WorldWideScience

Sample records for furnace heater service

  1. Prediction of heater power distribution in radiative cylindrical furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, M.; Dilber, I.; Torok, D.

    1999-07-01

    In the design of long radiative cylindrical furnaces, it is important to control the temperature variation along the furnace walls and consequently the temperature distribution in the processed material by selectively adjusting the power input to heater rods located circumferentially around the furnace walls. The heaters are grouped in zones located at different axial locations. By adjusting the power to each zone a specified temperature distribution along the furnace can be attained. The radiative interchange between different axial zones of the furnace affects the temperature distribution; this interchange is also impacted by the shadowing caused by the presence of the load, i.e. the processed material. A desired temperature distribution can only be achieved by selectively changing the power input to the heaters. For an a priori assessment of the commercial viability of using process friendly temperature distributions, it is necessary to determine: (a) the maximum power demand from each zone; (b) if active cooling is inevitable and (c) the bounds on temperature distribution that can be achieved without active cooling. It is therefore extremely useful to be able to predict the input power distribution for achieving desired furnace temperature profiles. For a given power input, the temperature distribution inside the furnace could be obtained by using a general purpose Computational Fluid Dynamics (CFD) software, such as FIDAP. A new methodology is developed within the framework of FIDAP software to eliminate the manual trial and error method. The method is based on obtaining the sensitivity of the temperature at the desired locations of the furnace as a function of the power input to the heating elements. Using these sensitivity coefficients, an iterative scheme is designed to adjust the boundary conditions (power to the heating elements in this case) based on the discrepancy of the solution temperatures from the desired temperature distribution. For each of these

  2. Economics of residential gas furnaces and water heaters in US new construction market

    OpenAIRE

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; CHAN, Peter

    2010-01-01

    New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment....

  3. Economics of residential gas furnaces and water heaters in United States new construction market

    OpenAIRE

    Lekov, Alex B.

    2010-01-01

    New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment....

  4. Large refinery and petrochemical plant furnaces and heaters : low frequency noise measurement and noise source order-ranking

    Energy Technology Data Exchange (ETDEWEB)

    Leslie Frank, HFP Acoustical Consultants Corp. Calgary AB

    2007-07-01

    Large furnaces and process heaters at refineries, gas plants, and petrochemical plants produce a low-frequency tonal noise from combustion roar. They can also produce mid-frequency broadband noise from induced draft fans. The common noise generating mechanisms are turbulence, flow instability, pressure drop, mechanical friction, and component vibration. Some of these energy facilities have multiple furnaces and heaters. As such, a noise source order-ranking assessment is typically performed to determine which plant equipment is responsible for the highest sound level contributions at nearby residence locations. The order-ranking is useful in determining which noise sources may require acoustical treatment to reduce the overall sound level at each residence. These results would form the basis for evaluating the effect of noise mitigating strategies for each source, and for estimating the associated costs for each noise control scenario. The noise model results can also be used to order-rank the equipment noise sources in terms of their frequency-dependant octave band. Experience has shown that large furnaces and heaters usually rank very high in terms of predominant contributors. The combustion roar noise generating mechanism is largely responsible for the predominant amount of acoustical energy. Although some degree of noise reduction can be achieved through burner design, it was shown that noise control engineering largely occurs at the furnace and heater manufacturing or plant retrofit level. This paper presented the results of one refinery with 19 older style furnaces and heaters. 1 tab., 7 figs.

  5. Furnace for rapid thermal processing with optical switching film disposed between heater and reflector

    NARCIS (Netherlands)

    Roozeboom, F.; Duine, P.A.; Sluis, P. van der

    2000-01-01

    A furnace (1) for Rapid Thermal Processing of a wafer (7), characterized in that the wafer (7) is heated by lamps (9), and the heat radiation is reflected by an optical switching device (15,17) which is in the reflecting state during the heating stage. During the cooling stage of the wafer (7), the

  6. In-service helium leak testing of vacuum furnace

    Science.gov (United States)

    Ahmad, Anis; Tripathi, S. K.; Sawant, P. S.; Mukharjee, D.; Shah, B. K.

    2012-11-01

    Helium leak detection of vacuum furnaces and equipments used for processing of nuclear material is generally carried out by utilizing vacuum spray technique. In this technique helium leak detector is connected to the furnace, back ground reading is noted and helium gas is sprayed on all the suspected joints. Any increase in back ground is noted as leak signal. Processing of Zirconium alloy cladded fuel pins is carried out in vacuum furnace of about 3 meter length and 500 mm inside diameter. Furnace is connected with two numbers of rotary vacuum pump and one number of diffusion pump for creating vacuum (1 × 10-6 torr) inside the furnace. It is desirable that furnace should have good vacuum and best possible leak tightness during dynamic and static vacuum. During dynamic vacuum at higher temperature although required vacuum is achieved the furnace may have fine leakage through which air may enter and cause oxidation of clad tube leading to change in its coloration. This change in coloration will cause rejection of fuel element. Such fine leakages may not be reflected in the dynamic vacuum of the system at high temperature. During trial run change in coloration of outside surface of clad tube was observed although dynamic vacuum of the furnace was in the range of 1×10-6 torr range. To eliminate such possibilities of oxidation due to fine leakages in the system, it was decided to carry out in-service leak testing of the furnace. Helium leak testing of the furnace was carried out by using vacuum spray method and leaks observed were repaired and furnace was retested to ensure the leak tightness. The in-service helium leak testing of the furnace helped in maintaining its leak tightness during service under dynamic vacuum and prevent oxidation of fuel element. This paper describes the techniques of in- service helium leak testing, it's importance for detection of fine leak under dynamic vacuum and discusses details of the testing method and result obtained.

  7. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  8. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

  9. Growth of Si Bulk Crystals with Large Diameter Ratio Using Small Crucibles by Creating a Large Low-Temperature Region Inside a Si Melt Contained in an NOC Furnace Developed Using Two Zone Heaters

    Science.gov (United States)

    Nakajima, Kazuo; Ono, Satoshi; Murai, Ryota; Kaneko, Yuzuru

    2016-06-01

    Three zone heaters were generally used for a noncontact crucible (NOC) furnace. For practical reasons a simpler NOC furnace was developed with two zone heaters, which had a carbon heat holder to cover the three roles of each heater. Large low-temperature regions were obtained, and silicon ingots were grown in small crucibles with a large diameter and diameter ratio. Here, the diameter ratio is the ratio of the ingot diameter to the crucible diameter and can be as large as 0.90. The diameter ratio was controlled mainly by the temperature reduction of the first heater. Power changes of the second heater did not have a significant impact on the ingot diameter. Using this NOC furnace, maximum ingot diameters of 28.0, 33.5, and 45.0 cm were obtained using crucibles of 33, 40, and 50 cm in diameter, respectively. The oxygen concentration of the ingots did not strongly depend on the diameter ratio and were always low because convection in the Si melt was markedly suppressed by the carbon heat holder. Moreover, the oxygen concentration of the ingots has a tendency to become lower as the crucible diameter becomes larger.

  10. Influence of Superheated Steam Temperature Regulation Quality on Service Life of Boiler Steam Super-Heater Metal

    Directory of Open Access Journals (Sweden)

    G. T. Kulakov

    2009-01-01

    Full Text Available The paper investigates influence of change in quality of superheated steam temperature regulations on service life of super-heater metal. А dependence between metal service life and dispersion value for different steel grades has been determined in the paper. Numerical values pertaining to increase of super-heater metal service life in case of transferring from manual regulation to standard system of automatic regulation (SAR have been determined and in case of transferring from standard SAR to improved SAR. The analysis of tabular data and plotted dependencies makes it possible to conclude that any change in conditions of convection super-heater metal work due to better quality of the regulation leads to essential increase of time period which is left till the completion of the service life of a super-heater heating surface.

  11. In-service testing of Ni{sub 3}Al coupons and trays in carburizing furnaces at Delphi Saginaw. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Santella, M.L.; Viswanathan, S.; Swindeman, R.W. [Oak Ridge National Lab., TN (United States); Chatterjee, M. [General Motors Corporaion, Saginaw Division (United States)

    1998-08-01

    -six of the 94 heats were from virgin stock, and 68 were from the revert that used 50% virgin and 50% revert. Detailed chemical analysis of the 94 heats reflected that the nickel aluminide can be cast into heat-treat fixtures under production conditions. In addition to the chemical analysis, the castings showed excellent dimensional reproducibility. A total of six batch furnace trays and 65 pusher furnace assemblies of nickel aluminide alloy IC-221M are currently operating in production furnaces at Delphi Saginaw. Two of the pusher furnace assemblies have completed two years of service without any failure. The CRADA has accomplished the goal of demonstrating that the nickel aluminide can be produced under commercial production conditions and it has superior performance over the currently used HU alloy in both batch and pusher furnaces.

  12. Transparent electric convection heater

    OpenAIRE

    Khalid, A.; Luck, J.L.

    2001-01-01

    An optically transparent electrically heated convection heater for use as a space heater in homes, offices, shops. Typically, said convection heater consists of a transparent layer 1 upon which is deposited a layer of a transparent electrically conductive material 2 such as indium-tin-oxide, electrodes 3 and 3a are formed on opposite edges of the transparent electrically conductive layer 2 and electrical wires 4 and 4a are connected to the electrodes. The transparent electrically conductive l...

  13. Grouped exposed metal heaters

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J [Bellaire, TX; Coit, William George [Bellaire, TX; Griffin, Peter Terry [Brixham, GB; Hamilton, Paul Taylor [Houston, TX; Hsu, Chia-Fu [Granada Hills, CA; Mason, Stanley Leroy [Allen, TX; Samuel, Allan James [Kular Lumpar, ML; Watkins, Ronnie Wade [Cypress, TX

    2012-07-31

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  14. Grouped exposed metal heaters

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, MY); Watkins, Ronnie Wade (Cypress, TX)

    2010-11-09

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  15. Thermal storage heaters

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, K.H.; Broadbent, J.T.

    1991-02-27

    A storage heater, providing heat by radiation, comprises an internal circuit for the passage of heated air. The heater comprises: a heat storage core, comprising heat storage rods heated by resistance wiring, and an air space around the rods, the air space forming an inner pathway of circuit; heat insulation around the core; and outer pathways adjacent outer walls of the heater. A damper is arranged at the top of the inner and outer pathways to control the communication between. The damper may be movably supported on a support part by robust bi-metallic strips wound with heater wires to control the bending of the strips. The storage heater may be supplied in kit form for the purchaser to assemble and to this end the heat storage rods may comprise particulate material poured into tubes, or liftable core units. Further heat insulation may be selectively positioned in the outer pathways to provide an even heat distribution. (author).

  16. Firebox modeling of SRT cracking heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, K.M.; Albano, J.V. [ABB Lummus Crest Inc., Bloomfield, NJ (United States)

    1994-12-31

    Thermal cracking of hydrocarbons remains the most economically attractive route for the production of ethylene. The heat for the endothermic cracking reaction is supplied in high capacity fired heaters which are designed specifically to have high selectivity to olefins. In the cracking process, coke is deposited within the tubes of the radiant coil. The rate of coke deposition in a cracking furnace is a function not only of process conditions but of other factors as well. High tube metal temperatures in certain areas of the coil or hot spots can cause locally high coking rate leading to partial blockage of the tubes and consequently, short runs. The small diameter tubes used in modern high selectivity heaters are more sensitive than older large tube designs. The occurrence of these hot zones is a strong function of fireside conditions. For satisfactory performance, the heat flux profile in a cracking heater must be maintained as uniform as possible. In addition, it is important to minimize the variation of process temperatures entering the various cracking coils. These fireside variables are not only a function of the type of burners, excess air, type of fuel(s) and distribution of air and fuel but depend significantly on the air and flue gas flow patterns associated with the firebox, i.e., the firebox aerodynamics. Poor aerodynamics can adversely affect firing patterns and hence heat flux profiles in commercial furnaces. A variety of modeling techniques have been used to evaluate the firebox aerodynamics of Lummus, Short Residence Time, cracking heaters. These include flow visualization, physical cold flow modeling, and computational techniques. These approaches are discussed in this paper.

  17. Explosives tester with heater

    Science.gov (United States)

    Del Eckels, Joel [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Whipple, Richard E [Livermore, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA

    2010-08-10

    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  18. Effect of electropolishing on vacuum furnace design

    Directory of Open Access Journals (Sweden)

    Sutanwi Lahiri

    2015-03-01

    Full Text Available The use of thermal shields of materials having low emissivity in vacuum furnaces is well-known. However, the surface condition of the heat shields is one of the most important factors governing their efficiency as radiation resistances. The emissivity of the thermal shields dictates the power rating of the heaters in furnace design. The unpolished materials used in the heater tests showed poor performance leading to loss of a signi­ficant percentage of the input power. The present work deals with the refur­bishment of the radiation heat shields used in a furnace for heating graphite structure. The effect of refurbishment of the heat shields by the buffing and subsequently electro­polishing was found to improve the performance of the shields as heat reflectors. The com­position of the electrolyte was chosen in such a way that the large shields of Mo, Inconel and SS can be polished using the same reagents in different ratios. The present work deals with the development of a standard electropolishing procedure for large metallic sheets and subsequently qualifying them by roughness and emissivity measure­ments. The improvement noted in the shielding efficiency of the furnace in the subsequent runs is also discussed here.

  19. Coaxial Electric Heaters

    Science.gov (United States)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2008-01-01

    Coaxial electric heaters have been conceived for use in highly sensitive instruments in which there are requirements for compact heaters but stray magnetic fields associated with heater electric currents would adversely affect operation. Such instruments include atomic clocks and magnetometers that utilize heated atomic-sample cells, wherein stray magnetic fields at picotesla levels could introduce systematic errors into instrument readings. A coaxial electric heater is essentially an axisymmetric coaxial cable, the outer conductor of which is deliberately made highly electrically resistive so that it can serve as a heating element. As in the cases of other axisymmetric coaxial cables, the equal magnitude electric currents flowing in opposite directions along the inner and outer conductors give rise to zero net magnetic field outside the outer conductor. Hence, a coaxial electric heater can be placed near an atomic-sample cell or other sensitive device. A coaxial electric heater can be fabricated from an insulated copper wire, the copper core of which serves as the inner conductor. For example, in one approach, the insulated wire is dipped in a colloidal graphite emulsion, then the emulsion-coated wire is dried to form a thin, uniform, highly electrically resistive film that serves as the outer conductor. Then the film is coated with a protective layer of high-temperature epoxy except at the end to be electrically connected to the power supply. Next, the insulation is stripped from the wire at that end. Finally, electrical leads from the heater power supply are attached to the exposed portions of the wire and the resistive film. The resistance of the graphite film can be tailored via its thickness. Alternatively, the film can be made from an electrically conductive paint, other than a colloidal graphite emulsion, chosen to impart the desired resistance. Yet another alternative is to tailor the resistance of a graphite film by exploiting the fact that its resistance

  20. Compact instantaneous water heater

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Jorge G.W.; Machado, Antonio R.; Ferraz, Andre D.; Rocha, Ivan C.C. da; Konishi, Ricardo [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil); Lehmkuhl, Willian A.; Francisco Jr, Roberto W.; Hatanaka, Ricardo L.; Pereira, Fernando M.; Oliveira, Amir A.M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-07-01

    This paper presents an experimental study of combustion in an inert porous medium in a liquid heating device application. This project aims to increase efficiency in the application of natural gas in residential and commercial sectors with the use of advanced combustion and heat transfer. The goal is to facilitate the development of a high performance compact water heater allowing hot water supply for up to two simultaneous showers. The experiment consists in a cylindrical porous burner with an integrated annular water heat exchanger. The reactants were injected radially into the burner and the flame stabilizes within the porous matrix. The water circulates in a coiled pipe positioned at the center of the burner. This configuration allows for heat transfer by conduction and radiation from the solid matrix to the heat exchanger. This article presented preliminary experimental results of a new water heater based on an annular porous burner. The range of equivalence ratios tested varied from 0.65 to 0.8. The power range was varied from 3 to 5 kW. Increasing the equivalence ratio or decreasing the total power input of the burner resulted in increased thermal efficiencies of the water heater. Thermal efficiencies varying from 60 to 92% were obtained. The condition for the goal of a comfortable bath was 20 deg C for 8-12 L/min. This preliminary prototype has achieved water temperature of 11deg C for 5 L/min. Further optimizations will be necessary in order to achieve intense heating with high thermal efficiency. (author)

  1. Subsurface heaters with low sulfidation rates

    Energy Technology Data Exchange (ETDEWEB)

    John, Randy Carl; Vinegar, Harold J

    2013-12-10

    A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

  2. Three-Dimensional Printable High-Temperature and High-Rate Heaters.

    Science.gov (United States)

    Yao, Yonggang; Fu, Kun Kelvin; Yan, Chaoyi; Dai, Jiaqi; Chen, Yanan; Wang, Yibo; Zhang, Bilun; Hitz, Emily; Hu, Liangbing

    2016-05-24

    High temperature heaters are ubiquitously used in materials synthesis and device processing. In this work, we developed three-dimensional (3D) printed reduced graphene oxide (RGO)-based heaters to function as high-performance thermal supply with high temperature and ultrafast heating rate. Compared with other heating sources, such as furnace, laser, and infrared radiation, the 3D printed heaters demonstrated in this work have the following distinct advantages: (1) the RGO based heater can operate at high temperature up to 3000 K because of using the high temperature-sustainable carbon material; (2) the heater temperature can be ramped up and down with extremely fast rates, up to ∼20 000 K/second; (3) heaters with different shapes can be directly printed with small sizes and onto different substrates to enable heating anywhere. The 3D printable RGO heaters can be applied to a wide range of nanomanufacturing when precise temperature control in time, placement, and the ramping rate are important.

  3. Three-dimensional temperature field in a line-heater embedded by a spiral electric resistor

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, S.Y.; Wei, P.S.; Wang, Z.P. [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, 70, Lien-hai Road, Kaohsiung 804, Taiwan (China)

    2006-06-15

    In this study, three-dimensional temperature fields induced by AC and DC through a spiral electric resistor in a line-heater are numerically investigated. Electric heaters have been widely found, for example, in houses as dryers, stoves, and water heaters, and in industrial and research institutions as elements of equipments. The line-heater in the present model is realistically considered to have multiple regions composed of a spiral electric resistor, electrically insulated region, covering outer layer, and two terminal pins with distinct thermal and electrical properties. Solving unsteady three-dimensional heat conduction equations in distinct regions, the surface temperatures predicted as a function of time in this model are confirmed by the measured data. The calculated results quantitatively show that high surface temperatures of the heater can be reached by increasing dimensionless joule heat parameter, radius of the spiral electric resistor or pins, thermal diffusivity of the insulation region, and decreasing Biot number and radius of insulation region. The effects of the pins on surface temperature are also studied. Aside from showing that DC produces higher temperature than AC, the results indicate that the effects of current frequency on temperature fields are insignificant. The findings can be generalized to a curved heater, because any local location can be considered as a small line-segment. The present work provides general and quantitative data valuable for designing an efficient heater/furnace. [Author].

  4. Heat treatment furnace

    Science.gov (United States)

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  5. Investigation of Furnace Uniformity and its Effect on High-Temperature Fixed-Point Performance

    Science.gov (United States)

    Khlevnoy, B.; Sakharov, M.; Ogarev, S.; Sapritsky, V.; Yamada, Y.; Anhalt, K.

    2008-02-01

    A large-area furnace BB3500YY was designed and built at the VNIIOFI as a furnace for high-temperature metal (carbide)-carbon (M(C)-C) eutectic fixed points and was then investigated at the NMIJ. The dependence of the temperature uniformity of the furnace on various heater and cell holder arrangements was investigated. After making some improvements, the temperature of the central part of the furnace was uniform to within 2K over a length of 40 mm—the length of the fixed-point cell—at a temperature of 2,500°C. With this furnace, the melting plateaux of Re-C and TiC-C were shown to be better than those observed in other furnaces. For instance, a Re-C cell showed melting plateaux with a 0.1K melting range and a duration of about 40 min. Furthermore, to verify the capability of the furnace to fill cells, one Re-C and one TiC-C cell were made using the BB3500YY. The cells were then compared to a Re-C cell made in a Nagano furnace and a TiC-C cell filled in a BB3200pg furnace. The agreement in plateau shapes demonstrates the capability of the BB3500YY furnace to also function as a filling furnace.

  6. 46 CFR 119.320 - Water heaters.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  7. 46 CFR 182.320 - Water heaters.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet the...), except that an electric water heater is also acceptable if it: (1) Has a capacity of not more than...

  8. Magnesia-Chrome Refractories for Flash Furnace

    Institute of Scientific and Technical Information of China (English)

    LI Yong; CHEN Kaixian; LU Xinghua; LIU Jianlong; SUN Jialin; HONG Yanruo

    2002-01-01

    The rapid development of our country's heavy nonferrous metallurgical technology and the revolution in new type of heavynon-ferrous metallurgical furnace have imposed more critical demand on the refractory materials ,i. e. high quality and long service life. This paper presents the domestic status of the refractories for flash furnace , briefly describes the wear of the refractory used , and it is considered that the domestic in refractories for flashfurnace can be surely realized.

  9. Thermal behavior of a porous electric heater

    Energy Technology Data Exchange (ETDEWEB)

    Naji, M.; Al-Nimr, M.A. [Jordan University of Science and Technology, Irbid (Jordan). Dept. of Mechanical Engineering

    2002-03-01

    The performance of a proposed porous electric heater is investigated. The porous heater exchanges heat with the working fluid through its large volumetric surface area. As a result, it produces lower surface temperature as compared with the conventional heater for the same imposed heating power. Two mathematical models are presented to describe the thermal behavior of both heaters. Axial diffusion is included in the governing equation of the solid conventional heater. The predictions of both models are compared at different operating conditions where it is found that porous heaters have much better thermal performance than the conventional heaters. (author)

  10. Firing temperature accuracy of four dental furnaces.

    Science.gov (United States)

    Haag, Per; Ciber, Edina; Dérand, Tore

    2011-01-01

    In spite of using recommended firing and displayed temperatures, low-fired dental porcelain more often demonstrates unsatisfactory results after firing than porcelain fired at higher temperatures. It could therefore be anticipated that temperatures shown on the display are incorrect, implying that the furnace does not render correct firing programs for low-fired porcelain. The purpose of this study is to investigate deviations from the real temperature during the firing process and also to illustrate the service and maintenance discipline of furnaces at dental laboratories. Totally 20 units of four different types of dental furnaces were selected for testing of temperature accuracy with usage of a digital temperature measurement apparatus, Therma 1. In addition,the staffs at 68 dental laboratories in Sweden were contacted for a telephone interview on furnace brand and on service and maintenance program performed at their laboratories. None of the 20 different dental furnaces in the study could generate the firing temperatures shown on the display, indicating that the hypothesis was correct. Multimat MCII had the least deviation of temperature compared with displayfigures. 62 out of 68 invited dental laboratories chose to participate in the interviews and the result was that very few laboratories had a service and maintenance program living up to quality standards. There is room for improving the precision of dental porcelain furnaces as there are deviations between displayed and read temperatures during the different steps of the firing process.

  11. ENERGY STAR Certified Water Heaters

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Water Heaters that are effective April 16, 2015....

  12. Heater head for stirling engine

    Science.gov (United States)

    Corey, John A.

    1985-07-09

    A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.

  13. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  14. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  15. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Winiarski, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carmichael, Robert T. [Cadeo Group, Washington D. C. (United States); Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fisher, Andrew R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  16. Molten metal holder furnace and casting system incorporating the molten metal holder furnace

    Science.gov (United States)

    Kinosz, Michael J.; Meyer, Thomas N.

    2003-02-11

    A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

  17. Application of Carbon Composite Bricks for Blast Furnace Hearth

    Science.gov (United States)

    Zuo, Haibin; Wang, Cong; Zhang, Jianliang; Zhao, Yongan; Jiao, Kexin

    Traditional refractory materials for blast furnace hearth lining are mainly composed of carbon bricks and the ceramic cup. However, these materials can't meet the demands for long service life design of blast furnaces. In this paper, a new refractory called carbon composite brick (CCB) was introduced, which combined the advantages of carbon bricks and the ceramic cup. In this case, the resistance of the CCB against corrosion was equal to the ceramic cup and the thermal conductivity of the CCB was equal to carbon bricks. From the results of more than 20 blast furnaces, the CCB could be well used in small blast furnaces and large blast furnaces. In the bad condition of low grade burden and high smelting intensity, the CCB gave full play to the role of cooling system, and effectively resisted the erosion of hot metal to improve the service life of blast furnaces.

  18. Quench Heater Studies for the LHC Magnets

    CERN Document Server

    Rodríguez-Mateos, F

    2001-01-01

    About 2000 LHC (CERN's Large Hadron Collider) superconducting magnets will be protected with quench heaters against development of excessive voltage and overheating after a resistive transition. The quench heater strips are powered by capacitor bank discharge power supplies. The strips are made of stainless steel partially plated with copper to reduce their resistance and to allow for the connection of quench heaters in series. The strips are embedded in between two polyimide foils. The initial power density and the current decay time determine the quench heater effectiveness. Since only one type of heater power supply will be available, the copper plating cycle is adapted for the various magnet types to keep the resistance of the heater circuit constant. Different quench heater designs have been tested on various prototype magnets to optimise the copper-plating cycle and the electric insulation of the heater strip. This paper summarises the experimental results and computations that allowed to finalise the h...

  19. Shared savings gets realtor new water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, R.

    1983-08-08

    The Grenadier Realty Co. of New York is financing four energy-efficient water heaters for apartment buildings with a shared savings arrangement. The arrangement allows Grenadier to avoid front-end costs, which were paid by Independent Water Heaters Inc. in exchange for a decreasing share of the savings. Grenadier will own the heaters when the five-year contract expires. By allowing a shutdown of boilers during the summer months, the heaters will further increase energy savings. (DCK)

  20. The performance of porous electric heaters

    Energy Technology Data Exchange (ETDEWEB)

    Al-Nimr, M.A.; Naji, M.

    2003-03-01

    The performance of a proposed porous electric heater is investigated. The porous heater exchanges heat with the working fluid through its large volumetric surface area. As a result, it produces lower surface temperature as compared with the conventional heater for the same imposed heating power. Two mathematical models are presented to describe the thermal behavior of both heaters and the predictions of both models are compared at different operating conditions. (author)

  1. Calculations in furnace technology

    CERN Document Server

    Davies, Clive; Hopkins, DW; Owen, WS

    2013-01-01

    Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi

  2. 14 CFR 27.833 - Heaters.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Heaters. 27.833 Section 27.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Heaters. Each combustion heater must be approved. Fire Protection ...

  3. 14 CFR 29.833 - Heaters.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Heaters. 29.833 Section 29.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Heaters. Each combustion heater must be approved. Fire Protection ...

  4. Solar water heater design package

    Science.gov (United States)

    1981-01-01

    Package describes commercial domestic-hot-water heater with roof or rack mounted solar collectors. System is adjustable to pre-existing gas or electric hot-water house units. Design package includes drawings, description of automatic control logic, evaluation measurements, possible design variations, list of materials and installation tools, and trouble-shooting guide and manual.

  5. Evaluation of the Demand Response Performance of Electric Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Widder, Sarah H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Steven A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pratt, Richard M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chassin, Forrest S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-17

    The purpose of this project is to verify or refute many of the concerns raised by utilities regarding the ability of large tank HPWHs to perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. This project was divided into three phases. Phase 1 consisted of week-long laboratory experiments designed to demonstrate technical feasibility of individual large-tank HPWHs in providing DR services compared to large-tank ERWHs. In Phase 2, the individual behaviors of the water heaters were then extrapolated to a population by first calibrating readily available water heater models developed in GridLAB-D simulation software to experimental results obtained in Phase 1. These models were used to simulate a population of water heaters and generate annual load profiles to assess the impacts on system-level power and residential load curves. Such population modeling allows for the inherent and permanent load reduction accomplished by the more efficient HPWHs to be considered, in addition to the temporal DR services the water heater can provide by switching ON or OFF as needed by utilities. The economic and emissions impacts of using large-tank water heaters in DR programs are then analyzed from the utility and consumer perspective, based on National Impacts Analysis in Phase 3. Phase 1 is discussed in this report. Details on Phases 2 and 3 can be found in the companion report (Cooke et al. 2014).

  6. ENERGY STAR Certified Furnaces

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Furnaces that are effective as of February 1,...

  7. Hopewell Furnace NHS Small Scale Features (Linear Features)

    Data.gov (United States)

    National Park Service, Department of the Interior — This shapefile represents the linear small scale features found at Hopewell Furnace National Historic Site based on the Cultural Landscape Report completed in...

  8. Welding shield for coupling heaters

    Science.gov (United States)

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  9. Space Station solar water heater

    Science.gov (United States)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  10. Starch gelatinization in coiled heaters.

    Science.gov (United States)

    Kelder, J D H; Ptasinski, K J; Kerkhof, P J A M

    2004-01-01

    A gelatinizing model food derived from a 5% w/w cross-linked waxy maize starch suspension was simulated in coiled heaters to assess the impact of centrifugal forces on flow and heat transfer. For four coil diameters (D = 0.25, 1, 2.5, and infinity m) and three flow rates (w = 0.5, 1, and 2 m/s), heat transfer, viscous development, and the severity of channeling were evaluated. Increasing curvature proved to suppress channeling as a result of more uniform heating and gelatinization. The maximum attainable viscosity was also higher, implying a lower starch consumption for a target viscosity. Higher flow rates necessitated longer heaters, and the maximum viscosity decreased. Moderate product velocities are therefore recommended.

  11. Experimental characteristics of vortex heaters

    Science.gov (United States)

    Piralishvili, Sh. A.; Novikov, N. N.

    The performance of a Ranque-Hilsch vortex tube is investigated experimentally for the case where the tube operates as a heater, with the mass of the heated gas remaining constant. The results obtained indicate that energy separation zones with sufficiently high (50 percent) relative heating effects can be achieved for a gas flow ratio of unity. A nomogram is presented for calculating the relative and absolute heating effects as a function of the tube geometry.

  12. Graphite/Epoxy Deicing Heater

    Science.gov (United States)

    Hung, Ching-Cheh; Dillehay, Michael E.; Stahl, Mark

    1988-01-01

    Heat applied close to surface protected. One ply of highly electrically- and thermally-conductive brominated-graphite fiber composite laminated between two plies of electrically-insulating composite material, with michel foil making contact with end portions of graphite fibers. Part of foil exposed beyond composite to serve as electrical contact. Graphite/Epoxy composite heater developed to prevent and reverse formation of ice on advanced composite surfaces of aircraft.

  13. Near-surface heater experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, L.D.; Cuderman, J.F.; Krumhansl, J.L.; Lappin, A.

    1978-12-31

    Full-scale near-surface heater experiments are presently being conducted by Sandia Laboratories in the Conasauga Formation at Oak Ridge, Tennessee, and in the Eleana Formation on the Nevada Test Site, Nevada. The purposes of these experiments are: (1) to determine if argillaceous media can withstand thermal loads characteristic of high level waste; (2) to provide data for improvement of themomechanical modeling of argillaceous rocks; (3) to identify instrumentation development needed for further in situ testing; and (4) to identify unexpected general types of behavior, if any. The basic instrumentation of these tests consists of a heater in a central hole, surrounded by arrays of holes containing various instrumentation. Temperatures, thermal profiles, vertical displacements, volatile pressurization, and changes in in situ stresses are measured in each experiment as a function of time, and compared with pretest modeling results. Results to date, though in general agreement with modeling results assuming conductive heat transfer within the rock, indicate that the presence of even small amounts of water can drastically affect heat transfer within the heater hole itself, and that small amounts of upward convection of water may be occurring in the higher temperature areas of the Conasauga experiments.

  14. Narrow zone heating by a new radiation focusing technique - Toroidal ellipsoid furnace. [for zone leveling and crystal growth in advanced multicomponent semiconductors

    Science.gov (United States)

    Davidson, M. C.; Holland, L. R.

    1978-01-01

    The paper describes the design of a toroidal ellipsoid furnace for narrow zone heating of materials in sealed transparent ampoules. The heater is a toroid flattened to an elliptical cross section like a partially inflated inner tube resting on a horizontal surface. The foci of the ellipsoid are two concentric rings. The outer focus is occupied by a heater wire, and the inner focus is arranged to fall on the surface of the cylindrical ingot within its transparent capsule. One advantage of the new furnace is that the wire heater closely approximates the ideal shape, lying along an extended line focus, as opposed to the elusive point source of the Costello furnace. Also, the ingot is heated uniformly around its circumference.

  15. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  16. Wear mechanism of castable for RH furnace snorkel and its long service life practice%RH炉浸渍管用浇注料的蚀损机理及其长寿化实践

    Institute of Scientific and Technical Information of China (English)

    刘黎; 徐国涛; 陈希来; 邹龙

    2012-01-01

    研究了RH真空精炼炉浸渍管用刚玉尖晶石质浇注料的蚀损机理:熔渣及钢液通过浇注料表面缺陷渗入其内部,与浇注料发生反应生成低熔点化合物;炉温频繁的波动,导致浇注料内部应力过大,使其产生裂纹;在钢液及熔渣的冲刷作用下,造成浇注料剥落。还探讨了提高浸渍管用浇注料使用寿命的途径。%The wear mechanism of corundum spinel castable used for the snorkel of RH vacuum refining furnace is studied. The smelting slag and molten steel penetrate into the inside of the castable through its surface defect and they react with castable to form low melting point compound. The temperature of the furnace fluctuates frequently to cause the generations of extra stress and cracks in castable. Under the scouring action of slag and molten steel, the castable is peeled off. And the ways for improving the service life of the castable for the snorkel are discussed.

  17. Solar air heaters and their applications

    Science.gov (United States)

    Selcuk, M. K.

    1977-01-01

    The solar air heater appears to be the most logical choice, as far as the ultimate application of heating air to maintain a comfortable environment is concerned. One disadvantage of solar air heaters is the need for handling larger volumes of air than liquids due to the low density of air as a working substance. Another disadvantage is the low thermal capacity of air. In cases where thermal storage is needed, water is superior to air. Design variations of solar air heaters are discussed along with the calculation of the efficiency of a flat plate solar air heater, the performance of various collector types, and the applications of solar air heaters. Attention is given to collectors with nonporous absorber plates, collectors with porous absorbers, the performance of flat plate collectors with finned absorbers, a wire mesh absorber, and an overlapped glass plate air heater.

  18. A numerical model including PID control of a multizone crystal growth furnace

    Science.gov (United States)

    Panzarella, Charles H.; Kassemi, Mohammad

    This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.

  19. Parallel heater system for subsurface formations

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Christopher Kelvin (Houston, TX); Karanikas, John Michael (Houston, TX); Nguyen, Scott Vinh (Houston, TX)

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  20. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

    2014-04-22

    element near the pour tube. After charging the CEF with cullet from a previous Sludge Batch 6 (SB6) run, the melter was slurry-fed with SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 6 days. Process data was collected throughout testing and included melter operation variables and off-gas chemistry. In order to satisfy the objective of Phase I testing, vapor space steady testing in the range of ~300°C-700°C was conducted without argon bubbling to baseline the melter data to the existing DWPF melter flammability model. Adjustments to heater outputs, air flows and feed rate were necessary in order to achieve the vapor space temperatures in this range. The results of the Phase I testing demonstrated that the CEF is capable of operating under the low vapor space temperatures A melter pressure of -5 inches of water was not sustained throughout the run, but the melter did remain slightly negative even with the maximum air flows required for the lowest temperature conditions were used. The auxiliary pour tube heater improved the pouring behavior at all test conditions, including reduced feed rates required for the low vapor space testing. Argon bubbling can be used to promote mixing and increase feed rate at multiple conditions. Improvements due to bubbling have been determined previously; however, the addition of the cameras to the CEF allows for visual observation during a range of bubbling configurations. The off-gas analysis system proved to be robust and capable of operating for long durations. The total operational hours on the melter vessel are approximately 385 hours. Dimensional measurements taken prior to Phase I testing and support block temperatures recorded during Phase I testing are available if an extension of service life beyond 1250 hours is desired in the future.

  1. Fluid bed solids heater. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Preuit, L. C.

    1980-01-01

    A solids heater which operates at up to 2000 F was designed, fabricated, installed and operated through checkout at the Morgantown Energy Technology Center at Morgantown, West Virginia. The system, designated the 2000 F Fluid Bed Solids Heater (FBSH) uses a fluidized bed to heat limestone to 600 F and aluminium oxide or silicon carbide to 2000 F and discharges heated solids upon demand. The FBSH with added valve handling and pressurization equipment is known as the Valve Hot Solids Test Unit and is intended for use by the US Department of Energy for testing of valves for severe service applications in coal conversion and utilization processes. The FBSH as designed and supplied by Combustion Power Company includes process equipment, controls, the enclosing building and other associated equipment. In the 600 F range of operation it can circulate limestone through two valve test trains simultaneously on a continuous basis. Only one valve test train is used for 2000 F solids and operation in that range is also continuous. Limestone, crushed to minus 5/16 size, is heated, discharged, and recycled at a maximum average rate of 250 lb/min while aluminum oxide or silicon carbide, No. 8 grit, is circulated at rates up to 167 lb/min. The FBSH control system is designed for automatic operation, and capability is included for external computerized data acquisition and/or supervisory control. An operating and maintenance manual and as-built drawings have been submitted. This report describes the FBSH equipment, its design basis, and its operation. It has been prepared and submitted in fulfillment of Contract Number DIAC05-77ET10499.

  2. SINGLE HEATER TEST FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    J.B. Cho

    1999-05-01

    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied

  3. A study of the service time of a overhung roof in rolling soaking furnace%轧钢加热炉吊挂炉顶寿命的探讨

    Institute of Scientific and Technical Information of China (English)

    刘广汉

    2001-01-01

    Increasing the longevity of an overhung roof in rolling soaking furnace needs a number of tasks to be done including designing, material selection, construction, baking, operation and maintenance. With some failure cases included, this paper investigates the failure mechanism of the roof, so as to find out measures to elongate its service life.%如何提高轧钢加热炉吊炉顶寿命是一项复杂的工作,它主要包括:设计、选材、施工、烘炉、生产、维护等环节. 本文从它的破坏机理、炉顶损坏的实例探讨提高吊挂炉顶寿命的方法.

  4. SELECTED ORGANIC POLLUTANT EMISSIONS FROM UNVENTED KEROSENE HEATERS

    Science.gov (United States)

    An exploratory study was performed to assess the semivolatile and nonvolatile organic pollutant emission rates from unvented kerosene space heaters. A well-tuned radiant heater and maltuned convective heater were tested for semivolatile and nonvolatile organic pollutant emiss...

  5. Strategy Guideline. Proper Water Heater Selection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Staller, J. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Zhang, Y. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2015-04-09

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  6. Strategy Guideline: Proper Water Heater Selection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation, Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation, Davis, CA (United States); German, A. [Alliance for Residential Building Innovation, Davis, CA (United States); Staller, J. [Alliance for Residential Building Innovation, Davis, CA (United States); Zhang, Y. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-04-01

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  7. 49 CFR 393.77 - Heaters.

    Science.gov (United States)

    2010-10-01

    ... all hot water and steam heater systems shall be specifically designed and constructed for that purpose... when used for heating the cargo of tank motor vehicles. (3) Heaters permitting fuel leakage. Any type... air, heated or to be heated, from the engine compartment or from direct contact with any portion...

  8. "Starfish" Heater Head For Stirling Engine

    Science.gov (United States)

    Vitale, N.

    1993-01-01

    Proposed "starfish" heater head for Stirling engine enables safe use of liquid sodium as heat-transfer fluid. Sodium makes direct contact with heater head but does not come in contact with any structural welds. Design concept minimizes number of, and simplifies nonstructural thermal welds and facilitates inspection of such welds.

  9. Solar Water-Heater Design Package

    Science.gov (United States)

    1982-01-01

    Information on a solar domestic-hot water heater is contained in 146 page design package. System consists of solar collector, storage tanks, automatic control circuitry and auxiliary heater. Data-acquisition equipment at sites monitors day-by-day performance. Includes performance specifications, schematics, solar-collector drawings and drawings of control parts.

  10. Subsurface connection methods for subsurface heaters

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Bass, Ronald Marshall (Houston, TX); Kim, Dong Sub (Sugar Land, TX); Mason, Stanley Leroy (Allen, TX); Stegemeier, George Leo (Houston, TX); Keltner, Thomas Joseph (Spring, TX); Carl, Jr., Frederick Gordon (Houston, TX)

    2010-12-28

    A system for heating a subsurface formation is described. The system includes a first elongated heater in a first opening in the formation. The first elongated heater includes an exposed metal section in a portion of the first opening. The portion is below a layer of the formation to be heated. The exposed metal section is exposed to the formation. A second elongated heater is in a second opening in the formation. The second opening connects to the first opening at or near the portion of the first opening below the layer to be heated. At least a portion of an exposed metal section of the second elongated heater is electrically coupled to at least a portion of the exposed metal section of the first elongated heater in the portion of the first opening below the layer to be heated.

  11. Effects of heated seat and foot heater on thermal comfort and heater energy consumption in vehicle.

    Science.gov (United States)

    Oi, Hajime; Yanagi, Kotaro; Tabata, Koji; Tochihara, Yutaka

    2011-08-01

    Subjective experiments involving 12 different conditions were conducted to investigate the effects of heated seats and foot heaters in vehicles on thermal sensation and thermal comfort. The experimental conditions involved various combinations of the operative temperature in the test room (10 or 20°C), a heated seat (on/off) and a foot heater (room operative temperature +10 or +20°C). The heated seat and foot heater improved the occupant's thermal sensation and comfort in cool environments. The room operative temperature at which the occupants felt a 'neutral' overall thermal sensation was decreased by about 3°C by using the heated seat or foot heater and by about 6°C when both devices were used. Moreover, the effects of these devices on vehicle heater energy consumption were investigated using simulations. As a result, it was revealed that heated seats and foot heaters can reduce the total heater energy consumption of vehicles. Statement of Relevance: Subjective experiments were conducted to investigate the effects of heated seats and foot heaters in vehicles on thermal comfort. The heated seat and foot heater improved the occupant's thermal sensation and comfort in cool environments. These devices can reduce the total heater energy consumption in vehicles.

  12. Improved Casting Furnace Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tolman, David Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  13. Biogas Digester with Simple Solar Heater

    OpenAIRE

    Kh S Karimov; Muhammad Abid

    2012-01-01

    ABSTRACT: In this research work, the design, fabrication and investigation of a biogas digester with simple solar heater are presented. For the solar heater, a built-in reverse absorber type heater was used. The maximum temperature (50°C) inside the methane tank was taken as a main parameter for the design of the digester. Then, the energy balance equation for the case of a static mass of fluid being heated was used to model the process. The parameters of thermal insulation of the methane tan...

  14. Particulate matter sensor with a heater

    Science.gov (United States)

    Hall, Matthew

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  15. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15... Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer...

  16. 40 CFR 65.149 - Boilers and process heaters.

    Science.gov (United States)

    2010-07-01

    ... thermal units per hour) or greater. (ii) A boiler or process heater into which the vent stream is... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Boilers and process heaters. 65.149... System or a Process § 65.149 Boilers and process heaters. (a) Boiler and process heater equipment...

  17. 46 CFR 63.25-5 - Fired thermal fluid heaters.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fired thermal fluid heaters. 63.25-5 Section 63.25-5... heaters. (a) Construction. Fired thermal fluid heaters must meet the requirements of part 52 of this chapter, as applicable. (b) Controls. Fired thermal fluid heaters must have a low fluid level...

  18. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norfolk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norfolk, CT (United States)

    2016-02-05

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publically available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(TM), A.O. Smith Voltex(R), and Stiebel Eltron Accelera(R) 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  19. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.; Puttagunta, S.

    2013-08-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(tm), A.O. Smith Voltex(r), and Stiebel Eltron Accelera(r)300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  20. Varying properties along lengths of temperature limited heaters

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Xie, Xueying (Houston, TX); Miller, David Scott (Katy, TX); Ginestra, Jean Charles (Richmond, TX)

    2011-07-26

    A system for heating a subsurface formation is described. The system includes an elongated heater in an opening in the formation. The elongated heater includes two or more portions along the length of the heater that have different power outputs. At least one portion of the elongated heater includes at least one temperature limited portion with at least one selected temperature at which the portion provides a reduced heat output. The heater is configured to provide heat to the formation with the different power outputs. The heater is configured so that the heater heats one or more portions of the formation at one or more selected heating rates.

  1. Magnetically Damped Furnace (MDF)

    Science.gov (United States)

    1998-01-01

    The Magnetically Damped Furnace (MDF) breadboard is being developed in response to NASA's mission and goals to advance the scientific knowledge of microgravity research, materials science, and related technologies. The objective of the MDF is to dampen the fluid flows due to density gradients and surface tension gradients in conductive melts by introducing a magnetic field during the sample processing. The MDF breadboard will serve as a proof of concept that the MDF performance requirements can be attained within the International Space Station resource constraints.

  2. Experimental studies of operating characteristics of a downhole electric heater

    Energy Technology Data Exchange (ETDEWEB)

    Simkin, E.M.; Sergeev, A.I.; Sheinman, A.B.

    1967-06-01

    A new type of electric downhole heater for deparaffinization and heating of formations in oil wells is described. The heater is a hollow hermetic cylinder, which contains an electrode insulated from the body of the heater. The cylinder contains a predetemined volume of water of fixed electrical resistance. Resistance of this water is adjusted by addition of salt. A cable supplying the electrode with electric current also ground the heater by body. The current passes through the water, heats it, and produces steam. The steam heats up the hermetically sealed body of the heater, and heat flows to the well fluid around the heater. A schematic diagram of the heater is shown. Thermal output of the heater depends on current supplied, dimension of heater and components, resistance and volume of water in heater, and other parameters. All these factors are correlated with heat output by a series of graphs and equations.

  3. Cupola Furnace Computer Process Model

    Energy Technology Data Exchange (ETDEWEB)

    Seymour Katz

    2004-12-31

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  4. 在役高炉炉缸状态的辨析、诊断与维护%Discrimination,diagnosis and maintenance for blast furnace hearth in service state

    Institute of Scientific and Technical Information of China (English)

    姜华; 蔡九菊

    2015-01-01

    As the physical properties and configuration of the hearth-wall lining are different from original design, some conventional erosion management methods for blast furnace in service will lose their effectiveness,even more cause the hearth-wall penetration-cross accident.From the view of heat transfer,the penetration-cross is the ex-treme state after the thermal balance system is broken in the hearth-wall.On the basis of heat transfer theory and the investigation results of the used hearth-wall structure,a discrimination and diagnosis method has been put for-ward for the error damage state of hearth-wall in service from the view of multiple thermal resistance.By this,the hearth-wall state can be judged accurately,which can provide the decision basis for future management measures and lay the foundations for the safe use and extending the campaign of blast furnace.%在役高炉炉缸砖衬,由于其不同于原始设计的物性和特殊的结构形态,致使一些传统侵蚀管理模式失效,极端情况引发炉缸烧穿事故。从传热学角度看,炉缸烧穿现象是炉缸侧壁传热体系热平衡被打破后反复累积的极端表现形态。基于传热学理论和用后炉缸砖衬结构调查结果,从炉缸砖衬综合热阻视角,提出对在役高炉炉缸砖衬侵蚀状态的辨析和诊断方法,由此可准确判定在役炉缸的砖衬结构状态,为后续采取适当的维护措施提供决策依据,为高炉安全使用和延长寿命奠定基础。

  5. Slat Heater Boxes for Thermal Vacuum Testing

    Science.gov (United States)

    Ungar, Eugene

    2003-01-01

    Slat heater boxes have been invented for controlling the sink temperatures of objects under test in a thermal vacuum chamber, the walls of which are cooled to the temperature of liquid nitrogen. A slat heater box (see Figure 1) includes a framework of struts that support electrically heated slats that are coated with a high-emissivity optically gray paint. The slats can be grouped together into heater zones for the purpose of maintaining an even temperature within each side. The sink temperature of an object under test is defined as the steady-state temperature of the object in the vacuum/ radiative environment during the absence of any internal heat source or sink. The slat heater box makes it possible to closely control the radiation environment to obtain a desired sink temperature. The slat heater box is placed inside the cold thermal vacuum chamber, and the object under test is placed inside (but not in contact with) the slat heater box. The slat heaters occupy about a third of the field of view from any point on the surface of the object under test, the remainder of the field of view being occupied by the cold chamber wall. Thus, the radiation environment is established by the combined effects of the slat heater box and the cold chamber wall. Given (1) the temperature of the chamber wall, (2) the fractions of the field of view occupied by the chamber wall and the slat heater box, and (3) the emissivities of the slats, chamber wall, and the surface of object under test, the slat temperature required to maintain a desired sink temperature can be calculated by solving the equations of gray-body radiation for the steady-state adiabatic case (equal absorption and emission by the object under test). Slat heater boxes offer an important advantage over the infrared lamps that have been previously used to obtain desired sink temperatures: In comparison with an infrared lamp, a slat heater box provides a greater degree of sink temperature uniformity for a test

  6. Diesel particulate filter with zoned resistive heater

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-03-08

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  7. Note: Improved wire-wound heater.

    Science.gov (United States)

    Steinmann, Ricardo G; Vitoux, Hugo

    2015-01-01

    The authors have measured, at cryogenic temperature, the upper limit of the heat transfer in different configurations of a wire-wound heater. We found that the heat transferred has an upper limit of about 15 W/cm(2) and is dependent on the diameter of the wire. In this paper, we present three ways of increasing the heat transferred by this type of heater and its application in different continuous flow cryostats.

  8. Note: Improved wire-wound heater

    Science.gov (United States)

    Steinmann, Ricardo G.; Vitoux, Hugo

    2015-01-01

    The authors have measured, at cryogenic temperature, the upper limit of the heat transfer in different configurations of a wire-wound heater. We found that the heat transferred has an upper limit of about 15 W/cm2 and is dependent on the diameter of the wire. In this paper, we present three ways of increasing the heat transferred by this type of heater and its application in different continuous flow cryostats.

  9. Intelligent annunciator for solar water heater

    Science.gov (United States)

    Chen, Xiao

    2009-07-01

    The solar water heater has advantages of low cost, no pollution, safety, energy conservation and is very suitable for users in rural area. But many now used solar water heater has no alarm device resulting water and resource wasting because of forgetting to turn off the valve after water sailing upstream. To overcome this defect, an intelligent annunciator for solar water heater installed at the end of the return pipe is presented and designed in order to remind the user. Firstly, the advantages and disadvantages of automatic and manual sailing upstream are compared concluding that manual sailing upstream is more trustiness. Then an annunciator for solar water heater is studied and ameliorated. Its principle, parameters index and functions are introduced. The annunciator uses CD4069 chip as the core circuit with very little assistant circuit. It can provide sound and light alarm at the same time. This annunciator for solar water heater water is very simple in production, low cost, the use of safe and convenient. The annunciator is applicable to all solar power products, including various types of early installation of solar power water heaters and water tanks without changing their structures. It can meet family and industrial environmental applications.

  10. Savings on natural gas consumption by doubling thermal efficiencies of balanced-flue space heaters

    Energy Technology Data Exchange (ETDEWEB)

    Juanico, Luis E. [Conicet, and Centro Atomico Bariloche e Instituto Balseiro, Av. Bustillo 9500, 8400 Bariloche, Rio Negro (Argentina); Gonzalez, Alejandro D. [Grupo de Estudios Ambientales, Instituto de Investigaciones en Biodiversidad y Medio Ambiente (Inibioma-Conicet), 8400 Bariloche, Rio Negro (Argentina)

    2008-07-01

    Natural gas is a relatively clean fossil fuel for space heating. However, when it is not used efficiently high consumption can become an environmental problem. In Argentina, individual balanced-flue space heaters are the most extensively used in temperate and cold regions. This furnace is a simple device with a burner set into a metal chamber, separated from the indoor ambient by an enclosing cabinet, and both inlet and outgas chimneys are connected to the outdoor ambient. In previous studies, we measured the performance of these commercial devices, and found very low thermal efficiency (in the range of 39-63% depending on the chimney configuration). The extensive use of these devices is possible due to the availability of unlimited amount of subsidised natural gas to households and businesses. In the present work, we developed a prototype with simple and low cost modifications made on commercial models, and measured the improvements on the thermal efficiency. Findings showed better infrared radiation, enhanced indoor air convection, and passive chimney flow regulation leading to thermal efficiency in the range of 75-85%. These values represent an improvement of 100% when compared to marketed models, and hence, the specific cost of the heater per unit of useful heating power delivered was actually reduced. Considering the large market presence of these furnaces in both residential and business sectors in Argentina, the potential benefits related to gas consumption and environmental emissions are very significant. (author)

  11. Performance Study of Swimming Pool Heaters

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    2009-01-01

    The objective of this report is to perform a controlled laboratory study on the efficiency and emissions of swimming pool heaters based on a limited field investigation into the range of expected variations in operational parameters. Swimming pool heater sales trends have indicated a significant decline in the number of conventional natural gas-fired swimming pool heaters (NGPH). On Long Island the decline has been quite sharp, on the order of 50%, in new installations since 2001. The major portion of the decline has been offset by a significant increase in the sales of electric powered heat pump pool heaters (HPPH) that have been gaining market favor. National Grid contracted with Brookhaven National Laboratory (BNL) to measure performance factors in order to compare the relative energy, environmental and economic consequences of using one technology versus the other. A field study was deemed inappropriate because of the wide range of differences in actual load variations (pool size), geographic orientations, ground plantings and shading variations, number of hours of use, seasonal use variations, occupancy patterns, hour of the day use patterns, temperature selection, etc. A decision was made to perform a controlled laboratory study based on a limited field investigation into the range of expected operational variations in parameters. Critical to this are the frequency of use, temperature selection, and sizing of the heater to the associated pool heating loads. This would be accomplished by installing a limited amount of relatively simple compact field data acquisition units on selected pool installations. This data included gas usage when available and alternately heater power or gas consumption rates were inferred from the manufacturer's specifications when direct metering was not available in the field. Figure 1 illustrates a typical pool heater installation layout.

  12. Performance characterization of a hydrogen catalytic heater.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  13. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    Science.gov (United States)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  14. Combustion-Driven Oscillation in Process Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Seebold, J.G. [Chevron Corporation (Retired), 198 James Avenue, Atherton, CA 94027 (United States)

    2005-10-15

    At this moment in thousands of process heaters all over the world there are, to borrow a phrase from the late Carl Sagan, 'billions and billions' of Btu/hr beneficially being released entirely free of pulsation. On those few occasions, perhaps a dozen and a half in my career, when I would get the inevitable 'Why me?' call, I have generally responsed with something like, 'Consider yourself lucky, you have a rare scientific curiosity on your hands'. Reflecting on the solutions ultimately found, I'm reminded that many years ago my friend Abbott Putnam shared with me an early AGA (American Gas Association) field-service bulletin that included a prescription for eliminating combustion-driven oscillations in home heating units; viz., 'Drill a hole; if that doesn't work, drill another hole' or words to that effect. Many times have I wished that I still had a copy of that bulletin and in this paper we will have occasion, once again, to reflect upon the value of that advice. In this paper we will discuss an instance that arose in a pioneering installation of a breakthrough development of 'extremely', to distinguish it from 'ultra', low-NOx lean premix burner technology. We will illustrate how, when and under what circumstances combustion-driven oscillation can arise; we will touch on the many alternatives for its elimination that were considered and investigated; and we will discuss three practical alternatives for eliminating combustion-driven oscillations.

  15. Near-isothermal furnace for in situ and real time X-ray radiography solidification experiments

    Energy Technology Data Exchange (ETDEWEB)

    Becker, M., E-mail: maike.becker@dlr.de; Dreißigacker, C.; Klein, S.; Kargl, F. [Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln (Germany)

    2015-06-15

    In this paper, we present a newly developed near-isothermal X-ray transparent furnace for in situ imaging of solidification processes in thin metallic samples. We show that the furnace is ideally suited to study equiaxed microstructure evolution and grain interaction. To observe the growth dynamics of equiaxed dendritic structures, a minimal temperature gradient across the sample is required. A uniform thermal profile inside a circular sample is achieved by positioning the sample in the center of a cylindrical furnace body surrounded by a circular heater arrangement. Performance tests with the hypo-eutectic Al-15wt.%Cu and the near-eutectic Al-33wt.%Cu alloys validate the near-isothermal character of the sample environment. Controlled cooling rates of less than 0.5 K min{sup −1} up to 10 K min{sup −1} can be achieved in a temperature range of 720 K–1220 K. Integrated in our rotatable laboratory X-ray facility, X-RISE, the furnace provides a large field of view of 10.5 mm in diameter and a high spatial resolution of ∼4 μm. With the here presented furnace, equiaxed dendrite growth models can be rigorously tested against experiments on metal alloys by, e.g., enabling dendrite growth velocities to be determined as a function of undercooling or solutal fields in front of the growing dendrite to be measured.

  16. Hollow cathode heater development for the Space Station plasma contactor

    Science.gov (United States)

    Soulas, George C.

    1993-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater design. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Three heaters have been tested to date using direct current power supplies. Performance testing was conducted to determine input current and power requirements for achieving activation and ignition temperatures, single unit operational repeatability, and unit-to-unit operational repeatability. Comparisons of performance testing data at the ignition input current level for the three heaters show the unit-to-unit repeatability of input power and tube temperature near the cathode tip to be within 3.5 W and 44 degrees C, respectively. Cyclic testing was then conducted to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Two additional heaters were subsequently fabricated and have completed 3178 cycles to date in an on-going test.

  17. Primary helium heater for propellant pressurization systems

    Science.gov (United States)

    Reichmuth, D. M.; Nguyen, T. V.; Pieper, J. L.

    1991-01-01

    The primary helium heater is a unique design that provides direct heating of pressurant gas for large pressure fed propulsion systems. It has been conceptually designed to supply a heated (800-1000 R) pressurization gas to both a liquid oxygen and an RP-1 propellant tank. This pressurization gas is generated within the heater by mixing super critical helium (40-300 R and 3000-1600 psi) with an appropriate amount of combustion products from a 4:1 throttling stoichiometric LO2/LH2 combustor. This simple, low cost and reliable mixer utilizes the large quantity of helium to provide stoichiometric combustor cooling, extend the throttling limits and enhance the combustion stability margin. Preliminary combustion, thermal, and CFD analyses confirm that this low-pressure-drop direct helium heater can provide the constant-temperature pressurant suitable for tank pressurization of both fuel and oxidizer tanks of large pressure fed vehicles.

  18. Economic analysis of residential solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-23

    A typical residential solar water heater, and typical cost and performance information are described briefly. The monthly costs and savings of the typical system are discussed. Economic evaluations of solar water heaters are presented in increasingly complex levels of detail. Utilizing a typical system, the effective interest rate that the purchaser of a system would receive on money invested is shown for all regions of the country. The importance of numerous variables that can make a significant difference on the economics of the system is described. Methods for calculating the Payback Period for any non-typical solar water heater are described. This calculated Payback Period is then shown to be related to the effective interest rate that the puchaser of the system would receive for a typical set of economic conditions. A method is presented to calculate the effective interest rate that the solar system would provide. (MHR)

  19. DEVELOPMENT OF ELECTRONIC VERNEUIL FURNACE

    Science.gov (United States)

    HIGH TEMPERATURE, *PLASMA JETS, *REFRACTORY MATERIALS, ALTERNATING CURRENT, CELLULOSE ACETATES, CRYSTAL STRUCTURE, CRYSTALS , GAS DISCHARGES, GROWTH ...PHYSIOLOGY), LABORATORY FURNACES, PLASMAS(PHYSICS), RADIOFREQUENCY GENERATORS, RADIOFREQUENCY POWER, SINGLE CRYSTALS , THEORY.

  20. High-Precision Temperature Control of a Crystal Growth Furnace at 1,500 C

    Science.gov (United States)

    Stenzel, Ch.; Hess, A.; Croell, A.; Breuer, D.; Sauermann, H.

    2012-01-01

    For crystal growth of semiconductor materials a short-term temperature stability of 0.1 C at 1500 C is one of the essential parameters to be addressed for achieving high-quality crystals. Hence, for temperature monitoring and control with high precision in a floating zone furnace two sets of thermo-sensors, type B thermocouples and optical fibre thermometers, have been implemented and successfully operated in the furnace for more than 2000 h. The optical fibre thermometers consist of an optical system made of sapphire (two fibres plus a prism in between for deflection) and transmit the infra-red radiation of the heater to the outside of the hot core of the furnace for pyrometric temperature measurement. A dedicated control algorithm has been set up which controlled the power settings to the individual heaters. Both sensor types showed no degradation after this period and yielded a short-term stability at 1200 C of 0.05 C (optical fibre thermometers), respectively 0.08 C (thermocouples).

  1. A novel domestic electric water heater model for a multi-objective demand side management program

    Energy Technology Data Exchange (ETDEWEB)

    Paull, Liam; Li, Howard; Chang, Liuchen [University of New Brunswick, Department of Electrical Engineering, Fredericton, NB (Canada)

    2010-12-15

    This paper presents a novel domestic hot water heater model to be used in a multi-objective demand side management program. The model incorporates both the thermal losses and the water usage to determine the temperature of the water in the tank. Water heater loads are extracted from household load data and then used to determine the household water usage patterns. The benefits of the model are: (1) the on/off state of the water heater and temperature of the water in the tank can be accurately predicted, and (2) it enables the development of water usage profiles so that users can be classified based on usage behaviour. As a result, the amount of ancillary services and peak shaving that can be achieved are accurately predictable and can be maximized without adversely affecting users. (author)

  2. [Atmospheric pollution and chronic respiratory diseases in the blast-furnace areas of iron-works].

    Science.gov (United States)

    Zannini, D; Valente, T; Rotunno, R; Giusto, R

    1977-01-01

    An epidemiologic research together with a study on the environmental pollution were carried out in order to evaluate the risk of chronic respiratory diseases of blast furnace workers. The environment study was performed mainly using personal samplers given to workers with different jobs. Observations on 222 work shifts have shown that the total dust concentration to which cast workmen, maintenance men and blast furnace service men were exposed, marginally exceed the TLV values. Furthermore the level of respirable dusts for blast furnace service men was found slightly excessive. The average SO2 concentration was largely below the TLV values. However this gas could be found in excess for very short periods during the work. The epidemiologic study, conducted on a cohort of blast furnace area workers against a control group cohort, indicated a moderate prevalence of pneumoconiosis and chronic bronchitis amongst blast furnaces workers. The clinic and radiological pictures do not seem to go beyond the initial stages.

  3. Measure Guideline. Transitioning to a Tankless Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Brozyna, K. [IBACOS, Inc., Pittsburgh, PA (United States); Rapport, A. [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-09-01

    This measure guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters.

  4. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Science.gov (United States)

    2010-07-01

    ... bed. (3) Where a boiler or process heater of less than 44 megawatts (150 million British thermal units... heaters. 63.988 Section 63.988 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Routing to a Fuel Gas System or a Process § 63.988 Incinerators, boilers, and process heaters....

  5. Heater size effect on subcooled pool boiling of FC-72

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Rishi; Kim, Jungho [University of Maryland, College Park, MD (United States). Dept. of Mechanical Engineering

    2009-07-01

    Extensive research has been conducted on pool boiling using heaters larger than the capillary length. For large heaters and/or high gravity conditions, boiling is dominated by buoyancy, and the heat transfer is heater size independent. Much less is known about boiling on small heaters and at low gravity levels. The ratio of heater size L{sub h} to capillary length L{sub c} is an important parameter in the determination of heater size dependence on heat transfer. As the ratio L{sub h}/L{sub c} decreases due to a decrease in either heater size or gravity, surface tension forces become dominant. It is proposed that transition from buoyancy to surface tension dominated boiling occurs when the heater size and bubble departure diameter are of the same order. Previous work in variable gravity with flat surfaces has shown that the heat transfer was heater size independent only when the ratio L{sub h}/L{sub c} was considerably larger than 1. An array of 96 platinum resistance heater elements in a 10 x 10 configuration with individual elements 0.7 x 0.7 mm{sup 2} in size was used to vary heater size and measure the heat transfer. The threshold value of L{sub h}/L{sub c} above which pool boiling is heater size independent was found to be about 2.8. (author)

  6. 46 CFR 111.70-5 - Heater circuits.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Heater circuits. 111.70-5 Section 111.70-5 Shipping... REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-5 Heater circuits. (a) If an enclosure for a... from a separate circuit, the heater circuit must be disconnected from its source of potential by...

  7. Materials for a Stirling engine heater head

    Science.gov (United States)

    Noble, J. E.; Lehmann, G. A.; Emigh, S. G.

    1990-01-01

    Work done on the 25-kW advanced Stirling conversion system (ASCS) terrestrial solar program in establishing criteria and selecting materials for the engine heater head and heater tubes is described. Various mechanisms contributing to incompatibility between materials are identified and discussed. Large thermal gradients, coupled with requirements for long life (60,000 h at temperature) and a large number of heatup and cooldown cycles (20,000) drive the design from a structural standpoint. The pressurized cylinder is checked for creep rupture, localized yielding, reverse plasticity, creep and fatigue damage, and creep ratcheting, in addition to the basic requirements for bust and proof pressure. In general, creep rupture and creep and fatigue interaction are the dominant factors in the design. A wide range of materials for the heater head and tubes was evaluated. Factors involved in the assessment were strength and effect on engine efficiency, reliability, and cost. A preliminary selection of Inconel 713LC for the heater head is based on acceptable structural properties but driven mainly by low cost. The criteria for failure, the structural analysis, and the material characteristics with basis for selection are discussed.

  8. Color Infrared Orthorectified Photomosaic for Hopewell Furnace National Historic Site Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — Orthorectified color infrared ERDAS Imagine image of Hopewell Furnace NHS. Produced from 37 color infrared photos taken April 4, 2002. Orthorectification...

  9. Field Plot Points for Hopewell Furnace National Historic Site Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — This shapefile contains vegetation classification sampling points used to develop the alliance-level vegetation map of Hopewell Furnace National Historic Park. The...

  10. Research and development of a high efficiency gas-fired water heater. Volume 2. Task reports

    Energy Technology Data Exchange (ETDEWEB)

    Vasilakis, A.D.; Pearson, J.F.; Gerstmann, J.

    1980-01-01

    Design and development of a cost-effective high efficiency gas-fired water heater to attain a service efficiency of 70% (including the effect of exfiltration) and a service efficiency of 78% (excluding exfiltration) for a 75 GPD draw at a 90/sup 0/F temperature rise, with a stored water to conditioned air temperature difference of 80/sup 0/F, are described in detail. Based on concept evaluation, a non-powered natural draft water heater was chosen as the most cost-effective design to develop. The projected installed cost is $374 compared to $200 for a conventional unit. When the project water heater is compared to a conventional unit, it has a payback of 3.7 years and life cycle savings of $350 to the consumer. A prototype water heater was designed, constructed, and tested. When operated with sealed combustion, the unit has a service efficiency of 66.4% (including the effect of exfiltration) below a burner input of 32,000 Btu/h. In the open combustion configuration, the unit operated at a measured efficiency of 66.4% Btu/h (excluding exfiltration). This compares with a service efficiency of 51.3% for a conventional water heater and 61% for a conventional high efficiency unit capable of meeting ASHRAE 90-75. Operational tests showed the unit performed well with no evidence of stacking or hot spots. It met or exceeded all capacity or usage tests specified in the program test plan and met all emission goals. Future work will concentrate on designing, building, and testing pre-production units. It is anticipated that both sealed combustion and open draft models will be pursued.

  11. IMPROVED FURNACE EFFICIENCY THROUGH THE USE OF REFRACTORY MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL

    2011-01-01

    This paper describes efforts performed at Oak Ridge National Laboratory (ORNL), in collaboration with industrial refractory manufacturers, refractory users, and academic institutions, to improve energy efficiency of U.S. industry through increased furnace efficiency brought about by the employment of novel refractory systems and techniques. Work in furnace applications related to aluminum, gasification, and lime are discussed. The energy savings strategies discussed are achieved through reduction of chemical reactions, elimination of mechanical degradation caused by the service environment, reduction of temperature limitations of materials, and elimination of costly installation and repair needs. Key results of several case studies resulting from a US Department of Energy (DOE) funded research program are discussed with emphasis on applicability of these results to high temperature furnace applications.

  12. 10 CFR 434.404 - Building service systems and equipment.

    Science.gov (United States)

    2010-01-01

    ... needed for calculations, the thermal efficiency (Et) shall be 98%. When testing an oil-fired water heater... all stated requirements for the service water heating equipment. All gas-fired storage water heaters... with RS-42 (incorporated by reference, see § 434.701). Unless the water heater has an...

  13. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Charles; Wilson, Robert

    2014-04-30

    air pollutant emissions. In Phase 3, the team retrofitted three fuel-flexible burners into a fired heater at a Shell plant and demonstrated the project’s technology over a 6-month period. The project burners performed well during this period. They remain in commercial service at the Shell plant. Through this work, an improved understanding of flame stabilization mechanisms was gained. Also, methods for accommodating a wide range of fuel compositions were developed. This knowledge facilitated the commercialization of a new generation of burners that are suitable for the fuels of the future.

  14. Analysis Approach to Improve Star Rating Of Water Heater

    Directory of Open Access Journals (Sweden)

    Sujata Dabhade

    2014-07-01

    Full Text Available Electric Water Heaters are widely used all over the world that can be categorized in two types i.e. Instant Water Heaters & Storage type Water Heaters. The energy consumption for 6 liter water heaters is much higher in the storage type of water heater. As energy is an important factor for economic development of country, therefore there is need to save the energy which implies the focus to use Storage type Water Heaters. In 6 Liter water heater, Existing model converting from 4 star rating to 5 star rating by thermal analysis & insulation. After the theoretical calculation of thickness of glass wool is the practical testing of product with BEE norms & got results for 5 Star Calculation. Finally we are doing the thermal analysis for theoretical & practical verification of the product

  15. Evaluation of Temperature Gradient in Advanced Automated Directional Solidification Furnace (AADSF) by Numerical Simulation

    Science.gov (United States)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1996-01-01

    A numerical model of heat transfer using combined conduction, radiation and convection in AADSF was used to evaluate temperature gradients in the vicinity of the crystal/melt interface for variety of hot and cold zone set point temperatures specifically for the growth of mercury cadmium telluride (MCT). Reverse usage of hot and cold zones was simulated to aid the choice of proper orientation of crystal/melt interface regarding residual acceleration vector without actual change of furnace location on board the orbiter. It appears that an additional booster heater will be extremely helpful to ensure desired temperature gradient when hot and cold zones are reversed. Further efforts are required to investigate advantages/disadvantages of symmetrical furnace design (i.e. with similar length of hot and cold zones).

  16. Installation and Trial Run of the Furnace

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to meet the demand of neutron experiment in the future, the neutron lab equips with extreme temperature furnace (Fig. 1), the furnace is designed and produced by the professional producer-Scientific

  17. Waste and dust utilisation in shaft furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Senk, D.; Babich, A.; Gudenau, H.W. [Rhein Westfal TH Aachen, Aachen (Germany)

    2005-07-01

    Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilised e.g. in agglomeration processes (sintering, pelletising or briquetting) and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverised coal (PC) has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

  18. High Efficiency Solar Furnace Core Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop a high efficiency solar furnace core that greatly lessens the heat losses from the furnace core, either greatly reducing the amount of...

  19. Electrostatic Levitation Furnace for the ISS

    Science.gov (United States)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  20. Boiling Heat Transfer in High Temperature Generator of Absorption Chiller/Heater

    Science.gov (United States)

    Furukawa, Masahiro; Enomoto, Eiichi; Sekoguchi, Kotohiko

    The heat transfer performance of forced convective boiling was tested using a high temperature generator of absorption chiller/heater, the rear furnace wall of which was composed of two different surfaces; i. e., plain and sprayed heated surfaces. These two surfaces were bisymmetrically set. Wall surface temperatures of both the fire and fluid sides were measured at three locations along the upward flow direction in each heated surface for determining the heat flux and heat transfer coefficient. Nickel-chromium and alumina were employed as the spray materials. The test results show that the sprayed surface can yield a marked elevation in the heat transfer performance due to boiling on the plain surface. Therefore the level of heated surface temperature is largely reduced by means of the spraying surface treatment. This implies that the spraying would much improve a corrosive condition of the heated surface.

  1. Solar Air Heaters with Thermal Heat Storages

    Directory of Open Access Journals (Sweden)

    Abhishek Saxena

    2013-01-01

    Full Text Available Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has been carried out to rate the various thermal energy storage commonly used in solar air heaters. During the investigations rock bed storages have been found to be low type thermal heat storage, while phase change materials have been found to be high heat thermal storages. Besides this, a few other heat storing materials have been studied and discussed for lower to higher ratings in terms of thermal performance purposely for solar heaters.

  2. Improving the Gas Instantaneous Water Heaters Performances

    Directory of Open Access Journals (Sweden)

    Nasir Kloub

    2005-01-01

    Full Text Available This study presents a study of a theoretical and practical investigation of the gas Instantaneous (Tankless water Heaters performance. The results allow us to obtain realistic values of the control system in the various capacities gaseous flowing water heaters. The objective of this work is to study the operation of the plans in the field of controlling and checking low capacity gaseous flowing water in order to choose the proper plan of the logical values and measures for these equipments that may be used in industrial conditions. Also results of the work proved to be accurate. A design of the control system was made. The results of the practical experiment of the control system were similar to the arithmetic results.

  3. Single-heater test final report

    Energy Technology Data Exchange (ETDEWEB)

    Blair, S. C.; Buscheck, T. A.; DeLoach, L. D.; Lin, W.; Ramirez, A. I.

    1998-09-01

    The Single-Heater Test (SHT) was one phase of the field-scale thermal testing program of the Yucca Mountain Site Characterization Project. The primary purpose of the SHT was to study the thermomechanical (TM) behavior of the densely welded, non-lithophysal Topopah Spring tuff at the Exploratory Studies Facility. The SHT was also used as a shake-down for testing thermal-hydrologic-chemical-mechanical processes in situ, testing that will be conducted in the Drift-Scale Test. In the SHT, a line-heat source 5-m long was emplaced in a pillar and used to heat the pillar for approximately nine months. The thermal field was relatively cylindrical about the line-heat source. The heater was turned off after nine months of heating, and the rock mass was monitored during the cool-down for another nine months, until May 28, 1997, when the test was terminated.

  4. Solar water heater for NASA's Space Station

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  5. AWSWAH - the heat pipe solar water heater

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.

    1986-01-01

    An all weather heat pipe solar water heater (AWSWAH) comprising a collector of 4 m/sup 2/ (43 ft/sup 2/) and a low profile water tank of 160 liters (42 gal.) was developed. A single heat pipe consisting of 30 risers and two manifolds in the evaporator and a spiral condenser was incorporated into the AWSWAH. Condensate metering was done by synthetic fiber wicks. The AWSWAH was tested alongside two conventional solar water heaters of identical dimensions, an open loop system and a closed loop system. It was found that the AWSWAH was an average of 50% more effective than the open system in the temperature range 30-90 /sup 0/C (86-194 /sup 0/F). The closed loop system was the least efficient of the three systems.

  6. Water heaters subject to new regulations.

    Science.gov (United States)

    Clarke, Alan

    2014-06-01

    On 26 September 2015 the Ecodesign and Energy Labelling Directives for water heaters (Lot 2) come into force, meaning that water-heating products sold in the UK and other countries in the European Economic Area will need to meet minimum energy performance criteria in order to be legally placed on the market, and will require an energy label. Here Alan Clarke, technical support manager at Heatrae Sadia, explains more.

  7. Field Monitoring Protocol: Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  8. Field Monitoring Protocol. Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  9. Heater Validation for the NEXT-C Hollow Cathodes

    Science.gov (United States)

    Verhey, Timothy R.; Soulas, George C.; Mackey, Jonathan Ar.

    2017-01-01

    Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.

  10. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  11. Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Sandberg, Chester Ledlie (Palo Alto, CA)

    2010-11-09

    A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.

  12. Impact of kerosene space heaters on indoor air quality.

    Science.gov (United States)

    Hanoune, B; Carteret, M

    2015-09-01

    In recent years, the use of kerosene space heaters as additional or principal heat source has been increasing, because these heaters allow a continuous control on the energy cost. These devices are unvented, and all combustion products are released into the room where the heaters are operated. The indoor air quality of seven private homes using wick-type or electronic injection-type kerosene space heaters was investigated. Concentrations of CO, CO2, NOx, formaldehyde and particulate matter (0.02-10 μm) were measured, using time-resolved instruments when available. All heaters tested are significant sources of submicron particles, NOx and CO2. The average NO2 and CO2 concentrations are determined by the duration of use of the kerosene heaters. These results stress the need to regulate the use of unvented combustion appliances to decrease the exposure of people to air contaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. FAILURES AND THE LIFE OF FURNACE TUBES

    Institute of Scientific and Technical Information of China (English)

    F.Z.Shen; Y.Ding; D.M.Hou; Z.P.Ning; Y.Lü; T.B.Dong; A.R.Tuohuti

    2004-01-01

    It is showed after the furnace tubes serviced for 8-10 years that the density of damage in the HAZ (heat affected zone) of the weld has higher than in parent metals, though the depth of damage is not equal to. By the test of creep crack growth, it is also acquired that under same mechanic parameter C* (t), the rate of creep crack growth in the HAZ is more than twice as fast as in parent metals. Two mechanisms (overheating and thermal shock) of failure occurred in an accident are presented. The stress of thermal shock is analyzed, in which the change of the elasticity modulus with the radius ET = f(r) is considered. Based on it, the safety region of the thermal shock is obtained. Finally, two sets of curves for the safe life are suggested which can facilitate to estimate the remaining life of HK-40 or HP-Nb tubes by their creep rupture data.

  14. Recent innovative examples of the industrial application of electric furnaces; Quelques exemples d'applications industrielles recentes et innovantes dans le domaine des fours electriques

    Energy Technology Data Exchange (ETDEWEB)

    Jaume, R.; Le Boulch, M.; Menneron, L. [Electricite de France, Div. Recherche et Developpement, les Renardieres (France)

    2000-11-01

    Industrial electric furnaces are making use of new technologies in order to reduce the costs of industrial processes, simplify maintenance and improve the working conditions of the operators. Recent developments include immersion heaters with graphite heating elements used in mechanical engineering to melt and heat aluminium alloys, new silicon carbide compositions produced in the chemical industry, and extremely thin screen-printed elements for use in domestic appliances and the plastics industry. (authors)

  15. Analysis of thermal stresses in horizontal delivery water heaters

    Science.gov (United States)

    Bilan, A. V.; Plotnikov, P. N.

    2016-11-01

    Analysis of thermal stresses in tubes and a compensator, taking into account water heating in each heater bunch and temperature at which its mounting is implemented, and of stresses on pressure is presented. The 3D-model of the horizontal delivery water heater of PSG-4900-0.3-1.14 type is used. The tube plate is represented as the 3D-body with 6863 holes with offset center of the perforated area, the steam space shell is represented as a cylindrical casing, the bottoms of water chambers are considered as elliptical casings, the four-lens compensator is represented in the form of toroidal casings, and the tubes are considered as beams operating in tensile-compression and bending in two planes. Calculations were carried out for different temperatures of superheated steam and a steam space shell, respectively, as well as designs with compensator and without it. Various temperature values of the tubes on the passes were calculated and set. The studies were carried out taking into account nonaxis-symmetrical spacing the tube plate and compensator deformation. The calculation results of tensile-compression stresses in the tubes are presented. Furthermore, the central tubes experience compressive stresses, whose maximal values take place on the border between the tubes of the fourth and of the first passes. For its decrease, it is recommended to increase the distance between the tubes of these passes. The tension stresses in the peripheral tubes are the maximal stresses. To reduce the stresses and, therefore, increase service life of the delivery water heater at using wet or superheated (not more than by 30-50°C) steam in it (the larger value refers to the brass tubes and the water pressure of 1.6-2.5 MPa), it is necessary to recommend the noncompensatory design at using the steam superheated by more than 30-50°C (at Ural Turbine Works, it is the turbines of T-250/300-23.5 and T-113/145-12.4 types with intermediate superheating) and to recommend the installation of the

  16. Measure Guideline: Transitioning to a Tankless Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Brozyna, K.; Rapport, A.

    2012-09-01

    This Measure Guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters. The report compares the differences between tankless and tank-type water heaters, highlighting the energy savings that can be realized by adopting tankless water heaters over tank-type water heaters. Selection criteria and risks discussed include unit sizing and location, water distribution system, plumbing line length and diameter, water quality, electrical backup, and code issues. Cost and performance data are provided for various types of tankless and tank-type water heaters, both natural gas fired and electric. Also considered are interactions between the tankless water heater and other functional elements of a house, such as cold water supply and low-flow devices. Operating costs and energy use of water distribution systems for single- and two-story houses are provided, along with discussion of the various types of distribution systems that can be used with tankless water heaters. Finally, details to prepare for proper installation of a tankless water heater are described.

  17. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads.

  18. High temperature furnace modeling and performance verifications

    Science.gov (United States)

    Smith, James E., Jr.

    1992-01-01

    Analytical, numerical, and experimental studies were performed on two classes of high temperature materials processing sources for their potential use as directional solidification furnaces. The research concentrated on a commercially available high temperature furnace using a zirconia ceramic tube as the heating element and an Arc Furnace based on a tube welder. The first objective was to assemble the zirconia furnace and construct parts needed to successfully perform experiments. The 2nd objective was to evaluate the zirconia furnace performance as a directional solidification furnace element. The 3rd objective was to establish a data base on materials used in the furnace construction, with particular emphasis on emissivities, transmissivities, and absorptivities as functions of wavelength and temperature. A 1-D and 2-D spectral radiation heat transfer model was developed for comparison with standard modeling techniques, and were used to predict wall and crucible temperatures. The 4th objective addressed the development of a SINDA model for the Arc Furnace and was used to design sample holders and to estimate cooling media temperatures for the steady state operation of the furnace. And, the 5th objective addressed the initial performance evaluation of the Arc Furnace and associated equipment for directional solidification. Results of these objectives are presented.

  19. Crypto heater:a design fiction

    OpenAIRE

    Lindley, Joseph

    2015-01-01

    This proposal is to exhibit the work named Crypto Heater which is part of a design fiction [c.f 1,5,8:30] series intended to explore a near future world in which cryptographic currencies such as Bitcoin [6] have become commonplace. This work opens up space for discussion about the activities of the distributed peer-to-peer network of so-called "miners" that ensure the security of the Bitcoin network and regulate the supply of new currency in the Bitcoin economy. The physical part of the work ...

  20. The Industrial Design of Water Heater

    Institute of Scientific and Technical Information of China (English)

    张萌萌

    2014-01-01

    The design was inspired by the understanding to the fine life understanding of life, relaxed requirement and under-standing of fashion. Each link of easy life present in the water heater design. The principle of"artappliances, life"brand phi-losophy, refined and understated elegance is the core essence, is also the brand logo. In the"draw the fine life inspiration, the core brand design language create eternal artistic quality", every product tothe interpretation of home life art trend, to embody the elegant life style annotation and experience, committed to the urban elites to create exquisitelife style.

  1. Status of Hollow Cathode Heater Development for the Space Station Plasma Contactor

    Science.gov (United States)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Heater tests included testing of the heater unit alone and plasma contactor and ion thruster testing. To date, eight heaters have been or are being processed through heater unit testing, two through plasma contactor testing and three through ion thruster testing, all using direct current power supplies. Comparisons of data from heater unit performance tests before cyclic testing, plasma contactor tests, and ion thruster tests at the ignition input current level show the average deviation of input power and tube temperature near the cathode tip to be +/-0.9 W and +/- 21 C, respectively. Heater unit testing included cyclic testing to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Four additional heaters successfully completed 6300, 6300, 700, and 700 cycles. Heater unit testing is currently ongoing for three heaters which have to date accumulated greater than 7250, greater than 5500, and greater than 5500 cycles, respectively.

  2. Application of electric heater reheat technology on sulfur recovery unit%电加热器再热技术在硫磺回收装置上的应用

    Institute of Scientific and Technical Information of China (English)

    王小强; 邱斌; 赵柳鉴; 高健文; 陈亮; 田梦雯; 黄暄

    2014-01-01

    根据重庆天然气净化总厂綦江分厂硫磺回收装置的运行现状与特点,对过程气再热方式进行了选择。分析了高温掺和法、在线加热炉加热法、蒸汽加热法、气-气换热法、电加热法的优缺点,确定采用能源供应方便,结构紧凑,自动控制温度,操作简便,无污染的电加热器进行过程气再热。结论表明,在硫磺回收装置低负荷运行的条件下,过程气采用电加热技术,可确保系统温度在正常范围内,使硫磺回收装置运转正常。同时,对电加热器设备运行的常见问题和异常情况进行了分析和总结。%Aiming at current situations and characteristics of the sulfur recovery unit in Qijiang Branch ,the process gas reheating methods were determined .The advantages and disadvantages of five kinds of reheat methods technology were analyzed including high temperature mixed ,re-heating furnaces ,steam heating ,gas-gas heat exchanger and electric heater .T he electric heater was finally determined because of the advantage of convenient energy service ,compact structure , automatic temperature control ,simple operation and no pollution .The Results showed that sys-tem temperature was in normal range and sulfur recovery unit ran properly when the sulfur re-covery unit operated at low load .Meanwhile ,the common problems and abnormal situations of electric heater were analyzed and summarized .

  3. Evaluation of radiofrequency dielectric heaters workers exposure.

    Science.gov (United States)

    Benes, M; Del Frate, S; Villalta, R

    2008-01-01

    Radiofrequency dielectric heaters (RFDH) are widely used in the woodworking industry for gluing laminates by applying pressure and RF heating. The workers operating such equipment remain in the vicinity of the machinery all day and can therefore be exposed to considerable levels of electric and magnetic field at RFs. This work describes the method used to measure the strength of fields generated by this particular machinery. This procedure is based on current methods cited in the literature and introduces the necessary modifications to meet this specific case. In particular, as there is often a scarcity of technical data available relating to such heaters, it is suggested that a spectrum analyser be used for measurements in the frequencies domain. On the basis of the data obtained the norms of reference are established, the instrumentation to be used in successive stages determined as well as the identification of possible sources of interference from spurious signals. Furthermore, a mapping of the field strengths is presented and the means of determining the decay curve as a function of distance. This last type of measurement is done to estimate the effectiveness of grounding the machinery. The report ends with an estimate of the exposure of workers to electromagnetic fields and also some recommendations for reducing risk.

  4. Development of an Operation Control System for Photovoltaics and Electric Storage Heaters for Houses Based on Information in Weather Forecasts

    Science.gov (United States)

    Obara, Shin'ya

    An all-electric home using an electric storage heater with safety and cleaning is expanded. However, the general electric storage heater leads to an unpleasant room temperature and energy loss by the overs and shorts of the amount of heat radiation when the climate condition changes greatly. Consequently, the operation of the electric storage heater introduced into an all-electric home, a storage type electric water heater, and photovoltaics was planned using weather forecast information distributed by a communication line. The comfortable evaluation (the difference between a room-temperature target and a room-temperature result) when the proposed system was employed based on the operation planning, purchase electric energy, and capacity of photovoltaics was investigated. As a result, comfortable heating operation was realized by using weather forecast data; furthermore, it is expected that the purchase cost of the commercial power in daytime can be reduced by introducing photovoltaics. Moreover, when the capacity of the photovoltaics was increased, the surplus power was stored in the electric storage heater, but an extremely unpleasant room temperature was not shown in the investigation ranges of this paper. By obtaining weather information from the forecast of the day from an external service using a communication line, the heating system of the all-electric home with low energy loss and comfort temperature is realizable.

  5. Biogas Digester with Simple Solar Heater

    Directory of Open Access Journals (Sweden)

    Kh S Karimov

    2012-10-01

    Full Text Available ABSTRACT: In this research work, the design, fabrication and investigation of a biogas digester with simple solar heater are presented. For the solar heater, a built-in reverse absorber type heater was used. The maximum temperature (50°C inside the methane tank was taken as a main parameter for the design of the digester. Then, the energy balance equation for the case of a static mass of fluid being heated was used to model the process. The parameters of thermal insulation of the methane tank were also included in the calculations. The biogas digester consisted of a methane tank with built-in solar reverse absorber heater to harness the radiant solar energy for heating the slurry comprising of different organic wastes (dung, sewage, food wastes etc.. The methane tank was initially filled to 70% of its volume with organic wastes from the GIK institute’s sewage. The remaining volume was filled with sewage and cow dung from other sources. During a three month period (October-December, 2009 and another two month period (February-March, 2010, the digester was investigated. The effects of solar radiation on the absorber, the slurry’s temperature, and the ambient temperature were all measured during these investigations. It was found that using sewage only and sewage with cow dung in the slurry resulted in retention times of four and two weeks, respectively. The corresponding biogas produced was 0.4 m3 and 8.0 m3, respectively. Finally, this paper also elaborates on the upgradation of biogas through the removal of carbon dioxide, hydrogen sulphide and water vapour, and also the process of conversion of biogas energy into electric powerABSTRAK: Kajian ini membentangkan rekabentuk, fabrikasi dan penyelidikan tentang pencerna biogas dengan pemanas solar ringkas. Sebagai pemanas solar, ia dilengkapkan dengan penyerap pemanas beralik. Suhu maksimum(50oC di dalam tangki metana telah diambil sebagai parameter utama rekabentuk pencerna. Dengan menggunakan

  6. Parametric excitation of whistler waves by HF heater

    Science.gov (United States)

    Kuo, S. P.; Lee, M. C.

    1989-01-01

    Possible generation of whistler waves by Tromso HF heater is investigated. It is shown that the HF heater wave can parametrically decay into a whistler wave and a Langmuir wave. Since whistler waves may have a broad range of frequency, the simultaneously excited Langmuir waves can have a much broader frequency bandwidth than those excited by the parametric decay instability.

  7. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion...

  8. Free convective heat loss from cavity-type solar furnace; Sora reshiba karano shizen tairyu ni yoru netsu sonshitsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I.; Ito, N. [Meiji Univ., Tokyo (Japan)

    1997-11-30

    Heat loss by free convective heat transfer from the solar furnace is investigated experimentally, and the result is arranged in formulas. It may be unjustifiable somewhat to apply the result of the experiment as it is to actual systems, but it seems that the result is not apart so far from those of actual systems, at lease when there is no wind. Moreover, arrangement of the experimental point in a formula can be considered to be a very useful result. A simulated receiver system is prepared which heats air in the cavity of the receiver by an electric heater, and has been used for experiments. In addition, a glass receiver having affixed transparent heaters on the bottom and side surfaced is prepared separately for the observation of convective phenomenon of air in the receiver and leaking of heat with air flow from the aperture, which enables visualization of the air flow. 11 refs., 4 figs.

  9. Measurement of airflow in residential furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Biermayer, Peter J.; Lutz, James; Lekov, Alex

    2004-01-24

    In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

  10. Infrared transparent graphene heater for silicon photonic integrated circuits.

    Science.gov (United States)

    Schall, Daniel; Mohsin, Muhammad; Sagade, Abhay A; Otto, Martin; Chmielak, Bartos; Suckow, Stephan; Giesecke, Anna Lena; Neumaier, Daniel; Kurz, Heinrich

    2016-04-18

    Thermo-optical tuning of the refractive index is one of the pivotal operations performed in integrated silicon photonic circuits for thermal stabilization, compensation of fabrication tolerances, and implementation of photonic operations. Currently, heaters based on metal wires provide the temperature control in the silicon waveguide. The strong interaction of metal and light, however, necessitates a certain gap between the heater and the photonic structure to avoid significant transmission loss. Here we present a graphene heater that overcomes this constraint and enables an energy efficient tuning of the refractive index. We achieve a tuning power as low as 22 mW per free spectral range and fast response time of 3 µs, outperforming metal based waveguide heaters. Simulations support the experimental results and suggest that for graphene heaters the spacing to the silicon can be further reduced yielding the best possible energy efficiency and operation speed.

  11. Toxic organic pollutants from kerosene space heaters in Iran.

    Science.gov (United States)

    Keyanpour-Rad, Mansoor

    2004-03-01

    The aim of this study was to investigate qualitatively the emission of toxic organic pollutants from an unventilated conventional kerosene space heater commonly used in Iran. A brand new common convective kerosene space heater, the "Aladdin," was used for this study. The well-tuned convective heater was operated in a 2.6-m(3) test chamber and then the emission was tested for organic pollutants. The emission was collected on Teflon-impregnated glass-fiber filters and XAD-2 resin and then analyzed by gas chromatography-mass spectroscopy. It was found that in addition to the ordinary pollutant gases, the heater emits aliphatic hydrocarbons, alcohols, polyaromatic hydrocarbons and the related nitrated compounds, phthalates, naphthalenes, and some other toxic organic compounds. However, it was found that the heater did not emit fluoranthene, cyclohexane, benzoic acid, and higher-molecular-weight alkylbenzenes, which could have resulted from the combustion of some other types of kerosene.

  12. Note: Improved heater design for high-temperature hollow cathodes

    Science.gov (United States)

    McDonald, M. S.; Gallimore, A. D.; Goebel, D. M.

    2017-02-01

    We present an improved heater design for thermionic cathodes using a rhenium filament encased in a boron nitride ceramic sleeve. This heater is relatively simple to fabricate, yet has been successfully used to reliably and repeatably light a lanthanum hexaboride (LaB6) hollow cathode based on a previously published design without noticeable filament degradation over hundreds of hours of operation. The high decomposition temperature of boron nitride (2800 C for inert environments) and melting point for rhenium (3180 C) make this heater especially attractive for use with LaB6, which may require operating temperatures upwards of 1700 C. While boron nitride decomposes in air above 1000 C, the heater was used only at vacuum with an inert gas discharge, and no degradation was observed. Limitations of current state of the art cathode heaters are also discussed and compared with the rhenium-boron nitride combination.

  13. OVERALL PERFORMANCE OF THE ELECTRIC ARC MELTING FURNACE DEPENDING ON QUALITY OF FURNACE CHARGE

    Directory of Open Access Journals (Sweden)

    A. B. Steblov

    2016-01-01

    Full Text Available The quality of furnace charge in an electric arc melting furnace to a large extend determines the efficiency of melting. With a tendency of increase of light scrap with a high content of non-iron impurities scrap fine crushing can increase the metallurgical value of scrap and improve technical and economic parameters of electric arc furnace operation.

  14. Wall heat transfer in gas-fired furnaces: Effect of radiation modelling

    Directory of Open Access Journals (Sweden)

    Vondál J.

    2015-06-01

    Full Text Available The purpose of this work is to study heat transfer to cooled walls in a MW-scale laboratory furnace with a dominating thermal radiation component. Experiment is performed in a specially designed combustion chamber with segmental water-cooled walls and profile of absorbed heat flux is measured along the flame. Non-premixed natural gas flame is stabilized by a guide-vane swirler. The unsteady governing equations of turbulent flow are solved by a finite-volume code with a two-equation k-ε realizable turbulence model, a combination of first-order and second-order upwind schemes and implicit time integration. The coupling of pressure with velocity is treated by SIMPLE (semi-implicit method for pressure-linked equations algorithm. Radiative heat transfer as the main heat transfer method is modelled with special care by discrete ordinates method and gas absorption coefficient is calculated by two alternatives of WSGGM (weighted sum of grey gases model. The predicted total heat transfer rate is found to depend strongly on method chosen for the computation of mean beam length. The results of numerical simulations show that overall heat transfer in a process furnace can be successfully predicted, while heat flux profile along the flame is more difficult to predict accurately. Good engineering accuracy is nevertheless achievable with reasonable computational resources. The trend of deviations is reported, which is useful for the interpretation of practical predictions of process furnaces (fired heaters.

  15. Thermal Spray Coatings for Blast Furnace Tuyere Application

    Science.gov (United States)

    Pathak, A.; Sivakumar, G.; Prusty, D.; Shalini, J.; Dutta, M.; Joshi, S. V.

    2015-12-01

    The components in an integrated steel plant are invariably exposed to harsh working environments involving exposure to high temperatures, corrosive gases, and erosion/wear conditions. One such critical component in the blast furnace is the tuyere, which is prone to thermal damage by splashing of molten metal/slag, erosive damage by falling burden material, and corrosion from the ensuing gases. All the above, collectively or independently, accelerate tuyere failure, which presents a potential explosion hazard in a blast furnace. Recently, thermal spray coatings have emerged as an effective solution to mitigate such severe operational challenges. In the present work, five different coatings deposited using detonation spray and air plasma spray techniques were comprehensively characterized. Performance evaluation involving thermal cycling, hot corrosion, and erosion tests was also carried out. Based on the studies, a coating system was suggested for possible tuyere applications and found to yield substantial improvement in service life during actual field trials.

  16. Integrity Assessment of GOH Heater Tube

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bong Sang; Hong, J. H.; Oh, Y. J.; Yoon, J. H.; Oh, J. M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-08-01

    An assessment of structural integrity of ASTM A312-TP347 GOH heater tube was performed. The surface notches which had been produced during tube manufacturing process were analyzed microscopically. Chemical analysis, hardness tests, tensile tests, and J-Integral fracture resistance tests were carried out to compare the mechanical properties with those of the material specification and also with the other material of the same type. The test results showed the mechanical properties of the GOH tube material are within the specification range. An elastic-plastic fracture mechanics analysis based on the DPFAD method reveals the tube an appropriate safety margin for the normal operation. 13 refs., 5 tabs., 24 figs. (author)

  17. The use of blast furnace slag

    Directory of Open Access Journals (Sweden)

    V. Václavík

    2012-10-01

    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  18. The use of blast furnace slag

    OpenAIRE

    V. Václavík; V. Dirner; T. Dvorský; J. Daxner

    2012-01-01

    The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  19. Thermal Imaging Control of Furnaces and Combustors

    Energy Technology Data Exchange (ETDEWEB)

    David M. Rue; Serguei Zelepouga; Ishwar K. Puri

    2003-02-28

    The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

  20. Analysis of Leak and Plugging Condition for Feedwater Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansul; Kang, Yeon Kwan; Heo, Gyunyoung [Kyung Hee University, Yongin (Korea, Republic of); Song, Seok Yoon; Oh, Seung Hwan [Korea Hydro and Nuclear Power, Daejeon (Korea, Republic of)

    2015-10-15

    Tube damage in feedwater heater occurs from damaged pressure boundary, inflow of foreign substances, erosion and corrosion. Once a heat tube is damaged, the water jet from the damaged spot is spread out to surrounding tubes. Since a feedwater heater is operated under 2-phase flow condition and has physically complicated structure, it cannot be approached on shell side. Therefore, test and inspection to check tube degradation is relatively difficult. Even though tube leak does not affect surrounding tubes, it obviously affects efficiency of turbine cycle and reduces economic feasibility in the long run. For this reason, systematic management is required on thermal performance for feedwater heaters. In this paper, PEPSE (Performance Evaluation of Power System Efficiency), one of the generic-purpose power plant simulation program, was used to construct a heat balance model for turbine cycle. The model was used to analyze the effect of change in key variables related to thermal performance of feedwater heater on turbine cycle, thereby preparing a thermal performance management strategy for feedwater heaters. Study was conducted on 6 units that represent each reactor type among domestic nuclear power plants (NPPs) in operation, but this paper described the results of high pressure feedwater heaters in a Korean standard NPP, which shows high possibility of tube damage due to large shell-tube pressure difference. In this paper, the heat balance models for turbine cycle were constructed as a part of effort to develop the thermal performance management system for feedwater heaters in NPPs.

  1. Thermal emission of neutron stars with internal heaters

    CERN Document Server

    Kaminker, A D; Potekhin, A Y; Yakovlev, D G

    2014-01-01

    Using 1D and 2D cooling codes we study thermal emission from neutron stars with steady state internal heaters of various intensities and geometries (blobs or spherical layers) located at different depths in the crust. The generated heat tends to propagate radially, from the heater down to the stellar core and up to the surface; it is also emitted by neutrinos. In local regions near the heater the results are well described with the 1D code. The heater's region projects onto the stellar surface forming a hot spot. There are two heat propagation regimes. In the first, conduction outflow regime (realized at heat rates $H_0 \\lesssim 10^{20}$ erg cm$^{-3}$ s$^{-1}$ or temperatures $T_\\mathrm{h} \\lesssim 10^9$ K in the heater) the thermal surface emission of the star depends on the heater's power and neutrino emission in the stellar core. In the second, neutrino outflow regime ($H_0 \\gtrsim 10^{20}$ erg cm$^{-3}$ s$^{-1}$ or $T_\\mathrm{h} \\gtrsim 10^9$ K) the surface thermal emission becomes independent of heater's...

  2. Substrate heater for the growth of epitaxial silicon films

    Science.gov (United States)

    Deming, Matthew; Varhue, Walter; Adams, Edward; Lavoie, Mark

    1999-03-01

    The single wafer processing of epitaxial Si films requires that special attention be paid to the design of the substrate heater assembly. This document describes the evolution and testing of an in situ heater used to deposit epitaxial Si films at temperatures as high as 700 °C. One problem encountered was the production of excessive levels of ultraviolet radiation which contributed to the desorption of water vapor from the vacuum chamber walls during the in situ cleaning process. A second problem involved the formation of a molybdenum containing film that poisoned epitaxial growth. A final proven in situ heater design is presented which avoids these problems.

  3. Design and Implementation of the MSL Cruise Propulsion Tank Heaters

    Science.gov (United States)

    Krylo, Robert; Mikhaylov, Rebecca; Cucullu, Gordon; Watkins, Brenda

    2008-01-01

    This slide presentation reviews the design and the implementation of the heaters for the Mars Science Laboratory (MSL). The pressurized tanks store hydrazine that freezes at 2 C, this means that heaters are required to keep the hydrazine and the helium at 36 C for the trip to Mars. Using the TMG software the heat loss was analyzed, and a thermal model simulates a half full tank which yielded a 13W heating requirement for each hemisphere. Views of the design, and the heater are included.

  4. 75 FR 52892 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2010-08-30

    ... discretion, this direct measurement procedure is optional for vented heaters without thermal stack dampers... efficiency is calculated for vented heaters with manual controls and thermal dampers. For all other vented... Procedures for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters AGENCY: Office of...

  5. 78 FR 2340 - Energy Conservation Program: Test Procedures for Residential Water Heaters and Commercial Water...

    Science.gov (United States)

    2013-01-11

    ... also questionable whether thermal efficiency is an appropriate metric for smaller storage water heaters... that the test procedure for residential water heaters utilized the thermal efficiency and standby loss..., particularly for heat pump water heaters and gas instantaneous water heaters. 3. Revised Thermal Efficiency...

  6. 75 FR 20111 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-16

    ... 46,000 65 Table II.3--Current Federal Energy Conservation Standards for Pool Heaters Thermal efficiency as of Product class January 1, 1990 Gas-Fired Pool Heater Thermal Efficiency = 78% ] 2. History of... Heaters, Direct Heating Equipment, and Pool Heaters; Final Rule #0;#0;Federal Register / Vol. 75, No....

  7. 76 FR 56347 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2011-09-13

    ... of the pool heater as: E OUT = BOH Where: BOH = as defined in 5.2 of this appendix E t = thermal... defined in 5.3 of this appendix 5.4.3 Calculate the pool heater integrated thermal efficiency (TE I ) (in... Residential Water Heaters, Direct Heating Equipment, and Pool Heaters (Standby Mode and Off Mode)...

  8. Modeling heat transfer from quench protection heaters to superconducting cables in Nb3Sn magnets

    CERN Document Server

    Salmi, T; Caspi, S; Felice, H; Prestemon, S; Chlachidze, G; Kate, H H J ten

    2013-01-01

    We use a recently developed quench protection heater modeling tool for an analysis of heater delays in superconducting high-field Nb3Sn accelerator magnets. The results suggest that the calculated delays are consistent with experimental data, and show how the heater delay depends on the main heater design parameters.

  9. 40 CFR 279.23 - On-site burning in space heaters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false On-site burning in space heaters. 279... burning in space heaters. Generators may burn used oil in used oil-fired space heaters provided that: (a) The heater burns only used oil that the owner or operator generates or used oil received from...

  10. Biomass furnace: projection and construction

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Fernanda Augusta de Oliveira; Silva, Juarez Sousa e; Silva, Denise de Freitas; Sampaio, Cristiane Pires; Nascimento Junior, Jose Henrique do [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola

    2008-07-01

    Of all the ways to convert biomass into thermal energy, direct combustion is the oldest. The thermal-chemical technologies of biomass conversion such as pyrolysis and gasification, are currently not the most important alternatives; combustion is responsible for 97% of the bio-energy produced in the world (Demirbas, 2003). For this work, a small furnace was designed and constructed to use biomass as its main source of fuel, and the combustion chamber was coupled with a helical transporter which linked to the secondary fuel reservoir to continually feed the combustion chamber with fine particles of agro-industrial residues. The design of the stove proved to be technically viable beginning with the balance of mass and energy for the air heating system. The proposed heat generator was easily constructed as it made use of simple and easily acquired materials, demanding no specialized labor. (author)

  11. Silica crown refractory corrosion in glass melting furnaces

    Directory of Open Access Journals (Sweden)

    Balandis A.

    2011-01-01

    Full Text Available The critical parameters of silica refractories, such as compressive strength, bulk, density, quantity of silica, microstructure and porosity were evaluated of unused and used bricks to line the crowns of glass furnaces, when the rate of corrosion of crowns were about 2 times greater. The change of these parameters, the chemical composition and formation of the microcracks in the used silica refractories material were studied. It was established that the short time at service of container glass furnace crown can be related to low quality of silica brick: high quantity of CaO and impurities, low quantity of silica, low quantity of silica, transferred to tridymite and cristobalite and formation of 5-10 μm and more than 100 μm cracks in the crown material. The main reason of corrosion high quality silica bricks used to line the crown of electrovacuum glass furnace is the multiple cyclic change of crown temperature at 1405 - 1430°C range in the initial zone of crown and at 1575 - 1605°C range in the zone of highest temperatures.

  12. Analytical Model for Ring Heater Thermal Compensation in Advanced LIGO

    CERN Document Server

    Ramette, Joshua; Brooks, Aidan; Blair, Carl; Wang, Haoyu; Heintze, Matthew

    2015-01-01

    Advanced laser interferometer gravitational-wave detectors use high laser power to achieve design sensitivity. A small part of this power is absorbed in the interferometer cavity mirrors where it creates thermal lenses, causing aberrations in the main laser beam that must be minimized by the actuation of "ring heaters," additional heater elements that are aimed to reduce the temperature gradients in the mirrors. In this article we derive the first analytical model of the temperature field generated by an ideal ring heater. We express the resulting optical aberration contribution to the main laser beam in this axisymmetric case. Used in conjunction with wavefront measurements, our model provides a more complete understanding of the thermal state of the cavity mirrors and will allow a more efficient use of the ring heaters in Advanced LIGO.

  13. ENERGY STAR Certified Water Heaters (V3.1)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Water Heaters that are effective April 16, 2015....

  14. A High Performance Cathode Heater for Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The current state-of-the-art co-axial swaged tantalum (Ta) heaters use magnesium oxide (MgO) insulators, which limits their operation to temperatures well below...

  15. New Home Buyer Solar Water Heater Trade-Off Study

    Energy Technology Data Exchange (ETDEWEB)

    Symmetrics Marketing Corporation

    1999-08-18

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

  16. Acoustic characteristics of electric arc furnaces

    Science.gov (United States)

    Cherednichenko, V. S.; Bikeev, R. A.; Cherednichenko, A. V.; Ognev, A. M.

    2016-06-01

    A mathematical model is constructed to describe the appearance and development of the noise characteristics of superpower electric arc furnaces. The noise formation is shown to be related to the pulsation of the axial plasma flows in arc discharges because of the electrodynamic pressure oscillations caused by the interaction of the self-magnetic field with the current passing in an arc. The pressure in the arc axis changes at a frequency of 100 Hz at the maximum operating pressure of 66 kPa for an arc current of 80 kA. The main ac arc sound frequencies are multiples of 100 Hz, which is supported in the practice of operation of electric arc furnaces. The sound intensity in the furnace laboratory reaches 160 dB and is decreased to 115-120 dB in the working furnace area due to shielding by the furnace jacket, the molten metal, and the molten slag. The appropriateness of increasing the hermetic sealing of electric furnaces and creating furnaces operating at low currents and high transformer voltages is corroborated.

  17. Temperature limited heater utilizing non-ferromagnetic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar,; Harold J. (Bellaire, TX), Harris; Kelvin, Christopher [Houston, TX

    2012-07-17

    A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

  18. Thermal performance of a new solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Tiris, C.; Ozbalta, N. [Ege Univ., Izmir (Turkey). Solar Energy Institute; Tiris, M.; Dincer, I. [TUBITAK-Marmara Research Center, Kocaeli (Turkey)

    1995-05-01

    A solar air heater, part of a food drying system using solar energy as a renewable energy source for heat, was developed and tested for several agricultural products (i.e., sultana grapes, green beans, sweet peppers, chili peppers). Drying processes were conducted in the chamber with forced natural air heated partly by solar energy. Solar air heater performances were discussed along with estimates of energy efficiency of the system. The obtained results indicate that the present system is efficiency and effective.

  19. Mathematical modeling of the area of tubular gas heater in the condensing mode of work

    OpenAIRE

    IRODOV V. F.; Bereziuk, G. G.

    2015-01-01

    Statement of the problem. Infrared tubular gas heaters are designed for burning gas, moving of the heated products of combustion with air inside the tubular heater and heating of the room where the heater is installed with the help of radiant and convective heat exchange with space of the room. Tubular gas heaters are simultaneously sources of heat supply and heating devices. Using of these heaters provides fuel economy and uniform distribution of comfortable heat. Maximum fuel economy can be...

  20. A cylindrical furnace for absorption spectral studies

    Indian Academy of Sciences (India)

    R Venkatasubramanian

    2001-06-01

    A cylindrical furnace with three heating zones, capable of providing a temperature of 1100°C, has been fabricated to enable recording of absorption spectra of high temperature species. The temperature of the furnace can be controlled to ± 1°C of the set temperature. The salient feature of this furnace is that the material being heated can be prevented from depositing on the windows of the absorption cell by maintaining a higher temperature at both the ends of the absorption cell.

  1. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    Science.gov (United States)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  2. Thermo-Electron Ballistic Coolers or Heaters

    Science.gov (United States)

    Choi, Sang H.

    2003-01-01

    Electronic heat-transfer devices of a proposed type would exploit some of the quantum-wire-like, pseudo-superconducting properties of single-wall carbon nanotubes or, optionally, room-temperature-superconducting polymers (RTSPs). The devices are denoted thermo-electron ballistic (TEB) coolers or heaters because one of the properties that they exploit is the totally or nearly ballistic (dissipation or scattering free) transport of electrons. This property is observed in RTSPs and carbon nanotubes that are free of material and geometric defects, except under conditions in which oscillatory electron motions become coupled with vibrations of the nanotubes. Another relevant property is the high number density of electrons passing through carbon nanotubes -- sufficient to sustain electron current densities as large as 100 MA/square cm. The combination of ballistic motion and large current density should make it possible for TEB devices to operate at low applied potentials while pumping heat at rates several orders of magnitude greater than those of thermoelectric devices. It may also enable them to operate with efficiency close to the Carnot limit. In addition, the proposed TEB devices are expected to operate over a wider temperature range

  3. Water inflow into boreholes during the Stripa heater experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P.H.; Rachiele, R.; Remer, J.S.; Carlsson, H.

    1981-04-01

    During the operation of three in-situ heater experiments at Stripa, Sweden, groundwater flowed into many of the instrumentation and heater boreholes. These flows were recovered and measured routinely. The records of water inflow indicate two origins: inflow attributed to local hydrological pressure gradients, and water migration from cracks closing under the rapidly increasing, thermal-induced stress changes. The latter component appeared as a main pulse that occurred when the heaters were turned on, and lasted about 30 to 40 days, steadily declining over the next several months, and decreasing sharply when heater power was decreased or stopped. The magnitude of the total inflow per hole ranged over more than five decades, from 0.1 to over 10,000 liters over the 500 to 600 day time periods. When plotted against the logarithm of total volume, the frequency distribution displays a normal curve dependence with a mean of approximately 10 liters. Of this amount, 1 to 2 liters of flow into 38-mm-diam boreholes accompanied an increase in applied heat load. These amounts are compatible with rock porosities of a fraction of one percent. Inflow into the 3.6 and 5.0 kW heater holes peaked within 3 to 6 days after heater turn on, then declined to zero inflow, with no further inflow measured for the remainder of the experiments. In the heater holes of the time-scaled experiment, which operated at 1.125 kW or less, the initial pulse of inflow took much longer to decay, and 7 of 8 heater holes continued to flow throughout the experiment. The packing off and isolation of a borehole some 40 m distant in the ventilation drift dramatically increased the inflow into the heater holes in one of the three heater experiments. This demonstrated the existence of permeable flow paths among a number of boreholes. The records of water inflow demonstrate the need for a thorough understanding of the nature of fluid flow and storage in fractured crystalline rock.

  4. Modular Distributed Concentrator for Solar Furnace Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This research proposes to develop a lightweight approach to achieving the high concentrations of solar energy needed for a solar furnace achieving temperatures of...

  5. Anhydrous Taphole Mix for Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    Yu Lingyan

    2010-01-01

    @@ 1 Scope This standard specifies the term,definition,brand,label,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,and quality certificate of anhydrous taphole mix for blast furnace.

  6. Kaolinite Refractory Bricks for Blast Furnaces

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ This standard is suitable to the fireclay bricks for blast furnace. 1 Classification, Shape and Dimension 1 According to physical and chemical indexes, the brick can be divided into two trademarks: ZGN-42 and GN-42.

  7. Chamberless residential warm air furnace design

    Energy Technology Data Exchange (ETDEWEB)

    Godfree, J. [Product Design consultant, Pugwash (Canada)

    1996-07-01

    This brief paper is an introduction to the concept of designing residential warm air furnaces without combustion chambers. This is possible since some small burners do not require the thermal support of a combustion chamber to complete the combustion process.

  8. Cast construction elements for heat treatment furnaces

    Directory of Open Access Journals (Sweden)

    B. Piekarski

    2011-07-01

    Full Text Available The study presents sketches and photos of the cast creep-resistant components used in various types of heat treatment furnaces. The shape of the elements results from the type of the operation carried out in the furnace, while dimensions are adjusted to the size of the furnace working chamber. The castings are mainly made from the high-alloyed, austenitic chromium-nickel or nickel-chromium steel, selecting the grade in accordance with the furnace operating conditions described by the rated temperature, the type and parameters of the applied operating atmosphere, and the charge weight. Typical examples in this family of construction elements are: crucibles, roller tracks, radiant tubes and guides. The majority of castings are produced in sand moulds.

  9. Multiple hearth furnace for reducing iron oxide

    Science.gov (United States)

    Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  10. Laboratory arc furnace features interchangeable hearths

    Science.gov (United States)

    Armstrong, J. L.; Kruger, O. L.

    1967-01-01

    Laboratory arc furnace using rapidly interchangeable hearths gains considerable versatility in casting so that buttons or special shaped castings can be produced. It features a sight glass for observation.

  11. LPCVD Furnace: Tystar Mini Tytan 4600

    Data.gov (United States)

    Federal Laboratory Consortium — Description: CORAL Names: SiN LPCVD, Poly LPCVD, LTO LPCVD This three stack furnace system is utilized to deposit silicon nitride, polysilicon, and low temperature...

  12. Arc -furnace Flicker Compensation in Ethiopia.

    African Journals Online (AJOL)

    supply system of the Ethiopian Electric Light and ... independent of the magnitude of the arc furnace load. They were intolerable ..... Weather sealing (Important in Ethi- opia). 3. .... nace currents during the worst periods of initial melt- ing down.

  13. A consortium approach to glass furnace modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.-L.; Golchert, B.; Petrick, M.

    1999-04-20

    Using computational fluid dynamics to model a glass furnace is a difficult task for any one glass company, laboratory, or university to accomplish. The task of building a computational model of the furnace requires knowledge and experience in modeling two dissimilar regimes (the combustion space and the liquid glass bath), along with the skill necessary to couple these two regimes. Also, a detailed set of experimental data is needed in order to evaluate the output of the code to ensure that the code is providing proper results. Since all these diverse skills are not present in any one research institution, a consortium was formed between Argonne National Laboratory, Purdue University, Mississippi State University, and five glass companies in order to marshal these skills into one three-year program. The objective of this program is to develop a fully coupled, validated simulation of a glass melting furnace that may be used by industry to optimize the performance of existing furnaces.

  14. Paired Straight Hearth Furnace - Transformational Ironmaking Process

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Kao [McMaster Univ., Hamilton, ON (Canada); Debski, Paul [Andritz Metals Inc.,Canonsburg, PA (United States)

    2014-11-19

    The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitable as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.

  15. Waste and dust utilisation in shaft furnaces

    OpenAIRE

    Senk, D.; Babich, A.; Gudenau, H. W.

    2005-01-01

    Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilized e.g. in agglomeration processes (sintering, pelletizing or briquetting) and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverized coal (PC) has been studied when injecting into shaft furnaces. Following sha...

  16. Information modeling system for blast furnace control

    Science.gov (United States)

    Spirin, N. A.; Gileva, L. Y.; Lavrov, V. V.

    2016-09-01

    Modern Iron & Steel Works as a rule are equipped with powerful distributed control systems (DCS) and databases. Implementation of DSC system solves the problem of storage, control, protection, entry, editing and retrieving of information as well as generation of required reporting data. The most advanced and promising approach is to use decision support information technologies based on a complex of mathematical models. The model decision support system for control of blast furnace smelting is designed and operated. The basis of the model system is a complex of mathematical models created using the principle of natural mathematical modeling. This principle provides for construction of mathematical models of two levels. The first level model is a basic state model which makes it possible to assess the vector of system parameters using field data and blast furnace operation results. It is also used to calculate the adjustment (adaptation) coefficients of the predictive block of the system. The second-level model is a predictive model designed to assess the design parameters of the blast furnace process when there are changes in melting conditions relative to its current state. Tasks for which software is developed are described. Characteristics of the main subsystems of the blast furnace process as an object of modeling and control - thermal state of the furnace, blast, gas dynamic and slag conditions of blast furnace smelting - are presented.

  17. [The electric furnace of Henri Moissan at one hundred years: connection with the electric furnace, the solar furnace, the plasma furnace?].

    Science.gov (United States)

    Royère, C

    1999-03-01

    The trace of Henri Moissan's pioneer work 100 years ago is clearly evidenced by an overview of achievements in high temperature devices; 1987: "Le four électrique" by Henri Moissan; 1948-1952: "High temperature heating in a cavity rotary kiln using focusing of solar radiation" by Félix Trombe; 1962: "The cavity rotary kiln using focused solar radiation jointly with a plasma gun" by Marc Foëx; 1970: "The rotary kiln with two plasma guns and arc transfer" by Marc Foëx; 1984: "The plasma furnace" by Electricité de France (EDF) at Renardières; 1997: "The plasma furnace" by the Atomic Energy Center (CEA) at Cadarache, the VULCANO program. The first part of this contribution is devoted to Henri Moissan. Re-reading his early book on the electric furnace, especially the first chapter and the sections on silica, carbon vapor and experiments performed in casting molten metal--the conclusions are outstanding--provides modern readers with an amazing insight into future developments. The last two parts are devoted to Félix Trombe and Marc Foëx, tracing the evolution of high temperature cavity processus leading to the solar furnace and the present day plasma furnace at the CEA. Focus is placed on research conducted by the French National Center for Scientific Research (CNRS) with the solar and plasma furnaces at Odeillo. The relationships with Henri Moissan's early work are amazing, offering a well deserved homage to this pioneer researcher.

  18. Solar Convective Furnace for Metals Processing

    Science.gov (United States)

    Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv

    2015-11-01

    Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.

  19. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation; Weitzel, E. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation

    2017-03-03

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  20. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-11-22

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  1. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-03-01

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  2. Comparative Study and Design of Solar Water Heater

    Directory of Open Access Journals (Sweden)

    K.Sainath,Y.krishna, Mohd Salahuddin, Mohammed Siddique Ahmed, Md Ismail, Syed Rahman,Mohammed Noman, Mohd Khaleel Ullah, Faraz Ur Rehman Azhar, Mohd Moizuddin,Mohd Riyaz Uddin.

    2014-10-01

    Full Text Available A solar water heater design is made from the plastic bottles of thumps up & plastic pipe(p.v.c run up by the centre of each solar heater in a row of bottles, these bottles act as glazing & hold reflectors made from the black paint. Solar water heaters are made of two basic parts: a solar collector that gathers radiant energy and a storage tank for the hot water inside. These systems are used to heat water for swimming pools, as well as for domestic cooking and cleaning needs. A system in which the sun’s heat is gathered by a solar collector and used to increase the temperature of a heat-transfer fluid , which flows through the pipes in the collector; the heat contained in this fluid then is conveyed and transferred to the water to be heated. Solar water heaters use the solar energy from the sun to generate heat (not electricity which can then be used to heat water for showering, space heating, industrial processes or even solar cooling. However, the research shows that the electric water spends about the 25% of its home energy costs on heating water. If we make a water heater without the collector then we can save a lot of money solar water heater do not polluted if one investing on SWH avoids carbon dioxide nitrogen oxide and sulphur dioxide and the other air pollution wastes and the utility generates power on your bum fuel to heat your household water when SWH replaces the an electric water heater. This electric displaced over 20 years replaced more than 50 tones avoided c02 emissions alone co2 traps heat in the upper most atmosphere thus, contributing to the ‘Green House Effect

  3. Engineering solutions for polymer composites solar water heaters production

    Science.gov (United States)

    Frid, S. E.; Arsatov, A. V.; Oshchepkov, M. Yu.

    2016-06-01

    Analysis of engineering solutions aimed at a considerable decrease of solar water heaters cost via the use of polymer composites in heaters construction and solar collector and heat storage integration into a single device representing an integrated unit results are considered. Possibilities of creating solar water heaters of only three components and changing welding, soldering, mechanical treatment, and assembly of a complicate construction for large components molding of polymer composites and their gluing are demonstrated. Materials of unit components and engineering solutions for their manufacturing are analyzed with consideration for construction requirements of solar water heaters. Optimal materials are fiber glass and carbon-filled plastics based on hot-cure thermosets, and an optimal molding technology is hot molding. It is necessary to manufacture the absorbing panel as corrugated and to use a special paint as its selective coating. Parameters of the unit have been optimized by calculation. Developed two-dimensional numerical model of the unit demonstrates good agreement with the experiment. Optimal ratio of daily load to receiving surface area of a solar water heater operating on a clear summer day in the midland of Russia is 130‒150 L/m2. Storage tank volume and load schedule have a slight effect on solar water heater output. A thermal insulation layer of 35‒40 mm is sufficient to provide an efficient thermal insulation of the back and side walls. An experimental model layout representing a solar water heater prototype of a prime cost of 70‒90/(m2 receiving surface) has been developed for a manufacturing volume of no less than 5000 pieces per year.

  4. Lance for injecting highly-loaded coal slurries into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Illuminati, D.

    1991-10-29

    A lance is used to inject fuel oil into a blast furnace. This simple design permits conversion of coal water and coal tar slurries to a fine mist at very low flow rates. This design prevents the build-up of deposits which increases service life and steadies the flow rate.

  5. Innovation based on tradition: Blast furnace slag cement for durable concrete structures in Norway?

    NARCIS (Netherlands)

    Polder, R.B.; Nijland, T.; De Rooij, M.; Larsen, C.K.; Pedersen, B.

    2014-01-01

    Blast furnace slag cement (BFSC) has been used to build reinforced concrete structures in marine and road environment in The Netherlands for nearly a century. The experience is good and structures with long service lives can be obtained, as has been shown by several field studies. This is caused by

  6. Heat Pump Water Heaters and American Homes: A Good Fit?

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

    2010-05-14

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

  7. Structural Benchmark Testing for Stirling Convertor Heater Heads

    Science.gov (United States)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has identified high efficiency Stirling technology for potential use on long duration Space Science missions such as Mars rovers, deep space missions, and lunar applications. For the long life times required, a structurally significant design limit for the Stirling convertor heater head is creep deformation induced even under relatively low stress levels at high material temperatures. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and much creep data is available for the proposed Inconel-718 (IN-718) and MarM-247 nickel-based superalloy materials of construction. However, very little experimental creep information is available that directly applies to the atypical thin walls, the specific microstructures, and the low stress levels. In addition, the geometry and loading conditions apply multiaxial stress states on the heater head components, far from the conditions of uniaxial testing. For these reasons, experimental benchmark testing is underway to aid in accurately assessing the durability of Stirling heater heads. The investigation supplements uniaxial creep testing with pneumatic testing of heater head test articles at elevated temperatures and with stress levels ranging from one to seven times design stresses. This paper presents experimental methods, results, post-test microstructural analyses, and conclusions for both accelerated and non-accelerated tests. The Stirling projects use the results to calibrate deterministic and probabilistic analytical creep models of the heater heads to predict their life times.

  8. Optimal Heater Control with Technology of Fault Tolerance for Compensating Thermoforming Preheating System

    Directory of Open Access Journals (Sweden)

    Zhen-Zhe Li

    2015-01-01

    Full Text Available The adjustment of heater power is very important because the distribution of thickness strongly depends on the distribution of sheet temperature. In this paper, the steady state optimum distribution of heater power is searched by numerical optimization in order to get uniform sheet temperature. In the following step, optimal heater power distribution with a damaged heater was found out using the technology of fault tolerance, which will be used to reduce the repairing time when some heaters are damaged. The merit of this work is that the design variable was the power of each heater which can be directly used in the preheating process of thermoforming.

  9. Conceptual design and simulation analysis of thermal behaviors of TGR blast furnace and oxygen blast furnace

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Extensive use of carbon based fuel is the main inducement for global warming and more extreme weather.Reducing carbon dioxide emission and enhancing energy use is a common subject in steel industry.In the integrated steel plant,decreasing carbon dioxide emission must consider energy balance in the whole iron and steel works,and secondary energy must be actively utilized.As promising blast-furnaces,top gas recovery blast furnace(TGR-BF) and oxygen blast furnace have been investigated.In this paper,conceptual TGR blast furnace and oxygen blast furnace are proposed.Base on the idea of blast furnace gas de-CO2 circulating as reducing agent and the idea of pure oxygen blast decreasing the thermal reserve zone temperature,process modeling is conducted with ASPEN Plus.It is shown that the developed model reasonably describes the energy balance and mass balance feature of the furnace,and provides basic thermodynamic condition for furnaces.The effects of changes in different operation conditions are studied by sensitivity analysis and reference data from simulation.

  10. Generation of ionospheric ducts by the HAARP HF heater

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J A; Pradipta, R; Burton, L M; Labno, A; Lee, M C [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Watkins, B J; Fallen, C [University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Kuo, S P [New York University, Brooklyn, NY 11201 (United States); Burke, W J [Air Force Research Laboratory, Hanscom AFB, MA 01731 (United States); Mabius, D; See, B Z, E-mail: mclee@mit.edu [Boston University, Boston, MA 02215 (United States)

    2010-12-15

    We report an investigation of ionospheric ducts having the shape of large plasma sheets, generated by vertically transmitted HAARP HF heater waves in several experiments conducted in Gakona, Alaska. Theory predicts that O-mode heater wave-created ionospheric ducts form parallel-plate waveguides within the meridional plane, and those generated by the X-mode heater waves are orthogonal to the meridional plane. Our theoretical prediction is supported by measurements of ionosonde data (namely ionograms), range-time-intensity (RTI) plots of UHF and HF backscatter radars, as well as magnetometer data analyses. When these plasma sheets experienced ExB drifts, they were intercepted by the HAARP UHF radar and seen as slanted stripes in the RTI plots. This striking feature was also observed in our earlier experiments using the Arecibo UHF radar.

  11. Development of a cost effective microscope heater stage

    Science.gov (United States)

    Dugre, Joshua; Prayaga, Chandra; Wade, Aaron

    Utilizing 3D printing technology, a heater stage has been developed and implemented for microscopic systems. Due to the flexibility of 3D printing,the heater stage can be easily modified to fit any sample size with only slight modifications to the heating element being required. The sample in contact with the heating element can also easily be secured in a thermal insulator, such as aluminum foil. The thermal gradient of the heater stage has been recorded to be less than 1°C and has been compared to more expensive designs, and the cost effectiveness of the system has been determined. The system has been tested with a sample of the liquid crystal 8CB in order to determine the exact temperatures of the phase transitions of the crystal to verify that the system is applicable to a wide range of experimental physics. UWF Quality Enhancement Plan Award.

  12. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

    2008-08-13

    Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union's Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory's Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

  13. Pulverized coal injection in blast furnaces at ArcelorMittal Tubarao (AMT)

    Energy Technology Data Exchange (ETDEWEB)

    Klein, C.A.; Fujihara, F.K.; Defendi, G.A.; Tauffer Barros, R.J. [ArcelorMittal Tubarao, Serra (Brazil). Ironmaking Dept.

    2008-07-01

    The main factors that influence the performance of coal injected into blast furnaces include coal properties, combustion conditions and the equipment used in the plants for grinding, transportation and injection of coal. This paper focused on coal properties and the main operational control changes in the no.1 blast furnace at ArcelorMittal Tubarao. The furnace was modified from an all coke operation to a pulverized coal injection (pci) operation in order to ensure high productivity, low fuel consumption and longer service life. ArcelorMittal Tubarao has developed a coal buying model based on energy balance and the chemical analysis of ash. In the energy balance, the ratio between the heat supplied by carbon combustion and the heat consumed by the cracking of water and volatiles results in the potential rate of coke replacement by coal. 5 refs., 1 tab., 10 figs.

  14. Computational simulations and experimental validation of a furnace brazing process

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, F.M.; Gianoulakis, S.E.; Malizia, L.A.

    1998-12-31

    Modeling of a furnace brazing process is described. The computational tools predict the thermal response of loaded hardware in a hydrogen brazing furnace to programmed furnace profiles. Experiments were conducted to validate the model and resolve computational uncertainties. Critical boundary conditions that affect materials and processing response to the furnace environment were determined. {open_quotes}Global{close_quotes} and local issues (i.e., at the furnace/hardware and joint levels, respectively) are discussed. The ability to accurately simulate and control furnace conditions is examined.

  15. Industrial and process furnaces principles, design and operation

    CERN Document Server

    Jenkins, Barrie

    2014-01-01

    Furnaces sit at the core of all branches of manufacture and industry, so it is vital that these are designed and operated safely and effi-ciently. This reference provides all of the furnace theory needed to ensure that this can be executed successfully on an industrial scale. Industrial and Process Furnaces: Principles, 2nd Edition provides comprehensive coverage of all aspects of furnace operation and design, including topics essential for process engineers and operators to better understand furnaces. This includes: the combustion process and its control, furnace fuels, efficiency,

  16. Flat plate solar air heater with latent heat storage

    Science.gov (United States)

    Touati, B.; Kerroumi, N.; Virgone, J.

    2017-02-01

    Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.

  17. Carbon monoxide exposure in blast furnace workers.

    Science.gov (United States)

    Lewis, S; Mason, C; Srna, J

    1992-09-01

    This study investigated the occupational exposure to carbon monoxide (CO) of a group of blast furnace workers from an integrated steelworks, compared to a control group having no significant occupational CO exposure from other areas in the same works. The study was undertaken in 1984 at Port Kembla, New South Wales. Carboxyhaemoglobin (COHb) levels before and after an eight-hour work shift were measured in 98 male steelworkers: 52 from two CO-exposed iron blast furnaces and 46 controls from production areas in the same steelworks. The sample was stratified by smoking habits. Environmental air CO levels had been found to be consistently higher on one furnace than on the other. Absorption of CO from the working environment occurred in workers on the blast furnace with higher CO levels, regardless of smoking habits. On this blast furnace, some readings of COHb levels after a workshift in nonsmokers approached the proposed Australian occupational limit of 5 per cent COHb saturation. Overall, workers with the highest occupational exposure who smoked most heavily had the highest absorption of CO over a work shift. Biological monitoring gives an accurate measure of individual worker 'dose' of CO from all sources. Both environmental monitoring and biological monitoring need to be included as part of a program for controlling occupational CO exposure.

  18. Process for thermal imaging scanning of a swaged heater for an anode subassembly of a hollow cathode assembly

    Science.gov (United States)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2004-01-01

    A process for thermal imaging scanning of a swaged heater of an anode subassembly of a hollow cathode assembly, comprising scanning a swaged heater with a thermal imaging radiometer to measure a temperature distribution of the heater; raising the current in a power supply to increase the temperature of the swaged heater; and measuring the swaged heater temperature using the radiometer, whereupon the temperature distribution along the length of the heater shall be less than plus or minus 5 degrees C.

  19. Performance of Thermosyphon Solar Water Heaters in Series

    Directory of Open Access Journals (Sweden)

    Tsong-Sheng Lee

    2012-08-01

    Full Text Available More than a single thermosyphon solar water heater may be employed in applications when considerable hot water consumption is required. In this experimental investigation, eight typical Taiwanese solar water heaters were connected in series. Degree of temperature stratification and thermosyphon flow rate in a horizontal tank were evaluated. The system was tested under no-load, intermittent and continuous load conditions. Results showed that there was stratification in tanks under the no-load condition. Temperature stratification also redeveloped after the draw-off. Analysis of thermal performance of the system was conducted for each condition.

  20. Lightweight Radioisotope Heater Unit (LWRHU) production for the Cassini mission

    Energy Technology Data Exchange (ETDEWEB)

    Rinehart, G.H.

    1996-06-01

    The Lightweight Radioisotope Heater Unit (LWRHU) is a {sup 238}PuO{sub 2} fueled heat source designed to provide a thermal watt of power for space missions. The LWRHU will be used to maintain the temperature of various components on the spacecraft at the required level. The heat source consists of a {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh capsule, a pyrolytic graphite insulator, and a woven graphite aeroshell assembly. Los Alamos has fabricated 180 heater units, which will be used on the Cassini mission. This report summarizes the specifications, fabrication processes, and production data for the heat sources fabricated at Los Alamos.

  1. Development of heat pipes for solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.

    1984-01-01

    Numerous heat pipes were designed, manufactured, and filled on a specially developed filling rig. Each heat pipe was incorporated into a prototype solar water heater developed for this purpose, and was tested under actual insolation conditions. An extensive testing program lasting for more than a year revealed that the heat pipes perform satisfactorily as heat transfer elements in solar water heaters. A special heat pipe featuring a compact and effective condenser configuration was also tested. It was observed to likewise exhibit isothermal behavior and hence promised potential for large scale solar applications.

  2. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    Directory of Open Access Journals (Sweden)

    Valeria Toffoli

    2013-12-01

    Full Text Available The design and characteristics of a micro-system for thermogravimetric analysis (TGA in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using milli-Q water and polyurethane microcapsule. The results demonstrated that our approach provides a faster and more sensitive TGA with respect to commercial systems.

  3. Thermal injuries caused by ignition of volatile substances by gas water heaters.

    Science.gov (United States)

    Rutan, R L; Desai, M H; Herndon, D N

    1993-01-01

    Based on the cumulative data of this tertiary care facility over the past 25 years, one out of every 70 pediatric patients admitted to our institution sustained their injuries during an explosive event instigated by the ignition of volatile substances from gas water heaters. The majority of injuries related to gas water heaters can be prevented by decreasing the temperature setpoint of the heater, by protecting the heater element itself, and by elevating the water heater to 18 inches above the floor. The first two issues have been adequately addressed; however, gas-fueled water heaters continue to be installed at floor level. Current national guidelines are too rigid and do not adequately address water-heater installation in private residences. Although general prevention campaigns target appropriate storage of volatile substances, they rarely address the explosive potential of gas water heaters in combination with combustible fumes.

  4. Software sensor for slab reheating furnace

    Institute of Scientific and Technical Information of China (English)

    Zhihua Xiong; Guohong Huang; Huihe Shao

    2005-01-01

    It has long been thought that a reheating furnace, with its inherent measurement difficulties and complex dynamics, posed almost insurmountable problems to engineers in steel plants. A novel software sensor is proposed to make more effective use of those measurements that are already available, which has great importance both to slab quality and energy saving. The proposed method is based on the mixtures of Gaussian processes (GP) with the expectation maximization (EM) algorithm employed for parameter estimation of the mixture of models. The mixture model can alleviate the computational complexity of GP and also accords with the changes of operating condition in practical processes. It is demonstrated by on-line estimation of the furnace gas temperature in 1580 reheating furnace in Baosteel Corporation (Group).

  5. Use of solar furnaces. II - Thermophysical properties

    Science.gov (United States)

    Suresh, D.; Charters, W. W. S.; Rohatgi, P. K.

    1982-01-01

    The various ways in which solar furnaces have been used to measure the high-temperature thermophysical properties of materials are reviewed, with attention given to the advantages and disadvantages of these furnaces. Thermal expansion experiments are seen as lacking accuracy. By introducing homogeneous heating methods, as well as precision dilatometers, this defect could be overcome. Solar furnaces must be designed so as to give larger focal areas of uniform flux density. Modifying the pulsed method so as to eliminate the requirement for homogeneity of the energy flux is thought desirable. It would also be worthwhile to design a suitable loading device to obviate complications arising out of elongation of the specimen during tests.

  6. High-Temperature Compatible Nickel Silicide Thermometer And Heater For Catalytic Chemical Microreactors

    DEFF Research Database (Denmark)

    Jensen, Søren; Quaade, U.J.; Hansen, Ole

    2005-01-01

    Integration of heaters and thermometers is important for agile and accurate control and measurement of the thermal reaction conditions in microfabricated chemical reactors (microreactors). This paper describes development and operation of nickel silicide heaters and temperature sensors...... for temperatures exceeding 700 °C. The heaters and thermometers are integrated with chemical microreactors for heterogeneous catalytic conversion of gasses, and thermally activated catalytic conversion of CO to CO2 in the reactors is demonstrated. The heaters and thermometers are shown to be compatible...

  7. Comparative performance of coriander dryer coupled to solar air heater and solar air-heater-cum-rockbed storage

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, P.M.; Choudhury, C.; Garg, H.P. [Indian Inst. of Technology, Centre for Energy Studies, New Delhi (India)

    1996-03-01

    In the present communication, efforts have been made to study the drying characteristics of coriander in a stationary 0.5 tonne/batch capacity deep-bed dryer coupled to a solar air heater and a rockbed storage unit to receive hot air during sunshine and off-sunshine hours, respectively. The drying bed was assumed to consist of a number of thin layers of grains stacked upon each other. The theoretical investigation was made by writing the energy and mass balance equations for different components of the dryer-cum-air-heater-cum-storage and by adopting a finite difference approach for simulation. (author)

  8. Optimization of Temperature Controller for Electric Furnace

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Genetic algorithms are based on the principle of natural selection and the optimization of natural generation. We can select the number of the bit strings and mutation rate reasonably, the global optimal solution can be obtained. GAs adopt the binary code as optimizing parameter and this binary code can be used in computer controller easily. This paper studies the application of the GAs to the electric furnace temperature control. When the electric furnace mathematics model varies with the working condition, the parameter of controller can be optimized on line. So the system performance can be improved effectively.

  9. Measure Guideline: High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  10. Measure Guideline. High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Rose, W. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  11. Cast functional accessories for heat treatment furnaces

    Directory of Open Access Journals (Sweden)

    A. Drotlew

    2010-10-01

    Full Text Available The study gives examples of the cast functional accessories operating in furnaces for the heat treatment of metals and alloys. The describeddesign solutions of castings and their respective assemblies are used for charge preparation and handling. They were put in systematicorder depending on furnace design and the technological purpose of heat treatment. Basic grades of austenitic cast steel, used for castings of this type, were enumerated, and examples of general guidelines formulated for their use were stated. The functional accessories described in this study were designed and made by the Foundry Research Laboratory of West Pomeranian University of Technology.

  12. Waste and dust utilisation in shaft furnaces

    Directory of Open Access Journals (Sweden)

    Senk, D.

    2005-12-01

    Full Text Available Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilized e.g. in agglomeration processes (sintering, pelletizing or briquetting and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverized coal (PC has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

    Los residuos y polvos de filtro provenientes de la industria siderúrgica, de la obtención de metales no ferrosos y de otras industrias, pueden ser utilizados, por ejemplo, en procesos de aglomeración como sintetizado, peletizado o briqueteado. En su caso, estos pueden ser inyectados en los hornos de cuba. Este artículo se enfoca a la inyección de estos materiales en los hornos de cuba. El comportamiento de la combustión y reducción de los polvos ricos en hierro y carbono y también lodos que contienen plomo, zinc y compuestos alcalinos y otros residuos con o sin carbón pulverizado (CP fue examinado, cuando se inyectaron en hornos de cuba. Los siguientes hornos de cuba fueron examinados: Horno alto, cubilote, OxiCup y horno de cuba Imperial Smelting. Las investigaciones se llevaron a cabo a escala de laboratorio e industrial. Algunos residuos y polvos bajo ciertas condiciones, no sólo pueden ser reciclados, sino también mejoran la eficiencia de combustión en las toberas, la operación y productividad del horno.

  13. TECHNOLOGY EVALUATION REPORT: RETECH'S PLASMA CENTRIFUGAL FURNACE - VOLUME I

    Science.gov (United States)

    A demonstration of the Retech, Inc. Plasma Centrifugal Furnace (PCF) was conducted under the Superfund Innovative Technology Evaluation (SITE) Program at the Department of Energy's (DOE's) Component Development and Integration Facility in Butte, Montana. The furnace uses heat gen...

  14. 77 FR 74559 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2012-12-17

    ... descriptors (i.e., thermal efficiency and pool heater heating seasonal efficiency), as well as seasonal energy... thermal efficiency metric for pool heaters, but did not propose an integrated annual fuel utilization... states that for pool heaters, the descriptor shall be thermal efficiency. (42 U.S.C....

  15. 30 CFR 75.341 - Direct-fired intake air heaters.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Direct-fired intake air heaters. 75.341 Section... air heaters. (a) If any system used to heat intake air malfunctions, the heaters affected shall switch off automatically. (b) Thermal overload devices shall protect the blower motor from overheating....

  16. 46 CFR 61.30-5 - Preparation of thermal fluid heater for inspection and test.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Preparation of thermal fluid heater for inspection and... ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-5 Preparation of thermal fluid heater for inspection and test. For visual inspection, access plates and...

  17. 76 FR 63211 - Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating...

    Science.gov (United States)

    2011-10-12

    ... descriptors (i.e., thermal efficiency and pool heater heating seasonal efficiency), as well as seasonal energy... ``efficiency descriptor,'' EPCA specifies that for pool heaters, the efficiency descriptor shall be ``thermal efficiency.'' (42 U.S.C. 6291(22)(E)) Further, EPCA defines the ``thermal efficiency of pool heaters'' as...

  18. Recovery Act: Water Heater ZigBee Open Standard Wireless Controller

    Energy Technology Data Exchange (ETDEWEB)

    Butler, William P. [Emerson Electric Co., St. Louis, MO (United States); Buescher, Tom [Emerson Electric Co., St. Louis, MO (United States)

    2014-04-30

    The objective of Emerson's Water Heater ZigBee Open Standard Wireless Controller is to support the DOE's AARA priority for Clean, Secure Energy by designing a water heater control that levels out residential and small business peak electricity demand through thermal energy storage in the water heater tank.

  19. TOTAL PARTICLE, SULFATE, AND ACIDIC AEROSOL EMISSIONS FROM KEROSENE SPACE HEATERS

    Science.gov (United States)

    Chamber studies were conducted on four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine part...

  20. Mountain Plains Learning Experience Guide: Appliance Repair. Course: Heater-Type Appliances.

    Science.gov (United States)

    Ziller, T.

    One of two individualized courses included in an appliance repair curriculum (see CE 027 767), this course covers minor and major heater-type appliances. The course is comprised of six units: (1) Irons, (2) Roasters, (3) Space Heaters, (4) Water Heaters, (5) Electric Ranges, and (6) Gas Ranges. Each unit begins with a Unit Learning Experience…

  1. 40 CFR 63.7506 - Do any boilers or process heaters have limited requirements?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Do any boilers or process heaters have limited requirements? 63.7506 Section 63.7506 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... or process heaters have limited requirements? (a) New or reconstructed boilers and process heaters...

  2. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  3. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  4. Solar water heaters in China: A new day dawning

    NARCIS (Netherlands)

    Han, Jingyi; Mol, A.P.J.; Lu, Y.

    2010-01-01

    Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in China in recent decades. Manufacturing and marketing developments have been especially strong in provinces such as Zhejiang, Shandong and Jiangsu. This paper takes Zhejiang, a relatively

  5. Fast thermal nanoimprint lithography by a stamp with integrated heater

    DEFF Research Database (Denmark)

    Tormen, Massimo; Malureanu, Radu; Pedersen, Rasmus Haugstrup

    2008-01-01

    We propose fast nanoimprinting lithography (NIL) process based on the use of stamps with integrated heater. The latter consists of heavily ion implantation n-type doped silicon layer buried below the microstructured surface of the stamp. The stamp is heated by Joule effect, by 50 μs 25 Hz...

  6. Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Davis Energy Group, Davis, CA (United States); Weitzel, Elizabeth [Davis Energy Group, Davis, CA (United States); Backman, Christine [Davis Energy Group, Davis, CA (United States)

    2017-02-28

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  7. 14 CFR 25.859 - Combustion heater fire protection.

    Science.gov (United States)

    2010-01-01

    ... passages. (b) Ventilating air ducts. Each ventilating air duct passing through any fire zone must be..., the ventilating air duct downstream of each heater must be fireproof for a distance great enough to... fluids or vapors into the ventilating airstream. (c) Combustion air ducts. Each combustion air duct...

  8. 14 CFR 23.859 - Combustion heater fire protection.

    Science.gov (United States)

    2010-01-01

    ... passage that surrounds the combustion chamber. (b) Ventilating air ducts. Each ventilating air duct... fireproof valves or by equally effective means, the ventilating air duct downstream of each heater must be...) Combustion air ducts. Each combustion air duct must be fireproof for a distance great enough to...

  9. CHARACTERIZATION OF POPULATION AND USAGE OF UNVENTED KEROSENE SPACE HEATERS

    Science.gov (United States)

    The report gives results of a study of the market penetration of unvented kerosene space heaters (UKSHs) in the residential sector, The study was aimed at gathering baseline information to help assess the magnitude and potential severity of a problem involving emissions from unve...

  10. Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-02-01

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  11. Thermomechanics of the granular bed T-joint water heater

    Science.gov (United States)

    Teplitskii, Yu. S.; Belonovich, D. G.

    2012-11-01

    On the basis of the heat transfer model taking into account the radiative transport the temperature distribution and the resistance of the water heater with a granular packing having two independent air inlets have been investigated. The generalized dependence for calculating the resistance of the granular bed has been obtained.

  12. an automatic safety control for immersion water heater

    African Journals Online (AJOL)

    NIJOTECH

    heater in the Nigerian market in its current form is depicted ... the comparator used is an open collector type. It is instructive to take a close look at the operation of the Schmitt trigger. The equivalent .... additional advantage of keeping the water.

  13. Electrothermal pumping with interdigitated electrodes and resistive heaters.

    Science.gov (United States)

    Williams, Stuart J; Green, Nicolas G

    2015-08-01

    Interdigitated electrodes are used in electrokinetic lab-on-a-chip devices for dielectrophoretic trapping and characterization of suspended particles, as well as the production of field-induced fluid flow via AC electroosomosis and electrothermal mechanisms. However, the optimum design for dielectrophoresis, that if symmetrical electrodes, cannot induce bulk electrohydrodynamic pumping. In addition, the mechanism of intrinsic electrothermal pumping is affected by the properties of the fluid, with thermal fields being generated by Joule Heating. This work demonstrates the incorporation of an underlying thin film heater, electrically isolated from the interdigitated electrodes by an insulator layer, to enhance bulk electrothermal pumping. The use of integrated heaters allows the thermal field generation to be controlled independently of the electric field. Numerical simulations are performed to demonstrate the importance of geometrical arrangement of the heater with respect to the interdigitated electrodes, as well as electrode size, spacing, and arrangement. The optimization of such a system is a careful balance between electrokinetics, heat transfer, and fluid dynamics. The heater location and electrode spacing influence the rate of electrothermal pumping significantly more than electrode width and insulator layer thickness. This demonstration will aid in the development of microfluidic electrokinetic systems that want to utilize the advantages associated with electrothermal pumping while simultaneously applying other lab-on-a-chip electrokinetics like dielectrophoresis.

  14. Reliable, Economic, Efficient CO2 Heat Pump Water Heater for North America

    Energy Technology Data Exchange (ETDEWEB)

    Radcliff, Thomas D; Sienel, Tobias; Huff, Hans-Joachim; Thompson, Adrian; Sadegh, Payman; Olsommer, Benoit; Park, Young

    2006-12-31

    Adoption of heat pump water heating technology for commercial hot water could save up to 0.4 quads of energy and 5 million metric tons of CO2 production annually in North America, but industry perception is that this technology does not offer adequate performance or reliability and comes at too high of a cost. Development and demonstration of a CO2 heat pump water heater is proposed to reduce these barriers to adoption. Three major themes are addressed: market analysis to understand barriers to adoption, use of advanced reliability models to design optimum qualification test plans, and field testing of two phases of water heater prototypes. Market experts claim that beyond good performance, market adoption requires 'drop and forget' system reliability and a six month payback of first costs. Performance, reliability and cost targets are determined and reliability models are developed to evaluate the minimum testing required to meet reliability targets. Three phase 1 prototypes are designed and installed in the field. Based on results from these trials a product specification is developed and a second phase of five field trial units are built and installed. These eight units accumulate 11 unit-years of service including 15,650 hours and 25,242 cycles of compressor operation. Performance targets can be met. An availability of 60% is achieved and the capability to achieve >90% is demonstrated, but overall reliability is below target, with an average of 3.6 failures/unit-year on the phase 2 demonstration. Most reliability issues are shown to be common to new HVAC products, giving high confidence in mature product reliability, but the need for further work to minimize leaks and ensure reliability of the electronic expansion valve is clear. First cost is projected to be above target, leading to an expectation of 8-24 month payback when substituted for an electric water heater. Despite not meeting all targets, arguments are made that an industry leader could

  15. Calibration procedure for fire resistance furnaces

    NARCIS (Netherlands)

    Twilt, L.; Leur, P.H.E. van de; Wickström, U.

    1996-01-01

    On behalf of CEN/TC 127 "Fire Safety in Buildings", a series of tests has been carried out to evaluate and complete the draft calibration procedure for fire resistance furnaces [4]. Fourteen laboratories in nine European countries participated in the test series, each carrying out one calibration te

  16. High Vacuum Furnace for HIRFL-CSR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to satisfy the requirement of ultra-high vacuum and low out-gassing rate of materials which are used to make HIIRFL-CSR vacuum chambers, a high vacuum furnace for degassing the beam chambers, flanges, and the other vacuum components has been designed and manufactured by IMP and Vacuum Equipment Factory in Lanzhou.

  17. Calibration procedure for fire resistance furnaces

    NARCIS (Netherlands)

    Twilt, L.; Leur, P.H.E. van de; Wickström, U.

    1996-01-01

    On behalf of CEN/TC 127 "Fire Safety in Buildings", a series of tests has been carried out to evaluate and complete the draft calibration procedure for fire resistance furnaces [4]. Fourteen laboratories in nine European countries participated in the test series, each carrying out one calibration

  18. Thermal exposure in fire resistance furnaces

    NARCIS (Netherlands)

    Leur, P.H.E. van de; Twilt, L.

    1999-01-01

    Over the last six years, CEN TC 127 and more in particular its working groups ad hoc 14 and ad hoc 7 have been active in evaluating and improving the reproducibility of fire resistance testing. Ad hoc 14 developed a draft procedure for the evaluation of the performance of fire resistance furnaces in

  19. A Solar Furnace for Your School

    Science.gov (United States)

    Meyer, Edwin C.

    1978-01-01

    Industrial arts students at Litchfield (Minnesota) High School designed and built a solar furnace for research and experimentation and to help heat the industrial arts department. A teacher describes the construction process and materials and the temperature record keeping by the physics classes. Student and community interest has been high. (MF)

  20. Titanat aluminium synthesized in a solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Suleimanov, S.; Gulamova, D. [Uzbek Academy of Sciences, Tashkent (Uzbekistan). Materials Science Inst.; Boehmer, M.; Fend, T.; Rietbrock, P. [DLR, Koeln (Germany). MD-ET

    1997-12-31

    Solar furnace technology is an ecologically clean and economically attractive way, most suitable for research and development of new advanced materials. Such features of the solar furnace as sterile conditions of heating, high speed temperature delivering, materials processing in the whole range of the solar spectrum, quenching of the melt with rates of {proportional_to}10{sup 6} K/s, possibility of melting in the cold crucible etc. allow to synthesize complex oxide compositions, such as Al{sub 2}TiO{sub 5}. The study of Al{sub 2}TiO{sub 5} synthesized in the solar furnace has shown that the material is pure {beta}-Al{sub 2}TiO{sub 5} and possesses orthorhombic crystal structure. Microstructure of the material obtained from the melt has a prolonged prismatic shape. When the material is obtained by quenching the microstructure displays fine-grain structure with crystallites of 3-5 micron in size. Raman spectroscopy investigations have been performed on {beta}-Al{sub 2}TiO{sub 5} synthesized on the solar furnace. It has been observed a distinct band at 900 1/cm which is not presented in other six coordinated titanates. Most probably this band is connected with valent vibrations of the Al-O coupling in distorted octahedrons [AlO{sub 6}]. (orig.)

  1. Energy conservation in cupolas and annealing furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Takeno, S.; Kumagaya, M.; Azuma, T.

    1984-01-01

    Successive reductions in the amount of coke and fuel oil used in cupolas and annealing furnaces are reported. In the cupolas, 2% oxygen enrichment resulted in a 0.9% drop in coke ratio and a 13.3% increase in output of pig iron. Coke ratios of 9.3-9.5% were obtained by tuyere blow-in of inexpensive carbon materials instead of expensive coke, by the use of formed coke, and by employing a dehumidified blast. In the case of the fuel oil-fired annealing furnaces, fuel oil consumption rates were reduced by treating two charges per heat instead of one. Energy consumption was successively reduced by 25-71% by 1) adopting a ceramic fibre heat-insulating material, 2) changing to low-oxygen combustion by increasing the number of burners, 3) lengthening the time during which the furnace high-temperature zone is maintained, 4) raising the combustion chamber load by using ceramic fibres in the furnace casing. 3 references.

  2. APPLICATION ANALYSIS REPORT: RETECH PLASMA CENTRIFUGAL FURNACE

    Science.gov (United States)

    This document is an evaluation of the performance of the Retech, Inc. Plasma Centrifugal Furnace (PCF) and its applicability as a treatment for soils contaminated with organic and/or inorganic compounds. Both the technical and economic aspectsof the technology were examined. A...

  3. INVESTIGATIONS ON OPERATION OF ROTARY TILTING FURNACES

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2016-01-01

    Full Text Available Rotary tilting furnace (RTF is a new type of fuel furnaces, that provide the most efficient heating and recycling of polydisperse materials. The paper describes results of the investigations on thermal processes in the RTF, movement of materials and non-isothermal gas flow during kiln rotary process. The investigations have been carried out while using physical and computer simulations and under actual operating conditions applying the pilot plant. Results of the research have served as a basis for development of recommendations on the RTF calculations and designing and they have been also used for constructional design of a rotary tilting furnace for heating and melting of cast iron chips, reduction smelting of steel mill scale, melting of aluminum scrap, melting of lead from battery scrap. These furnaces have a high thermal efficiency (~50 %, technological flexibility, high productivity and profitability. Proven technical solutions for recycling of ferrous and non-ferrous metals develop the use of RTF in the foundry and metallurgical industry as the main technological unit for creation of cost-effective small-tonnage recycling of metal waste generated at the plants. The research results open prospects for organization of its own production for high-quality charging material in Belarus in lieu of imported primary metal. The proposed technology makes it possible to solve environmental challenge pertaining to liquidation of multi-tonnage heaps of metal-containing wastes.

  4. Thermal exposure in fire resistance furnaces

    NARCIS (Netherlands)

    Leur, P.H.E. van de; Twilt, L.

    1999-01-01

    Over the last six years, CEN TC 127 and more in particular its working groups ad hoc 14 and ad hoc 7 have been active in evaluating and improving the reproducibility of fire resistance testing. Ad hoc 14 developed a draft procedure for the evaluation of the performance of fire resistance furnaces in

  5. Three-phase heaters with common overburden sections for heating subsurface formations

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J [Bellaire, TX

    2012-02-14

    A heating system for a subsurface formation is described. The heating system includes three substantially u-shaped heaters with first end portions of the heaters being electrically coupled to a single, three-phase wye transformer and second end portions of the heaters being electrically coupled to each other and/or to ground. The three heaters may enter the formation through a first common wellbore and exit the formation through a second common wellbore so that the magnetic fields of the three heaters at least partially cancel out in the common wellbores.

  6. Thermal Analysis of an Industrial Furnace

    Directory of Open Access Journals (Sweden)

    Mirko Filipponi

    2016-10-01

    Full Text Available Industries, which are mainly responsible for high energy consumption, need to invest in research projects in order to develop new managing systems for rational energy use, and to tackle the devastating effects of climate change caused by human behavior. The study described in this paper concerns the forging industry, where the production processes generally start with the heating of steel in furnaces, and continue with other processes, such as heat treatments and different forms of machining. One of the most critical operations, in terms of energy loss, is the opening of the furnace doors for insertion and extraction operations. During this time, the temperature of the furnaces decreases by hundreds of degrees in a few minutes. Because the dispersed heat needs to be supplied again through the combustion of fuel, increasing the consumption of energy and the pollutant emissions, the evaluation of the amount of lost energy is crucial for the development of systems which can contain this loss. To perform this study, CFD simulation software was used. Results show that when the door opens, because of temperature and pressure differences between the furnace and the ambient air, turbulence is created. Results also show that the amount of energy lost for an opening of 10 min for radiation, convection and conduction is equal to 5606 MJ where convection is the main contributor, with 5020 MJ. The model created, after being validated, has been applied to perform other simulations, in order to improve the energy performance of the furnace. Results show that reducing the opening time of the door saves energy and limits pollutant emissions.

  7. High Efficiency Water Heating Technology Development Final Report. Part I, Lab/Field Performance Evaluation and Accelerated Life Testing of a Hybrid Electric Heat Pump Water Heater (HPWH)

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Murphy, Richard W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service after the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).

  8. AUTOMATION OF GLASS TEMPERING FURNACE BY USING PLC

    Directory of Open Access Journals (Sweden)

    Abdullah BÜYÜKYILDIZ

    2007-02-01

    Full Text Available In this study, a furnace which is used for observation of environments under high temperature, and also used for manufacturing of glasses which are resisted to high temperature has been designed and implemented. Automation of this system has been done by using PLC. Operating parameters of furnace such as materials entering, the furnace, the local temperature control of furnace, cooling control and materials outing have been sensed with Hall Effect Sensor. Furthermore, the observation of parameters of furnace on screen has been provided with SCADA software. Obtained products have been shown the system works successfully.

  9. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... attached. Thermal efficiency for an instantaneous water heater, a storage water heater or a hot water... the amount of energy consumed by the water heater as measured during the thermal efficiency test... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial water heaters, hot...

  10. An Active Heater Control Concept to Meet IXO Type Mirror Module Thermal-Structural Distortion Requirement

    Science.gov (United States)

    Choi, Michael

    2013-01-01

    Flight mirror assemblies (FMAs) of large telescopes, such as the International X-ray Observatory (IXO), have very stringent thermal-structural distortion requirements. The spatial temperature gradient requirement within a FMA could be as small as 0.05 C. Con ventionally, heaters and thermistors are attached to the stray light baffle (SLB), and centralized heater controllers (i.e., heater controller boards located in a large electronics box) are used. Due to the large number of heater harnesses, accommodating and routing them is extremely difficult. The total harness length/mass is very large. This innovation uses a thermally conductive pre-collimator to accommodate heaters and a distributed heater controller approach. It minimizes the harness length and mass, and reduces the problem of routing and accommodating them. Heaters and thermistors are attached to a short (4.67 cm) aluminum portion of the pre-collimator, which is thermally coupled to the SLB. Heaters, which have a very small heater power density, and thermistors are attached to the exterior of all the mirror module walls. The major portion (23.4 cm) of the pre-collimator for the middle and outer modules is made of thin, non-conductive material. It minimizes the view factors from the FMA and heated portion of the precollimator to space. It also minimizes heat conduction from one end of the FMA to the other. Small and multi-channel heater controllers, which have adjustable set points and internal redundancy, are used. They are mounted to the mechanical support structure members adjacent to each module. The IXO FMA, which is 3.3 m in diameter, is an example of a large telescope. If the heater controller boards are centralized, routing and accommodating heater harnesses is extremely difficult. This innovation has the following advantages. It minimizes the length/mass of the heater harness between the heater controllers and heater circuits. It reduces the problem of routing and accommodating the harness on the

  11. Distribution of trace metals at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania

    Science.gov (United States)

    Sloto, Ronald A.; Reif, Andrew G.

    2011-01-01

    Hopewell Furnace, located approximately 50 miles northwest of Philadelphia, was a cold-blast, charcoal iron furnace that operated for 113 years (1771 to 1883). The purpose of this study by the U.S. Geological Survey, in cooperation with the National Park Service, was to determine the distribution of trace metals released to the environment from an historical iron smelter at Hopewell Furnace National Historic Site (NHS). Hopewell Furnace used iron ore from local mines that contained abundant magnetite and accessory sulfide minerals enriched in arsenic, cobalt, copper, and other metals. Ore, slag, cast iron furnace products, soil, groundwater, stream base flow, streambed sediment, and benthic macroinvertebrates were sampled for this study. Soil samples analyzed in the laboratory had concentrations of trace metals low enough to meet Pennsylvania Department of Environmental Protection standards for non-residential use. Groundwater samples from the supply well met U.S. Environmental Protection Agency drinking-water regulations. Concentrations of metals in surface-water base flow at the five stream sampling sites were below continuous concentration criteria for protection of aquatic organisms. Concentrations of metals in sediment at the five stream sites were below probable effects level guidelines for protection of aquatic organisms except for copper at site HF-3. Arsenic, copper, lead, zinc, and possibly cobalt were incorporated into the cast iron produced by Hopewell Furnace. Manganese was concentrated in slag along with iron, nickel, and zinc. The soil near the furnace has elevated concentrations of chromium, copper, iron, lead, and zinc compared to background soil concentrations. Concentrations of toxic elements were not present at concentrations of concern in water, soil, or stream sediments, despite being elevated in ore, slag, and cast iron furnace products. The base-flow surface-water samples indicated good overall quality. The five sampled sites generally had

  12. Electrical heater for very-low pressure helium gas

    CERN Document Server

    Benda, V; Vuillierme, B

    1996-01-01

    Testing superconducting magnets for the Large Hadron Collider (LHC) in superfluid helium requires large-capacity refrigeration at 1.8K. At CERN, this is provided by a combination of a cold compressor and a set of warm vacuum pumps capable of handling up to 18g/s at 1 kPa suction pressure. The cold helium vapour, after the cold compressor, is warmed up from about 5K to ambient temperature in a 32 kW electrical heater. The device is designed to operate reliably at flow rates varying from 1 to 18g/s, inlet pressure of 1 kPa to 3 kPa, with pressure drop 100 Pa. Design and construction of the heater, completely realised at CERN, are presented, as well as measured performance. Some technological problems are discussed.

  13. Thermal hydraulic analysis of the annular flow helium heater design

    Science.gov (United States)

    Chen, N. C.; Sanders, J. P.

    1982-05-01

    Core support performance test (CSPT) by use of an existing facility, components flow test loop (CFTL), as part of the high temperature gas cooled reactor (HTGR) application program were conducted. A major objective of the CSPT is to study accelerated corrosion of the core graphite support structure in helium at reactor conditions. Concentration of impurities will be adjusted so that a 6 month test represents the 30 year reactor life. Thermal hydraulic and structural integrity of the graphite specimen, will be studied at high pressure of 7.24 MPa (1050 psi) and high temperature of 1000 deg C in a test vessel. To achieve the required high temperature at the test section, a heater bundle has to be specially designed and properly manufactured. Performance characteristics of the heater which were determined from an analysis based on this design are presented.

  14. DESIGN OF A 500W RESONANT INDUCTION HEATER

    Directory of Open Access Journals (Sweden)

    Bekir Sami SAZAK

    1999-01-01

    Full Text Available In this paper a complete design procedure for a 500W induction heating system is given. An induction heating system basically consists of a coil and a DC/AC inverter. The use of a single switch resonant inverter, which is operated with Discontinuous Conduction Mode (DCM, allows the switching device to turn off under zero current conditions, therefore switching losses are much reduced. This inverter system transforms the DC into AC for the induction heater coil. The proposed coil design method is applicable to a load of any shape so long as the coil surrounds the workpiece. The basis of this method of coil design is the reduction of the induction heater coil and workpiece to their equivalent resistance and inductance.

  15. Development of Exhaust Gas Driven Absorption Chiller-Heater

    Science.gov (United States)

    Inoue, Naoyuki; Endou, Tetsuya; Saito, Kiyoshi; Kawai, Sunao

    Waste heat from co-generation systems are usually recovered by hot water or steam, those are used to drive absorption refrigerators at cooling time, and those are used for heating via heat exchangers at heating time. However waste heat from micro gas turbines are discharged in the form of exhaust gas, it is simple that exhaust gas is directly supplied to absorption chiller-heaters. In the first report we studied cooling cycle, and this second paper, we evaluated various absorption heating cycles for exhaust gas driven absorption chiller-heaters, and adopted one of these cycles for the prototype machine. Also, we experimented with the prototype for wide range condition and got the heating characteristics. Based on the experimental data, we developed a simulation model of the static characteristics, and then studied how to increase the output by limited exhaust gas.

  16. An experimental evaluation of multi-pass solar air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Satcunanathan, S.; Persad, P.

    1980-12-01

    Three collectors of identical dimensions but operating in the single-pass, two-pass and three-pass modes were tested simultaneously under ambient conditions. It was found that the two-pass air heater was consistently better than the single-pass air heater over the day for the range of mass flow rates considered. It was also found that at a mass flow rate of 0.0095 kg s/sup -1/ m/sup -2/, the thermal performances of the two-pass and three-pass collectors were identical, but at higher flow rates the two-pass collector was superior to the three-pass collector, the superiority decreasing with increasing mass flow rate.

  17. Fabrication of light weight radioisotope heater unit hardware components

    Science.gov (United States)

    McNeil, Dennis C.

    1996-03-01

    The Light Weight Radioisotope Heater Unit (LWRHU) is planned to be used on the National Aeronautics and Space Administration (NASA) Cassini Mission, to provide localized thermal energy as strategic locations on the spacecraft. These one watt heater units will support the operation of many on-board instruments that require a specific temperature range to function properly. The system incorporates a fuel pellet encapsulated in a vented metallic clad fabricated from platinum-30% rhodium (Pt-30%Rh) tubing, sheet and foil materials. To complete the package, the clad assemblies are placed inside a combination of graphite components. This report describes the techniques employed by Mound related to the fabrication and sub assembly processes of the LWRHU clad hardware components. Included are details concerning configuration control systems, material procurement and certification, hardware fabrication specifics, and special processes that are utilized.

  18. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE II TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Stone, M.; Miller, D.

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP):  Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models;  Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; o Quantify off-gas surging potential of the feed; o Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36

  19. Alternate Reductant Cold Cap Evaluation Furnace Phase II Testing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; Quantify off-gas surging potential of the feed; Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste

  20. Second generation rotary furnaces, an even more viable alternative to cupola and electric induction furnaces; La seconde generation de fours rotatifs, un appareil qui peut se substituer avantageusement au cubilot et au four electrique a induction

    Energy Technology Data Exchange (ETDEWEB)

    Lever, D. [Air Liquide 38 - Sassenage (France)

    2001-10-01

    Rotary furnaces are a well established alternative to cupola furnaces. Recent innovations in oxygas furnaces have made them the preferred choice even over medium-frequency electric furnaces in many European foundries. The article explains in what respects the rotary furnace is a new iron smelting concept, as different from the cupola furnace as the medium-frequency electric furnace. (author)

  1. Conasauga near-surface heater experiment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, J.L.

    1979-11-01

    The Conasauga Experiment was undertaken to begin assessment of the thermomechanical and chemical response of a specific shale to the heat resulting from emplacement of high-level nuclear wastes. Canister-size heaters were implanted in Conasauga shale in Tennessee. Instrumentation arrays wee placed at various depths in drill holes around each heater. The heaters operated for 8 months and, after the first 4 days, were maintained at 385/sup 0/C. Emphasis was on characterizing the thermal and mechanical response of the formation. Conduction was the major mode of heat transport; convection was perceptible only at temperatures above the boiling point of water. Despite dehydration of the shale at higher temperatures, in situ thermal conductivity was essentially constant and not a function of temperature. The mechanical response of the formation was a slight overall expansion, apparently resulting in a general decrease in permeability. Metallurgical observations were made, the stability of a borosilicate glass wasteform simulant was assessed, and changes in formation mineralogy and groundwater composition were documented. In each of these areas, transient nonequilibrium processes occur that affect material stability and may be important in determining the integrity of a repository. In general, data from the test reflect favorably on the use of shale as a disposal medium for nuclear waste.

  2. Performance Analysis and Modeling of Thermally Sprayed Resistive Heaters

    Science.gov (United States)

    Lamarre, Jean-Michel; Marcoux, Pierre; Perrault, Michel; Abbott, Richard C.; Legoux, Jean-Gabriel

    2013-08-01

    Many processes and systems require hot surfaces. These are usually heated using electrical elements located in their vicinity. However, this solution is subject to intrinsic limitations associated with heating element geometry and physical location. Thermally spraying electrical elements directly on surfaces can overcome these limitations by tailoring the geometry of the heating element to the application. Moreover, the element heat transfer is maximized by minimizing the distance between the heater and the surface to be heated. This article is aimed at modeling and characterizing resistive heaters sprayed on metallic substrates. Heaters were fabricated by using a plasma-sprayed alumina dielectric insulator and a wire flame-sprayed iron-based alloy resistive element. Samples were energized and kept at a constant temperature of 425 °C for up to 4 months. SEM cross-sectional observations revealed the formation of cracks at very specific locations in the alumina layer after thermal use. Finite-element modeling shows that these cracks originate from high local thermal stresses and can be predicted according to the considered geometry. The simulation model was refined using experimental parameters obtained by several techniques such as emissivity and time-dependent temperature profile (infra-red camera), resistivity (four-probe technique), thermal diffusivity (laser flash method), and mechanical properties (micro and nanoindentation). The influence of the alumina thickness and the substrate material on crack formation was evaluated.

  3. Tip Heater for Minimum Quench Energy Measurements on Superconducting Strands

    CERN Document Server

    Bauer, P; Oberli, L R

    1999-01-01

    Superconducting strands can be characterized by their Minimum Quench Energy (MQE), i.e. the minimum heat pulse needed to trigger a quench in operation conditions (field, temperature, current), in the limit of a (temporally and spatially) d-shaped disturbance. The sub-mm/µs range of perturbation space has only recently been achieved using the electrical graphite-paste heater technique [1]. The present work has put this technique into practice for the strands of the LHC main magnets, which are designed to operate at 1.9K in peak fields of up to 9T [1]. No way has been found yet to calibrate MQE measurements. To make relative statements on the MQE of different samples possible, the reproducibility of the measurements was emphasized. First heater prototypes did not come up to this stipulation. Finally the tip-heater configuration was found to meet the requirements. It generates a heat pulse in a thin resistive graphite paste deposit on top of a small tip that is pressed against the sample with a clamp. The clamp...

  4. Control and Coordination of Frequency Responsive Residential Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Tess L.; Kalsi, Karanjit; Elizondo, Marcelo A.; Marinovici, Laurentiu D.; Pratt, Richard M.

    2016-07-31

    Demand-side frequency control can complement traditional generator controls to maintain the stability of large electric systems in the face of rising uncertainty and variability associated with renewable energy resources. This paper presents a hierarchical frequency-based load control strategy that uses a supervisor to flexibly adjust control gains that a population of end-use loads respond to in a decentralized manner to help meet the NERC BAL-003-1 frequency response standard at both the area level and interconnection level. The load model is calibrated and used to model populations of frequency-responsive water heaters in a PowerWorld simulation of the U.S. Western Interconnection (WECC). The proposed design is implemented and demonstrated on physical water heaters in a laboratory setting. A significant fraction of the required frequency response in the WECC could be supplied by electric water heaters alone at penetration levels of less than 15%, while contributing to NERC requirements at the interconnection and area levels.

  5. FEM Optimisation of Spark Plasma Sintering Furnace

    CERN Document Server

    Kellari, Demetrios Vasili

    2013-01-01

    Coupled electro-thermal FEM analysis has been carried out on a sintering furnace used to produce new materials for LHC collimators. The analysis showed there exist margins for improvement of the current process and equipment through minor changes. To optimise the design of the furnace several design changes have been proposed including: optimization of material selection using copper cooling plates, control of convection in cooling plates by lowering the water flow rate, modifying the electrode shape using unsymmetrical electrodes and upgrading the thermal shielding to make use of multilayer graphite shields. The results show that we have a significant improvement in temperature gradient on the plate, from 453 to 258 °C and a reduction in power requirement from 62 to 44 kW.

  6. Solar furnace sintering of ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhilinska, N.; Zalite, I.; Korb, G.; Angerer, P.; Rodriguez, J.; Martinez, D.

    2004-07-01

    This paper reports on the current status of application of solar furnace for sintering of TiCN, TiO2 and Al2O3 nano powders with the specific surface area of 30-50 m''2/g and average particle size of 30-50 nm. The powders have been prepared by the plasma chemical synthesis and other methods. This work relates to innovative methods of sintering in the solar furnace at Plataforma Solar de Almeria and the Spark Plasma Sintering (SPS). The influence of sintering temperature, sintering time and heating rate on the densification behaviour of the nanopowders was investigated. The results were compared with the data obtained using commercial powders. (Author) 4 refs.

  7. Concentration of a Cassegrain solar furnace

    Science.gov (United States)

    Cobble, M. H.

    1981-01-01

    A solar furnace comprising a paraboloidal mirror for tracking the sun and a hyperboloidal reflector having one focus in common with the paraboloid is analyzed to determine the geometric concentration of the system. A numerical ray-trace analysis was carried out to study various geometrical configurations of the two reflectors. In particular, the geometric concentration is calculated for the case when the line joining the foci of the hyperboloid and the axis of revolution of the paraboloid are not coincident.

  8. Temperature Controller for a Solar Furnace

    Science.gov (United States)

    Hale, R. R.; Mcdougal, A. R.

    1982-01-01

    Relatively-simple movable sheild has been suggested for controlling temperature of solar furnace. Temperature modulator can be set to have collected solar energy fully "on", fully "off" or any intermediate level. Parabolic mirror concentrates Sunlight into receiver. Shade plate that blocks insolation at back of receiver produces shade zone in center of collector. No radiation is returned to receiver from shade zone; only rays falling on other areas of reflecting surface are directed back toward receiver.

  9. Carbon sublimation using a solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Laplaze, D. [Montpellier-2 Univ. (France). Groupe de Dynamique des Phases Condensees; Bernier, P. [Montpellier-2 Univ. (France). Groupe de Dynamique des Phases Condensees; Journet, C. [Montpellier-2 Univ. (France). Groupe de Dynamique des Phases Condensees; Vie, V. [Montpellier-2 Univ. (France). Groupe de Dynamique des Phases Condensees; Flamant, G. [Montpellier-2 Univ. (France). Groupe de Dynamique des Phases Condensees]|[Inst. de Science et de Genie des Materiaux et Procedes, Centre du Four Solaire Felix Trombe, Font-Romeu (France); Lebrun, M. [Montpellier-2 Univ. (France). Groupe de Dynamique des Phases Condensees]|[Inst. de Science et de Genie des Materiaux et Procedes, Centre du Four Solaire Felix Trombe, Font-Romeu (France)

    1997-02-28

    We have previously shown that the high intensity of solar radiation, obtained with the Odeillo (France) solar furnace facilities, can be used to vaporize graphite in inert gas atmosphere to produce fullerenes. After a short survey of the possible mechanisms of formation of these molecules, we report some results in agreement with the proposed model and discuss the possibilities of increasing the fullerene yield which currently reaches 20% (orig.)

  10. Fabrication of the solar furnace`s segmental main parabolic mirror

    Energy Technology Data Exchange (ETDEWEB)

    Shishido, K. [Tohoku Gakuin Univ., Tagajo, Miyagi (Japan); Kitahara, H. [Tohoku Electric Power Co. Ltd., Sendai (Japan); Fujisaki, H.; Shoji, T. [Tohoku Gakuin Univ., Tagajo, Miyagi (Japan); Shibata, Y. [Tohoku Univ., Sendai (Japan); Sugiura, M. [Koyodai High School, Miyagi, Sendai (Japan); Nagai, Y. [Press Kogyo Company Ltd., Fujisawa (Japan); Kobayashi, H. [Tokyo Special Glass Company Ltd., Fujioka (Japan)

    1994-12-31

    The development of a new energy system based on the concentration of the rays of the sun was trialed and four solar furnaces produced. However, the fabrication of the segmented main parabolic mirror required high precision and was found to be very difficult. The main parabolic mirror of the furnaces were of the segmental type. The mirrors in the large furnace of the first trial in 1962 were made by a cutting machine with a cam mechanism and then finished by grinding and polishing. The segmental main parabolic mirrors of the small and medium-size furnaces (2nd and 3rd trials) were made using master molds (for softening the glass segments) that were fabricated using a cutting machine having a link mechanism. The fourth furnace used mirrors composed of super reflecting A1 plate cemented on a stamped plastic base. The cutting techniques and the grinding and polishing of the glass to fabricate the fan-shaped segmental parabolic mirrors were successful, but the softening results were not ideal. Better results were obtained on softening narrow fan-shaped glass plates and the ideal tools for cutting the master molds of soft brick are considered to be the glass gauge or cylinder tube. 10 figs., 4 refs.

  11. High temperature solar furnace: current applications and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Bjorndalen, N. [Dalhousie Univ., Faculty of Engineering, Halifax, NS (Canada)

    2003-02-15

    The high temperature solar furnace can offer great opportunities for the production of many types of products worldwide, but recent advances in this technology have been limited to metal reduction. The production of semiconductors, which are utilized to a great extent in the electronic industry, is a viable option for this technology that has been overlooked. Especially where sand and sunlight are plentiful (countries that surround the equator), silicon chips produced with a solar furnace can have great economical value. This paper describes current and potential solar furnace technologies. The components of the solar furnace are described, as well as metal reduction processes including zinc and aluminum production. The viability of silicon chip production is also examined. The possibilities for other product development using an extremely (up to 10,000 deg C) high temperature solar furnace are also discussed. Economically, the benefits of solar furnaces are great, with only high initial start-up costs and little operation costs. Metal reduction processes can also be enhanced with high temperature solar furnaces in that plugging problems are eliminated. By replacing conventional furnaces, such as blast and electric arc furnaces, with a high temperature solar furnace, CO{sub 2} emissions and energy consumption can be greatly reduced, which will bring in added dividends to the society. (Author)

  12. A virtual crystallization furnace for solar silicon

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, I.; Franke, D. [ACCESS e.V., Aachen (Germany); Krumbe, W.; Liebermann, J. [Bayer AG, Krefeld-Uerdingen (Germany)

    1994-12-31

    Blocks of silicon for photovoltaic applications are economically crystallized in large casting furnaces. The quality of the material is determined by the velocity of the crystallization front, the flatness of the liquid-solid interface and the thermal gradients in the solid during cooling. The process cycle time, which is determined by the rate of crystallization and cooling, has a large effect on the process economic viability. Traditionally trial and error was used to determine the process control parameters, the success of which depended on the operator`s experience and intuition. This paper presents a numerical model, which when completed by a fitted data set, constitutes a virtual model of a real crystallization furnace, the Virtual Crystallization Furnace (VCF). The time-temperature distribution during the process cycle is the main output, which includes a display of actual liquid-solid front position. Moreover, solidification velocity, temperature gradients and thermal stresses can be deduced from this output. The time needed to run a simulation on a modern work-station is approximately 1/6 of real process time, thereby allowing the user to make many process variations at very reasonable costs. Therefore the VCF is a powerful tool for optimizing the process in order to reduce cycle time and to increase product quality.

  13. Mass Balance Modeling for Electric Arc Furnace and Ladle Furnace System in Steelmaking Facility in Turkey

    Institute of Scientific and Technical Information of China (English)

    (I)smail Ekmek(c)i; Ya(s)ar Yetisken; (U)nal (C)amdali

    2007-01-01

    In the electric arc furnace (EAF) steel production processes, scrap steel is principally used as a raw material instead of iron ore. In the steelmaking process with EAF, scrap is first melted in the furnace and then the desired chemical composition of the steel can be obtained in a special furnace such as ladle furnace (LF). This kind of furnace process is used for the secondary refining of alloy steel. LF furnace offers strong heating fluxes and enables precise temperature control, thereby allowing for the addition of desired amounts of various alloying elements. It also provides outstanding desulfurization at high-temperature treatment by reducing molten steel fluxes and removing deoxidation products. Elemental analysis with mass balance modeling is important to know the precise amount of required alloys for the LF input with respect to scrap composition. In present study, chemical reactions with mass conservation law in EAF and LF were modeled altogether as a whole system and chemical compositions of the final steel alloy output can be obtained precisely according to different scrap compositions, alloying elements ratios, and other input amounts. Besides, it was found that the mass efficiency for iron element in the system is 95.93%. These efficiencies are calculated for all input elements as 8.45% for C, 30.31% for Si, 46.36% for Mn, 30.64% for P, 41.96% for S, and 69.79% for Cr, etc. These efficiencies provide valuable ideas about the amount of the input materials that are vanished or combusted for 100 kg of each of the input materials in the EAF and LF system.

  14. Four Bed Molecular Sieve - Exploration (4BMS-X) Virtual Heater Design and Optimization

    Science.gov (United States)

    Schunk, R. Gregory; Peters, Warren T.; Thomas, John T., Jr.

    2017-01-01

    A 4BMS-X (Four Bed Molecular Sieve - Exploration) design and heater optimization study for CO2 sorbent beds in proposed exploration system architectures is presented. The primary objectives of the study are to reduce heater power and thermal gradients within the CO2 sorbent beds while minimizing channeling effects. Some of the notable changes from the ISS (International Space Station) CDRA (Carbon Dioxide Removal Assembly) to the proposed exploration system architecture include cylindrical beds, alternate sorbents and an improved heater core. Results from both 2D and 3D sorbent bed thermal models with integrated heaters are presented. The 2D sorbent bed models are used to optimize heater power and fin geometry while the 3D models address end effects in the beds for more realistic thermal gradient and heater power predictions.

  15. Sealed rotary hearth furnace with central bearing support

    Science.gov (United States)

    Docherty, James P.; Johnson, Beverly E.; Beri, Joseph

    1989-01-01

    The furnace has a hearth which rotates inside a stationary closed chamber and is supported therein on vertical cylindrical conduit which extends through the furnace floor and is supported by a single center bearing. The charge is deposited through the furnace roof on the rim of the hearth as it rotates and is moved toward the center of the hearth by rabbles. Externally generated hot gases are introduced into the furnace chamber below the hearth and rise through perforations in the hearth and up through the charge. Exhaust gases are withdrawn through the furnace roof. Treated charge drops from a center outlet on the hearth into the vertical cylindrical conduit which extends downwardly through the furnace floor to which it is also sealed.

  16. 77 FR 76831 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces and...

    Science.gov (United States)

    2012-12-31

    ... Furnaces and Boilers (June 7, 2010),\\5\\ the ENERGY STAR Product Databases for Gas and Oil Furnaces (Jan. 4, 2010),\\6\\ the California Energy Commission's Appliance Database for Residential Furnaces and Boilers,\\7.... Department of Commerce, ENERGY STAR Furnaces--Product Databases for Gas and Oil Furnaces (Jan. 4,...

  17. Anomaly detection of blast furnace condition using tuyere cameras

    Science.gov (United States)

    Yamahira, Naoshi; Hirata, Takehide; Tsuda, Kazuro; Morikawa, Yasuyuki; Takata, Yousuke

    2016-09-01

    We present a method of anomaly detection using multivariate statistical process control(MSPC) to detect the abnormal behaviors of a blast furnace. Tuyere cameras attached circumferentially at the lower side of a blast furnace are used to monitor the inside of the furnace and this method extracts abnormal behaviors of intensities. It is confirmed that with our method, detecting timing is earlier than operators' notice. Besides, misalignment of cameras doesn't affect detecting performance, which is important property in actual use.

  18. Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing

    Energy Technology Data Exchange (ETDEWEB)

    Ries, R.; Walters, R.; Dwiantoro, D.

    2013-01-01

    This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida. The housing units had their gas-fired tank type water heaters replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

  19. Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing

    Energy Technology Data Exchange (ETDEWEB)

    Ries, R. [Univ. of Florida, Gainesville, FL (United States). Building Energy Efficient Housing for America (BEEHA)Team; Walters, R. [Univ. of Florida, Gainesville, FL (United States). Building Energy Efficient Housing for America (BEEHA)Team; Dwiantoro, D. [Univ. of Florida, Gainesville, FL (United States). Building Energy Efficient Housing for America (BEEHA)Team

    2013-01-01

    This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida.The gas-fired tank type water heaters in the housing units were replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

  20. Comparison of Simulation and Experimental Results of Class - D Inverter Fed Induction Heater

    Directory of Open Access Journals (Sweden)

    S. Rama Reddy

    2010-10-01

    Full Text Available This research deals w ith simulation and experimentation of closed loop controlled class-D inverter fed induction heater system. This converter has reduced switching losses, stress and increased power density. The inverter system is designed and the simulation is done using Matlab. The results of simulation and experimentation are presented. The induction heater system uses embedded controller to generate driving pulses. The objective is to develop an induction heater system with minimum hardware.

  1. Thermal performance optimization of a flat plate solar air heater using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Varun; Siddhartha [Department of Mechanical Engineering, National Institute of Technology, Hamirpur 177 005 (H.P.) (India)

    2010-05-15

    Thermal performance of solar air heater is low and different techniques are adopted to increase the performance of solar air heaters, such as: fins, artificial roughness etc. In this paper an attempt has been done to optimize the thermal performance of flat plate solar air heater by considering the different system and operating parameters to obtain maximum thermal performance. Thermal performance is obtained for different Reynolds number, emissivity of the plate, tilt angle and number of glass plates by using genetic algorithm. (author)

  2. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    Science.gov (United States)

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin

    2016-05-01

    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  3. Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Stuart E. Strand

    2001-12-06

    The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

  4. Slag wool manufacturing from blast furnace slag

    Directory of Open Access Journals (Sweden)

    Володимир Петрович Руських

    2016-11-01

    Full Text Available Slag wool is the most expensive and valuable product of blast furnace slag processing. Slag wool is in great demand nowadays. The article highlights the factors influencing the mineral wool quality: chemical composition that determines the acidity of the module, the temperature of the molten slag and the required slag jet thickness consistency. Mineral wool is produced by blowing air or steam into a jet of molten slag. As a result of it the slag crushes into droplets stretching. The resulting wool contains 5% slag and 95% air. The quality of the obtained slag wool depends on the module acidity of the slag. The blast furnace slags of «Ilyich iron and steel works of Mariupol» and «Azovstal iron & steel works» are the main (short slags – they give short fibers. To obtain high-quality long fiber wool it is necessary to add admixtures into basic blast furnace slag to reduce its basicity. As a result of the fuel and energy rising prices and the necessity to reduce the slag wool cost it is necessary to develop a new technology with fiery-liquid slag, with the removal of iron compounds and sulphur from the melts and the introduction of corrective additives to improve the quality of slag wool. Good thermal conductivity (about 0,03 kcal/m∙h∙°C and other indicators (resistance, volume weight make it possible to use the materials from slag wool (pads, rigid and semi-rigid plates as heat and sound insulating materials

  5. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF)

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800[degrees]F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400[degrees]F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

  6. Zoned electrical heater arranged in spaced relationship from particulate filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-11-15

    A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

  7. Exergetic performance evaluation and parametric studies of solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, M.K.; Kaushik, S.C. [Centre for Energy Studies, Indian Institute of Technology, Delhi 110016 (India)

    2008-11-15

    The present study aims to establish the optimal performance parameters for the maximum exergy delivery during the collection of solar energy in a flat-plate solar air heater. The procedure to determine optimum aspect ratio (length to width ratio of the absorber plate) and optimum duct depth (the distance between the absorber and the bottom plates) for maximum exergy delivery has been developed. It is known that heat energy gain and blower work increase monotonically with mass flow rate, while the temperature of air decreases; therefore, it is desirable to incorporate the quality of heat energy collected and the blower work. First it is proved analytically that the optimum exergy output, neglecting blower work, and the corresponding mass flow rate depend on the inlet temperature of air. The energy and exergy output rates of the solar air heater were evaluated for various values of collector aspect ratio (AR) of the collector, mass flow rate per unit area of the collector plate (G) and solar air heater duct depth (H). Results have been presented to discuss the effects of G, AR and H on the energy and exergy output rates of the solar air heater. The energy output rate increases with G and AR, and decreases with H and the inlet temperature of air. The exergy-based evaluation criterion shows that performance is not a monotonically increasing function of G and AR, and a decreasing function of H and inlet temperature of air. Based on the exergy output rate, it is found that there must be an optimum inlet temperature of air and a corresponding optimum G for any value of AR and H. For values of G lesser than optimal corresponding to inlet temperature of air equals to ambient, higher exergy output rate is achieved for the low value of duct depth and high AR in the range of parameters investigated. If G is high, for an application requiring less temperature increase, then either low AR or high H would give higher exergy output rate. (author)

  8. High Efficiency R-744 Commercial Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Elbel, Dr. Stefan W.; Petersen, Michael

    2013-04-25

    The project investigated the development and improvement process of a R744 (CO2) commercial heat pump water heater (HPWH) package of approximately 35 kW. The improvement process covered all main components of the system. More specific the heat exchangers (Internal heat exchanger, Evaporator, Gas cooler) as well as the expansion device and the compressor were investigated. In addition, a comparison to a commercially available baseline R134a unit of the same capacity and footprint was made in order to compare performance as well as package size reduction potential.

  9. Thin film heater for removable volatile protecting coatings.

    Science.gov (United States)

    Karim, Abid

    2013-01-01

    Freshly coated aluminum mirrors have excellent reflectivity at far ultraviolet wavelengths. However, reflectivity rapidly degrades when the mirror surfaces are exposed to atmosphere. In order to avoid this problem, freshly coated aluminum surface can be protected by over-coating of a removable volatile protecting coating. This protecting coating can be re-evaporated by controlled heating or by some other methods when required. This type of removable coating has immediate application in UV space astronomy. The purpose of this paper is to demonstrate the feasibility of re-evaporation of removable volatile Zn protecting coating using a NiCr thin film heater without affecting the reflection properties of Al mirror surfaces.

  10. Benchmark Tests for Stirling Convertor Heater Head Life Assessment Conducted

    Science.gov (United States)

    Krause, David L.; Halford, Gary R.; Bowman, Randy R.

    2004-01-01

    A new in-house test capability has been developed at the NASA Glenn Research Center, where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive testing to aid the development of analytical life prediction methodology and to experimentally aid in verification of the flight-design component's life. The new facility includes two test rigs that are performing creep testing of the SRG heater head pressure vessel test articles at design temperature and with wall stresses ranging from operating level to seven times that (see the following photograph).

  11. CVD diamond resistor as heater and temperature sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.S.; Aslam, M. [Michigan State Univ., East Lansing, MI (United States)

    1995-12-31

    Heat generation and temperature control, essential for most heater applications, require different components in a conventional system. We achieve the heat generation and temperature measurement simultaneously by using a single diamond resistor. Chemical vapor deposited (CVD) p-type diamond resistors with different dimensions were fabricated on polycrystalline diamond or oxidized Si substrates using diamond film technology compatible with integrated circuit (IC) processing. The temperature response of the resistors was characterized in the temperature range of 25 - 500{degrees}C. Power densities in access of 600 watt/in{sup 2} were achieved.

  12. Integral finned heater and cooler for stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-01-01

    A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.

  13. Vacuum Furnace - Integrated "Sub zero" Treatment

    Institute of Scientific and Technical Information of China (English)

    B. Zieger; Hubert Schulte

    2004-01-01

    The vacuum heat treatment with overpressure gas quenching is more and more accepted due to considerable advantages compared to the traditional oil and salt bath processes. Continuous further developments and new concepts like multi-directional cooling systems, a separate quenching chamber and "sub zero" systems lead towards an oxidation free and low distortion vacuum heat treatment for a broad range of parts and materials. Short and energy saving processes guarantee a high economic efficiency and environmental compatibility.The "sub zero" system which is integrated into the standard vacuum furnace achieves a heat treatment result with a high conversion of retained austenite in fully automatic hardening and tempering processes.

  14. Pyrometric temperature measurements in the solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, H.-R; Mueller, Ch.

    2000-07-01

    Surface temperatures are key parameters in many applications of concentrated solar radiation. Pyrometric temperature determination is here hampered by the reflected solar radiation. Two approaches to solve this problem were experimentally tested with the TREMPER reactor in the solar furnace at PSI: the flash assisted multiwavelength pyrometry (FAMP) developed at PSI and a so called 'solar-blind' pyrometer developed by IMPAC Electronic GmbH in Frankfurt, Germany, in collaboration with PSI. Performance, advantages and disadvantages of the two different pyrometers are reported and discussed. (authors)

  15. Oil injection into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dongsheng Liao; Mannila, P.; Haerkki, J.

    1997-12-31

    Fuel injection techniques have been extensively used in the commercial blast furnaces, a number of publications concerning the fuels injection have been reported. This present report only summarizes the study achievements of oil injection due to the research need the of authors, it includes the following parts: First, the background and the reasons reducing coke rate of oil injection are analyzed. Reducing coke rate and decreasing the ironmaking costs are the main deriving forces, the contents of C, H and ash are direct reasons reducing coke rate. It was also found that oil injection had great effects on the state of blast furnace, it made operation stable, center gas flow develop fully, pressure drop increase, descent speed of burden materials decrease and generation of thermal stagnation phenomena, the quality of iron was improved. Based on these effects, as an ideal mean, oil injection was often used to adjust the state of blast furnace. Secondly, combustion behavior of oil in the raceway and tuyere are discussed. The distribution of gas content was greatly changed, the location of CO, H{sub 2} generation was near the tuyere; the temperature peak shifts from near the raceway boundary to the tuyere. Oxygen concentration and blast velocity were two important factors, it was found that increasing excess oxygen ratio 0.9 to 1.3, the combustion time of oil decreases 0.5 msec, an increase of the blast velocity results in increasing the flame length. In addition, the nozzle position and oil rate had large effects on the combustion of oil. Based on these results, the limit of oil injection is also discussed, soot formation is the main reason limiting to further increase oil injection rate, it was viewed that there were three types of soot which were generated under blast furnace operating conditions. The reason generating soot is the incomplete conversion of the fuel. Finally, three methods improving combustion of oil in the raceway are given: Improvement of oil

  16. Development of Long Life Magnesia—carbon Brick for UHP Electric Arc Furnace

    Institute of Scientific and Technical Information of China (English)

    SUNYufei; WANGXuemei

    2000-01-01

    The corrosion mechanism of high ferric oxide slag to the magnesia-carbon brick for UHP furnace was analyzed,and the magnesia-carbon brick with high ferric oxide slag resistance was develped by selecting specially processed fused magnesite and changing size distrbution and the additives.The magnesia-carbon brick has good affinity to the slag and could adhere the slag efficiently in usage,It has better slag corrosion resistance and high temperature strength than the ordinary magnesia-carbon brick It showed better adaptable to the high ferric oxide slag when it was first used in 1999 in 150t UHP furnace of Tianjing Steel Pipe Company ,and achieved 400 heats service life.

  17. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States)

    2017-03-01

    High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.

  18. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States)

    2017-03-28

    High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.

  19. Glass Furnace Combustion and Melting Research Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Connors, John J. (PPG Industries, Inc., Pittsburgh, PA); McConnell, John F. (JFM Consulting, Inc., Pittsburgh, PA); Henry, Vincent I. (Henry Technology Solutions, LLC, Ann Arbor, MI); MacDonald, Blake A.; Gallagher, Robert J.; Field, William B. (Lilja Corp., Livermore, CA); Walsh, Peter M.; Simmons, Michael C. (Lilja Corp., Livermore, CA); Adams, Michael E. (Lilja Corp., Rochester, NY); Leadbetter, James M. (A.C. Leadbetter and Son, Inc., Toledo, OH); Tomasewski, Jack W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Operacz, Walter J. (A.C. Leadbetter and Son, Inc., Toledo, OH); Houf, William G.; Davis, James W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Marvin, Bart G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Gunner, Bruce E. (A.C. Leadbetter and Son, Inc., Toledo, OH); Farrell, Rick G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Bivins, David P. (PPG Industries, Inc., Pittsburgh, PA); Curtis, Warren (PPG Industries, Inc., Pittsburgh, PA); Harris, James E. (PPG Industries, Inc., Pittsburgh, PA)

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the

  20. Durability of Alkali Activated Blast Furnace Slag

    Science.gov (United States)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  1. Mercury in dumped blast furnace sludge.

    Science.gov (United States)

    Földi, Corinna; Dohrmann, Reiner; Mansfeldt, Tim

    2014-03-01

    Blast furnace sludge (BFS) is a waste generated in the production of pig iron and was dumped in sedimentation ponds. Sixty-five samples from seven BFS locations in Europe were investigated regarding the toxic element mercury (Hg) for the first time. The charge material of the blast furnace operations revealed Hg contents from 0.015 to 0.097mgkg(-1). In comparison, the Hg content of BFS varied between 0.006 and 20.8mgkg(-1) with a median of 1.63mgkg(-1), which indicates enrichment with Hg. For one site with a larger sample set (n=31), Hg showed a stronger correlation with the total non-calcareous carbon (C) including coke and graphite (r=0.695; n=31; p<0.001). It can be assumed that these C-rich compounds are hosting phases for Hg. The solubility of Hg was rather low and did not exceed 0.43% of total Hg. The correlation between the total Hg concentration and total amount of NH4NO3-soluble Hg was relatively poor (r=0.496; n=27; p=0.008) indicating varying hazard potentials of the different BFS. Finally, BFS is a mercury-containing waste and dumped BFS should be regarded as potentially mercury-contaminated sites.

  2. Arsenic immobilization of Teniente furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, R. [Japan Oil, Gas, and Metals National Corp., Kawasaki (Japan); Tateiwa, H. [Mitsui Mining and Smelting Co. Ltd., Saitama (Japan); Almendares, C. [Centro de Investigacion Minera y Metalurgica, Santiago (Chile); Sanchez, G. [CODELCO, Santiago (Chile). Division Ventanas

    2007-07-01

    A 5-year joint Japanese-Chilean project to modify the treatment of furnace dust from a converter in Chile producing harmful amounts of arsenic and lead was described. A pilot plant was constructed to evaluate the method's commercialization potential. Flue dust was recovered by a dust collector installed to capture suspended dust generated by the smelting furnace. Arsenic content was approximately 15 per cent. Ninety per cent of the arsenic was then liquidated to lixivia and dissolved by leaching flue dust with sulphuric acid. The leaching rate decreased when flue dust had a high content of residual sulfide ore. A flotation device was then incorporated in the treatment process in order to increase the copper recovery rate. A solvent recovery process was then adopted to recover the copper and zinc contained in the solution after the arsenic recovery. An economic evaluation of the process indicated that efforts should be made to improve the efficiency of the dust treatment method. 5 refs., 6 tabs., 10 figs.

  3. Electric arc furnace models for flicker study

    Directory of Open Access Journals (Sweden)

    Catalina González Castaño

    2016-06-01

    Full Text Available Objective: The aim of this paper is to evaluate voltage fluctuations or flicker of two electric arc furnace models through comparison with real data.Method: The first proposed model is founded on the energy conservation principle, which generates a non-linear differential equation modelling the electric arc voltage – current characteristics. Voltage fluctuations are generated using a chaotic circuit that modulates the amplitude of arc voltage. The second model is based on the empirical relationship between the arc diameter or length as well as voltage and electrical current on the arc. Voltage fluctuations are considered adding a random signal in the arc length. Both models are implemented in PSCADTM.Results: The results of both models are compared with real data taken at the most critical stage of the operation of the furnace, and they show that the model based on energy conservation has a lower average mean square error in the voltages and currents 5.6 V and 1.7 kA against 27,2 V y 3.38 kA obtained with the second model.Conclusions: Both models consider the nonlinearity and random behavior present in this type of load, validating their inclusion in computer models of electric power systems.

  4. The Advanced Automated Directional Solidification Furnace

    Science.gov (United States)

    Gillies, D. C.; Reeves, F. A.; Jeter, L. B.; Sledd, J. D.; Cole, J. M.; Lehoczky, S. L.

    1996-01-01

    The Advanced Automated Directional Solidification Furnace (AADSF) is a five zone tubular furnace designed for Bridgman-Stockbarger, other techniques of crystal growth involving multiple temperature zones such as vapor transport experiments and other materials science experiments. The five zones are primarily designed to produce uniform hot and cold temperature regions separated by an adiabatic region constructed of a heat extraction plate and an insert to reduce radiation from the hot to the cold zone. The hot and cold zone temperatures are designed to reach 1600 C and 1100 C, respectively. AADSF operates on a Multi-Purpose Experiment Support Structure (MPESS) within the cargo bay of the Space Shuttle on the United States Microgravity Payload (USMP) missions. Two successful flights, both employing the directional solidification or Bridgman Stockbarger technique for crystal growth have been made, and crystals of HgCdTe and PbSnTe grown in microgravity have been produced on USMP-2 and USMP-3, respectively. The addition of a Sample Exchange Mechanism (SEM) will enable three different samples to be processed on future flights including the USMP-4 mission.

  5. DEMONSTRATION BULLETIN: CYCLONE FURNACE SOIL VITRI- FICATION TECHNOLOGY - BABCOCK & WILCOX

    Science.gov (United States)

    Babcock and Wilcox's (B&W) cyclone furnace is an innovative thermal technology which may offer advantages in treating soils containing organics, heavy metals, and/or radionuclide contaminants. The furnace used in the SITE demonstration was a 4- to 6-million Btu/hr pilot system....

  6. Open fireplace furnace as an adequate heating system

    Energy Technology Data Exchange (ETDEWEB)

    Terbrack, E.

    The fireplace furnace is a furnace for the open fireplace. It is connected to the existing fuel-oil or gas central heating and is used for house heating and warm water preparation when the fire in the fireplace is on. It combines the romanticism of the open fireplace with the necessity of saving fuel oil and gas, ensuring heat supply.

  7. Reduction Mechanism of Chromite Ore in Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    LI Yi-wei; DING Wei-zhong; LU Xiong-gang; XU Kuang-di

    2004-01-01

    The structural changes and reduction degree of chromite ore in blast furnace were studied by optical micrograph analysis, scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDXA). The smelting reduction mechanism of chromite in blast furnace was primarily discussed.

  8. C AND M BOTTOM LOADING FURNACE TEST DATA

    Energy Technology Data Exchange (ETDEWEB)

    Lemonds, D

    2005-08-01

    The test was performed to determine the response of the HBL Phase III Glovebox during C&M Bottom Loading Furnace operations. In addition the data maybe used to benchmark a heat transfer model of the HBL Phase III Glovebox and Furnace.

  9. Advanced steel reheat furnaces: Research and development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Q.; Koppang, R.; Maly, P.; Moyeda, D. [Energy and Environmental Research Corp., Irvine, CA (United States); Li, X. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1999-01-14

    The purpose of this report is to present the results of two phases of a three-phase project to develop and evaluate an Advanced Steel Reheat Furnace (SSRF) concept which incorporates two proven and commercialized technologies, oxy-fuel enriched air (OEA) combustion and gas reburning (GR). The combined technologies aim to improve furnace productivity with higher flame radiant heat transfer in the heating zones of a steel reheat furnace while controlling potentially higher NOx emissions from these zones. The project was conducted under a contract sponsored by the Department of Energy (DOE). Specifically, this report summarizes the results of a modeling study and an experimental study to define and evaluate the issues which affect the integration and performance of the combined technologies. Section 2.0 of the report describes the technical approach uses in the development and evaluation of the advanced steel reheat furnace. Section 3.0 presents results of the modeling study applied to a model steel furnace. Experimental validation of the modeling results obtained from EER`s Fuel Evaluation Facility (FEF) pilot-scale furnace discussed in Section 4.0. Section 5.0 provides an economic evaluation on the cost effectiveness of the advanced reheat furnace concept. Section 6.0 concludes the report with recommendations on the applicability of the combined technologies of steel reheat furnaces.

  10. Resistance furnaces. General presentation; Fours electriques a resistances. Presentation generale

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, J.F.; Girault, A.; Jaume, R.; Le Boulch, M. [Electricite de France (EDF), Div. Recherche and Developpement, 75 - Paris (France); Oberlin, C.

    2005-04-01

    The resistance furnace is certainly the better known electro-thermal device. Its first industrial use started around 1920 and its technology has improved continuously. It's an indirect heating system: the heat produced by Joule effect is transmitted to the load by radiant heat transfer and convection. In this article, stress is put on the specific characteristics of resistance furnaces, in particular the nature and efficiency of resistors, their implementation, the heat transfer from the resistors to the load and the operation and control of these furnaces: 1 - general considerations; 2 - resistors/load thermal exchanges: conduction, radiant heat transfer, forced convection, global heat transfers; 3 - power of resistance furnaces: energy absorbed by the load, by the furnace walls, heat losses, power needs, efficiency, dimensioning; 4 - different types of resistance furnaces: with hearth, with bell, with revolving plate, with chains and conveyor, with charging carriage, drying ovens, special furnaces; 5 - thermal insulation of resistance furnaces: classification according to standards, types and characteristics of the most used materials, lining characteristics and implementation. (J.S.)

  11. Advanced steel reheat furnaces: Research and development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Q.; Koppang, R.; Maly, P.; Moyeda, D. [Energy and Environmental Research Corp., Irvine, CA (United States); Li, X. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1999-01-14

    The purpose of this report is to present the results of two phases of a three-phase project to develop and evaluate an Advanced Steel Reheat Furnace (SSRF) concept which incorporates two proven and commercialized technologies, oxy-fuel enriched air (OEA) combustion and gas reburning (GR). The combined technologies aim to improve furnace productivity with higher flame radiant heat transfer in the heating zones of a steel reheat furnace while controlling potentially higher NOx emissions from these zones. The project was conducted under a contract sponsored by the Department of Energy (DOE). Specifically, this report summarizes the results of a modeling study and an experimental study to define and evaluate the issues which affect the integration and performance of the combined technologies. Section 2.0 of the report describes the technical approach uses in the development and evaluation of the advanced steel reheat furnace. Section 3.0 presents results of the modeling study applied to a model steel furnace. Experimental validation of the modeling results obtained from EER`s Fuel Evaluation Facility (FEF) pilot-scale furnace discussed in Section 4.0. Section 5.0 provides an economic evaluation on the cost effectiveness of the advanced reheat furnace concept. Section 6.0 concludes the report with recommendations on the applicability of the combined technologies of steel reheat furnaces.

  12. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  13. CHARCOAL PACKED FURNACE FOR LOW-TECH CHARRING OF BONE

    DEFF Research Database (Denmark)

    Jacobsen, P.; Dahi, Elian

    1997-01-01

    A low-tech furnace for charring of raw bone using char coal is developed and tested. The furnace consists of a standard oil drum, fitted with simple materials as available in every market in small towns in developing counties. 80 kg of raw bone and 6 kg of charcoal are used for production of 50 k...

  14. Estimation of slagging in furnaces; Kuonaavuuden ennustaminen kivihiilen poelypoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, T.; Jaeaeskelaeinen, K.; Oeini, J.; Koskiahde, A.; Jokiniemi, J.; Pyykkoenen, J. [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    Understanding and estimation of slagging in furnaces is essential in the design of new power plants with high steam values or in modifications like low-NO{sub x} retrofits in existing furnaces. Major slagging yields poor efficiency, difficult operation and high maintenance costs of the plant. The aim of the project is to develop a computational model for slagging in pulverized coal combustion. The model is based on Computer Controlled Scanning Electron Microscopy (CCSEM) analysis of mineral composition of the coal and physical models for behaviour of minerals inside a furnace. The analyzed mineral particles are classified to five composition classes and distributed to calculational coal particles if internal minerals of coal. The calculational coal particles and the external minerals are traced in the furnace to find out the behaviour of minerals inside the furnace. If the particle tracing indicates that the particle hits the heat transfer surface of the furnace the viscosity of the particle is determined to see if particle is sticky. The model will be implemented to 3D computational fluid dynamics based furnace simulation environment Ardemus which predicts the fluid dynamics, heat transfer and combustion in a furnace. (orig.)

  15. A New Mathematical Simulation Approach for Thermal Cracking Furnace Studies

    Institute of Scientific and Technical Information of China (English)

    LanXingying; XuChunming; GaoJinsen; ZhangHongmei

    2005-01-01

    Thermal cracking of hydrocarbons for olefin production is normally carried out in long reactor tubes suspended in a large gas fired furnace. In this paper, a coupled furnace-reactor mathematical model based on a computational fluid dynamics (CFD) technique is developed to simulate the complex fluid dynamics phenomena in the thermal cracking furnace. The model includes mass transfer, momentum transfer, and heat transfer, as well as thermal cracking reactions, fuel combustion and radiative heat transfer. The rationality and reliability of the mathematical model is confirmed by the approximate agreement of predicted data and industrial data. The coupled furnace-reactor simulation revealed the details of both the transfer and reaction processes taking place in the thermal cracking furnace. The results indicate highly nonuniform distribution of the flue-gas velocity, concentration and temperature in the furnace, which cause nonuniform distribution of tube skin temperature and heat flux of the reactor tubes. Profiles of oil-gas velocity,pressure, temperature and product yields in the lengthwise direction of the reactor tube are obtained. Furthermore, in the radial direction steep velocity and temperature gradients and relatively slight gradients of species concentration are found.In conclusion, the model can provide more information on the fluid dynamics and reaction behavior in the thermal cracking furnace, and guidance for the design and improvement of thermal cracking furnaces.

  16. High-performance, bare silver nanowire network transparent heaters.

    Science.gov (United States)

    Ergun, Orcun; Coskun, Sahin; Yusufoglu, Yusuf; Unalan, Husnu Emrah

    2016-11-04

    Silver nanowire (Ag NW) networks are one of the most promising candidates for the replacement of indium tin oxide (ITO) thin films in many different applications. Recently, Ag-NW-based transparent heaters (THs) showed excellent heating performance. In order to overcome the instability issues of Ag NW networks, researchers have offered different hybrid structures. However, these approaches not only require extra processing, but also decrease the optical performance of Ag NW networks. So, it is important to investigate and determine the thermal performance limits of bare-Ag-NW-network-based THs. Herein, we report on the effect of NW density, contact geometry, applied bias, flexing and incremental bias application on the TH performance of Ag NW networks. Ag-NW-network-based THs with a sheet resistance and percentage transmittance of 4.3 Ω sq(-1) and 83.3%, respectively, and a NW density of 1.6 NW μm(-2) reached a maximum temperature of 275 °C under incremental bias application (5 V maximum). With this performance, our results provide a different perspective on bare-Ag-NW-network-based transparent heaters.

  17. Asymmetric Pentagonal Metal Meshes for Flexible Transparent Electrodes and Heaters.

    Science.gov (United States)

    Lordan, Daniel; Burke, Micheal; Manning, Mary; Martin, Alfonso; Amann, Andreas; O'Connell, Dan; Murphy, Richard; Lyons, Colin; Quinn, Aidan J

    2017-02-08

    Metal meshes have emerged as an important class of flexible transparent electrodes. We report on the characteristics of a new class of asymmetric meshes, tiled using a recently discovered family of pentagons. Micron-scale meshes were fabricated on flexible polyethylene terephthalate substrates via optical lithography, metal evaporation (Ti 10 nm, Pt 50 nm), and lift-off. Three different designs were assessed, each with the same tessellation pattern and line width (5 μm), but with different sizes of the fundamental pentagonal unit. Good mechanical stability was observed for both tensile strain and compressive strain. After 1000 bending cycles, devices subjected to tensile strain showed fractional resistance increases in the range of 8-17%, while devices subjected to compressive strain showed fractional resistance increases in the range of 0-7%. The performance of the pentagonal metal mesh devices as visible transparent heaters via Joule heating was also assessed. Rapid response times (∼15 s) at low bias voltage (≤5 V) and good thermal resistance characteristics (213-258 °C cm(2)/W) were found using measured thermal imaging data. Deicing of an ice-bearing glass coupon on top of the transparent heater was also successfully demonstrated.

  18. Evaluation of Tube Wall Thickness of Feed Water Heater

    Science.gov (United States)

    Uchikura, Takahisa; Morisaki, Koichi; Hamada, Seiichi

    With regard to the high pressure (HP) feed water heater of thermal power plant at Tokyo Electric Power Company (TEPCO) sites, inspection of feed water (FW) tubes wall thickness are conducted whenever required such that frequent tube leak occurs. As a standard inspection methodology, FW heater is disassembled during planned outage, tube wall thickness is measured by the ultrasonic pulse techique (UT), then plugs are installed at the both ends of FW tube if its measured wall thickness is found below calculated threshold. However, the root causes of wall thinning of FW tube are various such as erosion and corrosion, based on wall thinning condition, the above threshold is not applied but utilizing the other technically well-grounded evaluation method is sometimes more rational. Therefore, TEPCO classified wall-thinning condition based on inspection data and established technically well-grounded and rational evaluation methodologies of FW tube wall thickness to suite each wall thinning condition. Moreover, with recent improvement of inspection technique, technology enabled faster, larger amount, and more accurate data acquisition, TEPCO has developed the systematized evaluation methodology that can transact data acquisition and evaluation simultaneously. This article introduces the logic of evaluation methods and examined algorithms to make them systematized.

  19. Eleana near-surface heater experiment final report

    Energy Technology Data Exchange (ETDEWEB)

    Lappin, A R; Thomas, R K; McVey, D F

    1981-04-01

    This report summarizes the results of a near-surface heater experiment operated at a depth of 23 m in argillite within the Eleana Formation on the Nevada Test Site (NTS). The test geometrically simulated emplacement of a single canister of High-Level Waste (HLW) and was operated at a power level of 2.5 kW for 21 days, followed by 3.8 kW to 250 days, when the power was turned off. Below 85 to 100{sup 0}C, there was good agreement between modeled and measured thermal results in the rock and in the emplacement hole, except for transient transport of water in the heater hole. Above 100{sup 0}C, modeled and measured thermal results increasingly diverged, indicating that the in-situ rock-mass thermal conductivity decreased as a result of dehydration more than expected on the basis of matrix properties. Correlation of thermomechanical modeling and field results suggests that this decrease was caused by strong coupling of thermal and mechanical behavior of the argillite at elevated temperatures. No hole-wall decrepitation was observed in the experiment; this fact and the codrrelation of modeled and measured results at lower temperatures indicate that there is no a priori reason to eliminate argillaceous rocks from further consideration as a host rock for nuclear wastes.

  20. A micro solar heater for portable energy generation

    Science.gov (United States)

    Zimmerman, Raúl; Morrison, Graham; The, Owen; Rosengarten, Gary

    2007-12-01

    This study presents a new concept that combines microtechnology with solar thermal energy to provide a free portable energy source. A water-methanol mixture flows through an array of parallel microchannels which are fabricated into a silicon matrix using conventional micro-fabrication techniques. A vacuum layer is interposed between the channels and the external surface to thermally insulate the channels from the ambient temperature. A selective coating is deposited on one of the vacuum walls to absorb the short wavelength incoming radiation and reduce the long wavelength radiation, hence reducing the heat losses. A geometry and material optimization is still being developed in order to obtain the highest possible efficiency for the micro-heater, while keeping a low pressure drop in the micro-channels. The methanol outlet temperature is predicted to be higher than 250°C. This temperature is required for hydrogen production in a methanol reforming micro-reactor. Therefore, it is envisaged that the micro-solar heater will supply the thermal energy needed for hydrogen generation, that can later be used as fuel for microfuel cells. Both technologies can be integrated in a portable device.

  1. Current Trend in Furnace Technology in the Melting Industries

    Directory of Open Access Journals (Sweden)

    O.A. Ighodalo

    2011-06-01

    Full Text Available The aim of this study is to presents some of the current trend in Furnace technology as it pertains to the melting industries. Furnaces are applied in various industries for material processing. Large amounts of energy are usually consumed in the melting industries. The current trend in furnace technology is towards energy conservation, enhanced efficiency and productivity. The reduction of pollutant emissions are also taken into consideration due to their environmental impact. The various materials and processes for furnaces are discussed. The various strategies being employed towards furnace energy conservation, efficiency and productivity, and reduction of pollutant emissions are also discussed. Such strategies include the use of better fuel types such as natural gas; improved insulation and refractory materials; advanced burner designs such as high velocity, regenerative and recuperative burners; new combustion technologies such as air and fuel staging, flue gas recirculation technique. Mathematical modeling is also being employed for analysis and design purpose.

  2. Effect of furnace atmosphere on E-glass foaming

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

    2006-12-01

    The effect of furnace atmosphere on E-glass foaming generated in crucible has been studied with a specific goal to understand the impact of increased water content on foaming in oxy-fired furnaces. E-glass foams were generated in a fused-quartz crucible located in a quartz window furnace equipped with video recording. The present study showed that humidity in the furnace atmosphere destabilizes foam, while other gases have little effect on foam stability. This study suggests that the higher foaming in oxy-fired furnace compared to air-fired is caused by the effect of water on early sulfate decomposition, promoting more efficient refining gas generation from sulfate (known as “dilution effect”).

  3. Considerations for Scale-Up of Ferronickel Electric Smelting Furnaces

    Science.gov (United States)

    Hundermark, R. J.; Nelson, L. R.

    2017-02-01

    In ferronickel smelting, the selective carbothermic reduction of calcined nickel laterite ores in large electric furnaces yields a crude ferronickel product. The optimal process for nickel laterite smelting requires a fine balance between the metallurgical requirements of the process (feed composition, nickel recovery, energy consumption, product quality) and the capabilities of the feeding, tapping and off-gas systems, and especially of the furnace crucible and electrical system. The scale-up of nickel laterite smelting operations over the last 50 years has seen a tenfold increase in furnace power input. Furnace operations within the industry are examined to identify common trends and some new metrics are proposed which incorporate the combination of electrode power densities and the impact of alloy nickel grade on gas generation rates, and hence local electrode gas fluxes, which may impact on future scale-up of ferronickel furnaces.

  4. 40 CFR 63.7491 - Are any boilers or process heaters not subject to this subpart?

    Science.gov (United States)

    2010-07-01

    ...., hazardous waste boilers). (e) A commercial and industrial solid waste incineration unit covered by 40 CFR... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial... process heaters not subject to this subpart? The types of boilers and process heaters listed in paragraphs...

  5. 46 CFR 52.01-35 - Auxiliary, donkey, fired thermal fluid heater, and heating boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Auxiliary, donkey, fired thermal fluid heater, and... requirements for miscellaneous boiler types, such as donkey, fired thermal fluid heater, heating boiler, etc... (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-35 Auxiliary, donkey, fired...

  6. CFD Study of Fluid Flow in an All-glass Evacuated Tube Solar Water Heater

    DEFF Research Database (Denmark)

    Ai, Ning; Fan, Jianhua; Li, Yumin

    2008-01-01

    Abstract: The all-glass evacuated tube solar water heater is one of the most widely used solar thermal technologies. The aim of the paper is to investigate fluid flow in the solar water heater by means of computational fluid dynamics (CFD). The investigation was carried out with a focus...

  7. 76 FR 28662 - Industrial, Commercial, and Institutional Boilers and Process Heaters and Commercial and...

    Science.gov (United States)

    2011-05-18

    ... AGENCY 40 CFR Parts 60 and 63 RIN 2060-AQ25; 2060-AO12 Industrial, Commercial, and Institutional Boilers and Process Heaters and Commercial and Industrial Solid Waste Incineration Units AGENCY: Environmental... Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters'' and ``Standards...

  8. Demonstration of a heat pump water heater. Volume 3. Design report

    Energy Technology Data Exchange (ETDEWEB)

    Sloane, B.D.; Krise, R.C.; Kent, D.D.

    1979-12-01

    Work performed during the pilot run manufacturing and laboratory testing stages of a heat pump water heater for residential installations is described. A general description of the heat pump water heater is provided, as are detailed discussions of individual components. Also included is a description of the pilot run manufacturing facility and experience, laboratory operations, and laboratory test data.

  9. Tankless water heaters fill the bill at fast-food restaurants

    Energy Technology Data Exchange (ETDEWEB)

    1988-02-01

    This article explains why Kentucky Fried Chicken has installed a PH-24 water heater. The tankless water heater meets the restaurant's criteria for space spacing, flow rates, certification and availability, and money saving efficiency. This article describes the system and its advantages.

  10. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning...

  11. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    Science.gov (United States)

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  12. Analysis of Uncertainties in Protection Heater Delay Time Measurements and Simulations in Nb$_{3}$Sn High-Field Accelerator Magnets

    CERN Document Server

    Salmi, Tiina; Marchevsky, Maxim; Bajas, Hugo; Felice, Helene; Stenvall, Antti

    2015-01-01

    The quench protection of superconducting high-field accelerator magnets is presently based on protection heaters, which are activated upon quench detection to accelerate the quench propagation within the winding. Estimations of the heater delay to initiate a normal zone in the coil are essential for the protection design. During the development of Nb3Sn magnets for the LHC luminosity upgrade, protection heater delays have been measured in several experiments, and a new computational tool CoHDA (Code for Heater Delay Analysis) has been developed for heater design. Several computational quench analyses suggest that the efficiency of the present heater technology is on the borderline of protecting the magnets. Quantifying the inevitable uncertainties related to the measured and simulated delays is therefore of pivotal importance. In this paper, we analyze the uncertainties in the heater delay measurements and simulations using data from five impregnated high-field Nb3Sn magnets with different heater geometries. ...

  13. High thermal performance of SnO2:F thin transparent heaters with scattered metal nanodots.

    Science.gov (United States)

    Hudaya, Chairul; Jeon, Bup Ju; Lee, Joong Kee

    2015-01-14

    Facile production and novel transparent heaters consisting of fluorine-doped tin oxide (SnO2:F or FTO) thin films covered with three different scattered metal nanodots (Cr-nd, NiCr-nd and Ni-nd) prepared by plasma-enhanced sputtering system and electron cyclotron resonance-metal organic chemical vapor deposition are investigated. The heaters exhibit excellent optical transmittances of over 85% and superior saturated temperatures of more than 80 °C when a relatively low 12 V DC is supplied. The scattered metal nanodots FTO heaters successfully improve the specific power of bare FTO heater by 21, 15, and 12% for NiCr-nd FTO, Cr-nd FTO, and Ni-nd FTO, respectively. These results reveal that the FTO transparent heaters with scattered metal nanodots are the suitable heating materials that can be applied for various functional devices.

  14. Evaluation and certification of heater assemblies developed for thermal vacuum acceptance testing

    Science.gov (United States)

    Allen, J. E.

    1986-01-01

    Preparation of Rockwell International's Thermal Vacuum Chamber for acceptance testing of a mass produced satellite required the development of unique quartz lamp and hot wire heater assemblies. Testing performed on the basic elements of these heaters is described, as is the final testing done to certify that the heater assemblies meet the thermal requirements for acceptance testing. The methods and procedures of thermal mapping used during the development and final certification of these heater assemblies are presented. The absence of a definitive standard for determining flux distribution and heating boundaries for heaters of this type required the development of a test plan incorporating several thermal mapping techniques. These techniques include the development of heat flux using a multiple calorimeter array for both vacuum and ambient test conditions, and a photographic method for detecting heating boundaries. The test plan and thermal mapping techniques are discussed.

  15. Mutagenicity of organic emissions from unvented kerosene heaters in a chamber study.

    Science.gov (United States)

    Mumford, J L; Lewtas, J; Williams, K; Tucker, W G; Traynor, G W

    1992-06-01

    A study was conducted to assess the mutagenicity of semivolatile organics and particle-bound organics emitted from unvented kerosene space heaters. The units tested included a well-tuned radiant heater and a maltuned convective heater. The tests were conducted in a 27-m3 chamber with a prescribed on/off heater usage pattern. The organic emissions were collected on Teflon-coated glass filters backed by XAD-2 resin. The dichloromethane-extractable organics from both the filters and the XAD were analyzed for nitropolycyclic hydrocarbons using gas chromatography/mass spectrometry, and were bioassayed for mutagenicity in microsuspension assays using Salmonella typhimurium strains TA98 with and without S9 and TA98NR (a nitroreductase-deficient strain) without S9. The results showed that both the semivolatile and particle-bound organics emitted from the kerosene heaters were mutagenic, and the presence of nitropolycyclic hydrocarbons in these organic emissions substantiated these findings.

  16. Protection Heater Design Validation for the LARP Magnets Using Thermal Imaging

    CERN Document Server

    Marchevsky, M; Cheng, D W; Felice, H; Sabbi, G; Salmi, T; Stenvall, A; Chlachidze, G; Ambrosio, G; Ferracin, P; Izquierdo Bermudez, S; Perez, J C; Todesco, E

    2016-01-01

    Protection heaters are essential elements of a quench protection scheme for high-field accelerator magnets. Various heater designs fabricated by LARP and CERN have been already tested in the LARP high-field quadrupole HQ and presently being built into the coils of the high-field quadrupole MQXF. In order to compare the heat flow characteristics and thermal diffusion timescales of different heater designs, we powered heaters of two different geometries in ambient conditions and imaged the resulting thermal distributions using a high-sensitivity thermal video camera. We observed a peculiar spatial periodicity in the temperature distribution maps potentially linked to the structure of the underlying cable. Two-dimensional numerical simulation of heat diffusion and spatial heat distribution have been conducted, and the results of simulation and experiment have been compared. Imaging revealed hot spots due to a current concentration around high curvature points of heater strip of varying cross sections and visuali...

  17. Proceedings of a workshop on the utilization of coal fuels in process heaters

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Almost 5% of the nation's energy consumption takes place in tubular process heaters. Currently, these units are gas- and, to a lesser extent, oil-fired. Process heaters provide energy for refining petroleum and the manufacture of numerous chemicals and petrochemicals. Since the current state-of-the-art, using waste heat recovery and forced draft burners, can achieve thermal efficiencies of about 90%, it is unlikely that current process heat and fuel requirements will be dramatically reduced by process modifications and/or conservation measures. Hence, if this sizeable, inexorable drain on our fluid petroleum reserves is to be halted, it seems reasonable to consider the utilization of coal and/or coal-based fuels to fire process heaters. In order to assess the feasibility and potential for a coal-based process heater industry, Brookhaven National Laboratory (BNL) organized a workshop to define and explore the various problems that must be solved in order to burn coal in process heaters. A primary aim of the workshop was to consider the design methodology for process heaters when firing coal and compare it to those for gas and oil firing. The overall conclusions were: that retrofitting present process heaters to coal fuel was impractical; that it would be difficult to fit larger heaters designed to burn coal into present refineries; that there would be difficulties with process heaters burning coal; and that a better approach would be one large utility coal heater with a circulating heat transfer medium. Seven papers have been entered individually into EDB and ERA. (LTN)

  18. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Science.gov (United States)

    2010-01-01

    ... Instantaneous Water Heaters and Hot Water Supply Boilers* Thermal Efficiency ANSI Z21.10.3-1998, § 2.9** A. For... Instantaneous Water Heaters and Hot Water Supply Boilers* Thermal Efficiency ANSI Z21.10.3-1998, § 2.9** (2) Oil...) Assume that the thermal efficiency (Et) of electric water heaters with immersed heating elements is...

  19. Heat Pump Water Heater Durabliltiy Testing - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAND.

    2004-05-29

    Ten heat pump water heaters (HPWH) were placed in an environmentally controlled test facility and run through a durability test program of approximately 7300 duty cycles (actual cycles accumulated ranged from 6640 to 8324 for the ten units). Five of the units were upgraded integral types (HPWH mounted on storage tank, no pump) from the same manufacturer as those tested in our first durability program in 2001 (Baxter and Linkous, 2002). The other five were ''add-on'' type units (HPWH with circulation pump plumbed to a separate storage tank) from another manufacturer. This durability test was designed to represent approximately 7-10 years of normal operation to meet the hot water needs of a residence. The integral units operated without incident apart from two control board failures. Both of these were caused by inadvertent exposure to very hot and humid (>135 F dry bulb and >120 F dew point) conditions that occurred due to a test loop failure. It is not likely that any residential water heater would be installed where such conditions were expected so these failures are not considered a long-term reliability concern. Two of the integral HPWHs featured a condensate management system (CMS) option that effectively eliminated any need for an evaporator condensate drain, but imposed significant efficiency penalties when operating in high humidity ambient conditions. The add-on units experienced no operational failures (breakdowns with loss of hot water production) during the course of the testing. However, their control systems exhibited some performance degradation under the high temperature, high humidity test conditions--HPWHs would shut off with tank water temperatures 15-20 F lower than when operating under moderate ambient conditions. One unit developed a refrigerant leak during the test program and lost about 50% of its charge resulting in reduced efficiency. Efficiency measurements on all the integral units and four of the add-on units showed

  20. CFD Simulation on Ethylene Furnace Reactor Tubes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Different mathematical models for ethylene furnace reactor tubes were reviewed. On the basis of these models a new mathematical simulation approach for reactor tubes based on computational fluid dynamics (CFD) technique was presented. This approach took the flow, heat transfer, mass transfer and thermal cracking reactions in the reactor tubes into consideration. The coupled reactor model was solved with the SIMPLE algorithm. Some detailed information about the flow field, temperature field and concentration distribution in the reactor tubes was obtained, revealing the basic characteristics of the hydrodynamic phenomena and reaction behavior in the reactor tubes. The CFD approach provides the necessary information for conclusive decisions regarding the production optimization, the design and improvement of reactor tubes, and the new techniques implementation.

  1. Hydrothermal treatment of electric arc furnace dust.

    Science.gov (United States)

    Yu, Bing-Sheng; Wang, Yuh-Ruey; Chang, Tien-Chin

    2011-06-15

    In this study, ZnO crystals were fabricated from electric arc furnace dust (EAFD) after alkaline leaching, purification and hydrothermal treatment. The effects of temperature, duration, pH, and solid/liquid ratio on ZnO crystal morphology and size were investigated. Results show a high reaction temperature capable of accelerating the dissolution of ZnO precursor, expediting the growth of 1D ZnO, and increasing the L/D ratio in the temperature range of 100-200°C. ZnO crystals with high purity can also be obtained, using the one-step hydrothermal treatment with a baffle that depends on the different solubility of zincite and franklinite in the hydrothermal conditions.

  2. PERFORMANCE TESTING AND ANALYSIS OF CUPOLA FURNACE

    Directory of Open Access Journals (Sweden)

    PROF.HEMANT R. BHAGAT-PATIL

    2013-05-01

    Full Text Available In today’s industrial scenario huge losses/wastage occur in the manufacturing shop floor and foundry industries. The efficiency of any foundry largely depends on the efficiency of the melting process amulti-step operation where the metal is heated, treated, alloyed, and transported into die or mold cavities to form a casting. In this paper we represents the performance testing and analysis of Cupola Furnace, and reduces the problems occurs to give the best results. Our main focus in this work is to improve continuous working hours,reducing preparation time, reducing losses in melting, reducing slag formation and to increase the combustion efficiency of coke and overall productivity and to improve the quality and Mechanical properties of steel using Cupola.

  3. Thermodynamic modeling of lead blast furnace

    Institute of Scientific and Technical Information of China (English)

    TAN Peng-fu

    2005-01-01

    A thermodynamic model was developed to predict the distribution behavior of Cu,Fe,S,O,Pb,Zn,As,and the heat balance in a lead blast furnace.The modeling results are validated by the plant data of a lead smelter in Kazakhstan.The model can be used to predict any set of controllable process parameters such as feed composition,smelting temperature,degree of oxygen enrichment and volume of oxygen-enriched air.The effects of the blast air,industrial oxygen,and coke charge on the distribution of Cu,Fe,S,O,Pb,Zn,As,the heat balance,and the lead loss in slag,were presented and discussed.

  4. Torrefied biomasses in a drop tube furnace to evaluate their utility in blast furnaces.

    Science.gov (United States)

    Chen, Wei-Hsin; Du, Shan-Wen; Tsai, Chien-Hsiung; Wang, Zhen-Yu

    2012-05-01

    Torrefaction and burning characteristics of bamboo, oil palm, rice husk, bagasse, and Madagascar almond were studied and compared with a high-volatile bituminous coal using a drop tube furnace to evaluate the potential of biomass consumed in blast furnaces. Torrefaction at 250 and 300°C for 1h duration was carried out. Analysis using the ash tracer method indicated that the extent of atomic carbon reduction in the biomasses was less than that of atomic hydrogen and oxygen. Torrefaction also lowered the sulfur content in bamboo and oil palm over 33%. An examination of the R-factor and burnout of the samples suggests that more volatiles were released and a higher burnout was achieved with raw and torrefied biomasses at 250°C than at 300°C; however, torrefaction at 300°C is a feasible operating condition to transform biomass into a solid fuel resembling a high-volatile bituminous coal used for blast furnaces.

  5. An update on blast furnace granular coal injection

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.G. [Bethlehem Steel Corp., Burns Harbor, IN (United States); Strayer, T.J.; Bouman, R.W. [Bethlehem Steel Corp., PA (United States)

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  6. Assessing Consumer Values and the Supply-Chain Market for the Integrated Water Heater/Dehumidifier

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, BG

    2005-01-11

    This paper presents a case study of the potential market for the dual-service residential integrated water heater/dehumidifier (WHD). Its principal purpose is to evaluate the extent to which this integrated appliance might penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to assess market readiness as well as factor preferred product attributes into the design to drive consumer demand for this product. This study also supports analysis for prototype design. A full market analysis for potential commercialization should be conducted after prototype development. The integrated WHD is essentially a heat-pump water heater (HPWH) with components and controls that allow dedicated dehumidification. Adequate residential humidity control is a growing issue for newly constructed residential homes, which are insulated so well that mechanical ventilation may be necessary to meet fresh air requirements. Leveraging its successful experience with the energy-efficient design improvement for the residential HPWH, the Oak Ridge National Laboratory's (ORNL's) Engineering Science and Technology Division's (ESTD's) Building Equipment Group designed a water-heating appliance that combines HPWH efficiency with dedicated dehumidification. This integrated appliance could be a low-cost solution for dehumidification and efficient electric water heating. ORNL is partnering with Western Carolina University, Asheville-Buncombe Technical Community College, American Carolina Stamping Company, and Clemson University to develop this appliance and assess its market potential. For practical purposes, consumers are indifferent to how water is heated but are very interested in product attributes such as initial first cost

  7. Controlled cellular fusion using optically trapped plasmonic nano-heaters

    Science.gov (United States)

    Bahadori, Azra; Lund, Andreas R.; Semsey, Szabolcs; Oddershede, Lene B.; Bendix, Poul M.

    2016-09-01

    Optically trapped plasmonic nano-heaters are used to mediate efficient and controlled fusion of biological membranes. The fusion method is demonstrated by optically trapping plasmonic nanoparticles located in between vesicle membranes leading to rapid lipid and content mixing. As an interesting application we show how direct control over fusion can be used for studying diffusion of peripheral membrane proteins and their interactions with membranes and for studying protein reactions. Membrane proteins encapsulated in an inert vesicle can be transferred to a vesicle composed of negative lipids by optically induced fusion. Mixing of the two membranes results in a fused vesicle with a high affinity for the protein and we observe immediate membrane tubulation due to the activity of the protein. Fusion of distinct membrane compartments also has applications in small scale chemistry for realizing pico-liter reactions and offers many exciting applications within biology which are discussed here.

  8. Thermoacoustic Stirling Heat Pump Working as a Heater

    Science.gov (United States)

    Bassem, Mohamed Mehdi; Ueda, Yuki; Akisawa, Atsushi

    2011-10-01

    A prototype thermoacoustic heat pump working as a heater was demonstrated. The heat pump was composed of an acoustic driver, a branched tube, and a looped tube containing a regenerator; the looped tube was connected to the acoustic driver via the branched tube, and the regenerator consisted of many narrow flow channels. The measurement results of the acoustic impedance inside the looped tube indicated that the energy conversion of the acoustic power flow into the acoustic heat flow in the regenerator occurred through the inherently efficient Stirling cycle. Moreover, the heat pump generated a hot temperature of 370 °C, corresponding to a temperature lift along the regenerator of 340 °C.

  9. THE HEAT AND FLUID FLOW ANALYSIS FOR WATER HEATER

    Directory of Open Access Journals (Sweden)

    Chien-Nan Lin

    2011-01-01

    Full Text Available In this paper, the heat transfer and fluid flow are studied for the water heater of RV cars, in which the hot water is heated by the combustion energy of liquefied petroleum gases. Three types of combustion tubes are performed in this investigation, which are circular tube, elliptic tube and elliptic tube with screwed wire inserted. The heat transfer performances of numerical simulation results are compared with those of the experimental works; they are in good trend agreement. The elliptic combustion tube performs better than the circular one, which indicates the average 7% energy saving for the elliptic combustion tube and 12% energy saving for the elliptic combustion tube with screwed wire under static heating.

  10. Results of MPBX studies at the single heater test

    Energy Technology Data Exchange (ETDEWEB)

    Blair, S. C.,LLNL

    1997-10-01

    We have developed an extensometer for measurement of distance and displacements in a geologic repository for high-level nuclear waste. This is an optical extensometer that measures distance using a modulated laser beam. In this design, reflecting targets are placed at desired measurement locations, and distance between each target and an optical head are measured repeatedly using the modulated laser beam. Moreover, all electronic and moving parts are located outside of the hostile or difficult environment as the optical head is connected to the laser, switching and signal analysis hardware using optical fibers. A reference beam is utilized to provide direct correction of system behavior. `Be system also - utilizes movable reflective anchors that can be repositioned if desired. We have installed the system in the Single Heater Test being conducted in Alcove 5 of the Exploratory Studies Facility at Yucca Mountain, and report preliminary results.

  11. Thin Film Heater for Removable Volatile Protecting Coatings

    Directory of Open Access Journals (Sweden)

    Abid Karim

    2013-01-01

    Full Text Available Freshly coated aluminum mirrors have excellent reflectivity at far ultraviolet wavelengths. However, reflectivity rapidly degrades when the mirror surfaces are exposed to atmosphere. In order to avoid this problem, freshly coated aluminum surface can be protected by over-coating of a removable volatile protecting coating. This protecting coating can be re-evaporated by controlled heating or by some other methods when required. This type of removable coating has immediate application in UV space astronomy. The purpose of this paper is to demonstrate the feasibility of re-evaporation of removable volatile Zn protecting coating using a NiCr thin film heater without affecting the reflection properties of Al mirror surfaces.

  12. Modelling of Closed Loop Class E Inverter Based Induction Heater

    Directory of Open Access Journals (Sweden)

    S. Arumugam

    2011-01-01

    Full Text Available This study presents simulation of class E inverter based induction heater system using simulink. DC is converted into high frequency AC using class E inverter. This high frequency AC is used for induction heating. Closed loop systems are modeled and they are simulated using Mat lab Simulink.The results of closed loop systems are presented. The proposed amplifier with two series-parallel resonant load networks will allow sinusoidal output voltage to be achieved by associating with the positive and negative quasi-sinusoidal waveforms. The complementarily activated configuration will provide continuous high-ripple-frequency inputcurrent waveforms; this approach significantly reduces electromagnetic interference and requires very little filtering. With the symmetry of the push-pull Class-E Circuit, there is the additional benefit that the even harmonics are suppressed at the load, and thus there are fewer harmonic distortions.

  13. Constant delivery temperature solar water heater - an integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. [C.A.S. Indian Institute of Technology, New Delhi (India); Kumar, N. [D.C.E. Muzaffarpur Institute of Technology, Bihar (India)

    1997-05-01

    An integrated model of a constant delivery temperature solar water heat-cum-active regenerative distillation system has been developed. The water used for the regenerative effect in the distiller of the proposed system is subsequently fed to the basin-cum-storage tank of the still through the heat exchanger (connected to the collector). The model varies the water mass flow rate in order to maintain a constant outlet temperature. With minor modifications in the solar water heater, the extra energy stored in the water mass due to non-utilization of capacity and/or non-linear utilization of capacity can be efficiently utilized for distillation purposes. In this process, the latent heat of vaporization is used for preheating the inlet water supply to the heat exchanger. The effect of insulation on maintaining the hot water temperature and distillate output is also presented. (Author)

  14. FEM Optimal Design of Wind Energy-based Heater

    Directory of Open Access Journals (Sweden)

    Tiberiu Tudorache

    2009-07-01

    Full Text Available This paper deals with the finite element based optimal design of a wind energybased heater. The proposed device ensures the conversion of the wind kinetic energy intoheat by means of Joule effect of eddy currents induced in the wall of a tubular stator due tothe rotating magnetic field produced by rotor permanent magnets. The transientelectromagnetic field problem associated to the operation of the device is solved using a2D finite element approach based on vector potential formulation. A simplified method forthe 2D heat transfer analysis of the device is also proposed. The influence of stator wallmaterial and thickness, number of poles, the airgap thickness and the geometricalparameters of the permanent magnets is analyzed in the aim of optimizing the studiedheater.

  15. Application study of complex control algorithm for regenerative furnace temperature

    Institute of Scientific and Technical Information of China (English)

    Lusheng GE

    2004-01-01

    Altemative switch combustion mode of air and gas is adopted on the two sides of the regenerative furnace, its temperature is in uncontrolled state in the switching process and the switch period is generally 3 ~ 5 min. Thus, the conventional bi-cross limited combustion control method is no longer applicable to the object. This paper makes use of neutral network algorithm to adjust the static operating point. On this basis, fuzzy control strategy is used for the furnace temperature control. The actual application result shows that the control strategy is effective to solve the problem of the combustion control for regenerative furnace.

  16. DEVELOPMENT OF A FURNACE TO FABRICATE SILICON SOLAR CELLS

    OpenAIRE

    Sérgio Boscato Garcia; Adriano Moehlecke; Izete Zanesco

    2012-01-01

    Solar cell world market had an exponential growth in the last decade and nowadays it continues in expansion. To produce solar cells, dopants need to be introduced into the crystalline silicon wafer in order to form the pn junction. This process is carried out in diffusion furnaces. The aim of this paper is to present the development of a compact diffusion furnace to process up to 156 mm × 156 mm silicon wafers and to operate at temperature up to 1100°C. The furnace is automated an...

  17. A Possible Macroscopic-Photo-Catalysis Mechanism in Solar Furnace

    Science.gov (United States)

    Ho, Tsohsiu; Qing, Cheng-Rui; Chen, Ying-Tian

    2011-05-01

    Based on the experimental results of Chen et al. to use the solar furnace and medium frequency induction furnace to extract boron impurity from metallurgical silicon, we propose a strong radiation catalysis mechanism to explain the difference of reaction rates in these two furnaces. The postulate assuming the photons striking on the material not only increase the thermal energy of the molecules of reactants but also lower down the energy barrier of the reaction to speed up the chemical reaction. It is believed the photon catalysis mechanism is universal in most of high temperature chemical reactions and looking forward to more evidences for the postulate proposed in this article.

  18. A Possible Macroscopic-Photo-Catalysis Mechanism in Solar Furnace

    Institute of Scientific and Technical Information of China (English)

    HO Tsohsiu; QING Cheng-Rui; CHEN Ying-Tian

    2011-01-01

    Based on the experimental results of Chen et al.to use the solar furnace and medium frequency induction furnace to extract boron impurity from metallurgical silicon, we propose a strong radiation catalysis mechanism to explain the difference of reaction rates in these two furnaces.The postulate assuming the photons striking on the material not only increase the thermal energy of the molecules of reactants but also lower down the energy barrier of the reaction to speed up the chemical reaction.It is believed the photon catalysis mechanism is universall in most of high temperature chemical reactions and looking forward to more evidences for the postulate proposed in this article.

  19. RESEARCH ON THE DYNAMIC MATHEMATICAL MODELOF REHEATING FURNACE

    Institute of Scientific and Technical Information of China (English)

    徐立云; 张斌; 王景成; 邵惠鹤

    2001-01-01

    This paper presented a dynamical mathematical model for reheating furnace based on energy balance, which consists of three submodels. With the inputting parameters, adopting the finite difference technique, not only the combustion gas temperature but also the temperature distribution of slabs in the furnace can be predicated. The dynamical mathematical model is the base for the further control and it also can be treated as a simulator of a reheating furnace, optimal and advanced controlling strategies can be applied based on the dynamical model.

  20. Thermal response of transparent silver nanowire/PEDOT:PSS film heaters.

    Science.gov (United States)

    Ji, Shulin; He, Weiwei; Wang, Ke; Ran, Yunxia; Ye, Changhui

    2014-12-10

    Thermal response behavior of transparent silver nanowire/PEDOT:PSS film heaters are intensively studied for manipulating heating temperature, response time, and power consumption. Influences of substrate heat capacity, heat transfer coefficient between air and heater, sheet resistance and dimension of Ag nanowire film, on the thermal response are investigated from thermodynamic analysis. Suggestion is given for practical applications that if other parameters are fixed, Ag nanowire coverage can be utilized as an effective parameter to adjust the thermal response. The heat transfer coefficient plays opposite roles on thermal response speed and achievable steady temperature. A value of ≈32 W m(-2) K(-1) is obtained from transient process analysis after correcting it by considering heater resistance variation during heating tests. Guidance of designing heaters with a given response time is provided by forming Ag nanowire film with a suitable sheet resistance on substrate of appropriate material and a certain thickness. Thermal response tests of designed Ag heaters are performed to show higher heating temperature, shorter response time, and lower power consumption (179 °C cm(2) W(-1)) than ITO/FTO heaters, as well as homogeneous temperature distribution and stability for repeated use. Potential applications of the Ag heaters in window defogging, sensing and thermochromism are manifested.

  1. A Survey Study of the Blast Furnace at Kuangshan Village Using 3D Laser Scanning

    Science.gov (United States)

    Wang, Jin; Huang, Xing; Qian, Wei

    2017-01-01

    The blast furnace from the Northern Song Dynasty at Kuangshan Village is the tallest blast furnace that remains from ancient China. Previous studies have assumed that the furnace had a closed mouth. In this paper, a three-dimensional (3D) model of the blast furnace is constructed using 3D laser scanning technology, and accurate profile data are obtained using software. It is shown that the furnace throat is smaller than had been previously thought and that the furnace mouth is of the open type. This new furnace profile constitutes a discovery in the history of iron-smelting technology.

  2. Effects of heater location and heater size on the natural convection heat transfer in a square cavity using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Ich Long; Byon, Chan [Yeungnam University, Gyeongsan (Korea, Republic of)

    2015-07-15

    Finite element method was used to investigate the effects of heater location and heater size on the natural convection heat transfer in a 2D square cavity heated partially or fully from below and cooled from above. Rayleigh number (5 X 10{sup 2} ≤ Ra ≤ 5X10{sup 5}), heater size (0.1 ≤ D/L ≤ 1.0), and heater location (0.1 ≤ x{sub h}/L ≤ 0.5) were considered. Numerical results indicated that the average Nusselt number (Nu{sub m}) increases as the heater size decreases. In addition, when x{sub h}/L is less than 0.4, Nu{sub m} increases as x{sub h}/L increases, and Num decreases again for a larger value of x{sub h}/L. However, this trend changes when Ra is less than 10{sup 4}, suggesting that Nu{sub m} attains its maximum value at the region close to the bottom surface center. This study aims to gain insight into the behaviors of natural convection in order to potentially improve internal natural convection heat transfer.

  3. Application of Magnesite—Chrome Snorkel Brick at 300t RH Furnace of Baosteel

    Institute of Scientific and Technical Information of China (English)

    SHIYuanfen; HUADawen

    1998-01-01

    Appliction of MgO0-Cr2O3 brick composed of MgO>72%,Cr2O3>14.8%-168.69%,with porosity 13%-14%,compressive strength 33.0-43.8 MPa, flexure strength 11.9-16.5 MPa and refractoriness under load ≥1750℃ in an assemble snorkel of 300t RH furnace in Baoskhan Iron & Steel Company (Baosteel)Showed good results of average service life of 106.6 heats,maximum 119 heats.Petrologi-cal analysis and visual examination were also done to the residual brick to investigate the wear mecha-nism.

  4. Development of Semi—Graphite Carbon—Silicon Carbide Brick and Its Application in Slag Forming Zone of Large—sized Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    HAOYun-zhong; CHENQian-wan

    1994-01-01

    Based on the damage mechanism of the lining at the slag forming zone of the blast furnace and the charactieristics of various refractory ma-terials,the methods to increase the service life of the lining at the slag forming zone have been found:(1) to improve the capacity of the blast furnace brick lining subjet to heat impact;(2) to reduce the working side temperature of the brick lining.On this basis,the semi-graphitized ,high temperature electrically calcined anthracite and silicon carbide etc ,were used as the main raw materials,Through a lot of experiments the proper raw material mix and grain size compo-sition were determined,In addition ,a suitable amount of additives and binders was added.After high pressur forming,high temperature firing and grinding ,the semi-graphitic carbon-silicon carbide bricks with close dimension tler-ances and ideal physical and chemical properties have been made.They have been applied in some blast furnaces,such as No.11(2580 m3) and No.6(1050 m3) blast furnaces etc.at Anshan Iron and Steel Company,and the problem of short service life at slag forming zone of blast furnace has been solved.

  5. High Quality Silica Bricks for Glass Melting Furnace

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaohui; Chai Junlan

    2008-01-01

    @@ 1 Scope This standard specifies the classification, technical requirements, test method, inspection rules,marking,packing,transportation,storage and quality certification of high quality silica bricks for glass melting furnace.

  6. Alloying and Casting Furnace for Shape Memory Alloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept in the proposed project is to create a melting, alloying and casting furnace for the processing titanium based SMA using cold crucible techniques. The...

  7. Removal of phosphate from aqueous solution with blast furnace slag.

    Science.gov (United States)

    Oguz, Ensar

    2004-10-18

    Blast furnace slag was used to remove phosphate from aqueous solutions. The influence of pH, temperature, agitation rate, and blast furnace slag dosage on phosphate removal was investigated by conducting a series of batch adsorption experiments. In addition, the yield and mechanisms of phosphate removal were explained on the basis of the results of X-ray spectroscopy, measurements of zeta potential of particles, specific surface area, and images of scanning electron microscopy (SEM) of the particles before and after adsorption. The specific surface area of the blast furnace slag was 0.4m(2)g(-1). The removal of phosphate predominantly has taken place by a precipitation mechanism and weak physical interactions between the surface of adsorbent and the metallic salts of phosphate. In this study, phosphate removal in excess of 99% was obtained, and it was concluded that blast furnace slag is an efficient adsorbent for the removal of phosphate from solution.

  8. Design and Construction of Oil Fired Compact Crucible Furnace ...

    African Journals Online (AJOL)

    Design and Construction of Oil Fired Compact Crucible Furnace. ... Journal Home > Vol 18 (2011) > ... In our design, a new system of fuel supply was developed in order to achieve optimum fuel consumption, high temperature, and low cost of ...

  9. Moving behavior of pellets in a pellet shaft furnace

    Institute of Scientific and Technical Information of China (English)

    梁儒全; 赫冀成

    2008-01-01

    The downward moving behavior of pellets in a 8 m2 pellet shaft furnace with an internal vertical air channel and a drying bed was studied by means of a visualized model(1-15) and a top model(1-1).The visualized model experiment shows that the downward movement of pellets can be regarded as plug flow approximately inside the furnace except for the lower region of cooling zone due to the influence of the drained hopper.The top model experiment reveals that the pellet sizes increase along the moving direction because of the percolation phenomenon,which results in a decrease of the resistance coefficient and an increase of the gas flow rate from the furnace wall toward the furnace center.

  10. Radial furnace shows promise for growing straight boron carbide whiskers

    Science.gov (United States)

    Feingold, E.

    1967-01-01

    Radial furnace, with a long graphite vaporization tube, maintains a uniform thermal gradient, favoring the growth of straight boron carbide whiskers. This concept seems to offer potential for both the quality and yield of whiskers.

  11. Optimization of the melting process of electrical furnaces in drenas

    Directory of Open Access Journals (Sweden)

    A. Haxhiaj

    2012-10-01

    Full Text Available The weight, composition and loads are the main parameters of the melting process in electrical furnace. The charge is roasted in rotary furnace. Roasting of charge which consists of Drenas and Albanians ore is done at about 950°C. Also, article has the experimental analyses that modify some parameters of the production which are the reduction of quantity of limestone and the increase of quantity of quartz in the charge. The paper analysis the possibility of mixing the ore from Kosova with lateritic ore from Albania with the aim of reducing the acidity of weight which is loaded in the electrical furnace. The composition of the furnace must satisfy the ratio 1:10 of ore from Kosova and Albania.

  12. Prospects for the construction of solar furnaces for industry

    Science.gov (United States)

    La Blanchetais, Ch. H.

    The various techniques and prototype installations employed to absorb and concentrate solar energy for use in applications requiring 100-4000 C temperatures are explored. Mention is made of the Pericles heliostat field and the THEK distributed parabolic concentrator installations, and attention is focused on viable concepts useful for industrial purposes. The Odeillo solar furnace provided design guidelines and requirements for industrial usage. It was found that the reliability of the furnace depends on the annual insolation, that the solar furnaces must be designed to meet specific thermal goals, that simplification and optimization are needed for the orientation and focusing mechanisms, and that solar furnaces are ideally suited for developing nations which experience high levels of insolation. A stepped paraboloid is described for improving the efficiency of a heliostat system, while still employing plane parallel mirrors.

  13. DEVELOPMENT OF A FURNACE TO FABRICATE SILICON SOLAR CELLS

    Directory of Open Access Journals (Sweden)

    Sérgio Boscato Garcia

    2012-06-01

    Full Text Available Solar cell world market had an exponential growth in the last decade and nowadays it continues in expansion. To produce solar cells, dopants need to be introduced into the crystalline silicon wafer in order to form the pn junction. This process is carried out in diffusion furnaces. The aim of this paper is to present the development of a compact diffusion furnace to process up to 156 mm × 156 mm silicon wafers and to operate at temperature up to 1100°C. The furnace is automated and it is constituted by a heating system with three zones and systems to introduce the wafers inside the furnace as well as to control of gas flows. This equipment is the first one developed in Brazil to promote impurity diffusions in order to produce silicon solar cells and it was manufactured jointly with a Brazilian company.

  14. Innovation in electric arc furnaces scientific basis for selection

    CERN Document Server

    Toulouevski, Yuri N

    2013-01-01

    This book equips a reader with knowledge necessary for critical analysis of  innovations in electric arc furnaces and helps to select the most effective ones and for their successful implementation. The book also covers general issues related to history of development, current state and prospects of steelmaking in Electric Arc Furnaces. Therefore, it can be useful for everybody who studies metallurgy, including students of colleges and universities. The modern concepts of mechanisms of Arc Furnace processes are are discussed in the book at the level sufficient to solve practical problems: To help readers lacking knowledge required in the field of heat transfer as well as hydro-gas dynamics, it contains several chapters which provide the required minimum of information in these fields of science. In order to better assess different innovations, the book describes experience of the application of similar innovations in open-hearth furnaces and oxygen converters. Some promising ideas on key issues regarding int...

  15. Refractory Gunning Material for Inner Lining Maintenance of Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    Yu Lingyan; Peng Xigao

    2010-01-01

    @@ 1 Scope This standard specifies the term and definition,classification, technical requirements, test methods,quality appraisal procedures, packing, marking, transportation, storage, and quality certificate of refractory gunning material for inner lining maintenance of blast furnace .

  16. Lightweight high temperature test furnace. 21st century technology

    Energy Technology Data Exchange (ETDEWEB)

    De Groot, F.C.

    2004-02-01

    A new high-temperature lightweight furnace design offers potential energy savings, thus reducing emissions and costs, and improves product quality. The Gasunie Research 12 m3 test furnace results are: 36% less heat needed to heat up the furnace; first tests show that 18% of flue gas heat loss is saved through pulse/pause firing; reduced carbon dioxide and gaseous hydrogen fluorides (HF) emissions; improved temperature homogeneity in product batch enables higher throughput; new dust-free combination of Refractory Ceramic Fibres (RCFs) have been tested successfully up to 1250C; new high-temperature vitreous wool (RCFs) with high solubility in body fluids and hence no hazard classification has been successfully tested; furnace control system developed and tested with good results, based on a standard industrial PLC, within stringent gas safety requirements.

  17. CMOS Thermal Ox and Diffusion Furnace: Tystar Tytan 2000

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Names: CMOS Wet Ox, CMOS Dry Ox, Boron Doping (P-type), Phos. Doping (N-Type)This four-stack furnace bank is used for the thermal growth of silicon...

  18. High Alumina Refractory Bricks for Electric Arc Furnace Roofs

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ 1 Scope This standard specifies the sort, technical requirement, test method, inspection rules, marking, packing, transportation, storage and quality certification of high alumina refractory bricks for electric arc furnace roofs.

  19. MINERGY CORPORATION GLASS FURNACE TECHNOLOGY EVALUATION: INNOVATION TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report presents performance and economic data for a U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program demonstration of the Minergy Corporation (Minergy) Glass Furnace Technology (GFT). The demonstration evaluated the techno...

  20. Carbothermal reduction process of silica formed from shirasu volcanic ash using solar furnace

    OpenAIRE

    Hatakeyama Keisuke; Sato Keigo; Nishioka Kensuke

    2016-01-01

    Metallurgical grade silicon was formed using Shirasu volcanic ash as starting material with solar furnace. The solar furnace was composed of two parts: Fresnel lens and reacting furnace. The reacting furnace was composed of a cylindrical vacuum chamber and quartz glass plate functioning to guide the concentrated sunlight into the furnace, and was placed at the focal point of the Fresnel lens. The sample was made from a mixture of silica formed from Shirasu volcanic ash and carbon, and placed ...

  1. Assessing energy efficiency of electric car bottom furnaces intended for thermal energization of minerals

    Science.gov (United States)

    Nizhegorodov, A. I.

    2017-01-01

    The paper deals with a new concept of electric furnaces for roasting and thermal energization of vermiculite and other minerals with vibrational transportation of a single-layer mass under constant thermal field. The paper presents performance calculation and comparative assessment of energy data for furnaces of different modifications: flame and electric furnaces with three units, furnaces with six units and ones with series-parallel connection of units, and furnaces of new concept.

  2. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  3. Modelling the CANMET and Marchwood furnaces using the PCOC code

    Energy Technology Data Exchange (ETDEWEB)

    Stopford, P.J.; Marriott, N. (AEA Decommissioning and Radioactive Waste, Harwell (UK). Theoretical Studies Dept.)

    1990-01-01

    Pulverised coal combustion models are validated by detailed comparison with in-flame measurements of velocity, temperatures and species concentrations on two axisymmetric tunnel furnaces. Nitric oxide formation by the thermal and fuel nitrogen mechanisms is also calculated and compared with experiment. The sensitivity of the predictions to the various aspects of the model and the potential for modelling full-scale, power-generating furnaces are discussed. 18 refs., 13 figs.

  4. Transient Temperature Analysis for Industrial AC Arc Furnace Bottom

    Institute of Scientific and Technical Information of China (English)

    (U)nal (C)amdal1; Murat Tun(c)

    2004-01-01

    Heat losses from the furnaces depend on the design and size. The surface heat loss from the bottom of an industrial AC electric arc furnace (EAF) possesses an important fraction of overall losses. So in this study the transient temperature variation at the bottom of the EAF was investigated. The transient temperature analysis was carried out using MATLAB computer program. T=T(r, t) for different bottom lining layers was depicted.

  5. Development of heat-transfer circuits in the blast furnace

    Science.gov (United States)

    Spirin, N. A.; Yaroshenko, Yu G.; Lavrov, V. V.

    2016-09-01

    The development of heat-transfer circuits in the blast furnace as the technologies of blast-furnace smelting are improved are considered. It is shown that there are two zones of intense heat-transfer, and in modern conditions, when different kinds of iron ore are smelted, the use of combined blast with high parameters is a prerequisite for the stability of blastfurnace smelting operation and the smelting efficiency.

  6. CHARACTERIZATION AND ANALISYS OF A FURNACE TO FABRICATE SOLAR CELLS

    OpenAIRE

    Sérgio Boscato Garcia; Adriano Moehlecke; Izete Zanesco

    2013-01-01

    The solar cell industry has presented high growth rates and dealt with a large portfolio of suppliers for specific equipments like diffusion furnaces needed to produce the pn junction in the fabrication of silicon devices. The aim of this paper is to present the thermal analysis and the characterization of diffusions carried out in the first diffusion furnace developed and fabricated in Brazil. Longitudinal and radial temperature profiles were measured and analyzed. Results of the...

  7. MUZO flight experience with the programmable multizone furnace

    Science.gov (United States)

    Lockowandt, Christian; Loth, Kenneth

    1993-01-01

    The Multi-Zone (MUZO) furnace has been developed for growing germanium (Ge) crystals under microgravity in a Get Away Special (GAS) payload. The MUZO furnace was launched with STS-47 Endeavour in September 1992. The payload worked as planned during the flight and a Ge sample was successfully processed. The experiment has given valuable scientific information. The design and functionality of the payload together with flight experience is reported.

  8. Development Of A Magnetic Directional-Solidification Furnace

    Science.gov (United States)

    Aldrich, Bill R.; Lehoczky, Sandor L.

    1996-01-01

    Report describes development of directional-solidification furnace in which axial magnetic field is imposed by surrounding ring permanent magnets and/or electromagnets and pole pieces. Furnace provides controlled axial temperature gradients in multiple zones, through which ampoule containing sample of material to be solidified is translated at controlled speed by low-vibration, lead-screw, stepping-motor-driven mechanism. Intended for use in low-gravity (spaceflight) experiments on melt growth of high-purity semiconductor crystals.

  9. Slagging and Fouling Characteristics of HRSG for Ferrosilicon Electric Furnaces

    OpenAIRE

    2015-01-01

    The slagging and fouling characteristics of the heat recovery steam generator (HRSG) for ferrosilicon electric furnaces are discussed in this paper. Three ash samples were taken from the HRSG of a ferrosilicon furnace in Ningxia Province, China, which suffered from serious slagging and fouling. X-ray fluorescence (XRF), X-ray powder diffraction (XRD) and scanning electron microscope (SEM) were used to analyze the ash samples. The results show that low melting point salt Na 2 SO 4 and composit...

  10. Investigation of radiative heat transfer in fixed bed biomass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    T. Klason; X.S. Bai; M. Bahador; T.K. Nilsson; B. Sunden [Lund Institute of Technology, Lund (Sweden). Division of Fluid Mechanics

    2008-08-15

    This paper presents an investigation of the radiative heat transfer process in two fixed bed furnaces firing biomass fuels and the performance of several widely used models for calculation of radiative heat transfer in the free-room of fixed bed furnaces. The effective mean grey gas absorption coefficients are calculated using an optimised version of the exponential wide band model (EWBM) based on an optical mean beam length. Fly-ash and char particles are taken into account using Mie scattering. In the investigated updraft small-scale fixed bed furnace radiative transfer carries heat from the bed to the free-room, whereas in the cross-current bed large-scale industry furnace, radiative transfer brings heat from the hot zones in the free-room to the drying zone of the bed. Not all the investigated models can predict these heat transfer trends, and the sensitivity of results to model parameters is fairly different in the two furnaces. In the small-scale furnace, the gas absorption coefficient predicted by using different optical lengths has great impact on the predicted temperature field. In the large-scale furnaces, the predicted temperature field is less sensitive to the optical length. In both furnaces, with the same radiative properties, the low-computational-cost P1 model predicts a temperature field in the free-room similar to that by the more time consuming SLW model. In general, the radiative heat transfer rates to the fuel bed are not very sensitive to the radiative properties, but they are sensitive to the different radiative heat transfer models. For a realistic prediction of the radiative heat transfer rate to the fuel bed or to the walls, more computationally demanding models such as the FGG or SLW models should be used. 37 refs., 7 figs., 2 tabs.

  11. Residential Two-Stage Gas Furnaces - Do They Save Energy?

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex; Franco, Victor; Lutz, James

    2006-05-12

    Residential two-stage gas furnaces account for almost a quarter of the total number of models listed in the March 2005 GAMA directory of equipment certified for sale in the United States. Two-stage furnaces are expanding their presence in the market mostly because they meet consumer expectations for improved comfort. Currently, the U.S. Department of Energy (DOE) test procedure serves as the method for reporting furnace total fuel and electricity consumption under laboratory conditions. In 2006, American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) proposed an update to its test procedure which corrects some of the discrepancies found in the DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the differences in the methods for calculating two-stage residential gas furnace energy consumption in the DOE test procedure and in the 2006 ASHRAE test procedure and to compare test results to research results from field tests. Overall, the DOE test procedure shows a reduction in the total site energy consumption of about 3 percent for two-stage compared to single-stage furnaces at the same efficiency level. In contrast, the 2006 ASHRAE test procedure shows almost no difference in the total site energy consumption. The 2006 ASHRAE test procedure appears to provide a better methodology for calculating the energy consumption of two-stage furnaces. The results indicate that, although two-stage technology by itself does not save site energy, the combination of two-stage furnaces with BPM motors provides electricity savings, which are confirmed by field studies.

  12. Monitoring Method for Blast Furnace Wall With Copper Staves

    Institute of Scientific and Technical Information of China (English)

    CHENG Su-sen; QIAN Liang; ZHAO Hong-bo

    2007-01-01

    A monitoring method that has been designed for the first time for blast furnace wall with copper staves manufactured in China was introduced. Combining the method of "inverse problem" and the concept "non-inverse problem", the monitoring program for blast furnace wall with copper staves has been realized, which can be used to calculate online the accretion thickness and temperature of hot surface of copper staves after obtaining the values of thermocouples of copper staves. The accretion state obtained in the actual investigation has proved that the result of the program is correct. The monitoring program shows that the accretion would easily fluctuate when the accretion layer is extremely thick or thin, thereby the stable and smooth operation of the blast furnace is hindered. By maintaining appropriate accretion thickness, both long campaigns and high productivity of the blast furnace can be achieved; furthermore, it can also optimize the operation of blast furnace and maximize its production. Approximately 30-50 mm in thickness of accretion layer is maintained on the wall of Shougang blast furnace 2, which can meet the requirement for obtaining both long campaign and high productivity.

  13. Mathematical model and software for control of commissioning blast furnace

    Science.gov (United States)

    Spirin, N. A.; Onorin, O. P.; Shchipanov, K. A.; Lavrov, V. V.

    2016-09-01

    Blowing-in is a starting period of blast furnace operation after construction or major repair. The current approximation methods of blowing-in burden analysis are based on blowing-in practice of previously commissioned blast furnaces. This area is theoretically underexplored; there are no common scientifically based methods for selection of the burden composition and blast parameters. The purpose of this paper is development and scientific substantiation of the methods for selection of the burden composition and blast parameters in the blast furnace during the blowing-in period. Research methods are based on physical regularities of main processes running in the blast furnace, system analysis, and application of modern principles for development and construction of mathematical models, algorithms and software designed for automated control of complex production processes in metallurgy. As consequence of the research made by the authors the following results have been achieved: 1. A set of mathematical models for analysis of burden arrangement throughout the height of the blast furnace and for selection of optimal blast and gas dynamic parameters has been developed. 2. General principles for selection of the blowing-in burden composition and blast and gas dynamic parameters have been set up. 3. The software for the engineering and process staff of the blast furnace has been developed and introduced in the industry.

  14. Laboratory Evaluation of Residential Furnace BlowerPerformance

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; Lutz, Jim D.

    2005-09-01

    A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility (Pacific Gas and Electric Co.) to compare the performance of furnace blowers. This laboratory testing program was undertaken to support potential changes to California Building Standards regarding in-field furnace blower energy use. This technical support includes identifying suitable performance metrics and target performance levels for use in standards. Five different combinations of blowers and residential furnaces were tested for air moving performance. Three different types of blower and motor combinations were tested in two different furnace cabinets. The blowers were standard forward--curved impellors and a prototype impeller with reverse-inclined blades. The motors were two 6-pole permanent split capacitor (PSC) single-phase induction motors, a brushless permanent magnet (BPM) motor and a prototype BPM designed for use with a prototype reverse-inclined impellor. The laboratory testing operated each blower and furnace combination over a range of air flows and pressure differences to determine air flow performance, power consumption and efficiency. Additional tests varied the clearance between the blower housing and the furnace cabinet, and the routing of air flow into the blower cabinet.

  15. A pressurized drop-tube furnace for coal reactivity studies

    Science.gov (United States)

    Ouyang, Shan; Yeasmin, Hasina; Mathews, Joseph

    1998-08-01

    The design and characterization of a pressurized drop-tube furnace for investigation of coal devolatilization, gasification, and combustion are presented. The furnace is designed for high-temperature, isothermal operation in a developing laminar flow regime. It can be operated at pressures up to 1600 kPa, and temperatures up to 1673 K, with variable reaction time, particle feeding rate, and with inert and various oxidizing atmospheres. Particle residence times can be varied between ˜0.02 and ˜10 s depending upon operating conditions and positions of injection and sampling probes. Observations ports are available for sample collections and for optical investigation of the reactions or temperature measurements. Characterization of gas temperature in the furnace shows that, although the gas temperature profile in the furnace is affected by the water-cooled injection probe, the furnace is able to achieve isothermal operation in a developing laminar flow regime. Results from a series of brown coal devolatilization tests demonstrated the suitability of the furnace for experiments in coal research.

  16. Carbothermic reduction of electric arc furnace dust and calcination of waelz oxide by semi-pilot scale rotary furnace

    National Research Council Canada - National Science Library

    Morcali M.H; Yucel O; Aydin A; Derin B

    2012-01-01

    The paper gives a common outline about the known recycling techniques from electric arc furnace dusts and describes an investigation of a pyrometallurgical process for the recovery of zinc and iron...

  17. Gas Flow Distribution in Pelletizing Shaft Furnace

    Institute of Scientific and Technical Information of China (English)

    CAI Jiu-ju; DONG Hui; WANG Guo-sheng; YANG Jun

    2006-01-01

    Through thermal test, cold state experiment, analysis and simulation of thermal process, the gas flow distribution in pelletizing shaft furnace (PSF) was discussed. The results show that there are five flowing trends; among them, the downward roasting gas and the upward cooling gas are the most unsteady, which influence flow distribution greatly. Among the operating parameters, the ratio of inflow is a key factor affecting the flow distribution. The roasting and cooling gases will entirely flow into the roasting zone and internal vertical air channels (IVAC), respectively, if the ratio of inflow is critical. From such a critical operating condition increasing roasting gas flow or decreasing cooling gas flow, the roasting gas starts flowing downwards so as to enter the inside of IVAC; the greater the ratio of inflow, the larger the downward flowrate. Among constructional parameters, the width of roasting zone b1, width of IVAC b2 and width of cooling zone b3, and the height of roasting zone h1, height of soaking zone h2 and height of cooling zone h3 are the main factors affecting flow distribution. In case the ratio of b2/b1, or h3/h2, or h1/h2 is increased, the upward cooling gas tends to decrease while the downward roasting gas tends to increase with a gradual decrease in the ratio of inflow.

  18. Boundary Identification for a Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, the authors discuss an inverse boundary problem for the axisymmetric steady-state heat equation, which arises in monitoring the boundary corrosion for the blast-furnace. Measure temperature at some locations are used to identify the shape of the corrosion boundary.The numerical inversion is complicated and consuming since the wear-line varies during the process and the boundary in the heat problem is not fixed. The authors suggest a method that the unknown boundary can be represented by a given curve plus a small perturbation, then the equation can be solved with fixed boundary, and a lot of computing time will be saved.A method is given to solve the inverse problem by minimizing the sum of the squared residual at the measuring locations, in which the direct problems are solved by axisymmetric fundamental solution method.The numerical results are in good agreement with test model data as well as industrial data, even in severe corrosion case.

  19. The Flexibility of Pusher Furnace Grate

    Directory of Open Access Journals (Sweden)

    Słowik J.A.

    2016-12-01

    Full Text Available The lifetime of guide grates in pusher furnaces for heat treatment could be increased by raising the flexibility of their structure through, for example, the replacement of straight ribs, parallel to the direction of grate movement, with more flexible segments. The deformability of grates with flexible segments arranged in two orientations, i.e. crosswise (perpendicular to the direction of compression and lengthwise (parallel to the direction of compression, was examined. The compression process was simulated using SolidWorks Simulation program. Relevant regression equations were also derived describing the dependence of force inducing the grate deformation by 0.25 mm ‒ modulus of grate elasticity ‒ on the number of flexible segments in established orientations. These calculations were made in Statistica and Scilab programs. It has been demonstrated that, with the same number of segments, the crosswise orientation of flexible segments increases the grate structure flexibility in a more efficient way than the lengthwise orientation. It has also been proved that a crucial effect on the grate flexibility has only the quantity and orientation of segments (crosswise / lengthwise, while the exact position of segments changes the grate flexibility by less than 1%.

  20. Swift BAT Thermal Recovery After Loop Heat Pipe #0 Secondary Heater Controller Failure in October 2015

    Science.gov (United States)

    Choi, Michael K.

    2016-01-01

    The Swift BAT LHP #0 primary heater controller failed on March 31, 2010. It has been disabled. On October 31, 2015, the secondary heater controller of this LHP failed. On November 1, 2015, the LHP #0 CC temperature increased to as 18.6 C, despite that the secondary heater controller set point was 8.8 C. It caused the average DM XA1 temperature to increase to 25.9 C, which was 5 C warmer than nominal. As a result, the detectors became noisy. To solve this problem, the LHP #1 secondary heater controller set point was decreased in 0.5 C decrements to 2.2 C. The set-point decrease restored the average DM XA1 temperature to a nominal value of 19.7 C on November 21.

  1. Numerical Simulation of Induction Through-Heater in Dynamic Operation Mode

    Directory of Open Access Journals (Sweden)

    SCURTU Gheorghe Lucian

    2013-05-01

    Full Text Available The numeric model used in this paper is based on the finite element method and is aiming an inductive heating in volume of a cylindrical structure in a dynamic operation mode. Nowadays the inductionthrough-heaters are usually designed to provide the required characteristics in “quasi” steady-state operation mode mainly. However, in industrial practice the heaters can operate under various disturbances more than half of time, so the transient process playsignificant role in effectiveness and quality of the heating. Investigation of dynamic characteristics of the heaters in dynamic modes can be only done by numerical modeling based on special algorithms providing a time loop additionally to coupling betweenelectromagnetic and thermal analysis. Such numerical models have been developed and used for investigation of dynamic modes for heating billets. The results of numerical simulation can be used for design ofinduction through-heaters and improvement of their characteristics in dynamic operation modes.

  2. Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory.

    Science.gov (United States)

    Ramette, Joshua; Kasprzack, Marie; Brooks, Aidan; Blair, Carl; Wang, Haoyu; Heintze, Matthew

    2016-04-01

    Advanced laser interferometer gravitational-wave detectors use high laser power to achieve design sensitivity. A small part of this power is absorbed in the interferometer cavity mirrors where it creates thermal lenses, causing aberrations in the main laser beam that must be minimized by the actuation of "ring heaters," which are additional heater elements that are aimed to reduce the temperature gradients in the mirrors. In this article we derive the first, to the best of our knowledge, analytical model of the temperature field generated by an ideal ring heater. We express the resulting optical aberration contribution to the main laser beam in this axisymmetric case. Used in conjunction with wavefront measurements, our model provides a more complete understanding of the thermal state of the cavity mirrors and will allow a more efficient use of the ring heaters in the Advanced Laser Interferometer Gravitational-wave Observatory.

  3. Self-regulating heater application to Shuttle/Centaur hydrazine fuel line thermal control

    Science.gov (United States)

    Unkrich, David B.

    1987-01-01

    The Shuttle/Centaur high energy upper stage vehicle thermal environments were more severe than previous Centaur vehicle thermal environments, creating need for a new hydrazine fuel line thermal control technique. Constant power heaters did not satisfy power dissipation requirements, because the power required to maintain fuel line thermal control during cold conditions exceeded the maximum power allowable during hot conditions. Therefore, a Raychem Thermolimit self-regulating heater was selected for this application, and was attached to the hydrazine fuel line with Kapton and aluminum foil tapes. Fuel line/heater thermal modeling and subsequent thermal vacuum chamber testing simulated heater thermal performance during all worst-case Shuttle/Centaur thermal environmental conditions. Fuel line temperatures were maintained between the 4C to 71C limits during all analytical and test cases. Finally, the thermal model predictions were correlated with the test data, thereby ensuring that the model would provide satisfactory predictions for future missions and/or vehicles.

  4. REFINED METHOD OF COMPUTING MODES OF OPERATING OF CAPACITY-TYPE SOLAR HEATERS OF

    Directory of Open Access Journals (Sweden)

    Ermuratschii Vl.V.

    2008-04-01

    Full Text Available The refined method procedure of thermal modes of solar heaters of water of the capacity type, based on use of an electro-thermal equivalent circuit and a method of central potentials is presented.

  5. Towards the Development of a Novel CNTs-based Flexible Mild Heater for Art Conservation

    Directory of Open Access Journals (Sweden)

    Tomas Markevicius

    2014-03-01

    tests performed on a series of prototypes of the designed heaters showed that the device was able to convey uniform heating on different working materials, thus proving to be effective for thermal consolidation.

  6. Temperature Profiles During Quenches in LHC Superconducting Dipole Magnets Protected by Quench Heaters

    CERN Document Server

    Maroussov, V; Siemko, A

    2000-01-01

    The efficiency of the magnet protection by quench heaters was studied using a novel method which derives the temperature profile in a superconducting magnet during a quench from measured voltage signals. In several Large Hadron Collider single aperture dipole models, temperature profiles and temperature gradients in the magnet coil have been evaluated in the case of protection by different sets of quench heaters and different powering and protection parameters. The influence of the insulation thickness between the quench heaters and the coil has also been considered. The results show clear correlation between the positions of quench heaters, magnet protection parameters and temperature profiles. This study allowed a better understanding of the quench process mechanisms and the efficiency assessment of the different protection schemes.

  7. Natural Convection of Nanofluids in a Square Enclosure with a Protruding Heater

    Directory of Open Access Journals (Sweden)

    J. Guiet

    2012-01-01

    Full Text Available This paper reports a numerical study on natural convection from a protruding heater located at the bottom of a square cavity filled with a copper-water nanofluid. The vertical walls of the cavity are cooled isothermally; the horizontal ones are adiabatic, and the heater is attached to the bottom wall. The heat source is assumed either to be isothermal or to have a constant heat flux. The effective viscosity and thermal conductivity of the nanofluid are modeled according to Brinkman and Patel, respectively. Numerical solutions of the full-governing equations, based on the lattice Boltzmann method, are obtained for a wide range of the governing parameters: the Rayleigh number, Ra; the Prandtl number, Pr; the geometrical parameters specifying the heater; the volume fraction of nanoparticles, Φ. For a particular geometry, it has been found that, for a given Ra, heat transfer is enhanced with increasing Φ, independently of the thermal boundary condition applied on the heater.

  8. Ultrathin Polyimide-Stainless Steel Heater for Vacuum System Bake-out

    CERN Document Server

    Rathjen, Christian; Henrist, Bernard; Kölemeijer, Wilhelmus; Libera, Bruno; Lutkiewicz, Przemyslaw

    2005-01-01

    Space constraints in several normal conducting magnets of the LHC required the development of a dedicated permanent heater for vacuum chamber bake-out. The new heater consists of stainless steel bands inside layers of polyimide. The overall heater thickness is about 0.3 mm. The low magnetic permeability is suitable for applications in magnetic fields. The material combination allows for temperatures high enough to activate a NEG coating. Fabrication is performed in consecutive steps of tape wrapping. Automation makes high volume production at low costs possible. About 800 m of warm vacuum system of the long straight sections of the LHC will be equipped with the new heater. This paper covers experience gained at CERN from studies up to industrialization.

  9. A Simple Substrate Heater Device With Temperature Controller for Thin Film Preparation

    Directory of Open Access Journals (Sweden)

    G. Rendón

    2012-08-01

    Full Text Available A simple substrate heater and its temperature controller were designed and built in order to prepare thin films in a highvacuum deposition system. The substrate heater was elaborated with a glass-ceramic body and a molybdenum foilheater. The applied power and the temperature are regulated by a power controller board using a microcontrollerprogrammed with a proportional-integrative-derivative algorithm. The heater/controller system was tested in a highvacuum deposition system and the results of its characterization at 100, 200, 300 and 400 °C are presented. Avariation in temperature better than ± 0.5 °C was obtained for all the tested temperatures. An application of thesubstrate heater is demonstrated by evaporating gold thin films on heated glass substrates.

  10. Energetic Performances Study of an Integrated Collector Storage Solar Water Heater

    Directory of Open Access Journals (Sweden)

    O. Helal

    2010-01-01

    Full Text Available Problem statement: Although that the interest attributed to the solar energy remains relatively limited, we attend today to the conception of several installations using the sun as energy source among which we quote the solar water heater. Approach: A study of energetic performances was taken on an integrated collector/storage solar water heater made in the National School of Engineers of Gabes. This water heater is equipped with a concentration system containing a reflector composed of three parabolic branches favorating a better absorption of solar radiance. Results: The comparison between this system and two other systems of solar water heater, composed of a storage ball with asymmetrical CPC and symmetrical CPC, showed important energetic performances despite the simplicity and the little cost of the collector. Conclusion: Several improvements are necessary to increase the direct flow whilst decrease the thermal losses and therefore make the system simpler to be installed on the building roof.

  11. Energy-efficient tunable silicon photonic micro-resonator with graphene transparent nano-heaters

    CERN Document Server

    Yu, Longhai; Dai, Daoxin; He, Sailing

    2015-01-01

    Thermally-tuning silicon micro-cavities are versatile and beneficial elements in low-cost large-scale photonic integrated circuits (PICs). Traditional metal heaters used for thermal tuning in silicon micro-cavities usually need a thick SiO2 upper-cladding layer, which will introduce some disadvantages including low response speed, low heating efficiency, low achievable temperature and complicated fabrication processes. In this paper, we propose and experimentally demonstrate thermally-tuning silicon micro-disk resonators by introducing graphene transparent nano-heaters, which contacts the silicon core directly without any isolator layer. This makes the graphene transparent nano-heater potentially to have excellent performances in terms of the heating efficiency, the temporal response and the achievable temperature. It is also shown that the graphene nano-heater is convenient to be used in ultrasmall photonic integrated devices due to the single-atom thickness and excellent flexibility of graphene. Both experi...

  12. Carbothermic reduction of electric arc furnace dust and calcination of waelz oxide by semi-pilot scale rotary furnace

    OpenAIRE

    Morcali M.H.; Yucel O.; Aydin A.; Derin B.

    2012-01-01

    The paper gives a common outline about the known recycling techniques from electric arc furnace dusts and describes an investigation of a pyrometallurgical process for the recovery of zinc and iron from electric arc furnace dusts (EAFD). In the waelz process, the reduction of zinc and iron from the waste oxides using solid carbon (lignite coal) was studied. In the reduction experiments; temperature, time and charge type (powder and pellet) were investigated in detail. It was demonstrate...

  13. Analysis of exergy and parametric study of a v-corrugated solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Hedayatizadeh, Mahdi [University of Tabriz, Department of Agricultural Machinery Engineering, Faculty of Agriculture, Tabriz (Iran, Islamic Republic of); University of Birjand, Faculty of Agriculture, P.O. Box 97175/331, Birjand (Iran, Islamic Republic of); Ajabshirchi, Yahya [University of Tabriz, Department of Agricultural Machinery Engineering, Faculty of Agriculture, Tabriz (Iran, Islamic Republic of); Sarhaddi, Faramarz; Farahat, Said [University of Sistan and Baluchestan, Department of Mechanical Engineering, Faculty of Engineering, P.O. Box 98164/161, Zahedan (Iran, Islamic Republic of); Safavinejad, Ali [University of Birjand, Department of Mechanical Engineering, Faculty of Engineering, Birjand (Iran, Islamic Republic of); Chaji, Hossein [University of Tabriz, Department of Agricultural Machinery Engineering, Faculty of Agriculture, Tabriz (Iran, Islamic Republic of); Center of Agriculture and Natural Resources of Khorasan Razavi Province, Ministry of Agriculture, Mashhad (Iran, Islamic Republic of)

    2012-07-15

    Solar air heater requires investigation for enhancement of solar energy conversion into heat. Different configurations with various artificial roughness geometries are proposed to date. In present study attention is paid on ways leading to more delivery of exergy by a v-corrugated solar air heater through parametric study. Effects of aspect ratio of the collector, inlet air temperature, mass flow rate per collector area etc. are studied. (orig.)

  14. PREDICTION OF OPTIMUM ANGLE OF SOLAR WATER HEATER FOR COIMBATORE LOCATION

    OpenAIRE

    M. Sekar; DR M. SAKTHIVEL; O. MANIYARASU; N.ALAGU MURUGAN

    2013-01-01

    The objective of this work was to investigate ways to enhance the performance of solar water heater system to encourage many households using it. The integrated collector storage is the type of solar water heater that has retained its existence for well over a century. The flat absorber plate integrated collector storage type is a relatively recent addition. Being effective, low cost and simple to manufacture, their importance has been further enhanced by the recent upsurge in efforts to effe...

  15. Failure investigation of a secondary super heater tube in a 140 MW thermal power plant

    Directory of Open Access Journals (Sweden)

    Atanu Saha

    2017-04-01

    Full Text Available This article describes the findings of a detailed investigation into the failure of a secondary super heater tube in a 140 MW thermal power plant. Preliminary macroscopic examinations along with visual examination, dimensional measurement and chemical analysis were carried out to deduce the probable cause of failure. In addition optical microscopy was a necessary supplement to understand the cause of failure. It was concluded that the tube had failed due to severe creep damage caused by high metal temperature during service. The probable causes of high metal temperature may be in sufficient flow of steam due to partial blockage, presence of thick oxide scale on ID surface, high flue gas temperature etc. rupture.

  16. Design, Construction, and Qualification of a Microscale Heater Array for Use in Boiling Heat Transfer

    Science.gov (United States)

    Rule, T. D.; Kim, J.; Kalkur, T. S.

    1998-01-01

    Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of wall temperature and heat flux near the wall would add to the database of knowledge which is necessary to understand the mechanisms of nucleate boiling. A heater array has been developed which contains 96 heater elements within a 2.5 mm square area. The temperature of each heater element is held constant by an electronic control system similar to a hot-wire anemometer. The voltage that is being applied to each heater element can be measured and digitized using a high-speed A/D converter, and this digital information can be compiled into a series of heat-flux maps. Information for up to 10,000 heat flux maps can be obtained each second. The heater control system, the A/D system and the heater array construction are described in detail. Results are presented which show that this is an effective method of measuring the local heat flux during nucleate and transition boiling. Heat flux maps are obtained for pool boiling in FC-72 on a horizontal surface. Local heat flux variations are shown to be three to six times larger than variations in the spatially averaged heat flux.

  17. PREDICTION OF OPTIMUM ANGLE OF SOLAR WATER HEATER FOR COIMBATORE LOCATION

    Directory of Open Access Journals (Sweden)

    M. SEKAR

    2013-04-01

    Full Text Available The objective of this work was to investigate ways to enhance the performance of solar water heater system to encourage many households using it. The integrated collector storage is the type of solar water heater that has retained its existence for well over a century. The flat absorber plate integrated collector storage type is a relatively recent addition. Being effective, low cost and simple to manufacture, their importance has been further enhanced by the recent upsurge in efforts to effectively tap renewable energy resources. Having different inclinations based on latitude, the design of flat plate heaters can benefit from extensive amount of research on the topic of natural convection in inclined cavities. The thermal performance of the heater is recorded experimentally at angles 0°–30° from horizontal, in 10° intervals. It was found that for any given constant value of heat flux, the performance of the heater is a strong function of the angle of inclination. The optimum configuration of the heater for Coimbatore location is also evaluated.

  18. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  19. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  20. Pulverized coal burnout in blast furnace simulated by a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shan-Wen [Steel and Aluminum Research and Development Department, China Steel Corporation, Kaohsiung 812 (China); Chen, Wei-Hsin [Department of Greenergy, National University of Tainan, Tainan 700 (China); Lucas, John A. [School of Engineering of the University of Newcastle, Callaghan, NSW 2308 (Australia)

    2010-02-15

    Reactions of pulverized coal injection (PCI) in a blast furnace were simulated using a drop tube furnace (DTF) to investigate the burnout behavior of a number of coals and coal blends. For the coals with the fuel ratio ranging from 1.36 to 6.22, the experimental results indicated that the burnout increased with decreasing the fuel ratio, except for certain coals departing from the general trend. One of the coals with the fuel ratio of 6.22 has shown its merit in combustion, implying that the blending ratio of the coal in PCI operation can be raised for a higher coke replacement ratio. The experiments also suggested that increasing blast temperature was an efficient countermeasure for promoting the combustibility of the injected coals. Higher fuel burnout could be achieved when the particle size of coal was reduced from 60-100 to 100-200 mesh. However, once the size of the tested coals was in the range of 200 and 325 mesh, the burnout could not be improved further, resulting from the agglomeration of fine particles. Considering coal blend reactions, the blending ratio of coals in PCI may be adjusted by the individual coal burnout rather than by the fuel ratio. (author)

  1. Mechanisms of phosphate removal from aqueous solution by blast furnace slag and steel furnace slag

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We report the adsorption of phosphate and discuss the mechanisms of phosphate removal from aqueous solution by burst furnace slag (BFS) and steel furnace slag (SFS). The results show that the adsorption of phosphate on the slag was rapid and the majority of adsorption was completed in 5~10 min. The adsorption capacity of phosphate by the slag was reduced dramatically by acid treatment. The relative contribution of adsorption to the total removal of phosphate was 26%~28%. Phosphate adsorption on BFS and SFS follows the Freundlich isotherm, with the related constants ofk 6.372 and 1/n 1.739 for BFS, and ofk 1.705 and 1/n 1.718 for SFS. The pH and Ca2+ concentration were decreased with the addition of phosphate, suggesting the formation of calcium phosphate precipitation. At pH 2.93 and 6.93, phosphate was desorbed by about 36%~43% and 9%~11%, respectively.These results indicate that the P adsorption on the slag is not completely reversible and that the bond between the slag particles and adsorbed phosphate is strong. The X-ray diffraction (XRD) patterns of BFS and SFS before and after phosphate adsorption verify SFS is related to the formation of phosphate calcium precipitation and the adsorption on hydroxylated oxides. The results show that BFS and SFS removed phosphate nearly 100%, indicating they are promising adsorbents for the phosphate removal in wastewater treatment and pollution control.

  2. Solair heater program: solair applications study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    General Electric has designed and tested a low-cost solar system using a vacuum tube solar air heater under ERDA Contract E(11-1)-2705. This contract extension has been provided to evaluate various applications of this solar collector. The evaluation identified attractive applications, evaluated corresponding control procedures, estimated system performance, compared economically insolation and insulation, and evaluated the repackaging of off-the-shelf equipment for improved cost effectiveness. The results of this study prompted General Electric's marketing group to do a detailed commercialization study of a residential domestic water heating system using the Solair concept which has been selected as the most attractive application. Other attractive applications are space/domestic water heating and a heat pump assisted solar system/domestic water heating where the heat pump and the solar system function in parallel. A prime advantage of heated air solar systems over liquid systems is cost and longer life which results in higher BTU's/dollar. Other air system advantages are no liquid leakage problems, no toxicity of freezing problems, and less complicated equipment. A hybrid solar system has been identified that can improve the market penetration of solar energy. This system would use the existing mass of the house for energy storage thereby reducing solar cost and complexity. Adequate performance can be obtained with house temperature swings comparable to those used in nighttime setback of the thermostat. Details of this system are provided.

  3. Heater induced thermal effects on the LTP dynamics

    CERN Document Server

    Gibert, Ferran; Lobo, Alberto; Díaz-Aguiló, Marc; Mateos, Ignacio; Karnesis, Nikolaos; Sanjuán, Josep; Gesa, Lluís; lloro, Ivan; Martín, Víctor

    2013-01-01

    The STOC (Science and Technology Operations Centre) simulator of the LPF (LISA PathFinder) mission is intended to provide a validation tool for the mission operations tele-commanding chain, as well as for a deeper understanding of the underlying physical processes happening in the LTP (LISA Technology Package). Amongst the different physical effects that will appear onboard, temperature fluctuations in the Electrode Housing (EH) could generate disturbances on the interferometer (IFO) readouts, therefore they must be known and controlled. In this article we report on the latest progress in the analysis at IEEC of the LTP response to thermal signals injected by means of heaters. More specifically, we determine the transfer functions relating heat input signals to forces on the Test Masses (TMs) in the LTP frequency band, from 1 mHz to 30 mHz. A complete thermal model of the entire LPF spacecraft plus payload, elaborated and maintained at European Space Technology Center (ESTEC), was used to obtain temperature d...

  4. Solar-Powered Cooler and Heater for an Automobile Interior

    Science.gov (United States)

    Howard, Richard T.

    2006-01-01

    The apparatus would include a solar photovoltaic panel mounted on the roof and a panellike assembly mounted in a window opening. The window-mounted assembly would include a stack of thermoelectric devices sandwiched between two heat sinks. A fan would circulate interior air over one heat sink. Another fan would circulate exterior air over the other heat sink. The fans and the thermoelectric devices would be powered by the solar photovoltaic panel. By means of a double-pole, double-throw switch, the panel voltage fed to the thermoelectric stack would be set to the desired polarity: For cooling operation, the chosen polarity would be one in which the thermoelectric devices transport heat from the inside heat sink to the outside one; for heating operation, the opposite polarity would be chosen. Because thermoelectric devices are more efficient in heating than in cooling, this apparatus would be more effective as a heater than as a cooler. However, if the apparatus were to include means to circulate air between the outside and the inside without opening the windows, then its effectiveness as a cooler in a hot, sunny location would be increased.

  5. Solar Biogas Digester with Built-In Reverse Absorber Heater

    Directory of Open Access Journals (Sweden)

    Khasan S. Karimov

    2013-01-01

    Full Text Available In this work the design, fabrication and investigation of a solar biogas digester with built-in RAH (Reverse Absorber Heater is presented. The maximum temperature (50 o C inside of the methane tank was taken as a main parameter at the design of the digester. Using energy balance equation for the case of a static mass of fluid being heated; the parameters of thermal insulation of the methane tank were counted. The biogas digester is consisting of methane tank with built-in solar RAH to utilize solar energy for the heating of the slurry prepared from the different organic wastes (dung, sewage, food wastes etc. The methane tank was filled up to 70% of volume by organic wastes of the GIK Institute sewage, firstly, and secondly, by sewage and cow dung as well. During three months (October-December, 2009 and two months (February-March, 2010 the digester was investigated. The solar irradiance incident to the absorber, slurry's temperature and ambient temperature were measured. It was found that using sewage only and sewage with cow dung the retention times was 4 weeks and two weeks respectively and biogas quantity produced was 0.4 and 8.0 m 3 respectively. In addition, biogas upgradation scheme for removal of carbon dioxide, hydrogen sulphide and water vapor from biogas and conversion of biogas energy conversion into electric power is also discussed.

  6. Light-weight radioisotope heater unit (LWRHU) impact tests

    Science.gov (United States)

    Reimus, M. A. H.; Rinehart, G. H.; Herrera, A.; Lopez, B.; Lynch, C.; Moniz, P.

    1998-01-01

    The light-weight radioisotope heater unit (LWRHU) is a 238PuO2-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed 238PuO2 fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

  7. High temperature furnace for liquid phase epitaxy of silicon carbide in microgravity

    Science.gov (United States)

    Lockowandt, Christian; Yakimova, Rositza; Syväjärvi and, Mikael; Janzén, Erik

    1999-04-01

    The high temperature furnace for Liquid Phase Epitaxy (LPE) was developed by Swedish Space Corporation. It was developed for a Silicon Carbide liquid phase epitaxy microgravity experiment performed by Linköping University, Sweden. The LPE is capable of processing materials up to 1900°C in ultra clean atmosphere or vacuum in accordance with requirements for semiconductor crystal growth. The LPE has the capability to heat and cool the samples rapidly due to a high power input and a cooling gas system, this makes it possible to utilise it for short duration microgravity flights. The samples can be processed in isothermal conditions or with a temperature gradient up to 5°C/mm. The two resistive heaters are controlled individually which makes it possible for the user to pre-program an optional temperature profile for the experiment. The LPE was launched on the European microgravity rocket MASER 7 at Esrange in May 1996. For the first time under microgravity conditions four SiC samples were processed successfully. SiC has in comparison with Si superior properties regarding power electronics [1]. However, the quality of the material needs to be improved considerably before commercial production. Growth from a solution may give rise to an impurity microsegregation and growth instabilities due to the gravitation-induced convection, presumably resulting in an alteration of the point defect assembly. Growth under microgravity is thus a key for a better understanding of the growth process and defect formation. The material grown in microgravity is improved compared with on-ground reference growth.

  8. Resistance furnaces. Technologies of implementation; Fours electriques a resistances. Technologies de mise en oeuvre

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, J.F.; Girault, A.; Jaume, R.; Le Boulch, M. [Electricite de France (EDF), Div. Recherche and Developpement, 75 - Paris (France); Oberlin, C.

    2005-04-01

    This article describes in detail the different parts (envelope, resistors, power supply, regulation system) of resistance furnaces and gives some essential elements about the conditions of use and about the advantages of drawbacks of such furnaces: 1 - resistors (resistance and resistivity, group of resistors, selection criteria, different types of resistors, shape and arrangement of resistors, dimensioning); 2 - power supply (recalls about regulation and standards, general characteristics of installations); 3 - regulation systems (design of a regulation system, power modulation and variation systems, usual regulation schemes); 4 - modeling of resistance furnaces (SAFIR and SYRTHES codes); 5 - evolution of resistance furnaces (high power density furnaces, low thermal inertia furnaces, vacuum furnaces); 6 - advantages and limitations of resistance furnaces; 7 - exploitation of resistance furnaces (thermal status, conditions of exploitation, maintenance policy). (J.S.)

  9. Marine Corps Shelterized Expeditionary Food Service System

    Science.gov (United States)

    1980-08-01

    temperature and cooks --no fuel tanks have to be filled, no fuel lines connected, no pressure gauges monitored , and no valves and nozzles have to be...summarized in Table 1. TABLE 1 FOOD SERVICE SYSTEM COST Item Galley Equipment Sanitation Equipment ISO Reefers M-77 Warer Heaters Generator

  10. Structural ceramics containing electric arc furnace dust.

    Science.gov (United States)

    Stathopoulos, V N; Papandreou, A; Kanellopoulou, D; Stournaras, C J

    2013-11-15

    In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in an increase of mechanical strength. Moreover, leaching tests performed according to the Europeans standards on the EAFD-block samples showed that the quantities of heavy metals leached from crushed blocks were within the regulatory limits. Thus the EAFD-blocks can be regarded as material of no environmental concern.

  11. Portland cement-blast furnace slag blends in oilwell cementing applications

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D.T.; DiLullo, G.; Hibbeler, J. [and others

    1995-12-31

    Recent investigations of blast furnace slag cementing technologies. have been expanded to include Portland cement/blast furnace slag blends. Mixtures of Portland cement and blast furnace slag, while having a long history of use in the construction industry, have not been used extensively in oilwell cementing applications. Test results indicate that blending blast furnace slag with Portland cement produces a high quality well cementing material. Presented are the design guidelines and laboratory test data relative to mixtures of blast furnace slag and Portland cements. Case histories delineating the use of blast furnace slag - Portland cement blends infield applications are also included.

  12. Altitude effects on combustion in residential furnaces with fan assist

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.; Fleck, B.A.; Ackerman, M.Y.; Dale, J.D.; Wilson, D.J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2002-07-01

    Five residential furnaces were tested to determine if altitude has an effect on the performance of modern furnaces equipped with fan assisted flue venting systems. The tests were conducted at 3 altitudes, 50 m, 685 m and 2050 m above sea level at sites in Vancouver, Edmonton, and Fortress Mountain, Alberta. Current furnace derating practices require that furnaces at high altitude have small fuel openings or decreased fuel supply manifold pressures. However, it is possible that modern furnaces with fan driven combustion venting do not have to be derated to the same extent. Propane and natural gas were the fuel sources for the tests. It was confirmed that since most residential systems are designed to operate at 100 per cent excess air, the current derating standard practice is overly conservative. The effects of altitude on carbon monoxide and carbon dioxide levels were also examined, along with burner and igniter operating characteristics, heat exchanger operating temperatures, and blocked-vent shutoff combustion performance. 1 tab., 3 figs.

  13. Model reduction for experimental thermal characterization of a holding furnace

    Science.gov (United States)

    Loussouarn, Thomas; Maillet, Denis; Remy, Benjamin; Dan, Diane

    2017-09-01

    Vacuum holding induction furnaces are used for the manufacturing of turbine blades by loss wax foundry process. The control of solidification parameters is a key factor for the manufacturing of these parts. The definition of the structure of a reduced heat transfer model with experimental identification through an estimation of its parameters is required here. Internal sensors outputs, together with this model, can be used for assessing the thermal state of the furnace through an inverse approach, for a better control. Here, an axisymmetric furnace and its load have been numerically modelled using FlexPDE, a finite elements code. The internal induction heat source as well as the transient radiative transfer inside the furnace are calculated through this detailed model. A reduced lumped body model has been constructed to represent the numerical furnace. The model reduction and the estimation of the parameters of the lumped body have been made using a Levenberg-Marquardt least squares minimization algorithm, using two synthetic temperature signals with a further validation test.

  14. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 3, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R & D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degrees}F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400{degrees}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

  15. Advanced Stirling Convertor Heater Head Durability and Reliability Quantification

    Science.gov (United States)

    Krause, David L.; Shah, Ashwin R.; Korovaichuk, Igor; Kalluri, Sreeramesh

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified the high efficiency Advanced Stirling Radioisotope Generator (ASRG) as a candidate power source for long duration Science missions, such as lunar applications, Mars rovers, and deep space missions, that require reliable design lifetimes of up to 17 years. Resistance to creep deformation of the MarM-247 heater head (HH), a structurally critical component of the ASRG Advanced Stirling Convertor (ASC), under high temperatures (up to 850 C) is a key design driver for durability. Inherent uncertainties in the creep behavior of the thin-walled HH and the variations in the wall thickness, control temperature, and working gas pressure need to be accounted for in the life and reliability prediction. Due to the availability of very limited test data, assuring life and reliability of the HH is a challenging task. The NASA Glenn Research Center (GRC) has adopted an integrated approach combining available uniaxial MarM-247 material behavior testing, HH benchmark testing and advanced analysis in order to demonstrate the integrity, life and reliability of the HH under expected mission conditions. The proposed paper describes analytical aspects of the deterministic and probabilistic approaches and results. The deterministic approach involves development of the creep constitutive model for the MarM-247 (akin to the Oak Ridge National Laboratory master curve model used previously for Inconel 718 (Special Metals Corporation)) and nonlinear finite element analysis to predict the mean life. The probabilistic approach includes evaluation of the effect of design variable uncertainties in material creep behavior, geometry and operating conditions on life and reliability for the expected life. The sensitivity of the uncertainties in the design variables on the HH reliability is also quantified, and guidelines to improve reliability are discussed.

  16. Solar dryer with thermal storage and biomass-backup heater

    Energy Technology Data Exchange (ETDEWEB)

    Madhlopa, A. [Department of Physics and Biochemical Sciences, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi); Ngwalo, G. [Department of Mechanical Engineering, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi)

    2007-04-15

    An indirect type natural convection solar dryer with integrated collector-storage solar and biomass-backup heaters has been designed, constructed and evaluated. The major components of the dryer are biomass burner (with a rectangular duct and flue gas chimney), collector-storage thermal mass and drying chamber (with a conventional solar chimney). The thermal mass was placed in the top part of the biomass burner enclosure. The dryer was fabricated using simple materials, tools and skills, and it was tested in three modes of operation (solar, biomass and solar-biomass) by drying twelve batches of fresh pineapple (Ananas comosus), with each batch weighing about 20 kg. Meteorological conditions were monitored during the dehydration process. Moisture and vitamin C contents were determined in both fresh and dried samples. Results show that the thermal mass was capable of storing part of the absorbed solar energy and heat from the burner. It was possible to dry a batch of pineapples using solar energy only on clear days. Drying proceeded successfully even under unfavorable weather conditions in the solar-biomass mode of operation. In this operational mode, the dryer reduced the moisture content of pineapple slices from about 669 to 11% (db) and yielded a nutritious dried product. The average values of the final-day moisture-pickup efficiency were 15%, 11% and 13% in the solar, biomass and solar-biomass modes of operation respectively. It appears that the solar dryer is suitable for preservation of pineapples and other fresh foods. Further improvements to the system design are suggested. (author)

  17. Emission factors of gaseous pollutants from recent kerosene space heaters and fuels available in France in 2010.

    Science.gov (United States)

    Carteret, M; Pauwels, J-F; Hanoune, B

    2012-08-01

    Laboratory measurements of the gaseous emission factors (EF) from two recent kerosene space heaters (wick and injector) with five different fuels have been conducted in an 8-m(3) environmental chamber. The two heaters tested were found to emit mainly CO(2), CO, NO, NO(2), and some volatile organic compounds (VOCs). NO(2) is continuously emitted during use, with an EF of 100-450 μg per g of consumed fuel. CO is normally emitted mainly during the first minutes of use (up to 3 mg/g). Formaldehyde and benzene EFs were quantified at 15 and 16 μg/g, respectively, for the wick heater. Some other VOCs, such as 1,3-butadiene, were detected with lower EFs. We demonstrated the unsuitability of a 'biofuel' containing fatty acid methyl esters for use with the wick heater, and that the accumulation of soot on the same heater, whatever the fuel, leads to a dramatic increase in the CO EF, up to 16 mg/g, which could be responsible for chronic and acute CO intoxications. Our results show that in spite of new technologies and emission standards for unvented kerosene space heaters, as well as for the fuels, the use of these heaters in indoor environments still leads to NO(x) levels in excess of current health recommendations. Whereas injection heaters generate more nitrogen oxides than wick heaters, prolonged use of the latter leads to a soot buildup, concomitant with high CO emissions, which could be responsible for acute and chronic intoxications. The use of a biofuel in a wick heater is also of concern. Maintenance of the heaters and adequate ventilation of the room during use of kerosene space heaters are therefore of prime importance to reduce personal exposure. © 2011 John Wiley & Sons A/S.

  18. Structural ceramics containing electric arc furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Stathopoulos, V.N., E-mail: vasta@teihal.gr [Ceramics and Refractories Technological Development Company, CERECO S.A., 72nd km Athens Lamia National Road, P.O. Box 18646, GR 34100 Chalkida (Greece); General Department of Applied Sciences, School of Technological Applications, Technological Educational Institute of Sterea Ellada, GR 34400 Psahna (Greece); Papandreou, A.; Kanellopoulou, D.; Stournaras, C.J. [Ceramics and Refractories Technological Development Company, CERECO S.A., 72nd km Athens Lamia National Road, P.O. Box 18646, GR 34100 Chalkida (Greece)

    2013-11-15

    Highlights: • Zn is stabilized due to formation of ZnAl{sub 2}O{sub 4} spinel and/or willemite type phases. • EAFD/clay fired mixtures exhibit improved mechanical properties. • Hollow bricks were successfully fabricated from the mixtures studied. • Laboratory articles and scaled up bricks found as environmentally inert materials. -- Abstract: In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in

  19. Evaluation on chemical stability of lead blast furnace (LBF) and imperial smelting furnace (ISF) slags.

    Science.gov (United States)

    Yin, Nang-Htay; Sivry, Yann; Guyot, François; Lens, Piet N L; van Hullebusch, Eric D

    2016-09-15

    The leaching behavior of Pb and Zn from lead blast furnace (LBF) and imperial smelting furnace (ISF) slags sampled in the North of France was studied as a function of pHs and under two atmospheres (open air and nitrogen). The leaching of major elements from the slags was monitored as a function of pH (4, 5.5, 7, 8.5 and 10) under both atmospheres for different slag-water interaction times (1 day and 9 days). The leaching results were coupled with a geochemical model; Visual MINTEQ version 3.0, and a detailed morphological and mineralogical analysis was performed on the leached slags by scanning and transmission electron microscopy (SEM and TEM). Significant amounts of Ca, Fe and Zn were released under acidic conditions (pH 4) with a decrease towards the neutral to alkaline conditions (pH 7 and 10) for both LBF and ISF slags. On the other hand, Fe leachability was limited at neutral to alkaline pH for both slags. The concentrations of all elements increased gradually after 216 h compared to initial 24 h of leaching period. The presence of oxygen under open-air atmosphere not only enhanced oxidative weathering but also encouraged formation of secondary oxide and carbonate phases. Formation of carbonates and clay minerals was suggested by Visual MINTEQ which was further confirmed by SEM & TEM. The hydration and partial dissolution of hardystonite, as well as the destabilization of amorphous glassy matrix mainly contributed to the release of major elements, whereas the spinel related oxides were resistant against pH changes and atmospheres within the time frame concerned for both LBF and ISF slags. The total amount of Pb leached out at pH 7 under both atmospheres suggested that both LBF and ISF slags are prone to weathering even at neutral environmental conditions.

  20. A Composite Model Predictive Control Strategy for Furnaces

    Institute of Scientific and Technical Information of China (English)

    Hao Zang; Hongguang Li; Jingwen Huang; Jia Wang

    2014-01-01

    Tube furnaces are essential and primary energy intensive facilities in petrochemical plants. Operational optimi-zation of furnaces could not only help to improve product quality but also benefit to reduce energy consumption and exhaust emission. Inspired by this idea, this paper presents a composite model predictive control (CMPC) strategy, which, taking advantage of distributed model predictive control architectures, combines tracking nonlinear model predictive control and economic nonlinear model predictive control metrics to keep process running smoothly and optimize operational conditions. The control ers connected with two kinds of communi-cation networks are easy to organize and maintain, and stable to process interferences. A fast solution algorithm combining interior point solvers and Newton's method is accommodated to the CMPC realization, with reason-able CPU computing time and suitable online applications. Simulation for industrial case demonstrates that the proposed approach can ensure stable operations of furnaces, improve heat efficiency, and reduce the emission effectively.

  1. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    Science.gov (United States)

    Reynolds, Quinn G.

    2016-11-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  2. Thermal valorisation of automobile shredder residue: injection in blast furnace.

    Science.gov (United States)

    Mirabile, Daphne; Pistelli, Maria Ilaria; Marchesini, Marina; Falciani, Roberta; Chiappelli, Lisa

    2002-01-01

    Wastes with residual heating value, according to the trend of the world legislation, could be thermally reused. The present study is conducted to verify the possibility of thermal valorisation of a waste, denominated fluff, by injection in blast furnace. The fluff, arising from the automobile shredder operations, is a waste characterised by a high organic matrix and is potentially dangerous due to the heavy metals, oils filter and halogenated plastics content. The first step of the work is the chemical, physical and toxicological characterisation of this material. Then the fluff injection in a blast furnace tuyere is theoretically analysed with a mathematical model. Finally, experimental trials are conducted in a pilot plant, simulating the most important part of the blast furnace: the raceway, in order to analyse process and industrial aspects. In view of an industrial application a first economical evaluation is carried out on the basis of model and experimental results.

  3. Investigation on the Potentials of Cupola Furnace Slag in Concrete

    Directory of Open Access Journals (Sweden)

    Stephen Adeyemi Alabi

    2013-12-01

    Full Text Available The compressive strength of the concrete designed using blast cupola furnace slag and granulated cupola slag as a coarse aggregate and partial replacement for cement was investigated. A series of experimental studies were conducted involve concrete production in two stages. The first stage comprised of normal aggregate concrete (NAC produced with normal aggregates and 100% ordinary Portland cement (OPC. Meanwhile, the second stage involved production of concrete comprising of cupola furnace slag an aggregates with 100% ordinary Portland cement (OPC and subsequently with 2%, 4%, 6%, 8% and 10% cementitious replacement with granulated cupola furnace slag that had been grounded and milled to less than 75 µm diameter. The outcomes of compressive strength test conducted on the slag aggregate concrete (SAC with and without granulated slag cementitious replacement were satisfactory compared to normal aggregate concretes (NAC.

  4. Evaporation of graphite using a solar furnace: production of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Laplaze, D.; Bernier, P.; Journet, C.; Vie, V. [Groupe de Dynamique des Phases Condensees, Univ. de Montpellier II (France); Flamant, G.; Philippot, E.; Lebrun, M. [Inst. de Sciences et de Genie des Materiaux et Procedes, Centre du Four Solaire Felix Trombe, 66 - Font-Romeu (France)

    1997-12-31

    We have previously shown that the high intensity of solar radiation, obtained with the Odeillo (France) solar furnace facilities, can be used to vaporize graphite in inert gas atmosphere to produce fullerenes. After a short survey of the possible mechanisms of formation of these molecules, we report some experimental results in agreement with the proposed model and discuss the possibilities of increasing the fullerenes yield which currently reaches 20%. One of these possibilities consists in the use of the 1000 kW solar furnace of the Institute and we report results of simulation for this furnace which show that temperature of the sublimation zone can be greater than the needed 3300 K necessary to have convenient efficiency. (orig.)

  5. Simulation of chondrule formation in the DLR solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sauerborn, M.; Neumann, A. [German Aerospace Center (DLR), High Flux Solar Furnace, Solar Energy Technology, Cologne (Germany); Klerner, S. [Inst. of Mineralogy and Geochemistry, Univ. of Cologne (Germany); Seboldt, W.; Hanowski, N. [German Aerospace Center (DLR), Inst. of Space Sensor Technology and Planetary Exploration, Cologne (Germany)

    2001-07-01

    A new vacuum chamber was installed in the DLR solar furnace in Cologne and tested for the first time in an experiment with small solid samples being melted and solidified subsequently. The goal of the actual project is to simulate the formation of so-called 'chondrules' - constituents of meteorites - by heating appropriate mineral samples with the concentrated beam of a solar furnace. The experiment has to be carried out under vacuum or oxygen free conditions. The project is a co-operation between the High Flux Solar Furnace of the DLR in Cologne (a department of the Solar Technology Division), the Mission Architecture and Advanced Technologies Section (a department of the Institute of Space Sensor Technology and Planetary Exploration of the DLR) and the Institute of Mineralogy and Geochemistry of the University of Cologne. (orig.)

  6. Solar furnace satellite for large diameter crystal growth in space

    Science.gov (United States)

    Overfelt, Tony; Wells, Mark; Blake, John

    1993-02-01

    Investigators worldwide are preparing experiments to test the influence of low gravity found in space on the growth of many crystalline materials. However, power limitations prevent existing space crystal growth furnaces from being able to process samples any larger than about 2 cm, and in addition, the background microgravity levels found on the Space Shuttle are not low enough to significantly benefit samples much larger than 2 cm. This paper describes a novel concept of a free-flying platform utilizing well-established solar furnace technology to enable materials processing in space experiments on large-diameter crystals. The conceptual design of this Solar Furnace Satellite is described along with its operational scenario and the anticipated g levels.

  7. CHARACTERIZATION AND ANALISYS OF A FURNACE TO FABRICATE SOLAR CELLS

    Directory of Open Access Journals (Sweden)

    Sérgio Boscato Garcia

    2013-06-01

    Full Text Available The solar cell industry has presented high growth rates and dealt with a large portfolio of suppliers for specific equipments like diffusion furnaces needed to produce the pn junction in the fabrication of silicon devices. The aim of this paper is to present the thermal analysis and the characterization of diffusions carried out in the first diffusion furnace developed and fabricated in Brazil. Longitudinal and radial temperature profiles were measured and analyzed. Results of the characterization defined a processing zone of 200 mm with temperature variation lower than 6°C for the temperatures up to 965°C. In the processing zone, 40 silicon wafers can be processed. Diffusion processes were performed in monocrystalline silicon wafers and n+ regions doped with phosphorus presented standard deviation of sheet resistance slightly higher than that obtained in imported commercial furnaces. Wafer contamination was not observed during diffusion processes and the minority carrier lifetime was improved.

  8. The challenge of improving electric arc furnace efficiency

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, E.H. (Tekon Services Ltd., Whitby, Ontario (Canada)); Goodwill, J.E.; Klesser, D.E. (EPRI, Pittsburgh, PA (United States). Center for Materials Production)

    1994-05-01

    Electric arc furnace requirements for electrical energy are increasing more rapidly than generation and distribution capacity. Electric arc furnace technology is reviewed with respect to energy requirements. Although the use of water-cooled panels, increased power levels and higher oxygen inputs, for example, all increase the rate of energy loss, they do not necessarily result in an increase in energy losses per ton. The increase in loss rate (energy/hour) may be more than offset by a decrease in cycle time. This article attempts to summarize the impact of various process variable discussed in a recent report on electric arc furnace efficiency issued by the Electric Power Research Institute's (EPRI) Center for Materials Production (CMP). These include meltshop logistics, operating practices, energy input, scrap preheating and pollution control.

  9. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    Science.gov (United States)

    Reynolds, Quinn G.

    2017-02-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  10. Compacting of fly dusts from cupola and electric arc furnace

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-01-01

    Full Text Available Recycling and utilization of dust waste is important not only from the point of view of its usage as an alternative source of raw materials, but regarding the environmental problems also. Dust emissions arise from thermal and chemical or physical processes and mechanical actions. Two kinds of fl y dusts from cupola furnaces (hot and cold blast cupola furnace and fl y dust from electric arc furnace were used by experiments. They were pelletized only with addition of water and briquetted with diff erent addition of water glass, bentonite and cement. Quality of briquettes was tested by compression – strength test and by break down test in green state, after drying and afterstoring (1 month.

  11. DC Arc Plasma Furnace Melting of Waste Incinerator Fly Ash

    Institute of Scientific and Technical Information of China (English)

    CHEN Mingzhou; MENG Yuedong; SHI Jiabiao; KUANG Jingan; NI Guohua; LIU Wei; JIANG Yiman

    2009-01-01

    Municipal solid waste incinerator (MSWI) fly ash was melted using a set of direct current (DC) arc plasma furnace system for the first time in China.At a feed-rate of flying ash of 80 kg/h,the temperature at the gas outlet was above 1300℃.Dioxins in the off-gas were recorded as 0.029 ng I-TEQ/Nm3 (international toxic equivalent,I-TEQ),well below 0.5 ng TEQ/Nm3 (toxic equivalent,TEQ),while those in the melted product(slag)were 0.00035 ng/g I-TEQ.Molten slag from the furnace showed excellent resistance against the leaching of heavy metals.These results prove that the plasma furnace is effective for the detoxification and stabilization of MSWI fly ash.

  12. Direct Current Electric Arc-Electroslag Ladle Furnace

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to solve the high consumption problem of small capacity ladle furnace (LF), the operation principle and control method of the DC arc and electroslag heating ladle furnace are introduced. With only one arcing electrode, the distance between the arc and the wall of ladle is enlarged, and consequently the consumption of the ladle refractory is decreased. In the invention, a signal electrode is embedded in the refractory lining of the ladle, which contacts directly with the liquid steel and the ladle shell. Two graphite anode ends are submerged in the slag layer. The signal electrode is used as voltage reference during refining process. The electroslag voltage between anode end and liquid steel is applied to control the depth of anode end in the slag layer during the refining process with this ladle furnace.

  13. Genetic algorithms for multicriteria shape optimization of induction furnace

    Science.gov (United States)

    Kůs, Pavel; Mach, František; Karban, Pavel; Doležel, Ivo

    2012-09-01

    In this contribution we deal with a multi-criteria shape optimization of an induction furnace. We want to find shape parameters of the furnace in such a way, that two different criteria are optimized. Since they cannot be optimized simultaneously, instead of one optimum we find set of partially optimal designs, so called Pareto front. We compare two different approaches to the optimization, one using nonlinear conjugate gradient method and second using variation of genetic algorithm. As can be seen from the numerical results, genetic algorithm seems to be the right choice for this problem. Solution of direct problem (coupled problem consisting of magnetic and heat field) is done using our own code Agros2D. It uses finite elements of higher order leading to fast and accurate solution of relatively complicated coupled problem. It also provides advanced scripting support, allowing us to prepare parametric model of the furnace and simply incorporate various types of optimization algorithms.

  14. Building America Case Study: Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test, Minneapolis, Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    T. Schirber, B. Schoenbauer

    2017-06-01

    High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high-performance water heaters difficult to justify economically. However, recent advancements in high-performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high-efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands.

  15. Effect of Uniformly and Nonuniformly Coated Al2O3 Nanoparticles over Glass Tube Heater on Pool Boiling

    Directory of Open Access Journals (Sweden)

    Nitin Doifode

    2016-01-01

    Full Text Available Effect of uniformly and nonuniformly coated Al2O3 nanoparticles over plain glass tube heater on pool boiling heat transfer was studied experimentally. A borosilicate glass tube coated with Al2O3 nanoparticle was used as test heater. The boiling behaviour was studied by using high speed camera. Result obtained for pool boiling shows enhancement in heat transfer for nanoparticle coated surface heater and compared with plain glass tube heater. Also heat transfer coefficient for nonuniformly coated nanoparticles was studied and compared with uniformly coated and plain glass tube. Coating effect of nanoparticles over glass tube increases its surface roughness and thereby creates more nucleation sites.

  16. Loss on Ignition Furnace Acceptance and Operability Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, D.C.

    2000-06-01

    The purpose of this Acceptance Test Procedure and Operability Test Procedure (ATP/OTP)is to verify the operability of newly installed LOI equipment, including a model 1608FL CM{trademark} Furnace, a dessicator, and balance. The operability of the furnace will be verified. The arrangement of the equipment placed in Glovebox 157-3/4 to perform Loss on Ignition (LOI) testing on samples supplied from the Thermal Stabilization line will be verified. In addition to verifying proper operation of the furnace, this ATP/OTP will also verify the air flow through the filters, verify a damper setting to establish and maintain the required differential pressure between the glovebox and the room pressure, and test the integrity of the newly installed HEPA filter. In order to provide objective evidence of proper performance of the furnace, the furnace must heat 15 crucibles, mounted on a crucible rack, to 1000 C, according to a program entered into the furnace controller located outside the glovebox. The glovebox differential pressure will be set to provide the 0.5 to 2.0 inches of water (gauge) negative pressure inside the glovebox with an airflow of 100 to 125 cubic feet per minute (cfm) through the inlet filter. The glovebox inlet Glfilter will he flow tested to ensure the integrity of the filter connections and the efficiency of the filter medium. The newly installed windows and glovebox extension, as well as all disturbed joints, will be sonically tested via ultra probe to verify no leaks are present. The procedure for DOS testing of the filter is found in Appendix A.

  17. The influence of sunshape on the DLR solar furnace beam

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, A.; Witzke, A. [Deutsches Zentrum fuer Luft und Raumfahrt e.V., Koeln (Germany). Solare Energietechnik

    1999-08-01

    The circumsolar ratio CSR is often used as a simple description of the relevant solar energy feature of the solar brightness distribution, known as sunshape. The variation of the CSR can affect the performance of solar concentrators. DLR has conducted sunshape studies since the beginning of the design phase of the DLR Solar Furnace in 1992. In addition, in 1996 a mobile sunshape measurement system was developed with which many CSR measurements have been performed since then. These investigations are still going on for statistical purposes in parallel with the operation of the solar furnace. This work shows new and unique data of simultaneous sunshape records and solar furnace beam diameter measurements. For narrow sun conditions with a CSR < 1% the solar furnace beam has a diameter of less than 13 cm. Atmospheric conditions with a higher forward scattering can cause the CSR to exceed 10%, sometimes even above 40%. In the latter case the focal beam measurement showed a beam diameter of more than 16 cm. The increase of the focal diameter turned out to be linear with respect to CSR variation. The measured sunshapes were introduced into the ray-tracing model OPTEC, built for solar furnace and heliostat field simulation. The model results for the DLR Solar Furnace flux maps were compared to the measurements. The model does not show the same linear trend for increasing CSR, but the deviation is not too pronounced. The influence of CSR on the focal spot size leads to a nonlinear decrease with direct normal irradiance of the power collected by a predesigned receiver aperture. Depending on the aperture size, an additional decrease of the order of 10-15% will be encountered under higher CSR conditions. (author)

  18. Furnace Blower Electricity: National and Regional Savings Potential

    Energy Technology Data Exchange (ETDEWEB)

    Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

    2008-05-16

    Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less

  19. Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    David Yuill

    2008-06-30

    The following document is the final report for DE-FC26-05NT42327: Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater. This work was carried out under a cooperative agreement from the Department of Energy's National Energy Technology Laboratory, with additional funding from Keltech, Inc. The objective of the project was to improve the temperature control performance of an electric tankless water heater (TWH). The reason for doing this is to minimize or eliminate one of the barriers to wider adoption of the TWH. TWH use less energy than typical (storage) water heaters because of the elimination of standby losses, so wider adoption will lead to reduced energy consumption. The project was carried out by Building Solutions, Inc. (BSI), a small business based in Omaha, Nebraska. BSI partnered with Keltech, Inc., a manufacturer of electric tankless water heaters based in Delton, Michigan. Additional work was carried out by the University of Nebraska and Mike Coward. A background study revealed several advantages and disadvantages to TWH. Besides using less energy than storage heaters, TWH provide an endless supply of hot water, have a longer life, use less floor space, can be used at point-of-use, and are suitable as boosters to enable alternative water heating technologies, such as solar or heat-pump water heaters. Their disadvantages are their higher cost, large instantaneous power requirement, and poor temperature control. A test method was developed to quantify performance under a representative range of disturbances to flow rate and inlet temperature. A device capable of conducting this test was designed and built. Some heaters currently on the market were tested, and were found to perform quite poorly. A new controller was designed using model predictive control (MPC). This control method required an accurate dynamic model to be created and required significant tuning to the controller before good control was achieved. The MPC

  20. Numerical Simulation of Fluid Flow in Blast Furnace Hearth

    Institute of Scientific and Technical Information of China (English)

    ZHAO Min-ge; SUN Tian-liang; CHENG Su-sen; GAO Zheng-kai

    2005-01-01

    The liquid flow in blast furnace hearth can result in the erosion of hearth. To prolong the campaign life of blast furnace, the effects of coke bed structure, coke porosity and deepness of taphole on liquid flow in hearth were studied by κ-ε model under different conditions. The results show that with the decrease of coke porosity, the peripheral flow is enhanced. Moreover, the existence of narrow coke free zone and the deepness reduction of taphole can increase the flowability on the bottom of hearth.

  1. Simulation study on radiative imaging of combustion flame in furnace

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Radiative imaging of combustion flame in furnace of power plant plays an increasingly important role in combustion diagnosis. This paper presents a new method for calculating the radiative imaging of three-dimensional (3D) combustion flame based on Monte Carlo method and optical lens imaging. Numerical simulation case was used in this study. Radiative images were calculated and images obtained can not only present the energy distribution on the charge-coupled device (CCD) camera target plane but also reflect the energy distribution condition in the simulation furnace. Finally the relationships between volume elements and energy shares were also discussed.

  2. Energy Balance in DC Arc Plasma Melting Furnace

    Institute of Scientific and Technical Information of China (English)

    ZHAO Peng; MENG Yuedong; YU Xinyao; CHEN Longwei; JIANG Yiman; NI Guohua; CHEN Mingzhou

    2009-01-01

    In order to treat hazardous municipal solid waste incinerator's (MSWI) fly ash, a new DC arc plasma furnace was developed. Taking an arc of 100 V/1000 A DC as an example,the heat transfer characteristics of the DC arc plasma, ablation of electrodes, heat properties of the fly ash during melting, heat transfer characteristics of the flue gas, and heat loss of the furnace were analyzed based on the energy conservation law, so as to achieve the total heat information and energy balance during plasma processing, and to provide a theoretical basis for an optimized design of the structure and to improve energy efficiency.

  3. Optimizing of Work Arc Furnace to Decopperisation of Flash Slag

    Directory of Open Access Journals (Sweden)

    Bydałek A.W.

    2015-09-01

    Full Text Available Discusses an attempt to optimize the operation of an electric furnace slag to be decopperisation suspension of the internal recycling process for the production of copper. The paper presents a new method to recover copper from metallurgical slags in arc-resistance electric furnace. It involves the use of alternating current for a first period reduction, constant or pulsed DC in the final stage of processing. Even distribution of the electric field density in the final phase of melting caused to achieve an extremely low content of metallic copper in the slag phase. They achieved by including the economic effects by reducing the time reduction.

  4. Regulation of the Heating Furnace in Tube Rolling Mill

    Directory of Open Access Journals (Sweden)

    Kostúr, K.

    2006-01-01

    Full Text Available The rolling of tube requires homogeneous heating along the tube. In steel work the difference along tube was sometimes 80 °C. The reasons for bad homogeneousness of heating were analyzed by a simulation model of heating furnace. Then the proposal was made for a new control system and also the proposal for reconstruction of furnace. In this contribution also a description of some ways for improvement of heating was made. The main contribution is the proposal of an adaptive system

  5. Prospects for the building of solar furnaces for industry

    Energy Technology Data Exchange (ETDEWEB)

    La Blanchetais, C.H. (CNRS, Groupe des Laboratoires de Bellevue, 92 - Meudon-Bellevue (France))

    1982-01-01

    After a brief summary of the interest of using solar energy, a review of the different kinds of devices is presented: solar furnaces, projects of solar plants of high power. The main characteristics of the 1,000 kw Odeillo solar furnace are reviewed. For the concentrator a project of device derived from the paraboloide is presented and studied with details. For the field of orientators a preliminary study of the energy to the minor in the solar layer reflected by a plane orientator of the finite dimensions shows that it is possible to consider the possibility of reduction of the heliostat field.

  6. Double mirror polyheliostat solar furnace of 1000 kW thermal power

    Energy Technology Data Exchange (ETDEWEB)

    Riskiev, T.T.; Suleimanov, S.K.H. (Uzbek Academy of Sciences, Scientific Association ' Physics Sun' , Tashkent (USSR))

    1991-12-01

    The optical-energetic scheme, construction and performance of a double mirror polyheliostat solar furnace of 1000 kW thermal power are outlined and first results of material synthesis in this solar furnace are reported. (orig.).

  7. Temperature optimization of an electric heater by emissivity variation of heating elements

    Directory of Open Access Journals (Sweden)

    Cédric Hemmer

    2014-11-01

    Full Text Available This note addresses an industrial application concerning the way to optimize the surface temperature of commercial electrical heater. The aim of this paper is to reduce the temperature on accessible surfaces and electrical heater in order to respect the European standards and quality criteria imposed by the manufacturer. This target must be achieved by changing only the emissivity distribution of the electric heater components. A numerical study of the natural convection flow coupled with radiation is carried out in a heated room with an electric heater. The physical model includes the transport equations of mass, momentum, energy and radiative transfer which are solved numerically. Thermo-physical properties of the fluid are assumed to be dependent of the temperature. The numerical simulations are carried out for a two-dimensional, steady and turbulent flow using the finite volume approach. Results showed the influence of emissivity distribution of the electric heater components. The reducing of the heating foil emissivity allowed to decrease the radiative contribution on the foil and its temperature.

  8. Accelerator Magnet Quench Heater Technology and Quality Control Tests for the LHC High Luminosity Upgrade

    CERN Document Server

    Meuter, Florian

    The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) foresees the installation of new superconducting Nb3Sn magnets. For the protection of these magnets, quench heaters are placed on the magnet coils. The quench heater circuits are chemically etched from a stainless steel foil that is glued onto a flexible Polyimide film, using flexible printed circuit production technology. Approximately 500 quench heaters with a total length of about 3000 m are needed for the HL-LHC magnets. In order to keep the heater circuit electrical resistance in acceptable limits, an approximately 10 µm-thick Cu coating is applied onto the steel foil. The quality of this Cu coating has been found critical in the quench heater production. The work described in this thesis focuses on the characterisation of Cu coatings produced by electrolytic deposition, sputtering and electron beam evaporation. The quality of the Cu coatings from different manufacturers has been assessed for instance by ambient temperature electrical res...

  9. A modernized high-pressure heater protection system for nuclear and thermal power stations

    Science.gov (United States)

    Svyatkin, F. A.; Trifonov, N. N.; Ukhanova, M. G.; Tren'kin, V. B.; Koltunov, V. A.; Borovkov, A. I.; Klyavin, O. I.

    2013-09-01

    Experience gained from operation of high-pressure heaters and their protection systems serving to exclude ingress of water into the turbine is analyzed. A formula for determining the time for which the high-pressure heater shell steam space is filled when a rupture of tubes in it occurs is analyzed, and conclusions regarding the high-pressure heater design most advisable from this point of view are drawn. A typical structure of protection from increase of water level in the shell of high-pressure heaters used in domestically produced turbines for thermal and nuclear power stations is described, and examples illustrating this structure are given. Shortcomings of components used in the existing protection systems that may lead to an accident at the power station are considered. A modernized protection system intended to exclude the above-mentioned shortcomings was developed at the NPO Central Boiler-Turbine Institute and ZioMAR Engineering Company, and the design solutions used in this system are described. A mathematical model of the protection system's main elements (the admission and check valves) has been developed with participation of specialists from the St. Petersburg Polytechnic University, and a numerical investigation of these elements is carried out. The design version of surge tanks developed by specialists of the Central Boiler-Turbine Institute for excluding false operation of the high-pressure heater protection system is proposed.

  10. Development of the robot for pressurizer electric heater inspection and repairing

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seung Ho; Kim, Seung Ho; Su, Yong Chil

    1998-01-01

    In this study a robot system has been developed for inspection and maintenance of the pressurizer and the rod heater. The developed robot system consists of four parts: two links, a support frame, a movable gripper, and a controller box. The robot is attached on the support frame, which is attached at the man-way flange of the pressurizer such that the robot is positioned inside pressurizer. To access arbitrary heater, at first two links horizontally rotate, and then the gripper suspended by two steel wires moves up and down by turing wire drum because the rod heaters are located about 8 meters under the robot and are arranged in two circular rows. The robot must be designed under several constraint such as its weight and collision with pressurizer wall or spray nozzle because the robot is positioned and moves inside the pressurizer. To verify that the designed robot is free from collision during installation procedure and it can access any desired rod heater, it is simulated by 3-dimensional graphic software (RobCAD). For evaluating stress of the support frame finite element analysis is performed by using the ANSYS code. For gripping the rod heater the passive self-locking mechanism is adopted, which is made up three balls and springs. Because the mechanism is very simple, it is very hardly defected than that adopted motor. (author). 11 refs., 8 tabs., 13 figs

  11. The effects of operating conditions on emissions from masonry heaters and sauna stoves

    Energy Technology Data Exchange (ETDEWEB)

    Tissari, Jarkko; Hytoenen, Kati; Sippula, Olli [Fine Particle and Aerosol Technology Laboratory, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland); Jokiniemi, Jorma [Fine Particle and Aerosol Technology Laboratory, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland)]|[VTT, Technical Research Centre of Finland, Fine Particles, PO Box 1000, 02044 VTT, Espoo (Finland)

    2009-03-15

    Emissions from masonry heaters and sauna stoves were studied. In the sauna stove the production of organic gaseous carbon (OGC) at 10 gC kg{sup -1} (per kilogram of fuel), carbon monoxide (CO) at 55 g kg{sup -1}, fine particle mass (PM{sub 1}) at 5 g kg{sup -1} and number emissions (N) at 1.8 x 10{sup 15} kg{sup -1} was higher than in other measured appliances. In a modern technology masonry heater with a unique grate, the emissions were very low: 0.4 gC kg{sup -1} OGC, 14 g kg{sup -1} CO and 0.7 g kg{sup -1} PM{sub 1}. Conventional masonry heaters, using small logs, clearly produced higher emissions when compared to using large logs. Doubling the fuel load caused emission factors to increase by up to 4- times (OGC), except for the number emission, which decreased from 4.0 x 10{sup 14} to 2.0 x 10{sup 14} kg{sup -1}. From the conventional masonry heater 90% of the PM was emitted during the firing phase. Its combustion process is different to that in stoves or conventional open fireplaces. The insufficient supply of air, due to too fast pyrolysis, and increased ash release, due to the high combustion temperature, are the main parameters which cause high particle and gas emissions in masonry heaters and sauna stoves. (author)

  12. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    Science.gov (United States)

    Krause, David L.; Kantzos, Pete T.

    2006-01-01

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110 W Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  13. Experimental investigation of three different solar air heaters: Energy and exergy analyses

    Energy Technology Data Exchange (ETDEWEB)

    Alta, Deniz; Ertekin, C.; Yaldiz, Osman [Department of Farm Machinery, Faculty of Agricultural Engineering, Akdeniz University, 07059 Antalya (Turkey); Bilgili, Emin [Cukurova Agricultural Research Institute, Adana (Turkey)

    2010-10-15

    The present study aims to compare three different types of designed flat-plate solar air heaters, two having fins (Type II and Type III) and the other without fins (Type I), one of the heater with a fin had single glass cover (Type III) and the others had double glass covers (Type I and Type II). The energy and exergy output rates of the solar air heaters were evaluated for various air flow rates (25, 50 and 100 m{sup 3}/m{sup 2} h), tilt angle (0 , 15 and 30 ) and temperature conditions versus time. Based on the energy and exergy output rates, heater with double glass covers and fins (Type II) is more effective and the difference between the input and output air temperature is higher than of the others. Besides, it is found that the circulation time of air inside the heater played a role more important than of the number of transparent sheet. Lower air flow rates should be preferred in the applications of which temperature differences is more important. (author)

  14. Analysis and selection of high pressure heaters design for a new generation of NPP with BN-1200 reactor plant

    Science.gov (United States)

    Yurchenko, A. Yu.; Sukhorukov, Yu. G.; Trifonov, N. N.; Grigor'eva, E. B.; Esin, S. B.; Svyatkin, F. A.; Nikolaenkova, E. K.; Prikhod'ko, P. Yu.; Nazarov, V. V.

    2016-09-01

    In the development of advanced high-power steam-turbine plants (STP), special attention is placed on the design of reliable and economical high-pressure heater (HPH) capable to maintain the specified thermal hydraulic performance during the entire service life. Comparative analysis of the known designs of HPH, such as the spiral-collector HPH, the collector-coiled HPH, the collector-platen HPH, modular HPH, and the chamber HPH, was carried out. The advantages and disadvantages of each design were pointed. For better comparison, the heaters are separated into two groups—horizontal and vertical ones. The weight and dimension characteristics, the materials and features of the basic elements, and operating features of variety HPH are presented. At operating the spiral-collector HPH used in the majority of regenerative schemes of high-pressure STP of thermal and nuclear power plants, the disadvantages reducing the economy and reliability of their operation were revealed. The recommendations directed to the reliability growth of HPH, the decrease of subcooling the feed water, the increase of compactness are stated. Some of these were developed by the specialists of OAO NPO TsKTI and are successfully implemented on the thermal power plants and nuclear power plants. Technical solutions to reduce the cost of regeneration system and the weight of chamber HPH, reduce the thickness of the tube plate of HPH, and reliability assurance of the cooler of steam and condensate built in the HPH casing under all operating conditions were proposed. Three types of feed water chambers for vertical and horizontal chamber HPH are considered in detail, the constructive solutions that have been implemented in HPH of the regeneration system of turbines of 1000 and 1200 MW capacity with water-moderated water-cooled power reactor (WMWCPR) are described. The optimal design of HPH for the regeneration system of high-pressure turbine plant with BN-1200 reactor was selected.

  15. The effect of blast furnace coke quality on the possibility of its use

    OpenAIRE

    A. Konstanciak

    2013-01-01

    In the paper behavior of the blast-furnace coke in the high temperature was presented. Comparative analysis of the chemical composition of the blast-furnace coke and the heat treatment of it were done. Coefficients M10 and M40 with the thermo-abrasiveness for chosen cokes were compared. The influence of ash content of the coke on the blast-furnace bed permeability was defined. Usefulness of the coke to blast-furnace process was also defined.

  16. Numerical Study of the Reduction Process in an Oxygen Blast Furnace

    Science.gov (United States)

    Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng

    2016-02-01

    Based on computational fluid dynamics, chemical reaction kinetics, principles of transfer in metallurgy, and other principles, a multi-fluid model for a traditional blast furnace was established. The furnace conditions were simulated with this multi-fluid mathematical model, and the model was verified with the comparison of calculation and measurement. Then a multi-fluid model for an oxygen blast furnace in the gasifier-full oxygen blast furnace process was established based on this traditional blast furnace model. With the established multi-fluid model for an oxygen blast furnace, the basic characteristics of iron ore reduction process in the oxygen blast furnace were summarized, including the changing process of the iron ore reduction degree and the compositions of the burden, etc. The study found that compared to the traditional blast furnace, the magnetite reserve zone in the furnace shaft under oxygen blast furnace condition was significantly reduced, which is conducive to the efficient operation of blast furnace. In order to optimize the oxygen blast furnace design and operating parameters, the iron ore reduction process in the oxygen blast furnace was researched under different shaft tuyere positions, different recycling gas temperatures, and different allocation ratios of recycling gas between the hearth tuyere and the shaft tuyere. The results indicate that these three factors all have a substantial impact on the ore reduction process in the oxygen blast furnace. Moderate shaft tuyere position, high recycling gas temperature, and high recycling gas allocation ratio between hearth and shaft could significantly promote the reduction of iron ore, reduce the scope of the magnetite reserve zone, and improve the performance of oxygen blast furnace. Based on the above findings, the recommendations for improvement of the oxygen blast furnace design and operation were proposed.

  17. Building America Case Study: Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test, Minneapolis, Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-12

    High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.

  18. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, A. N., E-mail: tgtu-kafedra-ese@mail.ru [Tver State Technical University (Russian Federation)

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  19. 40 CFR 424.50 - Applicability; description of the other calcium carbide furnaces subcategory.

    Science.gov (United States)

    2010-07-01

    ... calcium carbide furnaces subcategory. 424.50 Section 424.50 Protection of Environment ENVIRONMENTAL... CATEGORY Other Calcium Carbide Furnaces Subcategory § 424.50 Applicability; description of the other calcium carbide furnaces subcategory. The provisions of this subpart are applicable to...

  20. Assessment of Performance Characteristic of Solar Air Heater with Assorted Geometries - A Review

    Directory of Open Access Journals (Sweden)

    Alok Kumar Rohit

    2016-01-01

    Full Text Available Artificial roughness is an efficient way for increasing the heat transfer rate in solar air heater with the corresponding improvement in its thermal performance. A viscous sub-layer is responsible for the low heat transfer coefficient between absorber plate and flowing air. Repeated ribs in form of artificial roughness are an effective way to increase the heat transfer rate and improving the performance of solar air heater. Artificial roughness of the absorber plate is much economical and effective way to improve the thermal performance of solar air heater. Several investigators have done various investigations to improve heat transfer coefficient with little penalty of friction factor. They have also developed different correlation for heat transfer coefficient and friction factor. The correlations developed for heat transfer and friction factor by various investigators have been reviewed and presented.