International Nuclear Information System (INIS)

    Khaydarov, R. A.; Gapurova, O.U.; Khaydarov, R.R.

    2005-01-01

    Full text: Purification waste water and drinking water from radionuclides, heavy metal ions, organic contamination is one of the important problems today. For solving this problem we have created three types of fibroid sorbents on the base of Polyester: cationic and anionic exchange and carbonic. Main properties of these sorbents are described in this article. For example characteristics of the sorbents for removing radionuclides Co-60,57, Zn-65, Sr-89,90, Cs-134,137, etc., radionuclides containing organic molecules M-P-32, M-I-131, M-Mo-99+Tc-99m, M-C-14, etc., heavy metal ions Zn, Ni, Cu, Sb, Pb, Cd, Cr, U, etc., organic molecules (pesticides, phenols, dioxin, benzene, toluene, etc.) were investigated. Influence of pH on percent removal, influence of K, Na and another ions concentrations in the liquid on the percent removal, decreasing of the saturation capacity from number of regeneration and another characteristics are described. Static exchange capacity of the cationic sorbents is 1-2 mg-equ/g and anionic - 0.5-1 mg-equ/g. Capacity of the carbonic sorbents for benzene is 100 mg/g. Time of chemical balance setting is 1-2 s. The sorbents are effective in removing the low concentrations of contamination from the water (lower than 100-200 mg/l) and the air (lower than 100 mg/m 3 ). The use of sorbents in drinking water filters and mini-systems is described. The industrial water purification system consists of coagulating unit, sorbent unit and disinfectant unit. The systems are used in atomic power stations, electroplating plants, matches plants, leather and skin treating plants, car-washing stations, etc

  6. Sorbent selection and design considerations for uranium trapping

    International Nuclear Information System (INIS)

    Schultz, R.M.; Hobbs, W.E.; Norton, J.L.; Stephenson, M.J.

    1981-07-01

    The efficient removal of UF 6 from effluent streams can be accomplished through the selection of the best solid sorbent and the implementation of good design principles. Pressure losses, sorbent capacity, reaction kinetics, sorbent regeneration/uranium recovery requirements and the effects of other system components are the performance factors which are summarized. The commonly used uranium trapping materials highlighted are sodium fluoride, H-151 alumina, XF-100 alumina, and F-1 alumina. Sorbent selection and trap design have to be made on a case-by-case basis but the theoretical modeling studies and the evaluation of the performance factors presented can be used as a guide for other chemical trap applications

  7. Tributyl phosphate removal from reprocessing off-gas streams using a selected sorbent

    International Nuclear Information System (INIS)

    Parker, G.B.

    1980-01-01

    Laboratory experiments used small laboratory-scale columns packed with selected sorbent materials to remove tributyl phosphate (TBP) and iodine at conditions approaching those in actual reprocessing off-gas streams. The sorbent materials for TBP removal were placed upstream of iodine sorbent materials to protect the iodine sorbent from the deleterious effects of TBP. Methyl iodide in an airstream containing 30% TBP in normal paraffin hydrocarbons (NPH) and water vapor was metered to two packed columns of sorbents simultaneously (in parallel). One column contained a segment of 8-in. x 14-in. mesh alumina sorbent for TBP removal, the other did not. The measure of the effectiveness of TBP sorbent materials for TBP removal was determined by comparing the iodine retention of the iodine sorbent materials in the two parallel columns. Results from an 18 wt % Ag substituted mordenite iodine sorbent indicated that the iodine retention capacity of the sorbent was reduced 60% by the TBP and that the column containing iodine sorbent material protected by the alumina TBP sorbent retained 30 times more iodine than the column without TBP sorbent. TBP concentration was up to 500 mg/m 3 . Similar experiments using a 7 wt % Ag impregnated silica gel indicated that the TBP vapor had little effect on the iodine retention of the silica gel material. The stoichiometric maximum amount of iodine was retained by the silica gel material. Further experiments were conducted assessing the effects of NO 2 on iodine retention of this 7 wt % Ag sorbent. After the two columns were loaded with iodine in the presence of TBP (in NPH), one column was subjected to 2 vol % NO 2 in air. From visual comparison of the two columns, it appeared that the NO 2 regenerated the silica gel iodine sorbent and that iodine was washed off the silica gel iodine sorbent leaving the sorbent in the original state

  8. Numerical study of particle filtration in an induction crucible furnace

    International Nuclear Information System (INIS)

    Asad, Amjad; Kratzsch, Christoph; Dudczig, Steffen; Aneziris, Christos G.; Schwarze, Rüdiger

    2016-01-01

    Highlights: • Removing particles from a melt in an induction furnace by using a filter is introduced. • The effect of filter and its permeability on the melt flow is shown. • The impact of filter permeability and particle diameter on filter efficiency is studied. • The filter efficiency depends on filter position and number of the used filter. - Abstract: The present paper deals with a numerical investigation of the turbulent melt flow driven by the electromagnetic force in an induction furnace. The main scope of the paper is to present a new principle to remove non-metallic particles from steel melt in an induction furnace by immersing a porous filter in the melt. The magnetic field acting on the melt is calculated by using the open source software MaxFEM"®, while the turbulent flow is simulated by means of the open source computational fluid dynamics library OpenFOAM"®. The validation of the numerical model is accomplished by using experimental results for the flow without the immersed filter. Here it is shown that the time-averaged flow, obtained numerically is in a good quantitive agreement with the experimental data. Then, the validated numerical model is employed to simulate the melt flow with the immersed filter in the induction furnace of a new type of real steel casting simulator investigated at Technische Universität Bergakademie Freiberg. The considerable effect of the filter on the flow pattern is indicated in the present work. Moreover, it is shown that the filter permeability and its position have a significant influence on the melt flow in the induction furnace. Additionally, particles are injected in the flow domain and tracked by using Lagrangian framework. In this case, the efficiency of the used filter is determined in the present investigation depending on its permeability, its position and the particles diameter.

  9. Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Osintsev, V V; Khidiyatov, A M

    1981-01-01

    The purpose of the invention is to improve the operating efficiency of the furnace device containing prefurnaces connected to the main combustion chamber. For this purpose in the proposed furnace device is equipped with prefurnaces with burners, rectangular vertical chamber of combustion is equipped with central hearth projection. As indicated by studies, the hearth projection of the indicated projections promotes the development of transverse streams which guarantee effective mixing of the combustion products in the upper part of the combustion chamber 3. This reduces the nonuniformity of temperature at the outlet from the latter, decreases the probability of slagging and hot spots on the heating surface.

  10. Assessment of spent mushroom substrate as sorbent of fungicides: influence of sorbent and sorbate properties.

    Science.gov (United States)

    Marín-Benito, Jesús M; Rodríguez-Cruz, M Sonia; Andrades, M Soledad; Sánchez-Martín, María J

    2012-01-01

    The capacity of spent mushroom substrate (SMS) as a sorbent of fungicides was evaluated for its possible use in regulating pesticide mobility in the environment. The sorption studies involved four different SMS types in terms of nature and treatment and eight fungicides selected as representative compounds from different chemical groups. Nonlinear sorption isotherms were observed for all SMS-fungicide combinations. The highest sorption was obtained by composted SMS from Agaricus bisporus cultivation. A significant negative and positive correlation was obtained between the K(OC) sorption constants and the polarity index values of sorbents and the K(OW) of fungicides, respectively. The statistic revealed that more than 77% of the variability in the K(OW) could be explained considering these properties jointly. The other properties of both the sorbent (total carbon, dissolved organic carbon, or pH) and the sorbate (water solubility) were nonsignificant. The hysteresis values for cyprodinil (log K(OW)= 4) were for all the sorbents much higher (>3) than for other fungicides. This was consistent with the remaining sorption after desorption considered as an indicator of the sorption efficiency of SMS for fungicides. Changes in the absorption bands of fungicides sorbed by SMS observed by FTIR permitted establishing the interaction mechanism of fungicides with SMS. The findings of this work provide evidence for the potential capacity of SMS as a sorbent of fungicides and the low desorption observed especially for some fungicides, although they suggest that more stabilized or humified organic substrates should be produced to enhance their efficiency in environmental applications. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, M.H.; Jha, M.C.

    1989-10-01

    AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

  12. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Mitchell, S.J.; Freeman, H.D.; Buelt, J.L.

    1986-01-01

    Pacific Northwest Laboratory is developing sorbent materials to prevent the migration of radionuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Screening studies identified promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent, adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt %), activated charcoal (6 wt %), synthetic zeolite (20 wt %), and soil (73 wt %) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 2 refs., 6 figs., 3 tabs

  13. Post-combustion carbon capture - solid sorbents and membranes

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R.M.

    2009-01-15

    This report follows on from that on solvent scrubbing for post-combustion carbon capture from coal-fired power plants by considering the use of solid sorbents and membranes instead of solvents. First, mesoporous and microporous adsorbents are discussed: carbon-based adsorbents, zeolites, hydrotalcites and porous crystals. Attempts have been made to improve the performance of the porous adsorbent by functionalising them with nitrogen groups and specifically, amine groups to react with CO{sub 2} and thus enhance the physical adsorption properties. Dry, regenerable solid sorbents have attracted a good deal of research. Most of the work has been on the carbonation/calcination cycle of natural limestone but there have also been studies of other calcium-based sorbents and alkali metal-based sorbents. Membranes have also been studied as potential post-combustion capture devices. Finally, techno-economic studies predicting the economic performance of solid sorbents and membranes are discussed. 340 refs., 21 figs., 8 tabs.

  14. Influence of lignin on properties of wood-inorganic sorbents

    International Nuclear Information System (INIS)

    Remez, V.P.; Charina, M.V.; Klass, S.M.; Shubin, A.S.; Tkachev, K.V.; Isaeva, O.F.

    1986-01-01

    Present article is devoted to influence of lignin on properties of wood-inorganic sorbents. The influence of component composition of matrix on sorption properties of sorbents and their stability in different mediums is studied. The dependence of sorption capacity of sorbent on component matrix composition and its porous structure is defined.

  15. The antimicrobial efficiency of silver activated sorbents

    International Nuclear Information System (INIS)

    Đolić, Maja B.; Rajaković-Ognjanović, Vladana N.; Štrbac, Svetlana B.; Rakočević, Zlatko Lj.; Veljović, Đorđe N.; Dimitrijević, Suzana I.; Rajaković, Ljubinka V.

    2015-01-01

    Highlights: • Different sorbents were activated by Ag + -ions and modified sorbents were determined by sorption capacities, in range of values: 42.06–3.28 mg/g. • Granulated activated carbon (GAC), natural zeolit (Z) and titanium dioxide (T) activated by Ag + -ions were tested against E. coli, S. aureus and C. albicans. • The most successful bacteria removal was obtained using Ag/Z against S. aureus and E. coli, while the yeast cell reduction reached unsatisfactory effect for all three activated sorbents. • XRD, XPS and FE-SEM analysis showed that the chemical state of the silver activating agent affects the antimicrobial activity, as well as the structural properties of the material. • An overall microbial cell reduction, which is performed by separated antimicrobial tests on the Ag + -activated surface and Ag + -ions in aquatic solutions, is a consequence of both mechanisms. - Abstract: This study is focused on the surface modifications of the materials that are used for antimicrobial water treatment. Sorbents of different origin were activated by Ag + -ions. The selection of the most appropriate materials and the most effective activation agents was done according to the results of the sorption and desorption kinetic studies. Sorption capacities of selected sorbents: granulated activated carbon (GAC), zeolite (Z), and titanium dioxide (T), activated by Ag + -ions were following: 42.06, 13.51 and 17.53 mg/g, respectively. The antimicrobial activity of Ag/Z, Ag/GAC and Ag/T sorbents were tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. After 15 min of exposure period, the highest cell removal was obtained using Ag/Z against S. aureus and E. coli, 98.8 and 93.5%, respectively. Yeast cell inactivation was unsatisfactory for all three activated sorbents. The antimicrobial pathway of the activated sorbents has been examined by two separate tests – Ag + -ions desorbed from the activated surface to the

  16. Charcoal injection in blast furnaces (Bio-PCI: CO2 reduction potential and economic prospects

    Directory of Open Access Journals (Sweden)

    Cristobal Feliciano-Bruzual

    2014-07-01

    Full Text Available The steel industry is under pressure to reduce its CO2 emissions, which arise from the use of coal. In the long-term, the injection of pulverized particles of charcoal from biomass through blast furnace tuyeres, in this case called Bio-PCI, is an attractive method from both an environmental and metallurgical viewpoint. The potential of Bio-PCI has been assessed in terms of its CO2 abatement potential and economic viewpoint. A cost objective function has been used to measure the impact of biochar substitution in highly fuel-efficient BF among the top nine hot metal producers; estimations are based on the relevant cost determinants of ironmaking. This contribution aims to shed light on two strategic questions: Under what conditions is the implementation of Bio-PCI economically attractive? Additionally, where is such a techno-economic innovation likely to be taken up the earliest? The results indicate the potential for an 18–40% mitigation of CO2. Findings from the economic assessment show that biochar cannot compete with fossil coal on price alone; therefore, a lower cost of biochar or the introduction of carbon taxes will be necessary to increase the competitiveness of Bio-PCI. Based on the current prices of raw materials, electricity and carbon taxes, biochar should be between 130.1 and 236.4 USD/t and carbon taxes should be between 47.1 and 198.7 USD/t CO2 to facilitate the substitution of Bio-PCI in the examined countries. In regard to implementation, Brazil, followed by India, China and the USA appeared to be in a better position to deploy Bio-PCI.

  17. In vitro catheter and sorbent-based method for clearance of radiocontrast material during cerebral interventions

    International Nuclear Information System (INIS)

    Angheloiu, George O.; Hänscheid, Heribert; Reiners, Christoph; Anderson, William D.; Kellum, John A.

    2013-01-01

    Background: Contrast-induced acute kidney injury is a severe condition resulting from the use of radiology contrast in patients with predisposing factors. Hypothesis: We hypothesized that a novel system including a device containing polymer resin sorbent beads and a custom-made suctioning catheter could efficiently remove contrast from an in vitro novel model of circulatory system (MOCS) mimicking the cerebral circulation. Methods: A custom-made catheter was built and optimized for cerebral venous approach. The efficiency of a system made of a polymer resin sorbent beads column (CST 401, Cytosorbents) and this particular catheter was tested in the MOCS running a solution composed of 0.9% saline and radio-contrast. During two series of 18 cycles of first-pass experiments we assessed the catheter's suctioning efficiency and the system's ability to clear radio-contrast injected into the MOCS's cerebral arterial segment. We also assessed the functioning and reliability of the MOCS. Results: Mean suctioning efficiency of the catheter was 84% ± 24%. The polymer sorbent column contrast removal rate was initially 96% and gradually decreased with subsequent cycles in a linear fashion during an experiment lasting approximately 90 minutes. The MOCS had a reliability of 0.9946×min −1 where 1 × min −1 was the optimum value. Conclusion: A system including a polymer resin sorbent beads column and a custom-made suctioning catheter had an excellent initial efficiency in quickly removing contrast from an artificial MOCS mimicking the cerebral circulation. MOCS is an inexpensive and relatively reliable custom-made system that can be used for training or testing purposes

  18. Separation and preconcentration of platinum-group metals from spent autocatalysts solutions using a hetero-polymeric S, N-containing sorbent and determination by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Eskina, Vasilina V; Dalnova, Olga A; Filatova, Daria G; Baranovskaya, Vasilisa B; Karpov, Yuri A

    2016-10-01

    This paper describes the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for determination of Pt, Pd and Rh after separation and concentration by original in-house developed heterochain polymer S, N-containing sorbent. The methods of sample preparation of spent ceramic-based autocatalysts were considered, two of which were used: autoclave decomposition in mixture of acids HCl:HNO3 (3:1) and high-temperature melting with K2S2O7. Both methods anyway limit the direct determination of analytes by HR CS GFAAS. Using the first method it is an incomplete digestion of spent autocatalysts samples, since the precipitate is Si, and the rhodium metal dissolves with difficulty and partially passes into solution. In contrast to the first method, the second method allow to completely transfer analytes into solution, however, the background signal produced by the chemical composition of the flux, overlaps the analytical zone. It was found, that Pt, Pd and Rh contained in the spent ceramic automotive catalysts could be effectively separated and concentrated by heterochain polymer S, N-containing sorbent, which has high sorption capacity, selectivity and resistant to dilute acids. The chosen HR CS GFAAS analysis conditions enable us to determine Pt, Pd and Rh with good metrological characteristics. The concentrations of Pt, Pd and Rh in two samples of automobile exhaust catalysts were found in range of 0.00015-0.00050; 0.170-0.189; 0.0180-0.0210wt%, respectively. The relative standard deviation obtained by HR CS GFAAS was not more than 5%. Limits of detection by HR CS GFAAS achieved were 6.2·10(-6)wt% for Pt, 1.8·10(-6)wt% for Pd, and 3.4·10(-6)wt% for Rh. Limits of determination achieved by HR CS GFAAS were 1.1·10(-5)wt% for Pt, 6.9·10(-5)wt% for Pd, and 8.3·10(-5)wt% for Rh. To control the accuracy of PGM in sorption concentrates by HR CS GFAAS method, it was appropriate to conduct an inter-method comparative experiment. The

  19. Deep Bed Iodine Sorbent Testing FY 2011 Report

    International Nuclear Information System (INIS)

    Soelberg, Nick; Watson, Tony

    2011-01-01

    Nuclear fission results in the production of fission products (FPs) and activation products that increasingly interfere with the fission process as their concentrations increase. Some of these fission and activation products tend to evolve in gaseous species during used nuclear fuel reprocessing. Analyses have shown that I129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Deep-bed iodine sorption testing has been done to evaluate the performance of solid sorbents for capturing iodine in off-gas streams from nuclear fuel reprocessing plants. The objectives of the FY 2011 deep bed iodine sorbent testing are: (1) Evaluate sorbents for iodine capture under various conditions of gas compositions and operating temperature (determine sorption efficiencies, capacities, and mass transfer zone depths); and (2) Generate data for dynamic iodine sorption modeling. Three tests performed this fiscal year on silver zeolite light phase (AgZ-LP) sorbent are reported here. Additional tests are still in progress and can be reported in a revision of this report or a future report. Testing was somewhat delayed and limited this year due to initial activities to address some questions of prior testing, and due to a period of maintenance for the on-line GC. Each test consisted of (a) flowing a synthetic blend of gases designed to be similar to an aqueous dissolver off-gas stream over the sorbent contained in three separate bed segments in series, (b) measuring each bed inlet and outlet gas concentrations of iodine and methyl iodide (the two surrogates of iodine gas species considered most representative of iodine species expected in dissolver off-gas), (c) operating for a long enough time to achieve breakthrough of the iodine species from at least one (preferably the first two) bed segments, and (d) post-test purging

  20. A comparative study of homemade C18 and commercial C18 sorbents for preconcentration of lead by minicolumn solid phase extraction

    International Nuclear Information System (INIS)

    Maltez, H.F.; Curtius, A.J.; Carasek, E.; Melo, L.F.C.; Sales Fontes Jardim, I.C.; Nascimento de Queiroz do, S.C.

    2004-01-01

    A comparative study of commercial C 18 chemically immobilized on silica and homemade C 18 , as sorbents for Pb complexed with 0,0-diethyl-dithiophosphate (DDTP) in a flow injection preconcentration system is reported. The homemade C 18 sorbent was obtained by sorption of poly(methyloctadecylsiloxane) (PMODS) on the silica support followed by immobilization using thermal treatment. The method follows the concept of green chemistry, since there are no toxic residues after synthesis. The complexed Pb was formed in 1.0 mol L -1 HCI medium and retained on the minicolumn filled with the sorbents. The elution was carried out using ethanol, and the richest 210 μL fraction was collected and analyzed by flame atomic absorption spectrometry. Chemical and flow variables were optimized for each sorbent. The results demonstrated that the performance of the proposed homemade C 18 sorbent for preconcentration of Pb complexed with DDTP is very similar to commercial C 18 chemically bonded on silica. By processing 25 mL, the enrichment factors were 129 and 125 for commercial C 18 and homemade C 18 , respectively. The limit of detection for commercial and homemade C 18 was 0.2 μg L -1 and 0.6 μg L -1 , respectively. The relative standard deviation (RSD) was lower than 1.2 % for both sorbents for a Pb concentration of 100 μg L -1 . The method was also applied successfully to the analysis of water samples, and the accuracy was tested by recovery measurements on spiked samples and biological reference material. (author)

  1. Dismantling of a furnace and gloveboxes of a U3O8 with 20% enrichment production line

    International Nuclear Information System (INIS)

    Yorio, Daniel; Cinat, Enrique; Cincotta, Daniel; Fernandez, Carlos A.; Bruno, Hernan R.; Camacho, Esteban F.; Boero, Norma

    1999-01-01

    In the Uranium Powder Manufacturing Plant at CAC, U 3 O 8 with 20% enrichment is manufactured for fuel plates to be used in test reactors. This plant is in full operation since 1986, producing uranium oxide for Peru, Algeria, Iran, Egypt and the RA-3-CAE reactors. Some of the equipment of the Plant have finished their life time and one of the furnaces of the processing line had to be replaced. This work implied the dismantling not only of the furnace, but also of the gloveboxes connected to the furnace and the dismantling of the extraction lines and air injection of the gloveboxes. The work had to be performed with the necessary care in order to minimize risks and effects on personnel, installations and environment involved. (author)

  2. Lime-Based Sorbents for High-Temperature CO2 Capture—A Review of Sorbent Modification Methods

    Science.gov (United States)

    Manovic, Vasilije; Anthony, Edward J.

    2010-01-01

    This paper presents a review of the research on CO2 capture by lime-based looping cycles undertaken at CanmetENERGY’s (Ottawa, Canada) research laboratories. This is a new and very promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as more cost-effective technologies for CO2 capture. This new technology is based on the use of lime-based sorbents in a dual fluidized bed combustion (FBC) reactor which contains a carbonator—a unit for CO2 capture, and a calciner—a unit for CaO regeneration. However, even though natural materials are cheap and abundant and very good candidates as solid CO2 carriers, their performance in a practical system still shows significant limitations. These limitations include rapid loss of activity during the capture cycles, which is a result of sintering, attrition, and consequent elutriation from FBC reactors. Therefore, research on sorbent performance is critical and this paper reviews some of the promising ways to overcome these shortcomings. It is shown that reactivation by steam/water, thermal pre-treatment, and doping simultaneously with sorbent reforming and pelletization are promising potential solutions to reduce the loss of activity of these sorbents over multiple cycles of use. PMID:20948952

  3. Lime-Based Sorbents for High-Temperature CO2 Capture—A Review of Sorbent Modification Methods

    Directory of Open Access Journals (Sweden)

    Edward J. Anthony

    2010-08-01

    Full Text Available This paper presents a review of the research on CO2 capture by lime-based looping cycles undertaken at CanmetENERGY’s (Ottawa, Canada research laboratories. This is a new and very promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as more cost-effective technologies for CO2 capture. This new technology is based on the use of lime-based sorbents in a dual fluidized bed combustion (FBC reactor which contains a carbonator—a unit for CO2 capture, and a calciner—a unit for CaO regeneration. However, even though natural materials are cheap and abundant and very good candidates as solid CO2 carriers, their performance in a practical system still shows significant limitations. These limitations include rapid loss of activity during the capture cycles, which is a result of sintering, attrition, and consequent elutriation from FBC reactors. Therefore, research on sorbent performance is critical and this paper reviews some of the promising ways to overcome these shortcomings. It is shown that reactivation by steam/water, thermal pre-treatment, and doping simultaneously with sorbent reforming and pelletization are promising potential solutions to reduce the loss of activity of these sorbents over multiple cycles of use.

  4. Post combustion carbon capture - solid sorbents and membranes

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R.M. [IEA Clean Coal Centre, London (United Kingdom)

    2009-04-15

    This report follows on from that on solvent scrubbing for post-combustion carbon capture from coal-fired power plants by considering the use of solid sorbents and membranes instead of solvents. First, mesoporous and microporous adsorbents are discussed: carbon-based adsorbents, zeolites, hydrotalcites and porous crystals. Attempts have been made to improve the performance of the porous adsorbent by functionalising them with nitrogen groups and specifically, amine groups to react with CO{sub 2} and thus enhance the physical adsorption properties. Dry, regenerable solid sorbents have attracted a good deal of research. Most of the work has been on the carbonation/calcination cycle of natural limestone but there have also been studies of other calcium-based sorbents and alkali metal-based sorbents. Membranes have also been studied as potential post-combustion capture devices. Finally, techno-economic studies predicting the economic performance of solid sorbents and membranes are discussed. The report is available from IEA Clean Coal Centre as report no. CCC/144. See Coal Abstracts entry April 2009 00406. 340 refs., 21 figs., 8 tabs.

  5. Ecologically pure sorbents for power system of Myanmar

    Science.gov (United States)

    Nikitina, I. S.; Moryganova, Y. A.; Maung, Ko Ko; Arefeva, E. A.

    2017-11-01

    Currently, one of the most important problems of the thermal power plant, and many industrial enterprises in different countries is a wastewater treatment for oil products. When choosing the good sorbents is necessary to consider not only the properties and efficiency of the recommended materials, but also the cost, the possibility of environmentally friendly disposal of used sorbents and the possibility of using secondary resources. The purpose of this paper is to study the possibility of using agricultural waste in Myanmar as the sorbents in wastewater treatment containing oil products. The results of experiments have confirmed that rice hulls, and coconut fiber can be effectively used as the sorbents in wastewater treatment containing oil products at concentrations up to 10 mg/l. According to comparative analysis with the conventional sorbent-activated birch carbon (BAC-A) in the Russian power industry has shown that coconut fiber has very good sorption capacity and it is available to use as the raw materials for industries, which does not require to regenerate after using it and can be directly recycled in the factory.

  6. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  7. Industrial furnace with improved heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1992-07-07

    This patent describes an industrial furnace for heating work which emits volatiles during heating. It comprises a generally cylindrical, closed end furnace section defining a sealable heat transfer chamber for heating work disposed therein; fan means for directing furnace atmosphere as a swirling wind mass about the interior of the furnace section over a portion thereof; heat means for heating the wind mass within the fan chamber; and an incineration track formed as a circumferentially extending groove about the exterior of the furnace section and in heat transfer relationship with and situated at least to extend about a portion of the fan chamber.

  8. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The Plutonium Immobilization Project (PIP), to be located at the Savannah River Site SRS, is a combined development and testing effort by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), and the Australian National Science and Technology Organization (ANSTO). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulating package and resistance heating elements located within a nuclear glovebox. Other furnaces types considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment

  9. Use of biomass sorbents for oil removal from gas station runoff.

    Science.gov (United States)

    Khan, Eakalak; Virojnagud, Wanpen; Ratpukdi, Thunyalux

    2004-11-01

    The use of biomass sorbents, which are less expensive and more biodegradable than synthetic sorbents, for oil removal from gas station runoff was investigated. A bench-scale flume experiment was conducted to evaluate the oil removal and retention capabilities of the biomass sorbents which included kapok fiber, cattail fiber, Salvinia sp., wood chip, rice husk, coconut husk, and bagasse. Polyester fiber, a commercial synthetic sorbent, was also experimented for comparison purpose. Oil sorption and desorption tests were performed at a water flow rate of 20 lmin-1. In the oil sorption tests, a 50 mgl(-1) of used engine oil-water mixture was synthesized to simulate the gas station runoff. The mass of oil sorbed for all sorbents, except coconut husk and bagasse, was greater than 70%. Cattail fiber and polyester fiber were the sorbents that provided the least average effluent oil concentrations. Oil selectivity (hydrophobic properties) and physical characteristics of the sorbents are the two main factors that influence the oil sorption capability. The used sorbents from the sorption tests were employed in the desorption tests. Results indicated that oil leached out of all the sorbents tested. Polyester fiber released the highest amount of oil, approximately 4% (mass basis) of the oil sorbed. copyright 2004 Elsevier Ltd.

  10. Simulation of a DC electric arc furnace for steelmaking: study in the arc and bath regions

    International Nuclear Information System (INIS)

    Ramirez Argaez, M. A.; Trapaga Martinez, L. G.

    2001-01-01

    A mathematical model was developed to describe fluid flow, heat transfer, and electromagnetic phenomena in the arc and bath regions of DC electric Arc Furnaces (DC-EAF). The model is used to examine the effect on flow patterns and temperature distribution in the bath, under the influence of both an arc and bottom argon injection in steel or steel/slag systems. Validation of the model employed experimental measurements from systems physically related to DC-EAF from literature. For the conditions analyzed, electromagnetic forces dominate the fluid motion in the bath. Buoyancy and shear forces from the arc have a negligible effect in driving the flow; however, they partially counteract the electromagnetic forces. Slag decreases fluid motion in the steel and enhances temperature stratification in the system. Stirring of the bath, using a 3-nozzle inert gas injection system, is found to promote temperature uniformity in the regions near the lateral wall of the furnace. (Author) 24 refs

  11. Calculations in furnace technology

    CERN Document Server

    Davies, Clive; Hopkins, DW; Owen, WS

    2013-01-01

    Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi

  12. Detoxication and recycling of radioactive waters using selective mineral sorbents

    International Nuclear Information System (INIS)

    Berak, L.

    1980-01-01

    Activated BaSO 4 (designated AB 70) was proposed for use in decontaminating concentrated calcium salt solutions containing a small amount of 226 Ra. The AB 70 concentration factor amounts to 2x1a 3 . A sorption contactor for applying the powder sorbent was proposed and will be tested. The AB 70 sorbent liberates small amounts of sulphates into the decontaminated solution, and thus another suitable mineral sorbent was sought. A new sorbent could be synthetized and tested, called RAS-1 whose Ra/Ca selectivity is comparable to that of AB 70 while its Ra/Ba selectivity is considerably higher. The RAS-1 sorbent is also suitable for radiochemical separation in the analysis and concentration of Ra. (Ha)

  13. Coke, char and organic waste behaviour in the blast furnace with high injection rate

    Directory of Open Access Journals (Sweden)

    Gudenau, H. W.

    2003-10-01

    Full Text Available Blast furnace operation with low coke rate, high amount of auxiliary hydrocarbons and use of nut coke causes a change in coke quality requirements. In particular, not burned in the raceway residues of injected substances (char and ash can influence the coke behaviour. Therefore combustion efficiency of various organic wastes with and without pulverized coal injection (PCI and coal char has been investigated under the raceway simulation conditions. Mixing of various substances improves their combustion efficiency. Study on coke gasification by carbon dioxide in the presence of char showed that with the increase of char concentration, coke strength reduction becomes smaller. The reactivity of char with CO2 is higher than that of coke. Therefore char is consumed preferentially. In presence of injected char, total pore volume in coke and its wear resistance were increased. Coke reactivity and microstructure in the presence of various kinds of ash has been studied. Many ash spheres were observed on the surface of coke matrix and its size was dependent on ash properties.

    La operación del horno alto con una tasa baja de coque, una cantidad elevada de hidrocarburos auxiliares y el empleo de coque calibrado, origina un cambio en las necesidades de calidad del coque. En particular, pueden influir en el comportamiento del coque los residuos inquemados en el raceway (cavidad enfrente a las toberas del horno de las sustancias que se inyectan (char y cenizas. El char es el residuo de carbón que se origina después que el carbón libera sus sustancias volátiles. Por tanto, se ha investigado la eficiencia de la combustión de varios residuos orgánicos con y sin inyección de carbón pulverizado (ICP y char, bajo las condiciones de simulación del raceway. La mezcla de varias sustancias mejora la eficiencia a la combustión. El estudio de la gasificación del coque por el dióxido de carbono en la

  14. Oil sorbents from plastic wastes and polymers: A review.

    Science.gov (United States)

    Saleem, Junaid; Adil Riaz, Muhammad; Gordon, McKay

    2018-01-05

    A large volume of the waste produced across the world is composed of polymers from plastic wastes such as polyethylene (HDPE or LDPE), polypropylene (PP), and polyethylene terephthalate (PET) amongst others. For years, environmentalists have been looking for various ways to overcome the problems of such large quantities of plastic wastes being disposed of into landfill sites. On the other hand, the usage of synthetic polymers as oil sorbents in particular, polyolefins, including polypropylene (PP) and polyethylene (PE) have been reported. In recent years, the idea of using plastic wastes as the feed for the production of oil sorbents has gained momentum. However, the studies undertaking such feasibility are rather scattered. This review paper is the first of its kind reporting, compiling and reviewing these various processes. The production of an oil sorbent from plastic wastes is being seen to be satisfactorily achievable through a variety of methods Nevertheless, much work needs to be done regarding further investigation of the numerous parameters influencing production yields and sorbent qualities. For example, differences in results are seen due to varying operating conditions, experimental setups, and virgin or waste plastics being used as feeds. The field of producing oil sorbents from plastic wastes is still very open for further research, and seems to be a promising route for both waste reduction, and the synthesis of value-added products such as oil sorbents. In this review, the research related to the production of various oil sorbents based on plastics (plastic waste and virgin polymer) has been discussed. Further oil sorbent efficiency in terms of oil sorption capacity has been described. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  16. Simple test guidelines for screening oilspill sorbents for toxicity

    International Nuclear Information System (INIS)

    Blenkinsopp, S.A.; Sergy, G.; Doe, K.; Jackman, P.; Huybers, A.

    1998-01-01

    Environment Canada's Emergencies Science Division has established a program to develop a standard test method suitable for evaluating the toxicity of common sorbent materials. Sorbents are used to absorb or adsorb spilled oil and other hazardous materials. They vary widely in composition and packaging. They are often treated with oleophilic and hydrophobic compounds to improve performance and have been used in large quantities during oil spills. Until now, their potential toxicity has never been considered. Three tests have been evaluated to determine how appropriate they are in screening the toxicity of sorbents. Seven toxicity test recommendations for sorbents were presented. 7 refs., 3 tabs., 2 figs

  17. Technological Innovations of Carbon Dioxide Injection in EAF-LF Steelmaking

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Dong, Kai; Yang, Lingzhi; Liu, Runzao

    2018-06-01

    In this study, the recent innovations and improvements in carbon dioxide (CO2) injection technologies for electric arc furnace (EAF)-ladle furnace (LF) steelmaking processes have been reviewed. The utilization of CO2 in the EAF-LF steelmaking process resulted in improved efficiency, purity and environmental impact. For example, coherent jets with CO2 and O2 mixed injection can reduce the amount of iron loss and dust generation, and submerged O2 and powder injection with CO2 in an EAF can increase the production efficiency and improve the dephosphorization and denitrification characteristics. Additionally, bottom-blowing CO2 in an EAF can strengthen molten bath stirring and improve nitrogen removal, while bottom-blowing CO2 in a LF can increase the rate of desulfurization and improve the removal of inclusions. Based on these innovations, a prospective process for the cyclic utilization of CO2 in the EAF-LF steelmaking process is introduced that is effective in mitigating greenhouse gas emissions from the steelmaking shop.

  18. Technological Innovations of Carbon Dioxide Injection in EAF-LF Steelmaking

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Dong, Kai; Yang, Lingzhi; Liu, Runzao

    2018-03-01

    In this study, the recent innovations and improvements in carbon dioxide (CO2) injection technologies for electric arc furnace (EAF)-ladle furnace (LF) steelmaking processes have been reviewed. The utilization of CO2 in the EAF-LF steelmaking process resulted in improved efficiency, purity and environmental impact. For example, coherent jets with CO2 and O2 mixed injection can reduce the amount of iron loss and dust generation, and submerged O2 and powder injection with CO2 in an EAF can increase the production efficiency and improve the dephosphorization and denitrification characteristics. Additionally, bottom-blowing CO2 in an EAF can strengthen molten bath stirring and improve nitrogen removal, while bottom-blowing CO2 in a LF can increase the rate of desulfurization and improve the removal of inclusions. Based on these innovations, a prospective process for the cyclic utilization of CO2 in the EAF-LF steelmaking process is introduced that is effective in mitigating greenhouse gas emissions from the steelmaking shop.

  19. Electrostatic Levitation Furnace for the ISS

    Science.gov (United States)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  20. Potential of Cogon Grass as an Oil Sorbent

    OpenAIRE

    Wiloso, Edi Iswanto; Barlianti, Vera; Anggraini, Irni Fitria; Hendarsyah, Hendris

    2012-01-01

    Experiments on the potential of Cogon grass (lmperata cylindrica), a weed harmful to other plants, for use as a low-cost and biodegradable oil sorbent were carried out under various spill conditions. Flowers of Cogon grass adsorbed much larger amount of high-viscosity lubricating oil (57.9 g-oil/g-sorbent) than that adsorbed by Peat Sorb (7.7 g-oil/g-sorbent), a commercial oilsorbent based on peat. However, the flowers adsorbed only 27.9 g of low-viscosity crude oillgsorbent. In an oil-water ...

  1. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin.

    Science.gov (United States)

    Wilson, Lee D; Mohamed, Mohamed H; Berhaut, Christopher L

    2011-08-29

    Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD) have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid) have been evaluated. The sorption properties of granular activated carbon (GAC) were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (granular activated carbon (GAC ~10³ m²/g). The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i) surface area of the sorbent; (ii) CD content and accessibility; and (iii) and the chemical nature of the sorbent material.

  2. Application of zonal combustion model for on-line furnace analysis of 575MW tangential coal firing boiler

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, B.; Karasina, E.; Livshits, B.; Talanker, A. [Israel Electric Corporation (Israel). Engineering Division

    1999-07-01

    An advanced code for calculating heat transfer in the boiler of furnaces is considered. The code can be used to compute the flue gas temperature in the furnace volume and the absorbed and incident heat fluxes. The number of zones in the furnace, the points of the injection of the fuel, air and flue gas recirculation (if applicable), the radiative heat transfer properties of the flue gases as well as all the factors determining performance are taken into account in the calculation. The code also predicts water wall and superheater temperature and NO{sub x} emission. The validity of the proposed model was confirmed by comparison between calculated and measured values. The predicted results show good agreement with the experimental data. The code developed is for engineers using advanced PCS at the stage of designing new boilers as well as when retrofitting and adjusting boilers already in operation. In comparison with existing complex computational models the proposed system can be used in modern monitoring systems for the furnace diagnostic problems including NO{sub x} emission. 7 refs., 11 figs.

  3. A theoretical study using the multiphase numerical simulation technique for effective use of H2 as blast furnaces fuel

    Directory of Open Access Journals (Sweden)

    Jose Adilson de Castro

    2017-07-01

    Full Text Available We present a numerical simulation procedure for analyzing hydrogen, oxygen and carbon dioxide gases injections mixed with pulverized coals within the tuyeres of blast furnaces. Effective use of H2 rich gas is highly attractive into the steelmaking blast furnace, considering the possibility of increasing the productivity and decreasing the specific emissions of carbon dioxide becoming the process less intensive in carbon utilization. However, the mixed gas and coal injection is a complex technology since significant changes on the inner temperature and gas flow patterns are expected, beyond to their effects on the chemical reactions and heat exchanges. Focusing on the evaluation of inner furnace status under such complex operation a comprehensive mathematical model has been developed using the multi interaction multiple phase theory. The BF, considered as a multiphase reactor, treats the lump solids (sinter, small coke, pellets, granular coke and iron ores, gas, liquids metal and slag and pulverized coal phases. The governing conservation equations are formulated for momentum, mass, chemical species and energy and simultaneously discretized using the numerical method of finite volumes. We verified the model with a reference operational condition using pulverized coal of 215 kg per ton of hot metal (kg thm−1. Thus, combined injections of varying concentrations of gaseous fuels with H2, O2 and CO2 are simulated with 220 kg thm−1 and 250 kg thm−1 coals injection. Theoretical analysis showed that stable operations conditions could be achieved with productivity increase of 60%. Finally, we demonstrated that the net carbon utilization per ton of hot metal decreased 12%.

  4. Novel Sorbent to Clean Up Biogas for CHPs

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gökhan O. [TDA Research, Incorporated, Wheat Ridge, CO (United States); Jayataman, Ambalavanan [TDA Research, Incorporated, Wheat Ridge, CO (United States); Schaefer, Matthew [TDA Research, Incorporated, Wheat Ridge, CO (United States); Ware, Michael [TDA Research, Incorporated, Wheat Ridge, CO (United States); Hunt, Jennifer [FuelCell Energy, Inc., Danbury, CT (United States); Dobek, Frank [FuelCell Energy, Inc., Danbury, CT (United States)

    2015-05-30

    In this project, TDA Research Inc. (TDA) has developed low-cost (on a per unit volume of gas processed basis), high-capacity expendable sorbents that can remove both the H2S and organic sulfur species in biogas to the ppb levels. The proposed sorbents will operate downstream of a bulk desulfurization system as a polishing bed to provide an essentially sulfur-free gas to a fuel cell (or any other application that needs a completely sulfur-free feed). Our sorbents use a highly dispersed mixed metal oxides active phase with desired modifiers prepared over on a mesoporous support. The support structure allows the large organic sulfur compounds (such as the diethyl sulfide and dipropyl sulfide phases with a large kinetic diameter) to enter the sorbent pores so that they can be adsorbed and removed from the gas stream.

  5. Different sorbents in calcium looping cycle for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Cong; Zheng, Ying; Ding, Ning [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    Cyclic CO{sub 2} capture using commercial pure micro CaCO{sub 3} and nano CaCO{sub 3} is investigated in this paper which focuses on the different characteristics two different sorbents during high temperature reactions. The results indicate that the nano CaCO{sub 3} sorbent has higher carbonation conversions and carbonation rates than the micro CaCO{sub 3} sorbent in the cyclic reactions. Furthermore, nano sorbent can retain its fast carbonation rates at the beginning dozens of seconds during each cycle. In contrast, the carbonation rates of micro sorbent diminish with the increase of cycle number. But, unfortunately, CaO derived from nano CaCO3 sorbent sinter much easily. Its grains, which are composed of numerous spherical nanocrystallites, experience dramatic morphological changes during high temperature reactions.

  6. In vitro catheter and sorbent-based method for clearance of radiocontrast material during cerebral interventions

    Energy Technology Data Exchange (ETDEWEB)

    Angheloiu, George O., E-mail: goangheloiu@drmc.org [Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Department of Cardiology, Dubois Regional Medical Center, Dubois, PA (United States); Hänscheid, Heribert; Reiners, Christoph [Department of Nuclear Medicine, University of Würzburg, Würzburg (Germany); Anderson, William D. [Cardiology Department, Exempla Healthcare, Denver, CO (United States); Kellum, John A. [CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2013-07-15

    Background: Contrast-induced acute kidney injury is a severe condition resulting from the use of radiology contrast in patients with predisposing factors. Hypothesis: We hypothesized that a novel system including a device containing polymer resin sorbent beads and a custom-made suctioning catheter could efficiently remove contrast from an in vitro novel model of circulatory system (MOCS) mimicking the cerebral circulation. Methods: A custom-made catheter was built and optimized for cerebral venous approach. The efficiency of a system made of a polymer resin sorbent beads column (CST 401, Cytosorbents) and this particular catheter was tested in the MOCS running a solution composed of 0.9% saline and radio-contrast. During two series of 18 cycles of first-pass experiments we assessed the catheter's suctioning efficiency and the system's ability to clear radio-contrast injected into the MOCS's cerebral arterial segment. We also assessed the functioning and reliability of the MOCS. Results: Mean suctioning efficiency of the catheter was 84% ± 24%. The polymer sorbent column contrast removal rate was initially 96% and gradually decreased with subsequent cycles in a linear fashion during an experiment lasting approximately 90 minutes. The MOCS had a reliability of 0.9946×min{sup −1} where 1 × min{sup −1} was the optimum value. Conclusion: A system including a polymer resin sorbent beads column and a custom-made suctioning catheter had an excellent initial efficiency in quickly removing contrast from an artificial MOCS mimicking the cerebral circulation. MOCS is an inexpensive and relatively reliable custom-made system that can be used for training or testing purposes.

  7. Sodium bicarbonate injection: a small-plant SO sub 2 /NO sub x option

    Energy Technology Data Exchange (ETDEWEB)

    Darmstaedter, E. (NaTec Resources Inc. (USA). Environmental Systems Division)

    1990-12-01

    The sodium bicarbonate injection process provides a cost effective alternative to flue gas desulfurization for smaller power plants. EPRI and NaTec Resources have been conducting demonstrations on coal-fired utility boilers. 90% SO{sub 2} reduction was achieved in EPRI's High-Sulfur Test Centre 4 MW pilot HYPAS installation near Barker, NY. During 1990 Public Service Company of Colorado and NaTec completed a two-phase commercial demonstration for continuous SO{sub 2}/NO{sub x} control on Cherokee Unit 1 to determine levels of urea and injection locations for urea and sodium bicarbonate to minimise NO{sub 2} and NH{sub 3} emissions while maintaining a high level of SO{sub 2} reduction. Methods for sodium sulphate by-product recovery/sale are described - these are higher value than those from the limestone process. Costs for the whole process, driven by sorbent costs, work out typically for a dry sorbent injection/HYPAS system at $610/ton SO{sub 2} removed. 11 refs., 5 figs., 1 tab.

  8. Carbon-Containing Waste of Coal Enterprises in Magnetic Sorbents Technology

    Science.gov (United States)

    Kvashevaya, Ekaterina; Ushakova, Elena; Ushakov, Andrey

    2017-11-01

    The article shows the issues state of coal-mining enterprises carbonaceous wastes utilization, including by obtaining oil-sorbent. The characteristics of the feedstock are presented; experiment methods of obtaining a binder based on the livestock enterprises waste, of forming binder with filler (sawdust, coal waste); of pyrogenetic processing to obtain a sorbent are described. Possible options for the introduction of magnetite (a magnetic component) in the composition of the oil sorbent are considered: on the surface, in the volume of the granule and the magnetite core. In the course of the work it was found that the optimum content of coal dust in the sorbent granules is 75% by weight, and the most effective way of obtaining the magnetic sorbent is to apply the carbon material directly to the "core" of magnetite. However, in this case, the problem of finding an effective binder for magnetite arises. The option of applying magnetite on the surface of a carbon sorbent is not effective. Thus, at present, we use a mixture of coal waste, which binds to the uniform distribution of magnetite in the volume. The developed magnetic sorbents can be used in various weather conditions, including strong winds and icing of water bodies, as well as for small and medium currents.

  9. Developing low-cost carbon-based sorbents for Hg capture from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Perry, R.; Lakatos, J.; Snape, C.E.; Sun, C. [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre

    2005-07-01

    To help reduce the cost of Hg capture from flue gas a number of low-cost carbons are being investigated, including activated tyre char and PFA carbon, in conjunction with some of the pre-treatments that have been found to be effective for commercial actived carbons. Experimental conditions for screening the sorbents have been selected to determine breakthrough capacities rapidly. The unactivated carbons have low breakthrough capacities under the test conditions employed (around 0.1 mg g{sup -1}) but these improve upon steam activation (around 0.25 mg g{sup -1}) but are still lower than those of non-impregnated commercial activated carbons (around 0.4-0.7 mg g{sup -1}), due to their lower surface areas. Comparable improvements to the commercial carbons have been achieved for impregnation treatments, including sulfur and bromine. However, certain gasification chars do have much higher breakthrough capacities than commercial carbons used for flue gas injection. Manganese oxide impregnation with low concentration is particularly effective for the activated and unactivated carbons giving breakthrough capacities comparable to the commercial carbons. Pointers for further increasing breakthrough and equilibrium capacities for carbon-based sorbents are discussed. 7 refs., 1 fig., 3 tabs.

  10. Characterization of the permeability of the blast furnace lower part

    International Nuclear Information System (INIS)

    Negro, P.; Petit, C.; Urvoy, A.; Sert, D.; Pierret, H.

    2001-01-01

    In the context of high coal injection and high productivity operation, the coke behaviour inside the blast furnace hearth is the main parameter to control. Different and complementary investigations as radioactive and helium tracer injections, liquids and coke samplings, have been carried out at Sollac Fos BF1 using the tuyere probe to determine the hearth permeability and its evolutions as a function of the main control parameters, and to understand the hearth activity. The results of all these experiments give a very consistent picture of a heterogenous hearth with three concentric areas of various permeabilities to gas and liquids. A two concentric zones model has been built, which is in good agreement with the experimental results. It enables to evaluate the impact of the central zone on the liquids flow at the periphery. (author)

  11. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Lee D. Wilson

    2011-08-01

    Full Text Available Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid have been evaluated. The sorption properties of granular activated carbon (GAC were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (< 101 m2/g, CDI-X copolymers (< 101 m2/g, and granular activated carbon (GAC ~103 m2/g. The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i surface area of the sorbent; (ii CD content and accessibility; and (iii and the chemical nature of the sorbent material.

  12. REMOVAL OF ANIONIC SURFACTANTS FROM WASTEWATER BY MAGNETIC MINERAL SORBENTS

    Directory of Open Access Journals (Sweden)

    Oksana Vladimirova Makarchuk

    2016-07-01

    Full Text Available The simplest and most effective method of removing low concentrations of anionic surfactants such as sodium dodecyl benzenesulfonate (SDBS and sodium lauryl sulfate (SLS is adsorption. Among adsorbents the natural clays are cheap and promising for these purposes. However, there are significant difficulties in removal of spent sorbent after the adsorption process. So, the creation of magnetic sorbents that can be effectively removed from water after sorption by magnetic separation will be a successful decision. The aim of this investigation is the creation of cheap and efficient magnetic sorbents based on natural clays and magnetite for anionic surfactant removal from wastewater. We have synthesized a series of magnetic sorbents from different natural clays with a content of magnetite from 2 to 10 wt%. The ability of magnetic sorbents to remove SDBS and SLS from aqueous solutions has been studied for different adsorbate concentrations by varying the amount of adsorbent, temperature and shaking time. Thermodynamic parameters were calculated from the slope and intercept of the linear plots of ln K against 1/T. Analysis of adsorption results obtained at different temperatures showed that the adsorption pattern on magnetic sorbents correspond to the Langmuir isotherm. It is shown that with increasing the content of magnetite in the magnetic sorbents improves not only their separation from water by magnetic separation, but adsorption capacity to SDBS and SLS. Thus, we obtained of cheap magnetic sorbents based on natural clays and magnetite by the easy way, which not only quickly separated from the solution by magnetic separation, but effectively remove anionic surfactants.

  13. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The U.S. Department of Energy will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) at the Savannah River Site (SRS) as part of a two track approach for the disposition of weapons usable plutonium. As such, the Department of Energy is funding a development and testing effort for the PIP. This effort is being performed jointly by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), and Argonne National Laboratory (ANL). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulting package and resistance heating elements located within a nuclear glovebox. Other furnaces considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment. Due to the radiation levels and contamination associated with the plutonium material, the sintering process will be fully automated and contained within nuclear material gloveboxes. As such, the furnace currently under development incorporates water and air cooling to minimize heat load to the glovebox. This paper will describe the furnace equipment and systems needed to employ a fully automated puck sintering process within nuclear gloveboxes as part of the Plutonium Immobilization Plant

  14. Bench-scale studies on capture of mercury on mineral non-carbon based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Wendt, Jost O.L. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Zhang, Junying; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    A new high-temperature, mineral non-carbon based dispersed sorbent derived from paper recycling products has been shown to capture mercury at high temperatures in excess of 600 C. The sorbent is consisted of kaolinite/calcite/lime mixtures. Experiments have been conducted on chemi-sorption of elemental mercury in air on a packed bed. The sorption occurs at temperatures between 600 and 1,100 C and requires activation of the minerals contained within the sorbents. Mercury capture is dominated by temperature and capture on sorbents over long time scales. The capture shows a maximum effectiveness at 1,000 C and increases monotonically with temperature. The presence of oxygen is also the required. Freshly activated sorbent is the most effective, and deactivation of sorbents occurs at high temperatures with long pre-exposure times. This activation is suspected to involve a solid-solid reaction between intimately mixed calcium oxide and silica that are both contained within the sorbent. Deactivation occurs at temperatures higher than 1,000 C, and this is due to melting of the substrate and pore closure. The situation in packed beds is complicated because the bed also shrinks, thus allowing channeling and by-passing, and consequent ambiguities in determining sorbent saturation. Sorbent A had significantly greater capacity for mercury sorption than did Sorbent B, for all temperatures and exposure time examined. The effect of SiO{sub 2} on poor Sorbent B is much larger than sorbent A.

  15. Nitrogen Control in Electric Arc Furnace Steelmaking by DRI (TRP 0009)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gordon A. Irons

    2004-03-31

    Nitrogen is difficult to remove in electric arc furnace (EAF) steelmaking, requiring the use of more energy in the oxygen steelmaking route to produce low-nitrogen steel. The objective of this work was to determine if the injection of directly reduced iron (DRI) fines into EAFs could reduce the nitrogen content by creating fine carbon monoxide bubbles that rinse nitrogen from the steel. The proposed work included physical and chemical characterization of DRI fines, pilot-scale injection into steel, and mathematical modeling to aid in scale-up of the process. Unfortunately, the pilot-scale injections were unsuccessful, but some full-scale data was obtained. Therefore, the original objectives were met, and presented in the form of recommendations to EAF steelmakers regarding: (1) The best composition and size of DRI fines to use; (2) The amount of DRI fines required to achieve a specific reduction in nitrogen content in the steel; and (3) The injection conditions. This information may be used by steelmakers in techno-economic assessments of the cost of reducing nitrogen with this technology.

  16. Results of full scale dry injection tests at MSW-incinerators using a new active absorbent

    International Nuclear Information System (INIS)

    Felsvang, K.S.; Helvind, O.

    1991-01-01

    Worldwide incineration of municipal solid waste (MSW) has been utilized to reduce the volume of waste to be disposed of. Increasing environmental concerns over the potential air pollution impacts have led to emission limits for pollutants such as HCl, SO 2 , particulate, and more recently also for mercury and dioxins. For a certain size of incinerators, dry sorbent injection is the preferred technology for air pollution control. This paper describes the development of a new active sorbent, Scansorb, which is particularly suited for use in dry injection processes. The new sorbent is a lime based product with adjustable properties. Scansorb can be produced with a specific surface area of 30 to 100 m 2 /g. Pilot plant development work has shown that a considerable reduction in the absorbent quantity can be achieved when Scansorb is used instead of commercial hydrated lime. Full scale tests performed at four different MSW incinerators have confirmed the viability of the new active absorbent. The full scale tests have demonstrated that more than 50% SO 2 removal can be achieved with Scansorb at quantities much less than with commercial hydrated lime

  17. Development and start up of a co-injection system of coal tar/natural gas in blast furnace no. 4; Desarrollo y puesta en operacion de un sistema de co-inyeccion de alquitran/gas natural en el alto horno no. 4

    Energy Technology Data Exchange (ETDEWEB)

    Falcon Rodriguez, Manuel I; Mata Esparza, Hector Rolando; Arevalo Ballesteros, Gerardo [Altos Hornos de Mexico S. A., Coahuila (Mexico)

    1994-12-31

    The crisis has attracted the world`s attention on the need for energy conservation and the development in a greater extent the utilization of carbon base fuels and other energy sources (nuclear energy). Being a blast furnace, not only an energy consumer but also an energy producer, the greatest contribution to the pig iron cost is the energy needed to melt and reduce to metallic state the iron ores, this energy is mainly derived from coke. The dependence on coal via the coking plant to produce first fusion iron is incremented day after day as a result of the high levels of production. Altos Hornos de Mexico (AHMSA), contemplated within its strategic plan, the reduction in the production of its coking plants derived from the natural aging of its furnaces, consequently the shortage of coke for productions higher than 2.6 MMT of pig iron is pending. The injection of fuels into a blast furnace through its nozzles is a technology used for the diminishing the coke consumption of coke, its use implies a change in the philosophy of the blast furnace operation, and is currently employed in most of the blast furnaces of the world. AHMSA taking advantage of coal tar production (approx. 130 tons/day) in its coking plants decided the design and put into operation a co-injection system of coal tar and natural gas. The activities tending to carry out this project were initiated on April 1993, performing all of them with its own resources, completing them on July 18, 1993, day on which the injection of coal tar/natural gas in blast furnace No. 4 in a stable form. To date (October 1993), the coal tar injection has been increased up to 36 kg/ton of pig iron. During the injection periods, the presence of operational, mechanical and instrumentation problems have not been an obstacle for the evolution on the injection, fulfilling its function of substituting coke in a replacing relationship of 1:1, i.e. 1 kg of coal tar per each kg of coke, without affecting the product quality

  18. Development and start up of a co-injection system of coal tar/natural gas in blast furnace no. 4; Desarrollo y puesta en operacion de un sistema de co-inyeccion de alquitran/gas natural en el alto horno no. 4

    Energy Technology Data Exchange (ETDEWEB)

    Falcon Rodriguez, Manuel I.; Mata Esparza, Hector Rolando; Arevalo Ballesteros, Gerardo [Altos Hornos de Mexico S. A., Coahuila (Mexico)

    1993-12-31

    The crisis has attracted the world`s attention on the need for energy conservation and the development in a greater extent the utilization of carbon base fuels and other energy sources (nuclear energy). Being a blast furnace, not only an energy consumer but also an energy producer, the greatest contribution to the pig iron cost is the energy needed to melt and reduce to metallic state the iron ores, this energy is mainly derived from coke. The dependence on coal via the coking plant to produce first fusion iron is incremented day after day as a result of the high levels of production. Altos Hornos de Mexico (AHMSA), contemplated within its strategic plan, the reduction in the production of its coking plants derived from the natural aging of its furnaces, consequently the shortage of coke for productions higher than 2.6 MMT of pig iron is pending. The injection of fuels into a blast furnace through its nozzles is a technology used for the diminishing the coke consumption of coke, its use implies a change in the philosophy of the blast furnace operation, and is currently employed in most of the blast furnaces of the world. AHMSA taking advantage of coal tar production (approx. 130 tons/day) in its coking plants decided the design and put into operation a co-injection system of coal tar and natural gas. The activities tending to carry out this project were initiated on April 1993, performing all of them with its own resources, completing them on July 18, 1993, day on which the injection of coal tar/natural gas in blast furnace No. 4 in a stable form. To date (October 1993), the coal tar injection has been increased up to 36 kg/ton of pig iron. During the injection periods, the presence of operational, mechanical and instrumentation problems have not been an obstacle for the evolution on the injection, fulfilling its function of substituting coke in a replacing relationship of 1:1, i.e. 1 kg of coal tar per each kg of coke, without affecting the product quality

  19. Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station

    Energy Technology Data Exchange (ETDEWEB)

    John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

    2009-01-07

    The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During

  20. The method of determination of mercury adsorption from flue gases

    Directory of Open Access Journals (Sweden)

    Budzyń Stanisław

    2017-01-01

    Full Text Available For several recent years Faculty of Energy and Fuels of the AGH University of Science and Technology in Krakow conduct intensive studies on the occurrence of mercury contained in thermal and coking coals, as well as on the possible reduction of fossil-fuel mercury emissions. This research focuses, among others, on application of sorbents for removal of mercury from flue gases. In this paper we present the methodology for testing mercury adsorption using various types of sorbents, in laboratory conditions. Our model assumes burning a coal sample, with a specific mercury content, in a strictly determined time period and temperature conditions, oxygen or air flow rates, and the flow of flue gases through sorbent in a specific temperature. It was developed for particular projects concerning the possibilities of applying different sorbents to remove mercury from flue gases. Test stand itself is composed of a vertical pipe furnace inside which a quartz tube was mounted for sample burning purposes. At the furnace outlet, there is a heated glass vessel with a sorbent sample through which flue gases are passing. Furnace allows burning at a defined temperature. The exhaust gas flow path is heated to prevent condensation of the mercury vapor prior to contact with a sorbent. The sorbent container is positioned in the heating element, with controlled and stabilized temperature, which allows for testing mercury sorption in various temperatures. Determination of mercury content is determined before (coal and sorbent, as well as after the process (sorbent and ash. The mercury balance is calculated based on the Hg content determination results. This testing method allows to study sorbent efficiency, depending on sorption temperature, sorbent grain size, and flue-gas rates.

  1. Improved Casting Furnace Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tolman, David Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  2. Industrial and process furnaces principles, design and operation

    CERN Document Server

    Jenkins, Barrie

    2014-01-01

    Furnaces sit at the core of all branches of manufacture and industry, so it is vital that these are designed and operated safely and effi-ciently. This reference provides all of the furnace theory needed to ensure that this can be executed successfully on an industrial scale. Industrial and Process Furnaces: Principles, 2nd Edition provides comprehensive coverage of all aspects of furnace operation and design, including topics essential for process engineers and operators to better understand furnaces. This includes: the combustion process and its control, furnace fuels, efficiency,

  3. Behavior of coke in large blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, N

    1978-01-01

    Three blast furnaces were quenched in operation and the contents were examined; the temperature distribution was also measured, using Tempil pellets. The furnaces examined included a low productivity one, which was examined to see what was wrong. Changes in the quality of coke as it descends in the furnace, and coke behavior in the raceway and hearth are reported. The functions required of coke, and the effects of poor coke quality, are explained, together with the coke quality required in large blast furnaces. A theoretical study of the role of coke in large blast furnaces is included.

  4. Application of inorganic sorbents for sewage purification from copper

    International Nuclear Information System (INIS)

    Yelizarova, I.A.; Tomchuk, T.K.; Kalinin, N.F.; Vol'khin, V.V.; Levichek, M.S.; Gulyaeva, E.I.

    1986-01-01

    Article presents the results of elaboration of synthesis methods of sorbent on the base of phosphate and magnesium hydroxide. As a result of study the technology of sorbent production with optimal properties was elaborated.

  5. Peat hybrid sorbents for treatment of wastewaters and remediation of polluted environment

    Science.gov (United States)

    Klavins, Maris; Burlakovs, Juris; Robalds, Artis; Ansone-Bertina, Linda

    2015-04-01

    For remediation of soils and purification of polluted waters, wastewaters, sorbents might be considered as an prospective group of materials and amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes. To expand peat application possibilities the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in our understanding means natural, biomass based sorbent modified, covered with another sorbent material, thus combining two types of sorbent properties, sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyapatite) both organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area, elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature, and the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption

  6. Scaleup tests and supporting research for the development of duct injection technology: Topical report No. 3, Task 3.2: Scale-up testing; Topical report No. 4, Task 3.3: Advanced configurations; Topical report No. 5, Task 3.4: Process controls; Topical report No. 6, Task 3.5: Failure modes; Task 3.6: Waste characterization, Duct Injection Test Facility, Muskingum River Power Plant, Beverly, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Felix, L.G.; Gooch, J.P.; Merritt, R.L. [Southern Research Inst., Birmingham, AL (United States); Klett, M.G.; Demian, A.G.; Hunt, J.E. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

    1992-08-01

    This document is the third interim report on tests that were conducted at the Duct Injection Test Facility (DITF) operated for the Department of Energy at Unit 5 of the Ohio Power Company`s Muskingum River station in Beverly, Ohio. At the DITF dry calcium hydroxide (Ca(OH)2), an aqueous slurry of Ca(OH){sub 2} (prepared by slaking quicklime), or a mixture of one of these sorbents with waste ash from earlier tests was injected into a slipstream of flue gas from the Unit 5 boiler to achieve partial removal of SO{sub 2} in the flue gas. Up to 50,000 acfm of flue gas was taken from the inlet to the Unit 5 electrostatic precipitator (ESP) for these tests. Water was injected separately with the dry sorbent or as part of the slurry to cool the flue gas and increase the water vapor content of the flue gas. The addition of water, either as a separate spray or in the slurry makes the reaction between the sorbent and the SO{sub 2} more complete; the presumption is that water is effective in the liquid state when it can physically wet the sorbent particles, and not especially effective in the vapor state. Higher values of calcium utilization were obtained with slurry injection than with dry sorbent injection and humidification. Slurries made from reagent slaked lime, mixtures of reagent slaked lime and recycle ash, and from recycle ash alone were injected through the same nozzles used for humidification. The focus of most of these tests was on the constant addition of recycle ash to reduce the amount of slaked lime required for SO{sub 2} removal (for best economics). Testing was continued until the amount of Ca(OH){sub 2} in the recycle ash equaled that predicted for equilibrium Two test cases were evaluated: a low Ca/S ratio (1.0 reagent, 44{degrees}/F approach) for 50% SO{sub 2} removal and a high Ca/S ratio (1.7 reagent, 24{degrees}F approach) for 88% SO{sub 2} removal.

  7. Heavy metals adsorption on blast furnace sludges; Adsorcion de metales pesados sobre lodos de horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Delgado, A.; Perez, C.; Lopez, F.A. [Centro Nacional de Investigaciones Metalurgicas. CENIM. Madrid (Spain)

    1998-10-01

    Most of industrial liquid effluents have high contents of heavy metals. The recovery of these metals is environmental and economically interesting. In this work we study the use of sludge, a by-product of the steel industry, as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Pb``2+, Zn``2+, Cd``2+, Cu``2+ and Cr``3+ on the sludge was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on sludge adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Freundlich and Langumuir and the thermodynamic values {Delta}G, {Delta}H and {Delta}S corresponding to each adsorption process were calculated. Blast furnace sludge was found to be an effective sorbent for Pb, Zn, Cd, Cu and Cr-ions within the range of ion concentrations employed. (Author) 5 refs.

  8. Sorption of agrochemical model compounds by sorbent materials containing beta-cyclodextrin.

    Science.gov (United States)

    Wilson, Lee D; Mohamed, Mohamed H; Guo, Rui; Pratt, Dawn Y; Kwon, Jae Hyuck; Mahmud, Sarker T

    2010-04-01

    Polymeric sorbent materials that incorporate beta-cyclodextrin (CD) have been prepared and their sorption behavior toward two model agrochemical contaminant compounds, p-nitrophenol (PNP) and methyl chloride examined. The sorption of PNP was studied in aqueous solution using ultraviolet-visible (UV-Vis) spectroscopy, whereas the sorption of methyl chloride from the gas phase was studied using a Langmuir adsorption method. The sorption results for PNP in solution were compared between granular activated carbon (GAC), modified GAC, CD copolymers, and CD-based mesoporous silica hybrid materials. Nitrogen porosimetry at 77 K was used to estimate the surface area and pore structure properties of the sorbent materials. The sorbents displayed variable surface areas as follows: copolymers (36.2-157 m(2)/g), CD-silica materials (307-906 m(2)/g), surface modified GAC (657 m(2)/g), and granular activated carbon (approximately 10(3) m(2)/g). The sorption capacities for PNP and methyl chloride with the different sorbents are listed in descending order as follows: GAC > copolymers > surface modified GAC > CD-silica hybrid materials. In general, the differences in the sorption properties of the sorbents were related to the following: (i) surface area of the sorbent, (ii) CD content and accessibility, (iii) and the chemical nature of the sorbent material.

  9. Desulfurization Sorbents for Transport-Bed Applications

    International Nuclear Information System (INIS)

    Gupta, Raghubir P.; Turk, Brian S.; Vierheilig, Albert A.

    1997-01-01

    This project extends the prior work on the development of fluidizable zinc titanate particles using a spray-drying technique to impart high reactivity and attrition resistance. The specific objectives are: (1) To develop highly reactive and attrition-resistant zinc titanate sorbents in 40- to 150-(micro)m particle size range for transport reactor applications; (2) To transfer sorbent production technology to private sector; and (3) To provide technical support to Sierra Pacific Clean Coal Technology Demonstration plant and FETC's Hot-Gas Desulfurization Process Development Unit (PDU), both employing a transport reactor system

  10. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation.

    Science.gov (United States)

    Günal, Gülçin; Kip, Çiğdem; Eda Öğüt, S; İlhan, Hasan; Kibar, Güneş; Tuncel, Ali

    2018-02-01

    Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 μm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 μm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.

  11. Refractory of Furnaces to Reduce Environmental Impact

    International Nuclear Information System (INIS)

    Hanzawa, Shigeru

    2011-01-01

    The energy load of furnaces used in the manufacturing process of ceramics is quite large. Most of the environmental impact of ceramics manufacturing is due to the CO 2 produced from this high energy load. To improve this situation, R and D has focused on furnace systems and techniques of control in order to reduce energy load. Since furnaces are comprised of refractory, consideration of their mechanical and thermal characteristics is important. Herein are described several refractory types which were chosen through comparison of the characteristics which contribute to heat capacity reduction, heat insulating reinforcement and high emissivity, thereby improving thermal radiation heat transfer efficiency to the ceramic articles. One selected refractory material which will reduce the environmental impact of a furnace, chosen considering low heat capacity and high emissivity characteristics, is SiC. In this study, thermal radiation heat transfer efficiency improvement and its effect on ceramic articles in the furnace and oxidation behaviour were investigated at 1700K. A high density SiC refractory, built into the furnace at construction, has relatively high oxidation durability and has the ability to reduce environmental impact-CO 2 by 10 percent by decreasing the furnace's energy load. However, new oxidation prevention techniques for SiC will be necessary for long-term use in industrial furnaces, because passive to active oxidation transition behaviour of commercial SiC refractory is coming to close ideal.

  12. Refractory of Furnaces to Reduce Environmental Impact

    Science.gov (United States)

    Hanzawa, Shigeru

    2011-10-01

    The energy load of furnaces used in the manufacturing process of ceramics is quite large. Most of the environmental impact of ceramics manufacturing is due to the CO2 produced from this high energy load. To improve this situation, R&D has focused on furnace systems and techniques of control in order to reduce energy load. Since furnaces are comprised of refractory, consideration of their mechanical and thermal characteristics is important. Herein are described several refractory types which were chosen through comparison of the characteristics which contribute to heat capacity reduction, heat insulating reinforcement and high emissivity, thereby improving thermal radiation heat transfer efficiency to the ceramic articles. One selected refractory material which will reduce the environmental impact of a furnace, chosen considering low heat capacity and high emissivity characteristics, is SiC. In this study, thermal radiation heat transfer efficiency improvement and its effect on ceramic articles in the furnace and oxidation behaviour were investigated at 1700K. A high density SiC refractory, built into the furnace at construction, has relatively high oxidation durability and has the ability to reduce environmental impact-CO2 by 10 percent by decreasing the furnace's energy load. However, new oxidation prevention techniques for SiC will be necessary for long-term use in industrial furnaces, because passive to active oxidation transition behaviour of commercial SiC refractory is coming to close ideal.

  13. A Mathematical Model for the Multiphase Transport and Reaction Kinetics in a Ladle with Bottom Powder Injection

    Science.gov (United States)

    Lou, Wentao; Zhu, Miaoyong

    2017-12-01

    A computation fluid dynamics-population balance model-simultaneous reaction model (CFD-PBM-SRM) coupled model has been proposed to study the multiphase flow behavior and refining reaction kinetics in a ladle with bottom powder injection, and some new and important phenomena and mechanisms are presented. For the multiphase flow behavior, the effects of bubbly plume flow, powder particle motion, particle-particle collision and growth, particle-bubble collision and adhesion, and powder particle removal into top slag are considered. For the reaction kinetics, the mechanisms of multicomponent simultaneous reactions, including Al, S, Si, Mn, Fe, and O, at the multi-interface, including top slag-liquid steel interface, air-liquid steel interface, powder droplet-liquid steel interface, and bubble-liquid steel interface, are presented, and the effect of sulfur solubility in the powder droplet on the desulfurization is also taken into account. Model validation is carried out using hot tests in a 2-t induction furnace with bottom powder injection. The result shows that the powder particles gradually disperse in the entire furnace; in the vicinity of the bottom slot plugs, the desulfurization product CaS is liquid phase, while in the upper region of the furnace, the desulfurization product CaS is solid phase. The predicted sulfur contents by the present model agree well with the measured data in the 2-t furnace with bottom powder injection.

  14. Model based energy benchmarking for glass furnace

    International Nuclear Information System (INIS)

    Sardeshpande, Vishal; Gaitonde, U.N.; Banerjee, Rangan

    2007-01-01

    Energy benchmarking of processes is important for setting energy efficiency targets and planning energy management strategies. Most approaches used for energy benchmarking are based on statistical methods by comparing with a sample of existing plants. This paper presents a model based approach for benchmarking of energy intensive industrial processes and illustrates this approach for industrial glass furnaces. A simulation model for a glass furnace is developed using mass and energy balances, and heat loss equations for the different zones and empirical equations based on operating practices. The model is checked with field data from end fired industrial glass furnaces in India. The simulation model enables calculation of the energy performance of a given furnace design. The model results show the potential for improvement and the impact of different operating and design preferences on specific energy consumption. A case study for a 100 TPD end fired furnace is presented. An achievable minimum energy consumption of about 3830 kJ/kg is estimated for this furnace. The useful heat carried by glass is about 53% of the heat supplied by the fuel. Actual furnaces operating at these production scales have a potential for reduction in energy consumption of about 20-25%

  15. BIO-PCI, Charcoal injection in Blast Furnaces: State of the art and economic perspectives

    Directory of Open Access Journals (Sweden)

    Feliciano-Bruzual, C.

    2013-12-01

    Full Text Available The injection of grinded particles of charcoal through the tuyeres in Blast Furnaces, here coined Bio-PCI, presents as an attractive and plausible alternative to significantly reduce the CO2 emissions generated during hot metal production. In this contribution a summary of the technological fundaments, benefits and limitations of the incorporation of Bio-PCI is presented. Additionally the principal economic challenges of renewables fuel in ironmaking are exposed, with especial interest in the main productions costs of charcoal making. In this sense, a strategic question arises: can the residual biomass drive the emergence of Bio-PCI?, our analysis leads to conclude that the use of residual biomass (e.g. agricultural and forestry residues may significantly reduce the production cost in 120-180 USD/t in comparison to primary woods sources, this naturally increment the economical attractiveness of Bio-PCI substitution.La inyección de carbón vegetal por toberas en Altos Hornos, aqui denominada Bio-PCI, se presenta como una forma atractiva y realista de reducir significativamente las emisiones de CO2 generadas durante la producción de arrabio. En esta contribución se presenta un resumen de los fundamentos tecnológicos, los beneficios y las limitaciones de la incorporación de la tecnología del Bio-PCI. Adicionalmente se exponen los retos económicos que enfrentan los combustibles renovables a los fósiles, con especial interés en los principales costos de producción del carbón vegetal. En este sentido se plantea una pregunta estratégica: ¿puede la biomasa residual impulsar el desarrollo de la Bio-PCI?. Nuestro análisis conlleva a concluir que la utilización de biomasa residual (residuos forestales y agrícolas puede reducir sensiblemente el costo del carbón vegetal entre 120-180 USD/t en comparación con biomasa primaria, incrementando su competitividad frente al carbón mineral.

  16. Evaluation of 137Cs sorbents for fixation in concrete

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1976-01-01

    As part of the long-term waste management program at the Savannah River Laboratory, several 137 Cs sorbents were evaluated for incorporation into concrete. The sorbents studied were: Linde AW-300, AW-500, 13-X, and SK-40; Norton Zeolon 200, 500, and 900; clinoptilolite; and vermiculite. The parameters studied were sorption kinetics, leachability, and compressive strength of the concrete. The best sorbents identified were Linde AW-500 and Norton Zeolon 900. In all tests, these two sorbents performed almost identically; sorption kinetics were acceptable; both strengthened the concrete, and both gave relatively leach-resistant concrete. Vermiculite that had been heated to collapse its lattice around 137 Cs gave the most leach-resistant concrete. However, it sorbed cesium slowly, and the resulting concrete was very weak. When silica gel was added to concrete to react with free calcium, the addition had no effect on cesium leachability

  17. Solar Convective Furnace for Metals Processing

    Science.gov (United States)

    Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv

    2015-11-01

    Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.

  18. Energy Saving in Industrial Annealing Furnaces

    Directory of Open Access Journals (Sweden)

    Fatma ÇANKA KILIÇ

    2018-03-01

    Full Text Available In this study, an energy efficiency studies have been carried out in a natural gas-fired rolling mill annealing furnace of an industrial establishment. In this context, exhaust gas from the furnace has been examined in terms of waste heat potential. In the examinations that have been made in detail; waste heat potential was found as 3.630,31 kW. Technical and feasibility studies have been carried out to realize electricity production through an Organic Rankine Cycle (ORC system for evaluating the waste heat potential of the annealing furnace. It has been calculated that 1.626.378,88 kWh/year of electricity can be generated by using the exhaust gas waste heat of the annealing furnace through an ORC system to produce electric energy with a net efficiency of 16%. The financial value of this energy was determined as 436.032,18 TL/year and the simple repayment period of the investment was 8,12 years. Since the annealing period of the annealing furnace is 2800 hours/year, the investment has not been found to be feasible in terms of the feasibility studies. However, the investment suitability can be assured when the annealing furnace is operating at full capacity for 8,000 hours or more annually.

  19. Design and Development of Tilting Rotary Furnace

    Science.gov (United States)

    Sai Varun, V.; Tejesh, P.; Prashanth, B. N.

    2018-02-01

    Casting is the best and effective technique used for manufacturing products. The important accessory for casting is furnace. Furnace is used to melt the metal. A perfect furnace is one that reduces the wastage of material, reduces the cost of manufacturing and there by reduces the cost of production. Of all the present day furnaces there may be wastage of material, and the chances of increasing the time of manufacturing as the is continuous need of tilting of the furnace for every mould and then changing the moulds. Considering these aspects, a simple and least expensive tilting rotary furnace is designed and developed. The Tilting and Rotary Furnace consists of mainly melting chamber and the base. The metal enters the melting chamber through the input door that is provided on the top of the melting chamber. Inside the melting chamber there is a graphite furnace. The metal is melted in the graphite crucible. An insulation of ceramic fibre cloth is provided inside the furnace. The metal is melted using Propane gas. The propane gas is easily available and economic. The gas is burned using a pilot burner. The pilot burner is more efficient that other burners. The pilot burner is lit with a push button igniter. The pilot burner is located at the bottom of the combustion chamber. This enables the uniform heating of the metal inside the crucible. The temperature inside the melting chamber is noted using a temperature sensor. The gas input is cut-off if the temperature is exceeding a specific temperature. After the melting of the metal is done the furnace is tilted and after the mould is filled it is rotated. The external gears are used to controlling the tilting. The results of studies carried out for the design & development of low cost, simple furnace that can be mounted anywhere on the shop floor and this can be very much useful for the education purposes and small scale manufacturing. The furnace can be rotated in 360 degrees and can help in reducing the time taken

  20. Dual layer hollow fiber sorbents: Concept, fabrication and characterization

    KAUST Repository

    Bhandari, Dhaval

    2013-02-01

    Hollow fiber sorbents are pseudo-monolithic separations materials created with fiber spinning technology using a polymer \\'binder\\', impregnated with high loadings of sorbent \\'fillers\\' [1]. To increase purified gas recovery during the sorption step and to ensure consistent sorption capacity over repeated cycles, a dense, thin polymer barrier layer on the fiber sorbents is needed to allow only thermal interactions between the sorbate loaded layer and the thermal regeneration fluid. This paper considers materials and methods to create delamination-free dual layer fiber sorbents, with a porous core and a barrier sheath layer formed using a simultaneous co-extrusion process. Low permeability polymers were screened for sheath layer creation, with the core layer comprising cellulose acetate polymer as binder and zeolite NaY as sorbent fillers. Appropriate core and sheath layer dope compositions were determined by the cloud-point method and rheology measurements. The morphology of the as-spun fibers was characterized in detail by SEM, EDX and gas permeation analysis. A simplified qualitative model is described to explain the observed fiber morphology. The effects of core, sheath spin dope and bore fluid compositions, spinning process parameters such as air-gap height, spin dope and coagulation bath temperatures, and elongation draw ratio are examined in detail. © 2012 Elsevier B.V. All rights reserved.

  1. Sealed rotary hearth furnace with central bearing support

    Science.gov (United States)

    Docherty, James P.; Johnson, Beverly E.; Beri, Joseph

    1989-01-01

    The furnace has a hearth which rotates inside a stationary closed chamber and is supported therein on vertical cylindrical conduit which extends through the furnace floor and is supported by a single center bearing. The charge is deposited through the furnace roof on the rim of the hearth as it rotates and is moved toward the center of the hearth by rabbles. Externally generated hot gases are introduced into the furnace chamber below the hearth and rise through perforations in the hearth and up through the charge. Exhaust gases are withdrawn through the furnace roof. Treated charge drops from a center outlet on the hearth into the vertical cylindrical conduit which extends downwardly through the furnace floor to which it is also sealed.

  2. Topical Report 5: Sorbent Performance Report

    Energy Technology Data Exchange (ETDEWEB)

    Krutka, Holly; Sjostrom, Sharon

    2011-05-31

    ADA-ES has completed an extensive sorbent screening program funded primarily through DOE NETL cooperative agreement DE-NT0005649 with support from EPRI and industry cost-share participants. Tests were completed on simulated and actual flue gas. The overall project objective is to address the viability and accelerate development of a solid-based postcombustion CO2 capture technology that can be retrofit to the existing fleet of coal-fired power plants. An important component of the viability assessment was to evaluate the state of development of sorbents and measure key performance characteristics under realistic operating conditions.

  3. Development of vacuum brazing furnace

    International Nuclear Information System (INIS)

    Singh, Rajvir; Yedle, Kamlesh; Jain, A.K.

    2005-01-01

    In joining of components where welding process is not possible brazing processes are employed. Value added components, high quality RF systems, UHV components of high energy accelerators, carbide tools etc. are produced using different types of brazing methods. Furnace brazing under vacuum atmosphere is the most popular and well accepted method for production of the above mentioned components and systems. For carrying out vacuum brazing successfully it is essential to have a vacuum brazing furnace with latest features of modern vacuum brazing technology. A vacuum brazing furnace has been developed and installed for carrying out brazing of components of copper, stainless steel and components made of dissimilar metals/materials. The above furnace has been designed to accommodate jobs of 700mm diameter x 2000mm long sizes with job weight of 500kgs up to a maximum temperature of 1250 degC at a vacuum of 5 x 10 -5 Torr. Oil diffusion pumping system with a combination of rotary and mechanical booster pump have been employed for obtaining vacuum. Molybdenum heating elements, radiation shield of molybdenum and Stainless Steel Grade 304 have been used. The above furnace is computer controlled with manual over ride facility. PLC and Pentium PC are integrated together to maneuver steps of operation and safety interlocks of the system. Closed loop water supply provides cooling to the system. The installation of the above system is in final stage of completion and it will be ready for use in next few months time. This paper presents insights of design and fabrication of a modern vacuum brazing furnace and its sub-system. (author)

  4. Sorption of europium (3) by polymer sorbents with grafted heterocyclic nitrogen-containing groupings

    International Nuclear Information System (INIS)

    Bel'tyukova, S.V.; Kravchenko, T.B.; Balamtsarashvili, G.M.; Roska, A.S.

    1990-01-01

    On polymer sorbents (copolymer of styrene-divinylbenzene) with grafted heterocyclic nitrogen-containing functional groupings of tetrazole, triazole and imidazole (sorbents 1,2,3, respectively). It is stated that europium sorption takes place from neutral solutions in presence of organic solvents. Luminescent properties of europium on sorbent are used to develope methods of its determination in high purity lanthanide and yttrium oxides. Europium determination limits consist 7.5·10 -5 μg/ml on 1 and 3 sorbents and 1.5·10 -4 μg/ml on sorbent 2, S p value is 0.089 and 0.075, respectivaly

  5. Tunable polymeric sorbent materials for fractionation of model naphthenates.

    Science.gov (United States)

    Mohamed, Mohamed H; Wilson, Lee D; Headley, John V

    2013-04-04

    The sorption properties are reported for several examples of single-component carboxylic acids representing naphthenic acids (NAs) with β-cyclodextrin (β-CD) based polyurethane sorbents. Seven single-component examples of NAs were chosen with variable z values, carbon number, and chemical structure as follows: 2-hexyldecanoic acid (z = 0 and C = 16; S1), n-caprylic acid (z = 0 and C = 8; S2), trans-4-pentylcyclohexanecarboxylic acid (z = -2 and C = 12; S3), 4-methylcyclohexanecarboxylic acid (z = -2 and C = 8; S4), dicyclohexylacetic acid (z = -4; C = 14; S5), 4-pentylbicyclo[2.2.2]octane-1-carboxylic acid (z = -4; C = 14; S6), and lithocholic acid (z = -6; C = 24; S7). The copolymer sorbents were synthesized at three relative β-CD:diisocyanate mole ratios (i.e., 1:1, 1:2, and 1:3) using 4,4'-dicyclohexylmethane diisocyanate (CDI) and 4,4'-diphenylmethane diisocyanate (MDI). The sorption properties of the copolymer sorbents were characterized using equilibrium sorption isotherms in aqueous solution at pH 9.00 with electrospray ionization mass spectrometry. The equilibrium fraction of the unbound carboxylate anions was monitored in the aqueous phase. The sorption properties of the copolymer sorbents (i.e., Qm) were obtained from the Sips isotherm model. The Qm values generally decrease as the number of accessible β-CD inclusion sites in the copolymer framework decreases. The chemical structure of the adsorbates played an important role in their relative uptake, as evidenced by the adsorbate lipophilic surface area (LSA) and the involvement of hydrophobic effects. The copolymers exhibit molecular selective sorption of the single-component carboxylates in mixtures which suggests their application as sorbents for fractionation of mixtures of NAs. By comparison, granular activated carbon (GAC) and chitosan sorbents did not exhibit any significant molecular selective sorption relative to the copolymer materials; however, evidence of variable sorption capacity was

  6. Emission spectroscopy for coal-fired cyclone furnace diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Wehrmeyer, J.A.; Boll, D.E.; Smith, R. [Vanderbilt University, Nashville, TN (United States). Dept. of Mechanical Engineering

    2003-08-01

    Using a spectrograph and charge-coupled device (CCD) camera, ultraviolet and visible light emission spectra were obtained from a coal-burning electric utility's cyclone furnaces operating at either fuel-rich or fuel-lean conditions. The aim of this effort is to identify light emission signals that can be related to a cyclone furnace's operating condition in order to adjust its air/fuel ratio to minimize pollutant production. Emission spectra at the burner and outlet ends of cyclone furnaces were obtained. Spectra from all cyclone burners show emission lines for the trace elements Li, Na, K, and Rb, as well as the molecular species OH and CaOH. The Ca emission line is detected at the burner end of both the fuel-rich and fuellean cyclone furnaces but is not detected at the outlet ends of either furnace type. Along with the disappearance of Ca is a concomitant increase in the CaOH signal at the outlet end of both types of furnaces. The OH signal strength is in general stronger when viewing at the burner end rather than the exhaust end of both the fuel-rich and fuel-lean cyclone furnaces, probably due to high, non-equilibrium amounts of OH present inside the furnace. Only one molecular species was detected that could be used as a measure of air/fuel ratio: MgOH. It was detected at the burner end of fuel-rich cyclone furnaces but not detected in fuel-lean cyclone furnaces. More direct markers of air/fuel ratio, such as CO and 02 emission, were not detected, probably due to the generally weak nature of molecular emission relative to ambient blackbody emission present in the cyclone furnaces, even at ultraviolet wavelengths.

  7. AUTOMATION OF GLASS TEMPERING FURNACE BY USING PLC

    Directory of Open Access Journals (Sweden)

    Abdullah BÜYÜKYILDIZ

    2007-02-01

    Full Text Available In this study, a furnace which is used for observation of environments under high temperature, and also used for manufacturing of glasses which are resisted to high temperature has been designed and implemented. Automation of this system has been done by using PLC. Operating parameters of furnace such as materials entering, the furnace, the local temperature control of furnace, cooling control and materials outing have been sensed with Hall Effect Sensor. Furthermore, the observation of parameters of furnace on screen has been provided with SCADA software. Obtained products have been shown the system works successfully.

  8. Synthesis and test of sorbents based on calcium aluminates for SE-SR

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Di Michele, A.; Gallorini, F.; Petrillo, C.; Sacchetti, F.

    2014-01-01

    Highlights: • Synthesis strategy of CaO incorporation into calcium aluminates was approached. • Three innovative sorbents (M1, M2, M3) were synthesized and characterized. • Sorption capacity of developed sorbents was evaluated in multi-cycle processes. • M3 sorbent showed best performance, much higher than conventional CaO ones. • M3 sorbent functionality in SE-SR process was verified. - Abstract: Greenhouse gases emission of power generation plants will be continuously tightened to achieve European targets in terms of CO 2 emissions. In particular, the switching to a sustainable power generation using fossil fuels will be strongly encouraged in the future. In this context, sorption-enhanced steam reforming (SE-SR) is a promising process because it can be implemented as a CCS pre-combustion methodology. The purpose of this study is to develop and test innovative materials in order to overcome main limitations of standard CaO sorbent, usually used in the SE-SR process. The investigated innovative sorbents are based on incorporation of CaO particles into inert materials which significantly reduce the performance degradation. In particular, sorbent materials based on calcium aluminates were considered, investigating different techniques of synthesis. All synthesized materials were packed, together with the catalyst, in a fixed bed reactor and tested in sorption/regeneration cycles. Significant improvements were obtained respect to standard CaO regarding sorption capacity stability exhibited by the sorbent

  9. Cross-linked poly(tetrahydrofuran) as promising sorbent for organic solvent/oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Yati, Ilker; Ozan Aydin, Gulsah; Bulbul Sonmez, Hayal, E-mail: hayalsonmez@gtu.edu.tr

    2016-05-15

    Highlights: • Poly(tetrahydrofuran) based sorbents were prepared. • PTHF sorbents demonstrate reusability at least for ten times. • PTHF based sorbents show fast and quick absorption-desorption process. • 19 g of oil can be absorbed by 1 g of PTHF based sorbent. - Abstract: In this study, a series of different molecular weights of poly(tetrahydrofuran) (PTHF), which is one of the most important commercial polymers around the world, was condensed with tris[3-(trimethoxysilyl)propyl]isocyanurate (ICS) to generate a cross-linked 3-dimensional network in order to obtain organic solvent/oil sorbents having high swelling capacity. The prepared sorbents show high and fast swelling capacity in oils such as dichloromethane (DCM), tetrahydrofuran (THF), acetone, t-butyl methyl ether (MTBE), gasoline, euro diesel, and crude oil. The recovery of the absorbed oils from contaminated surfaces, especially from water, and the regeneration of the sorbents after several applications are effective. The characterization and thermal properties of the sorbents are identified by Fourier transform infrared spectroscopy (FTIR), solid-state {sup 13}C and {sup 29}Si cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC) and thermal gravimetric analyses (TGA), respectively. The new usage area of PTHF is emerged by the preparation of PTHF-based network structure with high oil absorption capacity and having excellent reusability as an oil absorbent for the removal of organic liquids from the spill site.

  10. A cylindrical furnace for absorption spectral studies

    Indian Academy of Sciences (India)

    A cylindrical furnace with three heating zones, capable of providing a temperature of 1100°C, has been fabricated to enable recording of absorption spectra of high temperature species. The temperature of the furnace can be controlled to ± 1°C of the set temperature. The salient feature of this furnace is that the material ...

  11. Synthesis and application of imprinted polyvinylimidazole-silica hybrid copolymer for Pb{sup 2+} determination by flow-injection thermospray flame furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira Tarley, Cesar Ricardo, E-mail: tarley@uel.br [Programa de Pos-Graduacao em Quimica da Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva 700, Alfenas, MG, CEP 37130-000 (Brazil); Instituto Nacional de Ciencia e Tecnologia (INCT) de Bioanalitica, Universidade Estadual de Campinas (UNICAMP), Instituto de Quimica, Departamento de Quimica Analitica, Cidade Universitaria Zeferino Vaz s/n, Campinas, SP, CEP 13083-970 (Brazil); Departamento de Quimica, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitario, Londrina, PR, CEP 86051-990 (Brazil); Nascimento Andrade, Felipe [Programa de Pos-Graduacao em Quimica da Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva 700, Alfenas, MG, CEP 37130-000 (Brazil); Midori de Oliveira, Fernanda; Zanetti Corazza, Marcela [Departamento de Quimica, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitario, Londrina, PR, CEP 86051-990 (Brazil); Mendes de Azevedo, Luiz Fernando [Programa de Pos-Graduacao em Quimica da Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva 700, Alfenas, MG, CEP 37130-000 (Brazil); Gava Segatelli, Mariana [Universidade Tecnologica Federal do Parana (UTFPR), Av. dos Pioneiros 3131, Londrina, PR, CEP 86036-370 (Brazil)

    2011-10-10

    Highlights: {yields} Ion imprinted hybrid copolymer as selective sorbent for Pb{sup 2+} ions. {yields} The sorbent was at least 10 times more selective than non imprinted copolymer. {yields} A method for Pb{sup 2+} determination by TS-FF-AAS in different samples was developed. {yields} High reusability and chemical stability of ion imprinted hybrid copolymer were observed. - Abstract: A novel ion imprinted polyvinylimidazole-silica hybrid copolymer (IIHC) was synthesized and used as a selective solid sorbent for Pb{sup 2+} ions preconcentration using an on-line solid phase extraction (SPE) system coupled to TS-FF-AAS. The ionic hybrid sorbent was prepared using 1-vinylimidazole and 3-(trimethoxysilyl)propylmethacrylate as monomers, Pb{sup 2+} ions as template, tetraethoxysilane as reticulating agent and 2,2'-azobis-isobutyronitrile as initiator. The best on-line SPE conditions concerning sorption behavior, including sample pH (6.46), buffer concentration (9.0 mmol L{sup -1}), eluent (HNO{sub 3}) concentration (0.5 mol L{sup -1}) and preconcentration flow rate (4.0 mL min{sup -1}), were optimized by means of full factorial design and Doehlert matrix. The analytical curve ranged from 2.5 to 65.0 {mu}g L{sup -1} (r = 0.999) with limit of detection of 0.75 {mu}g L{sup -1}; the precision (repeatability) calculated as relative standard deviation (n = 10) was 5.0 and 3.6% for Pb{sup 2+} concentration of 10.0 and 60.0 {mu}g L{sup -1}, respectively. From on-line breakthrough curve, column capacity was 3.5 mg g{sup -1}. Preconcentration factor (PF), consumptive index (CI) and concentration efficiency (CE) were 128.0, 0.16 mL and 25.6 min{sup -1}, respectively. The selective performance of the sorbent, based on relative selectivity coefficient, was compared to NIC (non imprinted copolymer) for the binary mixture Pb{sup 2+}/Cd{sup 2+}, Pb{sup 2+}/Cu{sup 2+} and Pb{sup 2+}/Zn{sup 2+}. The results showed that ion imprinted polyvinylimidazole-silica hybrid polymer had higher

  12. IMMOBILIZATION OF MICROALGAE ON THE SURFACE OF NEW CROSS-LINKED POLYETHYLENIMINE-BASED SORBENTS.

    Science.gov (United States)

    Vasilieva, Svetlana; Shibzukhova, Karina; Morozov, Alexey; Solovchenko, Alexei; Bessonov, Ivan; Kopitsyna, Maria; Lukyanov, Alexander; Chekanov, Konstantin; Lobakova, Elena

    2018-04-11

    We report on the use of the polyethylenimine-based (PEI) sorbents for immobilization and harvesting of microalgae (MA) cells. Specific materials assessed were porous solid polymers from highly-branched PEI synthesized by cross-linking with epichlorohydrin (ECH) or diethylene glycol diglycidyl ether (DGDE). We estimated the effect of PEI/cross-linker ratio on the MA attachment and biocompatibility of the sorbents with the MA cells. A decrease in the cross-linker percentage resulted in the enhancement of the immobilization efficiency but impaired the cell viability as was manifested by inhibition of the photosynthetic activity of the MA cells. The rate of Chlorella vulgaris cell attachment to the sorbents with ECH was faster as compared to that of the PEI-DGDE-based polymers. The cells immobilized on the PEI-ECH sorbents showed a more profound decline in their viability (assessed via photosynthetic activity). The sorbents with 60% of DGDE were characterized by high immobilization efficiency. These sorbents supported a prolonged cultivation of the immobilized MA without impairing their viability and metabolic activity. We conclude that the sorbents with a lower percentage of DGDE (<30%) and sorbents with ECH are suitable for harvesting of the MA cells intended for immediate downstream processing, potentially without the cell desorption. To the best of our knowledge, this is the first report on successful application of PEI-based sorbents in microalgal biotechnology. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. CFD simulation of gas and particles combustion in biomass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Griselin, Nicolas

    2000-11-01

    found that by adjusting the mass flow and the injection angle at different inlet ports, one can significantly decrease the particle emissions at the outlet. Also, different over-fire secondary air supply leads to different CO emissions at the outlet. The emissions of CO can be reduced through controlling the secondary air supply. Char formed in the bed is low in terms of its influence on the heat release, however it has significant influence on the CO distribution in the upper part of the furnace and at the outlet. The numerical simulations has been used for predicting combustion efficiency, pollutant emissions and geometrical optimization of furnace.

  14. Adsorption of Ammonia on Regenerable Carbon Sorbents

    Science.gov (United States)

    Wójtowicz, Marek A.; Cosgrove, Jesph E.; Serio, Michael A..; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Data on sorption and desorption of ammonia, which is a major TC of concern, are presented in this paper. The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for ammonia sorption. Ammonia-sorption capacity was related to carbon pore structure characteristics, and the temperature of oxidative carbon-surface treatment was optimized for enhanced ammonia-sorption performance.

  15. Oil spill sorbents: Testing protocol and certification listing program

    International Nuclear Information System (INIS)

    Cooper, D.; Gausemel, I.

    1993-01-01

    Environment Canada's Emergencies Engineering Division is spearheading a program in conjunction with the Canadian General Standards Board that would see the development of a certification and listing program in addition to a national standard for the testing of sorbent materials. Funding for this program is provided by Environment Canada (EC), Canadian Coast Guard (CCG), Marine Spill Response Corporation (MSRC), US Coast Guard (USCG), and US Minerals Management Service (MMS). The test methods are based upon those defined by the American Society for Testing and Materials and previous test methods developed by Environment Canada for our series of reports entitled Selection Criteria and Laboratory Evaluation of Oil Spill Sorbents. This series, which was started in 1975, encompasses a number of commercially available oil spill sorbents tested with different petroleum products and hydrocarbon solvents. The testing program will categorize the sorbents according to their operating characteristics. The main categories are oil spills on water, oil spills on land, and industrial use. The characteristics to be evaluated with the new test protocols include initial and maximum sorption capacities, water pickup, buoyancy, reuse potential, retention profile, disintegration (material integrity), and ease of application and retrieval. In the near future are plans to incorporate changes to the test that would involve increasing the list of test liquids to encompass spills in an industrial setting, in addition to testing sorbent booms and addressing the disposal problem

  16. Cheap carbon sorbents produced from lignite by catalytic pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Schchipko, M.L. [Inst. of Chemistry of Natural Organic Materials, Akademgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    Some data are presented describing the new technology of carbon sorbent production from powdered lignite in the installation with fluidized bed of catalyst. It was shown the different types of char products with extended pore structure and high sorption ability can be produced from cheap and accessible lignite of Kansk-Achinsk coal pit in pilot installation with fluidized bed of Al-Cu-Cr oxide catalyst or catalytically active slag materials. In comparison with the conventional technologies of pyrolysis the catalytic pyrolysis allows to increase by 3-5 times the process productivity and to decrease significantly the formation of harmful compounds. The latter is accomplished by complete oxidation of gaseous pyrolysis products in the presence of catalysts and by avoiding the formation of pyrolysis tars - the source of cancerogenic compounds. The technology of cheap powdered sorbent production from lignites makes possible to obtain from lignite during the time of pyrolysis only a few seconds char products with porosity up to 0.6 cm{sup 3} /g, and specific surface area more than 400 m{sup 3} /g. Some methods of powdered chars molding into carbon materials with the different shape were proved for producing of firmness sorbents. Cheap carbon sorbents obtained by thermocatalytic pyrolysis can be successfully used in purification of different industrial pollutants as one-time sorbent or as adsorbents of long-term application with periodic regeneration.

  17. Activation and characterization of waste coffee grounds as bio-sorbent

    Science.gov (United States)

    Mariana; Marwan; Mulana, F.; Yunardi; Ismail, T. A.; Hafdiansyah, M. F.

    2018-03-01

    As the city well known for its culture of coffee drinkers, modern and traditional coffee shops are found everywhere in Banda Aceh, Indonesia. High number of coffee shops in the city generates large quantities of spent coffee grounds as waste without any effort to convert them as other valuable products. In an attempt to reduce environmental problems caused by used coffee grounds, this research was conducted to utilize waste coffee grounds as an activated carbon bio-sorbent. The specific purpose of this research is to improve the performance of coffee grounds bio-sorbent through chemical and physical activation, and to characterize the produced bio-sorbent. Following physical activation by carbonization, a chemical activation was achieved by soaking the carbonized waste coffee grounds in HCl solvent and carbonization process. The activated bio-sorbent was characterized for its morphological properties using Scanning Electron Microscopy (SEM), its functional groups by Fourier Transform Infra-Red Spectrophotometer (FTIR), and its material characteristics using X-Ray Diffraction (XRD). Characterization of the activated carbon prepared from waste coffee grounds shows that it meets standard quality requirement in accordance with Indonesian National Standard, SNI 06-3730-1995. Activation process has modified the functional groups of the waste coffee grounds. Comparing to natural waste coffee grounds, the resulted bio-sorbent demonstrated a more porous surface morphology following activation process. Consequently, such bio-sorbent is a potential source to be used as an adsorbent for various applications.

  18. Chitosan-ferrocyanide sorbent for Cs-137 removal from mineralized alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Egorin, Andrei [Far Eastern Federal Univ., Vladivostok (Russian Federation); Institute of Chemistry FEBRAS, Vladivostok (Russian Federation); Ozyorsk Technical Institute MEPHI, Ozersk (Russian Federation); Tokar, Eduard [Far Eastern Federal Univ., Vladivostok (Russian Federation); Zemskova, Larisa [Institute of Chemistry FEBRAS, Vladivostok (Russian Federation)

    2016-11-01

    An organomineral sorbent based on mixed nickel-potassium ferrocyanide and chitosan to be used in removal of Cs-137 radionuclide from highly mineralized media with high pH has been fabricated. The synthesized sorbent was applied to remove Cs-137 from model solutions under static and dynamic conditions. The effects of contact time, pH, and presence of sodium ions and complexing agents in the process of Cs-137 removal have been investigated. The sorbent is distinguished by increased stability to the impact of alkaline media containing complexing agents, whereas the sorbent capacity in solutions with pH 11 exceeds 1000 bed volumes with the Cs-137 removal efficiency higher than 95%.

  19. Application of fibrous complexing sorbents for trace elements preconcentration and separation

    International Nuclear Information System (INIS)

    Zakhartchenko, E.A.; Myasoedova, G.V.

    2003-01-01

    This article demonstrates the application of the 'filled' fibrous sorbents for preconcentration and separation of platinum metals, as well as heavy metals and radionuclides. The POLYORGS complexing sorbents and ion-exchangers were used as fillers. Dynamic preconcentration conditions should be set for complete sorption of the elements: diameter and mass of the sorbent disk or the column as well as flow rate of the solution. These conditions depend on specific features of materials to be analysed and the requirements of the experimental task or detection method. Extensive alteration of features as well as perfect kinetic properties and high selectivity of the 'filled' sorbents confirm their applicability for trace elements preconcentration and separation in technology and analytical chemistry. (authors)

  20. Sorbent application on the base of chitosan for radionuclides separation

    International Nuclear Information System (INIS)

    Pivarciova, L.

    2016-01-01

    Radioactive waste contains enormous amounts of radionuclides, which pollute the environment and can cause serious chemical and radiological toxicity threats to lower and higher living organism. Alternative process for the removal of heavy metal ions and radionuclides is sorption, which utilizes various certain natural materials of biological origin. Amino-polysaccharide-based sorbents e.g. chitosan represent suitable materials for binding of metal oxo-anion species because of numerous functional groups -OH and -NH_2 because of their suitable H-bond donor and acceptor sites. The sorbents on the base chitosan prepared through chemical modification were used for removal and separation certain radionuclides from aqueous media. The aim of this work was the study of physicochemical properties of prepared sorbents. The specific surface of sorbents was characterized with BET methods. Point of zero charge was identified with potentiometric titration. The size of particles and shape of sorbents were determined by scanning electron microscope. The sorption experiments for selected radionuclides were conducted under static and dynamic conditions. The effect of various parameters on the sorption "9"9"mTc, "6"0Co and the effect of pH on the separation of radionuclide mixture in the solution were studied. (author)

  1. Modeling and Simulation of Claus Unit Reaction Furnace

    Directory of Open Access Journals (Sweden)

    Maryam Pahlavan

    2016-01-01

    Full Text Available Reaction furnace is the most important part of the Claus sulfur recovery unit and its performance has a significant impact on the process efficiency. Too many reactions happen in the furnace and their kinetics and mechanisms are not completely understood; therefore, modeling reaction furnace is difficult and several works have been carried out on in this regard so far. Equilibrium models are commonly used to simulate the furnace, but the related literature states that the outlet of furnace is not in equilibrium and the furnace reactions are controlled by kinetic laws; therefore, in this study, the reaction furnace is simulated by a kinetic model. The predicted outlet temperature and concentrations by this model are compared with experimental data published in the literature and the data obtained by PROMAX V2.0 simulator. The results show that the accuracy of the proposed kinetic model and PROMAX simulator is almost similar, but the kinetic model used in this paper has two importance abilities. Firstly, it is a distributed model and can be used to obtain the temperature and concentration profiles along the furnace. Secondly, it is a dynamic model and can be used for analyzing the transient behavior and designing the control system.

  2. Design of a rotating-hearth furnace

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, H A [Verein Deutscher Eisenhuettenleute (VDEh), Duesseldorf (Germany, F.R.)

    1979-10-01

    Presented in two parts, this paper is intended to provide an outline of the theoretical fundamentals for the design of rotating-hearth furnaces for heating round stock and deals with the characteristic design features of such furnaces.

  3. Synthesis of hydroxide type sorbents from industry high-iron wastes

    International Nuclear Information System (INIS)

    Stepanenko, E.K.; Smirnov, A.L.

    1986-01-01

    Article presents the results of studies on possibility of using of technological iron containing wastes for the obtaining of hydroxide type sorbents in granular form. The scheme of technology of synthesis of hydroxide type sorbents from high-iron wastes is elaborated.

  4. Glass: Rotary Electric Glass Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    Compared to conventional gas-fired furnaces, the new rotary electric furnace will increase energy efficiency while significantly reducing air emissions, product turnaround time, and labor costs. As this informative new fact sheet explains, the thousand different types of glass optical blanks produced for the photonics industry are used for lasers, telescopes, cameras, lights, and many other products.

  5. Paired Straight Hearth Furnace - Transformational Ironmaking Process

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Kao [McMaster Univ., Hamilton, ON (Canada); Debski, Paul [Andritz Metals Inc.,Canonsburg, PA (United States)

    2014-11-19

    The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitable as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.

  6. Scaleup tests and supporting research for the development of duct injection technology: Topical report No. 3, Task 3. 2: Scale-up testing; Topical report No. 4, Task 3. 3: Advanced configurations; Topical report No. 5, Task 3. 4: Process controls; Topical report No. 6, Task 3. 5: Failure modes; Task 3. 6: Waste characterization, Duct Injection Test Facility, Muskingum River Power Plant, Beverly, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Felix, L.G.; Gooch, J.P.; Merritt, R.L. (Southern Research Inst., Birmingham, AL (United States)); Klett, M.G.; Demian, A.G.; Hunt, J.E. (Gilbert/Commonwealth, Inc., Reading, PA (United States))

    1992-08-01

    This document is the third interim report on tests that were conducted at the Duct Injection Test Facility (DITF) operated for the Department of Energy at Unit 5 of the Ohio Power Company's Muskingum River station in Beverly, Ohio. At the DITF dry calcium hydroxide (Ca(OH)2), an aqueous slurry of Ca(OH)[sub 2] (prepared by slaking quicklime), or a mixture of one of these sorbents with waste ash from earlier tests was injected into a slipstream of flue gas from the Unit 5 boiler to achieve partial removal of SO[sub 2] in the flue gas. Up to 50,000 acfm of flue gas was taken from the inlet to the Unit 5 electrostatic precipitator (ESP) for these tests. Water was injected separately with the dry sorbent or as part of the slurry to cool the flue gas and increase the water vapor content of the flue gas. The addition of water, either as a separate spray or in the slurry makes the reaction between the sorbent and the SO[sub 2] more complete; the presumption is that water is effective in the liquid state when it can physically wet the sorbent particles, and not especially effective in the vapor state. Higher values of calcium utilization were obtained with slurry injection than with dry sorbent injection and humidification. Slurries made from reagent slaked lime, mixtures of reagent slaked lime and recycle ash, and from recycle ash alone were injected through the same nozzles used for humidification. The focus of most of these tests was on the constant addition of recycle ash to reduce the amount of slaked lime required for SO[sub 2] removal (for best economics). Testing was continued until the amount of Ca(OH)[sub 2] in the recycle ash equaled that predicted for equilibrium Two test cases were evaluated: a low Ca/S ratio (1.0 reagent, 44[degrees]/F approach) for 50% SO[sub 2] removal and a high Ca/S ratio (1.7 reagent, 24[degrees]F approach) for 88% SO[sub 2] removal.

  7. Industrial furnace with improved heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1993-07-20

    A method is described for effecting improved heat transfer with in an industrial furnace having a cylindrical furnace section, a door at one end of the furnace section, an end plate at the opposite end of the section a circular fan plate concentrically positioned within the furnace section to define a cylindrical fan chamber between the plate and the end section with a fan there between and a heat treat chamber between the plate and the door, the fan plate defining a non-orificing annular space extending between the interior of the cylindrical furnace section and the outer edge of the plate, the plate having a centrally located under-pressure opening extending there through and a plurality of circumferentially spaced tubular heating elements extending through the annular space into the heat treating chamber, the method comprising the steps of: (a) heating the heating elements to a temperature which is hotter that the temperature of the work within the heat treating chamber; (b) rotating the fan at a speed sufficient to form a portion of the furnace atmosphere as a wind mass swirling about the fan chamber; (c) propagating the wind mass through the annular space into the heat treating chamber as a swirling wind mass in the form of an annulus, the wind mass impinging the heating elements to establish heat transfer contact therewith while the mass retains its annulus shape until contacting the door and without any significant movement of the wind mass into the center of the heat treating chamber; (d) drawing the wind mass through the under-pressure zone after the wind mass comes into heat transfer contact with the work in the heat treating chamber; and (e) thereafter heating the work by radiation from the beating elements at high furnace temperatures in excess of about 1,600 F.

  8. Optical cavity furnace for semiconductor wafer processing

    Science.gov (United States)

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  9. Sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides

    Directory of Open Access Journals (Sweden)

    R.V. Smotraiev

    2016-05-01

    Full Text Available The actual problem of water supply in the world and in Ukraine, in particular, is a high level of pollution in water resources and an insufficient level of drinking water purification. With industrial wastewater, a significant amount of pollutants falls into water bodies, including suspended particles, sulfates, iron compounds, heavy metals, etc. Aim: The aim of this work is to determine the impact of aluminum and manganese ions additives on surface and sorption properties of zirconium oxyhydroxide based sorbents during their production process. Materials and Methods: The sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were prepared by sol-gel method during the hydrolysis of metal chlorides (zirconium oxychloride ZrOCl2, aluminum chloride AlCl3 and manganese chloride MnCl2 with carbamide. Results: The surface and sorption properties of sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were investigated. X-ray amorphous structure and evolved hydroxyl-hydrate cover mainly characterize the obtained xerogels. The composite sorbents based on xerogels of zirconium oxyhydroxide doped with aluminum oxyhydroxide (aS = 537 m2/g and manganese oxyhydroxide (aS = 356 m2/g have more developed specific surface area than single-component xerogels of zirconium oxyhydroxide (aS = 236 m2/g and aluminum oxyhydroxide (aS = 327 m2/g. The sorbent based on the xerogel of zirconium and manganese oxyhydroxides have the maximum SO42--ions sorption capacity. It absorbs 1.5 times more SO42–-ions than the industrial anion exchanger AN-221. The sorbents based on xerogels of zirconium oxyhydroxide has the sorption capacity of Fe3+-ions that is 1.5…2 times greater than the capacity of the industrial cation exchanger KU-2-8. The Na+-ions absorption capacity is 1.47…1.56 mmol/g for each sorbent. Conclusions: Based on these data it can be concluded that the proposed method is effective for sorbents production based on

  10. Pilot scale-SO{sub 2} control by dry sodium bicarbonate injection and an electrostatic precipitator

    Energy Technology Data Exchange (ETDEWEB)

    Pliat, M.J.; Wilder, J.M. [University of Washington, Seattle, WA (United States). Dept. of Civil & Environmental Engineering

    2007-10-15

    A 500 actual cubic feet gas per minute (acfm) pilot-scale SO{sub 2} control study was undertaken to investigate flue gas desulfurization (FGD) by dry sodium sorbents in 400{sup o}F (204.5{sup o}C) flue gases emitted from a coal fired boiler with flue gas concentrations between 350 and 2500 ppm SO{sub 2}. Powdered sodium alkaline reagents were injected into the hot flue gas downstream of the air preheater and the spent reagents were collected using an electrostatic precipitator. Three different sorbents were used: processed sodium bicarbonate of two particle sizes; solution mined sodium bicarbonate, and processed sodium sesquicarbonate. SO{sub 2} concentrations were measured upstream of the reagent injection, 25-ft (7.62 m) downstream of the injection point, and downstream of the electrostatic precipitator. SO{sub 2} collection efficiencies ranged from 40 to 80% using sodium bicarbonate stoichiometric ratios from 0.5 to 3.0. Much of the in-duct SO{sub 2} removal occurred during the first second of reagent reaction time, indicating that the sulfur dioxide-sodium reaction rates may be faster than have been measured for fixed bed measurements reported in the literature.

  11. Development of New Potassium Carbonate Sorbent for CO2 Capture under Real Flue Gas Conditions

    Directory of Open Access Journals (Sweden)

    Javad Esmaili

    2014-07-01

    Full Text Available In this paper, the development of a new potassium carbonateon alumina support sorbent prepared by impregnating K2CO3 with an industrial grade of Al2O3 support was investigated. The CO2 capture capacity was measured using real flue gas with 8% CO2 and 12% H2O in a fixed-bed reactor at a temperature of 65 °C using breakthrough curves. The developed sorbent showed an adsorption capacity of 66.2 mgCO2/(gr sorbent. The stability of sorbent capture capacity was higher than the reference sorbent. The SO2 impurity decreased sorbent capacity about 10%. The free carbon had a small effect on sorbent capacity after 5 cycles. After 5 cycles of adsorption and regeneration, the changes in the pore volume and surface area were 0.020 cm3/gr and 5.5 m2/gr respectively. Small changes occurred in the pore size distribution and surface area of sorbent after 5 cycles.

  12. Sorbents for waste water purification from radionuclides and other toxic substances

    International Nuclear Information System (INIS)

    Maddalone, R.F.; MakKlenason, L.Ts.

    1996-01-01

    The TRW firm (USA) developed the system for sorption and disposal of radionuclides, heavy metals and organic substances, based on utilization of carbon sorbents. The sorbent is produced through processing natural coal by alkali-salt solution and has a large specific pores surface (up to 1000 m 2 /g). The sorbent carboxyl ionogenic groups are able of absorbing heavy metals cations from waste waters. Sorption by uranium constituted 30 mg/l. The sorbent with absorbed substances may be burnt (it contains no sulfur) or delivered for vitrification. The volume of disposed materials constitutes in comparison with existing techniques for uranium isotopes 420000 : 1. The costs are reduced up to 0.26 doll/m 2 of reprocessed water. 2 refs., 2 figs., 4 tabs

  13. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.

    Science.gov (United States)

    Rodríguez-Pérez, Jorge; López-Antón, M Antonia; Díaz-Somoano, Mercedes; García, Roberto; Martínez-Tarazona, M Rosa

    2013-09-15

    This work demonstrates that regenerable sorbents containing nano-particles of gold dispersed on an activated carbon are efficient and long-life materials for capturing mercury species from coal combustion flue gases. These sorbents can be used in such a way that the high investment entailed in their preparation will be compensated for by the recovery of all valuable materials. The characteristics of the support and dispersion of gold in the carbon surface influence the efficiency and lifetime of the sorbents. The main factor that determines the retention of mercury and the regeneration of the sorbent is the presence of reactive gases that enhance mercury retention capacity. The capture of mercury is a consequence of two mechanisms: (i) the retention of elemental mercury by amalgamation with gold and (ii) the retention of oxidized mercury on the activated carbon support. These sorbents were specifically designed for retaining the mercury remaining in gas phase after the desulfurization units in coal power plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Mass Balance Modeling for Electric Arc Furnace and Ladle Furnace System in Steelmaking Facility in Turkey

    Institute of Scientific and Technical Information of China (English)

    (I)smail Ekmek(c)i; Ya(s)ar Yetisken; (U)nal (C)amdali

    2007-01-01

    In the electric arc furnace (EAF) steel production processes, scrap steel is principally used as a raw material instead of iron ore. In the steelmaking process with EAF, scrap is first melted in the furnace and then the desired chemical composition of the steel can be obtained in a special furnace such as ladle furnace (LF). This kind of furnace process is used for the secondary refining of alloy steel. LF furnace offers strong heating fluxes and enables precise temperature control, thereby allowing for the addition of desired amounts of various alloying elements. It also provides outstanding desulfurization at high-temperature treatment by reducing molten steel fluxes and removing deoxidation products. Elemental analysis with mass balance modeling is important to know the precise amount of required alloys for the LF input with respect to scrap composition. In present study, chemical reactions with mass conservation law in EAF and LF were modeled altogether as a whole system and chemical compositions of the final steel alloy output can be obtained precisely according to different scrap compositions, alloying elements ratios, and other input amounts. Besides, it was found that the mass efficiency for iron element in the system is 95.93%. These efficiencies are calculated for all input elements as 8.45% for C, 30.31% for Si, 46.36% for Mn, 30.64% for P, 41.96% for S, and 69.79% for Cr, etc. These efficiencies provide valuable ideas about the amount of the input materials that are vanished or combusted for 100 kg of each of the input materials in the EAF and LF system.

  15. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.; Bessho, Naoki; Koros, William J.

    2013-01-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  16. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.

    2013-05-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  17. Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Sjostrom, Sharon [Ada-Es, Inc., Highlands Ranch, CO (United States)

    2016-06-02

    ADA completed a DOE-sponsored program titled Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture under program DE-FE0004343. During this program, sorbents were analyzed for use in a post-combustion CO2 capture process. A supported amine sorbent was selected based upon superior performance to adsorb a greater amount of CO2 than the activated carbon sorbents tested. When the most ideal sorbent at the time was selected, it was characterized and used to create a preliminary techno-economic analysis (TEA). A preliminary 550 MW coal-fired power plant using Illinois #6 bituminous coal was designed with a solid sorbent CO2 capture system using the selected supported amine sorbent to both facilitate the TEA and to create the necessary framework to scale down the design to a 1 MWe equivalent slipstream pilot facility. The preliminary techno-economic analysis showed promising results and potential for improved performance for CO2 capture compared to conventional MEA systems. As a result, a 1 MWe equivalent solid sorbent system was designed, constructed, and then installed at a coal-fired power plant in Alabama. The pilot was designed to capture 90% of the CO2 from the incoming flue gas at 1 MWe net electrical generating equivalent. Testing was not possible at the design conditions due to changes in sorbent handling characteristics at post-regenerator temperatures that were not properly incorporated into the pilot design. Thus, severe pluggage occurred at nominally 60% of the design sorbent circulation rate with heated sorbent, although no handling issues were noted when the system was operated prior to bringing the regenerator to operating temperature. Testing within the constraints of the pilot plant resulted in 90% capture of the incoming CO2 at a flow rate equivalent of 0.2 to 0.25 MWe net electrical generating equivalent. The reduction in equivalent flow rate at 90% capture was

  18. CaO-Based CO2 Sorbents Effectively Stabilized by Metal Oxides.

    Science.gov (United States)

    Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Müller, Christoph R

    2017-11-17

    Calcium looping (i.e., CO 2 capture by CaO) is a promising second-generation CO 2 capture technology. CaO, derived from naturally occurring limestone, offers an inexpensive solution, but due to the harsh operating conditions of the process, limestone-derived sorbents undergo a rapid capacity decay induced by the sintering of CaCO 3 . Here, we report a Pechini method to synthesize cyclically stable, CaO-based CO 2 sorbents with a high CO 2 uptake capacity. The sorbents synthesized feature compositional homogeneity in combination with a nanostructured and highly porous morphology. The presence of a single (Al 2 O 3 or Y 2 O 3 ) or bimetal oxide (Al 2 O 3 -Y 2 O 3 ) provides cyclic stability, except for MgO which undergoes a significant increase in its particle size with the cycle number. We also demonstrate a direct relationship between the CO 2 uptake and the morphology of the synthesized sorbents. After 30 cycles of calcination and carbonation, the best performing sorbent, containing an equimolar mixture of Al 2 O 3 and Y 2 O 3 , exhibits a CO 2 uptake capacity of 8.7 mmol CO 2  g -1 sorbent, which is approximately 360 % higher than that of the reference limestone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Coating membranes for a sorbent-based artificial liver: adsorption characteristics

    NARCIS (Netherlands)

    de Koning, H. W.; Chamuleau, R. A.; Bantjes, A.

    1982-01-01

    Techniques are described for the coating of sorbents to be used in an artificial liver support system based on mixed sorbent bed hemoperfusion. Activated charcoal has been coated with cellulose acetate (CA) by solvent evaporation. With Amberlite XAD-4, the Wurster technique was used for coating with

  20. Alternative fuels for multiple-hearth furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Bracket, B D; Lawson, T U

    1980-04-01

    Results are described of a feasibility study on the use of refuse-derived fuel, shredded paper, wood waste, coal, and waste oil in multiple-hearth furnaces at the Lower Molonglo Water Quality Control Centre in Australia. An assessment of waste fuel availability and characteristics is given, and a summary is made of the technical and economic aspects of using these alternative fuels and of minimizing furnace fuel requirements by reducing sludge moisture. The recommended method of reducing fuel oil consumption in the furnace is shown to be sludge drying, using process exhaust heat in a rotary dryer.

  1. Application of magnetic sorbent in the removal of cadmium from soils

    Directory of Open Access Journals (Sweden)

    Michal Lovás

    2006-12-01

    Full Text Available A contamination of soil by heavy metals is a common problem at many metalliferous mining sites. There are various treatment processes for the cleanup of soil contaminated with heavy metals. A method designed for the decontamination of soil polluted by Cd is described. The method utilizes a magnetic sorbent – sludges from the hydrometallurgic processing of nickel mineral, activated by milling. The influence of sorbent concentration, pH and microwave energy on the sorption capacity and content of Cd ions in a soil was studed. The effectiveness of Cd desorption from the soil was 75 %, the maximal sorption capacity of sorbent was 9,8 mg/g. The content of Cd in water is function of pH and the concentration of sorbent. The influence of microwave energy (90 W was negligible.

  2. Zinc-oxide-based sorbents and processes for preparing and using same

    Science.gov (United States)

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasael

    2010-03-23

    Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  3. Sorbents based on carbonized rice peel

    International Nuclear Information System (INIS)

    Mansurova, R. M.; Taipova, R. A.; Zhylybaeva, N. K.; Mansurov, Z. A.; Bijsenbaev, M. A.

    2004-01-01

    The process receiving of sorbents based on carbonized rice peel (RP) was received and their sorption properties were investigated. Processing carbonization of samples leading on station, this was developed in laboratory of hybrid technology. Carbonization of samples was realized in nitric atmosphere on 400-8000 deg. C. On raising temperature of carbonization content of carbon in samples is rice, hydrogen and oxygen is reduce as a result isolation of volatility products is discover. The samples carbonized on 650 deg. C (910 m 2 /g) owners with maximum removed surface is discover. On carbonization temperature 600-800 deh. C the sorption of ions, which carbonized by sorbents based on rice peel is run to 95-100 %. Electron-microscopic investigation of samples leaded on EM-125 mechanism by accelerating pressure 100 kV. From electron-microscopic print of original samples of RP it is evident, that sample consists of carbonic fractions of different species: carbonic fiber of rounded fractions, fractions of ellipsoid form and of more thickly carbonic structure. Increasing sizes of pores and modification structure of synthesized sorbent is occur during carbonization process. The RP-samples, which carbonized by 650 deg. C has the higher specific surface. Samples consist of thin carbonic scum and reducing specific surface, by higher temperature

  4. Estimation of slagging in furnaces; Kuonaavuuden ennustaminen kivihiilen poelypoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, T; Jaeaeskelaeinen, K; Oeini, J; Koskiahde, A; Jokiniemi, J; Pyykkoenen, J [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    Understanding and estimation of slagging in furnaces is essential in the design of new power plants with high steam values or in modifications like low-NO{sub x} retrofits in existing furnaces. Major slagging yields poor efficiency, difficult operation and high maintenance costs of the plant. The aim of the project is to develop a computational model for slagging in pulverized coal combustion. The model is based on Computer Controlled Scanning Electron Microscopy (CCSEM) analysis of mineral composition of the coal and physical models for behaviour of minerals inside a furnace. The analyzed mineral particles are classified to five composition classes and distributed to calculational coal particles if internal minerals of coal. The calculational coal particles and the external minerals are traced in the furnace to find out the behaviour of minerals inside the furnace. If the particle tracing indicates that the particle hits the heat transfer surface of the furnace the viscosity of the particle is determined to see if particle is sticky. The model will be implemented to 3D computational fluid dynamics based furnace simulation environment Ardemus which predicts the fluid dynamics, heat transfer and combustion in a furnace. (orig.)

  5. Dynamics and control of a gas-fired furnace

    NARCIS (Netherlands)

    Roffel, B.; Rijnsdorp, J.E.

    1974-01-01

    A non-linear model has been developed for a gas-fired furnace in which oil is heated. The model is applicable from minimum to maximum heat load of the furnace. The dynamics of the model have been compared to experimental results, which were obtained for a pilot-scale furnace. They are in good

  6. Preparation and characterisation of a sorbent suitable for technetium separation from environmental matrices

    International Nuclear Information System (INIS)

    Bartosova, A.; Rajec, P.; Reich, M.

    2003-01-01

    A sorbent based on Aliquat 336 anchored on hydrophobised silica gel support as an ion exchanger was prepared. Prepared sorbent was suitable for separation of technetium-99 from environmental matrices. The sorbent properties, sorption characteristic and distribution coefficient of 99 mTcO 4 - in various medium was studied. The chemical yield of Tc during separation process was determined using 99m Tc tracer and gamma measurement. Typical sorption recoveries of Tc for this sorbent from 0.1 M HNO 3 were more than 98 %. Typical desorption recoveries using 8 M HNO 3 were in the range 92 - 96 %. The commercial TEVA Spec resin from Eichrom Industries for comparison purpose was used as well. It was found that the prepared sorbent is suitable for separation of technetium from environmental matrices. (authors)

  7. Holden gas-fired furnace baseline data. Revision 1

    International Nuclear Information System (INIS)

    Weatherspoon, K.A.

    1996-11-01

    The Holden gas-fired furnace is used in the enriched uranium recovery process to dry and combust small batches of combustibles. The ash is further processed. The furnace operates by allowing a short natural gas flame to burn over the face of a wall of porous fire brick on two sides of the furnace. Each firing wall uses two main burners and a pilot burner to heat the porous fire brick to a luminous glow. Regulators and orifice valves are used to provide a minimum gas pressure of 4 in. water column at a rate of approximately 1,450 scf/h to the burners. The gas flow rate was calculated by determining the gas flow appropriate for the instrumentation in the gas line. Observed flame length and vendor literature were used to calculate pilot burner gas consumption. Air for combustion, purging, and cooling is supplied by a single blower. Rough calculations of the air-flow distribution in piping entering the furnace show that air flow to the burners approximately agrees with the calculated natural gas flow. A simple on/off control loop is used to maintain a temperature of 1,000 F in the furnace chamber. Hoods and glove boxes provide contamination control during furnace loading and unloading and ash handling. Fan EF-120 exhausts the hoods, glove boxes, and furnace through filters to Stack 33. A review of the furnace safety shows that safety is ensured by design, interlocks, procedure, and a safety system. Recommendations for safety improvements include installation of both a timed ignition system and a combustible-gas monitor near the furnace. Contamination control in the area could be improved by redesigning the loading hood face and replacing worn gaskets throughout the system. 33 refs., 16 figs

  8. The use of blast furnace slag

    Directory of Open Access Journals (Sweden)

    V. Václavík

    2012-10-01

    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  9. Removal of mercury from coal-combustion flue gas using regenerable sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C S; Albiston, J; Broderick, T E; Stewart, R M

    1999-07-01

    The US EPA estimates that coal-fired power plants constitute the largest anthropogenic source of mercury emissions in the US. The Agency has contemplated emission regulations for power plants, but the large gas-flow rates and low mercury concentrations involved have made current treatment options prohibitively expensive. ADA Technologies, Inc. (Englewood, Colorado), in conjunction with the US DOE, is developing regenerable sorbents for the removal and recovery of mercury from flue gas. These sorbents are based on the ability of noble metals to amalgamate mercury at typical flue-gas temperatures and release mercury at higher temperatures. The process allows for recovery of mercury with minimal volumes of secondary wastes and no impact on fly ash quality. In 1997 and 1998, ADA tested a 20-cfm sorbent unit at CONSOL Inc.'s coal-combustion test facility in Library, PA. Results from the 1997 tests indicated that the sorbent can remove elemental and oxidized mercury and can be regenerated without loss of capacity. Design changes were implemented in 1998 to enhance the thermal efficiency of the process and to recover the mercury in a stable form. Testing during autumn, 1998 demonstrated 60% to 90% removal efficiency of mercury from a variety of different coals. However, contradictory removal results were obtained at the end of the test period. Subsequent laboratory analyses indicated that the sorbent had lost over half its capacity for mercury due to a decrease in available sites for mercury sorption. The presence of sulfur compounds on the sorbent suggests that thermal cycling may have condensed acid gases on the sorbent leading to deterioration of the active sorption sites. The regeneration time/temperature profile has been altered to minimize this potential in the upcoming power plant tests.

  10. Low-Cost Sorbents: A Literature Summary

    National Research Council Canada - National Science Library

    Bailey, Susan

    1997-01-01

    The capital and regeneration costs of activated carbon and ion exchange media suggest that better process economics may be achieved with disposable sorbents for the treatment of metals-contaminated...

  11. Hydroxyapatite-based sorbents: elaboration, characterization and application for the removal of catechol from the aqueous phase.

    Science.gov (United States)

    Sebei, Haroun; Pham Minh, Doan; Lyczko, Nathalie; Sharrock, Patrick; Nzihou, Ange

    2017-10-01

    Hydroxyapatite (HAP) is highly considered as good sorbent for the removal of metals from the aqueous phase. However, soluble metals co-exist with organic pollutants in wastewaters. But little work has been devoted to investigate the reactivity of HAP for the removal of organic compounds. The main objective of this work is to study the reactivity of HAP-based sorbents for the removal of catechol as a model organic pollutant from an aqueous solution. Thus, HAP sorbents were firstly synthesized using calcium carbonate and potassium dihydrogen phosphate under moderate conditions (25-80°C, atmospheric pressure). A zinc-doped HAP was also used as sorbent, which was obtained from the contact of HAP with an aqueous solution of zinc nitrate. All the sorbents were characterized by different standard physico-chemical techniques. The sorption of catechol was carried out in a batch reactor under stirring at room temperature and pressure. Zinc-doped HAP sorbent was found to be more reactive than non-doped HAP sorbents for the fixation of catechol. The highest sorption capacity was of 15 mg of C per gram of zinc-doped HAP sorbent. The results obtained suggest the reaction scheme of HAP sorbents with metals and organic pollutants when HAP sorbents were used for the treatment of complex wastewaters.

  12. Furnace for treating bituminous material

    Energy Technology Data Exchange (ETDEWEB)

    Klotzer, M

    1922-04-28

    A furnace with saw-teeth-like profiled hearth, which by means of a kind of shaking slide executes a backward and forward motion, for carrying out the process according to Patent 422,391. It is characterized in that the stroke of the hearth moving in the furnace is smaller than the length of the profile tooth and the height of the feed is held less than the tooth height.

  13. Itaconic acid based potential sorbent for uranium recovery

    International Nuclear Information System (INIS)

    Kalyan, Y.; Naidu, G.R.K.; Das, Sadananda; Pandey, A.K.; Reddy, A.V.R.

    2010-01-01

    Cross-linked hydrogels and adsorptive membranes containing Itaconic acid, Acrylamide, Penta erythritol tetra acrylate and α, α-dimethyl- α-phenyl aceto phenone were prepared by UV-initiated bulk polymerization. These hydrogels and adsorptive membranes were characterized for pH uptake, sorption and desorption kinetics and selectivity towards uranium. The sorption ability of the sorbents towards uranyl ion was thoroughly examined. The developed itaconic acid based sorbents were evaluated for the recovery of uranium from lean sources like sea water. (author)

  14. Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber tyres blends

    Energy Technology Data Exchange (ETDEWEB)

    Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim; Rita Khanna; N. Saha-Chaudhury; Paul O' Kane; Jonathan Dicker; Catherine Skidmore; David Knights [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

    2009-05-15

    The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to that of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.

  15. Nitrogen oxide emissions from a kraft recovery furnace

    International Nuclear Information System (INIS)

    Prouty, A.L.; Stuart, R.C.; Caron, A.L.

    1993-01-01

    Nitrogen Oxide (NOx) emissions from a rebuilt kraft recovery furnace slightly exceeded the specified limit of 1.1 lb/ton (0.55 kg/metric ton) of black-liquor solids. Mill trials were undertaken to determine whether NOx emissions could be minimized by modifying furnace operation. NOx emissions increased when secondary air was shifted to tertiary ports. NOx emissions fell when the amounts of primary and total air were decreased, but this increased emissions of other pollutants. After demonstrating that best operation of the furnace could not meet the permit with an emissions limit that matched the furnace's performance at best operation

  16. Inorganic sorbents for radiostrontium removal from waste solutions: selectivity and role of calixarenes

    International Nuclear Information System (INIS)

    Vijayan, S.; Belikov, K.; Drapailo, A.

    2011-01-01

    The challenge in the remediation of 90 Sr-contaminated waters arises from the need to achieve very high removal efficiencies to meet discharge targets from waste effluents containing relatively high concentrations of non-radioactive cations. Low-cost natural zeolites are not selective for strontium over other divalent cations, notably such ions as calcium; and produce low 90 Sr removal performance, and large volumes of spent sorbent waste. The synthesis and use of selective, synthetic inorganic sorbents could prove to be a feasible approach for high 90 Sr removal efficiencies, and much smaller volumes of secondary solid waste generation. The essential advantages of inorganic sorbents include their stability and resistance to radiation, and the potential for producing stable waste forms such as vitrified glass or ceramics for disposal. However, the cost of strontium-specific sorbents is prohibitive for large-scale applications at present. This paper is a review of the reported information on removal mechanisms and performance of Sr-specific inorganic sorbents. The analysis has revealed promising performance, efficiency and selectivity for strontium removal from solutions containing low and high concentrations of salts. The leading sorbents are crystalline silicotitanate and oxides of metals such as titanium. An initial assessment has also been made of the performance of calixarene-based macrocyclic compounds. These are known for their selectivity for strontium in solvent extraction processes. From the initial strontium removal results in bench-scale tests using different solid substrates, impregnated with calixarene derivatives, only sodium-mordenite impregnated with calyx[8]arene octamide gave an overall strontium removal efficiency in the range of 90 to 95% in the presence of 3.5 ppm calcium. There was no improvement observed for strontium-removal efficiency or selectivity over calcium in the calixarene-impregnated inorganic sorbent matrix. In several tests, the

  17. Method of operating a centrifugal plasma arc furnace

    International Nuclear Information System (INIS)

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe 3 O 4 . Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe 2 O 3 . Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs

  18. Two-Dimensional Physical and CFD Modelling of Large Gas Bubble Behaviour in Bath Smelting Furnaces

    Directory of Open Access Journals (Sweden)

    Yuhua Pan

    2010-09-01

    Full Text Available The behaviour of large gas bubbles in a liquid bath and the mechanisms of splash generation due to gas bubble rupture in high-intensity bath smelting furnaces were investigated by means of physical and mathematical (CFD modelling techniques. In the physical modelling work, a two-dimensional Perspex model of the pilot plant furnace at CSIRO Process Science and Engineering was established in the laboratory. An aqueous glycerol solution was used to simulate liquid slag. Air was injected via a submerged lance into the liquid bath and the bubble behaviour and the resultant splashing phenomena were observed and recorded with a high-speed video camera. In the mathematical modelling work, a two-dimensional CFD model was developed to simulate the free surface flows due to motion and deformation of large gas bubbles in the liquid bath and rupture of the bubbles at the bath free surface. It was concluded from these modelling investigations that the splashes generated in high-intensity bath smelting furnaces are mainly caused by the rupture of fast rising large gas bubbles. The acceleration of the bubbles into the preceding bubbles and the rupture of the coalescent bubbles at the bath surface contribute significantly to splash generation.

  19. Multiple hearth furnace for reducing iron oxide

    Science.gov (United States)

    Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  20. Investigation of a Boiler's Furnace Aerodynamics with a Vortex Solid Fuel Combustion Scheme on Physical and Mathematical Models

    Directory of Open Access Journals (Sweden)

    Prokhorov V.B.,

    2018-04-01

    Full Text Available The important problem of developing the low-cost technologies that will be able to provide a deep decrease in the concentration of nitrogen oxides while maintaining fuel burn-up efficiency is considered. This paper presents the results of the aerodynamics study of the furnace of boiler TPP-210A on the base of the physical and mathematical models in the case when boiler retrofitting from liquid to solid slag removal with two to three times reduction of nitrogen oxide emissions and replacing the vortex burners with direct-flow burners. The need for these studies is due to the fact that the direct-flow burners are "collective action" burners, and efficient fuel combustion can be provided only by the interaction of fuel jets, secondary and tertiary air jets in the furnace volume. The new scheme of air staged combustion in a system of vertical vortexes of opposite rotation with direct-flow burners and nozzles and direct injection of Kuznetsky lean coal dust was developed. In order to test the functional ability and efficiency of the proposed combustion scheme, studies on the physical model of the boiler furnace and the mathematical model of the experimental furnace bench for the case of an isothermal fluid flow were carried out. Comparison showed an acceptable degree of coincidence of these results. In all studied regimes, pronounced vortices remain in both the vertical and horizontal planes, that indicates a high degree of mass exchange between jets and combustion products and the furnace aerodynamics stability to changes in regime factors.

  1. Predicting sorption of organic acids to a wide range of carbonized sorbents

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model

  2. Evaluation of inorganic sorbent treatment for LWR coolant process streams

    International Nuclear Information System (INIS)

    Roddy, J.W.

    1984-03-01

    This report presents results of a survey of the literature and of experience at selected nuclear installations to provide information on the feasibility of replacing organic ion exchangers with inorganic sorbents at light-water-cooled nuclear power plants. Radioactive contents of the various streams in boiling water reactors and pressurized water reactors were examined. In addition, the methods and performances of current methods used for controlling water quality at these plants were evaluated. The study also includes a brief review of the physical and chemical properties of selected inorganic sorbents. Some attributes of inorganic sorbents would be useful in processing light water reactor (LWR) streams. The inorganic resins are highly resistant to damage from ionizing radiation, and their exchange capacities are generally equivalent to those of organic ion exchangers. However, they are more limited in application, and there are problems with physical integrity, especially in acidic solutions. Research is also needed in the areas of selectivity and anion removal before inorganic sorbents can be considered as replacements for the synthetic organic resins presently used in LWRs. 11 figures, 14 tables

  3. Efficient CO2 sorbents based on silica foam with ultra-large mesopores

    KAUST Repository

    Qi, Genggeng; Fu, Liling; Choi, Brian Hyun; Giannelis, Emmanuel P.

    2012-01-01

    A series of high-capacity, amine impregnated sorbents based on a cost-effective silica foam with ultra-large mesopores is reported. The sorbents exhibit fast CO2 capture kinetics, high adsorption capacity (of up to 5.8 mmol g-1 under 1 atm of dry CO2), as well as good stability over multiple adsorption-desorption cycles. A simple theoretical analysis is provided relating the support structure to sorbent performance. © 2012 The Royal Society of Chemistry.

  4. Application of Carbon Composite Bricks for Blast Furnace Hearth

    Science.gov (United States)

    Zuo, Haibin; Wang, Cong; Zhang, Jianliang; Zhao, Yongan; Jiao, Kexin

    Traditional refractory materials for blast furnace hearth lining are mainly composed of carbon bricks and the ceramic cup. However, these materials can't meet the demands for long service life design of blast furnaces. In this paper, a new refractory called carbon composite brick (CCB) was introduced, which combined the advantages of carbon bricks and the ceramic cup. In this case, the resistance of the CCB against corrosion was equal to the ceramic cup and the thermal conductivity of the CCB was equal to carbon bricks. From the results of more than 20 blast furnaces, the CCB could be well used in small blast furnaces and large blast furnaces. In the bad condition of low grade burden and high smelting intensity, the CCB gave full play to the role of cooling system, and effectively resisted the erosion of hot metal to improve the service life of blast furnaces.

  5. Development of composite calcium hydroxide sorbent in mechanical operations and evaluation of its basic sorption properties

    Directory of Open Access Journals (Sweden)

    Gara Paweł

    2017-01-01

    Full Text Available This article presents the results of research carried out on the possibility of obtaining composite calcium hydroxide sorbent in the process of two-step granulation, containing additional compounds of Al, Mg and Fe, and their textural and sorption studies. For this purpose, attempts were undertaken to compact commercial calcium hydroxide powder with six additives in the laboratory roll press. The resulting compacts were crushed and sieved in order to achieve the assumed sieve fraction. Based on the obtained results, basic parameters of the process of formation of composite sorbent have been determined. Both, the selected composite sorbents fractions and additives were subsequently subjected to textural studies (determination of the specific surface area and porosity and sorption capacity performance. In addition, for the better interpretation of the results, thermogravimetric studies were carried out both for the additives and composite sorbents, as well as the grain size distribution of the additives. The results of the physicochemical tests of the obtained composite sorbents were compared with analogic results from the study on fine-grained hydroxide sorbent without additives and carbonate sorbent. The presented results showed that in a two-step granulation process it is possible to obtain the granular Ca(OH2 sorbent, as well as composite sorbents possessing better SO2 sorption capacity in comparison to the powder Ca(OH2 and/or to the calcium carbonate sorbent. This can be attributed to the combination of capability of the sorbent to appropriate thermal decomposition and the formation of a group of pores in the range of 0.07-0.3 microns.

  6. Predictive control of thermal state of blast furnace

    Science.gov (United States)

    Barbasova, T. A.; Filimonova, A. A.

    2018-05-01

    The work describes the structure of the model for predictive control of the thermal state of a blast furnace. The proposed model contains the following input parameters: coke rate; theoretical combustion temperature, comprising: natural gas consumption, blasting temperature, humidity, oxygen, blast furnace cooling water; blast furnace gas utilization rate. The output parameter is the cast iron temperature. The results for determining the cast iron temperature were obtained following the identification using the Hammerstein-Wiener model. The result of solving the cast iron temperature stabilization problem was provided for the calculated values of process parameters of the target area of the respective blast furnace operation mode.

  7. High capacity carbon dioxide sorbent

    Science.gov (United States)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  8. Decontamination formulation with sorbent additive

    Science.gov (United States)

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  9. DEVELOPMENT OF DISPOSABLE SORBENTS FOR CHLORIDE REMOVAL FROM HIGH TEMPERATURE COAL-DERIVED GASES

    Energy Technology Data Exchange (ETDEWEB)

    Gopala Krishnan; Raghubir Gupta

    1999-09-01

    Advanced integrated-gasification combined-cycle (IGCC) and integrated-gasification fuel cell (IGFC) systems require the development of high temperature sorbents for the removal of hydrogen chloride (HCl) vapor to less than 1 parts-per-million (ppm) levels. HCl is a highly reactive, corrosive, and toxic gas which must be removed to meet environmental regulations, to protect power generation equipment, and to minimize deterioration of hot gas desulfurization sorbents. The objective of this program was to develop disposable, alkali-based sorbents capable of reducing HCl vapor levels to less than 1 ppm in the temperature range from 400 to 750 C and pressures in the range from 1 to 20 atm. The primary areas of focus of this program were to investigate different methods of sorbent fabrication, testing their suitability for different reactor configurations, obtaining reaction kinetics data, and conducting a preliminary economic feasibility assessment. This program was a joint effort between SRI International (SRI), Research Triangle Institute (RTI), and General Electric Corporate Research and Development (GE-CRD). SRI, the prime contractor and RTI, a major subcontractor, performed most of the work in this program. Thermochemical calculations indicated that sodium-based sorbents were capable of reducing HCl vapor levels to less than 1 ppm at temperatures up to 650 C, but the regeneration of spent sorbents would require complex process steps. Nahcolite (NaHCO{sub 3}), a naturally-occurring mineral, could be used as an inexpensive sorbent to remove HCl vapor in hot coal gas streams. In the current program, nahcolite powder was used to fabricate pellets suitable for fixed-bed reactors and granules suitable for fluidized-bed reactors. Pilot-scale equipment were used to prepare sorbents in large batches: pellets by disk pelletization and extrusion techniques, and granules by granulation and spray-drying techniques. Bench-scale fixed- and fluidized-bed reactors were assembled at

  10. Thermochemical Characterizations of Novel Vermiculite-LiCl Composite Sorbents for Low-Temperature Heat Storage

    Directory of Open Access Journals (Sweden)

    Yannan Zhang

    2016-10-01

    Full Text Available To store low-temperature heat below 100 °C, novel composite sorbents were developed by impregnating LiCl into expanded vermiculite (EVM in this study. Five kinds of composite sorbents were prepared using different salt concentrations, and the optimal sorbent for application was selected by comparing both the sorption characteristics and energy storage density. Textural properties of composite sorbents were obtained by extreme-resolution field emission scanning electron microscopy (ER-SEM and an automatic mercury porosimeter. After excluding two composite sorbents which would possibly exhibit solution leakage in practical thermal energy storage (TES system, thermochemical characterizations were implemented through simulative sorption experiments at 30 °C and 60% RH. Analyses of thermogravimetric analysis/differential scanning calorimetry (TGA/DSC curves indicate that water uptake of EVM/LiCl composite sorbents is divided into three parts: physical adsorption of EVM, chemical adsorption of LiCl crystal, and liquid–gas absorption of LiCl solution. Energy storage potential was evaluated by theoretical calculation based on TGA/DSC curves. Overall, EVMLiCl20 was selected as the optimal composite sorbent with water uptake of 1.41 g/g, mass energy storage density of 1.21 kWh/kg, and volume energy storage density of 171.61 kWh/m3.

  11. A New Cross-Shaped Graphite Furnace with Ballast Body for Reduction of Interferences in Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    A. A. Asweisi

    2010-01-01

    Full Text Available A new crossed graphite furnace for atomic absorption spectrometry (GFAAS was designed and installed in heated graphite atomizer (HGA500 combined with Perkin-Elmer spectrometer (AAS1100. The Tungsten ballast body was inserted inside one part of the crossed furnace in a way perpendicular to light path. The analyzed sample was injected manually on the ballast body inside the cross and pushed into the measuring zone using the original inner and additional purge gas. The sample was adsorbed strongly on the ballast and evaporated and transferred with different rates at different temperatures during the temperature program allowing the separation of analyte and matrix signals. Analysis of middle volatile element such as copper and manganese in standard urine sample (seronorm 2525 showed complete separation of analyte and background signals with good sensitivity and repeatability.

  12. Lead, Chromium and Cadmium Removal from Contaminated Water Using Phosphate Sorbents

    Directory of Open Access Journals (Sweden)

    Fariborz Riahi

    2010-06-01

    Full Text Available Sorption of 3 poisonous metal ions (Pb2+, Cd2+, Cr3+ in aqueous solutions by two phosphate sorbents under dynamic and static conditions was studied. Phosphate sorbents (MgNH4PO4. H2O, Mg3(PO42. 6H2O were synthesized by known procedures. The resulting crystalline samples were analyzed for the contents of Mg2+, Pb2+, P, N using spectrophotometric and elemental analysis methods. Likewise, the amounts of Pb2+, Cd2+, Cr3+ in solutions were determined before and after the sorption process using the atomic absorption method. The relative standard deviations for Pb2+, Cd2+, Cr3+ were 4.7%, 2.17%, and 1.61% and the detection limits were 5 g/L, 0.05 mg/L, and 0.1 mg/L, respectively. The sorbents showed a high performance in the purification of contaminated solutions under static conditions. The sorption capacity levels of Mg3 (PO42. 6H2O and MgNH4 PO4. H2O were 9.8m.mol/gr and 8.9m.mol/gr for Pb2+; 10.5m.mol/gr and 9m.mol/gr for Cd2+; and 6.6m.mol/gr and 5.3m.mol/gr for Cr3+, respectively. Pb2+ , Cd2+, Cr3+. sorption by inorganic phosphate sorbents from solutions is associated with complicated chemical transformations of the sorbents. A proper account of these transformations allows for the sorption process to be optimized. The data on Pb2+, Cd2+, Cr3+ sorption under static conditions (24-h contact of Mg3 (PO42. 6H2O, MgNH4PO4. H2O, with solutions at 20oC and under dynamic conditions were obtained and the sorption behaviors of the metal ions were investigated in response to the sorbents used. It was found that Mg3 (PO42. 6H2O was the best sorbent for Pb2+, Cd2+, Cr3+ under dynamic conditions.

  13. Sorption of short-lived radionuclides in a layer of sorbent with spherical granules

    International Nuclear Information System (INIS)

    Karlin, Yu.V.

    1993-01-01

    Sorption methods have found wide application in the purification of liquid radioactive wastes. The working element in sorption methods for this purpose is usually a sorption column with a fixed layer of sorbent. Continuous-action equipment with a moving layer of sorbent is very seldom used. When a fixed layer of sorbent is used its wear and prolonged mixing in the sorption column are reduced to a minimum, and maximum purification is achieved due to the advantages of the dynamic method of sorption over the static method. The time of protective action of the sorbent layer is determined by the time taken for the radionuclide to pass through the sorption column, and for the majority of radionuclides is determined by numerous parameters, including the type of sorbent and radionuclide, the rate of flow through the sorbent, the size of the sorbent granules, etc. The physical and chemical aspects of this process have been investigated in detail, and numerous methods for modeling it mathematically have been developed and have been used to develop methods of designing sorption column apparatus. The specific nature of the radionuclides as unstable materials enables the hypothetical case of a open-quotes perpetualclose quotes sorption filter to be represented. In fact, to achieve this it is only necessary to assume that the half-life of the radionuclide is so small that the rate of decay of the radionuclide in the sorption column (both in the sorbed state and in the aqueous phase of the sorption layer) is equal to the rate that it is fed into the column in the flow of liquid radioactive waste. In this case the sorption front of the radionuclide in the column wall remains fixed after a certain initial period. In this paper, a mathematical model of such a hypothetical filter for the case of spherical sorbent granules is considered

  14. High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor

    International Nuclear Information System (INIS)

    Dou Binlin; Song Yongchen; Liu Yingguang; Feng Cong

    2010-01-01

    The gas-solid reaction and breakthrough curve of CO 2 capture using calcium oxide sorbent at high temperature in a fixed-bed reactor are of great importance, and being influenced by a number of factors makes the characterization and prediction of these a difficult problem. In this study, the operating parameters on reaction between solid sorbent and CO 2 gas at high temperature were investigated. The results of the breakthrough curves showed that calcium oxide sorbent in the fixed-bed reactor was capable of reducing the CO 2 level to near zero level with the steam of 10 vol%, and the sorbent in CaO mixed with MgO of 40 wt% had extremely low capacity for CO 2 capture at 550 deg. C. Calcium oxide sorbent after reaction can be easily regenerated at 900 deg. C by pure N 2 flow. The experimental data were analyzed by shrinking core model, and the results showed reaction rates of both fresh and regeneration sorbents with CO 2 were controlled by a combination of the surface chemical reaction and diffusion of product layer.

  15. Experimental investigation of adsorption of NO and SO2 on modified activated carbon sorbent from flue gases

    International Nuclear Information System (INIS)

    Zhu, J.L.; Wang, Y.H.; Zhang, J.C.; Ma, R.Y.

    2005-01-01

    It is indicated that modified carbon is a practical sorbent for removal of NO and SO 2 from waste gases by the adsorption method. The ideal compositions for the prepared sorbent were 4.0 wt.% and 2.5 wt.% Na 2 CO 3 and KOH at the experimental conditions, respectively, shortened as ACNaK 2.5 . Experimental investigation showed that the sorbent had a comparatively high breakthrough adsorption capacity of NO and SO 2 , about 5.8 g (NO + SO 2 )/100 g sorbent. It is indicated that a relatively high adsorption temperature would benefit the sorbent adsorption capacities on NO and SO 2 at a certain space velocity and pressure. Further study revealed that the ACNaK 2.5 sorbent had good regenerability at the experimental conditions, which implied that the ACNaK 2.5 sorbent would be a useful sorbent for simultaneous removal of NO and SO 2 from waste gases by adsorption

  16. Sorbent Nanotechnologies for Water Cleaning

    Science.gov (United States)

    Ahmed, Snober

    Despite decades of regulatory efforts to mitigate water pollution, many chemicals, particularly heavy metals, still present risks to human health. In addition to direct exposure, certain metals such as mercury threaten public health due to its persistence, bioaccumulation and bioamplification throughout the food chain. A number of U.S. Federal and State regulations have been established to reduce the levels of mercury in water. Activated carbon (AC) has been widely explored for the removal of mercury. However, AC suffers from many limitations inherent to its chemical properties, and it becomes increasingly challenging to meet current and future regulations by simply modifying AC to enhance its performance. Recently, the performance of nanosorbents have been studied in order to removal pollutants. Nanosorbents utilize the ultra-high reactive surface of nanoparticles for rapid, effective and even permanent sequestration of heavy metals from water and air, thus showed promising results as compared to AC. The goal of this thesis research is to develop nanomaterial-based sorbents for the removal of mercury from water. It describes the development of a new solid-support assisted growth of selenium nanoparticles, their use for water remediation, and the development of a new nanoselenium-based sorbent sponge for fast and efficient mercury removal. The nanoselenium sorbent not only shows irreversible interaction with mercury but also exhibits remarkable properties by overcoming the limitations of AC. The nanoselenium sponge was shown to remove mercury to undetectable levels within one minute. This new sponge technology would have an impact on inspiring new stringent regulations and lowering costs to help industries meet regulatory requirements, which will ultimately help improve air and water quality, aquatic life and public health.

  17. BPM Motors in Residential Gas Furnaces: What are the Savings?

    OpenAIRE

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-01-01

    Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This p...

  18. A Model to Simulate Titanium Behavior in the Iron Blast Furnace Hearth

    Science.gov (United States)

    Guo, Bao-Yu; Zulli, Paul; Maldonado, Daniel; Yu, Ai-Bing

    2010-08-01

    The erosion of hearth refractory is a major limitation to the campaign life of a blast furnace. Titanium from titania addition in the burden or tuyere injection can react with carbon and nitrogen in molten pig iron to form titanium carbonitride, giving the so-called titanium-rich scaffold or buildup on the hearth surface, to protect the hearth from subsequent erosion. In the current article, a mathematical model based on computational fluid dynamics is proposed to simulate the behavior of solid particles in the liquid iron. The model considers the fluid/solid particle flow through a packed bed, conjugated heat transfer, species transport, and thermodynamic of key chemical reactions. A region of high solid concentration is predicted at the hearth bottom surface. Regions of solid formation and dissolution can be identified, which depend on the local temperature and chemical equilibrium. The sensitivity to the key model parameters for the solid phase is analyzed. The model provides an insight into the fundamental mechanism of solid particle formation, and it may form a basic model for subsequent development to study the formation of titanium scaffold in the blast furnace hearth.

  19. Qualification of the ALKASORB sorbent for the sorption-enhanced water-gas shift process

    Energy Technology Data Exchange (ETDEWEB)

    Van Selow, E.R.; Cobden, P.D.; Dijk, Van H.A.J.; Walspurger, S.; Verbraeken, P.A.; Jansen, D.

    2013-07-01

    For the sorption-enhanced water-gas shift (SEWGS) process, a new sorbent material has been qualified in a reactor of 2 m length under conditions close to industrial designs. The sorbent ALKASORB is a potassium-carbonate promoted hydrotalcite-based compound. ALKASORB is shown to have many favourable properties in comparison to the reference sorbent, in particular with respect to mechanical stability. The cyclic capacity of the new compound is substantially higher than the cyclic capacity of the reference sorbent, and it allows a reduction of the steam requirement of 50%. The sorbent has demonstrated catalytic activity for the water-gas shift reaction that is sufficient to omit a separate catalyst. It is demonstrated that the sorbent remains chemically and mechanically stable during operation of at least 2000 adsorption-desorption cycles, even in the presence of H2S in the feed. H2S is shown not to influence CO2 adsorption capacity and is co-captured with the CO2. In contrast to the reference material that showed mechanical degradation during extended adsorption-desorption cycles, the new material is stable and allows to obtain carbon capture levels exceeding 95% more efficiently and more economically since the required size of the vessels will be smaller.

  20. Waste Derived Sorbents and Their Potential Roles in Heavy Metal Remediation Applications

    Directory of Open Access Journals (Sweden)

    Chiang Y. W.

    2013-04-01

    Full Text Available Inorganic waste materials that have the suitable inherent characteristics could be used as precursors for the synthesis of micro- and mesoporous materials, which present great potential to be re-utilized as sorbent materials for heavy metal remediation. Three inorganic waste materials were studied in the present work: water treatment residuals (WTRs from an integrated drinking water/wastewater treatment plant, and fly ash and bottom ash samples from a municipal solid waste incinerator (MSWI. These wastes were converted into three sorbent materials: ferrihydrite-like materials derived from drying of WTRs, hydroxyapatite-like material derived from ultrasound assisted synthesis of MSWI fly ash with phosphoric acid solution, and a zeolitic material derived from alkaline hydrothermal conversion of MSWI bottom ash. The performance of these materials, as well as their equivalent commercially available counterparts, was assessed for the adsorption of multiple heavy metals (As, Cd, Co, Ni, Pb, Zn from synthetic solutions, contaminated sediments and surface waters; and satisfactory results were obtained. In addition, it was observed that the combination of sorbents into sorbent mixtures enhanced the performance levels and, where applicable, stabilized inherently mobile contaminants from the waste derived sorbents.

  1. Programmable temperature regulator of VAO-1 furnace

    International Nuclear Information System (INIS)

    Zahalka, F.

    1979-01-01

    A programmable temperature controller is described for a furnace for high-level waste processing. Furnace temperature is controlled by a program compiled from a combination of 3 parts with different linear increments or decrements of time dependent temperature and 2 parts with isothermal control for over a preset period. The equipment consists essentially of a programming unit, a programmed digital-to-analog converter and a power unit. The design is described in detail and its specifications are given. The maximum operating temperature of 1500 degC may be reached in the furnace charge section. (B.S.)

  2. A new compact fixed-point blackbody furnace

    International Nuclear Information System (INIS)

    Hiraka, K.; Oikawa, H.; Shimizu, T.; Kadoya, S.; Kobayashi, T.; Yamada, Y.; Ishii, J.

    2013-01-01

    More and more NMIs are realizing their primary scale themselves with fixed-point blackbodies as their reference standard. However, commercially available fixed-point blackbody furnaces of sufficient quality are not always easy to obtain. CHINO Corp. and NMIJ, AIST jointly developed a new compact fixed-point blackbody furnace. The new furnace has such features as 1) improved temperature uniformity when compared to previous products, enabling better plateau quality, 2) adoption of the hybrid fixed-point cell structure with internal insulation to improve robustness and thereby to extend lifetime, 3) easily ejectable and replaceable heater unit and fixed-point cell design, leading to reduced maintenance cost, 4) interchangeability among multiple fixed points from In to Cu points. The replaceable cell feature facilitates long term maintenance of the scale through management of a group of fixed-point cells of the same type. The compact furnace is easily transportable and therefore can also function as a traveling standard for disseminating the radiation temperature scale, and for maintaining the scale at the secondary level and industrial calibration laboratories. It is expected that the furnace will play a key role of the traveling standard in the anticipated APMP supplementary comparison of the radiation thermometry scale

  3. Electric melting furnace for waste solidification

    International Nuclear Information System (INIS)

    Masaki, Toshio.

    1990-01-01

    To avoid electric troubles or reduction of waste processing performance even when platinum group elements are contained in wastes to be applied with glass solidification. For this purpose, a side electrode is disposed to the side wall of a melting vessel and a central electrode serving as a counter electrode is disposed about at the center inside the melting vessel. With such a constitution, if conductive materials are deposited at the bottom of the furnace or the bottom of the melting vessel, heating currents flow selectively between the side electrode and the central electrode. Accordingly, no electric currents flow through the conductive deposits thereby enabling to prevent abnormal heating in the bottom of the furnace. Further, heat generated by electric supply between the side electrode and the central electrode is supplied efficiently to raw material on the surface of the molten glass liquid to improve the processing performance. Further, disposition of the bottom electrode at the bottom of the furnace enables current supply between the central electrode and the bottom electrode to facilitate the temperature control for the molten glass in the furnace than in the conventional structure. (I.S.)

  4. Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven [Univ. of North Dakota, Grand Forks, ND (United States); Srinivasachar, Srivats [Envergex LLC, Sturbridge, MA (United States); Laudal, Daniel [Univ. of North Dakota, Grand Forks, ND (United States); Browers, Bruce [Barr Engineering, Minneapolis, MN (United States)

    2014-12-31

    A novel hybrid solid sorbent technology for CO₂ capture and separation from coal combustion-derived flue gas was evaluated. The technology – Capture of CO₂ by Hybrid Sorption (CACHYS™) – is a solid sorbent technology based on the following ideas: 1) reduction of energy for sorbent regeneration, 2) utilization of novel process chemistry, 3) contactor conditions that minimize sorbent-CO₂ heat of reaction and promote fast CO₂ capture, and 4) low-cost method of heat management. This report provides key information developed during the course of the project that includes sorbent performance, energy for sorbent regeneration, physical properties of the sorbent, the integration of process components, sizing of equipment, and overall capital and operational cost of the integrated CACHYS™ system. Seven sorbent formulations were prepared and evaluated at the lab-scale for energy requirements and CO₂ capture performance. Sorbent heat of regeneration ranged from 30-80 kJ/mol CO₂ and was found to be dependent on process conditions. Two sorbent formulations (designated HCK-4 & HCK-7) were down-selected for additional fixed-bed testing. Additional testing involved subjecting the sorbents to 100 continuous cycles in the fixed-bed reactor to determine performance as a function of time. The working capacity achieved for HCK-4 sorbent ranged from 5.5-8.0 g CO₂/100 g sorbent, while the HCK-7 typically ranged from 8.0-10.0 g CO₂/100 g sorbent. Overall, there was no deterioration in capacity with continuous cycling for either sorbent. The CACHYS™ bench-scale testing system designed and fabricated under this award consists of a dual circulating fluidized-bed adsorber and a moving-bed regenerator. The system takes a flue gas slipstream from the University of North Dakota’s coal-fired steam plant. Prior to being sent to the adsorber, the flue gas is scrubbed to remove SO₂ and particulate. During parametric testing of the adsorber, CO₂ capture achieved using

  5. New polymer bounces into sorbent market

    International Nuclear Information System (INIS)

    Roy, K.A.

    1991-01-01

    Spectacular spills like the Exxon Valdez capture headlines and dominate conversation, but most releases involve quantities too small to attract media attention. For these spills, companies often rely on sorbents to collect the oil and dispose it. These devices come in a variety of shapes, sizes and absorbent materials, including a new generation of products that offers solid results-literally. This paper reports on the Solidifier which absorbs oil, as well as chlorinated solvents, hydrocarbons and PCBs, and, as the name implies, solidifies into a rubber-like material. A polymer used extensively in the rubber industry is the key to the sorbent's success. Oil and other contaminants, act like catalysts. They dissolve into the polymer, causing its molecules to bond together and form a rubber-like mass. No. 2 diesel fuel oil can be bounced on the floor after it solidifies

  6. Enhancement of the atomic absorbance of Cr, Zn, Cd, and Pb in metal furnace atomic absorption spectrometry using absorption tubes

    Directory of Open Access Journals (Sweden)

    Yuya Koike

    2017-03-01

    Full Text Available Trace amounts of Cr, Zn, Cd, and Pb were determined by metal furnace atomic absorption spectrometry using absorption tubes. Various absorption tubes were designed as roof- and tube-types, and fixed above the metal furnace in order to extend the light path length. Aqueous standards and samples were injected in the metal furnace and atomized in a metal atomizer with an absorption tube (6 cm length, 15.5 mm diameter. The used of an absorption tube resulted in an enhancement of the atomic absorbance. The ratios of absorbance values with and without the roof- and tube-type absorption tubes were 1.33 and 1.11 for Cr; 1.42 and 1.99 for Zn; 1.66 and 1.98 for Cd; and 1.31 and 1.16 for Pb, respectively. The use of an absorption tube was effective for Zn and Cd analysis, as the absorbance values for these low boiling point metals doubled. The proposed method was successfully applied in the determination of Zn in tap water.

  7. Effect of characteristic of sorbents on their sulfur capture capability at a fluidized bed condition

    Energy Technology Data Exchange (ETDEWEB)

    Leming Cheng; Bo Chen; Ni Liu; Zhongyang Luo; Kefa Cen [Zhejiang University, Hangzhou (China). Clean Energy and Environment Engineering Key Lab of Ministry of Education, Institute for Thermal Power Engineering

    2004-05-01

    This research was intent for finding relationships among physical and/or chemical properties of sorbents and their sulfur capture capability at a fluidized bed condition. Three limestones and two seashells were chosen as a SO{sub 2} sorbent. Characteristics of sorbents were evaluated based on atomic absorption spectrophotometer, scanning electron microscope and mercury-penetration porosimeter analyses. Their sulfur capture capabilities were measured on a fluidized bed test system at 800, 850, 900 and 950{sup o}C. Conversion of the sobents was computed and analyzed depending on the sorbents' morphology and microstructure analysis. Results showed pore size and specific surface might have large influence on sorbents' desulfurization ability in the range of 800 950{sup o}C. 14 refs., 6 figs., 4 tabs.

  8. High temperature aircraft research furnace facilities

    Science.gov (United States)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  9. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that

  10. Silver nanoparticles embedded polymer sorbent for preconcentration of uranium from bio-aggressive aqueous media

    International Nuclear Information System (INIS)

    Das, Sadananda; Pandey, Ashok K.; Athawale, Anjali A.; Subramanian, M.; Seshagiri, T.K.; Khanna, Pawan K.; Manchanda, Vijay K.

    2011-01-01

    Adsorptive sorbent for bio-aggressive natural aqueous media like seawater was developed by one pot simultaneous synthesis of silver nanoparticles (Ag nps) and poly(ethylene glycol methacrylate phosphate) (PEGMP) by UV-initiator induced photo-polymerization. The photo-polymerization was carried out by irradiating N,N'-dimethylformamide (DMF) solution containing appropriate amounts of the functional monomer (ethylene glycol methacrylate phosphate), UV initiator (α,α'-dimethoxy-α-phenyl acetophenone), and Ag + ions with 365 nm UV light in a multilamps photoreactor. To increase mechanical strength, nano-composite sorbent (Ag-PEGMP) was also reinforced with thermally bonded non-woven poly(propylene) fibrous sheet. Transmission electron microscopy (TEM) of the nano-composite sorbent showed uniform distribution of spherical Ag nanoparticles with particles size ranging from 3 to 6 nm. The maximum amount of Ag 0 that could be anchored in the form of nanoparticles were 5 ± 1 and 10 ± 1 wt.% in self-supported PEGMP and poly(propylene) reinforced PEGMP matrices, respectively. Ag-PEGMP sorbent was found to be stable under ambient conditions for a period of six months. Ag-PEGMP composite sorbent did not exhibit growth at all after incubation with pre-grown Escherichia coli cells, and showed non-adherence of this bacteria to the composite. This indicated that composite sorbent has the bio-resistivity due to bacterial repulsion and bactericidal properties of Ag nanoparticles embedded in the PEGMP. Sorption of U(VI) in PEGMP and Ag-PEGMP nano-composite sorbents from well-stirred seawater was studied to explore the possibility of using it for uranium preconcentration from bio-aggressive aqueous streams. The nano-composite sorbent was used to preconcentrate U(VI) from a process aqueous waste stream.

  11. Technology assessment guide for application of engineered sorbent barriers to low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Jones, E.O.; Depner, J.P.

    1989-06-01

    An engineered sorbent barrier (ESB) uses sorbent materials (such as activated carbon or natural zeolites) to restrict migration of radionuclides from low-level waste sites. The permeability of the ESB allows moisture to pass while the sorbent material traps or absorbs contaminants. In contrast, waste sites with impermeable barriers could fill with water, especially those waste sites in humid climates. A sorbent barrier can be a simple, effective, and inexpensive method for restricting radionuclide migration. This report provides information and references to be used in assessing the sorbent barrier technology for low-level waste disposal. The ESB assessment is based on sorbent material and soil properties, site conditions, and waste properties and inventories. These data are used to estimate the thickness of the barrier needed to meet all performance requirements for the waste site. This document addresses the following areas: (1) site information required to assess the need and overall performance of a sorbent barrier; (2) selection and testing of sorbent materials and underlying soils; (3) use of radionuclide transport models to estimate the required barrier thickness and long-term performance under a variety of site conditions; (4) general considerations for construction and quality assurance; and (5) cost estimates for applying the barrier. 37 refs., 6 figs., 2 tabs.

  12. Cleanup of Savannah River Plant solvent using solid sorbents

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1985-04-01

    The degradation products produced in Purex solvent by exposure to nitric acid and radiation can be divided into two groups: those which are removed by scrubbing with sodium carbonate solutions and those which are not; these latter materials are called secondary degradation products. This study investigated the use of solid sorbents for removal of the secondary degradation products from first-cycle Savannah River Plant solvent that had been previously washed with sodium carbonate solution. Silica gel, activated charcoal, macroreticular resin, attapulgite clay and activated alumina were the sorbents investigated in preliminary testing. Activated alumina was found to be most effective for improving phase separation of the solvent from sodium carbonate solutions and for increasing the interfacial tension. The activated alumina was also the sorbent most useful for removing complexants which retain plutonium at low acidity, but it was less effective in removing anionic surfactants and ruthenium. We found that the capacity of the activated alumina was greatly improved by drying the solvent before treatment

  13. Radon adsorption in fibrous carbon sorbents

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Kish, A.O.; Chudakov, V.A.; Matvejchuk, S.V.; Sokolovskij, A.S.; Ugolev, I.I.

    2006-01-01

    Radon sorption in woven fibrous sorbents 'AUT-M' and 'Busofit' and nonwoven fiber in the temperature range 0-50 degrees centigrade was studied. Adsorption heat of radon from the ambient air in different types of carbon fiber was determined. (authors)

  14. Experimental investigation of various vegetable fibers as sorbent materials for oil spills.

    Science.gov (United States)

    Annunciado, T R; Sydenstricker, T H D; Amico, S C

    2005-11-01

    Oil spills are a global concern due to their environmental and economical impact. Various commercial systems have been developed to control these spills, including the use of fibers as sorbents. This research investigates the use of various vegetable fibers, namely mixed leaves residues, mixed sawdust, sisal (Agave sisalana), coir fiber (Cocos nucifera), sponge-gourd (Luffa cylindrica) and silk-floss as sorbent materials of crude oil. Sorption tests with crude oil were conducted in deionized and marine water media, with and without agitation. Water uptake by the fibers was investigated by tests in dry conditions and distillation of the impregnated sorbent. The silk-floss fiber showed a very high degree of hydrophobicity and oil sorption capacity of approximately 85goil/g sorbent (in 24hours). Specific gravity measurements and buoyancy tests were also used to evaluate the suitability of these fibers for the intended application.

  15. Experimental investigation of various vegetable fibers as sorbent materials for oil spills

    Energy Technology Data Exchange (ETDEWEB)

    Annunciado, T.R.; Sydenstricker, T.H.D.; Amico, S.C. [Federal University of Parana, Curitiba, (Brazil). Department of Mechanical Engineering

    2005-11-15

    Oil spills are a global concern due to their environmental and economical impact. various commercial systems have been developed to control these spills, including the use of fibers as sorbents. This research investigates the use of various vegetable fibers, namely mixed leaves residues, mixed sawdust, sisal (Agave sisalana), coir fiber (Cocos nucifera), sponge-gourd (Luffa cylindrica) and silk-floss as sorbent materials of crude oil. Sorption tests with crude oil were conducted in deionized and marine water media, with and without agitation. Water uptake by the fibers was investigated by tests in dry conditions and distillation of the impregnated sorbent. The silk-floss fiber showed a very high degree of hydrophobicity and oil sorption capacity of approximately 85 g oil/g sorbent (in 24 hours). Specific gravity measurements and buoyancy tests were also used to evaluate the suitability of these fibers for the intended application. (author)

  16. Assessment of selected furnace technologies for RWMC waste

    International Nuclear Information System (INIS)

    Batdorf, J.; Gillins, R.; Anderson, G.L.

    1992-03-01

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste

  17. Uranium casting furnace automatic temperature control development

    International Nuclear Information System (INIS)

    Lind, R.F.

    1992-01-01

    Development of an automatic molten uranium temperature control system for use on batch-type induction casting furnaces is described. Implementation of a two-color optical pyrometer, development of an optical scanner for the pyrometer, determination of furnace thermal dynamics, and design of control systems are addressed. The optical scanning system is shown to greatly improve pyrometer measurement repeatability, particularly where heavy floating slag accumulations cause surface temperature gradients. Thermal dynamics of the furnaces were determined by applying least-squares system identification techniques to actual production data. A unity feedback control system utilizing a proportional-integral-derivative compensator is designed by using frequency-domain techniques. 14 refs

  18. A furnace for firing carbon products

    Energy Technology Data Exchange (ETDEWEB)

    Sudavskii, A M

    1979-12-05

    A furnace for firing carbon products is patented that consists of several chambers with a perforated hearth, which are interconnected by a lower and an upper reservoir with a locking fixture, and a flue. In order to intensify the firing process by increasing the specific hearth productivity, the flue is connected to the upper reservoir. A block diagram of the patented furnace is given, together with a description of its operation.

  19. Effectiveness of liquid radioactive waste purification by inorganic granulated sorbents

    International Nuclear Information System (INIS)

    Komarevskij, V.M.; Stepanets, O.V.; Sharygin, L.M.; Matveev, S.A.

    1995-01-01

    Study results on purification of simulative and real liquid radioactive wastes from fission products radionuclides and by inorganic corrosion-nature sorbents 'Thermoxide' are presented. Properties by sorption of cesium, strontium and cobalt are studied; results of experiments on purification of weakly-salted water solutions (waste waters, ships drainage tanks, showers and laundries) of the Beloyarsk NPP are presented. Sorbents source characteristics are determined. 4 refs., 2 figs., 3 tabs

  20. Elements of the electric arc furnace's environmental management

    Science.gov (United States)

    Ioana, Adrian; Semenescu, Augustin; Costoiu, Mihnea; Marcu, Dragoş

    2017-12-01

    The paper presents a theoretical and experimental analysis of the polluting generating mechanisms for steel making in the Electric Arc Furnaces (EAF). The scheme for the environment's polluting system through the EAF is designed and presented in this paper. The ecological experimenting consisted of determining by specialized measures of the dust percentage in the evacuated gases from the EAF and of thereof gas pollutants. From the point of view of reducing the impact on the environment, the main problem of the electric arc furnace (EAF) is the optimization of the powder collecting from the process gases, both from the furnace and from the work-area. The paper deals with the best dependence between the aggregate's constructive, functional and technological factors, which are necessary for the furnace's ecologization and for its energetically-technologically performances increasing.

  1. Evaluation of silk-floss fiber and dog fur as sorbent materials for the petroleum sector

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Lucas P. dos [Universidade Federal do Parana (PGMec/UFPR), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Dubiella, Juliana [Universidade Federal do Parana (DEMEC/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica. Programa Institucional de Bolsas de Iniciacao Cientifica; Perotta, Larissa [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Programa Interdisciplinar em Engenharia de Petroleo e Gas Natural; Satyanarayana, Kestur G. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica; Flores-Sahagun, Thais Sydenstricker [Universidade Federal do Parana (DEMEC/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica

    2009-07-01

    In this study silk-floss and dog fur were tested as sorbent materials for oils and the results were compared with peat, a commercial sorbent. Sorption tests were carried out in dry and aqueous systems, with and without stirring for different periods of time (5-1440 min). Density, hydrophobicity, buoyancy and water uptake by the fibers of the impregnated sorbents have been determined. The use of silk-floss and dog fur was also tested in columns to purify water containing toluene, benzene, motor oil or sunflower oil. Breakthrough curves during 120 min were drawn for each material with the samples (oily water or water containing benzene or toluene) and were analyzed by ultraviolet spectroscopy. It was concluded that the silk-floss is the best sorbent material (65.3 g oil/g sorbent) followed by the dog fur (34.6 g oil/g sorbent) and peat (19.5 g oil/g sorbent), for sorption time of 1 h in dynamic condition. The efficiency of the pollutant removal from water with the use of adsorption columns was high for both materials although the use of dog fur was preferable because of the slight superiority in efficiency compared to silk-floss and also, due to the easier packing of the dog fur in the column. (author)

  2. Methods for monitoring heat flow intensity in the blast furnace wall

    Directory of Open Access Journals (Sweden)

    L'. Dorčák

    2010-04-01

    Full Text Available In this paper we present the main features of an online system for real-time monitoring of the bottom part of the blast furnace. Firstly, monitoring concerns the furnace walls and furnace bottom temperatures measurement and their visualization. Secondly, monitored are the heat flows of the furnace walls and furnace bottom. In the case of two measured temperatures, the heat flow is calculated using multi-layer implicit difference scheme and in the case of only one measured temperature, the heat flow is calculated using a method based on application of fractional-order derivatives. Thirdly, monitored is the theoretical temperature of the blast furnace combustion process in the area of tuyeres.

  3. Application of engineered sorbent barriers Summary of Laboratory Data for FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Jones, E.O.

    1989-09-01

    Laboratory studies were conducted in FY 1988 Pacific Northwest Laboratory to determine the effect of contact time, pH, solution to solid ratio, and particle size on the performance of a number of materials in adsorbing radioactive cobalt, strontium, and cesium. The laboratory studies were conducted to provide background information useful in designing an engineered sorbent barrier, which restricts the migration of radionuclides from low-level waste sites. Understanding how the variables affect the adsorption of ions on the sorbent materials is the key to estimating the performance of sorbent barriers under a variety of conditions. The scope of the studies was limited to three radionuclides and four sorbent materials, but the general approach can be used to evaluate other radionuclides and conditions. The sorbent materials evaluated in this study included clinoptilolite, activated carbon, bentonite clay, and Savannah River soil. The clinoptilolite and activated carbon were identified in previous studies as the most cost-effective materials for sorption of the three radionuclides under consideration. The bentonite clay was evaluated as a component of the barrier that could be used to modify the permeability of the barrier system. The Savannah River soil was used to represent soil from a humid site. 3 refs., 14 figs., 1 tab.

  4. Thermal Analysis of an Industrial Furnace

    Directory of Open Access Journals (Sweden)

    Mirko Filipponi

    2016-10-01

    Full Text Available Industries, which are mainly responsible for high energy consumption, need to invest in research projects in order to develop new managing systems for rational energy use, and to tackle the devastating effects of climate change caused by human behavior. The study described in this paper concerns the forging industry, where the production processes generally start with the heating of steel in furnaces, and continue with other processes, such as heat treatments and different forms of machining. One of the most critical operations, in terms of energy loss, is the opening of the furnace doors for insertion and extraction operations. During this time, the temperature of the furnaces decreases by hundreds of degrees in a few minutes. Because the dispersed heat needs to be supplied again through the combustion of fuel, increasing the consumption of energy and the pollutant emissions, the evaluation of the amount of lost energy is crucial for the development of systems which can contain this loss. To perform this study, CFD simulation software was used. Results show that when the door opens, because of temperature and pressure differences between the furnace and the ambient air, turbulence is created. Results also show that the amount of energy lost for an opening of 10 min for radiation, convection and conduction is equal to 5606 MJ where convection is the main contributor, with 5020 MJ. The model created, after being validated, has been applied to perform other simulations, in order to improve the energy performance of the furnace. Results show that reducing the opening time of the door saves energy and limits pollutant emissions.

  5. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas

    International Nuclear Information System (INIS)

    Zhang, F.M.; Liu, B.S.; Zhang, Y.; Guo, Y.H.; Wan, Z.Y.; Subhan, Fazle

    2012-01-01

    Highlights: ► A series of mesoporous Cu x Mn y O z /SBA-15 sorbents were fabricated for hot coal gas desulfurization. ► 1Cu9Mn/SBA-15 sorbent with high breakthrough sulfur capacity is high stable and regenerable. ► Utilization of SBA-15 constrained the sintering and pulverization of sorbents. - Abstract: A series of mesoporous xCuyMn/SBA-15 sorbents with different Cu/Mn atomic ratios were prepared by wet impregnation method and their desulfurization performance in hot coal gas was investigated in a fixed-bed quartz reactor in the range of 700–850 °C. The successive nine desulfurization–regeneration cycles at 800 °C revealed that 1Cu9Mn/SBA-15 presented high performance with durable regeneration ability due to the high dispersion of Mn 2 O 3 particles incorporated with a certain amount of copper oxides. The breakthrough sulfur capacity of 1Cu9Mn/SBA-15 observed 800 °C is 13.8 g S/100 g sorbents, which is remarkably higher than these of 40 wt%LaFeO 3 /SBA-15 (4.8 g S/100 g sorbents) and 50 wt%LaFe 2 O x /MCM-41 (5.58 g S/100 g sorbents) used only at 500–550 °C. This suggested that the loading of Mn 2 O 3 active species with high thermal stability to SBA-15 support significantly increased sulfur capacity at relatively higher sulfidation temperature. The fresh and used xCuyMn/SBA-15 sorbents were characterized by means of BET, XRD, XPS, XAES, TG/DSC and HRTEM techniques, confirmed that the structure of the sorbents remained intact before and after hot coal gas desulfurization.

  6. Fluxless furnace brazing and its theoretical fundamentals

    International Nuclear Information System (INIS)

    Lison, R.

    1979-01-01

    In this paper the theoretical fundamental of fluxless furnace brazing are described. The necessary conditions for a wetting in the vacuum, under a inert-gas and with a reducing gas are discussed. Also other methods to reduce the oxygen partial pressure are described. Some applications of fluxless furnace brazing are outlined. (orig.) [de

  7. Improved CO_2 adsorption capacity and cyclic stability of CaO sorbents incorporated with MgO

    International Nuclear Information System (INIS)

    Farah Diana Mohd Daud; Kumaravel Vignesh; Srimala Sreekantan; Abdul Rahman Mohamed

    2016-01-01

    Calcium oxide (CaO) sorbents incorporated with magnesium oxide (MgO) were synthesized using a co-precipitation route. The sorbents were prepared with different MgO concentrations (from 5 wt% to 30 wt%). The as-prepared sorbents were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and BET surface area analysis techniques. The sintering effect of CaO sorbents was decreased after the incorporation of MgO. The sorbents with 5 wt% and 10 wt% of MgO retained their CO_2 adsorption capacity over multiple cycles. Most importantly, CaO with 10 wt% MgO showed constant CO_2 adsorption capacity over 30 carbonation cycles. The results revealed that CaO with 10 wt% MgO is sufficient to produce sorbents with high surface area, good structural stability and enhanced CO_2 adsorption capacity. (authors)

  8. Ionic liquids: solvents and sorbents in sample preparation.

    Science.gov (United States)

    Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L

    2018-01-01

    The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Methods and sorbents for utilizing a hot-side electrostatic precipitator for removal of mercury from combustion gases

    Science.gov (United States)

    Nelson, Sidney [Hudson, OH

    2011-02-15

    Methods are provided for reducing emission of mercury from a gas stream by treating the gas with carbonaceous mercury sorbent particles to reduce the mercury content of the gas; collecting the carbonaceous mercury sorbent particles on collection plates of a hot-side ESP; periodically rapping the collection plates to release a substantial portion of the collected carbonaceous mercury sorbent particles into hoppers; and periodically emptying the hoppers, wherein such rapping and emptying are done at rates such that less than 70% of mercury adsorbed onto the mercury sorbent desorbs from the collected mercury sorbent into the gas stream.

  10. Feasibility study of utilizing solar furnace technology in steel making industry

    Energy Technology Data Exchange (ETDEWEB)

    Abbaspoursani, K. [The Faculty of Mechanical Engineering, Takestan Islamic Azad University (Iran, Islamic Republic of)], Email: a.abbaspour@tiau.ac.ir; Tofigh, A.A.; Nahang Toudeshki, S.; Hadadian, A. [Department of Energy, Materials and Energy Research Center (Iran, Islamic Republic of)], Email: Ali.A.Tofigh@gmail.com, email: toudeshki@hotmail.com, email: Arash.Hadadian@gmail.com; Farahmandpour, B. [Iranian Fuel Conservation company (Iran, Islamic Republic of)], Email: farahmandpour@gmail.com

    2011-07-01

    In Iran, the casting industry consumes 33.6% of electricity production, and most of this electricity is used in the melting process. Currently, scrap preheating is done using electric arc furnaces and the aim of this study is to assess the feasibility of replacing electric arc furnaces with solar furnaces. The performance of solar furnaces in the Iran Alloy Steel Company under Yazd climate conditions was studied. It was found that the solar irradiation time and solar insulation are sufficient to operate a solar furnace with the capacity to preheat 250 thousand tons per year of scrap to 500 degrees celsius. Results showed that such a furnace would decrease energy consumption by 40 GWh per year and that it would take 5 years to return the investment. This study demonstrated that operating a solar furnace in the Iran Alloy Steel Company under Yazd climate conditions is feasible and would result in economic and environmental benefits.

  11. 10 CFR 431.72 - Definitions concerning commercial warm air furnaces.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial warm air furnaces. 431... CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Warm Air Furnaces § 431.72 Definitions concerning commercial warm air furnaces. The following definitions apply for purposes of this subpart D, and of subparts...

  12. Reactivity improvement of Ca(OH)2 sorbent using diatomaceous earth (DE) from Aceh Province

    Science.gov (United States)

    Mariana, M.; Mahidin, M.; Mulana, F.; Agam, T.; Hafdiansyah, F.

    2018-04-01

    In this study, the diatomaceous earth (DE) from Aceh Province was used to increase the reactivity of Ca(OH)2sorbent. The high silica (SiO2) content of about 97% in the diatomaceous earth allows the increasing reactivity of Ca(OH)2sorbent by forming calcium silicate hydrate (CSH). The CSH improved the porosity characteristic of the sorbent. The improvement process was performed by mixing Ca(OH)2sorbent, diatomaceous earth and water in a beaker glass at the Ca(OH)2/DE weight ratio of 1:10 for 2 hand then dried at 120 °C for 24 h. The dried sorbent was calcined at 500 °C and 800 °C for 2 h. The activated sorbent was characterized using Scanning Electron Microscopy (SEM) for the morphological properties; X- Ray Diffraction (XRD) for the materials characteristics. The adsorption capacity of thesorbent was tested by methylene blue adsorption. The results showed that the Ca(OH)2/DEsorbent had a higher porosity than the Ca(OH)2 adsorbent.The results also showed that Ca(OH)2/DE which was calcined at higher temperature of 800 °C had a higher adsorption capacity compared to Ca(OH)2/DE which was calcined at lower temperature of 500 °C.

  13. TECHNOLOGICAL PECULIARITIES O F MELTING AND OUT-OF-FURNACE PROCESSING OF BALANCED STEELS IN CONDITIONS OF ELECTRIC FURNACE STEELMAKING AND CONTINUOUS CASTING

    Directory of Open Access Journals (Sweden)

    S. V. Terletski

    2007-01-01

    Full Text Available The technological peculiarities of melting and out-of-furnace processing of balanced steels in conditions of electric furnace steelmaking and continuous cast of RUP “BMZ” are considered.

  14. Arsenic removal from aqueous solutions by sorption onto zirconium- and titanium-modified sorbents

    Directory of Open Access Journals (Sweden)

    Ignjatović Ljubiša

    2011-01-01

    Full Text Available Arsenic reduction in drinking water can include treatment by adsorption, switching to alternative water sources, or blending with water that has a lower arsenic concentration. Commercial sorbents MTM, Greensand and BIRM (Clack Corporation were modified with zirconium and titanium after activation. The modifications were performed with titanium tetrachloride and zirconium tetrachloride. The modified sorbents were dried at different temperatures. The sorption of arsenate and arsenite dissolved in drinking water (200μg L-1 onto the sorbents were tested using a batch procedure. After removal of the sorbent, the concentration of arsenic was determined by HG-AAS. Zirconium-modified BIRM showed the best performance for the removal of both arsenite and arsenate. Modification of the greensand did not affect arsenic sorption ability. Zirconium-modified BIRM diminished the concentration of total As to below 5 μg L-1.

  15. Computational Fluid Dynamic Modeling of Zinc Slag Fuming Process in Top-Submerged Lance Smelting Furnace

    Science.gov (United States)

    Huda, Nazmul; Naser, Jamal; Brooks, Geoffrey; Reuter, Markus A.; Matusewicz, Robert W.

    2012-02-01

    Slag fuming is a reductive treatment process for molten zinciferous slags for extracting zinc in the form of metal vapor by injecting or adding a reductant source such as pulverized coal or lump coal and natural gas. A computational fluid dynamic (CFD) model was developed to study the zinc slag fuming process from imperial smelting furnace (ISF) slag in a top-submerged lance furnace and to investigate the details of fluid flow, reaction kinetics, and heat transfer in the furnace. The model integrates combustion phenomena and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with a number of user-defined subroutines in FORTRAN programming language were used to develop the model. The model is based on three-dimensional (3-D) Eulerian multiphase flow approach, and it predicts the velocity and temperature field of the molten slag bath, generated turbulence, and vortex and plume shape at the lance tip. The model also predicts the mass fractions of slag and gaseous components inside the furnace. The model predicted that the percent of ZnO in the slag bath decreases linearly with time and is consistent broadly with the experimental data. The zinc fuming rate from the slag bath predicted by the model was validated through macrostep validation process against the experimental study of Waladan et al. The model results predicted that the rate of ZnO reduction is controlled by the mass transfer of ZnO from the bulk slag to slag-gas interface and rate of gas-carbon reaction for the specified simulation time studied. Although the model is based on zinc slag fuming, the basic approach could be expanded or applied for the CFD analysis of analogous systems.

  16. Multiphase flow modelling of furnace tapholes

    OpenAIRE

    Reynolds, Quinn G.; Erwee, Markus W.

    2017-01-01

    Pyrometallurgical furnaces of many varieties make use of tapholes in order to facilitate the removal of molten process material from inside the vessel. Correct understanding and operation of the taphole is essential for optimal performance of such furnaces. The present work makes use of computational fluid dynamics models generated using the OpenFOAM® framework in order to study flow behaviour in the taphole system. Single-phase large-eddy simulation models are used to quantify the discharge ...

  17. Removal of H/sub 2/S from hot gas in the presence of Cu-containing sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Kyotani, T.; Kawashima, H.; Tomita, A.; Palmer, A.; Furimsky, E.

    1989-01-01

    Three solids containing Cu oxides were tested as sorbents for H/sub 2/S removal from hot gas at 600 degrees C. The formation of a surface layer of sulphides on pellet exterior affected Cu utilization for the sorbent prepared from Cu oxides alone. This improved for the sorbent prepared by impregnation of zeolite with Cu oxides, although complete utilization of Cu was not achieved. The combination of Cu oxides with SiO/sub 2/ gave the most efficient sorbent. Oxidation of H/sub 2/S to SO/sub 2/ on admission of hot gas to the fixed bed was a common observation for all sorbents. The addition of steam to hot gas suppressed the SO/sub 2/ formation. 9 refs., 6 figs., 4 tabs.

  18. Data summary report for M.W. Kellogg Z-sorb sorbent tests. CRADA 92-008 Final report

    Energy Technology Data Exchange (ETDEWEB)

    Everett, C E; Monaco, S J

    1994-05-01

    A series of tests were undertaken from August 6, 1992 through July 6, 1993 at METC`s High Pressure Bench-Scale Hot Gas Desulfurization Unit to support a Cooperative Research and Development Agreement (CRADA) between METC`s Sorbent Development Cluster and M.W. Kellogg. The M.W. Kellogg Company is currently developing a commercial offering of a hot gas clean-up system to be used in Integrated Gasification Combined Cycle (IGCC) systems. The intent of the CRADA agreement was to identify a suitable zinc-based desulfurization sorbent for the Sierra Pacific Power Company Clean Coal Technology Project, to identify optimum operating conditions for the sorbent, and to estimate potential sorbent loss per year. This report presents results pertaining to Phillips Petroleum`s Z-Sorb III sorbent.

  19. An experimental and numerical study of confined non-reacting and reacting turbulent jets to facilitate homogeneous combustion in industrial furnaces

    Science.gov (United States)

    Lee, Insu

    Confined non-reacting turbulent jets are ideal for recirculating the hot flue gas back into the furnace from an external exhaust duct. Such jets are also used inside the furnace to internally entrain and recirculate the hot flue gas to preheat and dilute the reactants. Both internal and external implementation of confined turbulent jets increase the furnace thermal efficiency. For external implementation, depending on the circumstances, the exhaust gas flow may be co- or counter-flow relative to the jet flow. Inside the furnaces, fuel and air jets are injected separately. To create a condition which can facilitate near homogeneous combustion, these jets have to first mix with the burned gas inside the furnace and simultaneously being heated and diluted prior to combustion. Clearly, the combustion pattern and emissions from reacting confined turbulent jets are affected by jet interactions, mixing and entrainment of hot flue gas. In this work, the flow and mixing characteristics of a non-reacting and reacting confined turbulent jet are investigated experimentally and numerically. This work consists of two parts: (i) A study of flow and mixing characteristics of non-reacting confined turbulent jets with co- or counter-flowing exhaust/flue gas. Here the axial and radial distributions of temperature, velocity and NO concentration (used as a tracer gas) were measured. FLUENT was used to numerically simulate the experimental results. This work provides the basic understanding of the flow and mixing characteristics of confined turbulent jets and develops some design considerations for recirculating flue gas back into the furnace as expressed by the recirculation zone and the stagnation locations. (ii) Numerical calculations of near homogeneous combustion are performed for the existing furnace. The exact geometry of the furnace in the lab is used and the real dimensional boundary conditions are considered. The parameters such as air nozzle diameter (dair), fuel nozzle

  20. The Automation Control System Design of Walking Beam Heating Furnace

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available Combining the transformation project of certain strip steel rolling production line, the techniques process of walking beam heating furnace was elaborated in this paper. The practical application of LOS-T18-2ZC1 laser detector was elaborated. The network communication model of walking beam heating furnace control system was designed. The realization method of production process automation control was elaborated. The entire automation control system allocation picture and PLC power distribution system picture of walking beam heating furnace were designed. Charge machine movement process was elaborated. Walking beam movement process was elaborated. Extractor movement process was elaborated. The hydraulic station of walking mechanism was elaborated. Relative control circuit diagram was designed. The control function of parallel shift motor, uplifted and degressive motor was elaborated. The control circuit diagram of parallel shift motor of charge machine and extractor of first heating furnace was designed. The control circuit diagram of uplifted and degressive motor of charge machine and extractor of first heating furnace was designed. The realization method of steel blank length test function was elaborated. The realization method of tracking and sequence control function of heating furnace field roller were elaborated. The design provides important reference base for enhancing walking beam heating furnace control level.

  1. 46 CFR 59.15-5 - Stayed furnaces and combustion chambers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...

  2. Development and Validation of a 3-Dimensional CFB Furnace Model

    Science.gov (United States)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  3. Characterization of tuyere-level core-drill coke samples from blast furnace operation

    Energy Technology Data Exchange (ETDEWEB)

    S. Dong; N. Paterson; S.G. Kazarian; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

    2007-12-15

    A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained a small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.

  4. Performance Evaluation of Engineered Structured Sorbents for Atmosphere Revitalization Systems On Board Crewed Space Vehicles and Habitats

    Science.gov (United States)

    Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir

    2011-01-01

    Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.

  5. Alkali-activated blast furnace slag-zeolite cements and concretes

    International Nuclear Information System (INIS)

    Rakhimov, R.; Rakhimova, N.

    2012-01-01

    The aim of this work has been the study of alkali-activated slag-zeolite cements and concretes based on them. Various compositions have been tested and some characteristics such as the compressive strength have been measured versus zeolite additions. A table lists the specific surface area and particle size distributions of different cements. The conclusions of the study are the following. First, alkali-activated slag cements and concretes based on them are effective for immobilization of radioactive wastes and the production of building structures, designed for high radiation load. Secondly, zeolite-containing mineral additions are able to increase the immobilization capacity and radiation resistance of alkali-activated blast furnace slag cements and concretes. Thirdly, the efficiency of different zeolite-containing additions - 10% to increase alkali-activated blast furnace slag-zeolite cement strength was established. It is with alkaline components of water-glass, sodium carbonate, sodium sulphate. Fourth, the effective way of introducing zeolite additions in alkali-activated blast furnace slag-zeolite cement is inter-grinding of the slag and addition. Increase in strength of alkali-activated blast furnace slag-zeolite cement stone is 40% higher than that of the stone of a mixture of separately milled components. Fifth, Alkali-activated blast furnace slag-zeolite cements with zeolite-containing additions with a compressive strength of 10.1 to 140 MPa; alkali-activated blast furnace slag-zeolite cements mortars with compressive strength from 35.2 to 97.7 MPa; alkali-activated blast furnace slag-zeolite cements concretes with compressive strength up to 84.5 MPa and frost resistant up to 800 cycles were obtained

  6. Performance of a novel synthetic Ca-based solid sorbent suitable for desulfurizing flue gases in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Pacciani, R.; Muller, C.R.; Davidson, J.F.; Dennis, J.S.; Hayhurst, A.N. [University of Cambridge, Cambridge (United Kingdom). Dept. of Chemical Engineering & Biotechnology

    2009-08-05

    The extent and mechanism of sulfation and carbonation of limestone, dolomite, and chalk, were compared with a novel, synthetic sorbent (85 wt % CaO and 15 wt % Ca{sub 12}A{sub l14}O{sub 33}), by means of experiments undertaken in a small, electrically heated fluidized bed. The sorbent particles were used either (I) untreated, sieved to two particle sizes and reacted with two different concentrations of SO{sub 2}, or (ii) after being cycled 20 times between carbonation, in 15 vol % CO{sub 2} in N2, and calcination, in pure N2, at 750 degrees C. The uptake of untreated limestone and dolomite was generally low (<0.2 g(SO{sub 2})/g(sorbent)), confirming previous results, However, the untreated chalk and the synthetic sorbent were found to be substantially more reactive with SO{sub 2}, and their final uptake was significantly higher (>0.5 g(SO{sub 2})/g(sorbent)) and essentially independent of the particle size. Here, comparisons are made on the basis of the sorbents in the calcined state. The capacities for the uptake of SO{sub 2}, on a basis of unit mass of calcined sorbent, were comparable for the chalk and the synthetic sorbent. However, previous work has demonstrated the ability of the synthetic sorbent to retain its capacity for CO{sub 2} over many cycles of carbonation and calcination: much more so than natural sorbents such as chalk and limestone. Accordingly, the advantage of the synthetic sorbent is that it could be used to remove CO{sub 2} from flue gases and, at the end of its life, to remove SO{sub 2} on a once-through basis.

  7. EVALUATION OF SOLID SORBENTS AS A RETROFIT TECHNOLOGY FOR CO2 CAPTURE FROM COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Holly Krutka; Sharon Sjostrom

    2011-07-31

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process/equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines; 31 carbon based materials; 6 zeolites; 7 supported carbonates (evaluated under separate funding); and 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different

  8. Similarity of Ferrosilicon Submerged Arc Furnaces With Different Geometrical Parameters

    Directory of Open Access Journals (Sweden)

    Machulec B.

    2017-12-01

    Full Text Available In order to determine reasons of unsatisfactory production output regarding one of the 12 MVA furnaces, a comparative analysis with a furnace of higher power that showed a markedly better production output was performed. For comparison of ferrosilicon furnaces with different geometrical parameters and transformer powers, the theory of physical similarity was applied. Geometrical, electrical and thermal parameters of the reaction zones are included in the comparative analysis. For furnaces with different geometrical parameters, it is important to ensure the same temperature conditions of the reaction zones. Due to diverse mechanisms of heat generation, different criteria for determination of thermal and electrical similarity for the upper and lower reaction zones were assumed contrary to other publications. The parameter c3 (Westly was assumed the similarity criterion for the upper furnace zones where heat is generated as a result of resistive heating while the parameter J1 (Jaccard was assumed the similarity criterion for the lower furnace zones where heat is generated due to arc radiation.

  9. A model for dry sodium bicarbonate duct injection flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Changfa Wu; Soon-Jai Khang; Tim C. Keener; Sang-Kwun Lee [University of Cincinnati, Cincinnati, OH (United States). Department of Chemical Engineering

    2004-03-01

    A mathematical model is developed for simulation of dry sodium bicarbonate (NaHCO{sub 3}) duct injection for the removal of sulfur dioxide (SO{sub 2}) in flue gases across a fabric filter (baghouse). The model employs parallel reaction kinetics and assumes that the sodium bicarbonate injection process can be separated into two stages. The first stage is a transport duct section where NaHCO{sub 3} particles are injected into the sulfur dioxide laden gas stream. The second stage is the fabric filter section where sodium sorbents are collected and behave as a variable depth fixed bed reactor. The process simulation for the efficiency of desulfurization in flue gas is performed and evaluated for a variety of operating conditions. It is found that the removal of SO{sub 2} within the duct section is small and negligible for most practical conditions, with a contribution normally less than 5% of total SO{sub 2} removal. The major removal of SO{sub 2} occurs across the filter cake, which accumulates the sorbent particles on the fabric filter. These particles are periodically disposed as the filter is cleaned. The major factors for the process are temperature, particle size and SO{sub 2} gas concentration for all operating conditions. At low temperatures, the removal of SO{sub 2} increases as temperature increases, but the removal decreases at higher temperatures due to the impact of the thermal decomposition reaction of NaHCO{sub 3} on SO{sub 2} removal. It was found that the temperature for the highest removal of SO{sub 2} is within the range of 127-150{sup o}C and the removal efficiency also depends on particle size.

  10. Adsorption of Polycyclic Aromatic Hydrocarbons (PAHS from Aqueous Solutions on Different Sorbents

    Directory of Open Access Journals (Sweden)

    Smol Marzena

    2014-12-01

    Full Text Available This paper presents the results of the possibility and effectiveness of PAHs removal from a model aqueous solution, during the sorption on the selected sorbents. Six PAHs (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene listed by EPA for the analysis in the environmental samples were determined. Model aqueous solution was prepared with RESTEK 610 mix PAHs standard. After the sorption process, decrease in the concentration of individual hydrocarbons was observed. The removal percentage was dependent on the type of sorbent (quartz sand, mineral sorbent, activated carbon. The highest efficiency (98.1% was observed for activated carbon.. The results shows that the sorption processes can be used in aqueous solutions treatment procedures.

  11. Heat treatment of nuclear reactor pump part in integrated furnace facility

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A flexible heat treating system is meeting strict work specifications while accommodating the production flow pattern requirements and floor space needs of Advanced Metal Treating, Inc., Butler, Wis. Modular design and appropriate furnace configurations allow realization of the most efficient heat treat processing and energy use in a relatively small production area. The totally-integrated system (Pacemaker--manufactured by Lindberg, A Unit of General Signal, Chicago) consists of an electric integral-quench furnace with companion draw furnaces, washer unit and a material transfer car. With its one-side, inout configuration, the furnace operates with a minimum of drawing and washing equipment. The integral-quench furnace has a work chamber dimension of 30 by 48 by 30 inches (76.2 x 122 x 76.2 cm). The firm has two of these units, plus three in-out draw furnaces, one washer, one transfer car and two endothermic gas generators

  12. Comparison of possibilities the blast furnace and cupola slag utilization by concrete production

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2010-04-01

    Full Text Available In process of pig iron and cast iron production secondary raw materials and industrial wastes are formed The most abundant secondaryproduct originating in these processes are furnace slag. Blast furnace slag and cupola furnace slag originates from melting of gangue parts of metal bearing materials, slag forming additions and coke ash. In general, slag are compounds of oxides of metallic and non-metallic elements, which form chemical compounds and solutions with each other and also contain small volume of metals, sulfides of metals and gases. Chemical, mineralogical and physical properties of slag determinate their utilisation in different fields of industry.The paper presents results from the research of the blast furnace and cupola furnace slag utilization in the concrete production. Pilotexperiments of the concrete production were performed, by that the blast furnace and cupola furnace slag with a fractions of 0–4mm;4–8mm; 8–16mm were used as a natural substitute. A cupola furnace slag and combination of the blast furnace and cupola furnace slagwere used in the experiments. The analysis results show that such concretes are suitable for less demanding applications.

  13. Non-polluting steam generators with fluidized-bed furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, H [Deutsche Babcock A.G., Oberhausen (Germany, F.R.)

    1979-07-01

    The author reports on a 35 MW steam generator with hard coal fluidized-bed furnace a planned 35 MW steam generator with flotation-dirt fluidized-bed furnace, and on planned steam generators for fluidized-bed firing of hard coal up to a steam power of about 200 MW.

  14. Effect of precursor and preparation method on manganese based activated carbon sorbents for removing H2S from hot coal gas.

    Science.gov (United States)

    Wang, Jiancheng; Qiu, Biao; Han, Lina; Feng, Gang; Hu, Yongfeng; Chang, Liping; Bao, Weiren

    2012-04-30

    Activated carbon (AC) supported manganese oxide sorbents were prepared by the supercritical water impregnation (SCWI) using two different precursor of Mn(NO(3))(2) (SCW(N)) and Mn(Ac)(2)·4H(2)O (SCW(A)). Their capacities of removing H(2)S from coal gas were evaluated and compared to the sorbents prepared by the pore volume impregnation (PVI) method. The structure and composition of different sorbents were characterized by XRD, SEM, TEM, XPS and XANES techniques. It is found that the precursor of active component plays the crucial role and SCW(N) sorbents show much better sulfidation performance than the SCW(A) sorbents. This is because the Mn(3)O(4) active phase of the SCW(N) sorbents are well dispersed on the AC support, while the Mn(2)SiO(4)-like species in the SCW(A) sorbent can be formed and seriously aggregated. The SCW(N) sorbents with 2.80% and 5.60% manganese are favorable for the sulfidation reaction, since the Mn species are better dispersed on the SCW(N) sorbents than those on the PV(N) sorbents and results in the better sulfidation performance of the SCW(N) sorbents. As the Mn content increases to 11.20%, the metal oxide particles on AC supports aggregate seriously, which leads to poorer sulfidation performance of the SCW(N)11.20% sorbents than that of the PV(N)11.20% sorbents. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Research on using Mineral Sorbents for A Sorption Process in the Environment Contaminated with Petroleum Substances

    Directory of Open Access Journals (Sweden)

    Pijarowski Piotr Marek

    2014-06-01

    Full Text Available A research on diatomite sorbents was carried out to investigate their ability to remove hazardous substances from oil spillages. We used two types of sorbents available on the market with differences in material density and particles size of composition. As sorbents we used Ekoterm oil and unleaded petrol 95 coming from refinery PKN Orlen S.A. Two types of sorbents with similar chemical composition but different granulometric composition were used. They are marked as D1 and C1 samples. The fastest absorbent was C1, but D1 sample was the most absorptive.

  16. Hot metal temperature prediction and simulation by fuzzy logic in a blast furnace; Prediccion y simulacion, mediante logica difusa, de la temperatura de salida del arrabio en un horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M. A.; Jimenez, J.; Mochon, J.; Formoso, A.; Bueno, F. [Centro Nacional de Investigaciones Metalurgicas CENIM. Madrid (Spain); Menendez, J. L. [ACERALIA. Gijon Asturias (Spain)

    2000-07-01

    This work describes the development and further validation of a model devoted to blast furnace hot metal temperature forecast, based on Fuzzy logic principles. The model employs as input variables, the control variables of an actual blast furnace: Blast volume, moisture, coal injection, oxygen addition, etc. and it yields as a result the hot metal temperature with a forecast horizon of forty minutes. As far as the variables used to develop the model have been obtained from data supplied by an actual blast furnaces sensors, it is necessary to properly analyse and handle such data. Especial attention was paid to data temporal correlation, fitting by interpolation the different sampling rates. In the training stage of the model the ANFIS (Adaptive Neuro-Fuzzy Inference System) and the Subtractive Clustering algorithms have been used. (Author) 9 refs.

  17. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC(number s ign)3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO(sub 2). Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO(sub 2)/20% H(sub 2)O, and lowest subsequent to calcination in pure CO(sub 2) at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO(sub 2) in the simulated flue gas. CO(sub 2) evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC(number s ign)3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first carbonation cycle, CO

  18. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC{number_sign}3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO{sub 2}. Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO{sub 2}/20% H{sub 2}O, and lowest subsequent to calcination in pure CO{sub 2} at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO{sub 2} in the simulated flue gas. CO{sub 2} evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC{number_sign}3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first

  19. CoJet technology for oxygen injection injection in EAFS - industrial gases supply and customers productivity improvements; Tecnologia CoJet para injecao de oxigenio em FEAS - fornecimento de gases e aumento da produtividade dos clientes

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Izaias Lucas; Zagury, Pedro Athias [White Martins Gases Industriais Ltda., Rio de Janeiro, RJ (Brazil)

    2010-07-01

    PRAXAIR is one of the largest industrial gases producers of the World, being present in more than 40 countries and strongly connected to the steel industry. PRAXAIR has experience to supply products and services to all kinds of steel mills. Several technologies developed by the Company, such as CoJet (a system to coherent oxygen jet injection in EAF and BOF furnaces), Slag Splashing (splashing slag to cover BOF furnaces walls increasing refractory wear campaign life), AOD (a process for specialty steel production) and others, are currently in commercial operation in different parts of the world. In Brazil, Praxair is the owner of White Martins, the largest industrial gases company in South America, present in nine countries of the continent. Company's portfolio includes atmospheric gases, carbonic gas production, acetylene, hydrogen, specialty and health and care gases, mixtures for welding, gas seamless steel cylinders, applications equipment, and storage and gases transportation. The Company also operates a natural gas liquefaction unit. In addition to technologies and process, Praxair / White Martins can also supply solutions for measurement, control and gases injection, according to strict safety and quality standards. The present work has the objective to show the benefits of the CoJet EAF System, oxygen injectors positioned in the furnace walls. In 2009, two systems have been installed in South American mills and the results achieved will be following discussed. (author)

  20. Calcium looping technology using improved stability nanostructured sorbent for cyclic CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Cong; Zheng, Ying; Ding, Ning; Zheng, Chu-guang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    One of the post-combustion CO{sub 2} capture technologies that have sufficiently been proved to be the best candidates for practical large scale post-combustion application is the calcium looping cycle. However, the CO{sub 2} capture capacity of a calcium-based sorbent derived from natural limestone decays through long-term cyclic utilization; thus, the development of novel sorbents to achieve a high CO{sub 2} capture capacity is an critical challenge for the calcium looping cycle technology. In this paper, we report the preparation and character of a new calcium-based sorbent produced via the combustion of a dry gel. The results show that the novel calcium-based sorbent has a much higher residual carbonation conversion as well as a better performance of anti-sintering when compared with the calcium-based sorbent derived from commercial micrometer grade CaCO{sub 3} and nanometer grade CaCO{sub 3}. It is reasonable to propose that the different final carbonation performances are induced by their different pore structures and BET surface areas rather than by different particle sizes. Compared with the commercial nano CaO, the morphology of the new sorbent shows a more rough porous appearance with hollow nanostructure. During carbonation, CO{sub 2} diffused more easily through the hollow structure than through a solid structure to reach the unreacted CaO. Besides, there is less chance for the hollow nanostructured particles to be merged together during the high temperature reactions.

  1. Release of iodine radionuclides from gas media in a system of selective block sorbents

    International Nuclear Information System (INIS)

    Moskvin, L.N.; Miroshnikov, V.S.; Mel'nikov, V.A.; Chetverikov, V.V.

    1979-01-01

    A scheme of extracting iodine radionuclides from gas flows in a system of selective sorbents has been developed. The method provides separation of three forms of iodine: the aerosol component, the elementary iodine and organic-iodine compounds. Aerosols are trapped by a mechanical filter made of porous polytetrafluoroethylene with pores of no more than 1 μm. Silver-based sorbents for the elementary iodine are made by sintering the granular polytetrafluoroethylene (the size of granules is 0.1-0.5 mm) with of finely dispersed solver (5% mass). Organic iodine compounds are extracted by a silica sorbent impregnated with silver nitrate. The efficiency of sorbents was tested in gas flows with a known content of 131 I in the form of elementary iodine and methyl iodide. The results of experiments show that the efficiency of sorption of elementary iodine by a metallic-silver sorbent and of methyl iodide by a SiO 2 /AgNO 3 sorbent constitutes no less than 99% at a flow rate of up to 200 l/h. The iodine has been extracted at a flow rate of 100 l/h during 100 hours and for that time the efficiency of the iodine sorbtion has not changed. The suggested variant of extracting iodine radionuclides from gaseous media can be used both for fast control of iodine content in gas blowoffs and for researches aimed at studying the distribution of iodine forms in steam-and-gas media depending on nuclear plant operating conditions

  2. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin

    OpenAIRE

    Wilson, Lee D.; Mohamed, Mohamed H.; Berhaut, Christopher L.

    2011-01-01

    Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD) have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid) have been evaluated. The sorption properties of granular activated carbon (GAC) were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (< 101 m2/g), CDI-X cop...

  3. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules

    KAUST Repository

    Qi, Genggeng; Wang, Yanbing; Estevez, Luis; Duan, Xiaonan; Anako, Nkechi; Park, Ah-Hyung Alissa; Li, Wen; Jones, Christopher W.; Giannelis, Emmanuel P.

    2011-01-01

    A novel high efficiency nanocomposite sorbent for CO2 capture has been developed based on oligomeric amine (polyethylenimine, PEI, and tetraethylenepentamine, TEPA) functionalized mesoporous silica capsules. The newly synthesized sorbents exhibit extraordinary capture capacity up to 7.9 mmol g-1 under simulated flue gas conditions (pre-humidified 10% CO 2). The CO2 capture kinetics were found to be fast and reached 90% of the total capacities within the first few minutes. The effects of the mesoporous capsule features such as particle size and shell thickness on CO2 capture capacity were investigated. Larger particle size, higher interior void volume and thinner mesoporous shell thickness all improved the CO2 capacity of the sorbents. PEI impregnated sorbents showed good reversibility and stability during cyclic adsorption-regeneration tests (50 cycles). © 2011 The Royal Society of Chemistry.

  4. Adsorption of H2O and CO2 on supported amine sorbents

    NARCIS (Netherlands)

    Veneman, Rens; Frigka, Natalia; Zhao, Wenying; Li, Zhenshan; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2015-01-01

    In this work the adsorption of H2O and CO2 on Lewatit VP OC 1065 was studied in view of the potential application of this sorbent in post combustion CO2 capture. Both CO2 and H2O were found to adsorb on the amine active sites present on the pore surface of the sorbent material. However, where the

  5. Multikilowatt variable frequency microwave furnace

    International Nuclear Information System (INIS)

    Bible, D.W.; Lauf, R.J.; Everleigh, C.A.

    1992-01-01

    In this paper, the authors describe a new type of microwave processing furnace in which the frequency can be varied continuously from 4 to 8 GHz and the power level varied from zero up to 2.5 kW. The extraordinary bandwidth of this furnace is achieved by using a traveling wave tube (TWT) amplifier originally developed for electronic warfare applications. The TWT is a linear beam device characterized by a traveling electromagnetic wave that continuously extracts energy longitudinally along the path of an electron beam. The TWT, unlike other microwave tubes such as the magnetron, klystron, gyrotron, and others, does not depend upon resonant RF fields and is therefore capable of wide bandwidth operation.operation

  6. Effect of electropolishing on vacuum furnace design

    Directory of Open Access Journals (Sweden)

    Sutanwi Lahiri

    2015-03-01

    Full Text Available The use of thermal shields of materials having low emissivity in vacuum furnaces is well-known. However, the surface condition of the heat shields is one of the most important factors governing their efficiency as radiation resistances. The emissivity of the thermal shields dictates the power rating of the heaters in furnace design. The unpolished materials used in the heater tests showed poor performance leading to loss of a signi­ficant percentage of the input power. The present work deals with the refur­bishment of the radiation heat shields used in a furnace for heating graphite structure. The effect of refurbishment of the heat shields by the buffing and subsequently electro­polishing was found to improve the performance of the shields as heat reflectors. The com­position of the electrolyte was chosen in such a way that the large shields of Mo, Inconel and SS can be polished using the same reagents in different ratios. The present work deals with the development of a standard electropolishing procedure for large metallic sheets and subsequently qualifying them by roughness and emissivity measure­ments. The improvement noted in the shielding efficiency of the furnace in the subsequent runs is also discussed here.

  7. Novel nanoporous sorbent for solid-phase extraction in petroleum fingerprinting

    Science.gov (United States)

    Alayande, S. Oluwagbemiga; Hlengilizwe, Nyoni; Dare, E. Olugbenga; Msagati, Titus A. M.; Akinlabi, A. Kehinde; Aiyedun, P. O.

    2016-04-01

    Sample preparation is crucial in the analysis of petroleum and its derivatives. In this study, developing affordable sorbent for petroleum fingerprinting analysis using polymer waste such expanded polystyrene was explored. The potential of electrospun expanded polystyrene (EPS) as a sorbent for the solid-phase extraction (SPE) technique was investigated, and its efficiency was compared with commercial cartridges such as alumina, silica and alumina/silica hybrid commercial for petroleum fingerprinting analysis. The chromatograms showed that the packed electrospun EPS fibre demonstrated excellent properties for SPE applications relative to the hybrid cartridges.

  8. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Volume 1, Bench-scale testing and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  9. A review of temperature measurement in the steel reheat furnace

    International Nuclear Information System (INIS)

    Martocci, A.P.; Mihalow, F.A.

    1985-01-01

    The incentive for conducting research and development on reheat furnaces is substantial; the domestic steel industry spent approximately one billion dollars on fuel in reheat furnaces in 1981. Bethlehem Steel Corp. spent /145 million of that total, and neither figure includes fuel consumed in soaking pits or annealing furnaces. If the authors set a goal to save 10% of these annual fuel costs, that translates into /100 million for the domestic steel industry and /14.5 million for Bethlehem Steel. These large sums of money are significant incentives. The purpose of this paper is to review the historical heating practices and equipment at steel reheat furnaces along with current practices and instrumentation

  10. Regeneration dynamics of potassium-based sediment sorbents for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li-wei; Diao, Yong-fa; Wang, Lin-lin; Shi, Xiao-fang; Tai, Xiao-yan [Donghua University, Shanghai (China)

    2013-08-15

    Simulating regeneration tests of Potassium-Based sorbents that supported by Suzhou River Channel Sediment were carried out in order to obtain parameters of regeneration reaction. Potassium-based sediment sorbents have a better morphology with the surface area of 156.73 m{sup 2}·g{sup −1}, the pore volume of 357.5x10{sup −3} cm{sup 3}·g{sup −1} and the distribution of pore diameters about 2-20 nm. As a comparison, those of hexagonal potassium-based sorbents are only 2.83 m{sup 2}g{sup −1}, 7.45x10{sup −3} cm{sup 3}g{sup −1} and 1.72-5.4 nm, respectively. TGA analysis shows that the optimum final temperature of regeneration is 200 and the optimum loading is about 40%, with the best heating rate of 10 .deg. C·min{sup −1}. By the modified Coats-Redfern integral method, the activation energy of 40% KHCO{sub 3} sorbents is 102.43 kJ·mol{sup −1}. The results obtained can be used as basic data for designing and operating CO{sub 2} capture process.

  11. Lead scrap processing in rotary furnaces: a review

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, M

    1987-01-01

    Formerly, the lead scrap had been processed mainly in reverberatory and shaft furnaces or, even, in rotary furnaces (R.F.). The direct smelting of battery scrap entrains an expensive pollution control and high operating costs because of slag recirculation, coke consumption, losses in slag and matte. Nowadays, mechanized battery wrecking plants allow selective separation of casings and separators from metallic Pb (grids, poles, solders) as well as lead in non-metallic form (PbSO/sub 4/, PbO, PbO/sub 2/, contaminated with some Sb) frequently called paste. Because of their high performance and flexibility in metallurgical processing (melting, reducing, oxidizing and selective pouring) the R.F. supersedes the reverberatory furnace worldwide.

  12. Development and thermochemical characterizations of vermiculite/SrBr_2 composite sorbents for low-temperature heat storage

    International Nuclear Information System (INIS)

    Zhang, Y.N.; Wang, R.Z.; Zhao, Y.J.; Li, T.X.; Riffat, S.B.; Wajid, N.M.

    2016-01-01

    Novel EVM/SrBr_2 composite sorbents with different salt contents were developed for low-temperature thermal energy storage (TES). Simulative sorption experiment was conducted to obtain the sorption kinetics diagram and identify threshold salt content that composite sorbents can hold without solution leakage. Distribution of salt embedded in EVM was observed by extreme-resolution scanning electron microscopy (ER-SEM). Thermochemical characterizations including desorption performance and desorption heat were fully investigated by analyzing simultaneous thermal analyzer (STA) results. Results reveal that sorption process of composite sorbents is divided into three parts: water adsorption of EVM, water adsorption of SrBr_2 crystal and liquid-gas absorption of SrBr_2 solution. Since SrBr_2 solution can be hold in macrospores of EVM, water uptake and energy storage density are greatly increased. It appears that the composite sorbent of EVMSrBr_240 is a promising material for thermal energy storage, with water uptake of 0.53 g/g, mass energy storage density of 0.46 kWh/kg and volume energy storage density of 105.36 kWh/m"3. - Highlights: • Vermiculite/SrBr_2 composite sorbents were developed for thermal energy storage. • Water uptake of composite sorbents is divided into three phases. • Energy storage density of each sorption phase is evaluated via calculations. • EVMSrBr_240 is chosen as optimal sorbent without solution leakage.

  13. Removal of dissolved textile dyes from wastewater by a compost sorbent

    Science.gov (United States)

    Tsui, L.S.; Roy, W.R.; Cole, M.A.

    2003-01-01

    The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.

  14. Aerosol Formation during the Combustion of Straw with Addition of Sorbents

    DEFF Research Database (Denmark)

    Zeuthen, Frederik Jacob; Jensen, Peter Arendt; Jensen, Jørgen P.

    2007-01-01

    , calcium phosphate, Bentonite, ICA5000, and clay. The addition of chalk increased the aerosol mass concentration by 24%. Experiments in a laminar flow aerosol condenser with the six sorbents were carried out in the laboratory using a synthetic flue gas to avoid fluctuations in the alkali feeding......The influence of six sorbents on aerosol formation during the combustion of straw in a 100 MW boiler on a Danish power plant has been studied in full-scale. The following sorbents were studied: ammonium sulfate, monocalcium phosphate, Bentonite, ICA5000, clay, and chalk. Bentonite and ICA5000...... are mixtures of clay minerals and consist mainly of the oxides from Fe, Al, and Si. The straw used was Danish wheat and seed grass. Measurements were also made with increased flow of primary air. The experiments showed between 46% and 70% reduction in particle mass concentrations when adding ammonium sulfate...

  15. Influence of high-temperature steam on the reactivity of CaO sorbent for CO₂ capture.

    Science.gov (United States)

    Donat, Felix; Florin, Nicholas H; Anthony, Edward J; Fennell, Paul S

    2012-01-17

    Calcium looping is a high-temperature CO(2) capture technology applicable to the postcombustion capture of CO(2) from power station flue gas, or integrated with fuel conversion in precombustion CO(2) capture schemes. The capture technology uses solid CaO sorbent derived from natural limestone and takes advantage of the reversible reaction between CaO and CO(2) to form CaCO(3); that is, to achieve the separation of CO(2) from flue or fuel gas, and produce a pure stream of CO(2) suitable for geological storage. An important characteristic of the sorbent, affecting the cost-efficiency of this technology, is the decay in reactivity of the sorbent over multiple CO(2) capture-and-release cycles. This work reports on the influence of high-temperature steam, which will be present in flue (about 5-10%) and fuel (∼20%) gases, on the reactivity of CaO sorbent derived from four natural limestones. A significant increase in the reactivity of these sorbents was found for 30 cycles in the presence of steam (from 1-20%). Steam influences the sorbent reactivity in two ways. Steam present during calcination promotes sintering that produces a sorbent morphology with most of the pore volume associated with larger pores of ∼50 nm in diameter, and which appears to be relatively more stable than the pore structure that evolves when no steam is present. The presence of steam during carbonation reduces the diffusion resistance during carbonation. We observed a synergistic effect, i.e., the highest reactivity was observed when steam was present for both calcination and carbonation.

  16. CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability

    KAUST Repository

    Wu, Jingya

    2016-12-05

    To meet the challenges of global oil spills and oil-water contamination, the development of a low-cost and reusable sorbents with good hydrophobicity and oleophilic nature is crucial. In this study, functionalized carbon nanotubes (CNTs) were wrapped in polystyrene (PS) polymer (PS-CNTs) and electrospun to create an effective and rigid sorbent for oil. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer, resulting in a well-aligned CNTs configuration inside the porous fiber structure. Interestingly, the oil sorption process using PS-CNTs was observed to have two phases. First, the oil swiftly entered the membrane pores formed by interconnected nanofibers due to oleophilic properties of the micro-sized void. In the second phase, the oil not only moved to nano interior spaces of the fibers by capillary forces but also adsorbed on the surface of fibers where the latter was retained due to Van der Waals force. The sorption process fits well with the intra particle diffusion model. Maximum oil sorption capacity of the PS-CNTs sorbent for sunflower oil, peanut oil, and motor oils were 116, 123, and 112 g/g, respectively, which was 65% higher than that of the PS sorbent without CNTs. Overall, a significant increase in the porosity, surface area, water contact angle, and oleophilic nature was observed for the PS-CNTs composite sorbents. Not only did the PS-CNTs sorbents exhibited a promising oil sorption capacity but also showed potential for reusability, which is an important factor to be considered in determining the overall performance of the sorbent and its environmental impacts.

  17. CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability

    KAUST Repository

    Wu, Jingya; Kyoungjin An, Alicia; Guo, Jiaxin; Lee, Eui-Jong; Usman Farid, Muhammad; Jeong, Sanghyun

    2016-01-01

    To meet the challenges of global oil spills and oil-water contamination, the development of a low-cost and reusable sorbents with good hydrophobicity and oleophilic nature is crucial. In this study, functionalized carbon nanotubes (CNTs) were wrapped in polystyrene (PS) polymer (PS-CNTs) and electrospun to create an effective and rigid sorbent for oil. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer, resulting in a well-aligned CNTs configuration inside the porous fiber structure. Interestingly, the oil sorption process using PS-CNTs was observed to have two phases. First, the oil swiftly entered the membrane pores formed by interconnected nanofibers due to oleophilic properties of the micro-sized void. In the second phase, the oil not only moved to nano interior spaces of the fibers by capillary forces but also adsorbed on the surface of fibers where the latter was retained due to Van der Waals force. The sorption process fits well with the intra particle diffusion model. Maximum oil sorption capacity of the PS-CNTs sorbent for sunflower oil, peanut oil, and motor oils were 116, 123, and 112 g/g, respectively, which was 65% higher than that of the PS sorbent without CNTs. Overall, a significant increase in the porosity, surface area, water contact angle, and oleophilic nature was observed for the PS-CNTs composite sorbents. Not only did the PS-CNTs sorbents exhibited a promising oil sorption capacity but also showed potential for reusability, which is an important factor to be considered in determining the overall performance of the sorbent and its environmental impacts.

  18. Extraction of trace nitrophenols in environmental water samples using boronate affinity sorbent

    International Nuclear Information System (INIS)

    Zhang, Yong; Mei, Meng; Huang, Xiaojia; Yuan, Dongxing

    2015-01-01

    In this research, the applicability of a new sorbent based on boronate affinity material is demonstrated. For this purpose, six strong polar nitrophenols were selected as models which are difficult to be extracted in neutral form (only based on hydrophobic interactions). The extracted nitrophenols were separated and determined by high-performance liquid chromatography with diode array detection. The sorbent was synthesized by in situ copolymerization of 3-acrylamidophenylboronic acid and divinylbenzene using dimethyl sulfoxide and azobisisobutyronitrile as porogen solvent and initiator, respectively. The effect of the preparation parameters in the polymerization mixture on extraction performance was investigated in detail. The size and morphology of the sorbent have been characterized via different techniques such as infrared spectroscopy, elemental analysis, scanning electron microscopy and mercury intrusion porosimetry. The important parameters influencing the extraction efficiency were studied and optimized thoroughly. Under the optimum extraction conditions, the limits of detection (S/N = 3) and limits of quantification (S/N = 10) for the target nitrophenols were 0.097–0.28 and 0.32–0.92 μg/L, respectively. The precision of the proposed method was evaluated in terms of intra- and inter-assay variability calculated as RSD, and it was found that the RSDs were all below 9%. Finally, the developed method was successfully applied for environmental water samples such as wastewater, tap, lake and river water. The recoveries varied within the range of 71.2–115% with RSD below 11% in all cases. The results well demonstrate that the new boronate affinity sorbent can extract nitrophenols effectively through multi-interactions including boron–nitrogen coordination, hydrogen-bond and hydrophobic interactions between sorbent and analytes. - Highlights: • A new boronate affinity sorbent (BAS) was prepared. • The BAS was used as the extractive medium of stir

  19. Intelligent emissions controller for substance injection in the post-primary combustion zone of fossil-fired boilers

    Science.gov (United States)

    Reifman, Jaques; Feldman, Earl E.; Wei, Thomas Y. C.; Glickert, Roger W.

    2003-01-01

    The control of emissions from fossil-fired boilers wherein an injection of substances above the primary combustion zone employs multi-layer feedforward artificial neural networks for modeling static nonlinear relationships between the distribution of injected substances into the upper region of the furnace and the emissions exiting the furnace. Multivariable nonlinear constrained optimization algorithms use the mathematical expressions from the artificial neural networks to provide the optimal substance distribution that minimizes emission levels for a given total substance injection rate. Based upon the optimal operating conditions from the optimization algorithms, the incremental substance cost per unit of emissions reduction, and the open-market price per unit of emissions reduction, the intelligent emissions controller allows for the determination of whether it is more cost-effective to achieve additional increments in emission reduction through the injection of additional substance or through the purchase of emission credits on the open market. This is of particular interest to fossil-fired electrical power plant operators. The intelligent emission controller is particularly adapted for determining the economical control of such pollutants as oxides of nitrogen (NO.sub.x) and carbon monoxide (CO) emitted by fossil-fired boilers by the selective introduction of multiple inputs of substances (such as natural gas, ammonia, oil, water-oil emulsion, coal-water slurry and/or urea, and combinations of these substances) above the primary combustion zone of fossil-fired boilers.

  20. Loss on Ignition Furnace Acceptance and Operability Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, D.C.

    2000-06-01

    The purpose of this Acceptance Test Procedure and Operability Test Procedure (ATP/OTP)is to verify the operability of newly installed LOI equipment, including a model 1608FL CM{trademark} Furnace, a dessicator, and balance. The operability of the furnace will be verified. The arrangement of the equipment placed in Glovebox 157-3/4 to perform Loss on Ignition (LOI) testing on samples supplied from the Thermal Stabilization line will be verified. In addition to verifying proper operation of the furnace, this ATP/OTP will also verify the air flow through the filters, verify a damper setting to establish and maintain the required differential pressure between the glovebox and the room pressure, and test the integrity of the newly installed HEPA filter. In order to provide objective evidence of proper performance of the furnace, the furnace must heat 15 crucibles, mounted on a crucible rack, to 1000 C, according to a program entered into the furnace controller located outside the glovebox. The glovebox differential pressure will be set to provide the 0.5 to 2.0 inches of water (gauge) negative pressure inside the glovebox with an airflow of 100 to 125 cubic feet per minute (cfm) through the inlet filter. The glovebox inlet Glfilter will he flow tested to ensure the integrity of the filter connections and the efficiency of the filter medium. The newly installed windows and glovebox extension, as well as all disturbed joints, will be sonically tested via ultra probe to verify no leaks are present. The procedure for DOS testing of the filter is found in Appendix A.

  1. Metallurgy of mercury in Almaden: from aludel furnaces until Pacific furnaces; La metalurgia del mercurio en Almaden: desde los hornos de aludeles a los hornos Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Tejero-Manzanares, J.; Garrido Saenz, I.; Mata Cabrera, F.; Rubio Mesas, M. L.

    2014-07-01

    This paper shows the different types of furnaces for roasting cinnabar, used in the metallurgy of quicksilver over the centuries of exploitation of the Almaden Mines (Spain). Some of these techniques are part of our industrial heritage. They have contributed to name UNESCO World Heritage Site the vast technological legacy of these mines recently. This research contributes to close the long way of metallurgical activity from aludel furnaces until Pacif furnaces, first and lasted technology to produce on an industrial scale. It is delved into the most relevant aspects having to do with the type, evolution and number of furnaces existing on each of the periods. (Author)

  2. Design of a rotating-hearth furnace

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, H A [LOI Industrieofenanlagen G.m.b.H., Essen (Germany, F.R.)

    1979-09-01

    Part I of this paper is intended to present a review of the theory of heating round stock of a length considerably exceeding the diameter. It is permissible to neglect heating from the ends of the cylinders. With short and thick ingots as used in pilgrim mills, for instance, such simplification is not possible. The method for calculating the waste gas temperature can also be used for the remaining furnace sections provided certain conditions are allowed for and computational procedures observed. Part II of the paper will deal with this and with the major design features of rotating-hearth furnaces.

  3. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry

  4. Reports on research achievements in developing high-performance industrial furnaces in fiscal 1998 (Research and development of high-performance industrial furnaces). Volume 1; 1998 nendo koseino kogyoro nado ni kansuru kenkyu kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    From the reports on research achievements in developing high-performance industrial furnaces in fiscal 1998, the report volume 1 was prepared as a research achievement report of each working group, detailing fundamental researches, heating furnaces, and heat treatment furnaces. The fundamental researches have researched combustion evaluating technology, characteristics of the area in the vicinity of a combustor, characteristics of combustion of high-temperature air, heating characteristics of a furnace to investigate effect of local heat absorption, and combustion evaluation. For the heating furnaces, the following subjects were studied: development of an in-furnace combustion model, summary of an experiment for evaluating high-temperature air combustion, furnace height relative to combustion heat transfer characteristics, heat loss minimizing technology, combustion heat transfer characteristics of liquid fuels, optimal operation of the high-temperature air combustion, basic control in heating control, and steel piece heating control. Studies were performed for the heat treatment furnaces on the case of a direct firing furnace in evaluating the heat transfer characteristics, the case of a radiant tube furnace, application of thermal fluid simulation technology, furnace averaging technology, soot reducing technology, control technology, and trial design on a high-performance heat treatment furnace. (NEDO)

  5. Open fireplace furnace as an adequate heating system

    Energy Technology Data Exchange (ETDEWEB)

    Terbrack, E.

    The fireplace furnace is a furnace for the open fireplace. It is connected to the existing fuel-oil or gas central heating and is used for house heating and warm water preparation when the fire in the fireplace is on. It combines the romanticism of the open fireplace with the necessity of saving fuel oil and gas, ensuring heat supply.

  6. Zone modelling of the thermal performances of a large-scale bloom reheating furnace

    International Nuclear Information System (INIS)

    Tan, Chee-Keong; Jenkins, Joana; Ward, John; Broughton, Jonathan; Heeley, Andy

    2013-01-01

    This paper describes the development and comparison of a two- (2D) and three-dimensional (3D) mathematical models, based on the zone method of radiation analysis, to simulate the thermal performances of a large bloom reheating furnace. The modelling approach adopted in the current paper differs from previous work since it takes into account the net radiation interchanges between the top and bottom firing sections of the furnace and also allows for enthalpy exchange due to the flows of combustion products between these sections. The models were initially validated at two different furnace throughput rates using experimental and plant's model data supplied by Tata Steel. The results to-date demonstrated that the model predictions are in good agreement with measured heating profiles of the blooms encountered in the actual furnace. It was also found no significant differences between the predictions from the 2D and 3D models. Following the validation, the 2D model was then used to assess the impact of the furnace responses to changing throughput rate. It was found that the potential furnace response to changing throughput rate influences the settling time of the furnace to the next steady state operation. Overall the current work demonstrates the feasibility and practicality of zone modelling and its potential for incorporation into a model based furnace control system. - Highlights: ► 2D and 3D zone models of large-scale bloom reheating furnace. ► The models were validated with experimental and plant model data. ► Examine the transient furnace response to changing the furnace throughput rates. ► No significant differences found between the predictions from the 2D and 3D models.

  7. Heat recovery from sorbent-based CO.sub.2 capture

    Science.gov (United States)

    Jamal, Aqil; Gupta, Raghubir P

    2015-03-10

    The present invention provides a method of increasing the efficiency of exothermic CO.sub.2 capture processes. The method relates to withdrawing heat generated during the exothermic capture of CO.sub.2 with various sorbents via heat exchange with a working fluid. The working fluid is provided at a temperature and pressure such that it is in the liquid state, and has a vaporization temperature in a range such that the heat arising from the reaction of the CO.sub.2 and the sorbent causes a phase change from liquid to vapor state in whole or in part and transfers heat from to the working fluid. The resulting heated working fluid may subsequently be used to generate power.

  8. Blast furnace hearth lining: post mortem analysis

    International Nuclear Information System (INIS)

    Almeida, Bruno Vidal de; Vernilli Junior, Fernando

    2017-01-01

    The main refractory lining of blast furnace hearth is composed by carbon blocks that operates in continuous contact with hot gases, liquid slag and hot metal, in temperatures above 1550 deg C for 24 hours a day. To fully understand the wear mechanism that acts in this refractory layer system it was performed a Post Mortem study during the last partial repair of this furnace. The samples were collected from different parts of the hearth lining and characterized using the following techniques: Bulk Density and Apparent Porosity, X-Ray Fluorescence, X-ray Diffraction, Scanning Electron Microscopy with Energy-dispersive X-Ray Spectroscopy. The results showed that the carbon blocks located at the opposite side of the blast furnace tap hole kept its main physicochemical characteristics preserved even after the production of 20x10"6 ton of hot metal. However, the carbon blocks around the Tap Hole showed infiltration by hot metal and slag and it presents a severe deposition of zinc and sulfur over its carbon flakes. The presence of these elements is undesired because it reduces the physic-chemical stability of this refractory system. This deposition found in the carbon refractory is associated with impurities present in the both coke and the sinter feed used in this blast furnace in the last few years. (author)

  9. Blast furnace hearth lining: post mortem analysis

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Bruno Vidal de; Vernilli Junior, Fernando, E-mail: bva@usp.br [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia; Neves; Elton Silva; Silva, Sidiney Nascimento [Companhia Siderugica Nacional (CSN), Rio de Janeiro, RJ (Brazil)

    2017-05-15

    The main refractory lining of blast furnace hearth is composed by carbon blocks that operates in continuous contact with hot gases, liquid slag and hot metal, in temperatures above 1550 deg C for 24 hours a day. To fully understand the wear mechanism that acts in this refractory layer system it was performed a Post Mortem study during the last partial repair of this furnace. The samples were collected from different parts of the hearth lining and characterized using the following techniques: Bulk Density and Apparent Porosity, X-Ray Fluorescence, X-ray Diffraction, Scanning Electron Microscopy with Energy-dispersive X-Ray Spectroscopy. The results showed that the carbon blocks located at the opposite side of the blast furnace tap hole kept its main physicochemical characteristics preserved even after the production of 20x10{sup 6} ton of hot metal. However, the carbon blocks around the Tap Hole showed infiltration by hot metal and slag and it presents a severe deposition of zinc and sulfur over its carbon flakes. The presence of these elements is undesired because it reduces the physic-chemical stability of this refractory system. This deposition found in the carbon refractory is associated with impurities present in the both coke and the sinter feed used in this blast furnace in the last few years. (author)

  10. Arsenic removal using natural biomaterial-based sorbents.

    Science.gov (United States)

    Ansone, Linda; Klavins, Maris; Viksna, Arturs

    2013-10-01

    Arsenic contamination of water is a major problem worldwide. A possible solution can be approached through developing new sorbents based on cost-effective and environmentally friendly natural biomaterials. We have developed new sorbents based on biomaterial impregnation with iron oxyhydroxide. In this study, raw peat material, iron-modified peat, iron-modified biomass (shingles, straw, sands, cane and moss) as well as iron humate were used for the removal of arsenate from contaminated water. The highest sorption capacity was observed in iron-modified peat, and kinetic studies indicated that the amount of arsenic sorbed on this material exceeds 90 % in 5 h. Arsenate sorption on iron-modified peat is characterised by the pseudo-second-order mechanism. The results of arsenic sorption in the presence of competing substances indicated that sulphate, nitrate, chloride and tartrate anions have practically no influence on As(V) sorption onto Fe-modified peat, whereas the presence of phosphate ions and humic acid significantly lowers the arsenic removal efficiency.

  11. Super-Hydrophobic High Throughput Electrospun Cellulose Acetate (CA) Nanofibrous Mats as Oil Selective Sorbents

    Science.gov (United States)

    Han, Chao

    The threat of oil pollution increases with the expansion of oil exploration and production activities, as well as the industrial growth around the world. Use of sorbents is a common method to deal with the oil spills. In this work, an advanced sorbent technology is described. A series of non-woven Cellulose Acetate (CA) nanofibrous mats with a 3D fibrous structure were synthesized by a novel high-throughput electrospinning technique. The precursor was solutions of CA/ acetic acid-acetone in various concentrations. Among them, 15.0% CA exhibits a superhydrophobic surface property, with a water contact angle of 128.95°. Its oil sorption capacity is many times higher the oil sorption capacity of the best commercial sorbent available in the market. Also, it showed good buoyancy properties on the water both as dry-mat and oil-saturated mat. In addition, it is biodegradable, easily available, easily manufactured, so the CA nanofibrous mat is an excellent candidate as oil sorbent for oil spill in water treatment.

  12. Innovation in electric arc furnaces scientific basis for selection

    CERN Document Server

    Toulouevski, Yuri N

    2013-01-01

    This book equips a reader with knowledge necessary for critical analysis of  innovations in electric arc furnaces and helps to select the most effective ones and for their successful implementation. The book also covers general issues related to history of development, current state and prospects of steelmaking in Electric Arc Furnaces. Therefore, it can be useful for everybody who studies metallurgy, including students of colleges and universities. The modern concepts of mechanisms of Arc Furnace processes are are discussed in the book at the level sufficient to solve practical problems: To help readers lacking knowledge required in the field of heat transfer as well as hydro-gas dynamics, it contains several chapters which provide the required minimum of information in these fields of science. In order to better assess different innovations, the book describes experience of the application of similar innovations in open-hearth furnaces and oxygen converters. Some promising ideas on key issues regarding int...

  13. Energy conservation in industrial furnaces with vertical radiation roofs of reinforced refractory concrete

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, E

    1981-01-01

    The paper discusses static systems for furnaces of reinforced refractory concrete, the temperature field over the finned-plate cross section, the calculation of the reinforced refractory concrete, experimental application in a flat open-hearth pusher furnace, a pack heating furnace, and a sinker furnace. There are cantilever beam plates, frames, and drop ceiling elements particularly suited for efficient use of high-performance burners.

  14. Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles.

    Science.gov (United States)

    Wang, Shengping; Fan, Shasha; Fan, Lijing; Zhao, Yujun; Ma, Xinbin

    2015-04-21

    A series of CaO-based sorbents were synthesized through a sol-gel method and doped with different amounts of CeO2. The sorbent with a Ca/Ce molar ratio of 15:1 showed an excellent absorption capacity (0.59 gCO2/g sorbent) and a remarkable cycle durability (up to 18 cycles). The admirable capture performance of CaCe-15 was ascribed to its special morphology formed by the doping of CeO2 and the well-distributed CeO2 particles. The sorbents doped with CeO2 possessed a loose shell-connected cross-linking structure, which was beneficial for the contact between CaO and CO2. CaO and CeO2 were dispersed homogeneously, and the existence of CeO2 also decreased the grain size of CaO. The well-dispersed CeO2, which could act as a barrier, effectively prevented the CaO crystallite from growing and sintering, thus the sorbent exhibited outstanding stability. The doping of CeO2 also improved the carbonation rate of the sorbent, resulting in a high capacity in a short period of time.

  15. Efficient use of power in electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, E R; Medley, J E

    1978-02-01

    The maximum transfer of electric energy to the metal in an arc furnace depends on the length of arc and the impedance of the electrical supply system from the generators to the arc itself. The use of directly-reduced sponge iron by continuous feeding results in long periods of flat-bath operation, when it is particularly important to keep a short high-current arc to get the heat into the metal rather than to the refractories, which would suffer excessive wear. By reference to a 125 ton furnace, a method of assessing the optimum operating currents and power factors and the effects of differing power-supply systems is illustrated. The importance of a low-impedance power system is illustrated, and the possibility of being unable to use the maximum furnace power without excessive refractory wear is noted. The particular problems of connecting arc-furnace loads to electrical supply systems are reviewed, and consideration is given to the problem of voltage flicker. The use of compensators is discussed with reference to existing installations, in which strong supplies from the supply-authority system are not economically available. The furnace operating characteristics, which indicate the optimum points of working, have to be checked on commissioning, and the test procedures are outlined. The optimum points for each type of charge and steel can be assessed only during their actual production. The importance of proper recording of relevant data is stressed, and reference is made to the use of computers and automatic power-input controllers.

  16. Continuous austempering fluidized bed furnace. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.N. [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering

    1997-09-23

    The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

  17. Assessing energy efficiency of electric car bottom furnaces intended for thermal energization of minerals

    Science.gov (United States)

    Nizhegorodov, A. I.

    2017-01-01

    The paper deals with a new concept of electric furnaces for roasting and thermal energization of vermiculite and other minerals with vibrational transportation of a single-layer mass under constant thermal field. The paper presents performance calculation and comparative assessment of energy data for furnaces of different modifications: flame and electric furnaces with three units, furnaces with six units and ones with series-parallel connection of units, and furnaces of new concept.

  18. Loss on Ignition Furnace Acceptance and Operability Test Procedure

    International Nuclear Information System (INIS)

    JOHNSTON, D.C.

    2000-01-01

    The purpose of this Acceptance Test Procedure and Operability Test Procedure (ATP/OTP)is to verify the operability of newly installed Loss on Ignition (LOI) equipment, including a model 1608FL CMTM Furnace, a dessicator, and balance. The operability of the furnace will be verified. The arrangement of the equipment placed in Glovebox 157-3/4 to perform LOI testing on samples supplied from the Thermal Stabilization line will be verified. In addition to verifying proper operation of the furnace, this ATP/OTP will also verify the air flow through the filters, verify a damper setting to establish and maintain the required differential pressure between the glovebox and the room pressure, and test the integrity of the newly installed HEPA filter. In order to provide objective evidence of proper performance of the furnace, the furnace must heat 15 crucibles, mounted on a crucible rack, to 1000 C, according to a program entered into the furnace controller located outside the glovebox. The glovebox differential pressure will be set to provide the 0.5 to 2.0 inches of water (gauge) negative pressure inside the glovebox with an expected airflow of 100 to 125 cubic feet per minute (cfm) through the inlet filter. The glovebox inlet G1 filter will be flow tested to ensure the integrity of the filter connections and the efficiency of the filter medium. The newly installed windows and glovebox extension, as well as all disturbed joints, will be sonically tested via ultra probe to verify no leaks are present. The procedure for DOS testing of the filter is found in Appendix A

  19. Anionic sorbents for arsenic and technetium species

    International Nuclear Information System (INIS)

    Lucero, Daniel A.; Moore, Robert Charles; Bontchev, Ranko Panayotov; Hasan, Ahmed Ali Mohamed; Zhao, Hongting; Salas, Fred Manuel; Holt, Kathleen Caroline

    2003-01-01

    Two sorbents, zirconium coated zeolite and magnesium hydroxide, were tested for their effectiveness in removing arsenic from Albuquerque municipal water. Results for the zirconium coated zeolite indicate that phosphate present in the water interfered with the sorption of arsenic. Additionally, there was a large quantity of iron and copper present in the water, corrosion products from the piping system, which may have interfered with the uptake of arsenic by the sorbent. Magnesium hydroxide has also been proven to be a strong sorbent for arsenic as well as other metals. Carbonate, present in water, has been shown to interfere with the sorption of arsenic by reacting with the magnesium hydroxide to form magnesium carbonate. The reaction mechanism was investigated by FT-IR and shows that hydrogen bonding between an oxygen on the arsenic species and a hydrogen on the Mg(OH)2 is most likely the mechanism of sorption. This was also confirmed by RAMAN spectroscopy and XRD. Technetium exists in multiple oxidation states (IV and VII) and is easily oxidized from the relatively insoluble Tc(IV) form to the highly water soluble and mobile Tc(VII) form. The two oxidation states exhibit different sorption characteristics. Tc(VII) does not sorb to most materials whereas Tc(IV) will strongly sorb to many materials. Therefore, it was determined that it is necessary to first reduce the Tc (using SnCl2) before sorption to stabilize Tc in the environment. Additionally, the effect of carbonate and phosphate on the sorption of technetium by hydroxyapatite was studied and indicated that both have a significant effect on reducing Tc sorption

  20. Study on the Fluid Flow Characteristics of Coherent Jets with CO2 and O2 Mixed Injection in Electric Arc Furnace Steelmaking Processes

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Yang, Lingzhi; Dong, Kai; Cheng, Ting; Tang, Tianping

    2018-06-01

    As an efficient oxygen supplying technology, coherent jets are widely applied in electric arc furnace (EAF) steelmaking processes to strengthen chemical energy input, speed up smelting rhythm, and promote the uniformity of molten bath temperature and compositions. Recently, the coherent jet with CO2 and O2 mixed injection (COMI) was proposed and demonstrated great application potentiality in reducing the dust production in EAF steelmaking. In the present study, based on the eddy dissipation concept model, a computational fluid dynamics model of coherent jets with COMI was built with the overall and detailed chemical kinetic mechanisms (GRI-Mech 3.0). Compared with one-step combustion reaction, GRI-Mech 3.0 consists of 325 elementary reactions with 53 components and can predict more accurate results. The numerical simulation results were validated by the combustion experiment data. The jet behavior and the fluid flow characteristics of coherent jets with COMI under 298 K and 1700 K (25 °C and 1427 °C) were studied and the results showed that for coherent jets with COMI, the chemical effect of CO2 significantly weakened the shrouding combustion reactions of CH4 and the relative importance of the chemical effect of CO2 increases with CO2 concentration increasing. The potential core length of coherent jet decreases with the volume fraction of CO2 increasing. Moreover, it also can be found that the potential core length of coherent jets was prolonged with higher ambient temperature.

  1. Study on the Fluid Flow Characteristics of Coherent Jets with CO2 and O2 Mixed Injection in Electric Arc Furnace Steelmaking Processes

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Yang, Lingzhi; Dong, Kai; Cheng, Ting; Tang, Tianping

    2018-03-01

    As an efficient oxygen supplying technology, coherent jets are widely applied in electric arc furnace (EAF) steelmaking processes to strengthen chemical energy input, speed up smelting rhythm, and promote the uniformity of molten bath temperature and compositions. Recently, the coherent jet with CO2 and O2 mixed injection (COMI) was proposed and demonstrated great application potentiality in reducing the dust production in EAF steelmaking. In the present study, based on the eddy dissipation concept model, a computational fluid dynamics model of coherent jets with COMI was built with the overall and detailed chemical kinetic mechanisms (GRI-Mech 3.0). Compared with one-step combustion reaction, GRI-Mech 3.0 consists of 325 elementary reactions with 53 components and can predict more accurate results. The numerical simulation results were validated by the combustion experiment data. The jet behavior and the fluid flow characteristics of coherent jets with COMI under 298 K and 1700 K (25 °C and 1427 °C) were studied and the results showed that for coherent jets with COMI, the chemical effect of CO2 significantly weakened the shrouding combustion reactions of CH4 and the relative importance of the chemical effect of CO2 increases with CO2 concentration increasing. The potential core length of coherent jet decreases with the volume fraction of CO2 increasing. Moreover, it also can be found that the potential core length of coherent jets was prolonged with higher ambient temperature.

  2. Mixed and Doped Solid Sorbents for CO2 Capture Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2016-06-14

    The objectives of this presentation are to capture CO2 we need materials with optimal performance and low costs; establish a theoretical procedure to identify most potential candidates of CO2 solid sorbents from a large solid material databank; computational synthesis new materials to fit industrial needs; and explore the optimal working conditions for the promised CO2 solid sorbents, especially from room to warm T ranges with optimal energy usage.

  3. CO{sub 2} capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J.; Zhao, C.S.; Chen, H.C.; Ren, Q.Q.; Duan, L.B. [Southeast University, Nanjing (China). School of Energy & Environment

    2011-03-15

    This paper examines the average carbonation conversion, CO{sub 2} capture efficiency and energy requirement for post-combustion CO{sub 2} capture system during the modified calcium-based sorbent looping cycle. The limestone modified with acetic acid solution, i.e. calcium acetate is taken as an example of the modified calcium-based sorbents. The modified limestone exhibits much higher average carbonation conversion than the natural sorbent under the same condition. The CO{sub 2} capture efficiency increases with the sorbent flow ratios. Compared with the natural limestone, much less makeup mass flow of the recycled and the fresh sorbent is needed for the system when using the modified limestone at the same CO{sub 2} capture efficiency. Achieving 0.95 of CO{sub 2} capture efficiency without sulfation, 272 kJ/mol CO{sub 2} is required in the calciner for the natural limestone, whereas only 223 kJ/mol CO{sub 2} for the modified sorbent. The modified limestone possesses greater advantages in CO{sub 2} capture efficiency and energy consumption than the natural sorbent. When the sulfation and carbonation of the sorbents take place simultaneously, more energy is required. It is significantly necessary to remove SO{sub 2} from the flue gas before it enters the carbonator in order to reduce energy consumption in the calciner.

  4. Development of a cylindrical gas-fired furnace for reycling ...

    African Journals Online (AJOL)

    This study presents the development of a cylindrical gas-fired furnace, which could be used for recycling aluminum in small-scale foundries in Nigeria. The crucible, combustion chamber, suspension shaft and bearings were appropriately sized. The furnace chamber was 410 mm high and 510 mm diameter and had a ...

  5. Application of roof radiant burners in large pusher-type furnaces

    Directory of Open Access Journals (Sweden)

    A. Varga

    2009-07-01

    Full Text Available The paper deals with the application of roof flat-flame burners in the pusher-type steel slab reheating furnaces, after furnace reconstruction and replacement of conventional torch burners, with the objective to increase the efficiency of radiative heat transfer from the refractory roof to the charge. Based on observations and on measurements of the construction and process parameters under operating conditions, the advantages and disadvantages of indirectly oriented radiant heat transfer are analysed in relation to the heat transfer in classically fired furnaces.

  6. Unique furnace system for high-energy-neutron experiments

    International Nuclear Information System (INIS)

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    1982-03-01

    The low flux of high energy neutron sources requires optimum utilization of the available neutron field. A furnace system has been developed in support of the US DOE fusion materials program which meets this challenge. Specimens positioned in two temperature zones just 1 mm away from the outside surface of a neutron window in the furnace enclosure can be irradiated simultaneously at two independent, isothermal (+- 1 0 C) temperatures. The temperature difference between these closely spaced isothermal zones is controllable from 0 to 320 0 C and the maximum temperature is 400 0 C. The design of the system also provides a controlled specimen environment, rapid heating and cooling and easy access to heaters and thermocouples. This furnace system is in use at the Rotating Target Neutron Source-II of Lawrence Livermore National Laboratory

  7. Optimizing the Costs of Solid Sorbent-Based CO2 Capture Process Through Heat Integration

    Energy Technology Data Exchange (ETDEWEB)

    Sjostrom, Sharon [Ada-Es, Inc., Highlands Ranch, CO (United States)

    2016-03-18

    The focus of this project was the ADAsorb™ CO2 Capture Process, a temperature-swing adsorption process that incorporates a three-stage fluidized bed as the adsorber and a single-stage fluidized bed as the regenerator. ADAsorb™ system was designed, fabricated, and tested under DOE award DEFE0004343. Two amine-based sorbents were evaluated in conjunction with the ADAsorb™ process: “BN”, an ion-exchange resin; and “OJ”, a metal organic framework (MOF) sorbent. Two cross heat exchanger designs were evaluated for use between the adsorber and regenerator: moving bed and fluidized bed. The fluidized bed approach was rejected fairly early in the project because the additional electrical load to power blowers or fans to overcome the pressure drop required for fluidization was estimated to be nominally three times the electrical power that could be generated from the steam saved through the use of the cross heat exchanger. The Energy Research Center at Lehigh University built and utilized a process model of the ADAsorb™ capture process and integrated this model into an existing model of a supercritical PC power plant. The Lehigh models verified that, for the ADAsorb™ system, the largest contributor to parasitic power was lost electrical generation, which was primarily electric power which the host plant could not generate due to the extraction of low pressure (LP) steam for sorbent heating, followed by power for the CO2 compressor and the blower or fan power required to fluidize the adsorber and regenerator. Sorbent characteristics such as the impacts of moisture uptake, optimized adsorption and regeneration temperature, and sensitivity to changes in pressure were also included in the modeling study. Results indicate that sorbents which adsorb more than 1-2% moisture by weight are unlikely to be cost competitive unless they have an extremely high CO2 working capacity that well exceeds 15% by weight. Modeling also revealed

  8. Handling of corn stover bales for combustion in small and large furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Morissette, R.; Savoie, P.; Villeneuve, J. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada)

    2010-07-01

    This paper reported on a study in which dry corn stover was baled and burned in 2 furnaces in the province of Quebec. Small and large rectangular bale formats were considered for direct combustion. The first combustion unit was a small 500,000 BTU/h dual chamber log wood furnace located at a hay growing farm in Neuville, Quebec. The heat was initially transferred to a hot water pipe system and then transferred to a hot air exchanger to dry hay bales. The small stover bales were placed directly into the combustion furnace. The low density of the bales compared to log wood, required filling up to 8 times more frequently. Stover bales produced an average of 6.4 per cent ash on a DM basis and required an automated system for ash removal. Combustion gas contained levels of particulate matter greater than 1417 mg/m{sup 3}, which is more than the local acceptable maximum of 600 mg/m{sup 3} for combustion furnaces. The second combustion unit was a high capacity 12.5 million BTU/h single chamber furnace located in Saint-Philippe-de-neri, Quebec. It was used to generate steam for a feed pellet mill. Large corn stover bales were broken up and fed on a conveyor and through a screw auger to the furnace. The stover was light compared to the wood chips used in this furnace. For mechanical reasons, the stover could not be fed continuously to the furnace.

  9. Measure Guideline. High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Rose, W. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  10. Acoustic Levitator With Furnace And Laser Heating

    Science.gov (United States)

    Barmatz, Martin B.; Stoneburner, James D.

    1991-01-01

    Acoustic-levitation apparatus incorporates electrical-resistance furnace for uniform heating up to temperature of about 1,000 degrees C. Additional local heating by pair of laser beams raise temperature of sample to more than 1,500 degrees C. High temperature single-mode acoustic levitator generates cylindrical-mode accoustic resonance levitating sample. Levitation chamber enclosed in electrical-resistance furnace. Infrared beams from Nd:YAG laser provide additional local heating of sample. Designed for use in containerless processing of materials in microgravity or in normal Earth gravity.

  11. Comments on "Ceria-Zirconia High-Temperature Desulfurization Sorbents".

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Trnka, Otakar

    2006-01-01

    Roč. 45, č. 4 (2006), s. 1548-1549 ISSN 0888-5885 Institutional research plan: CEZ:AV0Z40720504 Keywords : hydrogen sulfide * desulfurization * cerium sorbent Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.518, year: 2006

  12. Analysis of Ethane and Diethylbenzene Bridged Sorbents

    Science.gov (United States)

    2017-12-13

    Textiles modified in this manner have been shown to reduce or eliminate transport of chemical warfare agents and simulants across the fabric barrier...B.J. Johnson; B.J. Melde; M.H. Moore; A.P. Malanoski; J.R. Taft, "Improving sorbents for glycerol capture in biodiesel refinement," Materials 10

  13. RBF–ARX model of an industrial furnace for drying olive pomace

    International Nuclear Information System (INIS)

    Casanova-Peláez, P.J.; Cruz-Peragón, F.; Palomar-Carnicero, J.M.; Dorado, R.; López-García, R.

    2012-01-01

    Highlights: ► We model a real furnace, fuelled with orujo, used to dry olive pomace. ► We apply a radial basic functions–auto-regression with exogenous variables (ARXs–RBFs) method. ► Root-mean-square error and r 2 are used to validate the ARX–RBF model. - Abstract: Drying operations are common in food industries. One of the main components in a drying system is the furnace. The furnace operation involves heat–mass transfer and combustion, thus it demands a complex mathematic representation. Since autoregressive methods are simple, and help to simulate rapidly a system, we model a drying furnace of olive pomace via an auto-regression with exogenous variables (ARXs) method. A neural network of radial basic functions (RBFs) defines the ARX experimental relation between the amounts of dry pomace (moisture content of 15%) used like fuel and the temperature of outlet gases. A real industrial furnace is studied to validate the proposed model, which can help to control the drying process.

  14. Developing and testing a vertical sintering furnace for remote nuclear applications

    International Nuclear Information System (INIS)

    Nesbitt, J.F.; Ryer, C.M.

    1980-01-01

    Horizontal-type furnaces used to sinter fuel pellets on a production basis are large and thus impractical for remote applications. However, research has shown that vertical-type furnaces are adaptable for use and are cheaper to operate and maintain. In 1979, Pacific Northwest Laboratory, working under the auspices of the Department of Energy's Fuel Refabrication and Development (FRAD) Program, began developing an advanced concept for a remotely operated furnace designed specifically to sinter nuclear fuel pellets. The FRAD Program at PNL ended before the sintering of nuclear fuels could be completely verified. However during 1979, PNL performed a sufficient number and variety of tests to establish that nuclear fuel pellets can be sintered in a vertical furnace

  15. The use of lightweight expanded clay aggregate (LECA) as sorbent for PAHs removal from water

    International Nuclear Information System (INIS)

    Nkansah, Marian Asantewah; Christy, Alfred A.; Barth, Tanja; Francis, George William

    2012-01-01

    Highlights: ► Effect of contact time on sorption PAH by LECA. ► Effect of mass of sorbent (LECA) on sorption of PAH. ► Sorption Isotherms for PAH-LECA interaction. - Abstract: Lightweight expanded clay aggregate (LECA) has been explored as a sorbent for the removal of PAHs (phenanthrene, fluoranthene and pyrene) from water. The efficacy of LECA as a sorbent for PAHs was assessed using contact time, mass of sorbent and sorption isotherms in a series of batch experiments. Maximum (optimum) sorption was reached at 21 h after which the amount of PAHs sorbed remained almost constant. Batch experiments were conducted by shaking a 100 ml solution mixture of individual PAHs (containing 0.02 mg/L) with LECA. The maximum sorption was 70.70, 70.82 and 72.12%, respectively for phenanthrene, fluoranthene and pyrene when a mass of 0.2 g of sorbent was used. There was an increase in sorption as a result of an increase in mass of sorbent until a maximum was reached at a mass of 4.0 g LECA with 92.61, 93.91 and 94.15% sorption of phenanthrene, fluoranthene and pyrene respectively. Sorption data were fitted to the linearised forms of the Freundlich and Langmuir isotherm models to determine the water-LECA partitioning coefficient. Physical sorption caused by the aromatic nature of the compounds was the main mechanism that governed the removal process while the hydrophobicity of the PAHs also influenced the sorption capacity. LECA can be used as an alternative method for aqueous PAHs removal.

  16. Integration of Tuyere, Raceway and Shaft Models for Predicting Blast Furnace Process

    Science.gov (United States)

    Fu, Dong; Tang, Guangwu; Zhao, Yongfu; D'Alessio, John; Zhou, Chenn Q.

    2018-06-01

    A novel modeling strategy is presented for simulating the blast furnace iron making process. Such physical and chemical phenomena are taking place across a wide range of length and time scales, and three models are developed to simulate different regions of the blast furnace, i.e., the tuyere model, the raceway model and the shaft model. This paper focuses on the integration of the three models to predict the entire blast furnace process. Mapping output and input between models and an iterative scheme are developed to establish communications between models. The effects of tuyere operation and burden distribution on blast furnace fuel efficiency are investigated numerically. The integration of different models provides a way to realistically simulate the blast furnace by improving the modeling resolution on local phenomena and minimizing the model assumptions.

  17. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  18. Preparation and investigation of ion exchange properties of sorbent based on activated carbon BAU and zirconium hydroxide

    International Nuclear Information System (INIS)

    Blokhin, A.A.; Semenov, M.I.; Taushkanov, V.P.; Andronov, E.A.

    1978-01-01

    The method of obtaining the sorbent based on the activated carbon and zirconium hydroxide, performed by carbon soaking by zirconium salt solution, hydrolytic decomposition, being in salt pores by ammonia solution and drying of the obtained sorbet in the air at the temperature of 105-115 deg. The kinetic characteristics of the obtained sorbent in the wide range of pH value of solutions are studied; sodium, chloride, fluoride and phosphate ion sorbtion taken as examples. A high selectivity of the sorbent to phosphate and fluoride ions has been established. The usefullness of the obtained sorbent for extraction of phosphorus microquantities from 1M sodium chloride solution and its concentration at the elution stage is shown

  19. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, K. M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a ''hard'' anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized

  20. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, Kenneth M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a “hard” anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized.

  1. Theoretical Predictions of the thermodynamic Properties of Solid Sorbents Capture CO2 Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua; Sorescu, Dan; Luebke David; Pennline, Henry

    2012-05-02

    We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; and to explore the optimal working conditions for the promising CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

  2. Efficiency of using direct-flow burners and nozzles in implementation of dry-bottom ash removal at the TPP-210A boiler furnace

    Science.gov (United States)

    Arkhipov, A. M.; Kanunnikov, A. A.; Kirichkov, V. S.; Prokhorov, V. B.; Fomenko, M. V.; Chernov, S. L.

    2017-02-01

    In reconstruction of operating pulverized coal-fired boilers, one of the main factors is the choice of a method for slag removal: dry bottom ash removal (DBAR) or slag-tap removal (STR). In this case, ecological and economic aspects should be taken into account, and also the early ignition of pulverized coal fuel, the reliability of operation of the furnace walls in the mode without slagging, and the stability of slag removal should be provided. In this work, issues of changeover of the pulverized coal-fired boilers of the TPP-210A type from the STR mode to the DBAR mode are considered. As of today, the main problems during the operation of these boilers are the high emissions of nitrogen oxides together with flue gases into the atmosphere and the appropriated payoffs, a small range of loads available, the necessity of stabilization of the pulverizedcoal flame sustainability by using the highly reactive fuel, large mechanical fuel underburning, etc. Results of studying aerodynamics of a furnace with DBAR obtained in the process of physical simulation are given; technical solutions and preliminary design (configuration of burners and nozzles in the boiler furnace, conceptual design of the pulverized coal burner, configuration of TPP-210A boiler with the low heat liberation of furnace cross-section and volumetric heat release) are set forth, which are associated with the optimization of aerodynamics of furnace volume, when the direct-flow burners and nozzles are used, and with organization of the efficient staged combustion of solid fuel. Two versions of possible modernization of a boiler unit are considered. Under conditions of the planned increase in the steam production capacity, the most promising measures are as follows: the DBAR implementation with reducing heat releases of the cross-section and volume of the furnace approximately by half, the installation of the direct-flow burners and nozzles with injection of recirculation gases into the active combustion

  3. Process and furnace for working bituminous materials

    Energy Technology Data Exchange (ETDEWEB)

    Klotzer, M

    1921-06-28

    A process for working up bitumen-containing materials, such as coal, peat and shale is characterized in that the material in thin-height batches with constant shaking by means of forward and backward movement of an elongated horizontal hearth heated underneath on which the material freely lies and on which it is moved in the furnace, through a single narrow furnace space with zone-wise heating of the hearth. A drying zone, a spent-material removal zone, and a carbonization zone are provided. Under separate hoods the gases and vapors are removed from these zones.

  4. Measure Guideline: High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  5. A review of NOx formation mechanisms in recovery furnaces

    International Nuclear Information System (INIS)

    Nichols, K.M.; Thompson, L.M.; Empie, H.J.

    1993-01-01

    Review of NOx formation studies shows that NO forms in recovery furnaces primarily by two independent mechanisms, thermal and fuel. Thermal NO formation is extremely temperature-sensitive. However, theoretical predictions indicate that recovery furnace temperatures are not high enough to form significant thermal NO. Fuel NO formation is less temperature-sensitive, and is related to fuel nitrogen content. Black liquors are shown to contain 0.05 to 0.24 weight percent fuel nitrogen. Conversion of just 20% of this would yield approximately 25-120 ppm NOx (at 8% 0 2 ) in the flue gas, enough to represent the majority of the total NOx. Data from operating recovery furnaces show NOx emissions ranging from near zero to over 100 ppm at 8% 0 2 . An apparent increase in recovery furnace NOx emissions was observed with increasing solids. This increase is much less than predicted by thermal NO formation theory, indicating that other NO formation/destruction mechanisms, such as fuel NO formation, are important. No data are available to show the relative importance of thermal and fuel NO to total NOx during black liquor combustion

  6. Microbial consortia in mesocosm bioremediation trial using oil sorbents, slow-release fertilizer and bioaugmentation.

    Science.gov (United States)

    Gertler, Christoph; Gerdts, Gunnar; Timmis, Kenneth N; Golyshin, Peter N

    2009-08-01

    An experimental prototype oil boom including oil sorbents, slow-release fertilizers and biomass of the marine oil-degrading bacterium, Alcanivorax borkumensis, was applied for sorption and degradation of heavy fuel oil in a 500-L mesocosm experiment. Fingerprinting of DNA and small subunit rRNA samples for microbial activity conducted to study the changes in microbial communities of both the water body and on the oil sorbent surface showed the prevalence of A. borkumensis on the surface of the oil sorbent. Growth of this obligate oil-degrading bacterium on immobilized oil coincided with a 30-fold increase in total respiration. A number of DNA and RNA signatures of aromatic hydrocarbon-degrading bacteria were detected both in samples of water body and on oil sorbent. Ultimately, the heavy fuel oil in this mesocosm study was effectively removed from the water body. This is the first study to successfully investigate the fate of oil-degrading microbial consortia in an experimental prototype for a bioremediation strategy in offshore, coastal or ship-bound oil spill mitigation using a combination of mechanical and biotechnological techniques.

  7. Comparison of a burning mass ceramics coating in laboratory furnace and instrustrial furnace; Comparacao de queimas de uma massa ceramica de revestimento em forno de laboratorio e forno industrial

    Energy Technology Data Exchange (ETDEWEB)

    Soares, R.A.L., E-mail: robertoarruda@ifpi.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Piaui (IFPI), Terersina, PI (Brazil); Castro, J.R. de S. [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil)

    2012-07-01

    This work intends to analyze the differences obtained in the technological properties of a ceramic coating after firing in two distinct environments, laboratory furnace and industrial furnace. For this, was characterized a ceramic mass used in the production of porous coating. The analyzes were performed chemical, mineralogical and thermal mass in that. The specimens were obtained by compacting and burned in the maximum temperature of 1140 deg C in two furnaces, laboratory and industrial. The technological tests were performed linear shrinkage, water absorption, bulk density and mechanical strength. The microstructure was evaluated by ray-X diffraction and scanning electron microscopy. The results showed that both furnaces provided significant differences in analyzed specimens, such as increased strength and low water absorption in the fired samples in a laboratory furnace, for example. (author)

  8. Numerical modelling of an industrial glass-melting furnace

    Energy Technology Data Exchange (ETDEWEB)

    Hill, S C [Brigham Young Univ., Advanced Combustion Engineering Research Center, Provo, UT (United States); Webb, B W; McQuay, M Q [Brigham Young Univ., Mechanical Engineering Dept., Provo, UT (United States); Newbold, J [Lockheed Aerospace, Denver, CO (United States)

    2000-03-01

    The predictive capability of two comprehensive combustion codes, PCGC-3 and FLUENT, to simulate local flame structure and combustion characteristics in a industrial gas-fired, flat-glass furnace is investigated. Model predictions are compared with experimental data from the furnace for profiles of velocity, species concentrations, temperatures, and wall-incident radiative heat flux. Predictions from both codes show agreement with the measured mean velocity profiles and incident radiant flux on the crown. However, significant differences between the code predictions and measurements are observed for the flame-ozone temperatures and species concentrations. The observed discrepancies may be explained by (i) uncertainties in the distributions of mean velocity and turbulence in the portneck, (ii) uncertainties in the port-by-port stoichiometry, (iii) different grid-based approximations to the furnace geometry made in the two codes, (iv) the assumption of infinitely fast chemistry made in the chemical reaction model of both codes, and (v) simplifying assumptions made in the simulations regarding the complex coupling between the combustion space, batch blanket, and melt tank. The study illustrates the critical need for accurate boundary conditions (inlet air and fuel flow distributions, boundary surface temperatures, etc.) and the importance of representative furnace geometry in simulating these complex industrial combustion systems. (Author)

  9. Steam generators and furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Swoboda, E

    1978-04-01

    The documents published in 1977 in the field of steam generators for conventional thermal power plants are classified according to the following subjects: power industry and number of power plants, planning and operation, design and construction, furnaces, environmental effects, dirt accumulation and corrosion, conservation and scouring, control and automation, fundamental research, and materials.

  10. Efficiency of sugarcane bagasse-based sorbents for oil removal from engine washing wastewater.

    Science.gov (United States)

    Guilharduci, Viviane Vasques da Silva; Martelli, Patrícia Benedini; Gorgulho, Honória de Fátima

    2017-01-01

    This work evaluates the efficiency of sugarcane bagasse-based sorbents in the sorption of oil from engine washing wastewater. The sorbents were obtained from sugarcane bagasse in the natural form (SB-N) and modified with either acetic anhydride (SB-Acet) or 3-aminopropyltriethoxysilane (SB-APTS). The results showed that the sorption capacity of these materials decreased in the following order: SB-APTS > SB-N > SB-Acet. The superior oil sorption capacity observed for SB-APTS was attributed to the polar amino end groups in the silane structure, which acted to increase the hydrophilic character of the fibers. However, all the sorbents obtained in this study were able to clean a real sample of wastewater from engine washing, leading to significant reductions in suspended matter, sediment, anionic surfactants, and turbidity.

  11. DEVELOPMENT AND TESTING OF COMPOUND FUEL CHAMBER WITHOUT A GRATE FOR HOUSEHOLD FURNACE

    Directory of Open Access Journals (Sweden)

    Shevyakov Vladimir Viktorovich

    2018-02-01

    Full Text Available In hearth furnaces, the firewood is burned more cleanly with less carbon monoxide at the outlet. The disadvantage of such fireboxes is a longer process of coal burnout than in grate-fired furnaces. In furnaces with a grate, the burnout time of coals is less, which makes it possible to finish the combustion process more quickly and close the outlet latch. This increases the efficiency of the furnace but to further reduce the time of burning out the coals they have to be raked and burned on the grate. This complicates the process of operating the furnace itself. The proposed design of the compound firebox allows us to improve characteristics of both the firebox itself and the entire furnace. Research objectives: creation and study of a compound firebox that increases the efficiency of the furnace and simplifies the furnace maintenance process with the values of carbon monoxide at the outlet comparable to hearth furnaces. Materials and methods: a detailed analysis of hearth fuel chambers ECO+ was carried out according to the amount of carbon monoxide at the outlet. The results of the analysis are used for comparison with compound fuel chamber. The structure of the compound firebox was chosen based on the results of preliminary tests of several fuel chambers proposed and tested by the author in the furnace PDKSh-2.0. A peculiarity of the structure of the compound firebox is the absence of a grate and the presence of a narrow slit in the lower part of the firebox through which the incoming air enters the firewood. Between the walls of the firebox and firewood, skids are installed, forming an air gap, through which the inlet air is uniformly supplied to the entire firewood supply. With gradual combustion of firewood and formation of coal, the firewood descends to the bottom of the firebox, where they intensively burn out in the maximum air flow. Compound firebox consists of several parts, it is made of steel with a thickness of 4.0 mm and installed

  12. Design and Construction of Oil Fired Compact Crucible Furnace ...

    African Journals Online (AJOL)

    As a prelude to necessary industrialization, foundries are springing up in various parts of Nigeria and most of these foundries rely on oil fired furnaces in their operation. This study is aimed at developing an oil fired crucible furnace from locally sourced materials for foundries in Nigeria. In our design, a new system of fuel ...

  13. CHARCOAL PACKED FURNACE FOR LOW-TECH CHARRING OF BONE

    DEFF Research Database (Denmark)

    Jacobsen, P.; Dahi, Elian

    1997-01-01

    A low-tech furnace for charring of raw bone using char coal is developed and tested. The furnace consists of a standard oil drum, fitted with simple materials as available in every market in small towns in developing counties. 80 kg of raw bone and 6 kg of charcoal are used for production of 50 kg...

  14. Evaluation of hydrous ferric oxide loaded activated carbon as a granular composite sorbent for radiostrontium

    International Nuclear Information System (INIS)

    Samanta, S.K.

    1997-01-01

    A composite sorbent was prepared in granular form by depositing hydrous ferric oxide inside the pores of activated carbon. The composite sorbent was found to show excellent sorption of radiostrontium in the presence of high sodium concentration under alkaline conditions. (author). 3 refs., 2 figs., 1 tab

  15. Enhanced capture of elemental mercury by bamboo-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zengqiang [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Xiang, Jun, E-mail: xiangjun@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Su, Sheng, E-mail: susheng_sklcc@hotmail.com [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The KI-modified BC has excellent capacity for elemental mercury removal. Black-Right-Pointing-Pointer The chemisorption plays a dominant role for the modified BC materials. Black-Right-Pointing-Pointer The BC-I has strong anti-poisoning ability with the presence of NO or SO{sub 2}. - Abstract: To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO{sub 2} on gas-phase Hg{sup 0} adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents' BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 Degree-Sign C and 180 Degree-Sign C. The presence of NO or SO{sub 2} could inhibit Hg{sup 0} capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed.

  16. Mechanochemically Activated, Calcium Oxide-Based, Magnesium Oxide-Stabilized Carbon Dioxide Sorbents.

    Science.gov (United States)

    Kurlov, Alexey; Broda, Marcin; Hosseini, Davood; Mitchell, Sharon J; Pérez-Ramírez, Javier; Müller, Christoph R

    2016-09-08

    Carbon dioxide capture and storage (CCS) is a promising approach to reduce anthropogenic CO2 emissions and mitigate climate change. However, the costs associated with the capture of CO2 using the currently available technology, that is, amine scrubbing, are considered prohibitive. In this context, the so-called calcium looping process, which relies on the reversible carbonation of CaO, is an attractive alternative. The main disadvantage of naturally occurring CaO-based CO2 sorbents, such as limestone, is their rapid deactivation caused by thermal sintering. Here, we report a scalable route based on wet mechanochemical activation to prepare MgO-stabilized, CaO-based CO2 sorbents. We optimized the synthesis conditions through a fundamental understanding of the underlying stabilization mechanism, and the quantity of MgO required to stabilize CaO could be reduced to as little as 15 wt %. This allowed the preparation of CO2 sorbents that exceed the CO2 uptake of the reference limestone by 200 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Computational Fluid Dynamics (CFD) Investigation of Submerged Combustion Behavior in a Tuyere Blown Slag-fuming Furnace

    Science.gov (United States)

    Huda, Nazmul; Naser, Jamal; Brooks, G. A.; Reuter, M. A.; Matusewicz, R. W.

    2012-10-01

    A thin-slice computational fluid dynamics (CFD) model of a conventional tuyere blown slag-fuming furnace has been developed in Eulerian multiphase flow approach by employing a three-dimensional (3-D) hybrid unstructured orthographic grid system. The model considers a thin slice of the conventional tuyere blown slag-fuming furnace to investigate details of fluid flow, submerged coal combustion dynamics, coal use behavior, jet penetration behavior, bath interaction conditions, and generation of turbulence in the bath. The model was developed by coupling the CFD with the kinetics equations developed by Richards et al. for a zinc-fuming furnace. The model integrates submerged coal combustion at the tuyere tip and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with several user-defined subroutines in FORTRAN programming language were used to develop the model. The model predicted the velocity, temperature field of the molten slag bath, generated turbulence and vortex, and coal use behavior from the slag bath. The tuyere jet penetration length ( l P) was compared with the equation provided by Hoefele and Brimacombe from isothermal experimental work ( {{l_{{P}} }/{d_{o }} = 10.7( {N^' }_{Fr} } )^{0.46} ( {ρ_{{g}} /ρl } )^{0.35} } ) and found 2.26 times higher, which can be attributed to coal combustion and gas expansion at a high temperature. The jet expansion angle measured for the slag system studied is 85 deg for the specific inlet conditions during the simulation time studied. The highest coal penetration distance was found to be l/L = 0.2, where l is the distance from the tuyere tip along the center line and L is the total length (2.44 m) of the modeled furnace. The model also predicted that 10 pct of the injected coal bypasses the tuyere gas stream uncombusted and carried to the free surface by the tuyere gas stream, which

  18. Simulation of the injection casting of metallic fuels

    International Nuclear Information System (INIS)

    Nakagawa, Tomokazu; Ogata, Takanari; Tokiwai, Moriyasu.

    1989-01-01

    For the fabrication of metallic fuel pins, injection casting is a preferable process because the simplicity of the process is suitable for remote operation. In this process, the molten metal in the crucible is injected into evacuated molds (suspended above the crucible) by pressurizing the casting furnace. Argonne National Laboratory has already adopted this process in the Integral Fast Reactor program. To obtain fuel pins with good quality, the casting parameters, such as the molten metal temperature, the magnitude of the pressure applied, the pressurizing rate, the cooling time, etc., must be optimized. Otherwise, bad-quality castings (short castings, rough surfaces, shrinkage cavities, mold fracture) may result. Therefore, it is very important in designing the casting equipment and optimizing the operation conditions to be able to predict the fluid and thermal behavior of the castings. This paper describes methods to simulate the heat and mass transfer in the molds and molten metallic fuel during injection casting. The results obtained by simulation are compared with experimental ones. Also, appropriate casting conditions for the uranium-plutonium-zirconium alloy are discussed based on the simulated results

  19. Potential for preparation of hot gas cleanup sorbents from spent hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Biagini, M. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada). Energy Research Labs.

    1996-01-01

    Three spent-decoked hydroprocessing catalysts and two corresponding fresh catalysts were tested as hot gas clean-up sorbents and compared with the zinc ferrite using a simulated coal gasification gas mixture. The catalysts deposited only by coke exhibited relatively good cleaning efficiency. The catalyst deposited by coke and metals such as vanadium and nickel was less efficient. The useful life of the spent hydroprocessing catalysts may be extended if utilized as hot gas clean-up sorbents. 12 refs., 3 figs., 4 tabs.

  20. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  1. Thermodynamics of organic molecule adsorption on sorbents modified with 5-hydroxy-6-methyluracil by inverse gas chromatography.

    Science.gov (United States)

    Gus'kov, Vladimir Yu; Gainullina, Yulia Yu; Ivanov, Sergey P; Kudasheva, Florida Kh

    2014-08-22

    The thermodynamic features of organic molecule adsorption from the gaseous phase of sorbents modified with 5-hydroxy-6-methyluracil (HMU) were studied. Molar internal energy and entropy of adsorption variation analyses showed that with every type surface, except for silica gel, layers of supramolecular structure have cavities equal in size with the ones revealed in HMU crystals by X-ray diffraction. Adsorption thermodynamics on HMU-modified sorbents depended on the amount of impregnated HMU and on the polarity, but not the porosity, of the initial sorbent. Polarity of the modified surface increased as a function of HMU quantity and initial sorbent mean pore size, but become appreciably lower if the initial surface is capable of hydrogen bonding. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Performance of Zn-Fe-Mn/MCM-48 sorbents for high temperature H2S removal and analysis of regeneration process

    Science.gov (United States)

    Huang, Z. B.; Liu, B. S.; Wang, F.; Amin, R.

    2015-10-01

    MCM-48 was synthesized using a rapid and facile process at room temperature. A series of 50%Zn-Fe-Mn/MCM-48 sorbents were prepared and their performance of hot coal gas desulfurization was investigated. High breakthrough sulfur capacity (13.2 g-S/100 g sorbent) and utilization (66.1%) of 50%1Zn2Fe2Mn/MCM-48 sorbent at 550 °C was achieved. The characterization results of XRD, BET, TPR and FT-IR revealed that MCM-48 had excellent thermal stability at less than 700 °C, ZnMn2O4 and (Mn, Zn)Fe2O4 were mainly active particles in fresh sorbents which were highly dispersed on support. The MCM-48 mesoporous structure remained intact after eight successive desulfurization/regeneration cycles. The regeneration process of 50%1Zn2Fe2Mn/MCM-48 sorbent was analyzed, it indicated that the breakthrough sulfur capacity decline of sorbent was due to the migration of Zn onto the sorbent surface and Zn accumulated on the surface and vaporized to the exterior from the surface. In the TPO test, the oxidation of Zn was different for 50%Zn/MCM-48 at 700 °C. It revealed that the temperature of regeneration for ZnO sorbent should be higher than 700 °C.

  3. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, A. N., E-mail: tgtu-kafedra-ese@mail.ru [Tver State Technical University (Russian Federation)

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  4. The technological raw material heating furnaces operation efficiency improving issue

    Science.gov (United States)

    Paramonov, A. M.

    2017-08-01

    The issue of fuel oil applying efficiency improving in the technological raw material heating furnaces by means of its combustion intensification is considered in the paper. The technical and economic optimization problem of the fuel oil heating before combustion is solved. The fuel oil heating optimal temperature defining method and algorithm analytically considering the correlation of thermal, operating parameters and discounted costs for the heating furnace were developed. The obtained optimization functionality provides the heating furnace appropriate thermal indices achievement at minimum discounted costs. The carried out research results prove the expediency of the proposed solutions using.

  5. A Heat and Mass Transfer Model of a Silicon Pilot Furnace

    Science.gov (United States)

    Sloman, Benjamin M.; Please, Colin P.; Van Gorder, Robert A.; Valderhaug, Aasgeir M.; Birkeland, Rolf G.; Wegge, Harald

    2017-10-01

    The most common technological route for metallurgical silicon production is to feed quartz and a carbon source ( e.g., coal, coke, or charcoal) into submerged-arc furnaces, which use electrodes as electrical conductors. We develop a mathematical model of a silicon furnace. A continuum approach is taken, and we derive from first principles the equations governing the time evolution of chemical concentrations, gas partial pressures, velocity, and temperature within a one-dimensional vertical section of a furnace. Numerical simulations are obtained for this model and are shown to compare favorably with experimental results obtained using silicon pilot furnaces. A rising interface is shown to exist at the base of the charge, with motion caused by the heating of the pilot furnace. We find that more reactive carbon reduces the silicon monoxide losses, while reducing the carbon content in the raw material mixture causes greater solid and liquid material to build-up in the charge region, indicative of crust formation (which can be detrimental to the silicon production process). We also comment on how the various findings could be relevant for industrial operations.

  6. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A WALL-FIRED UTILITY BOILER (EDGEWATER LIMB DEMONSTRATION)

    Science.gov (United States)

    The report gives results of the full-scale demonstration of Limestone Injection Multistage Burner (LIMB) technology on the coal-fired, 105 MW, Unit 4 boiler at Ohio Edison's Edgewater Station. eveloped as a technology aimed at moderate levels of sulfur dioxide (SO2) and nitrogen ...

  7. Sorbents for effective removal of radioactive antimony during chemical decontamination

    International Nuclear Information System (INIS)

    Nishad, Padala Abdul; Bhaskarapillai, Anupkumar; Velmurugan, Sankaralingam

    2014-01-01

    Removal of radioactive antimony is a challenging problem. Often, during decontamination, they get mobilized around the system and redeposit in different areas thus offsetting the reduction in the radiation field obtained by removing other activities such as 60 Co. Thus, there is a clear need for better antimony removing materials/strategies for effective reactor decontamination. In this regard, six commercially available sorbents namely, Tulsion A33 (strong base anion (-OH) resin), Amberlite IRC-718 (chelating resin), Radex ® Sb-1000, nano TiO 2 -special grade (Inorganic type IX), Chitosan (biosorbent) and Aeroxide p25 (nano TiO 2 , Inorganic type IX) were evaluated for their antimony sorption properties. Radex ® and TiO 2 based materials were found to be more effective in removing both Sb(V) and Sb(III). Solution pH was seen to significantly influence the antimony sorption and the effect was more prominent in anion resin, when tested under column conditions. Apart from the commercial sorbents, we have synthesised a robust high performing sorbent (TA-Chitosan beads) in the form of stable beads, using nano-TiO 2 and chitosan. The beads were found to retain the antimony sorption properties of the nano-TiO 2 , while adapting a physical format suitable for large scale operations. The sorbent exhibited almost complete sorption of antimony both in low (ppb level) as well as high concentrations of antimony. The suitability of the beads for use in column mode has been established and its radiation stability was probed in detail. The beads were found to be stable to irradiations as ascertained from the TOC values and unchanged sorption properties. The sorption properties of the CHITA beads in typical decontamination formulation containing mixture of complexing agents have been investigated in detail. (author)

  8. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    International Nuclear Information System (INIS)

    Waysbort, Daniel; McGarvey, David J.; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M.; Durst, H. Dupont

    2009-01-01

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green TM , has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO 4 -2 ) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t 1/2 ≤ 4 min), 1:10 for HD (t 1/2 1/2 < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD

  9. Strategic Design and Optimization of Inorganic Sorbents for Cesium, Strontium and Actinides

    International Nuclear Information System (INIS)

    Maginn, Edward J.

    2009-01-01

    The primary objective of the Notre Dame component of the project was computational in nature. The goal was to provide a design tool for the synthesis of optimized sorbents for the removal of cesium, strontium and actinides from nuclear waste solutions. Molecular modeling enables us to observe and better understand the molecular level interactions that govern the selectivity of specific radionuclides in a particular sorbent. The research focused on the development and validation of a suitable and transferable model for all the cations and ion exchangers of interest, nd then subsequent simulations which determined the siting and mobility of water and cations. Speciic accomplishments include: (1) improving existing intermolecular force fields to accurately model the sorbents of interest; (2) utilizing energy-minimizations and molecular dynamics simulations for structural prediction of CST and niobium-substituted CST materials; (3) determining Na+/water positions in polyoxoniobate materials using molecular dynamics simulations; and (4) developing Hybrid Monte Carlo methods for improved structural prediction.

  10. Experimental Study on Environment Friendly Tap Hole Clay for Blast Furnace

    Science.gov (United States)

    Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.

    2018-03-01

    Blast furnace (BF) is the best possible route of iron production available. Blast furnace is a high pressure vessel where iron ore is melted and liquid iron is produced. The liquid iron is tapped through the hole in Blast Furnace called tap hole. The tapped liquid metal flowing through the tap hole is plugged using a clay called tap hole clay. Tap hole clay (THC) is a unshaped refractory used to plug the tap hole. The tap hole clay extruded through the tap hole using a gun. The tap hole clay is designed to expand and plug the tap hole. The tap hole filled with clay is drilled using drill bit and the hole made through the tap hole to tap the liquid metal accumulated inside the furnace. The number of plugging and drilling varies depending on the volume of the furnace. The tap hole clay need to have certain properties to avoid problems during plugging and drilling. In the present paper tap hole clay properties in industrial use was tested and studied. The problems were identified related to tap hole clay manufacturing. Experiments were conducted in lab scale to solve the identified problems. The present composition was modified with experimental results. The properties of the modified tap hole clay were found suitable and useful for blast furnace operation with lab scale experimental results.

  11. Design of safety monitor system for operation sintering furnace ME-06

    International Nuclear Information System (INIS)

    Sugeng Rianto; Triarjo; Djoko Kisworo; Agus Sartono

    2013-01-01

    Design of safety monitoring system for safety operation of sinter furnace ME-06 has been done. Parameters monitored during this operation include: temperature, gas pressure, flow rate of gas, voltage and current furnace. For sintering furnace temperature system that monitored were the temperature of the furnace temperature, the temperature of the cooling water system inlet and outlet, temperature of flow hydrogen gas inlet and outlet. For pressure system and flow rate gas sinter furnace which monitored the pressure and flow rate of hydrogen gas inlet and outlet. The system also monitors current and voltage applied to the sinter furnace heating system. Monitor system hardware consists of: the system temperature sensor, pressure, rate and data acquisition systems. While software systems using the labview driver interface that connects the hard and software systems. Function test results during sintering operation for setting the temperature 1700 °C sintering temperature increases the ramp function by 250 °C/hour average measurements obtained when the sintering time 1707.016 °C with a standard deviation of 0.38 °C. The maximum temperature of the hydrogen gas temperature 35.4 °C. The maximum temperature of the cooling water system 27.4 °C. The maximum pressure of 1,911 bar Gas Inlet and outlet of 0,051 bar. Maximum inlet gas flow 12.996 L / min and outlet 14.086 L / min. (author)

  12. Mathematical Determination of Thermal Load for Fluidised Bed Furnaces Using Sawdust

    Directory of Open Access Journals (Sweden)

    Antonescu Nicolae

    2014-06-01

    Full Text Available For technical applications, a physical model capable of predicting the particle evolution in the burning process along its trajectory through the furnace is very useful. There are two major demands: all the thermo-dynamic processes that describe the particle burning process must be accounted and the model must be written in such equation terms to allow the intervention for parameter settings and particle definition. The computations were performed for the following parameters: furnace average temperature between 700 and 1200 °C, size of the sawdust particle from 4 to 6 mm and fix carbon ignition between 500 and 900 °C. The values obtained for the characteristic parameters of the burning process ranged from 30 to 60 [kg/(h·m3] for the gravimetrical burning speed WGh and from 150 to 280 [kW/m3] for the volumetric thermal load of the furnace QV. The main conclusion was that the calculus results are in good agreement with the experimental data from the pilot installations and the real-case measurements in the sawdust working boiler furnaces or pre-burning chambers. Another very important conclusion is that the process speed variation, when the furnace temperature changes, confirms the thermo-kinetic predictions, namely that the burning process speed decreases when the furnace temperature increases.

  13. Colloid stable sorbents for cesium removal: Preparation and application of latex particles functionalized with transition metals ferrocyanides

    Energy Technology Data Exchange (ETDEWEB)

    Avramenko, Valentin [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Bratskaya, Svetlana, E-mail: sbratska@ich.dvo.ru [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Zheleznov, Veniamin; Sheveleva, Irina [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Voitenko, Oleg [Far Eastern Federal University, Laboratory of Electron Microscopy and Image Processing, 27, Oktyabr' skaya Street, Vladivostok 690950 (Russian Federation); Sergienko, Valentin [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation)

    2011-02-28

    In this paper we suggest a principally new approach to preparation of colloid stable selective sorbents for cesium uptake using immobilization of transition metals (cobalt, nickel, and copper) ferrocyanides in nanosized carboxylic latex emulsions. The effects of ferrocyanide composition, pH, and media salinity on the sorption properties of the colloid stable sorbents toward cesium ions were studied in solutions containing up to 200 g/L of sodium nitrate or potassium chloride. The sorption capacities of the colloid sorbents based on mixed potassium/transition metals ferrocyanides were in the range 1.3-1.5 mol Cs/mol ferrocyanide with the highest value found for the copper ferrocyanide. It was shown that the obtained colloid-stable sorbents were capable to penetrate through bulk materials without filtration that made them applicable for decontamination of solids, e.g. soils, zeolites, spent ion-exchange resins contaminated with cesium radionuclides. After decontamination of liquid or solid radioactive wastes the colloid-stable sorbents can be easily separated from solutions by precipitation with cationic flocculants providing localization of radionuclides in a small volume of the precipitates formed.

  14. Liquid flow in the hearth of the blast furnace

    International Nuclear Information System (INIS)

    Gauje, P.; Nicolle, R.; Steiler, J.M.; Venturini, M.J.; Libralesso, J.M.

    1992-01-01

    The hearth of a blast furnace is poorly known. Our approach to characterize the hearth involves classical methods of chemical engineering, assessing the flow conditions by means of radioactive tracer techniques. The most important feature of this study is to combine measurements on industrial blast furnaces, experiments on a small scale model and flow model. calculations. 8 refs., 16 figs

  15. Granulated blast furnace slag – A boon for foundry industry

    African Journals Online (AJOL)

    Keywords: Silica sand; Blast Furnace Slag; Mould properties; Ferrous and nonferrous ... raw material for the production of cast components in foundry industries. ... applications for conserving natural resources and reduce the cost of the raw .... in an elevated temperature melting furnace with temperature values of 750 to.

  16. Modeling of glass fusion furnaces; Modelisation des fours de fusion de verre

    Energy Technology Data Exchange (ETDEWEB)

    Mechitoua, N. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Plard, C. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    1997-12-31

    The furnaces used for glass melting are industrial installations inside which complex and coupled physical and chemical phenomena occur. Thermal engineering plays a major role and numerical simulation is a precious tool for the analysis of the different coupling, of their interaction and of the influence of the different parameters. In order to optimize the functioning of glass furnaces and to improve the quality of the glass produced, Electricite de France (EdF) has developed a specialized version of the ESTET fluid mechanics code, called `Joule`. This paper describes the functioning principle of glass furnaces, the interactions between heat transfers and flows inside the melted glass, the interactions between heat transfers and the thermal regulation of the furnace, the interactions between heat transfers and glass quality and the heat transfer interactions between the melted glass, the furnace walls and the combustion area. (J.S.)

  17. Ecologically friendly ways to clean up oil spills in harbor water areas: crude oil and diesel sorption behavior of natural sorbents.

    Science.gov (United States)

    Paulauskiene, Tatjana

    2018-04-01

    This work aimed to evaluate the sorption capacity of natural sorbents (wool, moss, straw, peat) and their composites during the sorption of crude oil and of diesel overspread on the water surface. The work presents the research results of the maximum sorption capacity of the sorbents/their composites using crude oil/diesel; the sorption capacity of the sorbents/their composites when crude oil/diesel is spilled on the water surface; and the research results of the unrealized part of the crude oil/diesel in the sorbents. The results of the analysis showed that all the sorbents and their composites have their selectivity to crude oil less than 50%. Also the results showed that the distribution of diesel and water in the sorbents and their composites is very different compared with the distribution of crude oil during the sorption analyses. In total, the diesel in the liquid mass absorbed by the straw and the peat amounted to 17 and 20%, respectively. This shows that these sorbents are much more selective for water but not for diesel. A larger part of the diesel was in the liquid amount absorbed by the composites-up to 33%. Accordingly, the use of these composites in watery environments is much more effective than the use of individual sorbents. The composition of sorbents in the composite enhanced both the hydrophobic and the oleophilic properties; as a result, a more effective removal of the diesel and oil from the water surface was achieved.

  18. X-ray diffractometry of steam cured ordinary Portland and blast-furnace-slag cements

    International Nuclear Information System (INIS)

    Camarini, G.; Djanikian, J.G.

    1994-01-01

    This work studies some aspects of the phases produced by hydration of ordinary and blast-furnace-slag cements, at normal conditions and steam cured (60 and 95 0 C), using an X-ray diffraction technique. The blast-furnace-slag cement was a mixture of 50% of ordinary Portland cement and 50% of blast-furnace-slag (separately grinding). After curing the X-ray diffraction reveals that, in relation to ordinary Portland cement, the main phases in blast-furnace-slag cement are hydrated silicates and aluminates, hydro garnet, etringitte and mono sulphate. After steam curing the hydration of blast-furnace-slag cement proceeds. This is a result of the slag activation by the curing temperature. (author). 8 refs., 3 figs., 1 tab

  19. Development of the high temperature sintering furnace for DUPIC fuel fabrication

    International Nuclear Information System (INIS)

    Lee, Jung Won; Kim, B. G.; Park, J. J.; Yang, M. S.; Kim, K. H.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.

    1998-11-01

    This report describes the development of the high temperature sintering furnace for manufacturing DUPIC (Direct Use of spent PWR fuel in CANDU reactors) fuel pellets. The furnace has to be remotely operated and maintained in a high radioactive hot cell using master-slave manipulators. The high temperature sintering furnace for manufacturing DUPIC fuel pellets, which is satisfied with the requirements of remote operation and maintenance in a hot cell, was successfully developed and installed in the M6 hot cell at IMEF (Irradiated Material Examination Facility). The functional and thermal performance test was also successfully completed. The technology accumulated during developing this sintering furnace became the basis of other DUPIC equipment development, and will be very helpful in the development of equipment for use in hot cell in the future. (author). 20 figs

  20. Immobilized humic substances and immobilized aggregates of humic substances as sorbent for solid phase extraction.

    Science.gov (United States)

    Erny, Guillaume L; Gonçalves, Bruna M; Esteves, Valdemar I

    2013-09-06

    In this work, humic substances (HS) immobilized, as a thin layer or as aggregates, on silica gel were tested as material for solid phase extraction. Some triazines (simazine, atrazine, therbutylazine, atrazine-desethyl-desisopropyl-2-hydroxy, ametryn and terbutryn), have been selected as test analytes due to their environmental importance and to span a large range of solubility and octanol/water partition coefficient (logP). The sorbent was obtained immobilizing a thin layer of HS via physisorption on a pre-coated silica gel with a cationic polymer (polybrene). While the sorbent could be used as it is, it was demonstrated that additional HS could be immobilized, via weak interactions, to form stable humic aggregates. However, while a higher quantity of HS could be immobilized, no significant differences were observed in the sorption parameters. This sorbent have been tested for solid phase extraction to concentrate triazines from aqueous matrixes. The sorbent demonstrated performances equivalent to commercial alternatives as a concentration factor between 50 and 200, depending on the type of triazines, was obtained. Moreover the low cost and the high flow rate of sample through the column allowed using high quantity of sorbent. The analytical procedure was tested with different matrixes including tap water, river water and estuarine water. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Krutka, Holly; Sjostrom, Sharon

    2011-07-31

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines, 31 carbon based materials, 6 zeolites, 7 supported carbonates (evaluated under separate funding), 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different

  2. Metal diffusion from furnace tubes depends on location

    International Nuclear Information System (INIS)

    Albright, L.F.

    1988-01-01

    Studies of metal samples from an ethylene furnace on the Texas Gulf Coast, using a scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDAX), reveal preferential diffusion of chromium, titanium, and aluminum in the coil wall to the surfaces of the tube where they form metal oxides. These elements are gradually depleted from the tube wall. Complicated surface reactions that include the formation of several metal oxides, metal sulfides, and metal-catalyzed coke also occur. Several mechanisms can be postulated as to how metal fines or compounds are formed and transferred in the coil and transfer lines exchanger (TLX) of ethylene units. These surface reactions directly or indirectly affect coke formation in the tube. Finally, creep in the coils is likely a factor in promoting corrosion. Such creep is promoted by variable temperature-time patterns to which a coil is exposed during pyrolysis, and then decoking. Periods of stress and compression occur in the coil walls. Knowledge of the diffusion and reactions that take place can result in better furnace operations and decoking procedures to extend the life of the furnace tubes. In this second installment of a four-part series, photomicrographs of four pyrolysis tube samples from the ethylene furnace indicate that significant differences existed between the outer surfaces, inner surfaces, and cross-sectional areas of the samples. The first installment of the series dealt with coke

  3. Analysis of combustion efficiency in a pelletizing furnace

    Directory of Open Access Journals (Sweden)

    Rafael Simões Vieira de Moura

    Full Text Available Abstract The objective of this research is to assess how much the improvement in the combustion reaction efficiency can reduce fuel consumption, maintaining the same thermal energy rate provided by the reaction in a pelletizing furnace. The furnace for pelletizing iron ore is a complex thermal machine, in terms of energy balance. It contains recirculation fan gases and constant variations in the process, and the variation of a single process variable can influence numerous changes in operating conditions. This study demonstrated how the main variables related to combustion in the burning zone influence fuel consumption (natural gas from the furnace of the Usina de Pelotização de Fábrica (owned by VALE S/A, without changing process conditions that affect production quality. Variables were analyzed regarding the velocity and pressure of the fuel in the burners, the temperature of the combustion air and reactant gases, the conversion rate and the stoichiometric air/fuel ratio of the reaction. For the analysis, actual data of the furnace in operation was used, and for the simulation of chemical reactions, the software Gaseq® was used. The study showed that the adjustment of combustion reaction stoichiometry provides a reduction of 9.25% in fuel consumption, representing a savings of US$ 2.6 million per year for the company.

  4. Sulfation diffusion model for SO{sub 2} capture on the T-T sorbent at moderate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.R.; Yang, L.Z.; You, C.F.; Qi, H.Y. [Tsinghua University, Beijing (China)

    2009-07-15

    A sulfation model was developed for dry flue gas desulfurization (FGD) at moderate temperatures to describe the reaction characteristics of the T-T sorbent clusters and the fine CaO particles that fall off the sorbent grains in a circulating fluidized bed (CFB) reactor. The cluster model describes the calcium conversion and reaction rate for various size sorbent clusters. The sulfation reaction is first order with respect to the SO{sub 2} concentration above 973 K. The calcium conversion and reaction rate for the CaO particles were obtained by extrapolation. In the model for CaO particle, the reaction rate is linearly related to the calcium conversion and the SO{sub 2} concentration in the rapid reaction stage and linearly related only with the calcium conversion after the product layer forms. The sulfation model accurately describes the sulfation of the T-T sorbent flowing through a CFB reactor.

  5. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    International Nuclear Information System (INIS)

    Brum, Daniel M.; Lima, Claudio F.; Robaina, Nicolle F.; Fonseca, Teresa Cristina O.; Cassella, Ricardo J.

    2011-01-01

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO 3 , the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO 3 medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  6. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Brum, Daniel M.; Lima, Claudio F. [Departamento de Quimica, Universidade Federal de Vicosa, A. Peter Henry Rolfs s/n, Vicosa/MG, 36570-000 (Brazil); Robaina, Nicolle F. [Departamento de Quimica Analitica, Universidade Federal Fluminense, Outeiro de S.J. Batista s/n, Centro, Niteroi/RJ, 24020-141 (Brazil); Fonseca, Teresa Cristina O. [Petrobras, Cenpes/PDEDS/QM, Av. Horacio Macedo 950, Ilha do Fundao, Rio de Janeiro/RJ, 21941-915 (Brazil); Cassella, Ricardo J., E-mail: cassella@vm.uff.br [Departamento de Quimica Analitica, Universidade Federal Fluminense, Outeiro de S.J. Batista s/n, Centro, Niteroi/RJ, 24020-141 (Brazil)

    2011-05-15

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO{sub 3}, the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO{sub 3} medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  7. High temperature capture of CO2 on lithium-based sorbents from rice husk ash.

    Science.gov (United States)

    Wang, Ke; Guo, Xin; Zhao, Pengfei; Wang, Fanzi; Zheng, Chuguang

    2011-05-15

    Highly efficient Li(4)SiO(4) (lithium orthosilicate)-based sorbents for CO(2) capture at high temperature, was developed using waste materials (rice husk ash). Two treated rice husk ash (RHA) samples (RHA1 and RHA2) were prepared and calcined at 800°C in the presence of Li(2)CO(3). Pure Li(4)SiO(4) and RHA-based sorbents were characterized by X-ray fluorescence, X-ray diffraction, scanning electron microscopy, nitrogen adsorption, and thermogravimetry. CO(2) sorption was tested through 15 carbonation/calcination cycles in a fixed bed reactor. The metals of RHA were doped with Li(4)SiO(4) resulting to inhibited growth of the particles and increased pore volume and surface area. Thermal analyses indicated a much better CO(2) absorption in Li(4)SiO(4)-based sorbent prepared from RHA1 (higher metal content sample) because the activation energies for the chemisorption process and diffusion process were smaller than that of pure Li(4)SiO(4). RHA1-based sorbent also maintained higher capacities during the multiple cycles. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Environment

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    IGT's efforts in environmental protection are primarily concerned with reducing the level of undesirable emissions from combustion, treating solid and liquid waste materials, and producing cleaner fuels. Projects being funded include: an ultra-low-emission gas-fired cyclonic burner for firetube boiler retrofit; a combination of IGT's de-NOX technology for municipal solid waste combustors with the injection of sorbents to reduce pollutants; second-generation NOx reduction techniques for regenerative glass melting furnaces; investigation of the applicability of electric DC field flame stabilization; development of a slagging cyclonic combustor for a class of industrial solid wastes; remediation research of various biological, chemical, and thermal technologies for cleaning and/or immobilizing contaminants in soils and sludges; and fuel cell research on molten carbonate and solid oxide fuel cells

  9. Video monitoring system for enriched uranium casting furnaces

    International Nuclear Information System (INIS)

    Turner, P.C.

    1978-03-01

    A closed-circuit television (CCTV) system was developed to upgrade the remote-viewing capability on two oralloy (highly enriched uranium) casting furnaces in the Y-12 Plant. A silicon vidicon CCTV camera with a remotely controlled lens and infrared filtering was provided to yield a good-quality video presentation of the furnace crucible as the oralloy material is heated from 25 to 1300 0 C. Existing tube-type CCTV monochrome monitors were replaced with solid-state monitors to increase the system reliability

  10. Nonmetallic inclusions in carbon steel smelted in plasma furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shengelaya, I B; Kostyakov, V N; Nodiy, T K; Imerlishvili, V G; Gavisiani, A G [AN Gruzinskoj SSR, Tbilisi. Inst. Metallurgii

    1979-01-01

    A complex investigation on nonmetallic inclusions in carbon cast iron, smelted in plasma furnace in argon atmosphere and cast partly in the air and partly in argon atmosphere, has been carried out. As compared to open-hearth furnace carbon steel, the test metal was found to contain more oxide inclusions and nitrides; besides, in chromium-containing metal, chromium nitrides form the larger part of nitrides.

  11. Identifying parameter windows for sulfur removal by direct limestone injection in the rich zone of staged heat engine combustors

    International Nuclear Information System (INIS)

    Colaluca, M.A.

    1990-01-01

    Recent experimental evidence suggests the possibility of sulfur cleanup by direct injection at gas temperatures that do not thermodynamically favor the absorption of sulfur by the limestone. The purpose of this paper is to analytically investigate possible mechanistic explanations of this observed sulfur capture with the goal of evaluating the potential for limestone injection sulfur capture in direct coal fired gas turbine and diesel engine (heat engines) combustion applications. The method was to use current available data on the physical properties of limestone, and the rates of the pertinent reactions, and to develop mathematical models of the processes experienced by the sorbent particles. The models were then used to predict extent of capture at the high-pressure, high-temperature, short residence time conditions of interest. The goal was to first investigate capture in a single-pulse reactor (combustion bomb) and then to extrapolate these results to advanced coal-fired heat engine combustion environments. Model predictions were in good agreement with observed sulfur capture in cold wall combustion bomb studies and suggest that efficient sulfur capture (in excess of 80 percent calcium utilization) may b e possible when limestone sorbents are injected into high-temperature combustion products, even when the gas temperatures exceed the thermodynamically favored temperature window by several hundred kelvins. This behavior is possible because particle temperatures are moderated and held at levels that favor sulfur capture due to the strongly endothermic calcination reaction

  12. Investigation and analysis of the usefulness of the Zellik method to design energy conserving electric furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, L.; Fay, G.

    1984-01-01

    The characteristics predetermined by the method Zellik in designing the electrical furnaces isolated traditionally are comparable with measured values of furnaces in operation. The newest furnaces have been built with isolation resulting in a lower energy consumption. To plot the static characteristics, the furnace was heated up three times to the steady state. In determining the static heat capacity the stored heat was measured by the conventional method. With a view to determining the kinetic heat capacity the furnace was heated up at different rates. On the base of the operating results of the furnace can be stated both the practicability of the method Zellik and the improvement of the characteristics of the furnace isolated with fibrous material.

  13. The cleaning of the soils polluted by oil and radionuclides by natural sorbents

    International Nuclear Information System (INIS)

    Farajov, M.F.; Shamilov, E.N.; Abdullayev, A.S.; Huseynov, V.I.

    2005-01-01

    Full text : Problem of environmental pollution in oil extracting areas of Absheron peninsula became the very important discussion object lately. It this areas for many years oil and well waters were flowed to environmental areas caused a lot of pools in that areas and at the result the soil and plants were polluted with oil and radionuclides. By last years researches it was revealed that amount of radium 226 oil well water contains 10 - 500 Bq/l. Sometimes amount of radium 226 in polluted soils is increasing to 2000--5000 Bq/l and at the result it is raising probability of entering radionuclides by the way of migration from ground to plants into the nutrition chain cycle. Thus the polluted areas with oil and radionuclides and also when oil spills from oil-pipes by an accident the deactivation of soils is one of the main and most actual problems. In researches for cleaning of polluted soils with radionuclides for the first time were used the phyto sorbent modified breccias forms taken from Chaildag, Gobu, and Lokbatan mud volcano areas. The mineral contain of volcano mud generally consists of clay rocks -(kaolinit, montmorillonit, zeolite, chlorite, biotit) pyrite, and i.e.[2]. The polluted soil samples were taken in Surakhani region from area with the 150 mikroroentgen per hour radiation background. The contain and amount of radionuclides were determined with the radio spectrometer P rogress - Beta - Gamma . Polluted soil samples firstly are washed by hot water and HCl solution by mixing for 3-5 hours. At the next level by adding pieced sorbent into the solution is intensively mixing by mixer and putting for sedimentation for 24 hours. After sedimentation the stiring process is repeated by adding HCl on the sediment again. The soil is stirred by water for last time. Decomposed solutions from soil are adhering and are maked with sorbent again. Thus the soil is quite cleaned from oil and radionuclides by the sorbents we offer. At the same time this sorbents may be

  14. Method of burning highly reactive strongly slagging coal dust in a chamber furnace

    Energy Technology Data Exchange (ETDEWEB)

    Protsaylo, M.Ya.; Kotler, V.R.; Lobov, G.V.; Mechev, V.P.; Proshkin, A.V.; Zhuravlev, Yu.A.

    1982-01-01

    In the chamber furnace in order to reduce slagging, it is proprosed that, above the coal dust burners, nozzles be installed with inclination downwards through which air is fed in a mixture with flue gases. Under the influence of this flue gas-air mixture, the coal dust flame is deviated downwards. In this case there is an increase in the length of the flame and degree of filling of the volume of the furnace with the flame. This increases the effectiveness of dust burning. The input into the furnace of fuel jointly with the air and flue gases (optimally 10-15% of the total quantity of gases formed during fuel combustion) makes it possible to reduce the temperature in the furnace and the probability of slagging of the furnace walls.

  15. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Waysbort, Daniel [Israel Institute for Biological Research, PO Box 19, Ness-Ziona 74100 (Israel); McGarvey, David J. [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)], E-mail: david.mcgarvey@us.army.mil; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M. [SAIC, P.O. Box 68, Gunpowder Branch, Aberdeen Proving Ground, MD 21010 (United States); Durst, H. Dupont [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green{sup TM}, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO{sub 4}{sup -2}) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t{sub 1/2} {<=} 4 min), 1:10 for HD (t{sub 1/2} < 2 min with molybdate), and 1:10 for GD (t{sub 1/2} < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  16. EFFECTS OF BLAST-FURNACE SLAG ON NATURAL POZZOLAN-BASED GEOPOLYMER CEMENT

    Directory of Open Access Journals (Sweden)

    MAHSHAD YAZDANIPOUR

    2011-03-01

    Full Text Available A number of geopolymer cement mixes were designed and produced by alkali-activation of a pumice-type natural pozzolan. Effects of blast-furnace slag on basic engineering properties of the mixes were studied. Different engineering properties of the mixes such as setting times and 28-day compressive strength were studied at different amounts of blast-furnace slag, sodium oxide content, and water-to-cement ratio. The mix comprising of 5 wt.% blast-furnace slag and 8 wt.% Na2O with a water-to-dry binder ratio of 0.30 exhibits the highest 28-day compressive strength, i.e. 36 MPa. Mixes containing 5 wt.% of ground granulated blast furnace slag showed the least efflorescence or best soundness. Laboratory techniques of X-ray diffractometry (XRD, fourier transform infrared spectroscopy (FTIR, and scanning electron microscopy (SEM were utilized for characterizing a number of mixes and studying their molecular and micro-structure. Investigations done by scanning electron microscopy confirm that smaller blast-furnace slag particles react totally while the larger ones react partially with alkaline activators and contribute to the formation of a composite microstructure.

  17. Concentration and immobilization of 137Cs from liquid radioactive waste using sorbents based on hydrated titanium and zirconium oxides

    Science.gov (United States)

    Voronina, A. V.; Noskova, A. Y.; Gritskevich, E. Y.; Mashkovtsev, M. A.; Semenishchev, V. S.

    2017-09-01

    The possibility of use of sorbents based on hydrated titanium and zirconium oxides (T-3A, T-35, NPF-HTD) for concentration and immobilization of 137Cs from liquid radioactive waste of various chemical composition (fresh water, seawater, solutions containing NaNO3, ammonium acetate, EDTA) was evaluated. It was shown that the NPF-HTD and T-35 sorbents separate 137Cs from fresh water and seawater with distribution coefficients as high as 6.2.104 and 6.1.104, 4.0.105 and 1.6.105 L kg-1 respectively; in 1 M ammonium acetate these values were 2.0.103 and 1.0.103 L kg-1. The NPF-HTD sorbent showed the highest selectivity for cesium in NaNO3 solution: cesium distribution coefficients in 1M NaNO3 was 1.4.106 L kg-1. All studied sorbents are suitable for deactivation of solutions containing EDTA. Cesium distribution coefficients were around 102-103 L kg-1 depending on EDTA concentration. Chemical stability of the sorbents was also studied. It was shown that 137Cs leaching rate from all sorbents meet the requirements for matrix materials.

  18. Graphite electrode DC arc furnace system for treatment of environmentally undesirable solid waste

    International Nuclear Information System (INIS)

    Titus, C.H.

    1993-01-01

    A gas tight DC arc furnace system using graphite electrodes is ideally suited for destruction of organic materials, compaction of metallic materials, and vitrification of inorganic waste materials. A graphite electrode DC arc furnace system which was developed by Electro-Pyrolysis, Inc. has been used to demonstrate that iron basalt soil containing various surrogate nonradioactive materials found on Department of Energy's Atomic Energy Sites and hospital waste can be reduced to a compact, vitrified, solid material which is environmentally acceptable and will pass TCLP leachate tests. A second graphite electrode DC arc furnace system is presently under construction and will be in operation at MIT during the second quarter of 1993. This furnace system is designed for demonstration of waste treatment and stabilization at a rate of 500 pounds per hour and will also be used for development and performance evaluation of diagnostic techniques and equipment for measuring and understanding internal furnace temperature profiles, gas entrained particulate composition, and particulate size distribution in various locations in the furnace during operation

  19. Modelling of carry-over in recovery furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrai, Reza [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Metallurgy

    2000-04-01

    Development of mathematical modelling of the combustion process in the furnace of recovery boilers is the subject of this work. This work as a continuation of many years of modelling efforts carried out at KTH/Vaerme- och Ugnsteknik focussed particularly on: char bed modelling; droplets-wall interaction modelling; and carry-over modelling. The char bed model has been studied. Droplets/parcels were considered as a single reactor working independently of the other droplets. The mass of the droplets was not distributed uniformly but induced in the landing place. The droplets hitting the char bed will stick to it and they are alive and part of the calculation. In this way the distribution of the mass on the char bed is only dependent on the parameters which effect flight history such as droplet/parcel diameter, boilers flow field, etc. The droplet- wall interaction model has been studied and found to be very important for obtaining the correct temperature distribution in the recovery furnace. The new approach is based on removal of droplets which hits the wall in the upper part of the recovery boiler from carryover calculation. This model has been proposed and implemented into the GRFM (General Recovery Furnace Model). The carryover modelling effort was based on mass balance in which the number and physical statistics of the droplets/parcel were estimated and the amount of unburned mass was calculated. All of the above listed models were tested together with all other models of heat and mass transfer processes in recovery furnaces using a GRFM. Three-dimensional numerical simulations of the industrial recovery boiler (63 kg/s, 82 bar, 480 deg C) were performed. The number of grid was 232,000 and the number of air ports in this simulation was 178. The air entering the furnace by these ports has different flow rates. Flow and temperature fields as well as species distributions were calculated. The results show good agreement with previously published data and modelling

  20. Determination of wall wear of glassmelting furnaces by a nuclear technique

    International Nuclear Information System (INIS)

    Harsanyi, Gyoergy; Kodolanyi, Andras; Leitner, Laszlo

    1984-01-01

    A new in-service inspection technique of glassmelting furnaces is reported. Isotope-labelled refractory tank blocks were prepared, tested experimentally, and built into the furnace. Sup(60)Co isotope tracer was used. The residual wall thickness of the labelled blocks were determined by periodical radiation dose measurements. No environmental or health damage is caused by the specific activity of 3.7 - 4 Bq/g of the labelled furnace blocks, the dose rate in a distance of 1 m from the wall was as low as 0.05 mR/h. (P.J.)

  1. LOW CONCENTRATION MERCURY SORPTION MECHANISMS AND CONTROL BY CALCIUM-BASED SORBENTS; APPLICATION IN COAL-FIRED PROCESSES

    Science.gov (United States)

    The capture of elemental mercury (Hgo) and mercuric chloride (HgCl2) by three types of calcium (Ca)-based sorbents was examined in this bench-scale study under conditions prevalent in coal fired utilities. Ca-based sorbent performances were compared to that of an activated carbon...

  2. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents

    International Nuclear Information System (INIS)

    Boujelben, N.; Bouzid, J.; Elouear, Z.; Feki, M.; Jamoussi, F.; Montiel, A.

    2008-01-01

    New filtration materials covered with metallic oxides are good adsorbents for both cation and anion forms of pollutants. Sfax is one of the most important industrial towns in Tunisia. Its phosphate manufacture in particular is causing considerable amounts of water pollution. Therefore, there is a need to find out a new way of getting rid of this excessive phosphate from water. This work is aimed to examining the potential of three sorbent materials (synthetic iron oxide coated sand (SCS), naturally iron oxide coated sand (NCS) and iron oxide coated crushed brick (CB)) for removing phosphate ions from aqueous solutions. According to our literature survey CB was not used as adsorbent previously. Phosphate ions are used here as species model for the elimination of other similar pollutants (arsenates, antimonates). Optical microscope and scanning electron microscope (SEM) analyses were used to investigate the surface properties and morphology of the coated sorbents. Infra-red spectroscopy and X-ray diffraction techniques were also used to characterize the sorbent structures. Results showed that iron coated crushed brick possess more micro pores and a higher surface area owing to its clay nature. The comparative sorption of PO 4 3- from aqueous solutions by SCS, CB and NCS was investigated by batch experiments. The estimated optimum pH of phosphate ion retention for the considered sorbents was 5. The equilibrium data were analysed using the Langmuir and Freundlich isotherms. The sorption capacities of PO 4 3- at pH 5 were 1.5 mg/g for SCS, 1.8 mg/g for CB and 0.88 mg/g for NCS. The effect of temperature on sorption phenomenon was also investigated. The results indicated that adsorption is an endothermic process for phosphate ions removal. This study demonstrates that all the considered sorbents can be used as an alternative emerging technology for water treatment without any side effect or treatment process alteration

  3. Hydrogen sulfide removal from hot coal gas by various mesoporous silica supported Mn2O3 sorbents

    International Nuclear Information System (INIS)

    Zhang, Z.F.; Liu, B.S.; Wang, F.; Wang, W.S.; Xia, C.; Zheng, S.; Amin, R.

    2014-01-01

    Graphical abstract: - Highlights: • Mn 2 O 3 /KIT-1 presented the best desulfurization performance at 600–850 °C. • High sulfur capacity of Mn 2 O 3 /KIT-1 correlated closely with 3-D channel of KIT-1. • Desulfurization character depended strongly on framework structure of sorbents. • High steam content suppressed greatly the occurrence of sulfidation reaction. - Abstract: A series of 50 wt% Mn 2 O 3 sorbents was prepared using various mesoporous silica, MCM-41, HMS, and KIT-1 as support. The influence of textural parameters of mesoporous silica, especially type of channel on the desulfurization performance of Mn 2 O 3 sorbents was investigated at 600–850 °C using hot coal gas containing 0.33 vol.% H 2 S. The fresh and used sorbents were characterized by means of N 2 -adsorption, x-ray diffraction (XRD), high resolution transmission microscopy (HRTEM) and H 2 temperature- programmed reduction (H 2 -TPR) techniques. The results confirmed that the manganese oxide was dispersed highly in regular pore channel of the mesoporous supports due to high surface area. Compared with the Mn 2 O 3 /diatomite, all mesoporous silica supported Mn 2 O 3 sorbents exhibited high breakthrough sulfur capacity and a sharp deactivation rate after the breakthrough point. Compared to Mn 2 O 3 /MCM-41 and Mn 2 O 3 /HMS sorbent, the Mn 2 O 3 /KIT-1 showed better desulfurization performance because of the 3D wormhole-like channel. The high sulfur capacity of the Mn 2 O 3 /KIT-1 sorbent was maintained during the eight consecutive desulfurization-regeneration cycles. The Mn 2 O 3 /KIT-1 still presented high desulfurization activity when hot coal gas contained low steam (<5%)

  4. Dual layer hollow fiber sorbents: Concept, fabrication and characterization

    KAUST Repository

    Bhandari, Dhaval; Olanrewaju, Kayode O.; Bessho, Naoki; Breedveld, Victor; Koros, William J.

    2013-01-01

    and to ensure consistent sorption capacity over repeated cycles, a dense, thin polymer barrier layer on the fiber sorbents is needed to allow only thermal interactions between the sorbate loaded layer and the thermal regeneration fluid. This paper considers

  5. Hopewell Furnace NHS : alternative transportation study

    Science.gov (United States)

    2009-12-31

    This study assesses the potential for an alternative transportation system (ATS) at Hopewell Furnace National Historic Site (NHS). The Volpe Center investigated internal circulation and potential partnerships with local historic, cultural, and recrea...

  6. Effect of Scale on Slab Heat Transfer in a Walking Beam Type Reheating Furnace

    OpenAIRE

    Man Young Kim

    2013-01-01

    In this work, the effects of scale on thermal behavior of the slab in a walking-beam type reheating furnace is studied by considering scale formation and growth in a furnace environment. Also, mathematical heat transfer model to predict the thermal radiation in a complex shaped reheating furnace with slab and skid buttons is developed with combined nongray WSGGM and blocked-off solution procedure. The model can attack the heat flux distribution within the furnace and the temperature distribut...

  7. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification

    KAUST Repository

    Lively, Ryan P.; Bessho, Naoki; Bhandari, Dhaval A.; Kawajiri, Yoshiaki; Koros, William J.

    2012-01-01

    We describe thermally moderated multi-layered pseudo-monolithic hollow fiber sorbents entities, which can be packed into compact modules to provide small-footprint, efficient H2 purification/CO2 removal systems for use in on-site steam methane reformer product gas separations. Dual-layer hollow fibers are created via dry-jet, wet-quench spinning with an inner "active" core of cellulose acetate (porous binder) and zeolite NaY (69 wt% zeolite NaY) and an external sheath layer of pure cellulose acetate. The co-spun sheath layer reduces the surface porosity of the fiber and was used as a smooth coating surface for a poly(vinyl-alcohol) post-treatment, which reduced the gas permeance through the fiber sorbent by at least 7 orders of magnitude, essentially creating an impermeable sheath layer. The interstitial volume between the individual fibers was filled with a thermally-moderating paraffin wax. CO2 breakthrough experiments on the hollow fiber sorbent modules with and without paraffin wax revealed that the "passively" cooled paraffin wax module had 12.5% longer breakthrough times than the "non-isothermal" module. The latent heat of fusion/melting of the wax offsets the released latent heat of sorption/desorption of the zeolites. One-hundred rapidly cycled pressure swing adsorption cycles were performed on the "passively" cooled hollow fiber sorbents using 25 vol% CO2/75 vol% He (H2 surrogate) at 60 °C and 113 psia, resulting in a product purity of 99.2% and a product recovery of 88.1% thus achieving process conditions and product quality comparable to conventional pellet processes. Isothermal and non-isothermal dynamic modeling of the hollow fiber sorbent module and a traditional packed bed using gPROMS® indicated that the fiber sorbents have sharper fronts (232% sharper) and longer adsorbate breakthrough times (66% longer), further confirming the applicability of the new fiber sorbent approach for H2 purification. © 2012, Hydrogen Energy Publications, LLC

  8. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification

    KAUST Repository

    Lively, Ryan P.

    2012-10-01

    We describe thermally moderated multi-layered pseudo-monolithic hollow fiber sorbents entities, which can be packed into compact modules to provide small-footprint, efficient H2 purification/CO2 removal systems for use in on-site steam methane reformer product gas separations. Dual-layer hollow fibers are created via dry-jet, wet-quench spinning with an inner "active" core of cellulose acetate (porous binder) and zeolite NaY (69 wt% zeolite NaY) and an external sheath layer of pure cellulose acetate. The co-spun sheath layer reduces the surface porosity of the fiber and was used as a smooth coating surface for a poly(vinyl-alcohol) post-treatment, which reduced the gas permeance through the fiber sorbent by at least 7 orders of magnitude, essentially creating an impermeable sheath layer. The interstitial volume between the individual fibers was filled with a thermally-moderating paraffin wax. CO2 breakthrough experiments on the hollow fiber sorbent modules with and without paraffin wax revealed that the "passively" cooled paraffin wax module had 12.5% longer breakthrough times than the "non-isothermal" module. The latent heat of fusion/melting of the wax offsets the released latent heat of sorption/desorption of the zeolites. One-hundred rapidly cycled pressure swing adsorption cycles were performed on the "passively" cooled hollow fiber sorbents using 25 vol% CO2/75 vol% He (H2 surrogate) at 60 °C and 113 psia, resulting in a product purity of 99.2% and a product recovery of 88.1% thus achieving process conditions and product quality comparable to conventional pellet processes. Isothermal and non-isothermal dynamic modeling of the hollow fiber sorbent module and a traditional packed bed using gPROMS® indicated that the fiber sorbents have sharper fronts (232% sharper) and longer adsorbate breakthrough times (66% longer), further confirming the applicability of the new fiber sorbent approach for H2 purification. © 2012, Hydrogen Energy Publications, LLC

  9. [Detecting Thallium in Water Samples using Dispersive Liquid Phase Microextraction-Graphite Furnace Atomic Absorption Spectroscopy].

    Science.gov (United States)

    Zhu, Jing; Li, Yan; Zheng, Bo; Tang, Wei; Chen, Xiao; Zou, Xiao-li

    2015-11-01

    To develope a method of solvent demulsification dispersive liquid phase microextraction (SD-DLPME) based on ion association reaction coupled with graphite furnace atomic absorption spectroscopy (GFAAS) for detecting thallium in water samples. Methods Thallium ion in water samples was oxidized to Tl(III) with bromine water, which reacted with Cl- to form TlCl4-. The ionic associated compound with trioctylamine was obtained and extracted. DLPME was completed with ethanol as dispersive solvent. The separation of aqueous and organic phase was achieved by injecting into demulsification solvent without centrifugation. The extractant was collected and injected into GFAAS for analysis. With palladium colloid as matrix modifier, a two step drying and ashing temperature programming process was applied for high precision and sensitivity. The linear range was 0.05-2.0 microg/L, with a detection limit of 0.011 microg/L. The relative standard derivation (RSD) for detecting Tl in spiked water sample was 9.9%. The spiked recoveries of water samples ranged from 94.0% to 103.0%. The method is simple, sensitive and suitable for batch analysis of Tl in water samples.

  10. Through-furnace for burning solid organic substances

    International Nuclear Information System (INIS)

    Kemmler, G.; Schlich, E.

    1984-01-01

    The through-furnace for burning radio-active organic solid waste consists of a reaction pipe heated from the outside, an input device and an output device. A solid pump is used as the input device, which has a common longitudinal axis with the reaction pipe. The reaction pipe is widened in the transport direction of the combustion pipe, where the angle between the longitudinal axis and the pipe wall is 0.5 to 5 0 . The pipe wall is wholely or partially permeable to gas. The thermal treatment of the solid organic substances can occur by combustion or by pyrohydrolysis or pyrolysis in the through-furnace. (orig./HP) [de

  11. Glass Furnace Project, October 1982-March 1983

    International Nuclear Information System (INIS)

    Armstrong, K.M.; Klingler, L.M.

    1983-01-01

    In the Glass Furnace Project currently under way at Mound, a treatment technology for low-level radioactive waste is being evaluated that will combine volume reduction and immobilization in one step. Initial work focused on demonstrating the ability of the furnace to efficiently incinerate nonradioactive, simulated power-plant waste and on determining the adequacy of immobilization in a soda-lime silica matrix. Further evaluation of the system will involve a demonstration of the combustion and containment of radioactive waste. In preparation for this next phase of the program, preliminary investigation and design work were conducted during the past six months. 5 figures, 1 table

  12. CO_2 capture with solid sorbent: CFD model of an innovative reactor concept

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Gallorini, F.

    2016-01-01

    Highlights: • A new reactor solution based on rotating fixed beds was presented. • The preliminary design of the reactor was approached. • A CFD model of the reactor, including CO_2 capture kinetic, was developed. • The CFD model is validated with experimental results. • Sorbent exploitation increasing is possible thanks to the new reactor. - Abstract: In future decarbonization scenarios, CCS with particular reference to post-combustion technologies will be an important option also for energy intensive industries. Nevertheless, today CCS systems are rarely installed due to high energy and cost penalties of current technology based on chemical scrubbing with amine solvent. Therefore, innovative solutions based on new/optimized solvents, sorbents, membranes and new process designs, are R&D priorities. Regarding the CO_2 capture through solid sorbents, a new reactor solution based on rotating fixed beds is presented in this paper. In order to design the innovative system, a suitable CFD model was developed considering also the kinetic capture process. The model was validated with experimental results obtained by the authors in previous research activities, showing a potential reduction of energy penalties respect to current technologies. In the future, the model will be used to identify the control logic of the innovative reactor in order to verify improvements in terms of sorbent exploitation and reduction of system energy consumption.

  13. Multifunctional humate-based magnetic sorbent: Preparation, properties and sorption of Cu (II), phosphates and selected pesticides

    Czech Academy of Sciences Publication Activity Database

    Janoš, P.; Kormunda, M.; Novák, František; Životský, O.; Fuitová, J.; Pilařová, V.

    2013-01-01

    Roč. 73, č. 1 (2013), s. 46-52 ISSN 1381-5148 Grant - others:GA ČR(CZ) GAP106/12/1116 Program:GA Institutional support: RVO:60077344 Keywords : magnetic sorbent * humate-based sorbent * heavy metals * phosphate * pesticides Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.822, year: 2013

  14. A REVIEW OF MILD COMBUSTION AND OPEN FURNACE DESIGN CONSIDERATION

    Directory of Open Access Journals (Sweden)

    M.M. Noor

    2012-12-01

    Full Text Available Combustion is still very important to generate energy. Moderate or Intense Low-oxygen Dilution (MILD combustion is one of the best new technologies for clean and efficient combustion. MILD combustion has been proven to be a promising combustion technology in industrial applications with decreased energy consumption due to the uniformity of its temperature distribution. It is clean compared to traditional combustion due to producing low NOx and CO emissions. This article provides a review and discussion of recent research and developments in MILD. The issue and applications are summarized, with some suggestions presented on the upgrading and application of MILD in the future. Currently MILD combustion has been successfully applied in closed furnaces. The preheating of supply air is no longer required since the recirculation inside the enclosed furnace already self-preheats the supply air and self-dilutes the oxygen in the combustion chamber. The possibility of using open furnace MILD combustion will be reviewed. The design consideration for open furnace with exhaust gas re-circulation (EGR was discussed.

  15. Research and application of inorganic selective sorbents at Mayak PA; Recherches et applications sur l'utilisation de sorbants specifiques a Mayak

    Energy Technology Data Exchange (ETDEWEB)

    Logunov, M.V.; Skobtsov, A.S.; Soldatov, B.V.; Pazdnikov, A.P.; Voroshilov, Y.A.; Rovny, S.I. [Mayak Production Association, Chelyabinsk Region (Russian Federation)

    2004-12-01

    This work has been performed in order to identify selective inorganic sorbents for caesium and strontium. Thin-layer sorbents with nickel ferrocyanide embedded in an inert matrix were found to be the best for caesium. Sorbents including non-stoichiometric manganese dioxide were selected for strontium. Bench tests have been carried out on the purification of desalted water of SNF storage-pool from {sup 137}Cs, and on the purification of contaminated natural water from {sup 90}Sr. The facility for synthesizing the ferrocyanide sorbent with the registered mark 'Seleks-CFN' has been brought into operation. The sorbent ISM-S seems promising for {sup 90}Sr decontamination. (authors)

  16. Materials analyses of ceramics for glass furnace recuperators

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G.W.; Tennery, V.J.

    1979-11-01

    The use of waste heat recuperation systems offers significant promise for meaningful energy conservation in the process heat industries. This report details the analysis of candidate ceramic recuperator materials exposed to simulated industrial glass furnace hot flue gas environments. Several candidate structural ceramic materials including various types of silicon carbide, several grades of alumina, mullite, cordierite, and silicon nitride were exposed to high-temperature flue gas atmospheres from specially constructed day tank furnaces. Furnace charging, operation, and batch composition were selected to closely simulate industrial practice. Material samples were exposed in flues both with and without glass batch in the furnace for times up to 116 d at temperatures from 1150 to 1550/sup 0/C (2100 to 2800/sup 0/F). Exposed materials were examined by optical microscopy, scanning electron microscopy, energy dispersive x-ray analysis, x-ray diffraction, and x-ray fluorescence to identify material degradation mechanisms. The materials observations were summarized as: Silicon carbide exhibited enhanced corrosion at lower temperatures (1150/sup 0/C) when alkalies were deposited on the carbide from the flue gas and less corrosion at higher temperatures (1550/sup 0/C) when alkalies were not deposited on the carbide; alumina corrosion depended strongly upon purity and density and alumina contents less than 99.8% were unsatisfactory above 1400/sup 0/C; and mullite and cordierite are generally unacceptable for application in soda-lime glass melting environments at temperatures above 1100/sup 0/C.

  17. Amended Silicated for Mercury Control

    Energy Technology Data Exchange (ETDEWEB)

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Sil