WorldWideScience

Sample records for fungus fusarium oxysporum

  1. Sorne aspects of Fusarium genus and the Fusarium oxysporum species Algunos aspectos de los hongos del genero Fusarium y de la especie Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Arbeláez Torres Germán

    2000-12-01

    Full Text Available Since the proposal of the utilization of the fungus Fusarium oxysporum for biological control of coca plants in Colombia, there is a serious discussion on different Colombian meetings about the advantages and disadvantages of its application. However in these discussions there was not enough knowledge of the fungus Fusarium oxysporum. This paper presents sorne biological and pathological aspects ofthe genus Fusarium and the species Fusarium oxysporum.Ante la propuesta de utilizar el hongo Fusarium oxysporum
    f.sp. erythoxyli para el control biológico de las plantas de
    coca en Colombia, se ha abierto una amplia discusión en distintos ámbitos nacionales sobre las bondades y los aspectos
    negativos de su aplicación. Sin embargo, en dicha discusión
    se ha notado un gran desconocimiento sobre el hongo
    Fusarium oxysporum. En este artículo se presentan diversos
    aspectos biológicos y patológicos del género Fusarium y de
    la especie Fusarium oxysporum.

  2. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum

    Science.gov (United States)

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-01-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557

  3. Oxygen requirement for denitrification by the fungus Fusarium oxysporum.

    Science.gov (United States)

    Zhou, Z; Takaya, N; Sakairi, M A; Shoun, H

    2001-01-01

    The effects of dioxygen (O2) on the denitrification activity of the fungus Fusarium oxysporum MT-811 in fed-batch culture in a stirred jar fermentor were examined. The results revealed that fungal denitrifying activity requires a minimal amount of O2 for induction, which is repressed by excess O2. The optimal O2 supply differed between the denitrification substrates : 690 micromol O2 x h(-1) (g dry cell wt.)(-1) for nitrate (NO3-) and about 250 micromol O2 x h(-1) (g dry cell wt.)(-1) for nitrite (NO2-). The reduction of NO3- required more O2 than that of NO2- . With an optimal O2 supply, 80% and 52% of nitrogen atoms in NO3- and NO2-, respectively, were recovered as the denitrification product N2O. These features of F. oxysporum differ from those of bacterial denitrifiers that work exclusively under anoxic conditions. The denitrification activity of F. oxysporum MT-811 mutants with impaired NO3- assimilation was about double that of the wild-type strain, suggesting competition for the substrate between assimilatory and dissimilatory types of NO3- reduction. These results showed that denitrification by F. oxysporum has unique features, namely, a minimal O2 requirement and competition with assimilatory NO3-.

  4. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-12-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  5. Ethanol effect on metabolic activity of the ethalogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Paschos, Thomas; Xiros, Charilaos; Christakopoulos, Paul

    2015-03-12

    Fusarium oxysporum is a filamentous fungus which has attracted a lot of scientific interest not only due to its ability to produce a variety of lignocellulolytic enzymes, but also because it is able to ferment both hexoses and pentoses to ethanol. Although this fungus has been studied a lot as a cell factory, regarding applications for the production of bioethanol and other high added value products, no systematic study has been performed concerning its ethanol tolerance levels. In aerobic conditions it was shown that both the biomass production and the specific growth rate were affected by the presence of ethanol. The maximum allowable ethanol concentration, above which cells could not grow, was predicted to be 72 g/L. Under limited aeration conditions the ethanol-producing capability of the cells was completely inhibited at 50 g/L ethanol. The lignocellulolytic enzymatic activities were affected to a lesser extent by the presence of ethanol, while the ethanol inhibitory effect appears to be more severe at elevated temperatures. Moreover, when the produced ethanol was partially removed from the broth, it led to an increase in fermenting ability of the fungus up to 22.5%. The addition of F. oxysporum's system was shown to increase the fermentation of pretreated wheat straw by 11%, in co-fermentation with Saccharomyces cerevisiae. The assessment of ethanol tolerance levels of F. oxysporum on aerobic growth, on lignocellulolytic activities and on fermentative performance confirmed its biotechnological potential for the production of bioethanol. The cellulolytic and xylanolytic enzymes of this fungus could be exploited within the biorefinery concept as their ethanol resistance is similar to that of the commercial enzymes broadly used in large scale fermentations and therefore, may substantially contribute to a rational design of a bioconversion process involving F. oxysporum. The SSCF experiments on liquefied wheat straw rich in hemicellulose indicated that the

  6. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia

    Science.gov (United States)

    Molina, Agustin B.; Daniells, Jeff; Fourie, Gerda; Hermanto, Catur; Chao, Chih-Ping; Fabregar, Emily; Sinohin, Vida G.; Masdek, Nik; Thangavelu, Raman; Li, Chunyu; Yi, Ganyun; Mostert, Lizel; Viljoen, Altus

    2017-01-01

    Fusarium oxysporum formae specialis cubense (Foc) is a soil-borne fungus that causes Fusarium wilt, which is considered to be the most destructive disease of bananas. The fungus is believed to have evolved with its host in the Indo-Malayan region, and from there it was spread to other banana-growing areas with infected planting material. The diversity and distribution of Foc in Asia was investigated. A total of 594 F. oxysporum isolates collected in ten Asian countries were identified by vegetative compatibility groups (VCGs) analysis. To simplify the identification process, the isolates were first divided into DNA lineages using PCR-RFLP analysis. Six lineages and 14 VCGs, representing three Foc races, were identified in this study. The VCG complex 0124/5 was most common in the Indian subcontinent, Vietnam and Cambodia; whereas the VCG complex 01213/16 dominated in the rest of Asia. Sixty-nine F. oxysporum isolates in this study did not match any of the known VCG tester strains. In this study, Foc VCG diversity in Bangladesh, Cambodia and Sri Lanka was determined for the first time and VCGs 01221 and 01222 were first reported from Cambodia and Vietnam. New associations of Foc VCGs and banana cultivars were recorded in all the countries where the fungus was collected. Information obtained in this study could help Asian countries to develop and implement regulatory measures to prevent the incursion of Foc into areas where it does not yet occur. It could also facilitate the deployment of disease resistant banana varieties in infested areas. PMID:28719631

  7. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia.

    Directory of Open Access Journals (Sweden)

    Diane Mostert

    Full Text Available Fusarium oxysporum formae specialis cubense (Foc is a soil-borne fungus that causes Fusarium wilt, which is considered to be the most destructive disease of bananas. The fungus is believed to have evolved with its host in the Indo-Malayan region, and from there it was spread to other banana-growing areas with infected planting material. The diversity and distribution of Foc in Asia was investigated. A total of 594 F. oxysporum isolates collected in ten Asian countries were identified by vegetative compatibility groups (VCGs analysis. To simplify the identification process, the isolates were first divided into DNA lineages using PCR-RFLP analysis. Six lineages and 14 VCGs, representing three Foc races, were identified in this study. The VCG complex 0124/5 was most common in the Indian subcontinent, Vietnam and Cambodia; whereas the VCG complex 01213/16 dominated in the rest of Asia. Sixty-nine F. oxysporum isolates in this study did not match any of the known VCG tester strains. In this study, Foc VCG diversity in Bangladesh, Cambodia and Sri Lanka was determined for the first time and VCGs 01221 and 01222 were first reported from Cambodia and Vietnam. New associations of Foc VCGs and banana cultivars were recorded in all the countries where the fungus was collected. Information obtained in this study could help Asian countries to develop and implement regulatory measures to prevent the incursion of Foc into areas where it does not yet occur. It could also facilitate the deployment of disease resistant banana varieties in infested areas.

  8. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia.

    Science.gov (United States)

    Mostert, Diane; Molina, Agustin B; Daniells, Jeff; Fourie, Gerda; Hermanto, Catur; Chao, Chih-Ping; Fabregar, Emily; Sinohin, Vida G; Masdek, Nik; Thangavelu, Raman; Li, Chunyu; Yi, Ganyun; Mostert, Lizel; Viljoen, Altus

    2017-01-01

    Fusarium oxysporum formae specialis cubense (Foc) is a soil-borne fungus that causes Fusarium wilt, which is considered to be the most destructive disease of bananas. The fungus is believed to have evolved with its host in the Indo-Malayan region, and from there it was spread to other banana-growing areas with infected planting material. The diversity and distribution of Foc in Asia was investigated. A total of 594 F. oxysporum isolates collected in ten Asian countries were identified by vegetative compatibility groups (VCGs) analysis. To simplify the identification process, the isolates were first divided into DNA lineages using PCR-RFLP analysis. Six lineages and 14 VCGs, representing three Foc races, were identified in this study. The VCG complex 0124/5 was most common in the Indian subcontinent, Vietnam and Cambodia; whereas the VCG complex 01213/16 dominated in the rest of Asia. Sixty-nine F. oxysporum isolates in this study did not match any of the known VCG tester strains. In this study, Foc VCG diversity in Bangladesh, Cambodia and Sri Lanka was determined for the first time and VCGs 01221 and 01222 were first reported from Cambodia and Vietnam. New associations of Foc VCGs and banana cultivars were recorded in all the countries where the fungus was collected. Information obtained in this study could help Asian countries to develop and implement regulatory measures to prevent the incursion of Foc into areas where it does not yet occur. It could also facilitate the deployment of disease resistant banana varieties in infested areas.

  9. Onychomycosis by Fusarium oxysporum probably acquired in utero

    Directory of Open Access Journals (Sweden)

    Vania O. Carvalho

    2014-10-01

    Full Text Available Fusarium oxysporum has been described as a pathogen causing onychomycosis, its incidence has been increasing in immunocompetent and disseminated infection can occur in immunosuppressed individuals. We describe the first case of congenital onychomycosis in a child caused by Fusarium oxysporum. The infection being acquired in utero was proven by molecular methods with the identification of the fungus both in the nail and placenta, most probably as an ascending contamination/infection in a HIV-positive, immunosuppressed mother.

  10. AKTIVITAS ANTIFUNGI EKSTRAK DAUN KEMANGI (Ocimum americanum L. TERHADAP FUNGI Fusarium oxysporum Schlecht

    Directory of Open Access Journals (Sweden)

    Zainal Berlian

    2016-01-01

    Full Text Available Fusarium oxysporum Schlecht. a parasitic fungus that cause leaf wilt disease in plants. Meanwhile, basil (Ocimum americanum L. is a plant that contains of the active compound in the form of phenols which have antifungal activity. This study aimed to test whether the extract of leaves of basil have antifungal activity againts Fusarium oxysporum Schlecht. and determine the optimum concentration to inhibit the growth of the fungus Fusarium oxysporum Schlecht. Antifungal test is done by using paper disc diffusion method. The study design used was a completely randomized design with 4 treatments and 6 replications. The treatment is K0 (0% w/v, K1 (5% w/v, K2 (10% w/v, and K3 (15% w/v. The results showed that the leaf extract of basil have antifungal activity against Fusarium oxysporum Schlecht. Inhibition zone on K0, K1, K2, and K3 are each 0,0 mm, 1,49 mm, 2,46 mm, and 2,01 mm. The optimum concentration of antifungal activity of extract of basil, namely the K2 concentration (10% w/v. Based on analysis of variance (ANOVA, the concentration of basil leaf extract provides significant differences (p > 0,05 on fungus Fusarium oxysporum Schlecht., where Fcount > Ftable is 4,5 > 3,1.

  11. Molecular characterization of a subtilase from the vascular wilt fungus Fusarium oxysporum.

    Science.gov (United States)

    Di Pietro, A; Huertas-González, M D; Gutierrez-Corona, J F; Martínez-Cadena, G; Méglecz, E; Roncero, M I

    2001-05-01

    The gene prt1 was isolated from the tomato vascular wilt fungus Fusarium oxysporum f. sp. lycopersici, whose predicted amino acid sequence shows significant homology with subtilisin-like fungal proteinases. Prt1 is a single-copy gene, and its structure is highly conserved among different formae speciales of F. oxysporum. Prt1 is expressed constitutively at low levels during growth on different carbon and nitrogen sources and strongly induced in medium containing collagen and glucose. As shown by reverse transcription-polymerase chain reaction and fluorescence microscopy of F. oxysporum strains carrying a prt1-promoter-green fluorescent protein fusion, prt1 is expressed at low levels during the entire cycle of infection on tomato plants. F. oxysporum strains transformed with an expression vector containing the prt1 coding region fused to the inducible endopolygalacturonase pg1 gene promoter and grown under promoter-inducing conditions secreted high levels of extracellular subtilase activity that resolved into a single peak of pI 4.0 upon isoelectric focusing. The active fraction produced two clearing bands of 29 and 32 kDa in sodium dodecyl sulfate gels containing gelatin. Targeted inactivation of prt1 in F. oxysporum f. sp. lycopersici had no detectable effect on mycelial growth, sporulation, and pathogenicity on tomato plants.

  12. Isolation, identification, and culture optimization of a novel glycinonitrile-hydrolyzing fungus-Fusarium oxysporum H3.

    Science.gov (United States)

    Gong, Jin-Song; Lu, Zhen-Ming; Shi, Jing-Song; Dou, Wen-Fang; Xu, Hong-Yu; Zhou, Zhe-Min; Xu, Zheng-Hong

    2011-10-01

    Microbial transformation of glycinonitrile into glycine by nitrile hydrolase is of considerable interest to green chemistry. A novel fungus with high nitrile hydrolase was newly isolated from soil samples and identified as Fusarium oxysporum H3 through 18S ribosomal DNA, 28S ribosomal DNA, and the internal transcribed spacer sequence analysis, together with morphology characteristics. After primary optimization of culture conditions including pH, temperature, carbon/nitrogen sources, inducers, and metal ions, the enzyme activity was greatly increased from 326 to 4,313 U/L. The preferred carbon/nitrogen sources, inducer, and metal ions were glucose and yeast extract, caprolactam, and Cu(2+), Mn(2+), and Fe(2+), respectively. The maximum enzyme formation was obtained when F. oxysporum H3 was cultivated at 30 °C for 54 h with the initial pH of 7.2. There is scanty report about the optimization of nitrile hydrolase production from nitrile-converting fungus.

  13. The effects of Fusarium oxysporum on broomrape (Orobanche egyptiaca) seed germination.

    Science.gov (United States)

    Hasannejad, S; Zad, S Javad; Alizade, H Mohamad; Rahymian, H

    2006-01-01

    Broomrape (Orobanche aegyptiaca L.), one of the most important parasitic weeds in Iran, is a root parasitic plant that can attack several crops such as tobacco, sunflower, tomato and etc. Several methods were used for Orobanche control, however these methods are inefficient and very costly. Biological control is an additional recent tool for the control of parasitic weeds. In order to study of the fungus Fusarium oxysporum (biocontrol agent) effects on broomrape seed germination, two laboratory studies were conducted in Tehran University. In the first experiment, different concentration of GR60 (0, 1, 2 and 5 ppm) as stimulation factor for Orobanche seeds germination were experimented. Results showed that concentrations of GR60 had a significant effect on seed germination. The highest seed germination percent was obtained in 1 ppm. In the second experiment, the effect of Fusarium oxysporum was tested on O. aegyptiaca seeds germination. The fungus Fusarium oxysporum were isolated from infested and juvenile O. aegyptiaca ower stalks in tomato field in karaj. Fungus spores suspension in different concentrations (0 (Control), 10(5) (T1), 10(6) (T2), 10(7) (T3) and 3 x 10(7) (T4)) from potato dextrose agar (PDA) prepared and together with 1ppm of GR60 concentration were tested on O. aegyptiaca seeds. Results show that the highest inhibition of seed germination obtained in 10(5) spores/ml. With increasing of suspension concentrations, inhibition percent was reduced and mortality of seeds germ tube was increased. In this investigation, Fusarium oxysporum can be used to inhibit seed germination, stimulate the "suicidal germination" of seeds and reduce the Orobanche seed bank.

  14. The tomato wilt fungus Fusarium oxysporum f. sp. lycopersici shares common ancestors with nonpathogenic F. oxysporum isolated from wild tomatoes in the Peruvian Andes.

    Science.gov (United States)

    Inami, Keigo; Kashiwa, Takeshi; Kawabe, Masato; Onokubo-Okabe, Akiko; Ishikawa, Nobuko; Pérez, Enrique Rodríguez; Hozumi, Takuo; Caballero, Liliana Aragón; de Baldarrago, Fatima Cáceres; Roco, Mauricio Jiménez; Madadi, Khalid A; Peever, Tobin L; Teraoka, Tohru; Kodama, Motoichiro; Arie, Tsutomu

    2014-01-01

    Fusarium oxysporum is an ascomycetous fungus that is well-known as a soilborne plant pathogen. In addition, a large population of nonpathogenic F. oxysporum (NPF) inhabits various environmental niches, including the phytosphere. To obtain an insight into the origin of plant pathogenic F. oxysporum, we focused on the tomato (Solanum lycopersicum) and its pathogenic F. oxysporum f. sp. lycopersici (FOL). We collected F. oxysporum from wild and transition Solanum spp. and modern cultivars of tomato in Chile, Ecuador, Peru, Mexico, Afghanistan, Italy, and Japan, evaluated the fungal isolates for pathogenicity, VCG, mating type, and distribution of SIX genes related to the pathogenicity of FOL, and constructed phylogenies based on ribosomal DNA intergenic spacer sequences. All F. oxysporum isolates sampled were genetically more diverse than FOL. They were not pathogenic to the tomato and did not carry SIX genes. Certain NPF isolates including those from wild Solanum spp. in Peru were grouped in FOL clades, whereas most of the NPF isolates were not. Our results suggested that the population of NPF isolates in FOL clades gave rise to FOL by gaining pathogenicity.

  15. Interaction of Fusarium oxysporum with Meloidogyne incognita on Roselle

    Directory of Open Access Journals (Sweden)

    K. H. Ooi

    1999-12-01

    Full Text Available Forty isolates of Fusarium oxysporum were tested for their pathogenicity to roselle (Hibiscus sabdariffa L. var. sabdariffa in a plant house. The most virulent isolate was later used in a disease complex experiment with a root-knot nematode Meloidogyne incognita. Disease severity of roselle seedlings inoculated with a combination of fungus and nematode was higher than those inoculated with either fungus or nematode individually. Seedlings that were inoculated with fungus two weeks after nematode inoculation showed the highest disease severity compared to that inoculated with nematode two weeks after fungal inoculation or that inoculated simultaneously with both pathogens. It seems that root infections by M. incognita increased the colonization of roselle by F. oxysporum and subsequently caused higher damage to the roselle seedlings. The high wilt incidence in the presence of M. incognita and F. oxysporum may be due to the synergistic relationship between these two pathogens.

  16. First report of Fusarium oxysporum species complex infection in zebrafish culturing system.

    Science.gov (United States)

    Kulatunga, D C M; Dananjaya, S H S; Park, B K; Kim, C-H; Lee, J; De Zoysa, M

    2017-04-01

    Fusarium oxysporum species complex (FOSC) is a highly diverse fungus. Recently, F. oxysporum infection was identified from zebrafish (Danio rerio) culturing system in Korea. Initially, a rapid whitish smudge was appeared in the water with the fungal blooming on walls of fish tanks. Microscopic studies were conducted on fungal hyphae, colony pigmentation and chlamydospore formation and the presence of macro- and microspores confirmed that the isolated fungus as F. oxysporum. Furthermore, isolated F. oxysporum was confirmed by internal transcribed spacer sequencing which matched (100%) to nine F. oxysporum sequences available in GenBank. Experimental hypodermic injection of F. oxysporum into adult zebrafish showed the development of fungal mycelium and pathogenicity similar to signs observed. Histopathologic results revealed a presence of F. oxysporum hyphae in zebrafish muscle. Fusarium oxysporum growth was increased with sea salt in a concentration-dependent manner. Antifungal susceptibility results revealed that F. oxysporum is resistant to copper sulphate (up to 200 μg mL -1 ) and sensitive to nystatin (up to 40 μg mL -1 ). This is the first report of FOSC from zebrafish culture system, suggesting it appears as an emerging pathogen, thus posing a significant risk on zebrafish facilities in the world. © 2016 John Wiley & Sons Ltd.

  17. Root rot symptoms in sugar beet lines caused by Fusarium oxysporum f. sp. betae

    Science.gov (United States)

    The soil-borne fungus Fusarium oxysporum may cause both Fusarium yellows and Fusarium root rot diseases with severe yield losses in cultivated sugar beet worldwide. These two diseases cause similar foliar symptoms but different root response and have been proposed to be due to two distinct F. oxyspo...

  18. Role in pathogenesis of two endo-beta-1,4-xylanase genes from the vascular wilt fungus Fusarium oxysporum.

    Science.gov (United States)

    Gómez-Gómez, E; Ruíz-Roldán, M C; Di Pietro, A; Roncero, M I G; Hera, C

    2002-04-01

    A gene, xyl4, whose predicted amino acid sequence shows significant homology with family 11 xylanases, was identified from the tomato vascular wilt fungus Fusarium oxysporum f. sp. lycopersici. Expression of xyl4 is induced on oat spelt xylan as the carbon source, subject to carbon catabolite repression and preferentially expressed at alkaline ambient pH. Transcript levels of xyl4 on an inducing carbon source are differentially regulated by the nature and concentration of the nitrogen source. As shown by RT-PCR, xyl4 is expressed by F. oxysporum during the entire cycle of infection on tomato plants. Targeted inactivation of xyl4 and of xyl3, a previously identified gene of F. oxysporum f. sp. lycopersici encoding a family 10 xylanase, had no detectable effect on virulence on tomato plants, demonstrating that both genes are not essential for pathogenicity.

  19. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains

    Directory of Open Access Journals (Sweden)

    De Souza Gabriel IH

    2005-07-01

    Full Text Available Abstract Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver nanoparticles were in the range of 20–50 nm in dimensions. The reduction of the metal ions occurs by a nitrate-dependent reductase and a shuttle quinone extracellular process. The potentialities of this nanotechnological design based in fugal biosynthesis of nanoparticles for several technical applications are important, including their high potential as antibacterial material.

  20. Fusarium Wilt Caused by Fusarium oxysporum on Passionfruit in Korea

    Directory of Open Access Journals (Sweden)

    Jae-Ho Joa

    2018-03-01

    Full Text Available From 2014 to 2016, Fusarium wilt disease was found on fassionfruit in Iksan and Jeju, Korea. Symptoms included wilting of foliage, drying and withering of leaves, and stunting of the plants. The infected plants eventually died during growth. Colonies on potato dextrose agar were pinkish white, and felted with cottony and aerial mycelia with 35 mm after one week. Macroconidia were falcate to almost straight, thin-walled and usually 2-3 septate. Microconidia were usually formed on monophialides of the hyphae and were hyaline, smooth, oval to ellipsoidal, aseptate or medianly 1-septate, very occasionally 2-septate, slightly constricted at the septa, 3-12 x 2.5-6 μm. On the basis of the morphological characteristics and phylogenetic analyses of two molecular markers, internal transcribed spacer rDNA and translation elongation factor 1α, the fungus was identified as Fusarium oxysporum. Pathogenicity of a representative isolate was proved by artificial inoculation, fulfilling Koch's postulates. To our knowledge, this is the first report on the occurrence of F. oxysporum on fassionfruit in Korea.

  1. Genetic transformation of Fusarium oxysporum f.sp. gladioli with Agrobacterium to study pathogenesis in Gladiolus

    Science.gov (United States)

    Fusarium rot caused by Fusarium oxysporum f.sp. gladioli (Fog) is one of the most serious diseases of Gladiolus, both in the field and in stored bulbs. In order to study the pathogenesis of this fungus, we have transformed Fog with Agrobacterium tumefaciens binary vectors containing the hygromycin B...

  2. Biological control of wilt disease complex on tomato crop caused by Meloidogyne javanica and Fusarium oxysporum f.sp. lycopersici by Verticillium leptobactrum.

    Science.gov (United States)

    Hajji-Hedfi, Lobna; Regaieg, Hajer; Larayedh, Asma; Chihani, Noura; Horrigue-Raouani, Najet

    2017-09-23

    The efficacy of Verticillium leptobactrum isolate (HR1) was evaluated in the control of root-knot nematode and Fusarium wilt fungus under laboratory and greenhouse conditions. Five concentrations of V. leptobactrum (HR1) isolate were tested for their nematicidal and fungicidal activities against Meloidogyne javanica and Fusarium oxysporum f.sp. lycopersici in vitro. Laboratory trials showed that mycelium growth inhibition of Fusarium wilt fungus was correlated to the increase of the concentration of culture filtrate. All dilutions showed efficiency in reducing the growth of Fusarium oxysporum f.sp. lycopersici. The greatest nematicidal activity was observed at 50, 75, and 100% filtrate dilutions. The egg hatching percentage reached 42%, and the juvenile's corrected mortality registered 90% for the above treatments. In greenhouse experiment, the biocontrol agent fungus enhanced significantly tomato growth components (height and weight of plant and root). The multiplication rate of root-knot nematode and the Fusarium wilt disease incidence declined significantly with soil application of V. leptobactrum as with chemical treatments. The isolate HR1 was efficient to control wilt disease complex caused by M. javanica and Fusarium oxysporum f.sp. lycopersici.

  3. Somaclonal variation of sugar beet resistant to pathogenic root rot Fusarium oxysporum var. orthoceras

    Directory of Open Access Journals (Sweden)

    Urazaliev Kairat

    2013-01-01

    Full Text Available Sugar beet (Beta vulgaris L. - one of the most important crop in the world. In Kazakhstan, it is a traditional and major source of domestic sugar. The industry of cultivation and production of sugar beet is one of the priority areas of agricultural development of the country. In this paper, we studied the regeneration ability of different genotypes of sugar beet explants on selective media with the culture filtrate of the pathogen fungus F. oxysporum var. orthoceras. From the roots and shoots of sugar beet the pathogen Fusarium root rot was isolated. Was obtained pure cultures of the isolated pathogen. As a result, of morphological and cultural descriptions, as well as microbiological analysis it was revealed that the isolated pathogen is Fusarium Oxysporum. The results showed the pathogenicity of the fungus. For regeneration in vitro of the sugar beet genotypes resistant to the pathogen the culture media was optimized to the culture filtrate of the fungus F. oxysporum var. orthoceras. The frequency of shoot regeneration, depending on the genotype, was 1,0-12,5 %. On these explants the multiple shoot formations were observed.

  4. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    Science.gov (United States)

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  5. Detection of Fusarium oxysporum f.sp. basilici in substrates and roots by PCR.

    Science.gov (United States)

    Pugliese, M; Ferrocino, I; Gullino, M L; Garibaldi, A

    2013-01-01

    Fusarium oxysporum is a soil-borne fungus that causes vascular wilts in a wide variety of plant species. Basil is recognized as an ecological niche for Fusarium oxysporum f.sp. basilici (FOB) and this fungus is now present in most countries where basil is cultivated. The rapid identification of the species affecting basil plants is necessary to define a successful method for crop protection. The aim of this study was to develop a PCR method for the rapid detection of Fusarium oxysporum f. sp. basilici in substrates. The specificity of the primers used was tested using the DNA extracted directly from substrate samples. Fusarium oxysporum f.sp. basilici was artificially inoculated with decreasing amounts in a commercial substrate (sphagnum peat moss) and in a mixture with 40% of municipal compost, after steam disinfestation. Basil seeds (cv. Fine verde) were sown in pots that were laid on a bench in the greenhouse. At time 0 and after 7, 14 and 21 days from the inoculation, substrate and root samples were collected and prepared for microbial analysis and for the DNA extraction. DNA extraction was carried out using NucleoSpin Soil Kit (Macherey-Nagel, Germany). PCR amplification for the specific detection was carried out using primer sets Bik 1 (5'-ATT CAA GAG CTA AAG GTC C-3') and Bik 4 (5'-TTT GAC CAA GAT AGA TGC C-3') for the first PCR, while primers Bik 1 + Bik 2 (5'-AAA GGT AGT ATA TCG GAG G-3') for the nested PCR to increase detection sensitivity. Disease incidence was also assessed 21 days after seeding. The results showed the presence of amplified fragments of the expected size when the concentration of F. oxysporum f.sp. basilici was at least 3.5 Log CFU g(-1) by using DNA extract directly from substrate, before roots were infected by the pathogen. The detection of Fusarium oxysporum f. sp. basilici by PCR method developed in this study is certainly simple and fast and can be useful for its reliable detection in substrate samples, but not to guarantee that

  6. Engineering of the redox imbalance of Fusarium oxysporum enables anaerobic growth on xylose

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Christakopoulos, Paul; Grotkjær, Thomas

    2006-01-01

    Dissimilatory nitrate reduction metabolism, of the natural xylose-fermenting fungus Fusarium oxysporum, was used as a strategy to achieve anaerobic growth and ethanol production from xylose. Beneficial alterations of the redox fluxes and thereby of the xylose metabolism were obtained by taking ad...

  7. The role of strigolactones during plant interactions with the pathogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Foo, Eloise; Blake, Sara N; Fisher, Brendan J; Smith, Jason A; Reid, James B

    2016-06-01

    Strigolactones (SLs) do not influence spore germination or hyphal growth of Fusarium oxysporum. Mutant studies revealed no role for SLs but a role for ethylene signalling in defence against this pathogen in pea. Strigolactones (SLs) play important roles both inside the plant as a hormone and outside the plant as a rhizosphere signal in interactions with mycorrhizal fungi and parasitic weeds. What is less well understood is any potential role SLs may play in interactions with disease causing microbes such as pathogenic fungi. In this paper we investigate the influence of SLs on the hemibiotrophic pathogen Fusarium oxysporum f.sp. pisi both directly via their effects on fungal growth and inside the plant through the use of a mutant deficient in SL. Given that various stereoisomers of synthetic and naturally occuring SLs can display different biological activities, we used (+)-GR24, (-)-GR24 and the naturally occurring SL, (+)-strigol, as well as a racemic mixture of 5-deoxystrigol. As a positive control, we examined the influence of a plant mutant with altered ethylene signalling, ein2, on disease development. We found no evidence that SLs influence spore germination or hyphal growth of Fusarium oxysporum and that, while ethylene signalling influences pea susceptibility to this pathogen, SLs do not.

  8. Production of a new D-amino acid oxidase from the fungus Fusarium oxysporum.

    Science.gov (United States)

    Gabler, M; Fischer, L

    1999-08-01

    The fungus Fusarium oxysporum produced a D-amino acid oxidase (EC 1. 4.3.3) in a medium containing glucose as the carbon and energy source and ammonium sulfate as the nitrogen source. The specific D-amino acid oxidase activity was increased up to 12.5-fold with various D-amino acids or their corresponding derivatives as inducers. The best inducers were D-alanine (2.7 microkat/g of dry biomass) and D-3-aminobutyric acid (2.6 microkat/g of dry biomass). The addition of zinc ions was necessary to permit the induction of peroxisomal D-amino acid oxidase. Bioreactor cultivations were performed on a 50-liter scale, yielding a volumetric D-amino acid oxidase activity of 17 microkat liter(-1) with D-alanine as an inducer. Under oxygen limitation, the volumetric activity was increased threefold to 54 microkat liter(-1) (3,240 U liter(-1)).

  9. The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection

    NARCIS (Netherlands)

    Gawehns, Fleur; Ma, Lisong; Bruning, Oskar; Houterman, Petra M.; Boeren, Sjef; Cornelissen, B.J.C.; Rep, Martijn; Takken, Frank L.W.

    2015-01-01

    Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f.sp. lycopersici (Fol) secretes small proteins that are referred to as SIX (Secreted In Xylem) proteins. Of these, Six1

  10. AMELIORATIVE EFFECT OF GAMMA RADIATION ON SODIUM CHLORIDE STRESSED TOMATO PLANT GROWTH IN SOIL INFESTED WITH FUSARIUM OXYSPORUM F.SP. LYCOPERSICI

    International Nuclear Information System (INIS)

    RIZK, M.A.; BOTROS, H.W.

    2009-01-01

    The present study was carried out to investigate the influence of saline stress and/or gamma radiation on the tomato seedlings development, mycelial growth and sporulation of Fusarium oxysporum. Irradiation of the fungus ameliorated the detrimental effect of salinity and improved the percentage of seedlings emergence and increased the root and shoot lengths and dry weight of tomato seedlings. Also, coupling salinity with irradiation significantly increased the mycelial growth in soil and biomass gain of Fusarium oxysporum up to 2 kGy, above which the growth and sporulation were hardly affected and completely suppressed at 5 kGy. On the other hand, exposure of the tomato seeds up to 4 Gy counteracted the suppressive effect of salinity and increased the growth parameters in presence or absence of the fungus. Fusarium oxysporum f.sp. lycopersici appeared to be tolerant to salinity up to 4.8 EC (millimohse) and highly sensitive to irradiation dose 5 kGy.

  11. How Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum

    NARCIS (Netherlands)

    Di, X.; Takken, F.L.W.; Tintor, N.

    2016-01-01

    Plants interact with a huge variety of soil microbes, ranging from pathogenic to mutualistic. The Fusarium oxysporum (Fo) species complex consists of ubiquitous soil inhabiting fungi that can infect and cause disease in over 120 different plant species including tomato, banana, cotton, and

  12. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum

    NARCIS (Netherlands)

    Schmidt, S.M.; Houterman, P.M.; Schreiver, I.; Ma, L.; Amyotte, S.; Chellappan, B.; Boeren, S.; Takken, F.L.W.; Rep, M.

    2013-01-01

    Background The plant-pathogenic fungus Fusarium oxysporum f.sp.lycopersici (Fol) has accessory, lineage-specific (LS) chromosomes that can be transferred horizontally between strains. A single LS chromosome in the Fol4287 reference strain harbors all known Fol effector genes. Transfer of this

  13. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death.

    Science.gov (United States)

    Gawehns, F; Houterman, P M; Ichou, F Ait; Michielse, C B; Hijdra, M; Cornelissen, B J C; Rep, M; Takken, F L W

    2014-04-01

    Plant pathogens secrete effectors to manipulate their host and facilitate colonization. Fusarium oxysporum f. sp. lycopersici is the causal agent of Fusarium wilt disease in tomato. Upon infection, F. oxysporum f. sp. lycopersici secretes numerous small proteins into the xylem sap (Six proteins). Most Six proteins are unique to F. oxysporum, but Six6 is an exception; a homolog is also present in two Colletotrichum spp. SIX6 expression was found to require living host cells and a knockout of SIX6 in F. oxysporum f. sp. lycopersici compromised virulence, classifying it as a genuine effector. Heterologous expression of SIX6 did not affect growth of Agrobacterium tumefaciens in Nicotiana benthamiana leaves or susceptibility of Arabidopsis thaliana toward Verticillium dahliae, Pseudomonas syringae, or F. oxysporum, suggesting a specific function for F. oxysporum f. sp. lycopersici Six6 in the F. oxysporum f. sp. lycopersici- tomato pathosystem. Remarkably, Six6 was found to specifically suppress I-2-mediated cell death (I2CD) upon transient expression in N. benthamiana, whereas it did not compromise the activity of other cell-death-inducing genes. Still, this I2CD suppressing activity of Six6 does not allow the fungus to overcome I-2 resistance in tomato, suggesting that I-2-mediated resistance is independent from cell death.

  14. Chemical communication between the endophytic fungus Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum.

    Directory of Open Access Journals (Sweden)

    Audrey Combès

    Full Text Available Paraconiothyrium variabile, one of the specific endophytic fungi isolated from the host plant Cephalotaxus harringtonia, possesses the faculty to inhibit the growth of common phytopathogens, thus suggesting a role in its host protection. A strong antagonism between the endophyte P. variabile and Fusarium oxysporum was observed and studied using optic and electronic microscopies. A disorganization of the mycelium of F. oxysporum was thus noticed. Interestingly, the biological effect of the main secondary metabolites isolated from P. variabile against F. oxysporum did not account for this strong antagonism. However, a metabolomic approach of pure fungal strains and confrontation zones using the data analysis tool XCMS were analyzed and pointed out a competition-induced metabolite production by the endophyte in the presence of the phytopathogen. Subsequent MS/MS fragmentations permitted to identify one of the induced metabolites as 13-oxo-9,11-octadecadienoic acid and highlighted a negative modulation of the biosynthesis of beauvericin, one of the most potent mycotoxin of F. oxysporum, during the competition with the endophyte.

  15. Effector profiles distinguish formae speciales of Fusarium oxysporum.

    Science.gov (United States)

    van Dam, Peter; Fokkens, Like; Schmidt, Sarah M; Linmans, Jasper H J; Kistler, H Corby; Ma, Li-Jun; Rep, Martijn

    2016-11-01

    Formae speciales (ff.spp.) of the fungus Fusarium oxysporum are often polyphyletic within the species complex, making it impossible to identify them on the basis of conserved genes. However, sequences that determine host-specific pathogenicity may be expected to be similar between strains within the same forma specialis. Whole genome sequencing was performed on strains from five different ff.spp. (cucumerinum, niveum, melonis, radicis-cucumerinum and lycopersici). In each genome, genes for putative effectors were identified based on small size, secretion signal, and vicinity to a "miniature impala" transposable element. The candidate effector genes of all genomes were collected and the presence/absence patterns in each individual genome were clustered. Members of the same forma specialis turned out to group together, with cucurbit-infecting strains forming a supercluster separate from other ff.spp. Moreover, strains from different clonal lineages within the same forma specialis harbour identical effector gene sequences, supporting horizontal transfer of genetic material. These data offer new insight into the genetic basis of host specificity in the F. oxysporum species complex and show that (putative) effectors can be used to predict host specificity in F. oxysporum. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts

    Directory of Open Access Journals (Sweden)

    Kelly Ishida

    2014-04-01

    Full Text Available The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus .

  17. Management of Fusarium oxysporum f. sp. capsici by leaf extract of Eucalyptus citriodora

    International Nuclear Information System (INIS)

    Shafique, S.; Asif, M.; Shafique, S.

    2015-01-01

    Fusarium wilt of chili (Capsicum annum L.) is an important disease in Pakistan that causes significant yield losses. In the present study, pathogenicity test was conducted using four strains of Fusarium oxysporum f.sp. capsici and ten chili varieties. It revealed that strain B was the most pathogenic strain and variety sky red was the most susceptible while variety Anchal was the most resistant against F. oxysporum strain B. Antifungal bioassays were conducted to find out antimycotic effect of extracts of fruit, bark and leaves of Eucalyptus citriodora (Hook.) against F. oxysporum. Ten concentrations (0, 1.0, 1.5, 2.0, 2.5 and 5%) of methanolic extracts of each plant part were employed against the target pathogen. Leaf extract imparted the maximum (up to 98%) and significant suppression in fungal growth while fruit and bark extracts proved less effective exhibiting only 50-60% reduction in fungal mycelial growth. The work concludes that methanolic extract of leaves of E. citriodora have potential to restrain the disastrous effects of the pathogenic fungus as the plant extracts of Eucalyptus conferred about 85% disease control in chilli plants with significantly high intensity of defense related enzymes under pathogenic stress. (author)

  18. Medium pH in submerged cultivation modulates differences in the intracellular protein profile of Fusarium oxysporum.

    Science.gov (United States)

    da Rosa-Garzon, Nathália Gonsales; Laure, Hélen Julie; Souza-Motta, Cristina Maria de; Rosa, José César; Cabral, Hamilton

    2017-08-09

    Fusarium oxysporum is a filamentous fungus that damages a wide range of plants and thus causes severe crop losses. In fungal pathogens, the genes and proteins involved in virulence are known to be controlled by environmental pH. Here, we report the influence of culture-medium pH (5, 6, 7, and 8) on the production of degradative enzymes involved in the pathogenesis of F. oxysporum URM 7401 and on the 2D-electrophoresis profile of intracellular proteins in this fungus. F. oxysporum URM 7401 was grown in acidic, neutral, and alkaline culture media in a submerged bioprocess. After 96 hr, the crude extract was processed to enzyme activity assays, while the intracellular proteins were obtained from mycelium and analyzed using 2D electrophoresis and mass spectrometry. We note that the diversity of secreted enzymes was changed quantitatively in different culture-medium pH. Also, the highest accumulated biomass and the intracellular protein profile of F. oxysporum URM 7401 indicate an increase in metabolism in neutral-alkaline conditions. The differential profiles of secreted enzymes and intracellular proteins under the evaluated conditions indicate that the global protein content in F. oxysporum URM 7401 is modulated by extracellular pH.

  19. Genetic mapping and identification of quantitative trait loci associated with resistance to Fusarium oxysporum f. sp. niveum races 1 and 2 in watermelon

    Science.gov (United States)

    Fusarium wilt is a major disease of watermelon caused by the soil-borne fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). Fon race 1 is most prevalent throughout the U.S. while race 2 is more virulent. Our overall objective is to identify and utilize ...

  20. An Evaluation Method for the Suppression of Pathogenic Fusarium oxysporum by Soil Microorganisms Using the Dilution Plate Technique.

    Science.gov (United States)

    Mitsuboshi, Masahiro; Kioka, Yuuzou; Noguchi, Katsunori; Asakawa, Susumu

    2016-09-29

    Soil-borne diseases caused by pathogenic microorganisms are one of the main factors responsible for the decline in crop yields in farmlands. Pathogenic Fusarium oxysporum causes serious damage to various crops, and, thus, a feasible diagnostic method for soil-borne diseases is required. We herein examined a simple method to evaluate the suppressiveness of soil microorganisms against a pathogen by co-cultivating indigenous soil microorganisms and a pathogenic fungus (F. oxysporum f. sp. spinaciae). We inoculated F. oxysporum onto the center of agar medium plates mixed with a dilution series of a suspension of organic fertilizers or soil. After an approximately one-week cultivation, the growth degree of F. oxysporum was estimated based on the size of the colonies that formed on the plates. The growth degree of F. oxysporum significantly differed among the organic fertilizers tested, indicating the usefulness of the method for evaluating suppressiveness by organic fertilizers. Differences in the growth degrees of F. oxysporum were associated with the incidence of disease in spinach on soil treated with organic fertilizers and inoculated with a pathogenic F. oxysporum strain. These results suggested that this method provides some useful information on the suppressiveness of organic fertilizers and soil against Fusarium wilt.

  1. Drifter, a novel, low copy hAT-like transposon in Fusarium oxysporum is activated during starvation.

    Science.gov (United States)

    Rep, Martijn; van der Does, H Charlotte; Cornelissen, Ben J C

    2005-06-01

    The facultative pathogenic fungus Fusarium oxysporum is known to harbour many different transposable and/or repetitive elements. We have identified Drifter, a novel DNA transposon of the hAT family in F. oxysporum. It was found adjoining SIX1-H, a truncated homolog of the SIX1 avirulence gene in F. oxysporum f. sp. lycopersici. Absence of a target site duplication as well as the 5' part of SIX1-H suggests that transposition of Drifter into the ancestor of SIX1-H was followed by loss of a chromosomal segment through recombination between Drifters. F. oxysporum isolates belonging to various formae speciales harbour between 0 and 5 full-length copies of Drifter and/or one or more copies with an internal deletion. Transcription of Drifter is activated during starvation for carbon or nitrogen.

  2. A Clonal Lineage of Fusarium oxysporum Circulates in the Tap Water of Different French Hospitals.

    Science.gov (United States)

    Edel-Hermann, Véronique; Sautour, Marc; Gautheron, Nadine; Laurent, Julie; Aho, Serge; Bonnin, Alain; Sixt, Nathalie; Hartemann, Philippe; Dalle, Frédéric; Steinberg, Christian

    2016-11-01

    Fusarium oxysporum is typically a soilborne fungus but can also be found in aquatic environments. In hospitals, water distribution systems may be reservoirs for the fungi responsible for nosocomial infections. F. oxysporum was previously detected in the water distribution systems of five French hospitals. Sixty-eight isolates from water representative of all hospital units that were previously sampled and characterized by translation elongation factor 1α sequence typing were subjected to microsatellite analysis and full-length ribosomal intergenic spacer (IGS) sequence typing. All but three isolates shared common microsatellite loci and a common two-locus sequence type (ST). This ST has an international geographical distribution in both the water networks of hospitals and among clinical isolates. The ST dominant in water was not detected among 300 isolates of F. oxysporum that originated from surrounding soils. Further characterization of 15 isolates by vegetative compatibility testing allowed us to conclude that a clonal lineage of F. oxysporum circulates in the tap water of the different hospitals. We demonstrated that a clonal lineage of Fusarium oxysporum inhabits the water distribution systems of several French hospitals. This clonal lineage, which appears to be particularly adapted to water networks, represents a potential risk for human infection and raises questions about its worldwide distribution. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity

    Science.gov (United States)

    Syed, Asad; Ahmad, Absar

    2013-04-01

    The growing demand for semiconductor [quantum dots (Q-dots)] nanoparticles has fuelled significant research in developing strategies for their synthesis and characterization. They are extensively investigated by the chemical route; on the other hand, use of microbial sources for biosynthesis witnessed the highly stable, water dispersible nanoparticles formation. Here we report, for the first time, an efficient fungal-mediated synthesis of highly fluorescent CdTe quantum dots at ambient conditions by the fungus Fusarium oxysporum when reacted with a mixture of CdCl2 and TeCl4. Characterization of these biosynthesized nanoparticles was carried out by different techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Photoluminescence (PL), X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. CdTe nanoparticles shows antibacterial activity against Gram positive and Gram negative bacteria. The fungal based fabrication provides an economical, green chemistry approach for production of highly fluorescent CdTe quantum dots.

  4. Characterization of vacuolar amino acid transporter from Fusarium oxysporum in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lunprom, Siriporn; Pongcharoen, Pongsanat; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi; Akiyama, Koichi

    2015-01-01

    Fusarium oxysporum causes wilt disease in many plant families, and many genes are involved in its development or growth in host plants. A recent study revealed that vacuolar amino acid transporters play an important role in spore formation in Schizosaccharomyces pombe and Saccharomyces cerevisiae. To investigate the role of vacuolar amino acid transporters of this phytopathogenic fungus, the FOXG_11334 (FoAVT3) gene from F. oxysporum was isolated and its function was characterized. Transcription of FoAVT3 was upregulated after rapamycin treatment. A green fluorescent protein fusion of FoAvt3p was localized to vacuolar membranes in both S. cerevisiae and F. oxysporum. Analysis of the amino acid content of the vacuolar fraction and amino acid transport activities using vacuolar membrane vesicles from S. cerevisiae cells heterologously expressing FoAVT3 revealed that FoAvt3p functions as a vacuolar amino acid transporter, exporting neutral amino acids. We conclude that the FoAVT3 gene encodes a vacuolar neutral amino acid transporter.

  5. Root Proteomic Analysis of Grapevine Rootstocks Inoculated with Rhizophagus irregularis and Fusarium oxysporum f. sp. herbemontis

    Directory of Open Access Journals (Sweden)

    Elisa Vilvert

    Full Text Available ABSTRACT Grapevine decline and death caused by the pathogenic fungus Fusarium oxysporum f. sp. herbemontis is among the main phytosanitary problem for viticulture in southern Brazil. The eradication of infected plants is presently the most common procedure for disease control in vineyards. Inoculation with arbuscular mycorrhizal fungi is an option to reduce or neutralize the negative impacts of soil pathogenic microorganisms, but the mechanisms of plant response involved in this process are not yet completely elucidated. In order to better understand these mechanisms, an experiment was carried out to identify proteins related to plant defence induced by the mycorrhizal fungus after infection with the pathogenic fungus. We used the grapevine rootstocks SO4 and R110 (susceptible and resistant to the pathogenic fungus, respectively inoculated or not inoculated with the mycorrhizal fungus Rhizophagus irregularis, and inoculated or not inoculated with Fusarium oxysporum f. sp. herbemontis. Growth of the rootstocks’ shoot and root and presence of pathogenic symptoms were evaluated. The protein profiles of roots were characterized by two-dimensional electrophoresis and proteins were identified using mass spectrometry. The grapevine rootstocks inoculated with R. irregularis had higher biomass production and lower level of pathogenic symptoms. The R110 rootstock differentially accumulated 73 proteins, while SO4 accumulated 59 proteins. Nine plant-defence proteins were expressed by SO4 rootstock, and six were expressed by R110 rootstock plants. The results confirm the effect of mycorrhizal fungi in plant growth promotion and their potential for biological control against soil pathogenic fungus. Protein expression is dependent on rootstock characteristics and on the combination of plant material with the fungi.

  6. Insights from the Fungus Fusarium oxysporum Point to High Affinity Glucose Transporters as Targets for Enhancing Ethanol Production from Lignocellulose

    Science.gov (United States)

    Ali, Shahin S.; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M.

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing. PMID:23382943

  7. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.

    Directory of Open Access Journals (Sweden)

    Shahin S Ali

    Full Text Available Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km((glucose was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.

  8. Differential gene expression in response to Fusarium oxysporum infection in resistant and susceptible genotypes of flax (Linum usitatissimum L.).

    Science.gov (United States)

    Dmitriev, Alexey A; Krasnov, George S; Rozhmina, Tatiana A; Novakovskiy, Roman O; Snezhkina, Anastasiya V; Fedorova, Maria S; Yurkevich, Olga Yu; Muravenko, Olga V; Bolsheva, Nadezhda L; Kudryavtseva, Anna V; Melnikova, Nataliya V

    2017-12-28

    Flax (Linum usitatissimum L.) is a crop plant used for fiber and oil production. Although potentially high-yielding flax varieties have been developed, environmental stresses markedly decrease flax production. Among biotic stresses, Fusarium oxysporum f. sp. lini is recognized as one of the most devastating flax pathogens. It causes wilt disease that is one of the major limiting factors for flax production worldwide. Breeding and cultivation of flax varieties resistant to F. oxysporum is the most effective method for controlling wilt disease. Although the mechanisms of flax response to Fusarium have been actively studied, data on the plant response to infection and resistance gene candidates are currently very limited. The transcriptomes of two resistant and two susceptible flax cultivars with respect to Fusarium wilt, as well as two resistant BC 2 F 5 populations, which were grown under control conditions or inoculated with F. oxysporum, were sequenced using the Illumina platform. Genes showing changes in expression under F. oxysporum infection were identified in both resistant and susceptible flax genotypes. We observed the predominant overexpression of numerous genes that are involved in defense response. This was more pronounced in resistant cultivars. In susceptible cultivars, significant downregulation of genes involved in cell wall organization or biogenesis was observed in response to F. oxysporum. In the resistant genotypes, upregulation of genes related to NAD(P)H oxidase activity was detected. Upregulation of a number of genes, including that encoding beta-1,3-glucanase, was significantly greater in the cultivars and BC 2 F 5 populations resistant to Fusarium wilt than in susceptible cultivars in response to F. oxysporum infection. Using high-throughput sequencing, we identified genes involved in the early defense response of L. usitatissimum against the fungus F. oxysporum. In response to F. oxysporum infection, we detected changes in the

  9. A proteomics approach to study synergistic and antagonistic interactions of the fungal-bacterial consortium Fusarium oxysporum wild-type MSA 35.

    Science.gov (United States)

    Moretti, Marino; Grunau, Alexander; Minerdi, Daniela; Gehrig, Peter; Roschitzki, Bernd; Eberl, Leo; Garibaldi, Angelo; Gullino, Maria Lodovica; Riedel, Kathrin

    2010-09-01

    Fusarium oxysporum is an important plant pathogen that causes severe damage of many economically important crop species. Various microorganisms have been shown to inhibit this soil-borne plant pathogen, including non-pathogenic F. oxysporum strains. In this study, F. oxysporum wild-type (WT) MSA 35, a biocontrol multispecies consortium that consists of a fungus and numerous rhizobacteria mainly belonging to gamma-proteobacteria, was analyzed by two complementary metaproteomic approaches (2-DE combined with MALDI-Tof/Tof MS and 1-D PAGE combined with LC-ESI-MS/MS) to identify fungal or bacterial factors potentially involved in antagonistic or synergistic interactions between the consortium members. Moreover, the proteome profiles of F. oxysporum WT MSA 35 and its cured counter-part CU MSA 35 (WT treated with antibiotics) were compared with unravel the bacterial impact on consortium functioning. Our study presents the first proteome mapping of an antagonistic F. oxysporum strain and proposes candidate proteins that might play an important role for the biocontrol activity and the close interrelationship between the fungus and its bacterial partners.

  10. Fusarium oxysporum and the Fusarium Wilt Syndrome.

    Science.gov (United States)

    Gordon, Thomas R

    2017-08-04

    The Fusarium oxysporum species complex (FOSC) comprises a multitude of strains that cause vascular wilt diseases of economically important crops throughout the world. Although sexual reproduction is unknown in the FOSC, horizontal gene transfer may contribute to the observed diversity in pathogenic strains. Development of disease in a susceptible crop requires F. oxysporum to advance through a series of transitions, beginning with spore germination and culminating with establishment of a systemic infection. In principle, each transition presents an opportunity to influence the risk of disease. This includes modifications of the microbial community in soil, which can affect the ability of pathogen propagules to survive, germinate, and infect plant roots. In addition, many host attributes, including the composition of root exudates, the structure of the root cortex, and the capacity to recognize and respond quickly to invasive growth of a pathogen, can impede development of F. oxysporum.

  11. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance.

    Science.gov (United States)

    Zhang, Xincheng; Lin, Li; Chen, Mingyue; Zhu, Zhiqiang; Yang, Weidong; Chen, Bao; Yang, Xiaoe; An, Qianli

    2012-08-30

    Low biomass and shallow root systems limit the application of heavy metal phytoextraction by hyperaccumulators. Plant growth-promoting microbes may enhance hyperaccumulators'phytoextraction. A heavy metal-resistant fungus belonged to the Fusarium oxysporum complex was isolated from the Zn/Cd co-hyperaccumulator Sedum alfredii Hance grown in a Pb/Zn mined area. This Fusarium fungus was not pathogenic to plants but promoted host growth. Hydroponic experiments showed that 500 μM Zn(2+) or 50 μM Cd(2+) combined with the fungus increased root length, branches, and surface areas, enhanced nutrient uptake and chlorophyll synthesis, leading to more vigorous hyperaccumulators with greater root systems. Soil experiments showed that the fungus increased root and shoot biomass and S. alfredii-mediated heavy metal availabilities, uptake, translocation or concentrations, and thus increased phytoextraction of Zn (144% and 44%), Cd (139% and 55%), Pb (84% and 85%) and Cu (63% and 77%) from the original Pb/Zn mined soil and a multi-metal contaminated paddy soil. Together, the nonpathogenic Fusarium fungus was able to increase S. alfredii root systems and function, metal availability and accumulation, plant biomass, and thus phytoextraction efficiency. This study showed a great application potential for culturable indigenous fungi other than symbiotic mycorrhizas to enhance the phytoextraction by hyperaccumulators. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Evaluation of the significance of cell wall polymers in flax infected with a pathogenic strain of Fusarium oxysporum.

    Science.gov (United States)

    Wojtasik, Wioleta; Kulma, Anna; Dymińska, Lucyna; Hanuza, Jerzy; Czemplik, Magdalena; Szopa, Jan

    2016-03-22

    Fusarium oxysporum infection leads to Fusarium-derived wilt, which is responsible for the greatest losses in flax (Linum usitatissimum) crop yield. Plants infected by Fusarium oxysporum show severe symptoms of dehydration due to the growth of the fungus in vascular tissues. As the disease develops, vascular browning and leaf yellowing can be observed. In the case of more virulent strains, plants die. The pathogen's attack starts with secretion of enzymes degrading the host cell wall. The main aim of the study was to evaluate the role of the cell wall polymers in the flax plant response to the infection in order to better understand the process of resistance and develop new ways to protect plants against infection. For this purpose, the expression of genes involved in cell wall polymer metabolism and corresponding polymer levels were investigated in flax seedlings after incubation with Fusarium oxysporum. This analysis was facilitated by selecting two groups of genes responding differently to the infection. The first group comprised genes strongly affected by the infection and activated later (phenylalanine ammonia lyase and glucosyltransferase). The second group comprised genes which are slightly affected (up to five times) and their expression vary as the infection progresses. Fusarium oxysporum infection did not affect the contents of cell wall polymers, but changed their structure. The results suggest that the role of the cell wall polymers in the plant response to Fusarium oxysporum infection is manifested through changes in expression of their genes and rearrangement of the cell wall polymers. Our studies provided new information about the role of cellulose and hemicelluloses in the infection process, the change of their structure and the expression of genes participating in their metabolism during the pathogen infection. We also confirmed the role of pectin and lignin in this process, indicating the major changes at the mRNA level of lignin metabolism genes

  13. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling

    Directory of Open Access Journals (Sweden)

    Vasileios eBitas

    2015-11-01

    Full Text Available Volatile organic compounds (VOCs have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  14. Fermentation characteristics of Fusarium oxysporum grown on acetate

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Pachidou, Fotini; Petroutsos, Dimitris

    2008-01-01

    In this study, the growth characteristics of Fusarium oxysporum were evaluated in minimal medium using acetate or different mixtures of acetate and glucose as carbon source. The minimum inhibitory concentration (MIC) of acetic acid that F oxysporum cells could tolerate was 0.8% w/v while glucose ...

  15. Mekanisme Parasitisme Trichoderma Harzianum Terhadap Fusarium Oxysporum Pada Semai Acacia Mangium

    OpenAIRE

    Tasik, Susanti; Widyastuti, Siti Muslimah; Harjono

    2015-01-01

    Mechanism of parasitism of Trichoderma harzianum on Fusarium oxysporum on Acacia mangium seedlings. Fusarium oxysporum is one of the most important soil-borne fungi the causal agent of damping-off disease. Detailed information it needed to know how the pathogen can be inhibited by Trichoderma harzianum. The objective of this research was to investigate the inhibition mechanism of T. harzianum on F. oxysporum in vitro and in planta. Green Flourescent Protein (GFP) T. harzianum was used as bioc...

  16. Sensitivity of some nitrogen fixers and the target pest Fusarium oxysporum to fungicide thiram.

    Science.gov (United States)

    Osman, Awad G; Sherif, Ashraf M; Elhussein, Adil A; Mohamed, Afrah T

    2012-03-01

    This study was carried out to investigate the toxic effects of the fungicide thiram (TMTD) against five nitrogen fixers and the thiram target pest Fusarium oxysporum under laboratory conditions. Nitrogen fixing bacteria Falvobacterium showed the highest values of LD(50) and proved to be the most resistant to the fungicide followed by Fusarium oxysporum, while Pseudomonas aurentiaca was the most affected microorganism. LD(50) values for these microorganisms were in 2-5 orders of magnitude lower in comparison with LD(50) value for Fusarium oxysporum. Thiram was most toxic to Pseudomonas aurentiaca followed by Azospirillum. The lowest toxicity index was recorded for Fusarium oxysporum and Flavobacterium. The slope of the curve for Azomonas, Fusarium oxysporum and Flavobacterium is more steep than that of the other curves, suggesting that even a slight increase of the dose of the fungicide can cause a very strong negative effect. Thiram was more selective to Pseudomonas aurentiaca followed by Azospirillum, Rhizobium meliloti and Azomonas. The lowest selectivity index of the fungicide was recorded for Falvobacterium followed by Fusarium oxysporum. The highest safety coefficient of the fungicide was assigned for Flavobacterium, while Pseudomonas aurentiaca showed the lowest value.

  17. Synthesis of CdSe Quantum Dots Using Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Takaaki Yamaguchi

    2016-10-01

    Full Text Available CdSe quantum dots are often used in industry as fluorescent materials. In this study, CdSe quantum dots were synthesized using Fusarium oxysporum. The cadmium and selenium concentration, pH, and temperature for the culture of F. oxysporum (Fusarium oxysporum were optimized for the synthesis, and the CdSe quantum dots obtained from the mycelial cells of F. oxysporum were observed by transmission electron microscopy. Ultra-thin sections of F. oxysporum showed that the CdSe quantum dots were precipitated in the intracellular space, indicating that cadmium and selenium ions were incorporated into the cell and that the quantum dots were synthesized with intracellular metabolites. To reveal differences in F. oxysporum metabolism, cell extracts of F. oxysporum, before and after CdSe synthesis, were compared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. The results suggested that the amount of superoxide dismutase (SOD decreased after CdSe synthesis. Fluorescence microscopy revealed that cytoplasmic superoxide increased significantly after CdSe synthesis. The accumulation of superoxide may increase the expression of various metabolites that play a role in reducing Se4+ to Se2− and inhibit the aggregation of CdSe to make nanoparticles.

  18. Changes in metabolic activities of Fusarium oxysporum f. fabae and Rhizoctonia solani in response to Dithan A-40 fungicide.

    Science.gov (United States)

    Zaki, M M; Mahmoud, S A; Hamed, A S; Sahab, A F

    1979-01-01

    The effect of different concentrations of Dithan A-40 fungicide on the metabolic activities of the wilt fungus Fusarium oxysporum f. fabae and the root rot agent Rhizoctonia solani was studied. All toxicant concentrations reduced energy generation, total phosphorus and nitrogen content of both fungi. In addition, the toxicant caused a shift in free amino acids pool. As a result of these changes, the mycelium dry weight of both fungi was greatly reduced. R. solani was more sensitive to the toxic effect of Dithan A-40 than F. oxysporum.

  19. Host specificity in Fusarium oxysporum

    NARCIS (Netherlands)

    van Dam, P.

    2017-01-01

    Fusarium oxysporum is a fungal pathogen that can cause severe wilt disease and root rot in various plant species. Every individual strain is restricted to causing disease in only one or a few plant species. In this thesis, we focused on identifying novel virulence factors (‘effectors’) secreted by

  20. Comparative studies with regard to the influence of carbon and nitrogen ratio on sporulation in Fusarium oxysporum and Fusarium moniliforme v. subglutinans.

    Science.gov (United States)

    Prasad, M

    1979-01-01

    Carbon/nitrogen ratio as a factor for sporulation, expressed in terms of magnitude of population variation of macroconidia and microconidia in the cultures of Eusarium oxysporum Schlecht ex. Fr., Fusarium moniliforme v. subglutinans Wr. and Rg., and of chlamydospores (only in Fusarium oxysporum) was investigated. It has been found that the amount of carbon source shapes the course of macro- and micro. conidial production in a linear fashion, being enhanced parallel to the increase in its amount-Nitrogen level, limiting proliferation and effectively diminishing the macro- and micro-conidial population, varies for the two species, namely Fusarium oxysporum and Fusarium moniliforme v-subglutinans. For chlamydomspore production, higher carbon and still higher nitrogen concentration favours profuse proliferation in case of Fusarium oxysporum.

  1. VEGETATIVE COMPATIBILITY OF Fusarium oxysporum ISOLATED FROM WEEDS IN EASTERN CROATIA

    Directory of Open Access Journals (Sweden)

    Jelena Ilić

    2013-06-01

    Full Text Available Different formae speciales of Fusarium oxysporum are the main causal agent of Fusarium wilts. In 2008 and 2009 we collected F. oxysporum samples from symptomless Abutilon theophrasti, Xanthium strumarium, Chenopodium album, Matricaria perforata, Ambrosia artemisiifolia, Polygonum lapathifolium, Sonchus arvensis, Amaranthus blitoides, Amaranthus retroflexus, Datura stramonium, Sorghum halepense and Hibiscus trionum. Only 16 out of 41 isolates of F. oxysporum yielded nit mutants. The frequency of nit3 mutants was higher (43% than the frequency of nit1 (35% and NitM (22% mutants. Two vegetative compatibility groups (VCGs of F. oxysporum were determined in the complementation tests. These results stress out the problem with isolation of nit mutants and show a high genetic diversity of F. oxysporum isolated from weeds.

  2. The arms race between tomato and Fusarium oxysporum.

    Science.gov (United States)

    Takken, Frank; Rep, Martijn

    2010-03-01

    The interaction between tomato and Fusarium oxysporum f. sp. lycopersici has become a model system for the study of the molecular basis of disease resistance and susceptibility. Gene-for-gene interactions in this system have provided the basis for the development of tomato cultivars resistant to Fusarium wilt disease. Over the last 6 years, new insights into the molecular basis of these gene-for-gene interactions have been obtained. Highlights are the identification of three avirulence genes in F. oxysporum f. sp. lycopersici and the development of a molecular switch model for I-2, a nucleotide-binding and leucine-rich repeat-type resistance protein which mediates the recognition of the Avr2 protein. We summarize these findings here and present possible scenarios for the ongoing molecular arms race between tomato and F. oxysporum f. sp. lycopersici in both nature and agriculture.

  3. Penggunaan Jamur Antagonis Trichoderma sp. dan Gliocladium sp. untuk Mengendalikan Penyakit Layu (Fusarium oxysporum) pada Tanaman Bawang Merah (Allium ascalonicum L.)

    OpenAIRE

    Ramadhina, Arie

    2015-01-01

    Arie Ramadhina, 2012. The Use of Antagonism Fungus of Trichoderma sp and Gliocladium sp. for Controlling Wilt (Fusarium oxysporum) in Red Onion Plants (Allium ascolanicum). Supervised by Lisnawita and Lahmuddin Lubis. The aim of the research was to know the effectiveness of antagonism fungus of Trichoderma sp. and Gliocladium sp. in controlling wilt in red onion plants. The research was performed in the green-house at the faculty of Agriculture, USU, from February until May, 2012. The researc...

  4. The cell wall of Fusarium oxysporum

    NARCIS (Netherlands)

    Schoffelmeer, EAM; Klis, FM; Sietsma, JH; Cornelissen, BJC

    1999-01-01

    Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for

  5. Use of Comparative Genomics-Based Markers for Discrimination of Host Specificity in Fusarium oxysporum.

    Science.gov (United States)

    van Dam, Peter; de Sain, Mara; Ter Horst, Anneliek; van der Gragt, Michelle; Rep, Martijn

    2018-01-01

    The polyphyletic nature of many formae speciales of Fusarium oxysporum prevents molecular identification of newly encountered strains based on conserved, vertically inherited genes. Alternative molecular detection methods that could replace labor- and time-intensive disease assays are therefore highly desired. Effectors are functional elements in the pathogen-host interaction and have been found to show very limited sequence diversity between strains of the same forma specialis , which makes them potential markers for host-specific pathogenicity. We therefore compared candidate effector genes extracted from 60 existing and 22 newly generated genome assemblies, specifically targeting strains affecting cucurbit plant species. Based on these candidate effector genes, a total of 18 PCR primer pairs were designed to discriminate between each of the seven Cucurbitaceae-affecting formae speciales When tested on a collection of strains encompassing different clonal lineages of these formae speciales , nonpathogenic strains, and strains of other formae speciales , they allowed clear recognition of the host range of each evaluated strain. Within Fusarium oxysporum f. sp. melonis more genetic variability exists than anticipated, resulting in three F. oxysporum f. sp. melonis marker patterns that partially overlapped with the cucurbit-infecting Fusarium oxysporum f. sp. cucumerinum , Fusarium oxysporum f. sp. niveum , Fusarium oxysporum f. sp. momordicae , and/or Fusarium oxysporum f. sp. lagenariae For F. oxysporum f. sp. niveum , a multiplex TaqMan assay was evaluated and was shown to allow quantitative and specific detection of template DNA quantities as low as 2.5 pg. These results provide ready-to-use marker sequences for the mentioned F. oxysporum pathogens. Additionally, the method can be applied to find markers distinguishing other host-specific forms of F. oxysporum IMPORTANCE Pathogenic strains of Fusarium oxysporum are differentiated into formae speciales based on

  6. First report of Fusarium wilt of alfalfa caused by Fusarium oxysporum f. sp. medicaginis in Wisconsin

    Science.gov (United States)

    Fusarium wilt, caused by Fusarium oxysporum f. sp. medicaginis, is an economically important vascular disease of alfalfa (Medicago sativa) throughout the world. Alfalfa plants with foliar wilt symptoms and reddish-brown arcs in roots consistent with Fusarium wilt were observed in disease assessment ...

  7. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    Directory of Open Access Journals (Sweden)

    Zongli eHu

    2015-01-01

    Full Text Available Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi technology to partially silence three different genes (FOW2, FRP1 and OPR in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.

  8. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    Science.gov (United States)

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jimmy

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1 and OPR) in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.

  9. Specific PCR detection of Fusarium oxysporum f. sp. raphani: a causal agent of Fusarium wilt on radish plants.

    Science.gov (United States)

    Kim, H; Hwang, S-M; Lee, J H; Oh, M; Han, J W; Choi, G J

    2017-08-01

    Fusarium oxysporum, a causal agent of Fusarium wilt, is one of the most important fungal pathogens worldwide, and detection of F. oxysporum DNA at the forma specialis level is crucial for disease diagnosis and control. In this study, two novel F. oxysporum f. sp. raphani (For)-specific primer sets were designed, FOR1-F/FOR1-R and FOR2-F/FOR2-R, to target FOQG_17868 and FOQG_17869 ORFs, respectively, which were selected based on the genome comparison of other formae speciales of F. oxysporum including conglutinans, cubense, lycopersici, melonis, and pisi. The primer sets FOR1-F/FOR1-R and FOR2-F/FOR2-R that amplified a 610- and 425-bp DNA fragment, respectively, were specific to For isolates which was confirmed using a total of 40 F. oxysporum isolates. From infected plants, the FOR2-F/FOR2-R primer set directly detected the DNA fragment of For isolates even when the radish plants were collected in their early stage of disease development. Although the loci targeted by the For-specific primer sets were not likely involved in the pathogenesis, the primer set FOR2-F/FOR2-R is available for the determination of pathogenicity of radish-infecting F. oxysporum isolates. This study is the first report providing novel primer sets to detect F. oxysporum f. sp. raphani. Because plant pathogenic Fusarium oxysporum has been classified into special forms based on its host specificity, identification of F. oxysporum usually requires a pathogenicity assay as well as knowledge of the morphological characteristics. For rapid and reliable diagnosis, this study provides PCR primer sets that specifically detect Fusarium oxysporum f. sp. raphani (For) which is a devastating pathogen of radish plants. Because one of the primer sets directly detected the DNA fragment of For isolates from infected plants, the specific PCR method demonstrated in this study will provide a foundation for integrated disease management practices in commodity crops. © 2017 The Society for Applied Microbiology.

  10. Fusarium oxysporum protects Douglas-fir (Pseudotsuga menziesii) seedlings from root disease caused by Fusarium commune

    Science.gov (United States)

    R. Kasten Dumroese; Mee-Sook Kim; Robert L. James

    2012-01-01

    Fusarium root disease can be a serious problem in forest and conservation nurseries in the western United States. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Fusarium spp. within the F. oxysporum species complex have been recognized as pathogens for more than a...

  11. Interactions between the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae) and the saprobic fungus Fusarium oxysporum (Ascomycota: Hypocreales).

    Science.gov (United States)

    Navarro, P D; McMullen, J G; Stock, S P

    2014-01-01

    In this study, we assessed the effect of the saprobic fungus, Fusarium oxysporum (Ascomycota: Hypocreales) on the fitness of the entomopathogenic nematode Heterorhabditis sonorensis (Caborca strain). Sand column assays were considered to evaluate the effect of fungal mycelia on infective juvenile (IJ) movement and host access. Additionally, we investigated the effect of fungal spores on the nematodes' ability to search for a host, its virulence, penetration efficiency and reproduction. Three application timings were considered to assess interactions between the fungus and the nematodes. In vitro assays were also considered to determine the effect of fungal extracts on the nematode's symbiotic bacteria. Our observations indicate that presence and age of fungal mycelia significantly affect IJ movement in the sand columns and their ability to establish in the host. These results were also reflected in a reduced insect mortality. In particular, treatments with the 15 days old mycelia showed a significant reduction in insect mortality and penetration efficiency. Presence of fungal spores also impacted nematode virulence and reproduction. In particular, two of the application timings tested (simultaneous [EPN and fungal spores applied at the same time] and alternate I [EPN applied first, fungus applied 24h later]) resulted in antagonistic interactions. Moreover, IJ progeny was reduced to half in the simultaneous application. In vitro assays revealed that fungal extracts at the highest concentration tested (10mg/ml) inhibited the growth of the symbiotic bacteria. Overall, these results suggest that saprobic fungi may play an important role in regulating. EPN populations in the soil, and that they may be one of the factors that impact nematode survival in the soil and their access to insect hosts. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Hyphal growth of phagocytosed Fusarium oxysporum causes cell lysis and death of murine macrophages.

    Science.gov (United States)

    Schäfer, Katja; Bain, Judith M; Di Pietro, Antonio; Gow, Neil A R; Erwig, Lars P

    2014-01-01

    Fusarium oxysporum is an important plant pathogen and an opportunistic pathogen of humans. Here we investigated phagocytosis of F. oxysporum by J774.1 murine cell line macrophages using live cell video microscopy. Macrophages avidly migrated towards F. oxysporum germlings and were rapidly engulfed after cell-cell contact was established. F. oxysporum germlings continued hyphal growth after engulfment by macrophages, leading to associated macrophage lysis and escape. Macrophage killing depended on the multiplicity of infection. After engulfment, F. oxysporum inhibited macrophages from completing mitosis, resulting in large daughter cells fused together by means of a F. oxysporum hypha. These results shed new light on the initial stages of Fusarium infection and the innate immune response of the mammalian host.

  13. BIOTRANSFORMATION OF 2,4,6-TRINITROTOLUENE (TNT) BY A PLANT-ASSOCIATED FUNGUS FUSARIUM OXYSPORUM

    Science.gov (United States)

    The capability of a plant-associated fungus, Fusarium oxyvorum, to transform TNT in liquid cultures was investigated. TNT was transformed into 2-amino-4, 6-dinitrotoluene (2-A-DNT), 4-amino-2, 6-dinitrotoluene (4-A- DNT), and 2, 4-diamino-6-nitrotoluene (2, 4-DAT) via 2- and 4-hy...

  14. Discovery of Fungal Denitrification Inhibitors by Targeting Copper Nitrite Reductase from Fusarium oxysporum.

    Science.gov (United States)

    Matsuoka, Masaki; Kumar, Ashutosh; Muddassar, Muhammad; Matsuyama, Akihisa; Yoshida, Minoru; Zhang, Kam Y J

    2017-02-27

    The efficient application of nitrogenous fertilizers is urgently required, as their excessive and inefficient use is causing substantial economic loss and environmental pollution. A significant amount of applied nitrogen in agricultural soils is lost as nitrous oxide (N 2 O) in the environment due to the microbial denitrification process. The widely distributed fungus Fusarium oxysporum is a major denitrifier in agricultural soils and its denitrification activity could be targeted to reduce nitrogen loss in the form of N 2 O from agricultural soils. Here, we report the discovery of first small molecule inhibitors of copper nitrite reductase (NirK) from F. oxysporum, which is a key enzyme in the fungal denitrification process. The inhibitors were discovered by a hierarchical in silico screening approach consisting of pharmacophore modeling and molecular docking. In vitro evaluation of F. oxysporum NirK activity revealed several pyrimidone and triazinone based compounds with potency in the low micromolar range. Some of these compounds suppressed the fungal denitrification in vivo as well. The compounds reported here could be used as starting points for the development of nitrogenous fertilizer supplements and coatings as a means to prevent nitrogen loss by targeting fungal denitrification.

  15. Hyphal growth of phagocytosed Fusarium oxysporum causes cell lysis and death of murine macrophages.

    Directory of Open Access Journals (Sweden)

    Katja Schäfer

    Full Text Available Fusarium oxysporum is an important plant pathogen and an opportunistic pathogen of humans. Here we investigated phagocytosis of F. oxysporum by J774.1 murine cell line macrophages using live cell video microscopy. Macrophages avidly migrated towards F. oxysporum germlings and were rapidly engulfed after cell-cell contact was established. F. oxysporum germlings continued hyphal growth after engulfment by macrophages, leading to associated macrophage lysis and escape. Macrophage killing depended on the multiplicity of infection. After engulfment, F. oxysporum inhibited macrophages from completing mitosis, resulting in large daughter cells fused together by means of a F. oxysporum hypha. These results shed new light on the initial stages of Fusarium infection and the innate immune response of the mammalian host.

  16. How to conquer a tomato plant? Fusarium oxysporum effector targets

    NARCIS (Netherlands)

    de Sain, M.

    2016-01-01

    Pathogens secrete small proteins, called effectors, to alter the environment in their host to facilitate infection. The causal agent of Fusarium wilt on tomato, Fusarium oxysporum f. sp. lycopersici (Fol), secretes these proteins in the xylem sap of infected plants and hence they have been called

  17. Identification of pathogenicity‐related genes in Fusarium oxysporum f. sp. cepae

    Science.gov (United States)

    Vágány, Viktória; Jackson, Alison C.; Harrison, Richard J.; Rainoni, Alessandro; Clarkson, John P.

    2016-01-01

    Summary Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non‐pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non‐pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific. PMID:26609905

  18. Engineering of the redox imbalance of Fusarium oxysporum enables anaerobic growth on xylose.

    Science.gov (United States)

    Panagiotou, Gianni; Christakopoulos, Paul; Grotkjaer, Thomas; Olsson, Lisbeth

    2006-09-01

    Dissimilatory nitrate reduction metabolism, of the natural xylose-fermenting fungus Fusarium oxysporum, was used as a strategy to achieve anaerobic growth and ethanol production from xylose. Beneficial alterations of the redox fluxes and thereby of the xylose metabolism were obtained by taking advantage of the regeneration of the cofactor NAD(+) during the denitrification process. In batch cultivations, nitrate sustained growth under anaerobic conditions (1.21 g L(-1) biomass) and simultaneously a maximum yield of 0.55 moles of ethanol per mole of xylose was achieved, whereas substitution of nitrate with ammonium limited the growth significantly (0.15 g L(-1) biomass). Using nitrate, the maximum acetate yield was 0.21 moles per mole of xylose and no xylitol excretion was observed. Furthermore, the network structure in the central carbon metabolism of F. oxysporum was characterized in steady state. F. oxysporum grew anaerobically on [1-(13)C] labelled glucose and unlabelled xylose in chemostat cultivation with nitrate as nitrogen source. The use of labelled substrate allowed the precise determination of the glucose and xylose contribution to the carbon fluxes in the central metabolism of this poorly described microorganism. It was demonstrated that dissimilatory nitrate reduction allows F. oxysporum to exhibit typical respiratory metabolic behaviour with a highly active TCA cycle and a large demand for NADPH.

  19. Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae.

    Science.gov (United States)

    Taylor, Andrew; Vágány, Viktória; Jackson, Alison C; Harrison, Richard J; Rainoni, Alessandro; Clarkson, John P

    2016-09-01

    Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non-pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non-pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific. © 2015 The Authors Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  20. Multiple garlic (Allium sativum L.) microRNAs regulate the immunity against the basal rot fungus Fusarium oxysporum f. sp. Cepae.

    Science.gov (United States)

    Chand, Subodh Kumar; Nanda, Satyabrata; Mishra, Rukmini; Joshi, Raj Kumar

    2017-04-01

    The basal plate rot fungus, Fusarium oxysporum f. sp. cepae (FOC), is the most devastating pathogen posing a serious threat to garlic (Allium sativum L.) production worldwide. MicroRNAs (miRNAs) are key modulators of gene expression related to development and defense responses in eukaryotes. However, the miRNA species associated with garlic immunity against FOC are yet to be explored. In the present study, a small RNA library developed from FOC infected resistant garlic line was sequenced to identify immune responsive miRNAs. Forty-five miRNAs representing 39 conserved and six novel sequences responsive to FOC were detected. qRT-PCR analyses further classified them into three classes based on their expression patterns in susceptible line CBT-As11 and in the resistant line CBT-As153. North-blot analyses of six selective miRNAs confirmed the qRT-PCR results. Expression studies on a selective set of target genes revealed a negative correlation with the complementary miRNAs. Furthermore, transgenic garlic plant overexpresing miR164a, miR168a and miR393 showed enhanced resistance to FOC, as revealed by decreased fungal growth and up-regulated expression of defense-responsive genes. These results indicate that multiple miRNAs are involved in garlic immunity against FOC and that the overexpression of miR164a, miR168a and miR393 can augment garlic resistance to Fusarium basal rot infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Isolation screening and characterisation of local beneficial rhizobacteria based upon their ability to suppress the growth of Fusarium oxysporum f. sp. radicis-lycopersici and tomato foot and root rot

    Science.gov (United States)

    Tomato crown and root rot or tomato foot and root rot (TFRR) is caused by the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici (Forl). The disease occurs in both greenhouse and outdoor tomato cultivations and cannot be treated efficiently with the existing fungicides. We conducte...

  2. A Nitrogen Response Pathway Regulates Virulence Functions in Fusarium oxysporum via the Protein Kinase TOR and the bZIP Protein MeaB

    OpenAIRE

    López-Berges, Manuel S.; Rispail, Nicolas; Prados-Rosales, Rafael C.; Pietro, Antonio D.

    2010-01-01

    During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine s...

  3. Extraction Optimization of Water-Extracted Mycelial Polysaccharide from Endophytic Fungus Fusarium oxysporum Dzf17 by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ligang Zhou

    2012-05-01

    Full Text Available Water-extracted mycelial polysaccharide (WPS from the endophytic fungus Fusarium oxysporum Dzf17 isolated from Dioscorea zingiberensis was found to be an efficient elicitor to enhance diosgenin accumulation in D. zingigerensis cultures, and also demonstrated antioxidant activity. In this study, response surface methodology (RSM was employed to optimize the extraction process of WPS from F. oxysporum Dzf17 using Box-Behnken design (BBD. The ranges of the factors investigated were 1–3 h for extraction time (X1, 80–100 °C for extraction temperature (X2, and 20–40 (v/w for ratio of water volume (mL to raw material weight (g (X3. The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis. Statistical analysis showed that the polynomial regression model was in good agreement with the experimental results with the determination coefficient (R2 of 0.9978. By solving the regression equation and analyzing the response surface contour plots, the extraction parameters were optimized as 1.7 h for extraction time, 95 °C for extraction temperature, 39 (v/w for ratio of water volume (mL to raw material weight (g, and with 2 extractions. The maximum value (10.862% of WPS yield was obtained when the WPS extraction process was conducted under the optimal conditions.

  4. Risk levels of invasive Fusarium oxysporum f. sp. in areas suitable for date palm (Phoenix dactylifera) cultivation under various climate change projections.

    Science.gov (United States)

    Shabani, Farzin; Kumar, Lalit

    2013-01-01

    Global climate model outputs involve uncertainties in prediction, which could be reduced by identifying agreements between the output results of different models, covering all assumptions included in each. Fusarium oxysporum f.sp. is an invasive pathogen that poses risk to date palm cultivation, among other crops. Therefore, in this study, the future distribution of invasive Fusarium oxysporum f.sp., confirmed by CSIRO-Mk3.0 (CS) and MIROC-H (MR) GCMs, was modeled and combined with the future distribution of date palm predicted by the same GCMs, to identify areas suitable for date palm cultivation with different risk levels of invasive Fusarium oxysporum f.sp., for 2030, 2050, 2070 and 2100. Results showed that 40%, 37%, 33% and 28% areas projected to become highly conducive to date palm are under high risk of its lethal fungus, compared with 37%, 39%, 43% and 42% under low risk, for the chosen years respectively. Our study also indicates that areas with marginal risk will be limited to 231, 212, 186 and 172 million hectares by 2030, 2050, 2070 and 2100. The study further demonstrates that CLIMEX outputs refined by a combination of different GCMs results of different species that have symbiosis or parasite relationship, ensure that the predictions become robust, rather than producing hypothetical findings, limited purely to publication.

  5. Risk Levels of Invasive Fusarium oxysporum f. sp. in Areas Suitable for Date Palm (Phoenix dactylifera) Cultivation under Various Climate Change Projections

    Science.gov (United States)

    Shabani, Farzin; Kumar, Lalit

    2013-01-01

    Global climate model outputs involve uncertainties in prediction, which could be reduced by identifying agreements between the output results of different models, covering all assumptions included in each. Fusarium oxysporum f.sp. is an invasive pathogen that poses risk to date palm cultivation, among other crops. Therefore, in this study, the future distribution of invasive Fusarium oxysporum f.sp., confirmed by CSIRO-Mk3.0 (CS) and MIROC-H (MR) GCMs, was modeled and combined with the future distribution of date palm predicted by the same GCMs, to identify areas suitable for date palm cultivation with different risk levels of invasive Fusarium oxysporum f.sp., for 2030, 2050, 2070 and 2100. Results showed that 40%, 37%, 33% and 28% areas projected to become highly conducive to date palm are under high risk of its lethal fungus, compared with 37%, 39%, 43% and 42% under low risk, for the chosen years respectively. Our study also indicates that areas with marginal risk will be limited to 231, 212, 186 and 172 million hectares by 2030, 2050, 2070 and 2100. The study further demonstrates that CLIMEX outputs refined by a combination of different GCMs results of different species that have symbiosis or parasite relationship, ensure that the predictions become robust, rather than producing hypothetical findings, limited purely to publication. PMID:24340100

  6. The arms race between tomato and Fusarium oxysporum

    NARCIS (Netherlands)

    Takken, F.; Rep, M.

    2010-01-01

    The interaction between tomato and Fusarium oxysporum f. sp. lycopersici has become a model system for the study of the molecular basis of disease resistance and susceptibility. Gene-for-gene interactions in this system have provided the basis for the development of tomato cultivars resistant to

  7. Reação de linhagens de feijoeiro ao fungo Fusarium oxysporum f. sp. phaseoli em condições controladas Reaction of common bean lines to Fusarium oxysporum f. sp. phaseoli in controlled conditions

    Directory of Open Access Journals (Sweden)

    Mônica Juliani Zavaglia Pereira

    2011-10-01

    . sp. phaseoli and at the same time, to estimate the genetic and phenotypic parameters that could help in future programs of improvement for this character. Three hundred and sixty seven lines were evaluated in ten experiments. The controls' Carioca'(susceptible and 'Carioca MG'(resistant were used in all experiments. The experimental design used was a entirely randomized one, with five replicates and plots of one plant per pot. The inoculations were carried out following the method of cutting and dumping of roots in the suspension of spores of the fungus and the assessments conducted at 21 days after inoculation based on the index of severity of the disease employing up notes of 1 (plants without symptoms to 9 (dead plants. Among the lines of germoplasm bank of the Federal University of Lavras (UFLA assessed, 36.5% were resistant to Fusarium oxysporum f. sp. phaseoli. Among the resistance, most of the lines were obtained before 1990: out of the 18 lines of the experiments of VCU evaluated in 2005/06, only four were susceptible. The estimate of heritability (h² was high (h² = 87%, indicating that, in principle, the character is of easy selection.

  8. In vitro and in vivo antifungal efficacy of plant based lawsone against Fusarium oxysporum species complex.

    Science.gov (United States)

    Dananjaya, S H S; Udayangani, R M C; Shin, Sang Yeop; Edussuriya, M; Nikapitiya, Chamilani; Lee, Jehee; De Zoysa, Mahanama

    2017-08-01

    Fusarium oxysporum is an ascomycete facultative fungus which generally affects to plants. However, it is recently known as a serious emerging opportunistic pathogen of human and other animals. F. oxysporum shows broad resistance to commonly used antifungal agents and therefore development of alternative therapeutic agents is required. In this study, we investigated the antifungal efficacy of plant based natural lawsone against pathogenic F. oxysporum. Antifungal susceptibility test determined the concentration dependent growth inhibition of lawsone against F. oxysporum with minimum inhibitory concentration (MIC) at 100μg/mL. Ultra-structural analysis indicates the prominent damage on cell wall of the mycelium after lawsone treatment, and suggests that it could increase the membrane permeability and disintegration of cells leading to cellular death. Propidium iodide (PI) uptake assay results showed the higher level of cell death in lawsone treated F. oxysporum which further confirms the loss of plasma membrane integrity. Also, detection of reactive oxygen species (ROS) using DCFH-DA has clearly indicated that lawsone (100μg/mL) can induce the ROS level in the filaments of F. oxysporum. MTT assay results showed the loss of viability and germination capacity of F. oxysporum spores by lawsone in concentration dependent manner. Moreover, lawsone treatment induced the mRNA expression of two autophagy related genes (ATG1 and ATG8) indicating that lawsone may activate the autophagy related pathways in F. oxysporum due to the oxidative stress generated by ROS. F. oxysporum infected zebrafish has recovered after lawsone therapy as a topical treatment suggesting that lawsone is a potential natural antifusariosis agent. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Exocellular extract of Fusarium oxysporum, fungus free, is able to permeate and act selectively in skin.

    Science.gov (United States)

    Sibin Melo, Katia C; Correia, Marcelo H; Svidzinski, Terezinha I E; Hernandes, Luzmarina

    2018-05-01

    The skin is an important gateway for Fusarium infection in humans. Our hypothesis is that metabolites produced by Fusarium oxysporum should change the barrier structure to permeate the skin. Male Wistar rats received a topical application of a solution (0.05 mg/mL) of Fusarium metabolites. The animals were euthanized 3, 6, 12, 24 h after and the skin was processed for immunostaining by laminin and E-cadherin to investigate whether the Fusarium metabolites can break the barrier of healthy skin. Other techniques were employed: H&E to study the morphology; metalloproteinase-9 (MMP-9), TUNEL, and PCNA immunostaining to evaluate the inflammation, cell death, and proliferation, respectively. There was an inflammatory response mainly centered in the dermis. Qualitatively, the skin of the experimental group showed reduced E-cadherin and laminin immunostaining at 3, 12, and 24 h. Higher intensity staining by TUNEL at 3 h, and PCNA at 6, 12, and 24 h. There was intense MMP-9 activity at 6, 12, and 24 h. None of analyses revealed any changes in the epidermis. It was concluded that the fraction was able to permeate the skin and act selectively in dermis, inducing inflammatory response, increasing MMP-9 immunostaining, inducing apoptosis, and reducing E-cadherin and laminin immunostaining. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  10. Transcriptome analysis of Pseudostellaria heterophylla in response to the infection of pathogenic Fusarium oxysporum.

    Science.gov (United States)

    Qin, Xianjin; Wu, Hongmiao; Chen, Jun; Wu, Linkun; Lin, Sheng; Khan, Muhammad Umar; Boorboori, Mohammad Reza; Lin, Wenxiong

    2017-09-18

    Pseudostellaria heterophylla (P. heterophylla), a herbaceous perennial, belongs to Caryophyllaceae family and is one of the Chinese herbal medicine with high pharmacodynamic value. It can be used to treat the spleen deficiency, anorexia, weakness after illness and spontaneous perspiration symptoms. Our previous study found that consecutive monoculture of Pseudostellaria heterophylla could lead to the deterioration of the rhizosphere microenvironment. The specialized forms of pathogenic fungus Fusarium oxysporum f.Sp. heterophylla (F. oxysporum) in rhizosphere soils of P. heterophylla plays an important role in the consecutive monoculture of P. heterophylla. In this study, F. oxysporum was used to infect the tissue culture plantlets of P. heterophylla to study the responding process at three different infection stages by using RNA-sequencing. We obtained 127,725 transcripts and 47,655 distinct unigenes by de novo assembly and obtained annotated information in details for 25,882 unigenes. The Kyoto Encyclopedia of Genes and Genomes pathway analysis and the real-time quantitative PCR results suggest that the calcium signal system and WRKY transcription factor in the plant-pathogen interaction pathway may play an important role in the response process, and all of the WRKY transcription factor genes were divided into three different types. Moreover, we also found that the stimulation of F. oxysporum may result in the accumulation of some phenolics in the plantlets and the programmed cell death of the plantlets. This study has partly revealed the possible molecular mechanism of the population explosion of F. oxysporum in rhizosphere soils and signal response process, which can be helpful in unraveling the role of F. oxysporum in consecutive monoculture problems of P. heterophylla.

  11. Combining fluorescent Pseudomonas spp. strains to enhance suppression of fusarium wilt of radish

    NARCIS (Netherlands)

    Boer, Marjan de; Sluis, Ientse van der; Loon, L.C. van; Bakker, P.A.H.M.

    1999-01-01

    Fusarium wilt diseases, caused by the fungus Fusarium oxysporum, lead to significant yield losses of crops. One strategy to control fusarium wilt is the use of antagonistic, root-colonizing Pseudomonas spp. It has been demonstrated that different strains of these bacteria suppress disease by

  12. Efeito de extratos vegetais no controle de Fusarium oxysporum f. sp tracheiphilum em sementes de caupi Effect of naturals extracts on the control of Fusarium oxysporum f. sp tracheiphilum in cowpea seeds

    Directory of Open Access Journals (Sweden)

    Jandiê Araújo da Silva

    2009-04-01

    environment. The present work had the objective to compare the effect of natural extracts on the control of Fusarium oxysporum f. sp tracheiphlum, originated from seeds of cowpea (Vigna unguiculata L, compared to chemical fungicide effect. Extracts of Allium sativum, Anadenanthera colubrine, and Ocimum basilicum were used alone or in combination with Mancozeb. A 50 µL aliquot of each treatment was added in a hole (6 mm of diameter made in the center of Petri dishes with BDA and a fungus mycelia disk was inoculated on it. Evaluations were done during seven days, measuring the pathogen mycelial growth. Seeds of cowpea were disinfected with sodium hypochlorite, sowed in plastic bags with autoclaved soil. Eight days after germination, wounds were made on the basal part of the plantlets, and fungus spore suspension (1.4 x 10-5 con/mL was applied on it. Evaluations of the disease severity were accomplished daily during 30 days after inoculation, using a disease index. Combination of extracts of A. sativum + Ocimum basilicum and Anadenanthera colubrina + Ocimum basilicum did not reduce fungus mycelial growth, whereas Ocimum basilicum extract alone showed minor mycelial growth, indicating fungicide action of this treatment on F. oxysporum f. sp tracheipphlum under the conditions studied. Combination of Mancozeb + Anadenanthera colubrina was responsible for lower average of severity on the evaluated plants.

  13. Sensitivity of some nitrogen fixers and the target pest Fusarium oxysporum to fungicide thiram

    OpenAIRE

    Osman, Awad G.; Sherif, Ashraf M.; Elhussein, Adil A.; Mohamed, Afrah T.

    2012-01-01

    This study was carried out to investigate the toxic effects of the fungicide thiram (TMTD) against five nitrogen fixers and the thiram target pest Fusarium oxysporum under laboratory conditions. Nitrogen fixing bacteria Falvobacterium showed the highest values of LD50 and proved to be the most resistant to the fungicide followed by Fusarium oxysporum, while Pseudomonas aurentiaca was the most affected microorganism. LD50 values for these microorganisms were in 2–5 orders of magnitude lower in...

  14. Pengendalian Hayati Penyakit Layu Fusarium Pisang (Fusarium Oxysporum F.sp. Cubense) dengan Trichoderma SP.

    OpenAIRE

    Sudirman, Albertus; Sumardiyono, Christanti; Widyastuti, Siti Muslimah

    2011-01-01

    The aim of this research was to study the inhibiting ability of Trichoderma sp. to control fusarium wilt of banana in greenhouse condition. The experiments consisted of the antagonism test between Trichoderma sp. and Fusarium oxysporum f.sp. cubense (Foc) in vitro using dual culture method and glass house experiment which was arranged in 3×3 Factorial Complete Randomized Design. First factor of the latter experiment was the dose of Trichoderma sp. culture (0, 25, and 50 g per polybag), second...

  15. Morphological and molecular characterization of Fusarium. solani and F. oxysporum associated with crown disease of oil palm.

    Science.gov (United States)

    Hafizi, R; Salleh, B; Latiffah, Z

    2013-01-01

    Crown disease (CD) is infecting oil palm in the early stages of the crop development. Previous studies showed that Fusarium species were commonly associated with CD. However, the identity of the species has not been resolved. This study was carried out to identify and characterize through morphological approaches and to determine the genetic diversity of the Fusarium species. 51 isolates (39%) of Fusarium solani and 40 isolates (31%) of Fusarium oxysporum were recovered from oil palm with typical CD symptoms collected from nine states in Malaysia, together with samples from Padang and Medan, Indonesia. Based on morphological characteristics, isolates in both Fusarium species were classified into two distinct morphotypes; Morphotypes I and II. Molecular characterization based on IGS-RFLP analysis produced 27 haplotypes among the F. solani isolates and 33 haplotypes for F. oxysporum isolates, which indicated high levels of intraspecific variations. From UPGMA cluster analysis, the isolates in both Fusarium species were divided into two main clusters with the percentage of similarity from 87% to 100% for F. solani, and 89% to 100% for F. oxysporum isolates, which was in accordance with the Morphotypes I and II. The results of the present study indicated that F. solani and F. oxysporum associated with CD of oil palm in Malaysia and Indonesia were highly variable.

  16. Methyl Salicylate Level Increase in Flax after Fusarium oxysporum Infection Is Associated with Phenylpropanoid Pathway Activation.

    Science.gov (United States)

    Boba, Aleksandra; Kostyn, Kamil; Kostyn, Anna; Wojtasik, Wioleta; Dziadas, Mariusz; Preisner, Marta; Szopa, Jan; Kulma, Anna

    2016-01-01

    Flax ( Linum usitatissimum ) is a crop plant valued for its oil and fiber. Unfortunately, large losses in cultivation of this plant are caused by fungal infections, with Fusarium oxysporum being one of its most dangerous pathogens. Among the plant's defense strategies, changes in the expression of genes of the shikimate/phenylpropanoid/benzoate pathway and thus in phenolic contents occur. Among the benzoates, salicylic acid, and its methylated form methyl salicylate play an important role in regulating plants' response to stress conditions. Upon treatment of flax plants with the fungus we found that methyl salicylate content increased (4.8-fold of the control) and the expression profiles of the analyzed genes suggest that it is produced most likely from cinnamic acid, through the β-oxidative route. At the same time activation of some genes involved in lignin and flavonoid biosynthesis was observed. We suggest that increased methyl salicylate biosynthesis during flax response to F. oxysporum infection may be associated with phenylpropanoid pathway activation.

  17. Effect of endophytic Fusarium oxysporum on paralysis and mortality ...

    African Journals Online (AJOL)

    Three bioassays were conducted to investigate the antagonistic effect of secondary metabolites produced by 5 endophytic Fusarium oxysporum isolates from banana (Musa spp.) plants in Kenya, against Pratylenchus goodeyi. Percentage paralyses were recorded 3, 6 and 24 h after exposure to culture filtrates. Percentage ...

  18. Fusarium Oxysporum el hongo que nos falta conocer

    Directory of Open Access Journals (Sweden)

    Emira Garces De Granada

    2001-01-01

    Full Text Available Fusarium oxysporum es un hongo que se presenta principalmente como saprófito en el suelo, o también como patógeno especializado, denominado forma especial (f.sp., según la planta hospedante u hospedantes relacionados que afecte. Es posible distinguir patotipos o razas fisiológicas de una misma forma especial, cuando se determima la variedad de la especie vegetal que ataca y aun en poblaciones clonales al analizar características moleculares (DNA, fingerprint, RFLPs , RAPDs . No obstante, con referencia a la especificidad como fitopatóneno, pruebas de patogenicidad realizadas en condiciones de invernadero con el hongo causante del marchitamiento vascular en tomate (Fusarium oxysporum f. sp. . lycopersici causó infección en plantas de clavel y de rábano en 20 y 47% respectivamente. Mientras, Gardini (1993,  en ensayos realizados directamemte en el suelo natural, con aislamientos de Fusarium oxysporum  f. sp. erythoxyli, causante de marchitez vascular en plantas de coca, produjo en éstas la enfermedad  en 100% y en 25% y 12.5% en achote y tomate, lo que cuestiona la especificidad del hongo, y su utilización como biocontrolador.  Así mismo, la alta sobrevivencia de sus clamidosporas,  resistentes a la degradac ión química y microbiológica,  y el registro como patógeno en animales incluyendo el hombre,  (produce afecciones oftálmicas, dérmicas y tóxinas determinan que no debe usars el hongo fitopatógeno de la coca como “micoherbicida” en plantaciones de coca, pues no sólo afecta a otras especies del género Erythroxylon no productoras del alcaloide, sino a plantas alimenticias y al hombre.

  19. Fusarium verwelkingsziekte in tomaat geen probleem meer dankzij resistentie: Speciale vormen Fusarium oxysporum veroorzaken ziekten

    NARCIS (Netherlands)

    Paternotte, S.J.

    2011-01-01

    Fusarium oxysporum is een algemeen voorkomende bodemschimmel. Speciale vormen kunnen problemen veroorzaken zoals verwelkingsziekte en voet- en wortelrot in verschillende vruchtgroentegewassen, potplanten en snijbloemen en zuur in bolgewassen. Per gewas kan de schade variëren van minimaal, doordat

  20. The Importance of some weeds for the survival of Fusarium oxysporum Schl. f.sp. lini (Boll. Snyd.

    Directory of Open Access Journals (Sweden)

    Barbara Łacicowa

    2014-08-01

    Full Text Available The studies were caried out to determine the importance of some weeds occurrence in the flax monoculture the survival of Fusarium oxysporum f. sp. lini. It appearet that the roots of Veronica persica, Stellaria media, Lamium purpureum, Capsella bursa-pastoris and Sonchus arvensis were colonized by Fusarium oxysporum f. sp. lini. V. persica especially has, a profitable influence on the survival of F. oxysporum f. sp. lini. However. C. hursa-pastoris and S. arvensis stimulate the growth of fungi of the genera Trichoderma. which limites the occurrence of F. oxysporum f. sp. lini in the soil.

  1. Investigation about selecting strong type of melons by using melon paleness factor fusarium oxysporum f.sp.melonis and mutation techniques

    International Nuclear Information System (INIS)

    Kantoglu, Y.; Secer, E.; Kunter, B.; Erzurum, K.; Maden, S.; Yanmaz, R.

    2009-01-01

    Fusarium wilt is a vascular disease of the Cucurbitaceae family, especially in muskmelon (Cucumis melo L.), caused by the soil fungus Fusarium oxysporum f. sp. melonis (FOM). This pathogen persists in the soil for extended periods of time, and the only effective control is the use of resistant varieties. Fusarium oxysporum f. sp. melonis is a very serious disease factor for farmers in Turkey. In this research, we show a method for mass-selection of melon mutants resistant to Fusarium wilt. In vitro selection of resistant cells, which are come from irradiated and non-irradiated explants, is done using culture filtrates of different FOM races. According to our results we determined effective irradiation doses and filtrate treatment dose by Linear Regression Analysis. According to our results 21.75 Gy is effective dose for in vitro Yuva cv. explants to induce mutation and for filtrate treatment 6.73% is the proper dose to select survive calluses and plantlets. We recommended using 10 and 20 Gy gamma ray doses for in vitro melon plantlets to induce mutation by our results. We succeed to regenerate 6% plantlets which were obtained and selected from irradiated plantlets and regenerated in in vitro medias which were include 6.73 % filtrate. Although 16.7% of resistant or tolerant plantlets can continue their viability in greenhouse conditions after disease inoculation treatment, we observed 4 plants had a surviving capability in a limited time. That is very important for breeding cycle and this research can lead to the development of new melon cultivars that will be resistant to Fusarium wilt.

  2. Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana.

    Science.gov (United States)

    Swarupa, V; Ravishankar, K V; Rekha, A

    2014-04-01

    Soil-borne fungal pathogen, Fusarium oxysporum causes major economic losses by inducing necrosis and wilting symptoms in many crop plants. Management of fusarium wilt is achieved mainly by the use of chemical fungicides which affect the soil health and their efficiency is often limited by pathogenic variability. Hence understanding the nature of interaction between pathogen and host may help to select and improve better cultivars. Current research evidences highlight the role of oxidative burst and antioxidant enzymes indicating that ROS act as an important signaling molecule in banana defense response against Fusarium oxysporum f.sp. cubense. The role of jasmonic acid signaling in plant defense against necrotrophic pathogens is well recognized. But recent studies show that the role of salicylic acid is complex and ambiguous against necrotrophic pathogens like Fusarium oxysporum, leading to many intriguing questions about its relationship between other signaling compounds. In case of banana, a major challenge is to identify specific receptors for effector proteins like SIX proteins and also the components of various signal transduction pathways. Significant progress has been made to uncover the role of defense genes but is limited to only model plants such as Arabidopsis and tomato. Keeping this in view, we review the host response, pathogen diversity, current understanding of biochemical and molecular changes that occur during host and pathogen interaction. Developing resistant cultivars through mutation, breeding, transgenic and cisgenic approaches have been discussed. This would help us to understand host defenses against Fusarium oxysporum and to formulate strategies to develop tolerant cultivars.

  3. Degradation of the metal-cyano complex tetracyanonickelate (II) by Fusarium oxysporum N-10.

    Science.gov (United States)

    Yanase, H; Sakamoto, A; Okamoto, K; Kita, K; Sato, Y

    2000-03-01

    A fungus with the ability to utilize a metalcyano compound, tetracyanonickelate (II) ¿K2[Ni (CN)4]; TCN¿, as its sole source of nitrogen was isolated from soil and identified as Fusarium oxysporum N-10. Both intact mycelia and cell-free extract of the strain catalyzed hydrolysis of TCN to formate and ammonia and produced formamide as an intermediate, thereby indicating that a hydratase and an amidase sequentially participated in the degradation of TCN. The enzyme catalyzing the hydration of TCN was purified approximately ten-fold from the cell-free extract of strain N-10 with a yield of 29%. The molecular mass of the active enzyme was estimated to be 160 kDa. The enzyme appears to exist as a homotetramer, each subunit having a molecular mass of 40 kDa. The enzyme also catalyzed the hydration of KCN, with a cyanide-hydrating activity 2 x 10(4) times greater than for TCN. The kinetic parameters for TCN and KCN indicated that hydratase isolated from F. oxysporum was a cyanide hydratase able to utilize a broad range of cyano compounds and nitriles as substrates.

  4. Induction, purification, and characterization of two extracellular alpha-L-arabinofuranosidases from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Topakas, E.; Economou, L.

    2003-01-01

    In the presence of L-arabinose as sole carbon source, Fusarium oxysporum produces two alpha-L-arabinofuranosidases (ABFs) named ABF1 and ABF2, with molecular masses of 200 and 180 kDa, respectively. The two F. oxysporum proteins have been purified to homogeneity. The purified enzymes are composed...

  5. Nondermatophytic onychomycosis by Fusarium oxysporum in an immunocompetent host.

    Science.gov (United States)

    Shah, S R; Dalal, B D; Modak, M S

    2016-03-01

    Fusarium onychomycosis is not uncommon in tropical countries but is worth reporting. We report a case of nondermatophytic onychomycosis by Fusarium oxysporum in an immunocompetent woman from Buldhana district of Maharashtra (India). Bilateral involvement of great toe nail, chronic duration and acquisition of infection due to peculiar practice of daily pasting floors with mud and dung, is interesting. The case was successfully treated with topical and oral terbinafine with a dose of 250 mg daily for 3 weeks. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Quantitative and microscopic assessment of compatible and incompatible interactions between chickpea cultivars and Fusarium oxysporum f. sp. ciceris races.

    Science.gov (United States)

    Jiménez-Fernández, Daniel; Landa, Blanca B; Kang, Seogchan; Jiménez-Díaz, Rafael M; Navas-Cortés, Juan A

    2013-01-01

    Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races. We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245, JG-62 and WR-315 by Fusarium oxysporum f. sp. ciceris races 0 and 5 labeled with ZsGreen fluorescent protein using confocal laser scanning microscopy. The two races colonized the host root surface in both interactions with preferential colonization of the root apex and subapical root zone. In compatible interactions, the pathogen grew intercellularly in the root cortex, reached the xylem, and progressed upwards in the stem xylem, being the rate and intensity of stem colonization directly related with the degree of compatibility among Fusarium oxysporum f. sp. ciceris races and chickpea cultivars. In incompatible interactions, race 0 invaded and colonized 'JG-62' xylem vessels of root and stem but in 'WR-315', it remained in the intercellular spaces of the root cortex failing to reach the xylem, whereas race 5 progressed up to the hypocotyl. However, all incompatible interactions were asymptomatic. The differential patterns of colonization of chickpea cultivars by Fusarium oxysporum f. sp. ciceris races may be related to the operation of multiple resistance mechanisms.

  7. Quantitative and microscopic assessment of compatible and incompatible interactions between chickpea cultivars and Fusarium oxysporum f. sp. ciceris races.

    Directory of Open Access Journals (Sweden)

    Daniel Jiménez-Fernández

    Full Text Available BACKGROUND: Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races. METHODOLOGY: We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245, JG-62 and WR-315 by Fusarium oxysporum f. sp. ciceris races 0 and 5 labeled with ZsGreen fluorescent protein using confocal laser scanning microscopy. FINDINGS: The two races colonized the host root surface in both interactions with preferential colonization of the root apex and subapical root zone. In compatible interactions, the pathogen grew intercellularly in the root cortex, reached the xylem, and progressed upwards in the stem xylem, being the rate and intensity of stem colonization directly related with the degree of compatibility among Fusarium oxysporum f. sp. ciceris races and chickpea cultivars. In incompatible interactions, race 0 invaded and colonized 'JG-62' xylem vessels of root and stem but in 'WR-315', it remained in the intercellular spaces of the root cortex failing to reach the xylem, whereas race 5 progressed up to the hypocotyl. However, all incompatible interactions were asymptomatic. CONCLUSIONS: The differential patterns of colonization of chickpea cultivars by Fusarium oxysporum f. sp. ciceris races may be related to the operation of multiple resistance mechanisms.

  8. Genetic diversity in Fusarium oxysporum f.sp. dianthi and F. redolens f.sp. dianthi

    NARCIS (Netherlands)

    Baayen, R.P.; Dreven, van F.; Krijger, M.C.; Waalwijk, C.

    1997-01-01

    Pathogenic isolates were selected representing all known vegetative compatibility groups (VCGs) and races of Fusarium oxysporum sensu lato from Dianthus spp. On basis of differences in the internal transcribed spacer region of the ribosomal DNA, six VCGs were classified as F. oxysporum f.sp. dianthi

  9. MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to Fusarium oxysporum

    Science.gov (United States)

    Ouyang, Shouqiang; Park, Gyungsoon; Atamian, Hagop S.; Han, Cliff S.; Stajich, Jason E.; Kaloshian, Isgouhi; Borkovich, Katherine A.

    2014-01-01

    MicroRNAs (miRNAs) suppress the transcriptional and post-transcriptional expression of genes in plants. Several miRNA families target genes encoding nucleotide-binding site–leucine-rich repeat (NB-LRR) plant innate immune receptors. The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. We explored a role for miRNAs in tomato defense against F. oxysporum using comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato cultivars. slmiR482f and slmiR5300 were repressed during infection of Motelle with F. oxysporum. Two predicted mRNA targets each of slmiR482f and slmiR5300 exhibited increased expression in Motelle and the ability of these four targets to be regulated by the miRNAs was confirmed by co-expression in Nicotiana benthamiana. Silencing of the targets in the resistant Motelle cultivar revealed a role in fungal resistance for all four genes. All four targets encode proteins with full or partial nucleotide-binding (NB) domains. One slmiR5300 target corresponds to tm-2, a susceptible allele of the Tomato Mosaic Virus resistance gene, supporting functions in immunity to a fungal pathogen. The observation that none of the targets correspond to I-2, the only known resistance (R) gene for F. oxysporum in tomato, supports roles for additional R genes in the immune response. Taken together, our findings suggest that Moneymaker is highly susceptible because its potential resistance is insufficiently expressed due to the action of miRNAs. PMID:25330340

  10. Evaluation of Trichoderma spp. strains for control yellowing pea caused by Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Christian Eraso Insuasty

    2014-07-01

    Full Text Available The yellowing of pea caused by the fungus Fusarium oxysporum f. sp. pisi is considered the most damaging disease of this crop. This study took place at the plant health laboratory and greenhouse of the Universidad de Nariño, and the experimental stage was conducted at the Granja experimental Botana. Its purpose was to evaluate the antagonistic ability of the fungi Trichoderma spp. to F. oxysporum. Isolation of F. oxysporum was made from diseased tissue; Trichoderma strains were obtained from the rhizosphere of healthy plants (collected in the towns of Potosi, Córdoba, Gualmatán, Ipiales and Puerres in the state of Nariño, Colombia, and a commercial strain from laboratory Perkins Ltda. In laboratory, unrestrictedly randomized design with 21 treatments (strains was used. Mycelial growth and inhibition zone were evaluated in dual plantings, which served as selection criteria for greenhouse test where plant height, root length, root dry matter and percentage of incidence were evaluated. In the field, a randomized block design was used to evaluate yield components, plant height and root length with the best strains. In the laboratory, C2 (Córdoba 2, C7 (Gualmatán 3, C14 (Puerres 2, C20 (Potosi 4 and C21 (Perkins Lab. showed antagonistic activity in the greenhouse, C7, C14 and C21 were the best; in field, significant differences between C14 and C21, compared to C7 and the control, were obtained. Strains C14 and C21 have consistent antagonistic capacity and can be used to control F. oxysporum in pea.

  11. Live-cell imaging of conidial anastomosis tube fusion during colony initiation in Fusarium oxysporum.

    Directory of Open Access Journals (Sweden)

    Smija M Kurian

    Full Text Available Fusarium oxysporum exhibits conidial anastomosis tube (CAT fusion during colony initiation to form networks of conidial germlings. Here we determined the optimal culture conditions for this fungus to undergo CAT fusion between microconidia in liquid medium. Extensive high resolution, confocal live-cell imaging was performed to characterise the different stages of CAT fusion, using genetically encoded fluorescent labelling and vital fluorescent organelle stains. CAT homing and fusion were found to be dependent on adhesion to the surface, in contrast to germ tube development which occurs in the absence of adhesion. Staining with fluorescently labelled concanavalin A indicated that the cell wall composition of CATs differs from that of microconidia and germ tubes. The movement of nuclei, mitochondria, vacuoles and lipid droplets through fused germlings was observed by live-cell imaging.

  12. Study on usability of Fusarium oxysporum Schlecht.f.sp. tulipae Apt. metabolites for screening for basal rot resistance in tulip

    Directory of Open Access Journals (Sweden)

    Małgorzata Podwyszyńska

    2013-12-01

    Full Text Available The usefulness of fungus culture filtrates and fusaric acid as selecting agents for Fusarium resistance breeding in tulip was examined on in vitro cultures of shoots and embryonic calli of seven tulip genotypes differing in resistance to Fusarium oxysporum Schlecht. f. sp. tulipae Apt. (F.o.t. and four virulent F.o.t. isolates. Fusaric acid influenced the shoot growth of all cultivars tested in a similar way, irrespectively of their greenhouse resistance to basal rot. Also, the sensitivity of calli of the cultivars studied to fusaric acid did not correspond with their resistance to F.o.t. evaluated in the greenhouse screening. The phytotoxity of F.o.t. culture filtrates did not depend on their fusaric acid contents. There was a negative correlation between cultivar's resistance to F.o.t in greenhouse tests and the sensitivity of their shoots to fungus culture filtrates in in vitro tests. This indicates that defence mechanism against F.o.t. in tulip tissue may have a nature of hypersensitive response. Considering the results of our study, it may be concluded that the use of fusaric acid or fungus culture filtrates for the in vitro selection of somaclones resistant to F.o.t. in tulip is not feasible.

  13. Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana

    Science.gov (United States)

    Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M.; Kazan, Kemal

    2015-01-01

    Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant. PMID:25849296

  14. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Rebecca Lyons

    Full Text Available Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant.

  15. Screenhouse and field persistence of nonpathogenic endophytic Fusarium oxysporum in Musa tissue culture plants.

    Science.gov (United States)

    Paparu, Pamela; Dubois, Thomas; Gold, Clifford S; Niere, Björn; Adipala, Ekwamu; Coyne, Daniel

    2008-04-01

    Two major biotic constraints to highland cooking banana (Musa spp., genome group AAA-EA) production in Uganda are the banana weevil Cosmopolites sordidus and the burrowing nematode Radopholus similis. Endophytic Fusarium oxysporum strains inoculated into tissue culture banana plantlets have shown control of the banana weevil and the nematode. We conducted screenhouse and field experiments to investigate persistence in the roots and rhizome of two endophytic Fusarium oxysporum strains, V2w2 and III4w1, inoculated into tissue-culture banana plantlets of highland cooking banana cultivars Kibuzi and Nabusa. Re-isolation of F. oxysporum showed that endophyte colonization decreased faster from the rhizomes than from the roots of inoculated plants, both in the screenhouse and in the field. Whereas rhizome colonization by F. oxysporum decreased in the screenhouse (4-16 weeks after inoculation), root colonization did not. However, in the field (17-33 weeks after inoculation), a decrease was observed in both rhizome and root colonization. The results show a better persistence in the roots than rhizomes of endophytic F. oxysporum strains V2w2 and III4w1.

  16. Purification and characterization of xylitol dehydrogenase from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Kekos, D.; Macris, B.J.

    2002-01-01

    An NAD(+)-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M-r 48 000, and pI 3.6. It was optimally active at 45degreesC and pH 9-10. It was fully...

  17. Estudio del antagonismo de algunas especies de Trichoderma sobre Fusarium Oxysporum y Rhizoctonia Solani Antagonism studies of Trichoderma sp.p.. with Fusarium oxysporum and Rhizoctonia solani

    OpenAIRE

    Elias Ricardo; Arcos Omar; Arbelaez Germán

    1989-01-01

    En este trabajo se estudió el antagonismo de algunos aislamientos del hongo Trichoderma obtenidos de suelos colornbianos en el control de Fusarium oxysporum y Rhizoctonia solani. En los ensayos "in vitre" se observó un marcado antagonismo entre las colonias de los aislamientos de Trichoderma sobre R. sotsni, con una reducción apreciable
    del tamaño de la colonia y un antaqonismo menor sobre F. oxysporum. En los ensayos de parasitismo a nivel microscópico, se observó una gran interac...

  18. Wheat Intercropping Enhances the Resistance of Watermelon to Fusarium Wilt

    OpenAIRE

    Huifang Lv; Huifang Lv; Haishun Cao; Muhammad A. Nawaz; Hamza Sohail; Yuan Huang; Fei Cheng; Qiusheng Kong; Zhilong Bie

    2018-01-01

    A fungus Fusarium oxysporum F. sp. niveum (FON) is the causal organism of Fusarium wilt in watermelon. In this study, we evaluated the effect of wheat intercropping on the Fusarium wilt of watermelon. Our results showed that wheat intercropping decreases the incidence of Fusarium wilt of watermelon, likely due to the secretion of coumaric acid from the roots of wheat that dramatically inhibits FON spore germination, sporulation, and growth. The secretion of p-hydroxybenzoic acid, ferulic acid...

  19. Comparison of transcriptome profiles by Fusarium oxysporum inoculation between Fusarium yellows resistant and susceptible lines in Brassica rapa L.

    Science.gov (United States)

    Miyaji, Naomi; Shimizu, Motoki; Miyazaki, Junji; Osabe, Kenji; Sato, Maho; Ebe, Yusuke; Takada, Satoko; Kaji, Makoto; Dennis, Elizabeth S; Fujimoto, Ryo; Okazaki, Keiichi

    2017-12-01

    Resistant and susceptible lines in Brassica rapa have different immune responses against Fusarium oxysporum inoculation. Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans (Foc) is an important disease of Brassicaceae; however, the mechanism of how host plants respond to Foc is still unknown. By comparing with and without Foc inoculation in both resistant and susceptible lines of Chinese cabbage (Brassica rapa var. pekinensis), we identified differentially expressed genes (DEGs) between the bulked inoculated (6, 12, 24, and 72 h after inoculation (HAI)) and non-inoculated samples. Most of the DEGs were up-regulated by Foc inoculation. Quantitative real-time RT-PCR showed that most up-regulated genes increased their expression levels from 24 HAI. An independent transcriptome analysis at 24 and 72 HAI was performed in resistant and susceptible lines. GO analysis using up-regulated genes at 24 HAI indicated that Foc inoculation activated systemic acquired resistance (SAR) in resistant lines and tryptophan biosynthetic process and responses to chitin and ethylene in susceptible lines. By contrast, GO analysis using up-regulated genes at 72 HAI showed the overrepresentation of some categories for the defense response in susceptible lines but not in the resistant lines. We also compared DEGs between B. rapa and Arabidopsis thaliana after F. oxysporum inoculation at the same time point, and identified genes related to defense response that were up-regulated in the resistant lines of Chinese cabbage and A. thaliana. Particular genes that changed expression levels overlapped between the two species, suggesting that they are candidates for genes involved in the resistance mechanisms against F. oxysporum.

  20. Races of the Celery Pathogen Fusarium oxysporum f. sp. apii Are Polyphyletic.

    Science.gov (United States)

    Epstein, Lynn; Kaur, Sukhwinder; Chang, Peter L; Carrasquilla-Garcia, Noelia; Lyu, Guiyun; Cook, Douglas R; Subbarao, Krishna V; O'Donnell, Kerry

    2017-04-01

    Fusarium oxysporum species complex (FOSC) isolates were obtained from celery with symptoms of Fusarium yellows between 1993 and 2013 primarily in California. Virulence tests and a two-gene dataset from 174 isolates indicated that virulent isolates collected before 2013 were a highly clonal population of F. oxysporum f. sp. apii race 2. In 2013, new highly virulent clonal isolates, designated race 4, were discovered in production fields in Camarillo, California. Long-read Illumina data were used to analyze 16 isolates: six race 2, one of each from races 1, 3, and 4, and seven genetically diverse FOSC that were isolated from symptomatic celery but are nonpathogenic on this host. Analyses of a 10-gene dataset comprising 38 kb indicated that F. oxysporum f. sp. apii is polyphyletic; race 2 is nested within clade 3, whereas the evolutionary origins of races 1, 3, and 4 are within clade 2. Based on 6,898 single nucleotide polymorphisms from the core FOSC genome, race 3 and the new highly virulent race 4 are highly similar with Nei's Da = 0.0019, suggesting that F. oxysporum f. sp. apii race 4 evolved from race 3. Next generation sequences were used to develop PCR primers that allow rapid diagnosis of races 2 and 4 in planta.

  1. Outbreak of Fusarium oxysporum infections in children with cancer: an experience with 7 episodes of catheter-related fungemia.

    Science.gov (United States)

    Carlesse, Fabianne; Amaral, Anna-Paula C; Gonçalves, Sarah S; Xafranski, Hemilio; Lee, Maria-Lucia M; Zecchin, Victor; Petrilli, Antonio S; Al-Hatmi, Abdullah M; Hagen, Ferry; Meis, Jacques F; Colombo, Arnaldo L

    2017-01-01

    Fusarium species are widely spread in nature as plant pathogens but are also able to cause opportunistic fungal infections in humans. We report a cluster of Fusarium oxysporum bloodstream infections in a single pediatric cancer center. All clinical and epidemiological data related to an outbreak involving seven cases of fungemia by Fusarium oxysporum during October 2013 and February 2014 were analysed. All cultured isolates ( n  = 14) were identified to species level by sequencing of the TEF1 and RPB2 genes. Genotyping of the outbreak isolates was performed by amplified fragment length polymorphism fingerprinting. In a 5-month period 7 febrile pediatric cancer patients were diagnosed with catheter-related Fusarium oxysporum bloodstream infections. In a time span of 11 years, only 6 other infections due to Fusarium were documented and all were caused by a different species, Fusarium solani . None of the pediatric cancer patients had neutropenia at the time of diagnosis and all became febrile within two days after catheter manipulation in a specially designed room. Extensive environmental sampling in this room and the hospital did not gave a clue to the source. The outbreak was terminated after implementation of a multidisciplinary central line insertion care bundle. All Fusarium strains from blood and catheter tips were genetically related by amplified fragment length polymorphism fingerprinting. All patients survived the infection after prompt catheter removal and antifungal therapy. A cluster with, genotypical identical, Fusarium oxysporum strains infecting 7 children with cancer, was most probably catheter-related. The environmental source was not discovered but strict infection control measures and catheter care terminated the outbreak.

  2. Outbreak of Fusarium oxysporum infections in children with cancer: an experience with 7 episodes of catheter-related fungemia

    Directory of Open Access Journals (Sweden)

    Fabianne Carlesse

    2017-09-01

    Full Text Available Abstract Background Fusarium species are widely spread in nature as plant pathogens but are also able to cause opportunistic fungal infections in humans. We report a cluster of Fusarium oxysporum bloodstream infections in a single pediatric cancer center. Methods All clinical and epidemiological data related to an outbreak involving seven cases of fungemia by Fusarium oxysporum during October 2013 and February 2014 were analysed. All cultured isolates (n = 14 were identified to species level by sequencing of the TEF1 and RPB2 genes. Genotyping of the outbreak isolates was performed by amplified fragment length polymorphism fingerprinting. Results In a 5-month period 7 febrile pediatric cancer patients were diagnosed with catheter-related Fusarium oxysporum bloodstream infections. In a time span of 11 years, only 6 other infections due to Fusarium were documented and all were caused by a different species, Fusarium solani. None of the pediatric cancer patients had neutropenia at the time of diagnosis and all became febrile within two days after catheter manipulation in a specially designed room. Extensive environmental sampling in this room and the hospital did not gave a clue to the source. The outbreak was terminated after implementation of a multidisciplinary central line insertion care bundle. All Fusarium strains from blood and catheter tips were genetically related by amplified fragment length polymorphism fingerprinting. All patients survived the infection after prompt catheter removal and antifungal therapy. Conclusion A cluster with, genotypical identical, Fusarium oxysporum strains infecting 7 children with cancer, was most probably catheter-related. The environmental source was not discovered but strict infection control measures and catheter care terminated the outbreak.

  3. Ligninolytic enzymes in the coal solubilizing deuteromycetes Trichoderma atroviride and Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Moenkemann, H.; Scheel, T.; Hoelker, U.; Ludwig, S.; Hoefer, M. [Bonn Univ. (Germany). Botanisches Inst.

    1997-12-31

    Evidence is presented for the lignite induced expression of lignin peroxidases, manganese-dependent peroxidases, laccases and glyoxal oxidases in the coal solubilizing fungi Trichoderma atroviride and Fusarium oxysporum under different growth conditions. (orig.)

  4. HapX-Mediated Iron Homeostasis Is Essential for Rhizosphere Competence and Virulence of the Soilborne Pathogen Fusarium oxysporum[C][W][OA

    Science.gov (United States)

    López-Berges, Manuel S.; Capilla, Javier; Turrà, David; Schafferer, Lukas; Matthijs, Sandra; Jöchl, Christoph; Cornelis, Pierre; Guarro, Josep; Haas, Hubertus; Di Pietro, Antonio

    2012-01-01

    Soilborne fungal pathogens cause devastating yield losses and are highly persistent and difficult to control. During the infection process, these organisms must cope with limited availability of iron. Here we show that the bZIP protein HapX functions as a key regulator of iron homeostasis and virulence in the vascular wilt fungus Fusarium oxysporum. Deletion of hapX does not affect iron uptake but causes derepression of genes involved in iron-consuming pathways, leading to impaired growth under iron-depleted conditions. F. oxysporum strains lacking HapX are reduced in their capacity to invade and kill tomato (Solanum lycopersicum) plants and immunodepressed mice. The virulence defect of ΔhapX on tomato plants is exacerbated by coinoculation of roots with a biocontrol strain of Pseudomonas putida, but not with a siderophore-deficient mutant, indicating that HapX contributes to iron competition of F. oxysporum in the tomato rhizosphere. These results establish a conserved role for HapX-mediated iron homeostasis in fungal infection of plants and mammals. PMID:22968717

  5. Nitrate Protects Cucumber Plants Against Fusarium oxysporum by Regulating Citrate Exudation.

    Science.gov (United States)

    Wang, Min; Sun, Yuming; Gu, Zechen; Wang, Ruirui; Sun, Guomei; Zhu, Chen; Guo, Shiwei; Shen, Qirong

    2016-09-01

    Fusarium wilt causes severe yield losses in cash crops. Nitrogen plays a critical role in the management of plant disease; however, the regulating mechanism is poorly understood. Using biochemical, physiological, bioinformatic and transcriptome approaches, we analyzed how nitrogen forms regulate the interactions between cucumber plants and Fusarium oxysporum f. sp. cucumerinum (FOC). Nitrate significantly suppressed Fusarium wilt compared with ammonium in both pot and hydroponic experiments. Fewer FOC colonized the roots and stems under nitrate compared with ammonium supply. Cucumber grown with nitrate accumulated less fusaric acid (FA) after FOC infection and exhibited increased tolerance to chemical FA by decreasing FA absorption and transportation in shoots. A lower citrate concentration was observed in nitrate-grown cucumbers, which was associated with lower MATE (multidrug and toxin compound extrusion) family gene and citrate synthase (CS) gene expression, as well as lower CS activity. Citrate enhanced FOC spore germination and infection, and increased disease incidence and the FOC population in ammonium-treated plants. Our study provides evidence that nitrate protects cucumber plants against F. oxysporum by decreasing root citrate exudation and FOC infection. Citrate exudation is essential for regulating disease development of Fusarium wilt in cucumber plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil.

    Science.gov (United States)

    Sharma, Abhishek; Rajendran, Sasireka; Srivastava, Ankit; Sharma, Satyawati; Kundu, Bishwajit

    2017-03-01

    The antifungal effects of four essential oils viz., clove (Syzygium aromaticum), lemongrass (Cymbopogon citratus), mint (Mentha × piperita) and eucalyptus (Eucalyptus globulus) were evaluated against wilt causing fungus, Fusarium oxysporum f. sp. lycopersici 1322. The inhibitory effect of oils showed dose-dependent activity on the tested fungus. Most active being the clove oil, exhibiting complete inhibition of mycelial growth and spore germination at 125 ppm with IC 50 value of 18.2 and 0.3 ppm, respectively. Essential oils of lemongrass, mint and eucalyptus were inhibitory at relatively higher concentrations. The Minimum inhibitory concentration (MIC) of clove oil was 31.25 ppm by broth microdilution method. Thirty one different compounds of clove oil, constituting approximately ≥99% of the oil, were identified by gas chromatography-mass spectroscopy analysis. The major components were eugenol (75.41%), E-caryophyllene (15.11%), α-humulene (3.78%) and caryophyllene oxide (1.13%). Effect of clove oil on surface morphology of F. oxysporum f. sp. lycopersici 1322 was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM observation revealed shrivelled hyphae while AFM observation showed shrunken and disrupted spores in clove oil treated samples. In pots, 5% aqueous emulsion of clove oil controlled F. oxysporum f. sp. lycopersici 1322 infection on tomato plants. This study demonstrated clove oil as potent antifungal agent that could be used as biofungicide for the control of F. oxysporum f. sp. lycopersici in both preventive and therapeutic manner. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Combined action of the major secreted exo- and endopolygalacturonases is required for full virulence of Fusarium oxysporum.

    Science.gov (United States)

    Bravo Ruiz, Gustavo; Di Pietro, Antonio; Roncero, M Isabel G

    2016-04-01

    The genome of the tomato pathogen Fusarium oxysporum f. sp. lycopersici encodes eight different polygalacturonases (PGs): four endoPGs and four exoPGs. Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed that endoPGs pg1 and pg5 and exoPGs pgx4 and pgx6 are expressed at significant levels during growth on citrus pectin, polygalacturonic acid or the monomer galacturonic acid, as well as during the infection of tomato plants. The remaining PG genes exhibit low expression levels under all the conditions tested. Secreted PG activity was decreased significantly during growth on pectin in the single deletion mutants lacking either pg1 or pgx6, as well as in the double mutant. Although the single deletion mutants did not display a significant virulence reduction on tomato plants, the Δpg1Δpgx6 double mutant was significantly attenuated in virulence. The combined action of exoPGs and endoPGs is thus essential for plant infection by the vascular wilt fungus F. oxysporum. © 2015 BSPP and John Wiley & Sons Ltd.

  8. Studies on the Fusarium-lily interaction : a breeding approach

    NARCIS (Netherlands)

    Straathof, T.P.

    1994-01-01

    The soil-borne fungus Fusarium oxysporum f.sp . lilii Imle causes bulb and scale rot of lilies ( Lilium L.) , annually resulting in a considerable economical damage in bulb and flower cultivation. Presently,

  9. Components of the ligninolytic system of Fusarium oxysporum and Trichoderma atroviride

    Energy Technology Data Exchange (ETDEWEB)

    Moenkemann, H.; Hoelker, U.; Hoefer, M. [Universitaet Bonn, Bonn (Germany). Botanisches Institut

    1997-11-01

    The ligninolytic system in the two deuteromycetous fungi Fusarium oxysporum and Trichoderma atroviride, which are able to solubilize low-rank coal, has been proved to have several components. Analysis of the chromosomal DNA of these fungi revealed distinct bands with probes coding for three ligninase isoenzymes, glyoxal oxidase and arylalcohol dehydrogenase of the basidiomycete Phanerochaete chrysosporium. These data constitute a strong indication for the existence in F. oxysporum and T. atroviride of a ligninolytic system comparable to that in P. chrysosporium that may be involved in the process of coal solubilization. 11 refs., 3 figs.

  10. Vinegar residue compost as a growth substrate enhances cucumber resistance against the Fusarium wilt pathogen Fusarium oxysporum by regulating physiological and biochemical responses.

    Science.gov (United States)

    Shi, Lu; Du, Nanshan; Yuan, Yinghui; Shu, Sheng; Sun, Jin; Guo, Shirong

    2016-09-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cucumerinum (FOC) is the most severe soil-borne disease attacking cucumber. To assess the positive effects of vinegar residue substrate (VRS) on the growth and incidence of Fusarium wilt on cucumber, we determined the cucumber growth parameters, disease severity, defense-related enzyme and pathogenesis-related (PR) protein activities, and stress-related gene expression levels. In in vitro and pot experiments, we demonstrated the following results: (i) the VRS extract exhibited a higher biocontrol activity than that of peat against FOC, and significantly improved the growth inhibition of FOC, with values of 48.3 %; (ii) in response to a FOC challenge, antioxidant enzymes and the key enzymes of phenylpropanoid metabolic activities, as well as the PR protein activities in the roots of cucumber, were significantly increased. Moreover, the activities of these proteins were higher in VRS than in peat; (iii) the expression levels of stress-related genes (including glu, pal, and ethylene receptor) elicited responses to the pathogens inoculated in cucumber leaves; and (iv) the FOC treatment significantly inhibited the growth of cucumber seedlings. Moreover, all of the growth indices of plants grown in VRS were significantly higher than those grown in peat. These results offer a new strategy to control cucumber Fusarium wilt, by upregulating the activity levels of defense-related enzymes and PR proteins and adjusting gene expression levels. They also provide a theoretical basis for VRS applications.

  11. Evolutionary relationships between Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici isolates inferred from mating type, elongation factor-1a exopolygalacturonase sequences

    NARCIS (Netherlands)

    Lievens, B.; Baarlen, van P.; Verreth, C.; Kerckhove, van S.; Rep, M.; Thomma, B.P.H.J.

    2009-01-01

    Fusarium oxysporum is a ubiquitous species complex of soilborne plant pathogens that comprises many different formae speciales, each characterized by a high degree of host specificity. In this study, the evolutionary relationships between different isolates of the F. oxysporum species complex have

  12. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation.

    Science.gov (United States)

    Król, P; Igielski, R; Pollmann, S; Kępczyńska, E

    2015-05-01

    Methyl jasmonate (MeJA) was tested by seed treatment for its ability to protect tomato seedlings against fusarium wilt caused by the soil-borne fungal pathogen Fusarium oxysporum f.sp. lycopersici. Isolated from Solanum lycopersicon L. seeds, cv. Beta fungus was identified as F. oxysporum f.sp. lycopersici Race 3 fungus by using phytopathological and molecular methods. MeJA applied at 0.01, 0.1 and 1 mM reduced spore germination and mycelial growth in vitro. Soaking of tomato seeds in MeJA solution at 0.1 mM for 1 h significantly enhanced the resistance level against the tested fungus in tomato seedlings 4 weeks after inoculation. The extracts from leaves of 15-day-old seedlings obtained from previously MeJA soaked seeds had the ability to inhibit in vitro spore germination of tested fungus. In these seedlings a significant increase in the levels phenolic compounds such as salicylic acid (SA), kaempferol and quercetin was observed. Up-regulation of phenylalanine ammonia-lyase (PAL5) and benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) genes and down-regulation of the isochorysmate synthase (ICS) gene in response to exogenous MeJA application indicate that the phenylalanine ammonia-lyase (PAL), not the isochorismate (IC) pathway, is the primary route for SA production in tomato. Moreover, the increased accumulation of the flavonols quercetin and kaempferol appears closely related to the increase of PAL5, chalcone synthase (CHS) and flavonol synthase/flavanone 3-hydroxylase-like (FLS) genes. Elevated levels of salicylic acid in seedlings raised from MeJA-soaked seeds were simultaneously accompanied by a decrease of jasmonic acid, the precursor of MeJA, and an increase of 12-oxo-phytodienoic acid (OPDA), the precursor of jasmonic acid. The present results indicate that the priming of tomato seeds with 0.1mM MeJA before sowing enables the seedlings grown from these seeds to reduce the attack of the soil-borne fungal pathogen F. oxysporum f.sp. lycopersici

  13. Enhanced Soil Solarization against Fusarium oxysporum f. sp. lycopersici in the Uplands

    OpenAIRE

    Barakat, Radwan M.; AL-Masri, Mohammad I.

    2012-01-01

    Soil solarization tests against Fusarium oxysporum f. sp. lycopersici, the causal agent of tomato Fusarium wilt, were conducted for seven weeks through July and August 2008 and 2009 in the climatic conditions of Al-Aroub Agricultural Experimental Station, located in the southern mountains of the West Bank, Palestine. Double polyethylene (DPE) sheets, regular polyethylene (PE) sheets, and virtually impermeable films (VIF) were compared to examine their effects on soil temperature, disease seve...

  14. Aerial remote sensing survey of Fusarium wilt of cotton in New Mexico and Texas

    Science.gov (United States)

    Fusarium wilt of cotton, caused by the fungus Fusarium oxysporum f. sp. vasinfectum (FOV), is a widespread cotton disease, but the more virulent FOV race 4 (FOV4) has recently been identified in the New Mexico-Texas border area near El Paso, Texas. A preliminary aerial remote sensing survey was cond...

  15. The pathogenesis of Fusarium oxysporum f. sp. narcissi and the role of antagonistic bulb-borne fungi in the chemical control of basal rot

    NARCIS (Netherlands)

    Langerak, C.J.

    1985-01-01

    The pathogenesis of Fusarium oxysporum f. sp. narcissi

    Basal plates and roots of narcissus were infected by Fusarium oxysporum Schlecht f. sp. narcissi (Cooke & Massee) Snyder &

  16. Bacillus species (BT42) isolated from Coffea arabica L. rhizosphere antagonizes Colletotrichum gloeosporioides and Fusarium oxysporum and also exhibits multiple plant growth promoting activity.

    Science.gov (United States)

    Kejela, Tekalign; Thakkar, Vasudev R; Thakor, Parth

    2016-11-18

    Colletotrichum and Fusarium species are among pathogenic fungi widely affecting Coffea arabica L., resulting in major yield loss. In the present study, we aimed to isolate bacteria from root rhizosphere of the same plant that is capable of antagonizing Colletotrichum gloeosporioides and Fusarium oxysporum as well as promotes plant growth. A total of 42 Bacillus species were isolated, one of the isolates named BT42 showed maximum radial mycelial growth inhibition against Colletotrichum gloeosporioides (78%) and Fusarium oxysporum (86%). BT42 increased germination of Coffee arabica L. seeds by 38.89%, decreased disease incidence due to infection of Colletotrichum gloeosporioides to 2.77% and due to infection of Fusarium oxysporum to 0 (p Fusarium oxysporum. The mechanism of action of inhibition of the pathogenic fungi found to be synergistic effects of secondary metabolites, lytic enzymes, and siderophores. The major inhibitory secondary metabolite identified as harmine (β-carboline alkaloids).

  17. [Features of interaction bacterial strains Micrococcus luteus LBK1 from plants varieties/hybrids cucumber and sweet pepper and with fungus Fusarium oxysporum Scelecht].

    Science.gov (United States)

    Parfeniuk, A; Sterlikova, O; Beznosko, I; Krut', V

    2014-01-01

    The article presents the results of studying the impact of bacterial strain M. luteus LBK1, stimulating the growth and development of plant varieties/hybrids of cucumber and sweet pepper on the intensity of sporulation of the fungus F. oxysporum Scelecht--fusariose rot pathogen.

  18. How phytohormones shape interactions between plants and the soil-borne fungus Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Xiaotang eDi

    2016-02-01

    Full Text Available Plants interact with a huge variety of soil microbes, ranging from pathogenic to mutualistic. The Fusarium oxysporum (Fo species complex consists of ubiquitous soil inhabiting fungi that can infect and cause disease in over 120 different plant species including tomato, banana, cotton and Arabidopsis. However, in many cases Fo colonization remains symptomless or even has beneficial effects on plant growth and/or stress tolerance. Also in pathogenic interactions a lengthy asymptomatic phase usually precedes disease development. All this indicates a sophisticated and fine-tuned interaction between Fo and its host. The molecular mechanisms underlying this balance are poorly understood. Plant hormone signaling networks emerge as key regulators of plant-microbe interactions in general. In this review we summarize the effects of the major phytohormones on the interaction between Fo and its diverse hosts. Generally, Salicylic Acid (SA signaling reduces plant susceptibility, whereas Jasmonic Acid (JA, Ethylene (ET, Abscisic Acid (ABA and auxin have complex effects, and are potentially hijacked by Fo for host manipulation. Finally, we discuss how plant hormones and Fo effectors balance the interaction from beneficial to pathogenic and vice versa.

  19. Comparison of Fusarium oxysporum fsp lycopersici races 1, 2 and 3 ...

    African Journals Online (AJOL)

    Dr J. T. Ekanem

    Sequence analysis of genomic fragments from the intergenic spacer region from three isolates of. Fusarium oxysporum fsp lycoperisci and fsp radicis lycopersici was carried out using the big dye terminator sequencing procedure. Two conditions of the DNA templates were also evaluated for their influence on the outcome of ...

  20. Isolation and identification of biocontrol agent Streptomyces rimosus M527 against Fusarium oxysporum f. sp. cucumerinum.

    Science.gov (United States)

    Lu, Dandan; Ma, Zheng; Xu, Xianhao; Yu, Xiaoping

    2016-08-01

    Actinomycetes have received considerable attention as biocontrol agents against fungal plant pathogens and as plant growth promoters. In this study, a total of 320 actinomycetes were isolated from various habitats in China. Among which, 77 strains have been identified as antagonistic activities against Fusarium oxysporum f. sp. cucumerinum which usually caused fusarium wilt of cucumber. Of these, isolate actinomycete M527 not only displayed broad-spectrum antifungal activity but also showed the strongest antagonistic activity against the spore germination of F. oxysporum f. sp. cucumerinum. In pot experiments, the results indicated that isolate M527 could promote the shoot growth and prevent the development of the disease on cucumber caused by F. oxysporum f. sp. cucumerinum. The control efficacy against seedling fusarium wilt of cucumber after M527 fermentation broth root-irrigation was up to 72.1% as compared to control. Based on 16S rDNA sequence analysis, the isolate M527 was identified as Streptomyces rimosus. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Evaluation of methods to detect the cotton pathogen Fusarium oxysporum f. sp. vasinfectum race 4

    Science.gov (United States)

    Fusarium wilt caused by Fusarium oxysporum f. sp. vasinfectum (Fov) is an important disease of cotton. Fov race 4, identified in the San Joaquin Valley of California, has caused serious losses and is a potential threat to US cotton production. Tests have been developed to rapidly identify race 4 i...

  2. Genetic diversity, virulence, and Meloidogyne incognita interactions of Fusarium oxysporum isolates causing cotton wilt in Georgia

    Science.gov (United States)

    Locally severe outbreaks of Fusarium wilt of cotton (Gossypium spp.) in South Georgia raised concerns about the genotypes of the causal pathogen, Fusarium oxysporum f. sp. vasinfectum. Vegetative complementation tests and DNA sequence analysis were used to determine genetic diversity among 492 F. ox...

  3. RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini.

    Science.gov (United States)

    Galindo-González, Leonardo; Deyholos, Michael K

    2016-01-01

    Fusarium oxysporum f. sp. lini is a hemibiotrophic fungus that causes wilt in flax. Along with rust, fusarium wilt has become an important factor in flax production worldwide. Resistant flax cultivars have been used to manage the disease, but the resistance varies, depending on the interactions between specific cultivars and isolates of the pathogen. This interaction has a strong molecular basis, but no genomic information is available on how the plant responds to attempted infection, to inform breeding programs on potential candidate genes to evaluate or improve resistance across cultivars. In the current study, disease progression in two flax cultivars [Crop Development Center (CDC) Bethune and Lutea], showed earlier disease symptoms and higher susceptibility in the later cultivar. Chitinase gene expression was also divergent and demonstrated and earlier molecular response in Lutea. The most resistant cultivar (CDC Bethune) was used for a full RNA-seq transcriptome study through a time course at 2, 4, 8, and 18 days post-inoculation (DPI). While over 100 genes were significantly differentially expressed at both 4 and 8 DPI, the broadest deployment of plant defense responses was evident at 18 DPI with transcripts of more than 1,000 genes responding to the treatment. These genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signaling, activation of pathogenesis-related genes, and changes in secondary metabolism. Among these, several key genes that consistently appear in studies of plant-pathogen interactions, had increased transcript abundance in our study, and constitute suitable candidates for resistance breeding programs. These included: an induced R PMI-induced protein kinase; transcription factors WRKY3, WRKY70, WRKY75, MYB113 , and MYB108 ; the ethylene response factors ERF1 and ERF14 ; two genes involved in auxin/glucosinolate precursor synthesis ( CYP79B2 and CYP79B3 ); the flavonoid

  4. RNA-seq Transcriptome Response of Flax (Linum usitatissimum L. to the Pathogenic Fungus Fusarium oxysporum f. sp. lini.

    Directory of Open Access Journals (Sweden)

    Leonardo Miguel Galindo-González

    2016-11-01

    Full Text Available Fusarium oxysporum f. sp. lini is a hemibiotrophic fungus that causes wilt in flax. Along with rust, fusarium wilt has become an important factor in flax production worldwide. Resistant flax cultivars have been used to manage the disease, but the resistance varies, depending on the interactions between specific cultivars and isolates of the pathogen. This interaction has a strong molecular basis, but no genomic information is available on how the plant responds to attempted infection, to inform breeding programs on potential candidate genes to evaluate or improve resistance across cultivars. In the current study, disease progression in two flax cultivars (CDC Bethune and Lutea, showed earlier disease symptoms and higher susceptibility in the later cultivar. Chitinase gene expression was also divergent and demonstrated and earlier molecular response in Lutea. The most resistant cultivar (CDC Bethune was used for a full RNA-seq transcriptome study through a time-course at 2, 4, 8 and 18 days post-inoculation (DPI. While over 100 genes were significantly differentially expressed at both 4 and 8 DPI, the broadest deployment of plant defense responses was evident at 18 DPI with transcripts of more than 1,000 genes responding to the treatment. These genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signalling, activation of pathogenesis-related (PR genes, and changes in secondary metabolism. Among these several key genes, that consistently appear in studies of plant-pathogen interactions, had increased transcript abundance in our study, and constitute suitable candidates for resistance breeding programs. These included: an induced RPMI-induced protein kinase (RIPK; transcription factors WRKY3, WRKY70, WRKY75, MYB113 and MYB108; the ethylene response factors ERF1 and ERF14; two genes involved in auxin/glucosinolate precursor synthesis (CYP79B2 and CYP79B3; the flavonoid

  5. Hydrophilic compounds in culture filtrates of Fusarium oxysporum f. sp. cubense GCV [01210] induce protection to banana leave toward a main pathogen phytotoxic component

    Directory of Open Access Journals (Sweden)

    Nayanci Portal González

    2014-07-01

    Full Text Available Panama disease caused by Fusarium oxysporum f. sp. cubense (Foc, is among the most important diseases in Musa spp. Foc is a necrotrophic fungus, their phytotoxins play a role in disease development. Previously culture filtrate (FCC 15 days incubation with differential phytotoxic activity against two Musa cultivars was obtained. From this, the main fraction with nonspecific phytotoxic activity against both cultivars was purified. In this study, the biological activity of the aqueous phase and the main phytotoxic fraction purified from organic extract of Fusarium oxysporum f. sp. cubense VCG [01210] Race 1 FCC was determined on banana leaves of cv. `Gros Michel' (susceptible and `FHIA-01' (resistant. Foc FCC phytotoxic effect was confirmed. The aqueous phase showed no phytotoxic activity on both cultivars, while the simultaneous application of the aqueous phase with the main phytotoxic fraction induced a differential response of tissues in susceptible and resistant cultivars evaluated. The results indicated that the compounds present in the aqueous phase are required to induce the protection of leaf tissue against phytotoxic main component of the pathogen. Key words: culture filtrate, Panama disease, resistant, susceptible

  6. A newly developed real-time PCR assay for detection and quantification of Fusarium oxysporum and its use in compatible and incompatible interactions with grafted melon genotypes.

    Science.gov (United States)

    Haegi, Anita; Catalano, Valentina; Luongo, Laura; Vitale, Salvatore; Scotton, Michele; Ficcadenti, Nadia; Belisario, Alessandra

    2013-08-01

    A reliable and species-specific real-time quantitative polymerase chain reaction (qPCR) assay was developed for detection of the complex soilborne anamorphic fungus Fusarium oxysporum. The new primer pair, designed on the translation elongation factor 1-α gene with an amplicon of 142 bp, was highly specific to F. oxysporum without cross reactions with other Fusarium spp. The protocol was applied to grafted melon plants for the detection and quantification of F. oxysporum f. sp. melonis, a devastating pathogen of this cucurbit. Grafting technologies are widely used in melon to confer resistance against new virulent races of F. oxysporum f. sp. melonis, while maintaining the properties of valuable commercial varieties. However, the effects on the vascular pathogen colonization have not been fully investigated. Analyses were performed on 'Charentais-T' (susceptible) and 'Nad-1' (resistant) melon cultivars, both used either as rootstock and scion, and inoculated with F. oxysporum f. sp. melonis race 1 and race 1,2. Pathogen development was compared using qPCR and isolations from stem tissues. Early asymptomatic melon infections were detected with a quantification limit of 1 pg of fungal DNA. The qPCR protocol clearly showed that fungal development was highly affected by host-pathogen interaction (compatible or incompatible) and time (days postinoculation). The principal significant effect (P ≤ 0.01) on fungal development was due to the melon genotype used as rootstock, and this effect had a significant interaction with time and F. oxysporum f. sp. melonis race. In particular, the amount of race 1,2 DNA was significantly higher compared with that estimated for race 1 in the incompatible interaction at 18 days postinoculation. The two fungal races were always present in both the rootstock and scion of grafted plants in either the compatible or incompatible interaction.

  7. Innovative Approach to the Accumulation of Rubrosterone by Fermentation of Asparagus filicinus with Fusarium oxysporum.

    Science.gov (United States)

    Li, Ying; Cai, Le; Dong, Jian-Wei; Xing, Yun; Duan, Wei-He; Zhou, Hao; Ding, Zhong-Tao

    2015-07-29

    Rubrosterone, possessing various remarkable bioactivities, is an insect-molting C19-steroid. However, only very small amounts are available for biological tests due to its limited content from plant sources. Fungi of genus Fusarium have been reported to have the ability to convert C27-steroids into C19-steroids. In this study, Asparagus filicinus, containing a high content of 20-hydroxyecdysone, was utilized to accumulate rubrosterone through solid fermentation by Fusarium oxysporum. The results showed that F. oxysporum had the ability to facilitate the complete biotransformation of 20-hydroxyecdysone to rubrosterone by solid-state fermentation. The present method could be an innovative and efficient approach to accumulate rubrosterone with an outstanding conversion ratio.

  8. Enhanced ethanol production from brewer's spent grain by a Fusarium oxysporum consolidated system

    Directory of Open Access Journals (Sweden)

    Christakopoulos Paul

    2009-02-01

    Full Text Available Abstract Background Brewer's spent grain (BG, a by-product of the brewing process, is attracting increasing scientific interest as a low-cost feedstock for many biotechnological applications. BG in the present study is evaluated as a substrate for lignocellulolytic enzyme production and for the production of ethanol by the mesophilic fungus Fusarium oxysporum under submerged conditions, implementing a consolidated bioconversion process. Fermentation experiments were performed with sugar mixtures simulating the carbohydrate content of BG in order to determine the utilization pattern that could be expected during the fermentation of the cellulose and hemicellulose hydrolysate of BG. The sugar mixture fermentation study focused on the effect of the initial total sugar concentration and on the effect of the aeration rate on fermenting performance of F. oxysporum. The alkali pretreatment of BG and different aeration levels during the ethanol production stage were studied for the optimization of the ethanol production by F. oxysporum. Results Enzyme yields as high as 550, 22.5, 6.5, 3225, 0.3, 1.25 and 3 U per g of carbon source of endoglucanase, cellobiohydrolase, β-D-glucosidase, xylanase, feruloyl esterase, β-D-xylosidase and α-L-arabinofuranosidase respectively, were obtained during the growth stage under optimized submerged conditions. An ethanol yield of 109 g ethanol per kg of dry BG was obtained with alkali-pretreated BG under microaerobic conditions (0.01 vvm, corresponding to 60% of the theoretical yield based on total glucose and xylose content of BG. Conclusion The enzymatic profile of the extracellular extract from F. oxysporum submerged cultures using BG and corn cob as the carbon source was proved efficient for a successful hydrolysis of BG. The fermentation study carried out using sugar mixtures simulating BG's carbohydrates content and consecutively alkali-pretreated and untreated BG, indicates that BG hydrolysis is the bottleneck

  9. Multilocus analysis using putative fungal effectors to describe a population of Fusarium oxysporum from sugar beet.

    Science.gov (United States)

    Covey, Paul A; Kuwitzky, Brett; Hanson, Mia; Webb, Kimberly M

    2014-08-01

    Sugar beet (Beta vulgaris) Fusarium yellows is caused by Fusarium oxysporum f. sp. betae and can lead to significant reductions in root yield, sucrose percentage, juice purity, and storability. F. oxysporum f. sp. betae can be highly variable and many F. oxysporum strains isolated from symptomatic sugar beet are nonpathogenic. Identifying pathogenicity factors and their diversity in the F. oxysporum f. sp. betae population could further understanding of how this pathogen causes disease and potentially provide molecular markers to rapidly identify pathogenic isolates. This study used several previously described fungal effector genes (Fmk1, Fow1, Pda1, PelA, PelD, Pep1, Prt1, Rho1, Sge1, Six1, Six6, Snf1, and Ste12) as genetic markers, in a population of 26 pathogenic and nonpathogenic isolates of F. oxysporum originally isolated from symptomatic sugar beet. Of the genes investigated, six were present in all F. oxysporum isolates from sugar beet (Fmk1, Fow1, PelA, Rho1, Snf1, and Ste12), and seven were found to be dispersed within the population (Pda1, PelD, Pep1, Prt1, Sge1, Six1, and Six6). Of these, Fmk1, Fow1, PelA, Rho1, Sge1, Snf1, and Ste12 were significant in relating clade designations and PelD, and Prt1 were significant for correlating with pathogenicity in F. oxysporum f. sp. betae.

  10. Fungicidal activity of Eucalyptus tereticornis essential oil on the pathogenic fungus Fusarium oxysporum Actividad antimicótica del aceite esencial a partir de Eucalyptus tereticornis sobre el hongo patógeno Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Walter Murillo Arango

    2011-06-01

    Full Text Available The objective of present paper was to determine the antifungal activity of the Eucalyptus tereticornis (Myrtaceae essential oil and two fractions on the Fusarium oxysporum mushroom, a pathogen with clinical and agricultural significance. The total citronelal (44.8 % and geraniol (9.78 % essential oil had a fungicidal effect at a 3 g/L concentration and a fungicidal activity at small concentrations. The A and B fractions composed most of p-mentane-3,8-diol (18.95 % and geraniol acetate (24.34 %, respectively were more active than the total extract. The observations at microscopic level showed damages and changes in hyphae and chlamydospores, as well as a decrease in the number of conidia. The observed fungicidal activity and the morphologic damages were dependent on the concentration.El objetivo de este trabajo fue determinar la actividad antifúngica del aceite esencial de Eucalyptus tereticornis (Myrtaceae y 2 fracciones sobre el hongo Fusarium oxysporum, patógeno de importancia tanto clínica como agrícola. El aceite esencial total, compuesto principalmente por citronelal (44,8 %, citronelol (9,78 % presentó un efecto fungicida a una concentración de 3 g/L y actividad fungistática a concentraciones menores. La fracciones A y B compuestas en su mayoría por p-mentano-3,8-diol (18,95 % y acetato de citronelol (24,34 % respectivamente fueron más activas que el extracto total. Las observaciones a nivel microscópico mostraron daños y cambios en hifas y clamidosporas, así como disminución en el número de conidias. La actividad fungistática observada y los daños morfológicos fueron dependientes de la concentración.

  11. Purification and properties of fructosyl lysine oxidase from Fusarium oxysporum S-1F4.

    Science.gov (United States)

    Sakai, Y; Yoshida, N; Isogai, A; Tani, Y; Kato, N

    1995-03-01

    Fructosyl lysine oxidase (FLOD) was examined for its use in the enzymatic measurement of the level of glycated albumin in blood serum. To isolate microorganisms having such an enzyme activity, we used N epsilon-fructosyl N alpha-Z-lysine (epsilon-FL) as a sole nitrogen source in the enrichment culture medium. The isolated fungus, strain S-1F4, showed a high FLOD activity in the cell-free extract and was identified as Fusarium oxysporum. FLOD was purified to an apparent homogeneity on SDS-PAGE. The molecular mass of the subunit was 50 kDa on SDS-PAGE and seemed to exist in a monomeric form. The enzyme had an absorption spectrum characteristic of a flavoprotein and the flavin was found to be covalently bound to the enzyme. The enzyme acted against N epsilon-fructosyl N alpha-Z-lysine and N alpha-fructosyl N epsilon-Z-lysine and showed specificity for fructosyl lysine residues.

  12. NADPH-dependent D-aldose reductases and xylose fermentation in Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Christakopoulos, P.

    2004-01-01

    Two aldose (xylose) reductases (ARI and ARII) from Fusarium oxysporum were purified and characterized. The native ARI was a monomer with M-r 41000, pI 5.2 and showed a 52-fold preference for NADPH over NADH, while ARII was homodimeric with a subunit of M-r 37000, pI 3.6 and a 60-fold preference...

  13. Fusion: a tale of recombination in an asexual fungus: The role of nuclear dynamics and hyphal fusion in horizontal chromosome transfer in Fusarium oxysporum

    NARCIS (Netherlands)

    Shahi, S.

    2016-01-01

    Recent studies have shown that not only meiotic recombination is responsible for the fast evolution of fungal pathogens. In the asexual fungus F. oxysporum (Fo) the "fast" evolving part of the genome is organized into small chromosomes and one such chromosome houses all effector genes and is

  14. Penggunaan Streptomyces sp. Sebagai Biokontrol Penyakit Layu Pada Tanaman Cabai Merah (Capsicum annuum L. yang Disebabkan Oleh Fusarium oxysporum f.sp. capsici

    Directory of Open Access Journals (Sweden)

    ANINDA OKTAVIA RAHARINI

    2014-01-01

    Full Text Available A research has been conducted to find out Streptomyces bacteria at Bukit Jimbaran, to inhibitionpotency of Streptomyces sp. to pathogenic fungi Fusarium oxysporum f.sp. capsici, and to find outantifungal activity of Streptomyces filtrate to F.oxysporum f.sp. capsici in chili (Capsicum annuumL. plants. Streptomyces sp. isolation was done by platting method with selective media YMA (ISP4.Identification of Streptomyces sp. used Bergey’s book entitled Manual Determinative Bacteriology.Test inhibition against F.oxysporum f.sp. capsici and in vivo test used by dying the roots of the chili(C.annuum L. plant with F.oxysporum f.sp. capsici and after 30 seconds the roots were dying withStreptomyces sp. culture, furthermore sterile soil on polybag watered by F.oxysporum f.sp. capsicispore and Streptomyces sp. culture at the same time. The result found five isolates Streptomyces sp.with different morphological. The antagonis test showed Streptomyces sp. 4 had ability (82% againstFusarium, Streptomyces sp.1 (72%, Streptomyces sp.2 (64%, Streptomyces sp.3 (76%, andStreptomyces sp. 5 (32%. All Streptomyces suppressed the growth of Fusarium on chili plants inglass house (p<0,05. Streptomyces sp.4 suppressed Fusarium wilt disease in chili from 80% in controlto 8%.

  15. Antagonistic Activities of Novel Peptides from Bacillus amyloliquefaciens PT14 against Fusarium solani and Fusarium oxysporum.

    Science.gov (United States)

    Kim, Young Gwon; Kang, Hee Kyoung; Kwon, Kee-Deok; Seo, Chang Ho; Lee, Hyang Burm; Park, Yoonkyung

    2015-12-09

    Bacillus species have recently drawn attention due to their potential use in the biological control of fungal diseases. This paper reports on the antifungal activity of novel peptides isolated from Bacillus amyloliquefaciens PT14. Reverse-phase high-performance liquid chromatography revealed that B. amyloliquefaciens PT14 produces five peptides (PT14-1, -2, -3, -4a, and -4b) that exhibit antifungal activity but are inactive against bacterial strains. In particular, PT14-3 and PT14-4a showed broad-spectrum antifungal activity against Fusarium solani and Fusarium oxysporum. The PT14-4a N-terminal amino acid sequence was identified through Edman degradation, and a BLAST homology analysis showed it not to be identical to any other protein or peptide. PT14-4a displayed strong fungicidal activity with minimal inhibitory concentrations of 3.12 mg/L (F. solani) and 6.25 mg/L (F. oxysporum), inducing severe morphological deformation in the conidia and hyphae. On the other hand, PT14-4a had no detectable hemolytic activity. This suggests PT14-4a has the potential to serve as an antifungal agent in clinical therapeutic and crop-protection applications.

  16. Nitrate assimilation pathway (NAP): role of structural (nit) and transporter (ntr1) genes in Fusarium oxysporum f.sp. lycopersici growth and pathogenicity.

    Science.gov (United States)

    Gomez-Gil, Lucia; Camara Almiron, Jesus; Rodriguez Carrillo, Patricia Lizett; Olivares Medina, Cindy Nayely; Bravo Ruiz, Gustavo; Romo Rodriguez, Pamela; Corrales Escobosa, Alma Rosa; Gutierrez Corona, Felix; Roncero, M Isabel

    2018-04-01

    The tomato pathogen Fusarium oxysporum f.sp. lycopersici possesses the capability to use nitrate as the only nitrogen source under aerobic and anaerobic conditions and to activate virulence-related functions when cultivated in the presence of nitrate, but not in ammonium. The genome of F. oxysporum f.sp. lycopersici encodes three paralogs nitrate reductase (NR) genes (nit1, nit2 and nit3) and one predicted ortholog of the Aspergillus nidulans high-affinity nitrate/nitrite transporters NtrA and NtrB, named ntr1. We set out to clarify the role of nit1, nit2, nit3 and ntr1 genes in nitrate assimilation and in the virulence of F. oxysporum f.sp. lycopersici. Quantitative RT-PCR analysis revealed that only nit1, nit2 and ntr1 are expressed at significant levels during growth in nitrate as the only nitrogen source. Targeted deletion of nit1 and ntr1, but not of nit2 or nit3, severely impaired growth of F. oxysporum on nitrate as nitrogen source, indicating that Nit1 and Ntr1 proteins are involved in nitrate assimilation by the fungus; biochemical analysis of nit mutants indicated that Nit1 and Nit2 enzymes contribute to about 50 and 30% of the total NR activity, respectively. In addition, a spontaneous chlorate-resistant mutant derived from F. oxysporum 4287, denoted NitFG, was characterized, showing inability to grow in nitrate under aerobic and anaerobic conditions and low levels of NR activity, in spite of its increased transcription levels of nit1 and nit2 genes. Tomato plant infection assays showed that NitFG and ∆ntr1 mutants induced an earlier death in tomato plants, whereas the single mutants ∆nit1, ∆nit2 and ∆nit1∆nit2 double mutant showed a mortality rate similar to the wild-type strain. Taken together, these results indicate that the Nit1 and Ntr1 proteins are important for nitrate assimilation of F. oxysporum f.sp. lycopersici incubated under aerobic and anaerobic conditions and that this metabolic process is not essential for the virulence of

  17. Mitochondrial genomes reveal recombination in the presumed asexual Fusarium oxysporum species complex.

    Science.gov (United States)

    Brankovics, Balázs; van Dam, Peter; Rep, Martijn; de Hoog, G Sybren; J van der Lee, Theo A; Waalwijk, Cees; van Diepeningen, Anne D

    2017-09-18

    The Fusarium oxysporum species complex (FOSC) contains several phylogenetic lineages. Phylogenetic studies identified two to three major clades within the FOSC. The mitochondrial sequences are highly informative phylogenetic markers, but have been mostly neglected due to technical difficulties. A total of 61 complete mitogenomes of FOSC strains were de novo assembled and annotated. Length variations and intron patterns support the separation of three phylogenetic species. The variable region of the mitogenome that is typical for the genus Fusarium shows two new variants in the FOSC. The variant typical for Fusarium is found in members of all three clades, while variant 2 is found in clades 2 and 3 and variant 3 only in clade 2. The extended set of loci analyzed using a new implementation of the genealogical concordance species recognition method support the identification of three phylogenetic species within the FOSC. Comparative analysis of the mitogenomes in the FOSC revealed ongoing mitochondrial recombination within, but not between phylogenetic species. The recombination indicates the presence of a parasexual cycle in F. oxysporum. The obstacles hindering the usage of the mitogenomes are resolved by using next generation sequencing and selective genome assemblers, such as GRAbB. Complete mitogenome sequences offer a stable basis and reference point for phylogenetic and population genetic studies.

  18. Genetic mapping of resistance to Fusarium oxysporum f. sp. tulipae in tulip.

    Science.gov (United States)

    Tang, Nan; van der Lee, Theo; Shahin, Arwa; Holdinga, Maarten; Bijman, Paul; Caser, Matteo; Visser, Richard G F; van Tuyl, Jaap M; Arens, Paul

    Fusarium oxysporum is a major problem in the production of tulip bulbs. Breeding for resistant cultivars through a conventional approach is a slow process due to the long life cycle of tulip. Until now, marker-assisted selection (MAS) has been hampered by the large genome size and the absence of a genetic map. This study is aimed at construction of the first genetic map for tulip and at the identification of loci associated with resistance to F. oxysporum . A cross-pollinated population of 125 individuals segregating for Fusarium resistance was obtained from Tulipa gesneriana "Kees Nelis" and T. fosteriana "Cantata." Fusarium resistance of the mapping population was evaluated through a soil infection test in two consecutive years, and a spot inoculation test in which a green fluorescent protein tagged Fusarium strain was used for inoculation. The genetic maps have been constructed for the parents separately. The genetic map of "Kees Nelis" comprised 342 markers on 27 linkage groups covering 1707 cM, while the map of "Cantata" comprised 300 markers on 21 linkage groups covering 1201 cM. Median distance between markers was 3.9 cM for "Kees Nelis" and 3.1 cM for "Cantata." Six putative quantitative trait loci (QTLs) for Fusarium resistance were identified, derived from both parents. QTL2, QTL3, and QTL6 were significant in all disease tests. For the flanking markers of the QTLs, phenotypic means of the two allelic groups, segregating from a parent for such a marker, were significantly different. These markers will be useful for the development of MAS in tulip breeding.

  19. Genetic and Pathogenic Variability of Fusarium oxysporum f. sp. cepae Isolated from Onion and Welsh Onion in Japan.

    Science.gov (United States)

    Sasaki, Kazunori; Nakahara, Katsuya; Tanaka, Shuhei; Shigyo, Masayoshi; Ito, Shin-ichi

    2015-04-01

    Fusarium oxysporum f. sp. cepae causes Fusarium basal rot in onion (common onion) and Fusarium wilt in Welsh onion. Although these diseases have been detected in various areas in Japan, knowledge about the genetic and pathogenic variability of F. oxysporum f. sp. cepae is very limited. In this study, F. oxysporum f. sp. cepae was isolated from onion and Welsh onion grown in 12 locations in Japan, and a total of 55 F. oxysporum f. sp. cepae isolates (27 from onion and 28 from Welsh onion) were characterized based on their rDNA intergenic spacer (IGS) and translation elongation factor-1α (EF-1α) nucleotide sequences, vegetative compatibility groups (VCGs), and the presence of the SIX (secreted in xylem) homologs. Phylogenetic analysis of IGS sequences showed that these isolates were grouped into eight clades (A to H), and 20 onion isolates belonging to clade H were monophyletic and assigned to the same VCG. All the IGS-clade H isolates possessed homologs of SIX3, SIX5, and SIX7. The SIX3 homolog was located on a 4 Mb-sized chromosome in the IGS-clade H isolates. Pathogenicity tests using onion seedlings showed that all the isolates with high virulence were in the IGS-clade H. These results suggest that F. oxysporum f. sp. cepae isolates belonging to the IGS-clade H are genetically and pathogenically different from those belonging to the other IGS clades.

  20. Formulation of the endophytic fungus Cladosporium oxysporum Berk.

    Directory of Open Access Journals (Sweden)

    Bensaci Oussama Ali

    2015-01-01

    Full Text Available Two formulations containing culture filtrates and conidial suspensions of the endophytic fungus Cladosporium oxysporum Berk. & M.A. Curtis, isolated previously from stems of Euphorbia bupleuroides subsp. luteola (Kralik Maire, were experimentally tested for their aphicid activity against the black bean aphid Aphis fabae Scop. found in Algeria. It was shown that invert emulsions are more effective against aphids, than using aqueous suspensions. This was especially true for formulations containing culture filtrates. The relatively insignificant mortalities obtained by formulations containing conidial suspensions indicated a low infectious potential towards the aphids. The proteolytic activity seemed to be more important than the chitinolytic activity of the fungus against the black bean aphid A. fabae

  1. The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum.

    Science.gov (United States)

    Niño-Sánchez, Jonathan; Casado-Del Castillo, Virginia; Tello, Vega; De Vega-Bartol, José J; Ramos, Brisa; Sukno, Serenella A; Díaz Mínguez, José María

    2016-09-01

    The FTF (Fusarium transcription factor) gene family comprises a single copy gene, FTF2, which is present in all the filamentous ascomycetes analysed, and several copies of a close relative, FTF1, which is exclusive to Fusarium oxysporum. An RNA-mediated gene silencing system was developed to target mRNA produced by all the FTF genes, and tested in two formae speciales: F. oxysporum f. sp. phaseoli (whose host is common bean) and F. oxysporum f. sp. lycopersici (whose host is tomato). Quantification of the mRNA levels showed knockdown of FTF1 and FTF2 in randomly isolated transformants of both formae speciales. The attenuation of FTF expression resulted in a marked reduction in virulence, a reduced expression of several SIX (Secreted In Xylem) genes, the best studied family of effectors in F. oxysporum, and lower levels of SGE1 (Six Gene Expression 1) mRNA, the presumptive regulator of SIX expression. Moreover, the knockdown mutants showed a pattern of colonization of the host plant similar to that displayed by strains devoid of FTF1 copies (weakly virulent strains). Gene knockout of FTF2 also resulted in a reduction in virulence, but to a lesser extent. These results demonstrate the role of the FTF gene expansion, mostly the FTF1 paralogues, as a regulator of virulence in F. oxysporum and suggest that the control of effector expression is the mechanism involved. © 2016 The Authors Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  2. Aspects of resistance of flax and linseed (Linum usitatissimum) to Fusarium oxysporum f.sp. lini = Aspecten van de resistentie in vezel- en olievlas (Linum usitatissimum) tegen Fusarium oxysporum f.sp. lini

    NARCIS (Netherlands)

    Kroes, I.

    1997-01-01

    In the thesis aspects have been described of the flax and linseed interaction to Fusarium oxysporum f.sp. lini, the causal agent of flax wilt. Two in vitro tests were established to screen for resistance, to investigate race specificity

  3. Screening of Mutation High-Yielding Biocontrol Bacterium BJ1 by Ion Beam Irradiation and Effect of Controlling Fusarium oxysporum cucunerinum Disease

    International Nuclear Information System (INIS)

    Ma Shuang; Dong Xicun; Li Wenjian; Wang Jufang; Yu Lixia; Liu Jing

    2010-01-01

    BJ1 of Bacillus subtilis is an important biocontrol factor in control of fungus disease. In order to improve the antagonistic ability of the strain,and obtain high-efficiency strains, 12 C 6+ of different doses and linear energy transfer (LET) was used to irradiate the biocontrol bacterium BJ1. The optimum dose and LET of ion beam irradiation for the BJ1 are 200-400 Gy and 60 keV/μm,respectively. The antagonistic ability is increased by 2%-21%. The control effect of mutation to Fusarium oxysporum f. sp. cucunerinum is increased by 17.48% over that of BJ1, and mutation also has better plant growth-promoting effect. (authors)

  4. Influence of Bacillus polymyxa on the growth and development of Fusarium oxysporum f. sp. tulipae

    Directory of Open Access Journals (Sweden)

    Alicja Saniewska

    2013-12-01

    Full Text Available Antagonistic effect of Bacillus polymyxa, strain S13, toward Fusarium oxysporum f. sp. tulipae was evaluated iii vitro and in vivo. The growth of the pathogen was greatly inhibited in dual cultures with Bacillus polymyxa on potato dextrose agar. Suspension of B. polymyxa and its filtrate substantially inhibited spore germination and development of Fusarium oxysporuum f. sp. tulipae on tulip bulbs.

  5. Characterization of South African isolates of Fusarium oxysporum f.sp cubense from Cavendish banana

    Directory of Open Access Journals (Sweden)

    Tom Gordon

    2010-04-01

    Full Text Available Fusarium wilt, caused by the soil-borne fungus Fusarium oxysporum f.sp. cubense (Foc, is a serious vascular disease of bananas in most subtropical and tropical regions of the world. Twenty-four vegetative compatibility groups (VCGs and three pathogenic races have been identified in Foc, reflecting a relatively high genetic diversity for an asexual fungus. To characterise a South African population of Foc, a collection of 128 isolates from diverse geographic origins were isolated from diseased Cavendish bananas and subjected to VCG analysis and sequencing of the translation elongation factor 1-α (TEF gene region. The presence of mating type genes was also determined using MAT-1 and MAT-2 specific primers. VCG 0120 was established as the only VCG of Foc present in the South African population studied. Only the MAT-2 idiomorph was present in all the local isolates of Foc. A phylogenetic analysis of DNA sequences of the TEF gene region revealed that the South African isolates grouped closely with VCG 0120 isolates from Australia and Asia. These results suggest that the South African population of Foc was most likely introduced in a limited number of events and that it had spread with infected planting material within the country. The presence of only one mating type and the limited diversity in this pathogen render it unlikely to rapidly overcome disease management strategies involving host resistance.

  6. Penggunaan Jamur Antagonis Trichoderma SP. Dan Gliocladium SP. Untuk Mengendalikan Penyakit Layu Fusarium Pada Tanaman Bawang Merah (Allium Ascalonicum L.)

    OpenAIRE

    Arie Ramadhina, Arie Ramadhina; Lisnawita, Lisnawita; Lubis, Lahmuddin

    2013-01-01

    The use of antagonism fungus of Trichoderma sp. and Gliocladium sp. for controlling wilt(Fusarium oxysporum) in red onion plants. The aim of the research was to know the effectiviness ofantagonism fungus of Trichoderma sp. and Gliocladium sp. in controlling wilt in red onion plants.The research used non-factorial RAK (random group design) with eight treatments: control, 10grams of F. oxysporum, 12 grams of Trichoderma sp., 18 grams of Trichoderma sp., 24 grams ofTrichoderma sp., and 12 grams ...

  7. Evaluation of two systerns of soil desinfection and its interaction with sorne rnicronutrient formulations on the incidence of Fusarium oxysporum in two carnation varieties Evaluación de dos sistemas de desinfección del suelo y su interacción con algunas formulaciones de microelementos sobre la incidencia de Fusarium oxysporum en dos variedades de clavel

    Directory of Open Access Journals (Sweden)

    Orozco de Amézquita Martha

    1993-12-01

    Full Text Available A research was done in a commercial greenhouse in order to evaluate two soil treatments before planting and foliar application of Zinc, Cooper, Manganese, Boron and Molybdenum in the control of vascular wilt of Carnation caused by Fusarium oxysporum f.sp. dianthi. A greater reduction ofthe fungus population in the seil and disease incidence was observed with
    the soil treatment with Dazomet + steam. The application of micronutrients to the foliage of the plants did not produce a significant control of the disease.
    La investigación se realizó en un cultivo comercial de clavel con el objeto de evaluar el tratamiento del suelo con una mezcla de un fumigante + vapor y la aplicación foliar de Zinc, Cobre, Manganeso, Boro y Molibdeno en las variedades New Pink y Scania, para el control del marchitamiento vascular ocasionado por Fusarium oxysporum f.sp. dianthi. La mayor población del hongo en el suelo y la menor incidencia de la enfermedad se obtuvo con la aplicación de Dazomet + Vapor. La aplicación de micronutrientes al follaje de las plantas no produjo una disminución significativa de la enfermedad, ni un aumento en la producción de flores. Evaluation of two systems of soil desinfection and their interaction with some formulation of micronutrients on the incidence of Fusetium oxysporum in two carnation varieties.

  8. Pengendalian Hayati Penyakit Layu Fusarium Pisang (Fusarium oxysporum f.sp. cubense dengan Trichoderma sp.

    Directory of Open Access Journals (Sweden)

    Albertus Sudirman

    2011-07-01

    Full Text Available The aim of this research was to study the inhibiting ability of Trichoderma sp. to control fusarium wilt of banana in greenhouse condition. The experiments consisted of the antagonism test between Trichoderma sp. and Fusarium oxysporum f.sp. cubense (Foc in vitro using dual culture method and glass house experiment which was arranged in 3×3 Factorial Complete Randomized Design. First factor of the latter experiment was the dose of Trichoderma sp. culture (0, 25, and 50 g per polybag, second factor was time of Trichoderma culture application (2 weeks before Foc inoculation, at same time with Foc inoculation and 2 weeks after Foc inoculation. Trichoderma sp. was cultured in mixed rice brand and chaff medium. The disease intensity was observed with scoring system of wilting leaves (0–4. The results showed that Trichoderma sp. was antagonistic against Foc in vitro and inhibited 86% of Foc colony development. Mechanism of antagonism between Trichoderma sp. and Foc was hyperparasitism. Trichoderma hyphae coiled around Foc hyphae. Lysis of Foc hyphae was occurred at the attached site of Trichoderma hyphae on Foc hyphae. Added banana seedling with Trichoderma sp. Culture reduced disease intensity of Fusarium wilt. Suggested dose of Trichoderma culture application in glass house was 25 g/polybag, given at the same time with Foc inoculation. Penelitian ini bertujuan untuk mengetahui kemampuan Trichoderma sp. untuk pengendalian penyakit layu fusarium pisang di rumah kaca. Penelitian meliputi pengujian daya hambat Fusarium oxysporum f.sp. cubense (Foc in vitro dan kemampuan menekan intensitas penyakit di rumah kaca. Penelitian in vitro meliputi uji antagonisme dan mekanismenya yang dilakukan secara dual culture. Uji pengaruh Trichoderma sp. terhadap penyakit layu Fusarium dilakukan di rumah kaca dengan Rancangan Acak Lengkap Faktorial. Faktor pertama adalah dosis biakan Trichoderma sp., dengan tiga aras (0, 25, 50 g/per bibit dalam polibag. Faktor kedua

  9. A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB.

    Science.gov (United States)

    López-Berges, Manuel S; Rispail, Nicolas; Prados-Rosales, Rafael C; Di Pietro, Antonio

    2010-07-01

    During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source-independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the DeltameaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi.

  10. Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana.

    Science.gov (United States)

    Zhu, Qian-Hao; Stephen, Stuart; Taylor, Jennifer; Helliwell, Chris A; Wang, Ming-Bo

    2014-01-01

    Short noncoding RNAs have been demonstrated to play important roles in regulation of gene expression and stress responses, but the repertoire and functions of long noncoding RNAs (lncRNAs) remain largely unexplored, particularly in plants. To explore the role of lncRNAs in disease resistance, we used a strand-specific RNA-sequencing approach to identify lncRNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. Antisense transcription was found in c. 20% of the annotated A. thaliana genes. Several noncoding natural antisense transcripts responsive to F. oxysporum infection were found in genes implicated in disease defense. While the majority of the novel transcriptionally active regions (TARs) were adjacent to annotated genes and could be an extension of the annotated transcripts, 159 novel intergenic TARs, including 20 F. oxysporum-responsive lncTARs, were identified. Ten F. oxysporum-induced lncTARs were functionally characterized using T-DNA insertion or RNA-interference knockdown lines, and five were demonstrated to be related to disease development. Promoter analysis suggests that some of the F. oxysporum-induced lncTARs are direct targets of transcription factor(s) responsive to pathogen attack. Our results demonstrated that strand-specific RNA sequencing is a powerful tool for uncovering hidden levels of transcriptome and that IncRNAs are important components of the antifungal networks in A. thaliana. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. Pathogenicity and genetic diversity of Fusarium oxysporum causing soybean root rot in northeast China

    Science.gov (United States)

    Soybean is an important edible legume cultivated around the world. However, soybean production is seriously impacted by the widespread occurrence of root rot disease. In this study, genetic diversity and pathogenicity of Fusarium oxysporum associated with root rot of soybean in Heilongjiang province...

  12. The cotton MAPK kinase GhMPK20 negatively regulates resistance to Fusarium oxysporum by mediating the MKK4-MPK20-WRKY40 cascade.

    Science.gov (United States)

    Wang, Chen; He, Xiaowen; Li, Yuzhen; Wang, Lijun; Guo, Xulei; Guo, Xingqi

    2017-11-02

    Fusarium wilt is one of the most serious diseases affecting cotton. However, the pathogenesis and mechanism by which Fusarium oxysporum overcomes plant defence responses are unclear. Here, a new group D mitogen-activated protein kinase (MAPK) gene, GhMPK20, was identified and functionally analysed in cotton. GhMPK20 expression was significantly induced by F. oxysporum. Virus-induced gene silencing (VIGS) of GhMPK20 in cotton increased the tolerance to F. oxysporum, whereas ectopic GhMPK20 overexpression in Nicotiana benthamiana reduced F. oxysporum resistance via disruption of the salicylic acid (SA)-mediated defence pathway. More importantly, an F. oxysporum-induced MAPK cascade pathway composed of GhMKK4, GhMPK20 and GhWRKY40 was identified. VIGS of GhMKK4 and GhWRKY40 also enhanced F. oxysporum resistance in cotton, and the function of GhMKK4-GhMPK20 was shown to be essential for F. oxysporum-induced GhWRKY40 expression. Together, our results indicate that the GhMKK4-GhMPK20-GhWRKY40 cascade in cotton plays an important role in the pathogenesis of F. oxysporum. This research broadens our knowledge of the negative role of the MAPK cascade in disease resistance in cotton and provides an important scientific basis for the formulation of Fusarium wilt prevention strategies. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  13. Detection and control of Fusarium oxysporum and Cylindrocarpon destructans in forest nursery soils

    Science.gov (United States)

    Catherine Crosby; Lynne Carpenter-Boggs; Stewart Higgins; Nabil Khadduri

    2010-01-01

    Fusarium oxysporum and Cylindrocarpon destructans cause root disease that leads to significant crop losses in forest nurseries when not treated. Treatment currently relies on methyl bromide fumigation to eradicate soil pathogens. New environmental protection laws, however, are phasing out methyl bromide. Alternative chemical treatments are being tested, as well as...

  14. Quantification of Fusarium oxysporum in fumigated soils by a newly developed real-time PCR assay to assess the efficacy of fumigants for Fusarium wilt disease in strawberry plants.

    Science.gov (United States)

    Li, Yuan; Mao, Liangang; Yan, Dongdong; Ma, Taotao; Shen, Jin; Guo, Meixia; Wang, Qiuxia; Ouyang, Canbin; Cao, Aocheng

    2014-11-01

    Two soil fumigants, chloropicrin (CP) and dimethyl disulfide (DMDS), were used to control Fusarium wilt disease (FWD) which caused large economic losses in strawberries. The fumigants were evaluated alone and in combination in a laboratory study and in strawberry greenhouses. Laboratory tests found that combinations of CP and DMDS indicated a positive synergistic activity on Fusarium oxysporum. A newly developed quantitative assay for F. oxysporum involving real-time PCR was used successfully to evaluate F. oxysporum control by the fumigants; it provided similar results to the selective medium but was less time-consuming and less labor intensive. Greenhouse trials revealed that the combination of CP and DMDS successfully suppressed the incidence of FWD and sharply reduced the population density of F. oxysporum, which significantly increased fruit branch number and maintained a good strawberry yield, higher than methyl bromide (MB) treatment. All of the treatments provided significantly better results than the non-treated control. This study confirms that the newly developed real-time PCR quantitative assay for F. oxysporum was suitable for the control efficacy evaluation of soil fumigants and that the novel fumigant combination of CP and DMDS offers a promising effective alternative to MB for the control of F. oxysporum in strawberry greenhouses. © 2013 Society of Chemical Industry.

  15. Direct ethanol conversion of pretreated straw by Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Christakopoulos, P.; Koullas, D.P.; Kekos, D.; Koukios, E.G.; Macris, B.J. (National Technical Univ., Athens (GR). Dept. of Chemical Engineering)

    1991-01-01

    Factors affecting the direct conversion of alkali pretreated straw to ethanol by Fusarium oxysporum F3 were investigated and the alkali level used for pretreatment and the degree of delignification of straw were found to be the most important. A linear correlation between ethanol yield and both the degree of straw delignification and the alkali level was observed. At optimum delignified straw concentration (4% w/v), a maximum ethanol yield of 0.275 g ethanol g{sup -1} of straw was obtained corresponding to 67.8% of the theoretical yield. (author).

  16. Draft Genome Sequence of Rhizobium sp. Strain TBD182, an Antagonist of the Plant-Pathogenic Fungus Fusarium oxysporum, Isolated from a Novel Hydroponics System Using Organic Fertilizer.

    Science.gov (United States)

    Iida, Yuichiro; Fujiwara, Kazuki; Someya, Nobutaka; Shinohara, Makoto

    2017-03-16

    Rhizobium sp. strain TBD182, isolated from a novel hydroponics system, is an antagonistic bacterium that inhibits the mycelial growth of Fusarium oxysporum but does not eliminate the pathogen. We report the draft genome sequence of TBD182, which may contribute to elucidation of the molecular mechanisms of its fungistatic activity. Copyright © 2017 Iida et al.

  17. The influence of different cultivation conditions on the metabolome of Fusarium oxysporum.

    Science.gov (United States)

    Panagiotou, Gianni; Christakopoulos, Paul; Olsson, Lisbeth

    2005-08-22

    The two most widespread pentose sugars found in the biosphere are d-xylose and l-arabinose. They are both potential substrates for ethanol production. The purpose of this study was to better understand the redox constraints imposed to Fusarium oxysporum during utilization of pentoses. In order to increase ethanol yield and decrease by-product formation, nitrate was used as nitrogen source. The use of NADH, the cofactor in denitrification process when using nitrate as a nitrogen source, improved the ethanol yield on xylose to 0.89 mol mol(-1) compared to the ethanol yield achieved using ammonium as nitrogen source 0.44 mol mol(-1). The improved ethanol yield was followed by a 28% decrease in yield of the by-product xylitol. In order to investigate the metabolic pathway of arabinose and the metabolic limitations for the efficient ethanol production from this sugar, the extracellular and intracellular metabolite profiles were determined under aerobic and anaerobic cultivation conditions. The results of this study clearly show difficulties in channelling of glucose-1-P (G1P) to pentose phosphate pathway (PPP) and reduced NADPH regeneration, suggesting that NADPH becomes a limiting factor for arabinose conversion, resulting in excessive acetate production. Variations of the fungus intracellular amino and non-amino acid pool, under different culture conditions, were evaluated using principal component analysis (PCA). PCA projection of the metabolome data collected from F. oxysporum subjected to environmental perturbations succeeded to visualize different physiological states and the conclusions of this study were that the metabolite profile is unique according to: (1) the carbon source and (2) the oxygen supply, and to a lesser extent to the cultivation phase.

  18. Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance

    Science.gov (United States)

    Chen, Yi Chung; Wong, Chin Lin; Muzzi, Frederico; Vlaardingerbroek, Ido; Kidd, Brendan N.; Schenk, Peer M.

    2014-01-01

    Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including Arabidopsis thaliana. Investigation of the defense response against this pathogen had primarily been conducted using leaf tissue and little was known about the root defense response. In this study, we profiled the expression of root genes after infection with F. oxysporum by microarray analysis. In contrast to the leaf response, root tissue did not show a strong induction of defense-associated gene expression and instead showed a greater proportion of repressed genes. Screening insertion mutants from differentially expressed genes in the microarray uncovered a role for the transcription factor ETHYLENE RESPONSE FACTOR72 (ERF72) in susceptibility to F. oxysporum. Due to the role of ERF72 in suppressing programmed cell death and detoxifying reactive oxygen species (ROS), we examined the pub22/pub23/pub24 U-box type E3 ubiquitin ligase triple mutant which is known to possess enhanced ROS production in response to pathogen challenge. We found that the pub22/23/24 mutant is more resistant to F. oxysporum infection, suggesting that a heightened innate immune response provides protection against F. oxysporum. We conclude that root-mediated defenses against soil-borne pathogens can be provided at multiple levels. PMID:24998294

  19. Estudio del antagonismo de algunas especies de trichoderma sobre fusarium oxysporum y rhizoctonia solani

    OpenAIRE

    Elias, Ricardo; Arcos, Omar; Arbelaez, Germán

    2011-01-01

    En este trabajo se estudió el antagonismo de algunos aislamientos del hongo Trichoderma obtenidos de suelos colornbianos en el control de Fusarium oxysporum y Rhizoctonia solani. En los ensayos "in vitre" se observó un marcado antagonismo entre las colonias de los aislamientos de Trichoderma sobre R. sotsni, con una reducción apreciabledel tamaño de la colonia y un antaqonismo menor sobre F. oxysporum. En los ensayos de parasitismo a nivel microscópico, se observó una gran interacción entre a...

  20. Efecto de la fertilización nitrogenada en la incidencia de Fusarium oxysporum f. sp. Dianthi y Heterodera trifolii g. en clavel Effect of nitrogen fertilization on the incidence of Fusarium oxysporum f. sp. Dianthi and Heterodera trifolii G. in carnation

    Directory of Open Access Journals (Sweden)

    Burbano Luis E.

    1990-12-01

    Full Text Available

    El manejo de la fertilización es uno de los métodos que junto con otras formas de control puede reducir la severidad de algunas enfermedades; en el presente trabajo se evaluó el efecto de la fertilización nitrogenada, utilizando diferentes fuentes de nitrógeno sobre las enfermedades causadas por Fusarium oxysporum f. sp, Dianthi y Heterodera trifolii G. Se emplearon como fuentes de nitrógeno de fosfato de amonio, nitrato de potasio y nitrón 26, y sulfato de potasio como testigo. Al finalizar el ensayo, además de la variación
    de pH, se evaluó potencial de inóculo de Fusarium oxysporum f. sp, Dianthi, el número y viabilidad de los quistes de Heterodera trifolii G., lo mismo que el número de plantas
    enfermas, Los resultados mostraron que los tratamientos
    con nitrato de potasio y sulfato de potasio incrementaron el pH, mintras que el nitrón 26 y el fosfato de amonio acidificaron el suelo. Al final del experimento se presentó
    un menor número de colonias de Fusarium oxysporum f. sp.Dianthi en los suelos tratados con sulfato y nitrato de potasio. El número de quistes y viabilidad de Heterodera trifolii G. no fueron afectados por los tratamientos. El mayor número de tallos florales se obtuvo con el tratamiento de sulfato de potasio y el menor con el de fosfato de amonio.

    Handling the fertilization is one of the methods that among with other controling ways can reduce the strength of some diseases; in this essay it was tested the effeet of the nitrogenated fertilization, using differents nitrogen sources allover the diseases; produced by the Fusarium oxysporum
    f. sp. dianthi and Heterodera trifolii G. Ammonium phosphate, potassium nitrate and Nitron 26 were used as nitrogen sources, and potassium sulfate was used as a paterno At the end of the test, beside of the pH variation, it was evaluated the Fusarium oxysporum f. sp. dianthi inoculus potential,
    the number of eysts and the viability of the

  1. Use of the Plant Defense Protein Osmotin To Identify Fusarium oxysporum Genes That Control Cell Wall Properties

    KAUST Repository

    Lee, H.

    2010-02-26

    Fusarium oxysporum is the causative agent of fungal wilt disease in a variety of crops. The capacity of a fungal pathogen such as F. oxysporum f. sp. nicotianae to establish infection on its tobacco (Nicotiana tabacum) host depends in part on its capacity to evade the toxicity of tobacco defense proteins, such as osmotin. Fusarium genes that control resistance to osmotin would therefore reflect coevolutionary pressures and include genes that control mutual recognition, avoidance, and detoxification. We identified FOR (Fusarium Osmotin Resistance) genes on the basis of their ability to confer osmotin resistance to an osmotin-sensitive strain of Saccharomyces cerevisiae. FOR1 encodes a putative cell wall glycoprotein. FOR2 encodes the structural gene for glutamine:fructose-6-phosphate amidotransferase, the first and rate-limiting step in the biosynthesis of hexosamine and cell wall chitin. FOR3 encodes a homolog of SSD1, which controls cell wall composition, longevity, and virulence in S. cerevisiae. A for3 null mutation increased osmotin sensitivity of conidia and hyphae of F. oxysporum f. sp. nicotianae and also reduced cell wall β-1,3-glucan content. Together our findings show that conserved fungal genes that determine cell wall properties play a crucial role in regulating fungal susceptibility to the plant defense protein osmotin.

  2. Use of the Plant Defense Protein Osmotin To Identify Fusarium oxysporum Genes That Control Cell Wall Properties

    KAUST Repository

    Lee, H.; Damsz, B.; Woloshuk, C. P.; Bressan, R. A.; Narasimhan, Meena L.

    2010-01-01

    Fusarium oxysporum is the causative agent of fungal wilt disease in a variety of crops. The capacity of a fungal pathogen such as F. oxysporum f. sp. nicotianae to establish infection on its tobacco (Nicotiana tabacum) host depends in part on its capacity to evade the toxicity of tobacco defense proteins, such as osmotin. Fusarium genes that control resistance to osmotin would therefore reflect coevolutionary pressures and include genes that control mutual recognition, avoidance, and detoxification. We identified FOR (Fusarium Osmotin Resistance) genes on the basis of their ability to confer osmotin resistance to an osmotin-sensitive strain of Saccharomyces cerevisiae. FOR1 encodes a putative cell wall glycoprotein. FOR2 encodes the structural gene for glutamine:fructose-6-phosphate amidotransferase, the first and rate-limiting step in the biosynthesis of hexosamine and cell wall chitin. FOR3 encodes a homolog of SSD1, which controls cell wall composition, longevity, and virulence in S. cerevisiae. A for3 null mutation increased osmotin sensitivity of conidia and hyphae of F. oxysporum f. sp. nicotianae and also reduced cell wall β-1,3-glucan content. Together our findings show that conserved fungal genes that determine cell wall properties play a crucial role in regulating fungal susceptibility to the plant defense protein osmotin.

  3. Endophytic control of Cosmopolites sordidus and Radopholus similis using Fusarium oxysporum V5w2 in tissue culture banana

    NARCIS (Netherlands)

    Ochieno, D.M.W.

    2010-01-01

    Banana plants are being inoculated with Fusarium oxysporum V5w2 and Beauveria bassiana G41 for endophytic control of pests. The effects of F. oxysporum V5w2 and B. bassiana G41, soil sterility, fertilizer, and mulching, on Cosmopolites sordidus and Radopholus similis in banana plants, are

  4. Nitrate reductase and nitrous oxide production by Fusarium oxysporum 11dn1 under aerobic and anaerobic conditions.

    Science.gov (United States)

    Kurakov, A V; Nosikov, A N; Skrynnikova, E V; L'vov, N P

    2000-08-01

    The fungus Fusarium oxysporum 11dn1 was found to be able to grow and produce nitrous oxide on nitrate-containing medium in anaerobic conditions. The rate of nitrous oxide formation was three to six orders of magnitude lower than the rates of molecular nitrogen production by common denitrifying bacteria. Acetylene and ammonia did not affect the release of nitrous oxide release. It was shown that under anaerobic conditions fast increase of nitrate reductase activity occurred, caused by the synthesis of enzyme de novo and protein dephosphorylation. Reverse transfer of the mycelium to aerobic conditions led to a decline in nitrate reductase activity and stopped nitrous oxide production. The presence of two nitrate reductases was shown, which differed in molecular mass, location, temperature optima, and activity in nitrate- and ammonium-containing media. Two enzymes represent assimilatory and dissimilatory nitrate reductases, which are active in aerobic and anaerobic conditions, respectively.

  5. Heterologous expression of the Aspergillus nidulans regulatory gene nirA in Fusarium oxysporum.

    Science.gov (United States)

    Daboussi, M J; Langin, T; Deschamps, F; Brygoo, Y; Scazzocchio, C; Burger, G

    1991-12-20

    We have isolated strains of Fusarium oxysporum carrying mutations conferring a phenotype characteristic of a loss of function in the regulatory gene of nitrate assimilation (nirA in Aspergillus nidulans, nit-4 in Neurospora crassa). One of these nir- mutants was successfully transformed with a plasmid containing the nirA gene of A. nidulans. The nitrate reductase of the transformants is still inducible, although the maximum activity is lower than in the wild type. Single and multiple integration events were found, as well as a strict correlation between the presence of the nirA gene and the Nir+ phenotype of the F. oxysporum transformants. We also investigated how the A. nidulans structural gene (niaD) is regulated in F. oxysporum. Enzyme assays and Northern experiments show that the niaD gene is subject to nitrate induction and that it responds to nitrogen metabolite repression in a F. oxysporum genetic background. This indicates that both the mechanisms of specific induction, mediated by a gene product isofunctional to nirA, and nitrogen metabolite repression, presumably mediated by a gene product isofunctional to the homologous gene of A. nidulans, are operative in F. oxysporum.

  6. Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato

    NARCIS (Netherlands)

    Rep, Martijn; Dekker, Henk L.; Vossen, Jack H.; de Boer, Albert D.; Houterman, Petra M.; Speijer, Dave; Back, Jaap W.; de Koster, Chris G.; Cornelissen, Ben J. C.

    2002-01-01

    The protein content of tomato (Lycopersicon esculentum) xylem sap was found to change dramatically upon infection with the vascular wilt fungus Fusarium oxysporum. Peptide mass fingerprinting and mass spectrometric sequencing were used to identify the most abundant proteins appearing during

  7. Nuclear dynamics during germination, conidiation, and hyphal fusion of Fusarium oxysporum.

    Science.gov (United States)

    Ruiz-Roldán, M Carmen; Köhli, Michael; Roncero, M Isabel G; Philippsen, Peter; Di Pietro, Antonio; Espeso, Eduardo A

    2010-08-01

    In many fungal pathogens, infection is initiated by conidial germination. Subsequent stages involve germ tube elongation, conidiation, and vegetative hyphal fusion (anastomosis). Here, we used live-cell fluorescence to study the dynamics of green fluorescent protein (GFP)- and cherry fluorescent protein (ChFP)-labeled nuclei in the plant pathogen Fusarium oxysporum. Hyphae of F. oxysporum have uninucleated cells and exhibit an acropetal nuclear pedigree, where only the nucleus in the apical compartment is mitotically active. In contrast, conidiation follows a basopetal pattern, whereby mononucleated microconidia are generated by repeated mitotic cycles of the subapical nucleus in the phialide, followed by septation and cell abscission. Vegetative hyphal fusion is preceded by directed growth of the fusion hypha toward the receptor hypha and followed by a series of postfusion nuclear events, including mitosis of the apical nucleus of the fusion hypha, migration of a daughter nucleus into the receptor hypha, and degradation of the resident nucleus. These previously unreported patterns of nuclear dynamics in F. oxysporum could be intimately related to its pathogenic lifestyle.

  8. Fungus-Mediated Preferential Bioleaching of Waste Material Such as Fly - Ash as a Means of Producing Extracellular, Protein Capped, Fluorescent and Water Soluble Silica Nanoparticles

    Science.gov (United States)

    Khan, Shadab Ali; Uddin, Imran; Moeez, Sana; Ahmad, Absar

    2014-01-01

    In this paper, we for the first time show the ability of the mesophilic fungus Fusarium oxysporum in the bioleaching of waste material such as Fly-ash for the extracellular production of highly crystalline and highly stable, protein capped, fluorescent and water soluble silica nanoparticles at ambient conditions. When the fungus Fusarium oxysporum is exposed to Fly-ash, it is capable of selectively leaching out silica nanoparticles of quasi-spherical morphology within 24 h of reaction. These silica nanoparticles have been completely characterized by UV-vis spectroscopy, Photoluminescence (PL), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Energy dispersive analysis of X-rays (EDAX). PMID:25244567

  9. Fungus-mediated preferential bioleaching of waste material such as fly - ash as a means of producing extracellular, protein capped, fluorescent and water soluble silica nanoparticles.

    Directory of Open Access Journals (Sweden)

    Shadab Ali Khan

    Full Text Available In this paper, we for the first time show the ability of the mesophilic fungus Fusarium oxysporum in the bioleaching of waste material such as Fly-ash for the extracellular production of highly crystalline and highly stable, protein capped, fluorescent and water soluble silica nanoparticles at ambient conditions. When the fungus Fusarium oxysporum is exposed to Fly-ash, it is capable of selectively leaching out silica nanoparticles of quasi-spherical morphology within 24 h of reaction. These silica nanoparticles have been completely characterized by UV-vis spectroscopy, Photoluminescence (PL, Transmission electron microscopy (TEM, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and Energy dispersive analysis of X-rays (EDAX.

  10. Possible involvement of G-proteins and cAMP in the induction of progesterone hydroxylating enzyme system in the vascular wilt fungus Fusarium oxysporum.

    Science.gov (United States)

    Poli, Anna; Di Pietro, Antonio; Zigon, Dusan; Lenasi, Helena

    2009-02-01

    Fungi present the ability to hydroxylate steroids. In some filamentous fungi, progesterone induces an enzyme system which converts the compound into a less toxic hydroxylated product. We investigated the progesterone response in the vascular wilt pathogen Fusarium oxysporum, using mass spectrometry and high performance liquid chromatography (HPLC). Progesterone was mainly transformed into 15alpha-hydroxyprogesterone, which was found predominantly in the extracellular medium. The role of two conserved fungal signaling cascades in the induction of the progesterone-transforming enzyme system was studied, using knockout mutants lacking the mitogen-activated protein kinase Fmk1 or the heterotrimeric G-protein beta subunit Fgb1 functioning upstream of the cyclic adenosine monophosphate (cAMP) pathway. No steroid hydroxylation was induced in the Deltafgb1 strain, suggesting a role for the G-protein beta subunit in progesterone signaling. Exogenous cAMP restored the induction of progesterone-transforming activity in the Deltafgb1 strain, suggesting that steroid signaling in F. oxysporum is mediated by the cAMP-PKA pathway.

  11. Molecular markers for improving control of soil-borne pathogen Fusarium oxysporum in sugar beet

    Science.gov (United States)

    Fusarium oxysporum f. sp. betae (FOB) is an important pathogen of sugar beet worldwide causing leaf yellowing and vascular discoloration. The use of tolerant varieties is one of the most effective methods for managing this disease. In this study, a large germplasm collection,comprised of 29 sugar be...

  12. Estudio del antagonismo de algunas especies de Trichoderma sobre Fusarium Oxysporum y Rhizoctonia Solani Antagonism studies of Trichoderma sp.p.. with Fusarium oxysporum and Rhizoctonia solani

    Directory of Open Access Journals (Sweden)

    Elias Ricardo

    1989-12-01

    Full Text Available En este trabajo se estudió el antagonismo de algunos aislamientos del hongo Trichoderma obtenidos de suelos colornbianos en el control de Fusarium oxysporum y Rhizoctonia solani. En los ensayos "in vitre" se observó un marcado antagonismo entre las colonias de los aislamientos de Trichoderma sobre R. sotsni, con una reducción apreciable
    del tamaño de la colonia y un antaqonismo menor sobre F. oxysporum. En los ensayos de parasitismo a nivel microscópico, se observó una gran interacción entre alqunos
    de los aislamientos de T. harzianum y T. hamatum y el patógéno R. solani rnanifestado por el enrollamiento, penetración, fragmentación y lisis de las hifas del patoqeno.
    Los aislamientos de Trichoderma causaron un retraso en la aparición de los síntomas, una reducción en la severidad de la
    enfermedad. y un menor número de plantas enfermas ocasionadas por F. oxysporum f. sp, cucumerinum en pepino cohombro, y su efecto fue superior en todos los casos a la
    aplicación del fungicida benomil. Los aislamientos del antagonista aumentaron la qerminación de las semillas, la emergencia y el tamaño de las plántulas y redujeron la severidad de la enfermedad ocasionada por R. solani en fríjol.Several experiments were conducted to study the antagonism of 17 isolates of Trichoderma from Colombian soils with Fusarium oxysporum and Rhizoctonia solani. In "in vitro" tests, a high antagonism between colonies was found being greater the antagonism of Trichoderma with R. solani. At the microscopic level it was observed a great interaction between T. harzianum and T. hamatum with R. solani in such a way that the hyphae of the pathogen showed coiling, penetration, fragmentation and lysis. The Trichoderma isolates caused reduction in the disease severity, in the incubation period and a lower number of diseased cucumber plants when they were inoeulated with F. oxysporum f. sp, cucumerinum and these effects were better than Benomyl

  13. INOCULAÇÃO DE Fusarium oxysporum E Fusarium solani E NÍVEIS DE SOMBREAMENTO NA ERVA-MATE: INFLUÊNCIA NA SEVERIDADE DA PODRIDÃO-DE-RAÍZES

    Directory of Open Access Journals (Sweden)

    Igor Poletto

    2009-01-01

    Full Text Available Ilex paraguariensis A. St.-Hill is a broadly cultivated species in the South of Brazil. With the increasing planted area, mainly in the last decade, fitosanitary problems caused by pest and diseases have increased in this crop, and the root-rot is becoming one of the main problems. Among the pathogens, Fusarium oxysporum Schlecht. and Fusarium solani (Mart. Sacc are the main ones. These fungi provoke severe damages resulting in the destruction of the root system and, in the most serious cases, they cause the death of the plant. It is suspected that the incidence and severity of disease are influenced by cultivation of Ilex paraguariensis in different levels of shading or full sun. Therefore, experiments were conducted in the Forest Nursery area belonging to Forest Sciences Department/CCR/UFSM with the objective of confirming this assumption. The experiment was conducted in a factorial design (2 x 5, composed by Fusarium oxysporum and Fusarium solani inoculation and by shading levels. It was verified that the plants submitted to lower shading levels or full sun had their predisposed to the disease.

  14. A Nitrogen Response Pathway Regulates Virulence Functions in Fusarium oxysporum via the Protein Kinase TOR and the bZIP Protein MeaB[C][W

    Science.gov (United States)

    López-Berges, Manuel S.; Rispail, Nicolas; Prados-Rosales, Rafael C.; Di Pietro, Antonio

    2010-01-01

    During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source–independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the ΔmeaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi. PMID:20639450

  15. Resistance to Fusarium oxysporum f. sp. gladioli in transgenic Gladiolus plants expressing either a bacterial chloroperoxidase or fungal chitinase genes

    Science.gov (United States)

    Three antifungal genes, a non-heme chloroperoxidase from Pseudomonas pyrrocinia, and an exochitinase and endochitinase from Fusarium venetanum under regulation by the CaMV 35S promoter, were used to transform Gladiolus for resistance to Fusarium oxysporum f. sp. gladioli. Gladiolus plants were conf...

  16. Isolation of vanilla-endophytic bacteria (Vanilla planifolia with in vitro biocontrol activity against Fusarium oxysporum f. sp. Vanillae

    Directory of Open Access Journals (Sweden)

    Karol Jiménez-Quesada

    2015-06-01

    Full Text Available Vanilla sp. genus belongs to Orchidaceae family, and V. planifolia, V. pompona and V. tahitensis. are species of commercial interest. The quality classification of vanilla is made according to the length of the capsule and vanillin content, which is used to make food and beverage, as raw material in the pharmaceutical industry and for the production of cosmetics and perfumes, among others. Currently, root rot caused by the fungus Fusarium oxyporum f. sp. Vanillae is considered to be the biggest problem facing vanilla production, causing 30 to 52% of plant death, attacking adventitious roots and preventing this plant is able to absorb water and nutrients. The fungus cannot be eradicated by the action of chemicals that damage the viability of the plants, and because the cultivation of vanilla in agroforestry systems without the application of agrochemicals is an activity that is gaining interest among small producers country. It is for this reason why was studied the ability of control of vanilla endophytic bacteria isolated from samples from Corcovado, Puriscal, Dota and Guápiles, by testing in vitro antagonism between asylee bacteria and fungus F. oxysporum, giving results about promising candidate B1M11 to respond to pathogen attack, which was corroborated by the appearance of a halo of inhibition of fungal growth on plate.

  17. Comparison of virulence between vascular competent and incompetent Fusarium oxysporum f. sp. vasinfectum pathotypes

    Science.gov (United States)

    The Australian biotype and California race 4 isolates of Fusarium oxysporum f. sp. Vasinfectum (Fov) are pathologically distinct from the Fov U.S. race 1 isolates in that they do not cause disease when stem-puncture inoculated while race 1 isolates do. When root-dip inoculation method was used, bot...

  18. Response of AtNPR1-expressing cotton plants to Fusarium oxysporum f. sp. vasinfectum isolates

    Science.gov (United States)

    In our earlier investigation, we had demonstrated that transgenic cotton plants expressing AtNPR1 showed significant tolerance to Fusarium oxysporum f. sp. vasinfectum, isolate 11 (Fov11) and several other pathogens. The current study was designed to further characterize the nature of the protectio...

  19. "Coca got us here and now it's our weakness:" Fusarium oxysporum and the political ecology of a drug war policy alternative in Bolivia.

    Science.gov (United States)

    Pearson, Zoe

    2016-07-01

    A strain of Fusarium oxysporum fungus is killing coca plants in the Chapare coca growing region of Bolivia. Coca farmers are already constrained in the amount of coca they can grow under the government's community-based coca control approach, "social control." Coca leaf is the main ingredient in cocaine, but it is also a traditional medicine and food, is economically vital to household incomes, and is a political symbol of the current government administration. Bolivia's approach to coca control, now administered without any United States military intervention, is an innovative example of experimentation with drug policy reform. This paper is based on ethnographic research including semi-structured interviews and observation. Coca growers are worried about the dire economic, social, and political consequences of the fungus' appearance and spread since summer 2013. They have two explanations for its origins: First, that it was sent by the United States government, which in the past was developing a strain of F. oxysporum for use in the drug war; Second, and the explanation of scientists, is that the outbreak is caused by the overuse of agrochemicals and other intensive agricultural practices. More than a matter of agroecology, the practices identified in the second explanation must be understood in terms of the persistence of the international drug prohibition regime. Bolivia's social control approach is a successful alternative to violent eradication measures, however the country is constrained to uphold the fundamental principles of supply-side control in order to be a respected partner in global drug control. The supply-side logics restricting social control make intensive agriculture practices attractive, but may have contributed to the fungus' proliferation and its continued spread. The fungus draws attention to the challenges of policy reform, new collateral damages of drug control, and role environmental factors can play in drug control politics. Copyright

  20. Analysis of miRNAs targeting transcription factors in Persicaria minor induced by Fusarium oxysporum

    Science.gov (United States)

    Samad, Abdul Fatah A.; Ali, Nazaruddin Muhammad; Ismail, Ismanizan; Murad, Abdul Munir Abdul

    2016-11-01

    A recent discovery showed small non-coding RNA known as microRNA has a crucial role in plant development and plant survival in extreme condition. In the past few years, researchers have managed to identify the various families of transcription factors that play a crucial role in regulating plant development and plant responses to stresses. This study focuses on the expression pattern of miRNA targeted transcription factor under biotic stress in a plant rich with secondary metabolite, Persicaria minor. A pathogenic fungus, Fusarium oxysporum was used in the biotic stress treatment since the previous study revealed this fungus could trigger plant defense system. Two small RNA libraries were constructed which consist of control and treated samples. In order to identify the potential target, psRobot target prediction software was used for each miRNA that shows significant change due to the infection. The result showed miR156b/c, miR172a, miR319, miR858, and miR894 were found to be targeting a wide range of transcription factors that involve in plant development and plant response towards stresses. The expression of miR156b/c and miR172 were up-regulated while the expression of miR319, miR858, and miR894 was found to be down-regulated. These results may provide a certain level of networking between those two regulatory molecules in plant genetic system under biotic stress.

  1. [Faba bean fusarium wilt (Fusarium oxysporum )control and its mechanism in different wheat varieties and faba bean intercropping system].

    Science.gov (United States)

    Dong, Yan; Dong, Kun; Zheng, Yi; Tang, Li; Yang, Zhi-Xian

    2014-07-01

    Field experiment and hydroponic culture were conducted to investigate effects of three wheat varieties (Yunmai 42, Yunmai 47 and Mianyang 29) and faba bean intercropping on the shoot biomass, disease index of fusarium wilt, functional diversity of microbial community and the amount of Fusarium oxysporum in rhizosphere of faba bean. Contents and components of the soluble sugars, free amino acids and organic acids in the root exudates were also examined. Results showed that, compared with monocropped faba bean, shoot biomass of faba bean significantly increased by 16.6% and 13.4%, disease index of faba bean fusarium wilt significantly decreased by 47.6% and 23.3% as intercropped with Yunmai 42 and Yunmai 47, but no significant differences of both shoot biomass and disease index were found as intercropped with Mianyang 29. Compared with monocropped faba bean, the average well color development (AWCD value) and total utilization ability of carbon sources of faba bean significantly increased, the amount of Fusarium oxysporum of faba bean rhizosphere significantly decreased, and the microbial community structures of faba bean rhizosphere changed as intercropped with YM42 and YM47, while no significant effects as intercropped with MY29. Total contents of soluble sugar, free amino acids and organic acids in root exudates were in the trend of MY29>YM47>YM42. Contents of serine, glutamic, glycine, valine, methionine, phenylalanine, lysine in root exudates of MY29 were significantly higher than that in YM42 and YM47. The arginine was detected only in the root exudates of YM42 and YM47, and leucine was detected only in the root exudates of MY29. Six organic acids of tartaric acid, malic acid, citric acid, succinic acid, fumaric acid, t-aconitic acid were detected in root exudates of MY29 and YM47, and four organic acids of tartaric acid, malic acid, citric acid, fumaric acid were detected in root exudates of YM42. Malic acid content in root exudates of YM47 and MY29 was

  2. [Differential gene expression in incompatible interaction between Lilium regale Wilson and Fusarium oxysporum f. sp. lilii revealed by combined SSH and microarray analysis].

    Science.gov (United States)

    Rao, J; Liu, D; Zhang, N; He, H; Ge, F; Chen, C

    2014-01-01

    Fusarium wilt, caused by a soilborne pathogen Fusarium oxysporum f. sp. lilii, is the major disease of lily (Lilium L.). In order to isolate the genes differentially expressed in a resistant reaction to F. oxysporum in L. regale Wilson, a cDNA library was constructed with L. regale root during F. oxysporum infection using the suppression subtractive hybridization (SSH), and a total of 585 unique expressed sequence tags (ESTs) were obtained. Furthermore, the gene expression profiles in the incompatible interaction between L. regale and F. oxysporum were revealed by oligonucleotide microarray analysis of 585 unique ESTs comparison to the compatible interaction between a susceptible Lilium Oriental Hybrid 'Siberia' and F. oxysporum. The result of expression profile analysis indicated that the genes encoding pathogenesis-related proteins (PRs), antioxidative stress enzymes, secondary metabolism enzymes, transcription factors, signal transduction proteins as well as a large number of unknown genes were involved in early defense response of L. regale to F. oxysporum infection. Moreover, the following quantitative reverse transcription PCR (QRT-PCR) analysis confirmed reliability of the oligonucleotide microarray data. In the present study, isolation of differentially expressed genes in L. regale during response to F. oxysporum helped to uncover the molecular mechanism associated with the resistance of L. regale against F. oxysporum.

  3. ( Azadirachta Indica ) Leaf Extracts on the Rot Fungus ( Fusarium ...

    African Journals Online (AJOL)

    The storage lifespan of kola nuts is challenged by the problem of decay of nuts in storage as a result of the attack by the rot fungus (Fusarium spp). The effect of the neem leaf (Azadirachta indica) extracts on the rot fungus was investigated in order to aid extended kola nuts storage. The aqueous and ethanolic leaf extracts of ...

  4. Biological control of chickpea wilt caused by fusarium oxysporum f.sp.ciceris

    International Nuclear Information System (INIS)

    Yousif, F. A.; Suliman, W. S.

    2010-01-01

    This study was conducted in an attempt to control chickpea (Cicer arietinum L.) wilt, caused by fusarium oxysporum f.sp. ciceris, using antagonistic properties of soil microorganisms. It also aimed at avoiding problems resulting from the use of chemical fungicides. A trichoderma sp. was isolated from the rhizosphere of a resistant chickpea variety (ICCV-2) and a bacillus sp. from the rhizosphere and rhizoplane of the same variety. Both microorganisms proved to be effective in controlling the disease. In addition, trichoderma harzianum, which was obtained from Giza Research Station in Egypt, was also antagonistic to fusarium oxysporum f. sp. ciceris Wilt incidence was significantly reduced when chickpea was grown in posts containing soil mixed with any of the three antagonists or when chickpea seeds were initially treated with the seed-dressing fungicide vincit at 2 ml/kg seeds. Trichoderma harzianum proved to be the best bioagent as it gave the lowest disease incidence. In the field, the two trichoderma spp. were as effective as vincit in causing reduction in the wilt incidence. At the higher concentration of 140 g/m''2, the two antagonists were effective throughout the growth period, but they were less effective at the lower concentration of 70 g/m''2 particularly at the seedling stage.(Author)

  5. Infection Courts in Watermelon Plants Leading to Seed Infestation by Fusarium oxysporum f. sp. niveum.

    Science.gov (United States)

    Petkar, Aparna; Ji, Pingsheng

    2017-07-01

    Fusarium wilt incited by Fusarium oxysporum f. sp. niveum is a seed-transmitted disease that causes significant yield loss in watermelon production. The pathogen may infect watermelon seeds latently, which can be an important inoculum source and contribute to severe disease outbreak. However, information regarding infection courts of F. oxysporum f. sp. niveum leading to infestation of watermelon seeds is limited. To determine how seeds in watermelon fruit can be infested by F. oxysporum f. sp. niveum during the watermelon growing season, greenhouse and field experiments were conducted in 2014 and 2015 where watermelon flowers and immature fruit were inoculated with F. oxysporum f. sp. niveum. Seeds were extracted from mature watermelon fruit, and infestation of watermelon seeds was determined by isolation of F. oxysporum f. sp. niveum and further confirmed by real-time polymerase chain reaction (PCR) analysis. Inoculation of the pericarp of immature fruit resulted in 17.8 to 54.4% of infested seeds under field conditions and 0.6 to 12.8% of infested seeds under greenhouse conditions when seeds were not surface disinfested prior to isolation. Seed infestation was also detected in 0 to 4.5% of the seeds when seeds were surface disinfested prior to isolation. Inoculation of pistil resulted in 0 to 7.2% and 0 to 18.3% of infested seeds under greenhouse and field conditions when seeds were surface disinfested or not disinfested before isolation, respectively. Inoculation of peduncle resulted in 0.6 to 6.1% and 0 to 10.0% of infested seeds in the greenhouse and field experiments when seeds were surface disinfested or not disinfested before isolation, respectively. Seed infestation was also detected in all the experiments using real-time PCR assay when pericarp or pistil was inoculated, and in three of four experiments when peduncle was inoculated, regardless of whether seeds were surface disinfested or not disinfested. Pericarp and peduncle of immature watermelon fruit

  6. Application of electron beam irradiation for inhibition of Fusarium oxysporum f. sp. dianthi activity

    International Nuclear Information System (INIS)

    Gryczka, U.; Migdal, W.; Ptaszek, M.; Orlikowski, L.B.

    2010-01-01

    Electron beam irradiation was tested against Fusarium oxysporum f. sp. dianthi (Fod) a pathogen causing Fusarium wilt of carnation. Efficiency of the different radiation doses on in vitro survival and development of Fod culture on potato-dextrose agar (PDA) medium was tested. A dose of 6 kGy completely inhibited the pathogen growth. Application of radiation for microbiological decontamination of four substrates used for carnation production demonstrated that, depending on the type of substrate, doses of 10 or 25 kGy were effective in Fod elimination. All carnation plants cultivated on radiation decontaminated substrates were healthy. (authors)

  7. AÇÃO ANTIFÚNGICA in vitro DE ISOLADOS DE Bacillu s sp. SOBRE Fusarium oxysporum f. sp. lycopersici

    Directory of Open Access Journals (Sweden)

    ODENILSON DE DEUS RIBEIRO LIMA

    2014-01-01

    Full Text Available This study aimed to evaluate antagonism and metabolites produced by different species of Ba- cillus in the inhibition of mycelial growth in vitro against F. oxysporum f. sp . lycopersici . For evaluating the antagonism of Bacillus spp. F. oxysporum f. sp . lycopersici was performed pairing of fungus and bacteria by the method of the circle. In the method for detection for the quality for thermostable metabolites liquids. Media BD were used for growth of the isolated Bacillus sp. And incubated for 15 days. After this period, was added 3 g of agar in each flask, and autoclaved broth and poured into Petri dishes. In the center of the plates were placed discs culture of the pathogen. The experimental design was completely randomized with 11 treatments and six repetitions in both experiments. Statistical difference was found between the isolate and the control. Special mention to strains B12 ( Bacillus sp., B41 ( B. cereus , B22' ( B.pentothenticus , B45 ( B. cereus , B47 ( B. cereus that exhibited the lowest average diameter of the colony. To study the inhibition of mycelial growth of F. oxysporum f. sp. lycopersici by thermostatable metabolites five differ statistically from the control they are: B35 ( B. pumilus , B47 ( B. cereus , B22' ( B. pentothenticus , B12 ( Bacillus sp. and B41 ( B. cereus the latter two treatments showed the best results of the pathogen colony diameters and 3.81 to 2.89 cm, respective- ly. B12 and B41 Isolates showed that their antibiotic products were able to inhibit 67.88 % and 57,66 % of F. oxysporum f. sp. lycopersici . These results highlight the possibility of using isolates of the genus Bacillus in the fight against fusarium wilt in tomato.

  8. Effect of synthetic and natural media on lipid production from Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Leonidas Matsakas

    2017-11-01

    Conclusions: It was demonstrated that F. oxysporum can be used as an efficient oleaginous microorganism, with sweet sorghum serving as an excellent raw material for the cultivation of the fungus. The lipids obtained during this work were also found to have a fatty acid profile with good potentials to be used for biodiesel production.

  9. The antibiotic polymyxin B exhibits novel antifungal activity against Fusarium species.

    Science.gov (United States)

    Hsu, Li-Hang; Wang, Hsuan-Fu; Sun, Pei-Lun; Hu, Fung-Rong; Chen, Ying-Lien

    2017-06-01

    The genus Fusarium comprises many species, including Fusarium oxysporum, Fusarium solani, Fusarium graminearum and Fusarium verticillioides, and causes severe infections in plants and humans. In clinical settings, Fusarium is the third most frequent mould to cause invasive fungal infections after Aspergillus and the Mucorales. F. solani and F. oxysporum are the most prevalent Fusarium spp. causing clinical disease. However, few effective antifungal drugs are available to treat human and plant Fusarium infections. The cationic peptide antibiotic polymyxin B (PMB) exhibits antifungal activity against the human fungal pathogens Candida albicans and Cryptococcus neoformans, but its efficacy against Fusarium spp. is unknown. In this study, the antifungal activity of PMB was tested against 12 Fusarium strains that infect humans and plants (banana, tomato, melon, pea, wheat and maize). PMB was fungicidal against all 12 Fusarium strains, with minimum fungicidal concentrations of 32 µg/mL or 64 µg/mL for most strains tested, as evidenced by broth dilution, methylene blue staining and XTT reduction assays. PMB can reduce the germination rates of conidia, but not chlamydospores, and can cause defects in cell membrane integrity in Fusarium strains. PMB exhibits synergistic activity with posaconazole and can potentiate the effect of fluconazole, voriconazole or amphotericin B against Fusarium spp. However, PMB does not show synergistic effects with fluconazole against Fusarium spp. as it does against Candida glabrata and C. neoformans, indicating evolutionary divergence of mechanisms between yeast pathogens and the filamentous fungus Fusarium. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  10. A DNA-Based Procedure for In Planta Detection of Fusarium oxysporum f. sp. phaseoli.

    Science.gov (United States)

    Alves-Santos, Fernando M; Ramos, Brisa; García-Sánchez, M Asunción; Eslava, Arturo P; Díaz-Mínguez, José María

    2002-03-01

    ABSTRACT We have characterized strains of Fusarium oxysporum from common bean fields in Spain that were nonpathogenic on common bean, as well as F. oxysporum strains (F. oxysporum f. sp. phaseoli) pathogenic to common bean by random amplified polymorphic DNA (RAPD) analysis. We identified a RAPD marker (RAPD 4.12) specific for the highly virulent pathogenic strains of the seven races of F. oxysporum f. sp. phaseoli. Sequence analysis of RAPD 4.12 allowed the design of oligonucleotides that amplify a 609-bp sequence characterized amplified region (SCAR) marker (SCAR-B310A280). Under controlled environmental and greenhouse conditions, detection of the pathogen by polymerase chain reaction was 100% successful in root samples of infected but still symptomless plants and in stem samples of plants with disease severity of >/=4 in the Centro Internacional de Agricultura Tropical (CIAT; Cali, Colombia) scale. The diagnostic procedure can be completed in 5 h and allows the detection of all known races of the pathogen in plant samples at early stages of the disease with no visible symptoms.

  11. Comparative genomics and prediction of conditionally dispensable sequences in legume-infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors.

    Science.gov (United States)

    Williams, Angela H; Sharma, Mamta; Thatcher, Louise F; Azam, Sarwar; Hane, James K; Sperschneider, Jana; Kidd, Brendan N; Anderson, Jonathan P; Ghosh, Raju; Garg, Gagan; Lichtenzveig, Judith; Kistler, H Corby; Shea, Terrance; Young, Sarah; Buck, Sally-Anne G; Kamphuis, Lars G; Saxena, Rachit; Pande, Suresh; Ma, Li-Jun; Varshney, Rajeev K; Singh, Karam B

    2016-03-05

    Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and compare draft genome assemblies for three legume-infecting formae speciales (ff. spp.): F. oxysporum f. sp. ciceris (Foc-38-1) and f. sp. pisi (Fop-37622), significant pathogens of chickpea and pea respectively, the world's second and third most important grain legumes, and lastly f. sp. medicaginis (Fom-5190a) for which we developed a model legume pathosystem utilising Medicago truncatula. Focusing on the identification of pathogenicity gene content, we leveraged the reference genomes of Fusarium pathogens F. oxysporum f. sp. lycopersici (tomato-infecting) and F. solani (pea-infecting) and their well-characterised core and dispensable chromosomes to predict genomic organisation in the newly sequenced legume-infecting isolates. Dispensable chromosomes are not essential for growth and in Fusarium species are known to be enriched in host-specificity and pathogenicity-associated genes. Comparative genomics of the publicly available Fusarium species revealed differential patterns of sequence conservation across F. oxysporum formae speciales, with legume-pathogenic formae speciales not exhibiting greater sequence conservation between them relative to non-legume-infecting formae speciales, possibly indicating the lack of a common ancestral source for legume pathogenicity. Combining predicted dispensable gene content with in planta expression in the model legume-infecting isolate, we identified small conserved regions and candidate effectors, four of which shared greatest similarity to proteins from another legume-infecting ff. spp. We demonstrate that distinction of core and potential dispensable genomic regions of novel F. oxysporum genomes is an effective tool to facilitate effector discovery and the identification of gene content possibly linked to host

  12. Purification of phytotoxic metabolites from culture filtrate of Fusarium oxysporum f. sp. cubense gcv 01210 (race 1

    Directory of Open Access Journals (Sweden)

    Nayanci Portal

    2011-04-01

    Full Text Available Panama disease, caused by Fusarium oxysporum f. sp. cubense, is considered a destructive disease of economic importance in the genus Musa. The culture filtrates of the pathogen have been used to differentiate cultivars, but have not been identified metabolites involved in the differential response. The aim of this study was to purify phytotoxic metabolites present in the culture filtrate of Fusarium oxysporum f. sp. cubense GCV [01210] Race 1 for further chemical characterization. We used a culture filtrate of 15 days of incubation. The phytotoxic activity was tested with a leaf bioassay on the susceptible cultivar ‘Gros Michel’ and resistant ‘FHIA 01’. The organic extract was extracted and fractionated. It was partitioned with organic solvents of rising polarity and found the complexity of each of the fractions by TLC. The metabolites were purified by flash column chromatography. Two compounds were purified from the culture filtrate of the pathogen which not only differed in color (blue and pale yellow, but also in polarity. Fractions B (containing blue compound and E (containing yellow compound produced significant differences in lesion area between resistant and susceptible cultivar. These results are not conclusive but, it is the basis for the identification of compounds involved in the differential response of Musa spp. cultivars to the culture filtrate of Fusarium oxysporum f. sp. cubense. Key Words: phytotoxic activity, chromatography, organic extract, Panama disease, plantains and bananas

  13. Intensitas dan Luas Serangan Beberapa Isolat Fusarium oxysporum f.sp. zingiberi pada Jahe Gajah

    Directory of Open Access Journals (Sweden)

    Hermawati Cahyaningrum

    2017-07-01

    Full Text Available Ginger is one of the spices and medicinal commodities which is cultivated in Indonesia. One of the obstacles encountered in the cultivation of ginger is the rhizome rot disease which is mainly caused by Fusarium oxysporum Schlecht f.sp. zingiberi Trujillo. This study is aimed to know the growth ability and virulence level of the isolates on ginger rhizome and plants. The research was conducted in the laboratory and in the screen house by using Complete Random Design consisted of 10 treatments and 4 replications. The parameters observed were growth ability of F. oxysporum f.sp. zingiberi, rhizome rot disease symptoms, incubation period, extensive decay and weight difference of the rhizomes. The results showed that F. oxysporum f.sp. zingiberi which was stored for 4 years in sterile soil medium was still capable to cause damage to the rhizome and plants. Incubation periods of rhizome decay and plant symptoms were from 3 to 11.5 and 55.5 to 68.5 days, respectively. The most virulent isolate was MSO1 with extensive decay of rhizome and the wilting intensity were 108.95 mm2 dan 33.88%, respectively.   Intisari Jahe merupakan salah satu komoditas rempah dan obat yang banyak dibudidayakan di Indonesia. Salah satu kendala yang dihadapi dalam budidaya jahe adalah adanya gangguan penyakit busuk rimpang yang disebabkan (terutama oleh Fusarium oxysporum Schlecht f.sp. zingiberi Trujillo. Penelitian bertujuan untuk menguji daya tumbuh dan virulensi isolat F. oxysporum f.sp. zingiberi pada rimpang dan tanaman jahe gajah. Penelitian dilakukan di laboratorium dan di rumah kasa menggunakan Rancangan Acak Kelompok Lengkap (RAKL yang masing-masing terdiri dari 10 perlakuan dan 4 ulangan. Parameter yang diamati meliputi daya tumbuh F. oxysporum f.sp. zingiberi, gejala penyakit busuk rimpang, masa inkubasi, luas pembusukan dan selisih bobot basah rimpang. Hasil penelitian menunjukkan bahwa F. oxysporum f.sp. zingiberi yang telah di simpan 4 tahun dalam medium tanah

  14. Penghambatan Fusarium oxysporum oleh Kultur Filtrat Bakteri Endofit dari Tanaman Kedelai secara in Vitro

    Directory of Open Access Journals (Sweden)

    Novi Malinda

    2016-02-01

    Full Text Available Seed borne pathogen play an important role as source of inoculum for disease incidence in the field and it becomes a major constraint in certified seed production.  Research was conducted to isolate potential endophytic bacteria from soybean plants and evaluate its culture filtrate for inhibition effect of seedborne fungi on soybean seed, i.e. Fusarium oxysporum.  The result showed that out of forty eight endophytic bacteria isolates that were nonpathogenic, there were three potential isolates that can inhibit the growth of F. oxysporum, i.e.  EDA 3, EBA 6, and EBA 7 with percent inhibition of 60.14%, 57.69%, and 57.08%, respectively. The filtrate culture of EBA 7 showed the highest inhibition (34.88% by in vitro test. Therefore, those three isolates of endophytic bacteria might be used as biocontrol agent to inhibit the growth of F. oxysporum.

  15. Effet des extraits de compost sur la croissance mycélienne et l'agressivité du Fusarium oxysporum f. sp. radicis-lycopersici

    Directory of Open Access Journals (Sweden)

    El Mahjoub M.

    2006-01-01

    Full Text Available Effect of compost tea on mycelial growth and disease severity of Fusarium oxysporum f. sp. radicis-lycopersici. Simultaneous addition, on culture media, of Fusarium oxysporum f. sp. radicis-lycopersici and compost teas revealed that the latest induced the inhibition of the mycelial growth of the pathogen. This inhibition, noted after an incubation period of about six days at 25°C, was more important when compost teas were enriched in PDB (Potato Dextrose Broth, where it may reach 70% compared to the control. Transplantation of tomato seedlings, previously inoculated by a conidial suspension of F. oxysporum f. sp. radicis-lycopersici, in a container media (peat, perlite or the mixture of the two substrates treated by compost teas has signifi cantly reduced Fusarium crown and root rot incidence compared to inoculated and untreated control seedlings. Disease incidence is more reduced when tomato inoculated plants are transplanted in peat treated by compost teas; indeed, these plants donʼt show any wilting and present a vigorous root system and a better vegetative growth.

  16. Characterization of siderophore produced by Pseudomonas syringae BAF.1 and its inhibitory effects on spore germination and mycelium morphology of Fusarium oxysporum.

    Science.gov (United States)

    Yu, Sumei; Teng, Chunying; Liang, Jinsong; Song, Tao; Dong, Liying; Bai, Xin; Jin, Yu; Qu, Juanjuan

    2017-11-01

    In this study, an antagonistic bacterium against Fusarium oxysporum was identified and designated as Pseudomonas syringae strain BAF.1 on the basis of 16S rDNA sequence analysis and physiological-biochemical characteristics. It produced catechol-species siderophore at a molecular weight of 488.59 Da and a maximum amount of 55.27 μg/ml with glucose as a carbon source and asparagine as a nitrogen source at a C/N ratio of 10:1, 30°C and pH 7. The siderophore exhibited prominent antagonistic activity against Fusarium oxysporum with a maximum inhibition rate of 95.24% and had also suppressive effects on other kinds of 11 phytopathogenic fungi in the absence of FeCl 3 ·6H 2 O. Spore germination was completely inhibited by 50 μl of the siderophorecontaining solution, and the ultrastructures of mycelia and spores were also considerably suppressed by siderophore treatment as established by electron microscopy observation. These results indicate that the siderophore produced by Pseudomonas syringae BAF.1 could be potentially used for biocontrol of pathogenic Fusarium oxysporum.

  17. Molecular genetic characterization of the koa-wilt pathogen (Fusarium oxysporum): Application of molecular genetic tools toward improving koa restoration in Hawai'i

    Science.gov (United States)

    Mee-Sook Kim; Jane E. Stewart; Nicklos Dudley; John Dobbs; Tyler Jones; Phil G. Cannon; Robert L. James; Kas Dumroese; Ned B. Klopfenstein

    2015-01-01

    Several forest diseases are causing serious threats to the native Hawaiian forest. Among them, koawilt disease (caused by Fusarium oxysporum) is damaging to native populations of koa (Acacia koa), and it also hinders koa restoration/reforestation. Because F. oxysporum likely represents a complex of species with distinct pathogenic activities, more detailed...

  18. In vitro study of the growth, development and pathogenicity responses of Fusarium oxysporum to phthalic acid, an autotoxin from Lanzhou lily.

    Science.gov (United States)

    Wu, Zhijiang; Yang, Liu; Wang, Ruoyu; Zhang, Yubao; Shang, Qianhan; Wang, Le; Ren, Qin; Xie, Zhongkui

    2015-08-01

    Continuous monoculture of Lanzhou lily (Lilium davidii var. unicolor Cotton) results in frequent incidence of fusarium wilt caused by Fusarium oxysporum. Phthalic acid (PA), a principal autotoxin from root exudates of Lanzhou lily, is involved in soil sickness by inducing autotoxicity. The aim of this study was to evaluate the direct allelopathic effects of PA on the growth, development and pathogenicity of F. oxysporum in vitro based on an ecologically relevant soil concentration. The results showed that PA slightly but not significantly inhibited the colony growth (mycelial growth) and fungal biomass of F. oxysporum at low concentrations ranging from 0.05 to 0.5 mM, and significantly inhibited the colony growth at the highest concentration (1 mM). None of the PA concentrations tested significantly inhibited the conidial germination and sporulation of F. oxysporum in liquid medium. However, mycotoxin (fusaric acid) yield and pathogenesis-related hydrolytic enzyme (protease, pectinase, cellulase, and amylase) activities were significantly stimulated in liquid cultures of F. oxysporum containing PA at ≥ 0.25 mM. We conclude that PA at a soil level (i.e. 0.25 mM) is involved in plant-pathogen allelopathy as a stimulator of mycotoxin production and hydrolytic enzyme activities in F. oxysporum, which is possibly one of the mechanisms responsible for promoting the wilt disease of lily.

  19. Direct conversion of straw to ethanol by Fusarium oxysporum: effect of cellulose crystallinity

    Energy Technology Data Exchange (ETDEWEB)

    Christakopoulos, P.; Koullas, D.P.; Kekos, D.; Koukios, E.G.; Macris, B.J. (Ethnikon Metsovion Polytechneion, Athens (Greece))

    1991-03-01

    Wheat straw was successfully fermented to ethanol by Fusarium oxysporum F3 in a one-step process. Cellulose crystallinity was found to be a major factor in the bioconversion process. Ethanol yields increased linearly with decreasing crystallinity index. Approximately 80% of straw carbohydrates were converted directly to ethanol with a yield of 0.28 g ethanol/g{sup -1} of straw when the crystallinity index was reduced to 23.6%. (author).

  20. Photodynamic treatment with phenothiazinium photosensitizers kills both ungerminated and germinated microconidia of the pathogenic fungi Fusarium oxysporum, Fusarium moniliforme and Fusarium solani.

    Science.gov (United States)

    de Menezes, Henrique Dantas; Tonani, Ludmilla; Bachmann, Luciano; Wainwright, Mark; Braga, Gilberto Úbida Leite; von Zeska Kress, Marcia Regina

    2016-11-01

    The search for alternatives to control microorganisms is necessary both in clinical and agricultural areas. Antimicrobial photodynamic treatment (APDT) is a promising light-based approach that can be used to control both human and plant pathogenic fungi. In the present study, we evaluated the effects of photodynamic treatment with red light and four phenothiazinium photosensitizers (PS): methylene blue (MB), toluidine blue O (TBO), new methylene blue N (NMBN) and the phenothiazinium derivative S137 on ungerminated and germinated microconidia of Fusarium oxysporum, F. moniliforme, and F. solani. APDT with each PS killed efficiently both the quiescent ungerminated microconidia and metabolically active germinated microconidia of the three Fusarium species. Washing away the unbound PS from the microconidia (both ungerminated and germinated) before red light exposure reduced but did not prevent the effect of APDT. Subcelullar localization of PS in ungerminated and germinated microconidia and the effects of photodynamic treatment on cell membranes were also evaluated in the three Fusarium species. APDT with MB, TBO, NMBN or S137 increased the membrane permeability in microconidia and APDT with NMBN or S137 increased the lipids peroxidation in microconidia of the three Fusarium species. These findings expand the understanding of photodynamic inactivation of filamentous fungi with phenothiazinium PS. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Multiple Evolutionary Trajectories Have Led to the Emergence of Races in Fusarium oxysporum f. sp. lycopersici.

    Science.gov (United States)

    Biju, V Chellappan; Fokkens, Like; Houterman, Petra M; Rep, Martijn; Cornelissen, Ben J C

    2017-02-15

    Race 1 isolates of Fusarium oxysporum f. sp. lycopersici (FOL) are characterized by the presence of AVR1 in their genomes. The product of this gene, Avr1, triggers resistance in tomato cultivars carrying resistance gene I In FOL race 2 and race 3 isolates, AVR1 is absent, and hence they are virulent on tomato cultivars carrying I In this study, we analyzed an approximately 100-kb genomic fragment containing the AVR1 locus of FOL race 1 isolate 004 (FOL004) and compared it to the sequenced genome of FOL race 2 isolate 4287 (FOL4287). A genomic fragment of 31 kb containing AVR1 was found to be missing in FOL4287. Further analysis suggests that race 2 evolved from race 1 by deletion of this 31-kb fragment due to a recombination event between two transposable elements bordering the fragment. A worldwide collection of 71 FOL isolates representing races 1, 2, and 3, all known vegetative compatibility groups (VCGs), and five continents was subjected to PCR analysis of the AVR1 locus, including the two bordering transposable elements. Based on phylogenetic analysis using the EF1-α gene, five evolutionary lineages for FOL that correlate well with VCGs were identified. More importantly, we show that FOL races evolved in a stepwise manner within each VCG by the loss of function of avirulence genes in a number of alternative ways. Plant-pathogenic microorganisms frequently mutate to overcome disease resistance genes that have been introduced in crops. For the fungus Fusarium oxysporum f. sp. lycopersici, the causal agent of Fusarium wilt in tomato, we have identified the nature of the mutations that have led to the overcoming of the I and I-2 resistance genes in all five known clonal lineages, which include a newly discovered lineage. Five different deletion events, at least several of which are caused by recombination between transposable elements, have led to loss of AVR1 and overcoming of I Two new events affecting AVR2 that led to overcoming of I-2 have been identified

  2. Evaluation of two methods for direct detection of Fusarium spp. in water.

    Science.gov (United States)

    Graça, Mariana G; van der Heijden, Inneke M; Perdigão, Lauro; Taira, Cleison; Costa, Silvia F; Levin, Anna S

    2016-04-01

    Fusarium is a waterborne fungus that causes severe infections especially in patients with prolonged neutropenia. Traditionally, the detection of Fusarium in water is done by culturing which is difficult and time consuming. A faster method is necessary to prevent exposure of susceptible patients to contaminated water. The objective of this study was to develop a molecular technique for direct detection of Fusarium in water. A direct DNA extraction method from water was developed and coupled to a genus-specific PCR, to detect 3 species of Fusarium (verticillioides, oxysporum and solani). The detection limits were 10 cells/L and 1 cell/L for the molecular and culture methods, respectively. To our knowledge, this is the first method developed to detect Fusarium directly from water. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. MEDIATOR18 and MEDIATOR20 confer susceptibility to Fusarium oxysporum in Arabidopsis thaliana

    OpenAIRE

    Fallath, Thorya; Kidd, Brendan N.; Stiller, Jiri; Davoine, Celine; Bj?rklund, Stefan; Manners, John M.; Kazan, Kemal; Schenk, Peer M.

    2017-01-01

    The conserved protein complex known as Mediator conveys transcriptional signals by acting as an intermediary between transcription factors and RNA polymerase II. As a result, Mediator subunits play multiple roles in regulating developmental as well as abiotic and biotic stress pathways. In this report we identify the head domain subunits MEDIATOR18 and MEDIATOR20 as important susceptibility factors for Fusarium oxysporum infection in Arabidopsis thaliana. Mutants of MED18 and MED20 display do...

  4. Fusarium oxysporum f. sp. dianthi virus 1 accumulation is correlated with changes in virulence and other phenotypic traits of its fungal host.

    Science.gov (United States)

    Lemus-Minor, Carlos German; Cañizares-Nolasco, Carmen; García-Pedrajas, Maria D D; Pérez-Artés, Encarnación

    2018-03-08

    Fusarium oxysporum f. sp. dianthi virus 1 (FodV1) was detected in isolate Fod 116 (Fod 116V + ) of Fusarium oxysporum f. sp. dianthi (Fod), reaching such a high accumulation level that it was clearly visible after agarose gel electrophoresis of total DNA extracts. FodV1 consists of four double-stranded RNA segments, that correspond to a new mycovirus in the Chrysoviridae family. We obtained an isolate of Fod 116 (Fod 116V - ) with only a residual level of FodV1 RNA accumulation by single-conidia selection. Compared to the Fod 116V - , isolate Fod 116V + showed significant phenotypic alterations in vegetative growth and virulence. The presence of a high titer of mycovirus FodV1 thus associated with a modified morphology and a reduced growth of the colonies on solid medium, and with a diminished conidiation in liquid medium. Inoculation of four susceptible carnation cultivars with either Fod 116V - or Fod 116V + showed that the presence of a high titer of FodV1 was also correlated with a significantly reduced virulence of its fungal host. All the results suggest that FodV1 could be associated with hypovirulence, identifying it as a potential biocontrol agent against Fusarium wilt of carnation. This is the first report of a mycovirus potentially associated to the induction of hypovirulence in the species Fusarium oxysporum.

  5. Bioactive extracts and chemical constituents of two endophytic strains of Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Andréa M. do Nascimento

    2012-12-01

    Full Text Available Ethyl acetate extracts of cultures grown in liquid Czapek and on solid rice media of the fungal endophyte Fusarium oxysporum SS46 isolated from the medicinal plant Smallanthus sonchifolius (Poepp. H. Rob., Asteraceae, exhibited considerable cytotoxic activity when tested in vitro against human cancer cells. Chromatographic separation yielded anhydrofusarubin (1 and beauvericin (2 that were identified based on their ¹H and 13C NMR data. Compounds 1 and 2 showed the strongest cytotoxic activity against different cancer cell lines. Compound 2 also showed promising activity against Leishmania braziliensis. Hexanic extract of F. oxysporum SS50 grown on solid rice media also afforded a mixture of compounds that displayed cytotoxic activity against different cancer cell lines. Chemical analysis of the mixture of compounds, investigated by gas chromatography-mass spectrometry (GC-MS, showed that there was a predominance of methyl esters of fatty acids and alkanes.

  6. Mechanisms of coal solubilization by the deuteromycetes Trichoderma atroviride and Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Hoelker, U.; Ludwig, S.; Scheel, T.; Hoefer, M. [Bonn Univ. (Germany). Botanisches Inst. und Botanischer Garten

    1999-07-01

    Three different mechanisms can be envisaged that are used by fungi to solubilize coal: the production of alkaline substances, the extrusion of chelators and, of special interest in the scope of biotechnology, the action of enzymes. Whether these mechanisms are operating separately or in various combinations has not yet been finally assessed. The two deuteromycetes Fusarium oxysporum and Trichoderma atroviride solubilize coal by synergistic effects of various different mechanisms depending on the cell metabolism. F. oxysporum seems to solubilize coal by increasing the pH of the mycelial surroundings and by the action of chelators induced during growth in glutamate-containing media (without involvement of enzymes). T. atroviride, on the other hand, appears to use, in addition to an alkaline pH and a high chelator activity, at least two classes of enzyme activity to attack coal: hydrolytic activity for coal solubilization and ligninolytic activity for degradation of humic acids. (orig.)

  7. Naphthalene Acetic Acid Potassium Salt (NAA-K+) Affects Conidial Germination, Sporulation, Mycelial Growth, Cell Surface Morphology, and Viability of Fusarium oxysporum f. sp. radici-lycopersici and F. oxysporum f. sp. cubense in Vitro.

    Science.gov (United States)

    Manzo-Valencia, María Karina; Valdés-Santiago, Laura; Sánchez-Segura, Lino; Guzmán-de-Peña, Dora Linda

    2016-11-09

    The response to exogenous addition of naphthalene acetic acid potassium salt (NAA-K + ) to Fusarium oxysporum f. sp radici-lycopersici ATCC 60095 and F. oxysporum f. sp. cubense isolated from Michoacan Mexico soil is reported. The in vitro study showed that NAA-K + might be effective in the control of Fusarium oxysporum. Exogenous application of NAA-K + affected both spores and mycelium stages of the fungi. Viability testing using acridine orange and propidium iodide showed that NAA-K + possesses fungal killing properties, doing it effectively in the destruction of conidia of this phytopathogenic fungi. Analysis of treated spores by scanning electron microscopy showed changes in the shape factor and fractal dimension. Moreover, NAA-K + repressed the expression of brlA and fluG genes. The results disclosed here give evidence of the use of this synthetic growth factor as a substance of biocontrol that presents advantages, and the methods of application in situ should be explored.

  8. Media for efficient generating nitrate- - nonutilizing (NIT) mutants of Verticillium dahliae, Colletotrichum gloeosporioides, Colletotrichum lindemuthianum and Fusarium oxysporum.

    NARCIS (Netherlands)

    Rataj-Guranowska, M.; Pieczul, K.; Nowak, E.; Hiemstra, J.A.; Drapikowska, M.

    2001-01-01

    The effect of several media amended wit potassium chlorate (1.5% and 6%) on generation of nit mutants, especially nit M mutants from Verticillium dahliae, Colletotrichum gloeosporioides, Colletotrichum lindemuthianum and Fusarium oxysporum were studied. For all species minimal medium with 6%

  9. Management of Fusarium oxysporum f.sp cubense (Foc-TR4) from banana by anaerobic soil disinfestation (ASD)

    NARCIS (Netherlands)

    Runia, W.T.

    2014-01-01

    Applied Plant Research in Lelystad has, commissioned by Gert Kema, Plant Research International (PRI) and leader of the Panama Project, performed a trial to measure the efficacy of anaerobic soil disinfestation (ASD) with a ‘Herbie” product against Fusarium oxysporum f.sp. cubense (Foc; TR 4),

  10. Fusarium oxysporum and F. verticillioides associated with damping-off in Pinus spp.

    Directory of Open Access Journals (Sweden)

    Caciara Gonzatto Maciel

    Full Text Available ABSTRACT Occurrence of Fusarium spp. is one of the problems, most limiting to growth of seedlings, in nurseries. This pathogen can be transmitted via seeds and causes damages to the seedlings during pre- and post-emergence stages. The present study aimed to identify Fusarium spp. at the species level based on morphological and molecular characteristics and to verify the pathogenicity of these isolates in seeds lots of Pinus elliottii and P. taeda. For this, we used two Fusarium isolates and five lots of Pinus spp. seeds. Morphological characterization was performed based on a key, specific to Fusarium spp. identification, whereas, molecular identification was carried out by amplification and sequencing of the regions from internal transcribed spacer (ITS and the elongation factor 1-α (tef1. The pathogenicity test was conducted through the contact of the seeds with fungal culture for 48 h, followed by sowing them in sand. The variables evaluated were emergency speed index, percentage of emergency, non-emergency seeds, symptomatic seedlings, and seedling damping-off. One isolate, F1UFSM, was identified as F. verticillioides and another isolate, F2UFSM, was identified as F. oxysporum. Both the isolates were pathogenic to the seeds of Pinus spp., causing a reduction in the percentage of emergence and seedling damping-off.

  11. Quantitative trait loci mapping of resistance to Fusarium oxysporum f. sp. niveum race 2 in Citrullus lanatus var. citroides using genotyping-by-sequencing

    Science.gov (United States)

    One of the most devastating watermelon diseases worldwide, Fusarium wilt, is caused by Fusarium oxysporum f. sp. niveum (Fon). Spread of the particularly virulent Fon race 2 in the United States, coupled with the lack of resistance in edible cultivars of the sweet cultivated watermelon Citrullus lan...

  12. Sequencing of individual chromosomes of plant pathogenic Fusarium oxysporum.

    Science.gov (United States)

    Kashiwa, Takeshi; Kozaki, Toshinori; Ishii, Kazuo; Turgeon, B Gillian; Teraoka, Tohru; Komatsu, Ken; Arie, Tsutomu

    2017-01-01

    A small chromosome in reference isolate 4287 of F. oxysporum f. sp. lycopersici (Fol) has been designated as a 'pathogenicity chromosome' because it carries several pathogenicity related genes such as the Secreted In Xylem (SIX) genes. Sequence assembly of small chromosomes in other isolates, based on a reference genome template, is difficult because of karyotype variation among isolates and a high number of sequences associated with transposable elements. These factors often result in misassembly of sequences, making it unclear whether other isolates possess the same pathogenicity chromosome harboring SIX genes as in the reference isolate. To overcome this difficulty, single chromosome sequencing after Contour-clamped Homogeneous Electric Field (CHEF) separation of chromosomes was performed, followed by de novo assembly of sequences. The assembled sequences of individual chromosomes were consistent with results of probing gels of CHEF separated chromosomes with SIX genes. Individual chromosome sequencing revealed that several SIX genes are located on a single small chromosome in two pathogenic forms of F. oxysporum, beyond the reference isolate 4287, and in the cabbage yellows fungus F. oxysporum f. sp. conglutinans. The particular combination of SIX genes on each small chromosome varied. Moreover, not all SIX genes were found on small chromosomes; depending on the isolate, some were on big chromosomes. This suggests that recombination of chromosomes and/or translocation of SIX genes may occur frequently. Our method improves sequence comparison of small chromosomes among isolates. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Lipopeptide biosurfactant from Bacillus thuringiensis pak2310: A potential antagonist against Fusarium oxysporum.

    Science.gov (United States)

    Deepak, R; Jayapradha, R

    2015-03-01

    The aims of the study were to evaluate the effects of a biosurfactant obtained from a novel Bacillus thuringiensis on Fusarium oxysporum to determine the morphological changes in the structure of the fungi and its biofilm in the presence of the biosurfactant and to evaluate the toxicity of the biosurfactant on HEp-2 human epithelial cell lines. The strain was screened and isolated from petroleum contaminated soil based on the E24 emulsification index. The biosurfactant was produced on glycerol, extracted using chloroform:methanol system and purified using HPLC. The purified fraction showing both surface activity (emulsification and oil-spread activity) and anti-fusarial activity (agar well diffusion method) was studied using FT-IR and MALDI-TOF MS, respectively. The minimum inhibitory concentration (MIC) and the biofilm inhibitory concentration (BIC) were determined using dilution method. The effect of biosurfactant on the morphology of Fusarium oxysporum was monitored using light microscopy and confocal laser scanning microscopy (for biofilm). The purified surfactant showed the presence of functional groups like that of surfactin in the FT-IR spectra and MALDI-TOF MS estimated the molecular weight as 700Da. The MIC and BIC were estimated to be 0.05 and 0.5mg/mL, respectively. The molecule was also non-toxic to HEp-2 cell lines at 10× MIC. A non-toxic and effective anti-Fusarium biosurfactant, that is both safe for human use and to the environment, has been characterized. The growth and metabolite production using glycerol (major byproduct of biodiesel and soap industries) also adds up to the efficiency and ecofriendly nature of this biosurfactant. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. The Concept of Ecthyma Gangrenosum Illustrated by a Fusarium oxysporum Infection in an Immunocompetent Individual.

    Science.gov (United States)

    Jiang, Yanping; Al-Hatmi, Abdullah M S; Xiang, Yining; Cao, Yu; van den Ende, Albert H G Gerrits; Curfs-Breuker, Ilse; Meis, Jacques F; Lu, Hongguang; de Hoog, G Sybren

    2016-10-01

    Ecthyma gangrenosum (EG) involves necrotic cutaneous lesions caused by bacteria, mainly Pseudomonas aeruginosa, and is usually seen in immunocompromised patients with septicemia. However, clinically similar infections have been published with fungi as etiologic agents. We present a case of an EG-like lesion due to Fusarium oxysporum confirmed by clinical diagnosis, culture and molecular identification and discuss the definition of EG.

  15. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum

    NARCIS (Netherlands)

    Di, X.; Gomila, J.; Takken, F.L.W.

    Phytohormones, such as salicylic acid (SA), ethylene (ET) and jasmonic acid (JA), play key roles in plant defence following pathogen attack. The involvement of these hormones in susceptibility following Fusarium oxysporum (Fo) infection has mostly been studied in Arabidopsis thaliana. However, Fo

  16. Variabilidade genética na região its do rDNA de isolados de trichoderma spp. (Biocontrolador e Fusarium oxysporum f. sp. Chrysanthemi Genetic variability in rDNA ITS region of Trichoderma spp. (biocontrole agent and Fusarium oxysporum f. sp. chrysanthemi isolates

    Directory of Open Access Journals (Sweden)

    Josiane Pacheco Menezes

    2010-02-01

    Full Text Available A análise de características morfológicas e culturais podem não ser suficientes para uma caracterização precisa das espécies de Trichoderma e Fusarium. Objetivou-se, neste trabalho, caracterizar a região do Espaço Interno Transcrito (ITS do rDNA dos isolados UFSMT15.1, UFSMT16 e UFSMT17 de Trichoderma spp. utilizados no biocontrole de Fusarium oxysporum f. sp. chrysanthemi (isolado UFSMF6. A extração de DNA de cada isolado foi realizada a partir de micélio produzido em meio líquido Batata-Dextrose. As amostras de DNA genômico foram submetidas à Reação em Cadeia da Polimerase (PCR com os oligonucleotídeos iniciadores universais ITS1 e ITS4 e o produto gerado foi sequenciado. Os fragmentos gerados pela amplificação da PCR foram tratados com as enzimas de restrição HaeIII, HinfI e MboI. As regiões ITS1, ITS2 e 5.8S do rDNA desses isolados fúngicos foram amplificadas com sucesso. A região ITS dos isolados UFSMT15.1, UFSMT16 e UFSMT17 de Trichoderma e o isolado UFSMF6 de Fusarium apresentaram uma banda simples com um fragmento de aproximadamente 600 pares de base (pb. As enzimas de restrição HaeIII, HinfI e MboI geraram polimorfismo de bandas entre os isolados. Com base nas análises da sequência de DNA, os isolados UFSMT15.1, UFSMT16, UFSMT17 e UFSMF6 apresentaram maior similaridade com as espécies Trichoderma koningiopsis, Hypocrea virens, Hypocrea lixii e Fusarium oxysporum, respectivamente.The analysis of morphological and cultural characteristics may not enough for the characterization of the species of Trichoderma and Fusarium. The aim of this work was to characterize the Internal Transcribed Spacer (ITS region of the rDNA of UFSMT15.1, UFSMT16 and UFSMT17 isolates of Trichoderma spp. used in the biocontrol of Fusarium oxysporum f. sp. chrysanthemi UFSMF6. DNA extraction of each isolate was accomplished starting from hyphae produced in liquid medium Potato-Dextrose-Agar. The samples of genomic DNA were submitted to

  17. Molecular variability among isolates of Fusarium oxysporum associated with root rot disease of Agave tequilana.

    Science.gov (United States)

    Vega-Ramos, Karla L; Uvalle-Bueno, J Xavier; Gómez-Leyva, Juan F

    2013-04-01

    In this study, 115 isolates of Fusarium oxysporum from roots of Agave tequilana Weber cv azul plants and soil in commercial plantations in western Mexico were characterized using morphological and molecular methods. Genetic analyses of monosporic isolates included restriction enzyme analysis of rDNA (ARDRA) using HaeIII and HinfI, and genetic diversity was determined using Box-PCR molecular markers. Box-PCR analysis generated 14 groups. The groups correlated highly with the geographic location of the isolate and sample type. These results demonstrate the usefulness of ARDRA and Box-PCR techniques in the molecular characterization of the Fusarium genus for the discrimination of pathogenic isolates.

  18. Proteomics of Fusarium oxysporum race 1 and race 4 reveals enzymes involved in carbohydrate metabolism and ion transport that might play important roles in banana Fusarium wilt.

    Science.gov (United States)

    Sun, Yong; Yi, Xiaoping; Peng, Ming; Zeng, Huicai; Wang, Dan; Li, Bo; Tong, Zheng; Chang, Lili; Jin, Xiang; Wang, Xuchu

    2014-01-01

    Banana Fusarium wilt is a soil-spread fungal disease caused by Fusarium oxysporum. In China, the main virulence fungi in banana are F. oxysporum race 1 (F1, weak virulence) and race 4 (F4, strong virulence). To date, no proteomic analyses have compared the two races, but the difference in virulence between F1 and F4 might result from their differentially expressed proteins. Here we report the first comparative proteomics of F1 and F4 cultured under various conditions, and finally identify 99 protein species, which represent 59 unique proteins. These proteins are mainly involved in carbohydrate metabolism, post-translational modification, energy production, and inorganic ion transport. Bioinformatics analysis indicated that among the 46 proteins identified from F4 were several enzymes that might be important for virulence. Reverse transcription PCR analysis of the genes for 15 of the 56 proteins revealed that their transcriptional patterns were similar to their protein expression patterns. Taken together, these data suggest that proteins involved in carbohydrate metabolism and ion transport may be important in the pathogenesis of banana Fusarium wilt. Some enzymes such as catalase-peroxidase, galactosidase and chitinase might contribute to the strong virulence of F4. Overexpression or knockout of the genes for the F4-specific proteins will help us to further understand the molecular mechanism of Fusarium-induced banana wilt.

  19. Penapisan Cendawan Antagonis Indigenos Rizosfer Jahe dan Uji Daya Hambatnya terhadap Fusarium oxysporum f. sp. zingiberi

    Directory of Open Access Journals (Sweden)

    Nurbailis Nurbailis

    2015-02-01

    Full Text Available Ginger rot disease caused by Fusarium oxysporum f. sp. zingiberi is difficult to control because the pathogen is soil borne and is able to form clamidospore as resting structure. The aim of this study was to obtain indigenous antagonistic fungi from ginger rhizosphere which is potential for suppressing the growth of F. oxysporum f. sp. zingiberi. Fungi isolated from ginger rhizosphere were subjected for antagonism assay using dual culture method. Fungi isolates showed capability to inhibit F. oxysporum f. sp. zingiberii were then identified based on morphology characters. Eleven isolates were successfully isolated, but only 9 isolates showed the potentials of suppressing the growth of F. oxysporum f. sp.  zingiberi. All 9 isolates i.e. AB4, GC1, BB1, AB1, AB2, K12, GC3, K11 and GC2 had antibiosis activity, and 3 isolates among them i.e. AB2, BB1 and K11 showed competition mechanism. Based on morphology characters the isolates were identified as Penicillium spp. (4 isolates, Trichoderma spp. (3 isolates, and Aspergillus spp. (2 isolates.

  20. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage

    Science.gov (United States)

    The ability of chitosan and oligochitosan to enhance the resistance of ginger (Zingiber officinale) to rhizome rot, caused by Fusarium oxysporum, in storage was investigated. Both chitosan and oligochitosan at 1 and 5 g/L significantly inhibited rhizome rot, relative to the untreated control, with...

  1. Identification of NADH kinase activity in filamentous fungi and structural modelling of the novel enzyme from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Papadakis, Emmanouil; Topakas, E.

    2008-01-01

    ATP-NADH kinase phosphorylates NADH to produce NADPH at the expense of ATP. The present study describes Fusarium oxysporum NADH kinase (ATP:NADH 2'-phosphotransferase, EC 2.7.1.86), a novel fungal enzyme capable of synthesizing NADPH using NADH as the preferred diphosphonicotinamide...

  2. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum

    NARCIS (Netherlands)

    Dijksterhuis, J; Sanders, M; Gorris, L G; Smid, E J

    Interaction of Fusarium oxysporum and Paenibacillus polymyxa starts with polar attachment of bacteria to the fungal hyphae followed by the formation of a large cluster of non-motile cells embedded in an extracellular matrix in which the bacteria develop endospores. Enumeration of fungal viable

  3. Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation.

    Science.gov (United States)

    Nam, Myeong Hyeon; Park, Myung Soo; Kim, Hong Gi; Yoo, Sung Joon

    2009-05-01

    Two isolates, Bacillus sp. BS87 and RK1, selected from soil in strawberry fields in Korea, showed high levels of antagonism towards Fusarium oxysporum f. sp. fragariae in vitro. The isolates were identified as B. velezensis based on the homology of their gyrA sequences to reference strains. BS87 and RK1 were evaluated for control of Fusarium wilt in strawberries in pot trials and field trials conducted in Nonsan, Korea. In the pot trials, the optimum applied concentration of BS87 and RK1 for pre-plant root-dip application to control Fusarium wilt was 10(5) and 10(6) colony-forming units (CFU)/ml, respectively. Meanwhile, in the 2003 and 2005 field trials, the biological control efficacies of formulations of RK1 were similar to that of a conventional fungicide (copper hydroxide) when compared with a non-treated control. The RK1 formulation was also more effective than BS87 in suppressing Fusarium wilt under field conditions. Therefore, the results indicated that formulation of B.velezensis BS87 and RK1 may have potential to control Fusarium wilt in strawberries.

  4. Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds

    Science.gov (United States)

    Abd-Elsalam, Kamel A.; Khokhlov, Alexei R.

    2015-02-01

    The current research deals with the formulation and characterization of bio-based oil-in-water nanoemulsion. The formulated eugenol oil nanoemulsion was characterized by dynamic light scattering, stability test, transmission electron microscopy and thin layer chromatography. The nanoemulsion droplets were found to have a Z-average diameter of 80 nm and TEM study reveals the spherical shape of eugenol oil nanoemulsion (EON). The size of the nanoemulsion was found to be physically stable up to more than 1-month when it was kept at room temperature (25 °C). The TEM micrograph showed that the EON was spherical in shape and moderately mono or di-dispersed and was in the range of 50-110 nm. Three concentrations of the nanoformulation were used to evalute the anti-fusarium activity both in vitro and in vivo experiments. SDS-PAGE results of total protein from the Fusarium oxysporum f. sp. vasinfectum (FOV) isolate before and after treatment with eugenol oil nanoemulsion indicate that the content of extra cellular soluble small molecular proteins decreased significantly in EON-treated fungus. Light micrographs of mycelia and spores treated with EON showed the disruption of the fungal structures. The analysis of variance (ANOVA) for Fusarium wilt incidence indicated highly significant ( p = 0.000) effects of concentration, genotype, and their interaction. The difference in wilt incidence between concentrations and control was not the same for each genotype, that is, the genotypes responded differently to concentrations. Effects of three EON concentration on germination percentage, and radicle length, were determined in the laboratory. One very interesting finding in the current study is that cotton genotypes was the most important factors in determining wilt incidence as it accounted for 93.18 % of the explained (model) variation. In vitro experiments were conducted to evaluate the potential phytotoxic effect of three EON concentrations. Concentration, genotype and

  5. Diversity of Endophytic Fungi from Red Ginger (Zingiber officinale Rosc. Plant and Their Inhibitory Effect to Fusarium oxysporum Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    SIHEGIKO KANAYA

    2013-09-01

    Full Text Available Indonesia has been known as a country with high medicinal plant diversity. One of the most common medicinal plant from Indonesia is red ginger (Zingiber officinale Rosc.. Nevertheless, limited studies of endophytic fungi associated with these medicinal plants are hitherto available. The objectives of this research were to study the diversity of endophytic fungi on red ginger and to analyze their potential as a source of antifungal agent. All parts of plant organs such as leaf, rhizome, root, and stem were subjected for isolation. Fungal identification was carried out by using a combination of morphological characteristic and molecular analysis of DNA sequence generated from ITS rDNA region. Thirty endophytic fungi were successfully isolated from leaf, rhizome, root, and stem of red ginger plant. Antagonistic activity was tested against Fusarium oxysporum, a pathogenic fungus on plants, using an antagonistic assay. Based on this approach, the fungi were assigned as Acremonium macroclavatum, Beltraniella sp., Cochliobolus geniculatus and its anamorphic stage Curvularia affinis, Fusarium solani, Glomerella cingulata, and its anamorphic stage Colletotrichum gloeosporoides, Lecanicillium kalimantanense, Myrothecium verrucaria, Neonectria punicea, Periconia macrospinosa, Rhizopycnis vagum, and Talaromyces assiutensis. R. vagum was found specifically on root whereas C. affinis, L. kalimantanense, and M. verrucaria were found on stem of red ginger plant. A. macroclavatum was found specifically in red ginger plant’s organ which located under the ground, whereas C. affinis was found from shoot or organ which located above the ground. The antagonistic activity of isolated endophytic fungi against F. oxysporum varied with the inhibition value range from 1.4 to 68.8%. C. affinis (JMbt7, F. solani (JMd14, and G. cingulata (JMr2 had significantly high antagonistic activity with the value above 65%; and R. vagum (JMa4 and C. geniculatus (JMbt9 had

  6. Diversity of Endophytic Fungi from Red Ginger (Zingiber officinale Rosc. Plant and Their Inhibitory Effect to Fusarium oxysporum Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    ROHANI CINTA BADIA GINTING

    2013-09-01

    Full Text Available Indonesia has been known as a country with high medicinal plant diversity. One of the most common medicinal plant from Indonesia is red ginger (Zingiber officinale Rosc.. Nevertheless, limited studies of endophytic fungi associated with these medicinal plants are hitherto available. The objectives of this research were to study the diversity of endophytic fungi on red ginger and to analyze their potential as a source of antifungal agent. All parts of plant organs such as leaf, rhizome, root, and stem were subjected for isolation. Fungal identification was carried out by using a combination of morphological characteristic and molecular analysis of DNA sequence generated from ITS rDNA region. Thirty endophytic fungi were successfully isolated from leaf, rhizome, root, and stem of red ginger plant. Antagonistic activity was tested against Fusarium oxysporum, a pathogenic fungus on plants, using an antagonistic assay. Based on this approach, the fungi were assigned as Acremonium macroclavatum, Beltraniella sp., Cochliobolus geniculatus and its anamorphic stage Curvularia affinis, Fusarium solani, Glomerella cingulata and its anamorphic stage Colletotrichum gloeosporoides, Lecanicillium kalimantanense, Myrothecium verrucaria, Neonectria punicea, Periconia macrospinosa, Rhizopycnis vagum, and Talaromyces assiutensis. R. vagum was found specifically on root whereas C. affinis, L. kalimantanense, and M. verrucaria were found on stem of red ginger plant. A. macroclavatum was found specifically in red ginger plant's organ which located under the ground, whereas C. affinis was found from shoot or organ which located above the ground. The antagonistic activity of isolated endophytic fungi against F. oxysporum varied with the inhibition value range from 1.4 to 68.8%. C. affinis (JMbt7, F. solani (JMd14, and G. cingulata (JMr2 had significantly high antagonistic activity with the value above 65%; and R. vagum (JMa4 and C. geniculatus (JMbt9 had significantly

  7. [Antifungal effect of phenolic and carotenoids extracts from chiltepin (Capsicum annum var. glabriusculum) on Alternaria alternata and Fusarium oxysporum].

    Science.gov (United States)

    Rodriguez-Maturino, Alfonso; Troncoso-Rojas, Rosalba; Sánchez-Estrada, Alberto; González-Mendoza, Daniel; Ruiz-Sanchez, Esau; Zamora-Bustillos, Roberto; Ceceña-Duran, Carlos; Grimaldo-Juarez, Onecimo; Aviles-Marin, Mónica

    2015-01-01

    The effect of phenolic and carotenoid extracts from chiltepin fruits on mycelial growth and the inhibition of conidial germination of Alternaria alternata and Fusarium oxysporum were investigated in the present work. Phenolic extracts inhibited mycelial growth of A.alternata by 38.46%, and significantly reduced conidial germination on the fifth day after treatment to 92% in relation to control. No significant changes were observed in the inhibition of mycelial growth in Fusarium oxysporum; however, the number of germinated conidia was reduced, showing 85% inhibition five days after treatment in relation to control. Moreover, carotenoid extracts showed 38.5% inhibition of mycelial growth and 85.3% inhibition of conidial germination of A.alternata, five days after treatment. Carotenoid extracts showed less inhibition of mycelial growth (20.3%) in F.oxysporum, with respect to A.alternata; while there was greater inhibition of conidial germination (96%) on the fifth day after treatment. Phenolic and carotenoid extracts from chiltepin may be a promising alternative as a natural fungicide against fungi of agricultural importance. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Streptomyces sp. Sebagai Biofungisida Patogen Fusarium oxysporum (Schlecht. f.sp. lycopersici (Sacc. Snyd. et Hans. Penyebab Penyakit Layu Pada Tanaman Tomat (Solanum lycopersicum L.

    Directory of Open Access Journals (Sweden)

    NURI MANDAN SARI

    2014-01-01

    Full Text Available A research was conducted to isolate Streptomyces sp. of soil Udayana University campus in theBukit-Jimbaran, to obtain the most effective Streptomyces sp. which is effective in inhibit the growth ofFusarium oxysporum f.sp. lycopersici, and to test response of tomato plants with Streptomyces sp.culture against Fusarium wilt desease. Implementation phases of the research consisted of isolation andidentification of Streptomyces sp, test the inhibition against F. oxysporum f.sp. lycopersici, and in vivotest used by dyeing the roots of the tomato plant (Solanum lycopersicum with Fusarium spores andafter 30 seconds the roots were dyeing Streptomyces culture. Furthermore, sterile soil in polybagwatered by Fusarium spores and Streptomyces culture at the same time. Based on morphologicalcharacteristic it found five isolates of Streptomyces sp.. The antagonist test showed Streptomyces sp.1 had ability (75% against Fusarium, Streptomyces sp 2 (68,3%, Streptomyces sp. 3 (71,6%,Streptomyces sp. 4 (63,3%, and Streptomyces sp. 5 (21,6%. All Streptomyces suppressed thegrowth of Fusarium on tomato plants in glass house (p<0,05. Streptomyces sp.3 suppressed Fusariumwilt disease in tomato from 88% in control to 20%.

  9. Biological control of Orobanche aegyptiaca by Fusarium oxysporum F. sp. Orobanchein northwest Iran.

    Science.gov (United States)

    Saremi, H; Okhovvat, S M

    2008-01-01

    Broomrape (Orobanche aegyptiaca) is one of the most serious weed pathogen on many plants all over the world, especially in northwest Iran. It causes damage on some plants particularly on tomato, cucumber and other dicotyledonous crops in zanjan province. Broomrape as weed, caused reductions in crop yield, adversely affected crop quality, and resulted in loss of cultivated land due to reduced crop alternatives. Since there were no any chemical methods and other proper technique to control this plant parasite we tried to find a good mechanism for its management in the fields. Our study showed there was a specific species, Fusarium oxysporum f. sp. orobonche that had infected Broomrapes naturally in the field. In point of fact the species was isolated from naturally infected Broomrape in studied Locations. Our surveys showed F. oxysporum f. sp. orobanche caused disease on orobanche spp. in different agricultural fields. Although there were other fungal species which can nearly manage the orobanche but it can be fungal pathogen to other plants. However the best fungal isolate can be F. oxysporum f. sp. orobanche since it may not be pathogen for other plants.

  10. Disease epidemiology and genetic diversity of fusarium oxysporum f. sp. elaeidis, cause of fusarium wilt of oil palm (Elaeis guineensis Jacq.)

    OpenAIRE

    Hefni Rusli, M.; Wheals, Alan E.; Sharma, Sweta; Seman, Idris A.; Cooper, Richard M.

    2017-01-01

    Vascular wilt disease caused by Fusarium oxysporum f. sp. elaeidis (Foe) has devasted oil palm in west and central Africa. This study investigates the spatial distribution of Foe, whereby non-random, clustered patterns of the disease were recorded in four separate plantations in Ghana; infection from tree to tree via elongating roots therefore plays a more significant role than aerial distribution by conidiospores, with management implications. Control of Foe with disease-resistant palm lines...

  11. Występowanie fuzariozy tulipanów (Fusarium oxysporum (Schlecht. S. et H. f. sp. tulipae Apt. na plantacjach produkcyjnych w Polsce [Fusarium oxysporum (Schlecht. S. et H. f. sp. tulipae Apt. in tulip plantations in Poland

    Directory of Open Access Journals (Sweden)

    Cz. Zamorski

    2015-06-01

    Full Text Available The disease caused by Fusarium oxysporum f. sp. tulipae has been observed on 'bud'b coming from different plantations. The number of diseased bulbs depended on the conditions of cultivation, the manner of storing, and the variety. Among the varieties most strongly affected were: Red Giant (up to 70%, Brilliant Star, Blizzard, Cellini, and Prominence.

  12. Highly Diverse Endophytic and Soil Fusarium oxysporum Populations Associated with Field-Grown Tomato Plants

    Science.gov (United States)

    Demers, Jill E.; Gugino, Beth K.

    2014-01-01

    The diversity and genetic differentiation of populations of Fusarium oxysporum associated with tomato fields, both endophytes obtained from tomato plants and isolates obtained from soil surrounding the sampled plants, were investigated. A total of 609 isolates of F. oxysporum were obtained, 295 isolates from a total of 32 asymptomatic tomato plants in two fields and 314 isolates from eight soil cores sampled from the area surrounding the plants. Included in this total were 112 isolates from the stems of all 32 plants, a niche that has not been previously included in F. oxysporum population genetics studies. Isolates were characterized using the DNA sequence of the translation elongation factor 1α gene. A diverse population of 26 sequence types was found, although two sequence types represented nearly two-thirds of the isolates studied. The sequence types were placed in different phylogenetic clades within F. oxysporum, and endophytic isolates were not monophyletic. Multiple sequence types were found in all plants, with an average of 4.2 per plant. The population compositions differed between the two fields but not between soil samples within each field. A certain degree of differentiation was observed between populations associated with different tomato cultivars, suggesting that the host genotype may affect the composition of plant-associated F. oxysporum populations. No clear patterns of genetic differentiation were observed between endophyte populations and soil populations, suggesting a lack of specialization of endophytic isolates. PMID:25304514

  13. ASSESSMENT OF Trichoderma ISOLATES FOR VIRULENCE EFFICACY ON Fusarium oxysporum F. sp. Phaseoli

    Directory of Open Access Journals (Sweden)

    Jane Otadoh

    2010-10-01

    Full Text Available Trichoderma has been widely studied for their biocontrol ability, but their use as biocontrol agents in agriculture is limited due to the unpredictable efficiency which is affected by biotic and abiotic factors in soil. Isolates of Trichoderma from Embu soils were evaluated for their ability to control Fusarium oxysporum f. sp. phaseoli., in vitro and promote seedling growth in the greenhouse. Bioassays were run using dual cultures and diffusible compound production analysis. The Trichoderma isolates significantly (p

  14. The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Wilfried Jonkers

    Full Text Available WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity determents in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is required for pathogenicity and expression of key plant effector proteins. F. graminearum, an important pathogen of cereals, is not known to employ switching and no effector proteins from F. graminearum have been found to date that are required for infection. In this study, the potential role of the WOR1-like gene in pathogenesis was tested in this toxigenic fungus. Deletion of the WOR1 ortholog (called FGP1 in F. graminearum results in greatly reduced pathogenicity and loss of trichothecene toxin accumulation in infected wheat plants and in vitro. The loss of toxin accumulation alone may be sufficient to explain the loss of pathogenicity to wheat. Under toxin-inducing conditions, expression of genes for trichothecene biosynthesis and many other genes are not detected or detected at lower levels in Δfgp1 strains. FGP1 is also involved in the developmental processes of conidium formation and sexual reproduction and modulates a morphological change that accompanies mycotoxin production in vitro. The Wor1-like proteins in Fusarium species have highly conserved N-terminal regions and remarkably divergent C-termini. Interchanging the N- and C- terminal portions of proteins from F. oxysporum and F. graminearum resulted in partial to complete loss of function. Wor1-like proteins are conserved but have evolved to regulate pathogenicity in a range of fungi, likely by adaptations to the C-terminal portion of the protein.

  15. The effect of Medicago arabica, M. hybrida and M. sativa saponins on the growth and development of Fusarium oxysporum Schlecht f. sp. tulipae apt.

    Directory of Open Access Journals (Sweden)

    Anna Jarecka

    2012-12-01

    Full Text Available In the present work it was shown that total saponins originated from M. hybrida and M. sativa substantially limited mycelium growth of F. oxysporum f. sp. tulipae and symptoms of fusariosis on tulip bulbs. Out of 15 individual tested saponins originated from M. arabica, M. hybrida and M. sativa, four compounds: 3-O-[β-D-glucopyranosyl (1→2α-L-arabinopyranosyl] hederagenin, hederagenin 3-O-β-D-glucopyranoside, medicagenic acid, medicagenic acid 3-O-β-D-glucopyranoside had the strongest inhibitory effect on mycelium growth of Fusarium oxysporum f. sp. tulipae on PDA medium. The total saponins from M. arabica, M. hybrida and M. sativa inhibited the number of colony forming units of Fusarium oxysporum f. sp. tulipae in artificially infested substrate. The use of saponins originated from Medicago as a fungicide is suggested.

  16. Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction

    Science.gov (United States)

    Lyons, Rebecca; Rusu, Anca; Stiller, Jiri; Powell, Jonathan; Manners, John M.; Kazan, Kemal

    2015-01-01

    Plants respond to pathogens either by investing more resources into immunity which is costly to development, or by accelerating reproductive processes such as flowering time to ensure reproduction occurs before the plant succumbs to disease. In this study we explored the link between flowering time and pathogen defense using the interaction between Arabidopsis thaliana and the root infecting fungal pathogen Fusarium oxysporum. We report that F. oxysporum infection accelerates flowering time and regulates transcription of a number of floral integrator genes, including FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT) and GIGANTEA (GI). Furthermore, we observed a positive correlation between late flowering and resistance to F. oxysporum in A. thaliana natural ecotypes. Late-flowering gi and autonomous pathway mutants also exhibited enhanced resistance to F. oxysporum, supporting the association between flowering time and defense. However, epistasis analysis showed that accelerating flowering time by deletion of FLC in fve-3 or fpa-7 mutants did not alter disease resistance, suggesting that the effect of autonomous pathway on disease resistance occurs independently from flowering time. Indeed, RNA-seq analyses suggest that fve-3 mediated resistance to F. oxysporum is most likely a result of altered defense-associated gene transcription. Together, our results indicate that the association between flowering time and pathogen defense is complex and can involve both pleiotropic and direct effects. PMID:26034991

  17. Síntese e caracterização de um novo composto obtido pela reação entre hidreto de trifenilestanho e ácido (±-mandélico e avaliação de seu potencial biocida sobre o fungo Fusarium oxysporum f. sp. cubense Synthesis, characterization and evaluation of the biocide effect on the fungus Fusarium oxysporum f. sp. cubense of a new compound obtained by reaction of triphenyltin hydride and (±-mandelic acid

    Directory of Open Access Journals (Sweden)

    Roberto Santos Barbiéri

    2006-06-01

    Full Text Available O presente artigo refere-se à síntese e caracterização de um novo composto organoestânico, pela reação de ácido (±-mandélico e hidreto de trifenilestanho, em meio de acetonitrila e sob refluxo, [(C6H52SnMand 2] {Mand = C6H5CH(OHCOO], identificado por análise elementar de carbono e hidrogênio, espectroscopia no infravermelho e espectrometria de massa de alta resolução, para o qual foi proposta estrutura octaédrica com o grupo fenila em posição trans. Verificou-se que o composto apresenta ação biocida sobre o fungo Fusarium oxysporum f. sp. cubense, sendo mais efetivo que o ácido (±-mandélico livre. No entanto, a atividade biocida do composto foi menos intensa que a observada para cloreto de estanho hidratado, acetato de trifenilestanho e hidreto de trifenilestanho, empregados para fins de comparação. Nos testes de germinação de conídios e microconídios do mesmo fungo, na presença de [(C6H52SnMand 2], os índices de germinação ficaram abaixo de 11%.The present paper refers to the synthesis and characterization of a new organotin compound that was obtained by reaction of (±-mandelic acid with triphenyltin hydride in acetonitrile medium under reflux. According to hydrogen and carbon elemental analysis, infrared spectroscopy and high resolution mass spectrometry the formula of such compounds is (C6H52SnMand 2 {Mand = C6H5CH(OHCOO}. An octahedral complex, with the phenyl groups in trans position was proposed for its structure. It was observed that this compound was active against the fungus Fusarium oxysporum f. sp. cubense. The biocide effect was more intense than the one observed for(±-mandelic acid. However, it was less efficient than tin chloride hydrate, triphenyltin acetate and triphenyltin hydride. In germination assays with conides and microconides of the same fungus in the presence of [(C6H52SnMand 2], the germination rates were below 11%.

  18. SUPPRESSION ABILITY OF CRUDE EXTRACT DERIVED FROM MARINE BIOTA AGAINST FUSARIUM OXYSPORUM F.SP. VANILLAE

    Directory of Open Access Journals (Sweden)

    I Ketut Suada

    2010-06-01

    Full Text Available The objective of this research was to investigate suppression ability of marine biota extracts against Fusarium oxysporum f.sp. vanillae of vanilla stem rot. Samples were collected at intertidal zones and in the depth of 1-7 m from seven beaches in Bali. Screening of active compounds of biota extracts were conducted using inhibition zone of well diffusion method on Potato Dextrose Agar (PDA. The extract was tested in-vitro in PDA medium using completely randomized design with three replicates. The methanolic extract of Aglaophenia sp. was able to suppress the growth of F. oxysporum f.sp. vanillae effectively, with minimum inhibition concentration (MIC of 0.05 %. The extract inhibited colony growth diameter and total mycelial dry weight.

  19. Extracción del ADN de Fusarium Oxysporum f.sp. Dianthi

    OpenAIRE

    Sixta T. Martínez; Carlos Y. Soto

    2010-01-01

    Se estudia la utílización de dos métodos para la extracción del ADN del Fusarium o.xy.sporum f.sp. Dianthi. En los dos métodos la pared del hongo se rompió con nitrógeno líquido, uno de ellos empleó como solución extractora bromuro de cetiltrimetil amonio (BCTA) y el otro una solución de sacarosa con altas concentraciones de protcasa y EDTA. Para la desproteinización ambos métodos utilizaron soluciones de fcnol-clorofonno y enzimas proteolítícas. El ADN obtenido se digirió con enzimas d...

  20. Studies on sterol-ester hydrolase from Fusarium oxysporum. I. Partial purification and properties.

    Science.gov (United States)

    Okawa, Y; Yamaguchi, T

    1977-05-01

    1. A search for a long chain fatty acyl sterol-ester hydrolase in microorganisms led to the isolation from soil of five strains belonging to Fusarium sp. which produced strong activity in the culture medium. 2. The cholesterol esterase from Fusarium oxysporum IGH-2 was purified about 270-fold by means of CaCl2 precipitation and Sephadex G-75 column chromatography. 3. The cholesterol esterase was activated by adekatol and Triton X-100. It was inhibited by lecithin and lysolecithin, and completely inactivated by heat treatment (60 degrees C for 30 min, at pH 7.0). 4. The optimum pH of the enzyme was found to be around 7.0. 5. Among various cholesterol esters tested, cholesterol linoleate was the most suitable substrate. 6. Cholesterol esters in serum were also hydrolyzed by this enzyme.

  1. Selection of antagonistic bacteria isolated from the Physalis peruviana rhizosphere against Fusarium oxysporum.

    Science.gov (United States)

    Urrea, R; Cabezas, L; Sierra, R; Cárdenas, M; Restrepo, S; Jiménez, P

    2011-09-01

    Cape gooseberries (Physalis peruviana) have become increasingly important in Colombia for both domestic consumption and the international export market. Vascular wilting caused by Fusarium oxysporum is the most damaging disease to P. peruviana crops in Colombia. The control of this pathogen is mainly carried out by chemical and cultural practices, increasing production costs and generating resistance. Therefore, the objectives of this study were to test rhizobacteria isolates from P. peruviana rhizosphere against F. oxysporum under in vitro and in vivo conditions. Over 120 strains were isolated, and five were selected for their high inhibition of F. oxysporum growth and conidia production under in vitro conditions. These strains inhibited growth by 41-58% and reduced three- to fivefold conidia production. In the in vivo assays, all the tested isolates significantly reduced fungal pathogenicity in terms of virulence. Isolate B-3.4 was the most efficient in delaying the onset of the first symptoms. All isolates were identified as belonging to the genus Pseudomonas except for A-19 (Bacillus sp.). Our results confirmed that there are prospective rhizobacteria strains that can be used as biological control agents; some of them being able to inhibit in vitro F. oxysporum growth and sporulation. Incorporating these bacteria into biological control strategies for the disease that causes high economical losses in the second most exported fruit from Colombia would result in a reduced impact on environment and economy. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  2. Structure-function analysis of the Fusarium oxysporum Avr2 effector allows uncoupling of its immune-suppressing activity from recognition

    NARCIS (Netherlands)

    Di, X.; Cao, L.; Hughes, R.K.; Tintor, N.; Banfield, M.J.; Takken, F.L.W.

    2017-01-01

    Plant pathogens employ effector proteins to manipulate their hosts. Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, produces effector protein Avr2. Besides being a virulence factor, Avr2 triggers immunity in I-2 carrying tomato (Solanum lycopersicum). Fol

  3. Identifikasi Ras Fisiologis Fusarium oxysporum f.sp. cubense Berdasarkan Sifat Kompatibel Secara Vegetatif dan Pembentukan Bahan Volatil

    Directory of Open Access Journals (Sweden)

    Arif Wibowo

    2002-07-01

    Full Text Available Race characterization of F. oxysporum Schlecht. f.sp. cubense (E.F. Smith Snyd. & Hans. by determining disease reaction is difficult because the result may be biased due to the variability of growing condition. This study is aimed to identify physiological races of F. oxysporum f.sp. cubense in banana plantation in the province of Daerah Istimewa Yogyakarta by examining the relation of the fungal pathogen isolates. The identification of physiological races of F. oxysporum f.sp. cubense was based on vegetative compatibility groups (VCGs. The research was conducted in The Laboratory of Mycology Faculty of Agriculture GMU on March to November 2000. Observation of heterokarion formed by the mutant of F. oxysporum f.sp. cubense on selective medium was carried out in order to identify the compatibility of two different fungal isolates. Nitrate non utilizing (nit mutants obtained without mutagen were used as the label. Nit mutant obtained from the same wild type isolates could form heterokarion on minimal agar medium containing NaNO3 as nitrogen source. Eleven isolates of F. oxysporum f.sp. cubense have been isolated from several cultivars of banana. Vegetative compatibility tests showed that of 11 eleven isolates, there were six different group VCGs where four of them formed volatile compound in rice medium whereas two of them did not. Key words: Fusarium wilt, F. oxysporum f.sp. cubense, vegetative compatibility groups (VCGs

  4. The FonSIX6 gene acts as an avirulence effector in the Fusarium oxysporum f. sp. niveum - watermelon pathosystem

    Science.gov (United States)

    There are three generally accepted Fusarium oxysporum f. sp. niveum (Fon) physiological races (0, 1, and 2) that infect watermelon (Citrullus lanatus). Among them, race 1 is the most prevalent on watermelon throughout the world, while race 2 is highly aggressive to all commercial watermelon cultivar...

  5. Murine model for Fusarium oxysporum invasive fusariosis reveals organ-specific structures for dissemination and long-term persistence.

    Directory of Open Access Journals (Sweden)

    Katja Schäfer

    Full Text Available The soil-borne plant pathogen Fusarium oxysporum causes life-threatening invasive fusariosis in immunocompromised individuals. The mechanism of infection in mammalian hosts is largely unknown. In the present study we show that the symptoms of disseminated fusariosis caused by F. oxysporum in immunosuppressed mice are remarkably similar to those reported in humans. Distinct fungal structures were observed inside the host, depending on the infected organ. Invasive hyphae developed in the heart and kidney, causing massive colonization of the organs. By contrast, chlamydospore-like survival structures were found in lung, spleen and liver. Systemically infected mice also developed skin and eye infections, as well as thrombosis and necrosis in the tail. We further show that F. oxysporum can disseminate and persist in the organs of immunocompetent animals, and that these latent infections can lead to lethal systemic fusariosis if the host is later subjected to immunosuppressive treatment.

  6. Effect of physicochemical parameters on nitrile-hydrolyzing potentials of newly isolated nitrilase of Fusarium oxysporum f. sp. lycopercisi ED-3.

    Science.gov (United States)

    Bura Gohain, Manorama; Talukdar, Shruti; Talukdar, Madhumita; Yadav, Archana; Gogoi, Binod Kumar; Bora, Tarun Chandra; Kiran, Shashi; Gulati, Arvind

    2015-01-01

    In recent years, nitrilases from fungus have received increasing attention, and most of the studies are performed on nitrilases of bacterial origin. Frequently used methods are based on analytical methods such as high-performance liquid chromatography, liquid chromatography-mass spectrometry, and gas chromatography; therefore, an efficient, user friendly, and rapid method has been developed to screen nitrilase enzyme based on the principle of color change of a pH indicator. Phenol red amended with the minimal medium appears light yellow at neutral pH, which changes into pink with the formation of ammonia, indicating nitrilase activity in the reaction medium. A highly potent strain ED-3 identified as Fusarium oxysporum f. sp. lycopercisi (specific activity 17.5 µmol/Min/mg dcw) was isolated using this method. The nitrilase activity of F. oxysporum f. sp. lycopercisi ED-3 strain showed wide substrate specificity toward aliphatic nitriles, aromatic nitriles, and orthosubstituted heterocyclic nitriles. 4-Aminobenzonitrile was found to be a superior substrate among all the nitriles used in this study. This nitrilase was active within pH 5-10 and temperature ranging from 25 to 60 °C with optimal at pH 7.0 and temperature at 50 °C. The nitrilase activity was enhanced to several folds through optimization of culture and biotransformation conditions from 1,121 to 1,941 µmol/Min. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  7. Effectiveness of composts and Trichoderma strains for control of Fusarium wilt of tomato

    Directory of Open Access Journals (Sweden)

    Yousra TAGHDI

    2015-09-01

    Full Text Available Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (FOL is a major limiting disease in tomato production in Morocco. Commercial and locally produced Moroccan composts and peat were found to reduce Fusarium wilt in tomato plants. We explored the presence of Trichoderma strains in these materials, and in six soils sampled in the North West of Morocco, where a low incidence of Fusarium wilt had been previously observed. The most abundant Trichoderma-like fungus was selected from each soil, compost or peat sample. Twelve Trichoderma strains were isolated and identified molecularly. Trichoderma asperellum CT9 and Trichoderma virens ST11 showed the greatest overall antagonistic activity against FOL, Rhizoctonia solani, Botrytis cinerea and Pythium ultimum. The three strains evaluated in in planta tests, CT9, ST11 and T. virens ST10, reduced tomato Fusarium wilt, and strain ST11  also promoted growth of tomato plants.

  8. Efecto de los procesos de compostacion y lombricultura de residuos de clavel sobre la población de Fusarium oxysporum f.sp. dianthi Effect of the processes of composting and lombricomposting of carnation residues on the population of Fusarium oxysporum f.sp. dianthi

    Directory of Open Access Journals (Sweden)

    Pardo Fabio Alejandro

    1998-12-01

    Full Text Available El manejo de los residuos vegetales es uno de los problemas que actualmente enfrenta la floricultura colombiana. El objetivo de la investigación fue estudiar el efecto de la descomposición de residuos de clavel mediante los procesos de compostación y lombricultura sobre la población de Fusarium oxysporum en una finca productora de flores
    localizada en la Sabana de Bogotá. Los procesos de compostación y lombricultura redujeron de manera apreciable la población del hongo, obteniéndose la mayor reducción en el tratamiento de plantas de rosa más plantas de clavel enfermo. De 235 aislamientos de F oxysporum inoculados en esquejes de clavel de la variedad "Navidad", 37 (16% fueron patogénicos y pertenecen a F. oxysporum f.sp. dianthi, mientras que 198 aislamientos (84% correspondieron a formas no patogénicas de F oxysporum o a formas patogénicas de la especie, diferentes a la forma especial dianthi. La utilización de compost o de humus de lombriz que provenga de plantas enfermas de clavel presenta riesgos fitopatológicos importantes para su aplicación al suelo.The management of plant residues is a very important problem of the Colombian floriculture. The objetive of the research was to study the effect of descomposition of carnation plant residues with the processes of compostation and lombricompostation on the population of Fusarium oxysporum on a commercial farm located at the Bogota Plateau. Compostation and lombricompostation processes reduced significantly the population of Foxysporum. The highest reduction was obtained with the treatment of a mixture of rose plants plus carnation diseased plants. From 235 isolates of F. oxysporum inoculated on carnation cuttings of the variety "Navidad", 37 (16% were pathogenic and belong to F oxysporum f.sp. dianthi, 198 isolates (84% did not cause disease on carnation plants, so they belong to other formae specialis or they are nonpathogenic isolates of Foxysporum. The application of

  9. FUBT, a putative MFS transporter, promotes secretion of fusaric acid in the cotton pathogen Fusarium oxysporum f.sp. vasinfectum

    Science.gov (United States)

    Fusaric acid (FA), a phytotoxic polyketide produced by Fusarium oxysporum f. sp. vasinfectum (FOV), has been shown to be associated with disease symptoms on cotton. A gene located upstream of the polyketide synthase gene responsible for the biosynthesis of FA is predicted to encode a member of the ...

  10. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress.

    Science.gov (United States)

    Pu, Zijing; Ino, Yoko; Kimura, Yayoi; Tago, Asumi; Shimizu, Motoki; Natsume, Satoshi; Sano, Yoshitaka; Fujimoto, Ryo; Kaneko, Kentaro; Shea, Daniel J; Fukai, Eigo; Fuji, Shin-Ichi; Hirano, Hisashi; Okazaki, Keiichi

    2016-01-01

    Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  11. Changes in the proteome of xylem sap in Brassica oleracea in response to Fusarium oxysporum stress

    Directory of Open Access Journals (Sweden)

    Zijing ePu

    2016-02-01

    Full Text Available Fusarium oxysporum f. sp. conlutinans (Foc is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change >=2 fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and ten of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  12. Cytogenetics of Physalis peruviana L. and Physalis floridana Rydb. genotypes with differential response to Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Sara A. Liberato G.

    2014-01-01

    Full Text Available Vascular wilt caused by the fungus Fusarium oxysporumis considered the main constraint of cape gooseberry, Physalis peruviana, production in Colombia. P. peruvianaand P. floridana genotypes with differential resistance responses against F. oxysporum have been identified previously. In the present study, the genotypes were evaluated in order to complement the knowledge of cytogenetics diversity in Physalisand to design hybridization strategies to support breeding of cape gooseberry crop. The chromosome number in mitotic dividing cells from root-tips of tissue culture plantlets was determined, from which the average mitotic hour was estimated at 12:00 hours for P. peruviana and 10:00 for P. floridana. Chromosomic complements of 2n = 4x = 48 and 2n = 2x = 24 were found for each one of the two species. Additionally, flow cytometry analyses detected variation within P. peruviana with a nuclear DNA content of 2.33 pg for the 2n = 24 genotype and variations ranged from 5.77 to 8.12 pg for 2n = 48 genotypes. In P. floridanaDNA content was 2.29 pg in the 2n = 24 genotype and 4.03 pg in the 2n = 48 genotype. There was a significant effect (α = 0.01 of the number of chromosomes on nuclear DNA content for the two species.

  13. Respuesta de algunas variedades de clavel estándar a cuatro razas fisiológicas de Fusarium oxysporum f. sp. Dianthi Response of some standard carnation varieties to four physiological

    Directory of Open Access Journals (Sweden)

    Arbeláez Germán

    1996-12-01

    Full Text Available Sesenta y ocho variedades de clavel estándar se evaluaron par su respuesta patológica a las razas fisiológicas 1, 2, 4 Y 8 de Fusarium oxysporum f. sp. dianthi. Solamente las variedades Bogotá, Fabiana y Pesco fueron resistentes a las cuatro razas del patógeno. Las variedades Giallo y Jole fueron susceptibles a todas las razas. La raza fisiológica más patogénica fue la raza 2, la cual es la raza predominante en Colombia, seguida de la raza 8. Las razas 1 y 4 presentaron menor patogenicidad. En esta investigación, se propone un nuevo juego de variedades diferenciales para la identificación de las razas de Fusarium oxysporum f. sp. dianthi.Sixty eight standard carnation varieties were evaluated for their pathological response to the physiological races 1, 2 , 4 and 8 of Fusarium oxysporum f. sp. dianthi. Only Bogota, Fabiana and Pesco varieties were resistant to all races. The varieties Giallo and Jole were susceptible to the four races. The race 2, which is the predominant race in Colombia, was the most pathogenic of the four races, followed by race 8. Races 1 and 4 were less pathogenic. In this study, we propose a new set of differential varieties to identify physiological races of Fusarium oxysporum f. sp. dianthi in Colombia.

  14. In Vivo determination of intracellular pH using pHLuorin proteins in Fusarium Oxysporum

    OpenAIRE

    Serrano Salces, Antonio

    2016-01-01

    Premio extraordinario de Trabajo Fin de Máster curso 2013-2014. Molecular and Cellular, Biotechnology and Genetics. El pH extracelular juega un papel clave en los niveles de fosforilación de las MAP quinasas de Fusarium oxysporum. Además, existen evidencias significativas de que la virulencia de distintos patógenos fúngicos se ve alterada directamente por el pH extracelular. Actualmente se desconoce como el pH extracelular afecta al pH intracelular. En este trabajo, hemos hecho uso de una ...

  15. The influence of various carbon and nitrogen sources on oil production by Fusarium oxysporum.

    Science.gov (United States)

    Joshi, S; Mathur, J M

    1987-01-01

    The oil-synthesizing capacity of Fusarium oxysporum, cultivated on basal nutrient medium, was evaluated using different carbon and nitrogen sources. In one of the media, molasses was also used as a principal carbon source. Media containing glucose and ammonium nitrate were found to be most efficient for oil production. Fatty acid profile of the fungal oil indicated the presence of a wide range of fatty acids ranging from C8 to C24. Fatty acid composition largely depends on the type of carbon and nitrogen sources.

  16. Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f.sp. lycopersici.

    Science.gov (United States)

    Sathiyabama, M; Charles, R Einstein

    2015-11-20

    Cell wall polymer (chitosan) was isolated from Fusarium oxysporum f.sp. lycopersici. They were cross linked with sodium tripolyphosphate (TPP) to synthesize nanoparticles (CWP-NP). The nanoparticles were characterized by FTIR, DLS, SEM, XRD and NMR analyses. The isolated CWP-NP exhibit antifungal activity under in vitro condition. The foliar application of the CWP-NP to tomato plants challenged with F. oxysporum f. sp. lycopersici showed delay in wilt disease symptom expression and reduce the wilt disease severity. Treated plants also showed enhanced yield. These results suggested the role of the CWP-NP in protecting tomato plants from F. oxysporum f.sp. lycopersici infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Identification and regulation of fusA, the polyketide synthase gene responsible for fusarin production in Fusarium fujikuroi.

    Science.gov (United States)

    Díaz-Sánchez, Violeta; Avalos, Javier; Limón, M Carmen

    2012-10-01

    Fusarins are a class of mycotoxins of the polyketide family produced by different Fusarium species, including the gibberellin-producing fungus Fusarium fujikuroi. Based on sequence comparisons between polyketide synthase (PKS) enzymes for fusarin production in other Fusarium strains, we have identified the F. fujikuroi orthologue, called fusA. The participation of fusA in fusarin biosynthesis was demonstrated by targeted mutagenesis. Fusarin production is transiently stimulated by nitrogen availability in this fungus, a regulation paralleled by the fusA mRNA levels in the cell. Illumination of the cultures results in a reduction of the fusarin content, an effect partially explained by a high sensitivity of these compounds to light. Mutants of the fusA gene exhibit no external phenotypic alterations, including morphology and conidiation, except for a lack of the characteristic yellow and/or orange pigmentation of fusarins. Moreover, the fusA mutants are less efficient than the wild type at degrading cellophane on agar cultures, a trait associated with pathogenesis functions in Fusarium oxysporum. The fusA mutants, however, are not affected in their capacities to grow on plant tissues.

  18. Differential gene expression, induced by salicylic acid and Fusarium oxysporum f. sp. lycopersici infection, in tomato Expressão diferencial de genes induzida por ácido salicílico e por Fusarium oxysporum f. sp. lycopersici, em tomateiro

    Directory of Open Access Journals (Sweden)

    Daniel Oliveira Jordão do Amaral

    2008-08-01

    Full Text Available The objective of this work was to determine the transcript profile of tomato plants (Lycopersicon esculentum Mill., during Fusarium oxysporum f. sp. lycopersici infection and after foliar application of salicylic acid. The suppression subtractive hybridization (SSH technique was used to generate a cDNA library enriched for transcripts differentially expressed. A total of 307 clones was identified in two subtractive libraries, which allowed the isolation of several defense-related genes that play roles in different mechanisms of plant resistance to phytopathogens. Genes with unknown roles were also isolated from the two libraries, which indicates the possibility of identifying new genes not yet reported in studies of stress/defense response. The SSH technique is effective for identification of resistance genes activated by salicylic acid and F. oxysporum f. sp. lycopersici infection. Not only the application of this technique enables a cost effective isolation of differentially expressed sequences, but also it allows the identification of novel sequences in tomato from a relative small number of sequences.O objetivo deste trabalho foi determinar o perfil de transcritos em plantas de tomate (Lycopersicon esculentum Mill., durante a infecção com Fusarium oxysporum f. sp. lycopersici e após a aplicação foliar de ácido salicílico. A técnica de hibridização subtrativa por supressão (SSH foi utilizada para gerar uma biblioteca de cDNA enriquecida por transcritos diferencialmente expressos. Foram identificados 307 clones, em duas bibliotecas subtrativas, que permitiram o isolamento de diversos genes de defesa com função em diferentes processos relacionados à resistência vegetal contra patógenos. Também foram isolados, nas duas bibliotecas, genes com função desconhecida, o que indica a possibilidade de identificação de novos genes que ainda não tenham sido relatados em estudos anteriores de resposta a estresses e defesa, em plantas

  19. Fusarium Rot of Orobanche ramosa Parasitizing Tobacco in Southern Italy

    Directory of Open Access Journals (Sweden)

    B. Nanni

    2005-08-01

    Full Text Available In tobacco crops grown in the province of Caserta (southern Italy, we noted, for the first time in Italy, very many broomrape (Orobanche ramosa plants exhibiting mycosis caused by a strain of Fusarium oxysporum that is not pathogenic to tobacco. After a brief description of the symptoms of the disease and its incidence in the field, we discuss, on the basis of the observations made and the data supplied by the literature, the feasibility of using this fungus in programmes to control Orobanche.

  20. Rhizosphere microbial communities from resistant and susceptible watermelon cultivars showed different response to fusarium oxysporum f. sp. niveum inoculation

    International Nuclear Information System (INIS)

    Zhi, W.F.; Can, C.S.; Ling, C.; Hui, X.W.

    2015-01-01

    Fusarium oxysporum f. sp. niveum (FON), a soil-borne pathogen of watermelon (Citrullus lanatus), can cause substantial production losses worldwide. In this study, plate culture and PCR-denaturing gradient gel electrophoresis (DGGE) methods were used to evaluate the effects of inoculation of Fusarium oxysporum f.sp. niveum on rhizosphere microbial communities of different watermelon cultivars to FON. Two methods indicated that the effects of watermelon rhizosphere microbial community of different resistance cultivars to FON were much different. Populations of culturable bacteria and actinomycetes in the rhizosphere of susceptible watermelon cultivar were significantly lower than in the resistant cultivar after inoculation (P<0.05), but the opposite result was observed for fungi. Principal component analysis of bacterial and fungal community structure also showed that the cultivar of FON-inoculated soil treatment were separated from the non-inoculated controls after inoculation, and there was clear discrimination between the susceptible cultivars and the resistant cultivars. Sequence analysis of specific bands from DGGE profiles showed that specific rhizosphere bacterial and fungal groups differed between watermelon cultivars after inoculation . Both methods demonstrated that different resistant watermelon cultivars occupied different rhizosphere microbial communities, and and disease suppression might be correlated with high microbial diversity. F. oxysporum f. sp. Niveum alters the structure and functional diversity of microbial communities associated with watermelon rhizosphere. (author)

  1. Physical and Chemical Barriers in Root Tissues Contribute to Quantitative Resistance to Fusarium oxysporum f. sp. pisi in Pea

    Directory of Open Access Journals (Sweden)

    Moustafa Bani

    2018-02-01

    Full Text Available Fusarium wilt caused by Fusarium oxysporum f. sp. pisi (Fop is one of the most destructive diseases of pea worldwide. Control of this disease is difficult and it is mainly based on the use of resistant cultivars. While monogenic resistance has been successfully used in the field, it is at risk of breakdown by the constant evolution of the pathogen. New sources of quantitative resistance have been recently identified from a wild relative Pisum spp. collection. Here, we characterize histologically the resistance mechanisms occurring in these sources of quantitative resistance. Detailed comparison, of the reaction at cellular level, of eight pea accessions with differential responses to Fop race 2, showed that resistant accessions established several barriers at the epidermis, exodermis, cortex, endodermis and vascular stele efficiently impeding fungal progression. The main components of these different barriers were carbohydrates and phenolic compounds including lignin. We found that these barriers were mainly based on three defense mechanisms including cell wall strengthening, formation of papilla-like structures at penetration sites and accumulation of different substances within and between cells. These defense reactions varied in intensity and localization between resistant accessions. Our results also clarify some steps of the infection process of F. oxysporum in plant and support the important role of cell wall-degrading enzymes in F. oxysporum pathogenicity.

  2. Sterilization of Fusarium oxysporum by treatment of non-thermalequilibrium plasma in nutrient solution

    Science.gov (United States)

    Yasui, Shinji; Seki, Satoshi; Yoshida, Ryohei; Shoji, Kazuhiro; Terazoe, Hitoshi

    2016-01-01

    Fusarium wilt of spinach due to F. oxysporum infection is one of the most destructive root diseases in hydroponics in factories using the nutrient film technique. We investigated new technologies for the sterilization of microconidia of F. oxysporum by using a non-thermalequilibrium plasma treatment method in nutrient solution. Specifically, we investigated the sterilization capabilities of five types of gas (air, O2, N2, He, and Ar) used for plasma generation. The highest sterilization capability was achieved by using O2 plasma. However, ozone, which causes growth inhibition, was then generated and released into the atmosphere. The sterilization capability was lower when N2 or air plasma was used in the nutrient solution. It was confirmed that sterilization can be achieved by plasma treatment using inert gases that do not generate ozone; therefore, we determined that Ar plasma is the most preferable. In addition, we investigated the sterilization capabilities of other factors associated with Ar plasma generation, without direct plasma treatment. However, none of these other factors, which included Ar bubbling, pH reduction, increased temperature, hydrogen peroxide concentration, and UV radiation, could completely reproduce the results of direct plasma treatment. We assume that radicals such as O or OH may contribute significantly to the sterilization of microconidia of F. oxysporum in a nutrient solution.

  3. Fusarium infection causes genotoxic disorders and antioxidant-based damages in Orobanche spp.

    Science.gov (United States)

    Aybeke, Mehmet

    2017-08-01

    This study aims to evaluate the toxic effects of Fusarium oxysporum on root parasitic weed, Orobanche spp. Comparative genetic and gene expression studies were conducted on uninfected and fungus-infected orobanches. In genetic studies, isolated total DNA was amplified by RAPD PCR. Fragment properties were analysed by GTS test. According to the results, the fragment properties of control and Fusarium infected (experimental) groups varied widely; and it has been observed that Fusarium has genotoxic effects on the DNA of orobanches. In gene expression studies, the expression levels of genes encoding enzymes or proteins were associated with ROS damage and toxic effects, therefore, gene expressions of Mn-superoxide dismutase (SOD), Zn-superoxide dismutase (=SOD2, mitochondrial), glutamine synthetase (GS), heat shock protein gene (HSP70), BAX, Caspase-3 and BCL2 were significantly higher in the experimental group. In the light of obtained data, it was concluded that F. oxysporum (1) caused heavy ROS damage in Orobanche (2) induced significant irrevocable genotoxic effects on the DNA of Orobanche, (3) degraded protein metabolism and synthesis, and finally (4) triggered apoptosis. The results of this study can be a ground for further research on reducing the toxic effects of Fusarium on agricultural products, so that advancements in bio-herbicide technology may provide a sustainable agricultural production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Characterization and regulation of glycine transport in Fusarium oxysporum var. lini.

    Science.gov (United States)

    Castro, I M; Lima, A A; Nascimento, A F; Ruas, M M; Nicoli, J R; Brandão, R L

    1996-08-01

    Glycine was transported in Fusarium oxysporum cells, grown on glycine as the sole source of carbon and nitrogen, by a facilitated diffusion transport system with a half-saturation constant (Ks) of 11 mM and a maximum velocity (Vmax) of 1.2 mM (g dry weight)-1 h-1 at pH 5.0 and 26 degrees C. Under conditions of nitrogen starvation, the same system was present together with a high-affinity one (Ks) of about 47 microM and Vmax of about 60 microM (g dry weight)-1 h-1). The low-affinity system was more specific than the high-affinity system. Cells grown on gelatine showed the same behavior. In cells grown on glucose-gelatine medium, the low-affinity system was poorly expressed even after carbon and nitrogen starvation. Moreover, addition of glucose to cells grown on glycine and resuspended in mineral medium caused an increase of the glycine transport probably due to a boost in protein synthesis. This stimulation did not affect the Ks of the low-affinity system. These results demonstrate that, as is the case for other eukaryotic systems, F. oxysporum glycine transport is under control of nitrogen sources but its regulation by carbon sources appears to be more complex.

  5. An investigation of a defensive chitinase against Fusarium oxysporum in pepper leaf tissue

    Directory of Open Access Journals (Sweden)

    Khemika S. Lomthaisong

    2008-01-01

    Full Text Available Plant chitinase is classified as a PR-protein involved in a defense mechanism against a pathogen. This research aims to investigate a specific type of chitinase which is produced by pepper in response to an early defense against Fusarium oxysporum, which causes wilt disease. The changes of chitinase isozyme patterns in the inter- and intracellular fluids in the leaf of four cultivars of pepper (Capsicum annuum L. at day 1, 3, 5, 7 and 10 from fungal inoculation were analysed using SDS-PAGE in polyacrylamide gel supplemented with glycol chitin as a substrate. The levels of disease severity in the four varieties of pepper were also compared with the isozyme patterns. The results showed that the resistance of pepper to F. oxysporum attack corresponded to the expression of ~70 kDa chitinase band (Chi-3 in the intercellular fluid. Therefore, such chitinase could possibly be used as a protein marker to identify the tolerant line and as a springboard for further study of wilt disease control.

  6. The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection

    Directory of Open Access Journals (Sweden)

    Fleur eGawehns

    2015-11-01

    Full Text Available Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f. sp. lycopersici (Fol secretes small proteins that are referred to as SIX (Secreted In Xylem proteins. Of these, Six1 (Avr3, Six3 (Avr2, Six5 and Six6 are required for full virulence, denoting them as effectors. To investigate their activities in the plant, the xylem sap proteome of plants inoculated with Fol wild-type or either AVR2, AVR3, SIX2, SIX5 or SIX6 knockout strains was analyzed with nano-Liquid Chromatography-Mass Spectrometry (nLC-MSMS. Compared to mock-inoculated sap 12 additional plant proteins appeared while 45 proteins were no longer detectable in the xylem sap of Fol-infected plants. Of the 285 proteins found in both uninfected and infected plants the abundance of 258 proteins changed significantly following infection. The xylem sap proteome of plants infected with four Fol effector knockout strains differed significantly from plants infected with wild-type Fol, while that of the SIX2-knockout inoculated plants remained unchanged. Besides an altered abundance of a core set of 24 differentially accumulated proteins (DAPs, each of the four effector knockout strains affected specifically the abundance of a subset of DAPs. Hence, Fol effectors have both unique and shared effects on the composition of the tomato xylem sap proteome.

  7. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum

    Science.gov (United States)

    Gopinath, V.; Velusamy, P.

    2013-04-01

    In last few decades nanoparticles have attracted and emerged as a field in biomedical research due to their incredible applications. The current research was focused on extracellular synthesis of silver nanoparticles (AgNPs) using cell free culture supernatant of strain GP-23. It was found that the strain GP-23 belonged to Bacillus species by 16S rRNA sequence analysis. Biosynthesis of AgNPs was achieved by addition of culture supernatant with aqueous silver nitrate solution, after 24 h it turned to brown color solution with a peak at 420 nm corresponding to the Plasmon absorbance of AgNPs by UV-Vis Spectroscopy. The nanoparticles were characterized by FTIR, XRD, HRTEM, EDX and AFM. The synthesized nanoparticles were found to be spherical in shape with size in the range of 7-21 nm. It was stable in aqueous solution for five months period of storage at room temperature under dark condition. The biosynthesized AgNPs exhibited strong antifungal activity against plant pathogenic fungus, Fusarium oxysporum at the concentration of 8 μg ml-1. The results suggest that the synthesized AgNPs act as an effective antifungal agent/fungicide.

  8. Differential protein accumulations in isolates of the strawberry wilt pathogen Fusarium oxysporum f. sp. fragariae differing in virulence.

    Science.gov (United States)

    Fang, Xiangling; Barbetti, Martin J

    2014-08-28

    This study was conducted to define differences in Fusarium oxysporum f. sp. fragariae (Fof) isolates with different virulence efficiency to strawberry at the proteome level, in combination with their differences in mycelial growth, conidial production and germination. Comparative proteome analyses revealed substantial differences in mycelial proteomes between Fof isolates, where the 54 differentially accumulated protein spots were consistently over-accumulated or exclusively in the highly virulent isolate. These protein spots were identified through MALDI-TOF/TOF mass spectrometry analyses, and the identified proteins were mainly related to primary and protein metabolism, antioxidation, electron transport, cell cycle and transcription based on their putative functions. Proteins of great potential as Fof virulence factors were those involved in ubiquitin/proteasome-mediated protein degradation and reactive oxygen species detoxification; the hydrolysis-related protein haloacid dehalogenase superfamily hydrolase; 3,4-dihydroxy-2-butanone 4-phosphate synthase associated with riboflavin biosynthesis; and those exclusive to the highly virulent isolate. In addition, post-translational modifications may also make an important contribution to Fof virulence. F. oxysporum f. sp. fragariae (Fof), the causal agent of Fusarium wilt in strawberry, is a serious threat to commercial strawberry production worldwide. However, factors and mechanisms contributing to Fof virulence remained unknown. This study provides knowledge of the molecular basis for the differential expression of virulence in Fof, allowing new possibilities towards developing alternative and more effective strategies to manage Fusarium wilt. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Methyl Salicylate Level Increase in Flax after Fusarium oxysporum Infection Is Associated with Phenylpropanoid Pathway Activation

    OpenAIRE

    Boba, Aleksandra; Kostyn, Kamil; Kostyn, Anna; Wojtasik, Wioleta; Dziadas, Mariusz; Preisner, Marta; Szopa, Jan; Kulma, Anna

    2017-01-01

    Flax (Linum usitatissimum) is a crop plant valued for its oil and fiber. Unfortunately, large losses in cultivation of this plant are caused by fungal infections, with Fusarium oxysporum being one of its most dangerous pathogens. Among the plant's defense strategies, changes in the expression of genes of the shikimate/phenylpropanoid/benzoate pathway and thus in phenolic contents occur. Among the benzoates, salicylic acid, and its methylated form methyl salicylate play an important role in re...

  10. Interaction of Pseudostellaria heterophylla with Fusarium oxysporum f.sp. heterophylla mediated by its root exudates in a consecutive monoculture system.

    Science.gov (United States)

    Zhao, Yongpo; Wu, Linkun; Chu, Leixia; Yang, Yanqiu; Li, Zhenfang; Azeem, Saadia; Zhang, Zhixing; Fang, Changxun; Lin, Wenxiong

    2015-02-03

    In this study, quantitative real-time PCR (qPCR) was used to determine the amount of Fusarium oxysporum, an important replant disease pathogen in Pseudostellaria heterophylla rhizospheric soil. Moreover, HPLC was used to identify phenolic acids in root exudates then it was further to explore the effects of the phenolic acid allelochemicals on the growth of F. oxysporum f.sp. heterophylla. The amount of F. oxysporum increased significantly in P. heterophylla rhizosphere soil under a consecutive replant system as monitored through qPCR analysis. Furthermore, the growth of F. oxysporum f.sp. heterophylla mycelium was enhanced by root exudates with a maximum increase of 23.8%. In addition, the number of spores increased to a maximum of 12.5-fold. Some phenolic acids promoted the growth of F. oxysporum f.sp. heterophylla mycelium and spore production. Our study revealed that phenolic acids in the root secretion of P. heterophylla increased long with its development, which was closely related to changes in rhizospheric microorganisms. The population of pathogenic microorganisms such as F. oxysporum in the rhizosphere soil of P. heterophylla also sharply increased. Our results on plant-microbe communication will help to better clarify the cause of problems associated with P. heterophylla under consecutive monoculture treatment.

  11. Involvement of fub4, a putative serine hydrolase, in fusaric acid biosynthesis in the cotton pathogen Fusarium oxysporum f. sp. vasinfectum

    Science.gov (United States)

    Previous work has determined that fusaric acid is required for virulence in the Australian isolate of Fusarium oxysporum f. sp. vasinfectum (Fov), which produce copious amounts of fusaric acid. Race 4 isolates, identified in the San Joaquin Valley of California, has caused serious losses and is a p...

  12. Effector Gene Suites in Some Soil Isolates of Fusarium oxysporum Are Not Sufficient Predictors of Vascular Wilt in Tomato.

    Science.gov (United States)

    Jelinski, Nicolas A; Broz, Karen; Jonkers, Wilfried; Ma, Li-Jun; Kistler, H Corby

    2017-07-01

    Seventy-four Fusarium oxysporum soil isolates were assayed for known effector genes present in an F. oxysporum f. sp. lycopersici race 3 tomato wilt strain (FOL MN-25) obtained from the same fields in Manatee County, Florida. Based on the presence or absence of these genes, four haplotypes were defined, two of which represented 96% of the surveyed isolates. These two most common effector haplotypes contained either all or none of the assayed race 3 effector genes. We hypothesized that soil isolates with all surveyed effector genes, similar to FOL MN-25, would be pathogenic toward tomato, whereas isolates lacking all effectors would be nonpathogenic. However, inoculation experiments revealed that presence of the effector genes alone was not sufficient to ensure pathogenicity on tomato. Interestingly, a nonpathogenic isolate containing the full suite of unmutated effector genes (FOS 4-4) appears to have undergone a chromosomal rearrangement yet remains vegetatively compatible with FOL MN-25. These observations confirm the highly dynamic nature of the F. oxysporum genome and support the conclusion that pathogenesis among free-living populations of F. oxysporum is a complex process. Therefore, the presence of effector genes alone may not be an accurate predictor of pathogenicity among soil isolates of F. oxysporum.

  13. The antagonistic effect of Banana bunchy top virus multifunctional protein B4 against Fusarium oxysporum.

    Science.gov (United States)

    Zhuang, Jun; Coates, Christopher J; Mao, Qianzhuo; Wu, Zujian; Xie, Lianhui

    2016-06-01

    The viral-induced banana bunchy top disease and the fungal-induced banana blight are two major causes of concern for industrial scale production of bananas. Banana blight is particularly troublesome, affecting ∼80% of crops worldwide. Strict guidelines and protocols are in place in order to ameliorate the effects of this devastating disease, yet little success has been achieved. From the data presented here, we have found that Banana bunchy top virus (BBTV)-infected bananas are more resistant to Fusarium oxysporum f. sp. cubense (Foc). BBTV appears to be antagonistic towards Foc, thus improving the survivability of plants against blight. The BBTV suppressor of RNA silencing, namely protein B4, displays fungicidal properties in vitro. Furthermore, transgenic tomatoes expressing green fluorescent protein (GFP)-tagged protein B4 demonstrate enhanced resistance to F. oxysporum f. sp. lycopersici (Fol). Differential gene expression analysis indicates that increased numbers of photogenesis-related gene transcripts are present in dark-green leaves of B4-GFP-modified tomato plants relative to those found in WT plants. Conversely, the transcript abundance of immunity-related genes is substantially lower in transgenic tomatoes compared with WT plants, suggesting that plant defences may be influenced by protein B4. This viral-fungal interaction provides new insights into microbial community dynamics within a single host and has potential commercial value for the breeding of transgenic resistance to Fusarium-related blight/wilt. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  14. Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex.

    Science.gov (United States)

    Dananjaya, S H S; Erandani, W K C U; Kim, Cheol-Hee; Nikapitiya, Chamilani; Lee, Jehee; De Zoysa, Mahanama

    2017-12-01

    Though the metal nanoparticles (NPs) have been shown favorable results against fungal diseases, erratic environmental toxicity of NPs have raised serious concerns against their applications. Hence, it is vital to modify antifungal compounds into safe substitutes over synthetic chemicals. In this study, antifungal effects of chitosan nanoparticles (CNPs) and chitosan silver nanocomposites (CAgNCs) were compared against Fusarium oxysporum species complex. CNPs and CAgNCs were synthesized, characterized and compared based on the transmission electron microscope, X-ray diffraction, UV-vis absorbance spectra, particle size distribution, zeta potential and thermal stability analysis. Ultra-structural analysis on mycelium membrane of treated F. oxysporum showed that CNPs and CAgNCs could induce a pronounced membrane damage and disruption of the mycelium surface, increase the membrane permeability, and even cell disintegration. CAgNCs showed a significantly higher radial growth inhibition than CNPs in all the tested concentrations. Both CNPs and CAgNCs were not only effective in reducing the fungal growth, but also caused morphological and ultrastructural changes in the pathogen, thereby suggesting its usage as an antifungal dispersion system to control F. oxysporum. Additionally, CNPs and CAgNCs therapy reduced the F. oxysporum infection in zebrafish. Data demonstrates biologically active CNPs and CAgNCs are promising antifungal agents against F. oxysporum. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Studying the ability of Fusarium oxysporum and recombinant Saccharomyces cerevisiae to efficiently cooperate in decomposition and ethanolic fermentation of wheat straw

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Topakas, Evangelos; Moukouli, Maria

    2011-01-01

    Fusarium oxysporum F3 alone or in mixed culture with Saccharomyces cerevisiae F12 were used to ferment carbohydrates of wet exploded pre-treated wheat straw (PWS) directly to ethanol. Both microorganisms were first grown aerobically to produce cell mass and thereafter fermented PWS to ethanol under...... anaerobic conditions. During fermentation, soluble and insoluble carbohydrates were hydrolysed by the lignocellulolytic system of F. oxysporum. Mixed substrate fermentation using PWS and corn cobs (CC) in the ratio 1:2 was used to obtain an enzyme mixture with high cellulolytic and hemicellulolytic...... activities. Under these conditions, activities as high as 34300, 9100, 326, 24, 169, 27 and 254 U dm−3 of xylanase, endoglucanase, β-glucosidase, arabinofuranosidase, avicelase, feruloyl esterase and acetyl esterase, respectively, were obtained. The replacement of the enzyme production phase of F. oxysporum...

  16. Fungitoxic properties of four crude plant extacts on fusarium ...

    African Journals Online (AJOL)

    Fungitoxic properties of four crude plant extacts on fusarium oxysporum schl. F. sp phaseoli. ... African Journal of Food, Agriculture, Nutrition and Development ... Crude plant extracts from Azadirachta indica, Tagetes minuta, Nicotiana tobacum and Vinca rosea were tested against Fusarium oxysporum Schl. F. sp. phaseoli.

  17. Fungal endophytes isolated from Protium heptaphyllum and Trattinnickia rhoifolia as antagonists of Fusarium oxysporum.

    Science.gov (United States)

    Fierro-Cruz, Juan E; Jiménez, Pedro; Coy-Barrera, Ericsson

    Control of fungal pathogens is mainly addressed by the use of chemically synthesized fungicides which result in environmental pollution, developing resistance after prolonged use. In this context, endophytes have been recognized as potential biocontrollers, and also as a promising source of antifungal metabolites. Therefore, as part of our research on phytopathogen controllers, 355 fungal endophytes were isolated from Protium heptaphyllum and Trattinnickia rhoifolia (Burseraceae), both ethnobotanically important tree species that produce secondary metabolites of agronomic and industrial interest. Endophytes were tested by in vitro dual culture against Fusarium oxysporum, a phytopathogen of agronomic importance. Five endophytes exerted at least 40% inhibition on F. oxysporum growth. Ethyl acetate (EtOAc) extracts were obtained from the most active antagonistic fungi, after growing them in three different liquid media. The extracts were tested against a conidial suspension of F. oxysporum by direct bioautography. Two extracts derived from fungi identified as Chaetomium globosum, F211_UMNG and Meyerozima sp. F281_UMNG showed inhibition of pathogen growth. Isolate C. globosum, F211_UMNG was selected for a chemical analysis by RP-HPLC-DAD-ESI-MS and antifungal molecules such as cladosporin, chaetoatrosin A and chaetoviridin A were annotated and identified based on their MS data. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine- and leucine-conjugated jasmonates.

    Science.gov (United States)

    Cole, Stephanie J; Yoon, Alexander J; Faull, Kym F; Diener, Andrew C

    2014-08-01

    Three pathogenic forms, or formae speciales (f. spp.), of Fusarium oxysporum infect the roots of Arabidopsis thaliana below ground, instigating symptoms of wilt disease in leaves above ground. In previous reports, Arabidopsis mutants that are deficient in the biosynthesis of abscisic acid or salicylic acid or insensitive to ethylene or jasmonates exhibited either more or less wilt disease, than the wild-type, implicating the involvement of hormones in the normal host response to F. oxysporum. Our analysis of hormone-related mutants finds no evidence that endogenous hormones contribute to infection in roots. Mutants that are deficient in abscisic acid and insensitive to ethylene show no less infection than the wild-type, although they exhibit less disease. Whether a mutant that is insensitive to jasmonates affects infection depends on which forma specialis (f. sp.) is infecting the roots. Insensitivity to jasmonates suppresses infection by F. oxysporum f. sp. conglutinans and F. oxysporum f. sp. matthioli, which produce isoleucine- and leucine-conjugated jasmonate (JA-Ile/Leu), respectively, in culture filtrates, whereas insensitivity to jasmonates has no effect on infection by F. oxysporum f. sp. raphani, which produces no detectable JA-Ile/Leu. Furthermore, insensitivity to jasmonates has no effect on wilt disease of tomato, and the tomato pathogen F. oxysporum f. sp. lycopersici produces no detectable jasmonates. Thus, some, but not all, F. oxysporum pathogens appear to utilize jasmonates as effectors, promoting infection in roots and/or the development of symptoms in shoots. Only when the infection of roots is promoted by jasmonates is wilt disease enhanced in a mutant deficient in salicylic acid biosynthesis. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  19. Architecture and Distribution of Introns in Core Genes of Four Fusarium Species

    Directory of Open Access Journals (Sweden)

    Mmatshepho M. Phasha

    2017-11-01

    Full Text Available Removal of introns from transcribed RNA represents a crucial step during the production of mRNA in eukaryotes. Available whole-genome sequences and expressed sequence tags (ESTs have increased our knowledge of this process and revealed various commonalities among eukaryotes. However, certain aspects of intron structure and diversity are taxon-specific, which can complicate the accuracy of in silico gene prediction methods. Using core genes, we evaluated the distribution and architecture of Fusarium circinatum spliceosomal introns, and linked these characteristics to the accuracy of the predicted gene models of the genome of this fungus. We also evaluated intron distribution and architecture in F. verticillioides, F. oxysporum, and F. graminearum, and made comparisons with F. circinatum. Results indicated that F. circinatum and the three other Fusarium species have canonical 5′ and 3′ splice sites, but with subtle differences that are apparently not shared with those of other fungal genera. The polypyrimidine tract of Fusarium introns was also found to be highly divergent among species and genes. Furthermore, the conserved adenosine nucleoside required during the first step of splicing is contained within unique branch site motifs in certain Fusarium introns. Data generated here show that introns of F. circinatum, as well as F. verticillioides, F. oxysporum, and F. graminearum, are characterized by a number of unique features such as the CTHAH and ACCAT motifs of the branch site. Incorporation of such information into genome annotation software will undoubtedly improve the accuracy of gene prediction methods used for Fusarium species and related fungi.

  20. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato.

    Science.gov (United States)

    Hage-Ahmed, Karin; Krammer, Johannes; Steinkellner, Siegrid

    2013-10-01

    Arbuscular mycorrhizal fungi (AMF) and their bioprotective aspects are of great interest in the context of sustainable agriculture. Combining the benefits of AMF with the utilisation of plant species diversity shows great promise for the management of plant diseases in environmentally compatible agriculture. In the present study, AMF were tested against Fusarium oxysporum f. sp. lycopersici with tomato intercropped with either leek, cucumber, basil, fennel or tomato itself. Arbuscular mycorrhizal (AM) root colonisation of tomato was clearly affected by its intercropping partners. Tomato intercropped with leek showed even a 20 % higher AM colonisation rate than tomato intercropped with tomato. Positive effects of AMF expressed as an increase of tomato biomass compared to the untreated control treatment could be observed in root as well as in shoot weights. A compensation of negative effects of F. oxysporum f. sp. lycopersici on tomato biomass by AMF was observed in the tomato/leek combination. The intercropping partners leek, cucumber, basil and tomato had no effect on F. oxysporum f. sp. lycopersici disease incidence or disease severity indicating no allelopathic suppression; however, tomato co-cultivated with tomato clearly showed a negative effect on one plant/pot with regard to biomass and disease severity of F. oxysporum f. sp. lycopersici. Nonetheless, bioprotective effects of AMF resulting in the decrease of F. oxysporum f. sp. lycopersici disease severity were evident in treatments with AMF and F. oxysporum f. sp. lycopersici co-inoculation. However, these bioprotective effects depended on the intercropping partner since these effects were only observed in the tomato/leek and tomato/basil combination and for the better developed plant of tomato/tomato. In conclusion, the effects of the intercropping partner on AMF colonisation of tomato are of great interest for crop plant communities and for the influences on each other. The outcome of the bioprotective

  1. A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex

    DEFF Research Database (Denmark)

    O'Donnell, Kerry; Gueidan, C; Sink, S

    2009-01-01

    We constructed a two-locus database, comprising partial translation elongation factor (EF-1alpha) gene sequences and nearly full-length sequences of the nuclear ribosomal intergenic spacer region (IGS rDNA) for 850 isolates spanning the phylogenetic breadth of the Fusarium oxysporum species compl...... of the IGS rDNA sequences may be non-orthologous. We also evaluated enniatin, fumonisin and moniliformin mycotoxin production in vitro within a phylogenetic framework....

  2. Biocontrol potential of salinity tolerant mutants of Trichoderma harzianum against Fusarium oxysporum Potencial de biocontrole de mutantes sal-tolerantes de Trichoderma harzianum contra Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Hassan Abdel-Latif A. Mohamed

    2006-06-01

    Full Text Available Exposing a wild-type culture of Trichoderma harzianum to gamma irradiation induced two stable salt-tolerant mutants (Th50M6 and Th50M11. Under saline conditions, both mutants greatly surpassed their wild type strain in growth rate, sporulation and biological proficiency against Fusarium oxysporum, the causal agent of tomato wilt disease. Tolerant T. harzianum mutants detained a capability to grow and convinced sporulation in growth media containing up to 69 mM NaCl. In comparison with their parent strain, characterization of both mutants confirmed that they have reinforced contents of proline and hydroxyproline, relatively higher sodium content compared to potassium, calcium or magnesium contents, higher level of total phenols. Electrophoretic analysis of total soluble proteins in the salt tolerance mutant Th50M6 showed different bands accumulated in response to 69 mM NaCl. Data also showed that mutants produce certain active metabolites, such as chitinases, cellulases, beta-galactosidases, as well as, some antibiotics i.e., trichodermin, gliotoxin and gliovirin. Trichoderma mutants significantly reduced wilt disease incidence and improved yield and mineral contents of tomato plants under both saline and non-saline soil conditions, as well as, under infested and natural conditions. T. harzianum mutants were also more efficient in dropping the F. oxysporum growth in rhizosphere compared to the wild type strain. Population density of both mutants in rhizosphere far exceeded that of T. harzianum wild type strain.A exposição de uma cepa selvagem de Trichoderma harzianum à irradiação gama induziu dois mutantes tolerantes a sal (Th50M6 e Th50M11. Em condições salinas, os dois mutantes foram muito superiores à cepa selvagem em relação à velocidade de multiplicação, esporulação e eficiência contra Fusarium oxysporum, o agente causador da doença wilt do tomate. Os mutantes tolerantes foram capazes de multiplicação e esporulação em

  3. Strain of Fusarium oxysporum Isolated From Almond Hulls Produces Styrene and 7-Methyl-1,3,5-Cyclooctatriene as the Principal Volatile Components

    Science.gov (United States)

    An isolated strain of Fusarium oxysporum from the hulls of Prunus dulcis (sweet almond) was found to produce relatively large quantities of the hydrocarbons styrene and three isomers of 7-methyl-1,3,5-cyclooctatriene (MCOT). Production of styrene and MCOT was reproduced on small scale using potato d...

  4. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum.

    Science.gov (United States)

    Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen

    2015-01-01

    In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum.

  5. United States Department of Agriculture-Agricultural Research Service studies on polyketide toxins of Fusarium oxysporum f sp vasinfectum: potential targets for disease control.

    Science.gov (United States)

    Bell, Alois A; Wheeler, Michael H; Liu, Jinggao; Stipanovic, Robert D; Puckhaber, Lorraine S; Orta, Heather

    2003-01-01

    A group of 133 isolates of the cotton wilt pathogen Fusarium oxysporum Schlecht f sp vasinfectum (Atk) Sny & Hans, representing five races and 20 vegetative compatibility groups within race 1 were used to determine the identity, biosynthetic regulation and taxonomic distribution of polyketide toxins produced by this pathogen. All isolates of F oxysporum f sp vasinfectum produced and secreted the nonaketide naphthazarin quinones, bikaverin and norbikaverin. Most isolates of race 1 (previously denoted as races 1, 2 and 6; and also called race A) also synthesized the heptaketide naphthoquinones, nectriafurone, anhydrofusarubin lactol and 5-O-methyljavanicin. Nine avirulent isolates of F oxysporum from Upland cotton roots, three isolates of race 3 of F oxysporum f sp vasinfectum, and four isolates of F oxysporum f sp vasinfectum from Australia, all of which previously failed to cause disease of Upland cotton (Gossypium hirsutum L) in stem-puncture assays, also failed to synthesize or secrete more than trace amounts of the heptaketide compounds. These results indicate that the heptaketides may have a unique role in the virulence of race 1 to Upland cotton. The synthesis of all polyketide toxins by ATCC isolate 24908 of F oxysporum f sp vasinfectum was regulated by pH, carbon/nitrogen ratios, and availability of calcium in media. Synthesis was greatest below pH 7.0 and increased progressively as carbon/nitrogen ratios were increased by decreasing the amounts of nitrogen added to media. The nonaketides were the major polyketides accumulated in synthetic media at pH 4.5 and below, whereas the heptaketides were predominant at pH 5.0 and above. The heptaketides were the major polyketides formed when 10 F oxysporum f sp vasinfectum race 1 isolates were grown on sterilized stems of Fusarium wilt-susceptible cotton cultivars, but these compounds were not produced on sorghum grain cultures. Both groups of polyketide toxins were apparently secreted by F oxysporum f sp vasinfectum

  6. Biocontrol Effectiveness of Indigenous Trichoderma Species against Meloidogyne javanica and Fusarium oxysporum f. sp. radicis lycopersici on Tomato

    OpenAIRE

    Hajji Lobna; Chattaoui Mayssa; Regaieg Hajer; M'Hamdi-Boughalleb Naima; Rhouma Ali; Horrigue-Raouani Najet

    2016-01-01

    In this study, three local isolates of Trichoderma (Tr1: T. viride, Tr2: T. harzianum and Tr3: T. asperellum) were isolated and evaluated for their biocontrol effectiveness under in vitro conditions and in greenhouse. In vitro bioassay revealed a biopotential control against Fusarium oxysporum f. sp. radicis lycopersici and Meloidogyne javanica (RKN) separately. All species of Trichoderma exhibited biocontrol performance and (Tr1) Trichoderma viride was the most efficient. In fact, growth rat...

  7. [Keratomycosis due to Fusarium oxysporum treated with the combination povidone iodine eye drops and oral fluconazole].

    Science.gov (United States)

    Diongue, K; Sow, A S; Nguer, M; Seck, M C; Ndiaye, M; Badiane, A S; Ndiaye, J M; Ndoye, N W; Diallo, M A; Diop, A; Ndiaye, Y D; Dieye, B; Déme, A; Ndiaye, I M; Ndir, O; Ndiaye, D

    2015-12-01

    In developing countries where systemic antifungal are often unavailable, treatment of filamentous fungi infection as Fusarium is sometimes very difficult to treat. We report the case of a keratomycosis due to Fusarium oxysporum treated by povidone iodine eye drops and oral fluconazole. The diagnosis of abscess in the cornea was retained after ophthalmological examination for a 28-year-old man with no previous ophthalmological disease, addressed to the Ophthalmological clinic at the University Hospital Le Dantec in Dakar for a left painful red eye with decreased visual acuity lasting for 15 days. The patient did not receive any foreign body into the eye. Samples by corneal scraping were made for microbiological analysis and the patient was hospitalized and treated with a reinforced eye drops based treatment (ceftriaxone+gentamicin). The mycological diagnosis revealed the presence of a mold: F. oxysporum, which motivated the replacement of the initial treatment by eye drops containing iodized povidone solution at 1% because of the amphotericin B unavailability. Due to the threat of visual loss, oral fluconazole was added to the local treatment with eye drops povidone iodine. The outcome was favorable with a healing abscess and visual acuity amounted to 1/200th. Furthermore, we noted sequels such as pannus and pillowcase. The vulgarization of efficient topical antifungal in developing countries would be necessary to optimize fungal infection treatment. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. A genotype-by-sequencing-single nucleotide polymorphism based linkage map and quantitative trait loci (QTL) associated with resistance to Fusarium oxysporum f. sp. niveum race 2 identified in Citrullus lanatus var. citroides

    Science.gov (United States)

    Fusarium wilt, a fungal disease caused by Fusarium oxysporum f. sp. niveum (Fon), devastates watermelon crop production worldwide. Several races, which are differentiated by host range, of the pathogen exist. Resistance to Fon race 2, a particularly virulent strain prevalent in the United States, do...

  9. Association of Effector Six6 with Vascular Wilt Symptoms Caused by Fusarium oxysporum on Soybean.

    Science.gov (United States)

    Lanubile, Alessandra; Ellis, Margaret L; Marocco, Adriano; Munkvold, Gary P

    2016-11-01

    The Fusarium oxysporum species complex (FOSC) is a widely distributed group of fungi that includes both pathogenic and nonpathogenic isolates. In a previous study, isolates within the FOSC collected primarily from soybean were assessed for the presence of 12 fungal effector genes. Although none of the assayed genes was significantly associated with wilt symptoms on soybean, the secreted in xylem 6 (Six6) gene was present only in three isolates, which all produced high levels of vascular wilt on soybean. In the current study, a collection of F. oxysporum isolates from soybean roots and F. oxysporum f. sp. phaseoli isolates from common bean was screened for the presence of the Six6 gene. Interestingly, all isolates for which the Six6 amplicon was generated caused wilt symptoms on soybean, and two-thirds of the isolates showed high levels of aggressiveness, indicating a positive association between the presence of the effector gene Six6 and induction of wilt symptoms. The expression profile of the Six6 gene analyzed by quantitative reverse-transcription polymerase chain reaction revealed an enhanced expression for the isolates that caused more severe wilt symptoms on soybean, as established by the greenhouse assay. These findings suggest the suitability of the Six6 gene as a possible locus for pathogenicity-based molecular diagnostics across the various formae speciales.

  10. In vitro antifugal activity of medicinal plant extract against Fusarium oxysporum f. sp. lycopersici race 3 the causal agent of tomato wilt.

    Science.gov (United States)

    Isaac, G S; Abu-Tahon, M A

    2014-03-01

    Medicinal plant extracts of five plants; Adhatoda vasica, Eucalyptus globulus, Lantana camara, Nerium oleander and Ocimum basilicum collected from Cairo, Egypt were evaluated against Fusarium oxysporum f. sp. lycopersici race 3 in vitro conditions using water and certain organic solvents. The results revealed that cold distilled water extracts of O. basilicum and E. globulus were the most effective ones for inhibiting the growth of F. oxysporum f. sp. lycopersici. Butanolic and ethanolic extracts of the tested plants inhibited the pathogen growth to a higher extent than water extracts. Butanolic extract of O. basilicum completely inhibited the growth of F. oxysporum f. sp. lycopersici at concentrations 1.5 and 2.0% (v/v). Butanolic extracts (2.0%) of tested plants had a strong inhibitory effect on hydrolytic enzymes; β-glucosidase, pectin lyase and protease of F. oxysporum f. sp. lycopersici. This study has confirmed that the application of plant extracts, especially from O. basilicum for controlling F. oxysporum f. sp. lycopersici is environmentally safe, cost effective and does not disturb ecological balance. Investigations are in progress to test the efficacy of O. basilicum extract under in vivo conditions.

  11. Enhanced Soil Solarization against Fusarium oxysporum f. sp. lycopersici in the Uplands

    Directory of Open Access Journals (Sweden)

    Radwan M. Barakat

    2012-01-01

    Full Text Available Soil solarization tests against Fusarium oxysporum f. sp. lycopersici, the causal agent of tomato Fusarium wilt, were conducted for seven weeks through July and August 2008 and 2009 in the climatic conditions of Al-Aroub Agricultural Experimental Station, located in the southern mountains of the West Bank, Palestine. Double polyethylene (DPE sheets, regular polyethylene (PE sheets, and virtually impermeable films (VIF were compared to examine their effects on soil temperature, disease severity, and plant growth. Results showed that in comparison to the control, PE, DPE, and VIF treatments increased the mean maximum soil temperatures by 10.2, 14.1, and 8.8°C, respectively, in 2008 and by 10.2, 12.6, and 8.3°C respectively, in 2009. The longest length of time recorded for temperature above 45°C under DPE sheets were 220 hours in 2008 and 218 hours in 2009. The treatments reduced the pathogen population by 86% and the disease by 43% under the DPE treatment in 2009 and to a lesser extent by the other treatments. Increases of up to 94% in fresh plant weight and up to 60% in plant dry weight were evident under the same treatment. The treatments also increased soil organic matter, both nitrogen forms, and major cations.

  12. Different strategies of fungi to solubilize coal: a comparison of the deutermycetes Trichoderma atroviride and Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Hoelker, U.; Ludwig, S.; Moenkemann, H.; Scheel, T.; Hoefer, M. [Bonn Univ. (Germany). Botanisches Inst.

    1997-12-31

    Four different mechanisms can be envisaged which are used by microorganisms to solubilize coal: the production of alkaline substances, the extrusion of chelators, the action of biotensides, and of special interest in terms of biotechnology, the action of enzymes. Whether these mechanisms are operating seperately or in varying combinations has not yet been settled. The two deuteromycetes Fusarium oxysporum and Trichoderma altroviride solubilize coal by synergistic effects of different mechanisms depending on the cell metabolism. F. oxysporum seems to solubilize coal by increasing the pH of the mycelial surroundings and by the action of chelators induced during growth in glutamate containing media (without involvement of enzymes). T. atroviride, on the other hand, appears to use, in addition to an alkaline pH and a high chelator activity, at least two classes of enzymes to attack coal: hydrolytic activity for coal solubilization and ligninolytic activity for degradation of humic acids. (orig.)

  13. Fusarium basal rot in the Netherlands

    NARCIS (Netherlands)

    Visser, de C.L.M.; Broek, van den R.C.F.M.; Brink, van den L.

    2006-01-01

    Fusarium basal rot of onion, caused by Fusarium oxysporum f.sp. cepae, is a steadily increasing problem in The Netherlands. Financial losses for Dutch farmers confronted with Fusarium basal rot is substantial, due to yield reduction and high storage costs. This paper describes the development and

  14. Antagonism of Two Plant-Growth Promoting Bacillus velezensis Isolates Against Ralstonia solanacearum and Fusarium oxysporum.

    Science.gov (United States)

    Cao, Yu; Pi, Hualiang; Chandrangsu, Pete; Li, Yongtao; Wang, Yuqi; Zhou, Han; Xiong, Hanqin; Helmann, John D; Cai, Yanfei

    2018-03-12

    Plant growth promoting rhizobacteria (PGPR) provide an effective and environmentally sustainable method to protect crops against pathogens. The spore-forming Bacilli are attractive PGPR due to their ease of storage and application. Here, we characterized two rhizosphere-associated Bacillus velezensis isolates (Y6 and F7) that possess strong antagonistic activity against Ralstonia solanacearum and Fusarium oxysporum under both laboratory and greenhouse conditions. We identified three lipopeptide (LP) compounds (surfactin, iturin and fengycin) as responsible for the antimicrobial activity of these two strains. We further dissected the contribution of LPs to various biological processes important for rhizosphere colonization. Although either iturin or fengycin is sufficient for antibacterial activity, cell motility and biofilm formation, only iturin plays a primary role in defense against the fungal pathogen F. oxysporum. Additionally, we found that LP production is significantly stimulated during interaction with R. solanacearum. These results demonstrate the different roles of LPs in the biology of B. velezensis and highlight the potential of these two isolates as biocontrol agents against phytopathogens.

  15. Effect of fusarium oxysporum f. sp. lycopersici on the degradation of humic acid associated with Cu, Pb, and Ni: an in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Corrales Escobosa, Alma Rosa; Gutierrez Corona, J.F. [University of Guanajuato, Department of Biology, Guanajuato (Mexico); Landero Figueroa, Julio Alberto; Wrobel, Katarzyna; Wrobel, Kazimierz [University of Guanajuato, Department of Chemistry, Guanajuato (Mexico)

    2009-08-15

    The intent of this work was to gain further insight on the fungus-assisted degradation/solubilization of humic acid and the related changes in metal-binding profiles. In the experimental design, Aldrich reagent humic acid (HA) or HA enriched with Cu, Pb, and Ni (HA(Me)) was added to Fusarium oxysporum f. sp. lycopersici cultures in vitro. The cultures were supplied by different carbon- and nitrogen-containing nutrients (glucose, Glc, or glutamate, Glu and ammonium, NH{sub 4}{sup +}, or nitrate, NO{sub 3}{sup -}, ions, respectively) in order to examine their possible effect on HA and HA(Me) decomposition. During the first 48 h of fungus growth, gradual acidification to pH 2 was observed in medium containing Glc+NH{sub 4}{sup +}, while for other cultures, alkalinization to pH 9 occurred and then, the above conditions were stable up to at least 200 h. Size exclusion chromatography (SEC) with UV/Vis detection showed progressive degradation and solubilization of both HA and HA(Me) with the increasing time of fungus growth. However, the molecular mass distributions of HA-related soluble species were different in the presence of metals (HA(Me)) as referred to HA and were also influenced by the composition of growth medium. The solubilization of Pb, Cu, and Ni and their association with HA molecular mass fractions were studied using inductively coupled plasma mass spectrometry (ICP-MS) detection. Under acidic conditions, relatively high concentrations of low-molecular-mass metallic species were found in culture supernatants, while in alkaline media, metal solubilization was generally poorer. In contrast to low pH culture, SEC-ICP-MS results obtained in alkaline supernatants indicated metal binding to degradation products of humic substances of MM>5 kDa. In summary, the results of this study suggest that fungus-assisted degradation of HA and HA(Me) might be controlled using appropriate N- and C-sources required for fungus growth, which in turn would affect molecular mass

  16. Effect of Fusarium oxysporum f. sp. lycopersici on the degradation of humic acid associated with Cu, Pb, and Ni: an in vitro study.

    Science.gov (United States)

    Corrales Escobosa, Alma Rosa; Landero Figueroa, Julio Alberto; Gutiérrez Corona, J Félix; Wrobel, Katarzyna; Wrobel, Kazimierz

    2009-08-01

    The intent of this work was to gain further insight on the fungus-assisted degradation/solubilization of humic acid and the related changes in metal-binding profiles. In the experimental design, Aldrich reagent humic acid (HA) or HA enriched with Cu, Pb, and Ni (HA(Me)) was added to Fusarium oxysporum f. sp. lycopersici cultures in vitro. The cultures were supplied by different carbon- and nitrogen-containing nutrients (glucose, Glc, or glutamate, Glu and ammonium, NH4+, or nitrate, NO3-, ions, respectively) in order to examine their possible effect on HA and HA(Me) decomposition. During the first 48 h of fungus growth, gradual acidification to pH 2 was observed in medium containing Glc + NH4+, while for other cultures, alkalinization to pH 9 occurred and then, the above conditions were stable up to at least 200 h. Size exclusion chromatography (SEC) with UV/Vis detection showed progressive degradation and solubilization of both HA and HA(Me) with the increasing time of fungus growth. However, the molecular mass distributions of HA-related soluble species were different in the presence of metals (HA(Me)) as referred to HA and were also influenced by the composition of growth medium. The solubilization of Pb, Cu, and Ni and their association with HA molecular mass fractions were studied using inductively coupled plasma mass spectrometry (ICP-MS) detection. Under acidic conditions, relatively high concentrations of low-molecular-mass metallic species were found in culture supernatants, while in alkaline media, metal solubilization was generally poorer. In contrast to low pH culture, SEC-ICP-MS results obtained in alkaline supernatants indicated metal binding to degradation products of humic substances of MM > 5 kDa. In summary, the results of this study suggest that fungus-assisted degradation of HA and HA(Me) might be controlled using appropriate N- and C- sources required for fungus growth, which in turn would affect molecular mass distribution of soluble metallic

  17. A high efficiency gene disruption strategy using a positive-negative split selection marker and electroporation for Fusarium oxysporum.

    Science.gov (United States)

    Liang, Liqin; Li, Jianqiang; Cheng, Lin; Ling, Jian; Luo, Zhongqin; Bai, Miao; Xie, Bingyan

    2014-11-01

    The Fusarium oxysporum species complex consists of fungal pathogens that cause serial vascular wilt disease on more than 100 cultivated species throughout the world. Gene function analysis is rapidly becoming more and more important as the whole-genome sequences of various F. oxysporum strains are being completed. Gene-disruption techniques are a common molecular tool for studying gene function, yet are often a limiting step in gene function identification. In this study we have developed a F. oxysporum high-efficiency gene-disruption strategy based on split-marker homologous recombination cassettes with dual selection and electroporation transformation. The method was efficiently used to delete three RNA-dependent RNA polymerase (RdRP) genes. The gene-disruption cassettes of three genes can be constructed simultaneously within a short time using this technique. The optimal condition for electroporation is 10μF capacitance, 300Ω resistance, 4kV/cm field strength, with 1μg of DNA (gene-disruption cassettes). Under these optimal conditions, we were able to obtain 95 transformants per μg DNA. And after positive-negative selection, the transformants were efficiently screened by PCR, screening efficiency averaged 85%: 90% (RdRP1), 85% (RdRP2) and 77% (RdRP3). This gene-disruption strategy should pave the way for high throughout genetic analysis in F. oxysporum. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. ciceri race I.

    Directory of Open Access Journals (Sweden)

    Sumanti Gupta

    Full Text Available BACKGROUND: Biotrophic interaction between host and pathogen induces generation of reactive oxygen species that leads to programmed cell death of the host tissue specifically encompassing the site of infection conferring resistance to the host. However, in the present study, biotrophic relationship between Fusarium oxysporum and chickpea provided some novel insights into the classical concepts of defense signaling and disease perception where ROS (reactive oxygen species generation followed by hypersensitive responses determined the magnitude of susceptibility or resistant potentiality of the host. METHODOLOGY/PRINCIPAL FINDINGS: Microscopic observations detected wound mediated in planta pathogenic establishment and its gradual progression within the host vascular tissue. cDNA-AFLP showed differential expression of many defense responsive elements. Real time expression profiling also validated the early recognition of the wound inducing pathogen by the host. The interplay between fungus and host activated changes in primary metabolism, which generated defense signals in the form of sugar molecules for combating pathogenic encounter. CONCLUSIONS/SIGNIFICANCE: The present study showed the limitations of hypersensitive response mediated resistance, especially when foreign encounters involved the food production as well as the translocation machinery of the host. It was also predicted from the obtained results that hypersensitivity and active species generation failed to impart host defense in compatible interaction between chickpea and Fusarium. On the contrary, the defense related gene(s played a critical role in conferring natural resistance to the resistant host. Thus, this study suggests that natural selection is the decisive factor for selecting and segregating out the suitable type of defense mechanism to be undertaken by the host without disturbing its normal metabolism, which could deviate from the known classical defense mechanisms.

  19. Investigations on the effects of triazole group fungicides on some important antagonistic fungi and non-pathogen Fusarium oxysporum (Schlecht) in vitro.

    OpenAIRE

    Demirci, A.; Katırcıoğlu, Z.; Demirci, F.

    2008-01-01

    The effects of eight triazole fungicides (cyproconazole, diniconazole, flusilazole hexaconazole, myclobutanil, penconazole, tebuconazole and triticinazole) on some important antagonistic fungi [Trichoderma harzianum (Rifai), T. viride (Pers. ex Gray), T. pseudokoningii (Rifai), T. hamatum (Bonard), Gliociadium viride (Matrouchot), Aspergillus niger (Tieghem), Penicillium verrııcosum (Dierckx)] and non-pathogen Fusarium oxysporum (Schlecht) were investigated on PDA in vitro. EC5 0 values ...

  20. SELEKSI DAN PEMANFAATAN ACTINOMYCETES SEBAGAI MIKROBA ANTAGONIS YANG RAMAH LINGKUNGAN TERHADAP Fusarium oxysporum f.sp. cubense SECARA IN VITRO

    Directory of Open Access Journals (Sweden)

    I MADE SUDARMA

    2015-06-01

    Full Text Available A total of 119 different actinomycete isolate were recovered from banana crop habitats with and without Fusarium wilt disease symptom. These were than assessed for their antagonist ability against Fusarium oxysporum £sp. cubense (Foe in vitro. Results indicated that four of all actinomycete isolate active against Foe. The four of actinomycete isolates were Streptomyces sp. l (AAo4, Streptomyces sp.2 (AAo32 , Streptomyces sp.3 (AAo33 and Streptomyces sp. 4 (AAo35. It was can inhibit the Foe mycelium growth, 79,63%, 72,22%, 78,89% and 72,22% respectively. After tested with the 3 times replication, the four Streptomyces spp. isolate effective to control the Foe that attack Bali banana cultivars, such as Susu, Saba, Raja and Ketip.

  1. Sequence analysis and heterologous expression of the wool cuticle-degrading enzyme encoding genes in Fusarium oxysporum 26-1.

    Science.gov (United States)

    Chaya, Etsushi; Suzuki, Tohru; Karita, Shuichi; Hanya, Akira; Yoshino-Yasuda, Shoko; Kitamoto, Noriyuki

    2014-06-01

    Two protease-like proteins, KrtA and KrtC, were identified in Fusarium oxysporum 26-1. Genes coding these proteins, krtA and krtC, were isolated and characterized. Recombinant KrtA (rKrtA) and KrtC (rKrtC) were successfully expressed in Aspergillus oryzae and secreted. The combination of rKrtA and rKrtC completely removed the cuticle of wool fibers. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Production and partial characterization of alkaline feruloyl esterases by Fusarium oxysporum during submerged batch cultivation

    DEFF Research Database (Denmark)

    Topakas, E.; Christakopoulos, Paul

    2004-01-01

    Production of feruloyl esterases (FAEs) by Fusarium oxysporum was enhanced by optimization of initial pH of the culture medium, the type and concentration of nitrogen and carbon source. Submerged batch cultivation in a laboratory bioreactor (17 1) produced activity at 82 nkat g(-1) dry substrate....... Production of FAE does not therefore, require FA, however, production is diminished by the removal of esterified FA from the growth substrate. Optimal FAE activity was observed at pH 7 and 50 degreesC with 68 and 55% activity at pH 8 and pH 9, respectively. The esterase was fully stable at pH 5-8 and up...

  3. INDUCCIÓN DE DOS ENZIMAS PECTOLÍTICAS EN EL MODELO Fusarium oxysporum f. sp. dianthi - CLAVEL

    OpenAIRE

    Gómez García, Liliana; Martínez, Sixta Tulia

    2005-01-01

    Se estudió por ensayos in vitro la posible participación de las enzimas endopoligalacturonasa (PG) (EC.3.2.1.15) y pectato liasa (PL) (EC.4.2.2.2), consideradas factores de virulencia en el proceso de infección del clavel por el hongo Fusarium oxysporum f. sp. dianthi (FOD). Los resultados muestran la inducción de la expresión de la enzima PG en presencia de los inductores artificiales, ácido poligalacturónico (APG) y pectina, y un nivel de expresión muy bajo en cultivos con pared celular (PC...

  4. Biological Control of Fusarium oxysporum f.sp. cumini with Aspergillus versicolor

    Directory of Open Access Journals (Sweden)

    S. Israel

    2005-04-01

    Full Text Available A native heat-tolerant strain of Aspergillus versicolor (Vuill. Tirab. highly antagonistic to Fusarium oxysporum f. sp. cumini (Foc was isolated from arid soils. In tests performed to ascertain its antagonistic activity against Foc as compared to Trichoderma harzianum, a 99.2 and 96.4% reduction in Foc propagules was achieved in A. versicolor and T. harzianum infested soil respectively. The reduction of Foc propagules in Foc and A. versicolorinfested soil was also determined. In a liquid-culture test, even at a low concentration of 0.5 ml cell-free filtrate, A. versicolor inhibited mycelial growth of Foc. Population changes of A. versicolor were examined at different soil moisture gradients, where maximum survival and multiplication of A. versicolor was estimated at 50% of moisture holding capacity. In general, with increasing concentrations of A. versicolor inoculum, soil population densities of Foc went down. Studies on thermal resistance showed that A. versicolor survived and multiplied even at 65°C. Soil amended with A. versicolor alone, or with a combination of T. harzianum and Verbisina enceloides residues was significantly better at reducing Foc than was non-amended control soil. A marked increase in the root length of cumin was observed in soil amended with A. versicolor or T. harzianum or both. The results suggest that A. versicolor has a potential value for use against Fusarium in hot arid soils because it can survive under dry and high-temperature conditions.

  5. Extracción del ADN de Fusarium Oxysporum f.sp. Dianthi

    Directory of Open Access Journals (Sweden)

    Sixta T. Martínez

    2010-07-01

    Full Text Available Se estudia la utílización de dos métodos para la extracción del ADN del Fusarium o.xy.sporum f.sp. Dianthi. En los dos métodos la pared del hongo se rompió con nitrógeno líquido, uno de ellos empleó como solución extractora bromuro de cetiltrimetil amonio (BCTA y el otro una solución de sacarosa con altas concentraciones de protcasa y EDTA. Para la desproteinización ambos métodos utilizaron soluciones de fcnol-clorofonno y enzimas proteolítícas. El ADN obtenido se digirió con enzimas de restricción EcoRI y Hindlll. Se corroboró que cl ADN estaba libre de los contaminantes más frecuentes en hongos, como proteínas y carbohidratos por medio de ultracentrifugación en cloruro de cesio (CsCI. La extracción con BCTA presentó los mejores rendimientos.

  6. Induction of Phytoalexins in Seabrook Sea Island, Pima S-7 and Pima S-6 Cottons after Inoculation with Fusarium oxysporum f. sp. vasinfectum Race-4

    Science.gov (United States)

    In 2002, a strain of Fusarium oxysporum f. sp. vasinfectum was found in California cotton fields and identified as race 4. Stem inoculations with isolates of the California strain (CA Fov-4) do not elicit symptoms in controlled-environmental chamber experiments, while stem inoculations with Fov rac...

  7. Trichoderma harzianum containing 1-aminocyclopropane-1-carboxylate deaminase and chitinase improved growth and diminished adverse effect caused by Fusarium oxysporum in soybean.

    Science.gov (United States)

    Zhang, Fuli; Chen, Can; Zhang, Fan; Gao, Lidong; Liu, Jidong; Chen, Long; Fan, Xiaoning; Liu, Chang; Zhang, Ke; He, Yuting; Chen, Chen; Ji, Xiue

    2017-03-01

    An isolate, named Trichoderma harzianum T-soybean, showed growth-promoting for soybean seedlings and induced resistance to Fusarium oxysporum under greenhouse. Compared to control soybean seedlings, fresh weight, dry weight, lateral root number, chlorophyll content, root activity and soluble protein of plants pretreated with T-soybean increased, but initial pod height reduced. Furthermore, we found that T-soybean inhibited the growth of F. oxysporum by parasitic function. In addition, plate test results showed that culture filtrates of T-soybean also inhibited significantly F. oxysporum growth. Meanwhile, T-soybean treatment obviously reduced disease severity and induced quickly the H 2 O 2 and O 2 - burst as well as pathogenesis related protein gene (PR3) expression after F. oxysporum inoculation, and subsequently diminished the cell damage in soybean caused by the pathogen challenge. Reactive oxygen species (ROS) scavenging enzymes activity analysis showed that the activities of peroxidase (POD), polyphenol oxidase (PPO) and superoxide dismutase (SOD) increased significantly in T-soybean pretreated plants. These results suggested that T-soybean treatment induced resistance in soybean seedlings to F. oxysporum by companying the production of ROS and the increasing of ROS scavenging enzymes activity as well as PR3 expression. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Evaluation of Suppressiveness of Soils Exhibiting Soil-Borne Disease Suppression after Long-Term Application of Organic Amendments by the Co-cultivation Method of Pathogenic Fusarium oxysporum and Indigenous Soil Microorganisms.

    Science.gov (United States)

    Mitsuboshi, Masahiro; Kioka, Yuuzou; Noguchi, Katsunori; Asakawa, Susumu

    2018-03-29

    Preventive measures against soil-borne diseases need to be implemented before cultivation because very few countermeasures are available after the development of diseases. Some soils suppress soil-borne diseases despite the presence of a high population density of pathogens. If the suppressiveness of soil against soil-borne diseases may be predicted and diagnosed for crop fields, it may be possible to reduce the labor and cost associated with excessive disinfection practices. We herein evaluated the suppressiveness of soils in fields with the long-term application of organic amendments by examining the growth of pathogenic Fusarium oxysporum co-cultivated with indigenous soil microorganisms on agar plates. Soils treated with coffee residue compost or rapeseed meal showed suppressiveness against spinach wilt disease by F. oxysporum f. sp. spinaciae or spinach wilt and lettuce root rot diseases by F. oxysporum f. sp. spinaciae and F. oxysporum f. sp. lactucae, respectively, and the growth of pathogenic Fusarium spp. on agar plates was suppressed when co-cultured with microorganisms in a suspension from these soils before crop cultivation. These results indicate the potential of the growth degree of pathogenic F. oxysporum estimated by this method as a diagnostic indicator of the suppressiveness of soil associated with the inhabiting microorganisms. A correlation was found between the incidence of spinach wilt disease in spinach and the growth degree of F. oxysporum f. sp. spinaciae by this co-cultivation method, indicating that suppressiveness induced by organic amendment applications against F. oxysporum f. sp. spinaciae is evaluable by this method. The co-cultivation method may be useful for predicting and diagnosing suppressiveness against soil-borne diseases.

  9. Construction of a genome-anchored, high-density genetic map for melon (Cucumis melo L.) and identification of Fusarium oxysporum f. sp. melonis race 1 resistance QTL.

    Science.gov (United States)

    Branham, Sandra E; Levi, Amnon; Katawczik, Melanie; Fei, Zhangjun; Wechter, W Patrick

    2018-04-01

    Four QTLs and an epistatic interaction were associated with disease severity in response to inoculation with Fusarium oxysporum f. sp. melonis race 1 in a recombinant inbred line population of melon. The USDA Cucumis melo inbred line, MR-1, harbors a wealth of alleles associated with resistance to several major diseases of melon, including powdery mildew, downy mildew, Alternaria leaf blight, and Fusarium wilt. MR-1 was crossed to an Israeli cultivar, Ananas Yok'neam, which is susceptible to all of these diseases, to generate a recombinant inbred line (RIL) population of 172 lines. In this study, the RIL population was genotyped to construct an ultra-dense genetic linkage map with 5663 binned SNPs anchored to the C. melo genome and exhibits the overall high quality of the assembly. The utility of the densely genotyped population was demonstrated through QTL mapping of a well-studied trait, resistance to Fusarium wilt caused by Fusarium oxysporum f. sp. melonis (Fom) race 1. A major QTL co-located with the previously validated resistance gene Fom-2. In addition, three minor QTLs and an epistatic interaction contributing to Fom race 1 resistance were identified. The MR-1 × AY RIL population provides a valuable resource for future QTL mapping studies and marker-assisted selection of disease resistance in melon.

  10. VEGETATIVE COMPATIBILITY GROUPS OF FUSARIUM OXYSPORUM, THE CAUSAL ORGANISM OF VASCULAR WILT ON ROSELLE IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    K.H. Ooi

    1999-01-01

    Full Text Available Forty strains of Fusarium oxysporvm isolated from roselle (Hibiscus sabdariffa var. sabdariffa showing vascular wilt symptoms in three states (Terengganu, Penang and Ipoh in the northern Malaysian Peninsula were used to investigate the vegetative co mpatibility. Nitrate-nonutilizing (nil mutants were recovered from all the strains tested and subsequently used to study vegetative compatibility groups (VCG within the population by nit mutants pairings on minimal medium. Thirteen VCGs were found and none were vegetatively compatible with those of other formae speciales (f. spp. such as asparagi and cubense, and non-pathogenic strains from paddy and oil palm. The results indicate that there is substantial genetic diversity in F. oxysporum that causes vascular wilt disease on roselle as reflected by multiple VCGs, but the distribution of strains into the VCGs is not even as there are 26 representatives in VCG-1001M, two in VCG-1003M and VCG-1013M and only one in the other VCGs. This study may provide new insight into the establishment of a new forma specialis off. oxysporum.

  11. An iron 13S-lipoxygenase with an α-linolenic acid specific hydroperoxidase activity from Fusarium oxysporum.

    Directory of Open Access Journals (Sweden)

    Florian Brodhun

    Full Text Available Jasmonates constitute a family of lipid-derived signaling molecules that are abundant in higher plants. The biosynthetic pathway leading to plant jasmonates is initiated by 13-lipoxygenase-catalyzed oxygenation of α-linolenic acid into its 13-hydroperoxide derivative. A number of plant pathogenic fungi (e.g. Fusarium oxysporum are also capable of producing jasmonates, however, by a yet unknown biosynthetic pathway. In a search for lipoxygenase in F. oxysporum, a reverse genetic approach was used and one of two from the genome predicted lipoxygenases (FoxLOX was cloned. The enzyme was heterologously expressed in E. coli, purified via affinity chromatography, and its reaction mechanism characterized. FoxLOX was found to be a non-heme iron lipoxygenase, which oxidizes C18-polyunsaturated fatty acids to 13S-hydroperoxy derivatives by an antarafacial reaction mechanism where the bis-allylic hydrogen abstraction is the rate-limiting step. With α-linolenic acid as substrate FoxLOX was found to exhibit a multifunctional activity, because the hydroperoxy derivatives formed are further converted to dihydroxy-, keto-, and epoxy alcohol derivatives.

  12. MEDIATOR18 and MEDIATOR20 confer susceptibility to Fusarium oxysporum in Arabidopsis thaliana

    Science.gov (United States)

    Stiller, Jiri; Davoine, Celine; Björklund, Stefan; Manners, John M.; Kazan, Kemal; Schenk, Peer M.

    2017-01-01

    The conserved protein complex known as Mediator conveys transcriptional signals by acting as an intermediary between transcription factors and RNA polymerase II. As a result, Mediator subunits play multiple roles in regulating developmental as well as abiotic and biotic stress pathways. In this report we identify the head domain subunits MEDIATOR18 and MEDIATOR20 as important susceptibility factors for Fusarium oxysporum infection in Arabidopsis thaliana. Mutants of MED18 and MED20 display down-regulation of genes associated with jasmonate signaling and biosynthesis while up-regulation of salicylic acid associated pathogenesis related genes and reactive oxygen producing and scavenging genes. We propose that MED18 and MED20 form a sub-domain within Mediator that controls the balance of salicylic acid and jasmonate associated defense pathways. PMID:28441405

  13. Molecular identification of Fusarium spp. causing wilt of chickpea and the first report of Fusarium redolens in Turkey

    Science.gov (United States)

    Chickpea (Cicer arietinum L.) is an important food legume crop and Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris is one of the most important diseases of chickpea in Turkey. Fusarium redolens is known to cause wilt-like disease of chickpea in other countries, but has not been reported fr...

  14. Genome and Transcriptome Analysis of the Fungal Pathogen Fusarium oxysporum f. sp. cubense Causing Banana Vascular Wilt Disease

    Science.gov (United States)

    Zeng, Huicai; Fan, Dingding; Zhu, Yabin; Feng, Yue; Wang, Guofen; Peng, Chunfang; Jiang, Xuanting; Zhou, Dajie; Ni, Peixiang; Liang, Changcong; Liu, Lei; Wang, Jun; Mao, Chao

    2014-01-01

    Background The asexual fungus Fusarium oxysporum f. sp. cubense (Foc) causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.). To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced. Methodology/Principal Findings Genome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1), the Foc race 4 isolate (Foc4) has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana ‘Brazil’ in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety ‘Brazil’. Conclusions/Significance Foc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will thus advance

  15. pH regulation of recombinant glucoamylase production in Fusarium venenatum JeRS 325, a transformant with a Fusarium oxysporum alkaline (trypsin-like) protease promoter.

    Science.gov (United States)

    Wiebe, M G; Robson, G D; Shuster, J R; Trinci, A P

    1999-08-05

    Fusarium venenatum (formerly Fusarium graminearum) JeRS 325 produces heterologous glucoamylase (GAM) under the regulation of a Fusarium oxysporum alkaline (trypsin-like) protease promoter. The glucoamylase gene was used as a reporter gene to study the effects of ammonium and pH on GAM production under the control of the alkaline protease promoter. Between pH 4.0 and 5.8, GAM production in glucose-limited chemostat cultures of JeRS 325 grown at a dilution rate of 0.10 h-1 (doubling time, 6.9 h) on (NH4)2SO4 medium increased in a linear manner with increase in pH. However, at pH 4.0 and below GAM production was almost completely repressed in glucose-limited chemostat cultures grown on (NH4)2SO4 or NaNO3 medium. Thus GAM production in JeRS 325 is regulated by culture pH, not by the nature of the nitrogen source in the medium. The difficulty of using unbuffered medium when investigating putative ammonium repression is also shown. The study demonstrates the potential for use of the alkaline protease promoter in F. graminearum for the production of recombinant proteins in a pH dependent man ner. Copyright 1999 John Wiley & Sons, Inc.

  16. Down-regulatory effect of Thymus vulgaris L. on growth and Tri4 gene expression in Fusarium oxysporum strains.

    Science.gov (United States)

    Divband, Kolsum; Shokri, Hojjatollah; Khosravi, Ali Reza

    2017-03-01

    The aims of this study were to evaluate the efficacy of Thymus vulgaris (T. vulgaris) essential oil on the fungal growth and Tri4 gene expression in Fusarium oxysporum (F. oxysporum) strains. The oil was obtained by water-distillation using a Clevenger-type system. The chemical composition of the essential oil was obtained by gas chromatography- mass spectroscopy (GC-MS) and by retention indices. The antifungal activity was evaluated by broth microdilution assay. A quantitative real time RT-PCR (qRT-PCR) assay was also developed specific for F. oxysporum on the basis of trichothecene biosynthetic gene, Tri4, which allowed discrimination from F. oxysporum. Results showed thymol (32.67%) and p-cymene (16.68%) as the main components of T. vulgaris. Minimum inhibitory concentration (MIC) values varied from 5 to 20 μg/ml with T. vulgaris (mean: 10.50 μg/ml), while minimum fungicidal concentration (MFC) values ranged from 8 to 30 μg/ml with mean value of 16.20 μg/ml qRT-PCR results revealed a downregulation from 4.04 to 6.27 fold of Tri4 gene expression of the fungi exposed to T. vulgaris essential oil. The results suggest that T. vulgaris oil can be considered potential alternative natural fungicide to the synthetic chemicals that are currently used to prevent and control seed-borne diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. La compatibilidad vegetativa: un método para diferenciar razas fisiológicas y formas especiales de Fusarium oxysporum Schlecht.

    OpenAIRE

    Posada Buitrago Martha Lucia; Orozco de Amézquita Martha

    1994-01-01

    La compatibilidad vegetativa fue estudiada en 15 aislamientos de Fusarium oxysporum, nueve procedentes de suelos de...

  18. Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L).

    Science.gov (United States)

    Osorio-Guarín, Jaime A; Enciso-Rodríguez, Felix E; González, Carolina; Fernández-Pozo, Noé; Mueller, Lukas A; Barrero, Luz Stella

    2016-03-18

    Vascular wilt caused by Fusarium oxysporum is the most important disease in cape gooseberry (Physalis peruviana L.) in Colombia. The development of resistant cultivars is considered one of the most cost-effective means to reduce the impact of this disease. In order to do so, it is necessary to provide breeders with molecular markers and promising germplasm for introgression of different resistance loci as part of breeding schemes. Here we described an association mapping study in cape gooseberry with the goal to: (i) select promising materials for use in plant breeding and (ii) identify SNPs associated with the cape gooseberry resistance response to the F. oxysporum pathogen under greenhouse conditions, as potential markers for cape gooseberry breeding. We found a total of 21 accessions with different resistance responses within a diversity panel of 100 cape gooseberry accessions. A total of 60,663 SNPs were also identified within the same panel by means of GBS (Genotyping By Sequencing). Model-based population structure and neighbor-joining analyses showed three populations comprising the cape gooseberry panel. After correction for population structure and kinship, we identified SNPs markers associated with the resistance response against F. oxysporum. The identification of markers was based on common tags using the reference genomes of tomato and potato as well as the root/stem transcriptome of cape gooseberry. By comparing their location with the tomato genome, 16 SNPs were found in genes involved in defense/resistance response to pathogens, likewise when compared with the genome of potato, 12 markers were related. The work presented herein provides the first association mapping study in cape gooseberry showing both the identification of promising accessions with resistance response phenotypes and the identification of a set of SNP markers mapped to defense/resistance response genes of reference genomes. Thus, the work also provides new knowledge on candidate

  19. Identification and diversity of Fusarium species isolated from tomato fruits

    Directory of Open Access Journals (Sweden)

    Murad Nur Baiti Abd

    2016-07-01

    Full Text Available Fruit rot of tomato is a serious disease caused by Fusarium species. Sampling was conducted throughout Selangor, Malaysia and fungal species identification was conducted based on morphological and gene encoding translation elongation factor 1-α (tef1-α sequence analysis. Five species of Fusarium were discovered namely F. oxysporum (including F. oxysporum f. sp. lycopersici, F. solani, F. equiseti, F. proliferatum and F. verticillioides. Our results provide additional information regarding the diversity of Fusarium species associated with fruit rot disease of tomato.

  20. Fusarium Wilt Affecting Chickpea Crop

    Directory of Open Access Journals (Sweden)

    Warda Jendoubi

    2017-03-01

    Full Text Available Chickpea (Cicer arietinum L. contributes 18% of the global production of grain legume and serves as an important source of dietary protein. An important decrease in cropping area and production has been recorded during the last two decades. Several biotic and abiotic constraints underlie this decrease. Despite the efforts deployed in breeding and selection of several chickpea varieties with high yield potential that are tolerant to diseases, the situation has remained the same for the last decade. Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris (Foc is the major soilborne fungus affecting chickpeas globally. Fusarium wilt epidemics can devastate crops and cause up to 100% loss in highly infested fields and under favorable conditions. To date, eight pathogenic races of Foc (races 0, 1A, 1B/C, 2, 3, 4, 5 and 6 have been reported worldwide. The development of resistant cultivars is the most effective method to manage this disease and to contribute to stabilizing chickpea yields. Development of resistant varieties to fusarium wilt in different breeding programs is mainly based on conventional selection. This method is time‐consuming and depends on inoculum load and specific environmental factors that influence disease development. The use of molecular tools offers great potential for chickpea improvement, specifically by identifying molecular markers closely linked to genes/QTLs controlling fusarium wilt.

  1. Structure-Activity Relationship of α Mating Pheromone from the Fungal Pathogen Fusarium oxysporum.

    Science.gov (United States)

    Vitale, Stefania; Partida-Hanon, Angélica; Serrano, Soraya; Martínez-Del-Pozo, Álvaro; Di Pietro, Antonio; Turrà, David; Bruix, Marta

    2017-03-03

    During sexual development ascomycete fungi produce two types of peptide pheromones termed a and α. The α pheromone from the budding yeast Saccharomyces cerevisiae , a 13-residue peptide that elicits cell cycle arrest and chemotropic growth, has served as paradigm for the interaction of small peptides with their cognate G protein-coupled receptors. However, no structural information is currently available for α pheromones from filamentous ascomycetes, which are significantly shorter and share almost no sequence similarity with the S. cerevisiae homolog. High resolution structure of synthetic α-pheromone from the plant pathogenic ascomycete Fusarium oxysporum revealed the presence of a central β-turn resembling that of its yeast counterpart. Disruption of the-fold by d-alanine substitution of the conserved central Gly 6 -Gln 7 residues or by random sequence scrambling demonstrated a crucial role for this structural determinant in chemoattractant activity. Unexpectedly, the growth inhibitory effect of F. oxysporum α-pheromone was independent of the cognate G protein-coupled receptors Ste2 and of the central β-turn but instead required two conserved Trp 1 -Cys 2 residues at the N terminus. These results indicate that, despite their reduced size, fungal α-pheromones contain discrete functional regions with a defined secondary structure that regulate diverse biological processes such as polarity reorientation and cell division. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Efecto de la fertilización nitrogenada en la incidencia de Fusarium oxysporum f. sp. Dianthi y Heterodera trifolii g. en clavel Effect of nitrogen fertilization on the incidence of Fusarium oxysporum f. sp. Dianthi and Heterodera trifolii G. in carnation

    OpenAIRE

    Burbano Luis E.; Erazo Aurelio; Orozco de Amezquita Martha; Garcés de Granada Emira

    1990-01-01

    El manejo de la fertilización es uno de los métodos que junto con otras formas de control puede reducir la severidad de algunas enfermedades; en el presente trabajo se evaluó el efecto de la fertilización nitrogenada, utilizando diferentes fuentes de nitrógeno sobre las enfermedades causadas por Fusarium oxysporum f. sp, Dianthi y Heterodera trifolii G. Se emplearon como fuentes de nitrógeno de fosfato de amonio, nitrato de potasio y nitrón 26, y sulfato de potasio como testigo. Al f...

  3. Evaluation of biological control of fusarium wilt in gerbera with Trichoderma asperellum

    OpenAIRE

    Daiani Brandler; Luan Junior Divensi; Rodrigo José Tonin; Thalita Pedrozo Pilla; Ines Rezendes; Paola Mendes Milanesi

    2017-01-01

    The increase in flower cultivation in recent years has been reflecting the higher incidence of soil pathogens that can cause serious problems. This study aimed to evaluate the biological control of Fusarium wilt in gerbera with Trichoderma asperellum. The evaluated treatments were: T1) Control, only sterile substrate; T2) Substrate + Fusarium oxysporum; T3) Substrate + Fusarium oxysporum + Trichoderma asperellum; and T4) Substrate + Trichoderma asperellum. For this, the pathogen was isolated ...

  4. Transforming a NEP1 toxin gene into two Fusarium spp. to enhance mycoherbicide activity on Orobanche--failure and success.

    Science.gov (United States)

    Meir, Sagit; Amsellem, Ziva; Al-Ahmad, Hani; Safran, Einat; Gressel, Jonathan

    2009-05-01

    The NEP1 gene encoding a fungal toxin that successfully conferred hypervirulence when transformed into Colletotrichum coccodes (Wallr.) Hughes attacking Abutilon theophrasti (L.) Medic. was tested to ascertain if it would enhance pathogenicity of Fusarium species to Orobanche aegyptiaca Pers. parasitising crops. None of the Fusarium oxysporum (#CNCM I-1622) NEP1 transformants was hypervirulent. NEP1 transformants of a new but unnamed Fusarium sp. (#CNCM I-1621--previously identified as F. arthrosporioides) killed Orobanche more rapidly than the wild type. Transformed lines of both species were NEP1 PCR positive, as was the wild type of F. oxysporum #CNCM I-1622 and five other formae speciales of F. oxysporum. All six wild-type formae speciales of F. oxysporum tested excrete minute amounts of immunologically and bioassay-detectable NEP1-like protein. NEP1 expression of most F. oxysporum transformants was suppressed, suggesting that the native gene and the transgene silence each other. The sequence of the putative NEP1 gene in Fusarium oxysporum #CNCM I-1622 differs from the sequence in the toxin-overproducing strain of F. oxysporum f. sp. erythroxyli in four or five amino acids in the first exon. Wild-type Fusarium sp. #CNCM I-1621 does not contain a NEP1-like gene, explaining why it seemed amenable to transformation with high expression, and its virulence was probably enhanced by not cosuppressing the endogenous gene as occurred with Fusarium oxysporum #CNCM I-1622.

  5. [Fusarium species associated with basal rot of garlic in North Central Mexico and its pathogenicity].

    Science.gov (United States)

    Delgado-Ortiz, Juan C; Ochoa-Fuentes, Yisa M; Cerna-Chávez, Ernesto; Beltrán-Beache, Mariana; Rodríguez-Guerra, Raúl; Aguirre-Uribe, Luis A; Vázquez-Martínez, Otilio

    Garlic in Mexico is one of the most profitable vegetable crops, grown in almost 5,451ha; out of which more than 83% are located in Zacatecas, Guanajuato, Sonora, Puebla, Baja California and Aguascalientes. Blossom-end rot caused by Fusarium spp is widely distributed worldwide and has been a limiting factor in onion and garlic production regions, not only in Mexico but also in other countries. The presence of Fusarium oxysporum has been reported in Guanajuato and Aguascalientes. Fusarium culmorum has been reported in onion cultivars of Morelos; and Fusarium proliferatum, Fusarium verticillioides, Fusarium solani and Fusarium acuminatum have been previously reported in Aguascalientes. The goal of this work was identifying the Fusarium species found in Zacatecas, Guanajuato and Aguascalientes, to assess their pathogenicity. Plants with disease symptoms were collected from hereinabove mentioned States. The samples resulted in the identification of: F. oxysporum, F. proliferatum, F. verticillioides, F. solani and F. acuminatum species; out of which Aguascalientes AGS1A (F. oxysporum), AGS1B (F. oxysporum) and AGSY-10 (F. acuminatum) strains showed higher severity under greenhouse conditions. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Challenges in Fusarium, a Trans-Kingdom Pathogen.

    Science.gov (United States)

    van Diepeningen, Anne D; de Hoog, G Sybren

    2016-04-01

    Fusarium species are emerging human pathogens, next to being plant pathogens. Problems with Fusarium are in their diagnostics and in their difficult treatment, but also in what are actual Fusarium species or rather Fusarium-like species. In this issue Guevara-Suarez et al. (Mycopathologia. doi: 10.1007/s11046-016-9983-9 , 2016) characterized 89 isolates of Fusarium from Colombia showing especially lineages within the Fusarium solani and oxysporum species complexes to be responsible for onychomycosis.

  7. Suppressor of fusion, a Fusarium oxysporum homolog of Ndt80, is required for nutrient-dependent regulation of anastomosis.

    Science.gov (United States)

    Shahi, Shermineh; Fokkens, Like; Houterman, Petra M; Rep, Martijn

    2016-10-01

    Heterokaryon formation is an essential step in asexual recombination in Fusarium oxysporum. Filamentous fungi have an elaborate nonself recognition machinery to prevent formation and proliferation of heterokaryotic cells, called heterokaryon incompatibility (HI). In F. oxysporum the regulation of this machinery is not well understood. In Neurospora crassa, Vib-1, a putative transcription factor of the p53-like Ndt80 family of transcription factors, has been identified as global regulator of HI. In this study we investigated the role of the F. oxysporum homolog of Vib-1, called Suf, in vegetative hyphal and conidial anastomosis tube (CAT) fusion and HI. We identified a novel function for an Ndt80 homolog as a nutrient-dependent regulator of anastomosis. Strains carrying the SUF deletion mutation display a hyper-fusion phenotype during vegetative growth as well as germling development. In addition, conidial paring of incompatible SUF deletion strains led to more heterokaryon formation, which is independent of suppression of HI. Our data provides further proof for the divergence in the functions of different members Ndt80 family. We propose that Ndt80 homologs mediate responses to nutrient quality and quantity, with specific responses varying between species. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Detection and differentiation of Fusarium oxysporum f. sp. lycopersici race 1 using loop-mediated isothermal amplification with three primer sets.

    Science.gov (United States)

    Ayukawa, Y; Komatsu, K; Kashiwa, T; Akai, K; Yamada, M; Teraoka, T; Arie, T

    2016-09-01

    Fusarium oxysporum f. sp. lycopersici (Fol) causes tomato wilt. Based on the difference in pathogenicity towards tomato cultivars, Fol is classified into three races. In this study, a rapid method is developed for the detection and discrimination of Fol race 1 using a loop-mediated isothermal amplification (LAMP) assay with two primer sets targeting a region of the nucleotide sequence of the SIX4 gene specific for race 1 and a primer set targeting the SIX5 gene, conserved in all known Fol isolates. Upon LAMP reaction, amplification using all three primer sets was observed only when DNA of Fol race 1 was used as a template, and not when DNA of other Fol races or other fungal species was used. This method could detect 300 fg of Fol race 1 DNA, a 100-fold higher sensitivity than that obtained by conventional PCR. The method can also detect DNA extracted from soil artificially infested with Fol race 1. It is now possible to detect Fol race 1 in colonies and infected tomato stems without DNA isolation. This method is a rapid and simple tool for discrimination of Fol race 1. This study developed a loop-mediated isothermal amplification (LAMP) assay for detection and differentiation of Fusarium oxysporum f. sp. lycopersici (Fol) race 1 by using three primer sets targeting for the SIX4 and SIX5 genes. These genes are present together only in Fol race 1. This method can detect Fol race 1 in infected tomato stems without DNA extraction, affording an efficient diagnosis of Fusarium wilt on tomatoes in the field. © 2016 The Society for Applied Microbiology.

  9. The global nitrogen regulator, FNR1, regulates fungal nutrition-genes and fitness during Fusarium oxysporum pathogenesis.

    Science.gov (United States)

    Divon, Hege Hvattum; Ziv, Carmit; Davydov, Olga; Yarden, Oded; Fluhr, Robert

    2006-11-01

    SUMMARY Fusarium oxysporum is a soil-borne pathogen that infects plants through the roots and uses the vascular system for host ingress. Specialized for this route of infection, F. oxysporum is able to adapt to the scarce nutrient environment in the xylem vessels. Here we report the cloning of the F. oxysporum global nitrogen regulator, Fnr1, and show that it is one of the determinants for fungal fitness during in planta growth. The Fnr1 gene has a single conserved GATA-type zinc finger domain and is 96% and 48% identical to AREA-GF from Gibberella fujikuroi, and NIT2 from Neurospora crassa, respectively. Fnr1 cDNA, expressed under a constitutive promoter, was able to complement functionally an N. crassa nit-2(RIP) mutant, restoring the ability of the mutant to utilize nitrate. Fnr1 disruption mutants showed high tolerance to chlorate and reduced ability to utilize several secondary nitrogen sources such as amino acids, hypoxanthine and uric acid, whereas growth on favourable nitrogen sources was not affected. Fnr1 disruption also abolished in vitro expression of nutrition genes, normally induced during the early phase of infection. In an infection assay on tomato seedlings, infection rate of disruption mutants was significantly delayed in comparison with the parental strain. Our results indicate that FNR1 mediates adaptation to nitrogen-poor conditions in planta through the regulation of secondary nitrogen acquisition, and as such acts as a determinant for fungal fitness during infection.

  10. Investigations on the effects of triazole group fungicides on some important antagonistic fungi and non-pathogen Fusarium oxysporum (Schlecht) in vitro.

    OpenAIRE

    Demirci, A.; Katırcıoğlu, Z.; Demirci, F.

    2008-01-01

    The effects of eight triazole fungicides (cyproconazole, diniconazole, flusilazole hexaconazole, myclobutanil, penconazole, tebuconazole and triticinazole) on some important antagonistic fungi [Trichoderma harzianum (Rifai), T. viride (Pers. ex Gray), T. pseudokoningii (Rifai), T. hamatum (Bonard), Gliociadium viride (Matrouchot), Aspergillus niger (Tieghem), Penicillium verrııcosum (Dierckx)] and non-pathogen Fusarium oxysporum (Schlecht) were investigated on PDA in vitro. EC5 0 values ...

  11. Nuclear magnetic resonance (NMR) studies on the biosynthesis of fusaric acid from Fusarium oxysporum f. sp. vasinfectum.

    Science.gov (United States)

    Stipanovic, Robert D; Wheeler, Michael H; Puckhaber, Lorraine S; Liu, Jinggao; Bell, Alois A; Williams, Howard J

    2011-05-25

    Fusarium oxysporum is a fungal pathogen that attacks many important plants. Uniquely pathogenic strains of F. oxysporum f. sp. vasinfectum were inadvertently imported into the United States on live cottonseed for dairy cattle feed. These strains produce exceptionally high concentrations of the phytotoxin fusaric acid. Thus, fusaric acid may be a critical component in the pathogenicity of these biotypes. This study investigated the biosynthesis of fusaric acid using (13)C-labeled substrates including [1,2-(13)C(2)]acetate as well as (13)C- and (15)N-labeled aspartate and [(15)N]glutamine. The incorporation of labeled substrates is consistent with the biosynthesis of fusaric acid from three acetate units at C5-C6, C7-C8, and C9-C10, with the remaining carbons being derived from aspartate via oxaloacetate and the TCA cycle; the oxaloacetate originates in part by transamination of aspartate, but most of the oxaloacetate is derived by deamination of aspartate to fumarate by aspartase. The nitrogen from glutamine is more readily incorporated into fusaric acid than that from aspartate.

  12. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology

    Science.gov (United States)

    Riddin, T. L.; Gericke, M.; Whiteley, C. G.

    2006-07-01

    Fusarium oxysporum fungal strain was screened and found to be successful for the inter- and extracellular production of platinum nanoparticles. Nanoparticle formation was visually observed, over time, by the colour of the extracellular solution and/or the fungal biomass turning from yellow to dark brown, and their concentration was determined from the amount of residual hexachloroplatinic acid measured from a standard curve at 456 nm. The extracellular nanoparticles were characterized by transmission electron microscopy. Nanoparticles of varying size (10-100 nm) and shape (hexagons, pentagons, circles, squares, rectangles) were produced at both extracellular and intercellular levels by the Fusarium oxysporum. The particles precipitate out of solution and bioaccumulate by nucleation either intercellularly, on the cell wall/membrane, or extracellularly in the surrounding medium. The importance of pH, temperature and hexachloroplatinic acid (H2PtCl6) concentration in nanoparticle formation was examined through the use of a statistical response surface methodology. Only the extracellular production of nanoparticles proved to be statistically significant, with a concentration yield of 4.85 mg l-1 estimated by a first-order regression model. From a second-order polynomial regression, the predicted yield of nanoparticles increased to 5.66 mg l-1 and, after a backward step, regression gave a final model with a yield of 6.59 mg l-1.

  13. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Riddin, T L [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown (South Africa); Gericke, M [MINTEK, Private Bag X3015, Randburg 2125 (South Africa); Whiteley, C G [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown (South Africa)

    2006-07-28

    Fusarium oxysporum fungal strain was screened and found to be successful for the inter- and extracellular production of platinum nanoparticles. Nanoparticle formation was visually observed, over time, by the colour of the extracellular solution and/or the fungal biomass turning from yellow to dark brown, and their concentration was determined from the amount of residual hexachloroplatinic acid measured from a standard curve at 456 nm. The extracellular nanoparticles were characterized by transmission electron microscopy. Nanoparticles of varying size (10-100 nm) and shape (hexagons, pentagons, circles, squares, rectangles) were produced at both extracellular and intercellular levels by the Fusarium oxysporum. The particles precipitate out of solution and bioaccumulate by nucleation either intercellularly, on the cell wall/membrane, or extracellularly in the surrounding medium. The importance of pH, temperature and hexachloroplatinic acid (H{sub 2}PtCl{sub 6}) concentration in nanoparticle formation was examined through the use of a statistical response surface methodology. Only the extracellular production of nanoparticles proved to be statistically significant, with a concentration yield of 4.85 mg l{sup -1} estimated by a first-order regression model. From a second-order polynomial regression, the predicted yield of nanoparticles increased to 5.66 mg l{sup -1} and, after a backward step, regression gave a final model with a yield of 6.59 mg l{sup -1}.

  14. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology

    International Nuclear Information System (INIS)

    Riddin, T L; Gericke, M; Whiteley, C G

    2006-01-01

    Fusarium oxysporum fungal strain was screened and found to be successful for the inter- and extracellular production of platinum nanoparticles. Nanoparticle formation was visually observed, over time, by the colour of the extracellular solution and/or the fungal biomass turning from yellow to dark brown, and their concentration was determined from the amount of residual hexachloroplatinic acid measured from a standard curve at 456 nm. The extracellular nanoparticles were characterized by transmission electron microscopy. Nanoparticles of varying size (10-100 nm) and shape (hexagons, pentagons, circles, squares, rectangles) were produced at both extracellular and intercellular levels by the Fusarium oxysporum. The particles precipitate out of solution and bioaccumulate by nucleation either intercellularly, on the cell wall/membrane, or extracellularly in the surrounding medium. The importance of pH, temperature and hexachloroplatinic acid (H 2 PtCl 6 ) concentration in nanoparticle formation was examined through the use of a statistical response surface methodology. Only the extracellular production of nanoparticles proved to be statistically significant, with a concentration yield of 4.85 mg l -1 estimated by a first-order regression model. From a second-order polynomial regression, the predicted yield of nanoparticles increased to 5.66 mg l -1 and, after a backward step, regression gave a final model with a yield of 6.59 mg l -1

  15. Rapid Synthesis of Silver Nanoparticles from Fusarium oxysporum by Optimizing Physicocultural Conditions

    Directory of Open Access Journals (Sweden)

    Sonal S. Birla

    2013-01-01

    Full Text Available Synthesis of silver nanoparticles (SNPs by fungi is emerging as an important branch of nanotechnology due to its ecofriendly, safe, and cost-effective nature. In order to increase the yield of biosynthesized SNPs of desired shape and size, it is necessary to control the cultural and physical parameters during the synthesis. We report optimum synthesis of SNPs on malt extract glucose yeast extract peptone (MGYP medium at pH 9–11, 40–60°C, and 190.7 Lux and in sun light. The salt concentrations, volume of filtrate and biomass quantity were found to be directly proportional to the yield. The optimized conditions for the stable and rapid synthesis will help in large scale synthesis of monodispersed SNPs. The main aim of the present study was to optimize different media, temperature, pH, light intensity, salt concentration, volume of filtrate, and biomass quantity for the synthesis of SNPs by Fusarium oxysporum.

  16. The sequence and X-ray structure of the trypsin from Fusarium oxysporum.

    Science.gov (United States)

    Rypniewski, W R; Hastrup, S; Betzel, C; Dauter, M; Dauter, Z; Papendorf, G; Branner, S; Wilson, K S

    1993-06-01

    The trypsin from Fusarium oxysporum is equally homologous to trypsins from Streptomyces griseus, Streptomyces erythraeus and to bovine trypsin. A DFP (diisopropylfluorophosphate) inhibited form of the enzyme has been crystallized from 1.4 M Na2SO4, buffered with citrate at pH 5.0-5.5. The crystals belong to space group P2(1) with cell parameters a = 33.43 A, b = 67.65 A, c = 39.85 A and beta = 107.6 degrees. There is one protein molecule in the asymmetric unit. X-ray diffraction data to a resolution of 1.8 A were collected on film using synchrotron radiation. The structure was solved by molecular replacement using models of bovine and S. griseus trypsins and refined to an R-factor of 0.141. The overall fold is similar to other trypsins, with some insertions and deletions. There is no evidence of the divalent cation binding sites seen in other trypsins. The covalently bound inhibitor molecule is clearly visible.

  17. Modified Primers for the Identification of Nonpathogenic Fusarium oxysporum Isolates That Have Biological Control Potential against Fusarium Wilt of Cucumber in Taiwan

    Science.gov (United States)

    Wang, Chaojen; Lin, Yisheng; Lin, Yinghong; Chung, Wenhsin

    2013-01-01

    Previous investigations demonstrated that Fusarium oxysporum (Fo), which is not pathogenic to cucumbers, could serve as a biological control agent for managing Fusarium wilt of cucumber caused by Fo f. sp. cucumerinum (Foc) in Taiwan. However, thus far it has not been possible to separate the populations of pathogenic Fo from the nonpathogenic isolates that have biological control potential through their morphological characteristics. Although these two populations can be distinguished from one another using a bioassay, the work is laborious and time-consuming. In this study, a fragment of the intergenic spacer (IGS) region of ribosomal DNA from an Fo biological control agent, Fo366, was PCR-amplified with published general primers, FIGS11/FIGS12 and sequenced. A new primer, NPIGS-R, which was designed based on the IGS sequence, was paired with the FIGS11 primer. These primers were then evaluated for their specificity to amplify DNA from nonpathogenic Fo isolates that have biological control potential. The results showed that the modified primer pair, FIGS11/NPIGS-R, amplified a 500-bp DNA fragment from five of seven nonpathogenic Fo isolates. These five Fo isolates delayed symptom development of cucumber Fusarium wilt in greenhouse bioassay tests. Seventy-seven Fo isolates were obtained from the soil and plant tissues and then subjected to amplification using the modified primer pair; six samples showed positive amplification. These six isolates did not cause symptoms on cucumber seedlings when grown in peat moss infested with the isolates and delayed disease development when the same plants were subsequently inoculated with a virulent isolate of Foc. Therefore, the modified primer pair may prove useful for the identification of Fo isolates that are nonpathogenic to cucumber which can potentially act as biocontrol agents for Fusarium wilt of cucumber. PMID:23762289

  18. Identification of immunity related genes to study the Physalis peruviana--Fusarium oxysporum pathosystem.

    Science.gov (United States)

    Enciso-Rodríguez, Felix E; González, Carolina; Rodríguez, Edwin A; López, Camilo E; Landsman, David; Barrero, Luz Stella; Mariño-Ramírez, Leonardo

    2013-01-01

    The Cape gooseberry (Physalisperuviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC-NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance.

  19. Identification of immunity related genes to study the Physalis peruviana--Fusarium oxysporum pathosystem.

    Directory of Open Access Journals (Sweden)

    Felix E Enciso-Rodríguez

    Full Text Available The Cape gooseberry (Physalisperuviana L is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site, CC (Coiled-Coil, TIR (Toll/Interleukin-1 Receptor. We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene architecture, 17 Receptor like kinase (RLKs candidates related to PAMP-Triggered Immunity (PTI, eight (TIR-NBS-LRR, or TNL and nine (CC-NBS-LRR, or CNL candidates related to Effector-Triggered Immunity (ETI genes among others. These candidate genes were categorized by molecular function (98%, biological process (85% and cellular component (79% using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance.

  20. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum.

    Science.gov (United States)

    Khang, Chang Hyun; Park, Sook-Young; Lee, Yong-Hwan; Kang, Seogchan

    2005-06-01

    Rapid progress in fungal genome sequencing presents many new opportunities for functional genomic analysis of fungal biology through the systematic mutagenesis of the genes identified through sequencing. However, the lack of efficient tools for targeted gene replacement is a limiting factor for fungal functional genomics, as it often necessitates the screening of a large number of transformants to identify the desired mutant. We developed an efficient method of gene replacement and evaluated factors affecting the efficiency of this method using two plant pathogenic fungi, Magnaporthe grisea and Fusarium oxysporum. This method is based on Agrobacterium tumefaciens-mediated transformation with a mutant allele of the target gene flanked by the herpes simplex virus thymidine kinase (HSVtk) gene as a conditional negative selection marker against ectopic transformants. The HSVtk gene product converts 5-fluoro-2'-deoxyuridine to a compound toxic to diverse fungi. Because ectopic transformants express HSVtk, while gene replacement mutants lack HSVtk, growing transformants on a medium amended with 5-fluoro-2'-deoxyuridine facilitates the identification of targeted mutants by counter-selecting against ectopic transformants. In addition to M. grisea and F. oxysporum, the method and associated vectors are likely to be applicable to manipulating genes in a broad spectrum of fungi, thus potentially serving as an efficient, universal functional genomic tool for harnessing the growing body of fungal genome sequence data to study fungal biology.

  1. Development of a Simple and Effective Bioassay Method to Evaluate Resistance of Watermelon Plants to Fusarium oxysporum f. sp. niveum

    Directory of Open Access Journals (Sweden)

    Eun Ju Jo

    2017-06-01

    Full Text Available Root-dipping inoculation method has been widely used to determine the resistance of watermelon to Fusarium oxysporum f. sp. niveum causing Fusarium wilt. Although this method leads to the precise results of plant disease responses, more rapid and efficient assay methods have been still required because the root-dipping inoculation method is labor-intensive and time-consuming. In this study, we established a simple and effective bioassay method based on the comparison of various inoculation methods and growth conditions. To develop the system, the occurrence of Fusarium wilt on four resistant and susceptible cultivars was investigated by four different inoculation methods, root-dipping, scalpel, tip and soil-drenching methods. Of these inoculation methods, scalpel method resulted in clear plant disease resistance responses with the simplicity. With the use of scalpel method, we also explored the disease development of the cultivars depending on inoculum concentration, growth stage of seedlings, and incubation temperature after inoculation. Furthermore, we found that the resistance degrees of 23 cultivars derived by scalpel inoculation method were similar to the results by root-dipping method established previously.

  2. UV-B-irradiation effect on growth reactions of phytopathogenic fungus fusarium solani

    International Nuclear Information System (INIS)

    Gushcha, M.Yi.; Dyachenko, A.Yi.; Dmitryijev, O.P.

    2002-01-01

    The UV-B irradiation effect on spore germination and hyphae growth of phythopathogenic fungus Fusarium solani was studied. Spores irradiation by small doses of 0,1 - 1,0 kJ/m 2 results in growth stimulation of primary hyphae. Adaptive effect of UV-B small doses for fungi was shown. Preliminary irradiation in doses of 0,1 - 0,5 kJ/m 2 increased spore radioresistance and diminished the effect of the next damaging dose

  3. Statistical optimization of growth medium for the production of the entomopathogenic and phytotoxic cyclic depsipeptide beauvericin from Fusarium oxysporum KFCC 11363P.

    Science.gov (United States)

    Lee, Hee-Seok; Song, Hyuk-Hwan; An, Joong-Hoon; Shin, Cha-Gyun; Lee, Gung Pyo; Lee, Chan

    2008-01-01

    The production of the entomopathogenic and phytotoxic cyclic depsipeptide beauvericin (BEA) was studied in submerged cultures of Fusarium oxysporum KFCC 11363P isolated in Korea. The influences of various factors on mycelia growth and BEA production were examined in both complete and chemically defined culture media. The mycelia growth and BEA production were highest in Fusarium defined medium. The optimal carbon and nitrogen sources for maximizing BEA production were glucose and NaNO3, respectively. The carbon/ nitrogen ratio for maximal production of BEA was investigated using response surface methodology (RSM). Equations derived by differentiation of the RSM model revealed that the production of BEA was maximal when using 108 mM glucose and 25 mM NaNO3.

  4. Clean up fly ash from coal burning plants by new isolated fungi Fusarium oxysporum and Penicillium glabrum.

    Science.gov (United States)

    Ertit Taştan, Burcu

    2017-09-15

    In Turkey approximately 45 million tons of coals are burned in a year and 19.3 million tons of fly ash have emerged. The bioremediation of heavy metals or different elements from fly ash makes them bio-available. However, in previous studies, requiring of long operational time and failing to show tolerance to high pulp densities of fly ash of selected fungal species makes them impractical. In this work, bioremediation of fly ash by new isolated fungi Fusarium oxysporum and Penicillium glabrum were investigated in one step and two step bioremediation process. Ca, Si, Fe and S were found to be considerable amount in studied fly ashes by ED-XRF element analysis. The bioremediation yields of Mo (100%), S (64.36%) Ni (50%) and Cu (33.33%) by F. oxysporum were high. The remediated elements by P. glabrum in fly ash were Mo (100%), S (57.43%), Ni (25%), Si (24.66%), V (12.5%), Ti (5%) and Sr (3.2%). The isolation of high fly ash resistant fungi and reduction of the bioremediation time will allow the practical applications of the bioremediation technology when it is scaled up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Peptidases e lipases produzidas pelo fungo Fusarium oxysporum: caracterização e microencapsulação por spray drying

    OpenAIRE

    Tamara Angelo de Oliveira Santos

    2012-01-01

    Duas variações de resíduo agroindustrial foram analisadas como meio de cultura para o bioprocesso de fermentação semissólida pelo fungo Fusarium oxysporum, com o objetivo de obter a melhor produção de peptidases e lipases. Essas enzimas foram microencapsuladas por spray drying, visando garantir sua estabilidade e investigar outros prováveis benefícios obtidos pela técnica. A utilização de planejamento experimental permitiu analisar os efeitos e interações entre as variáveis operacionais do pr...

  6. Gebruik van TaqMan PCR voor het kwantificeren van Fusarium spp. en Microdochium nivale in gewassen en gewasresten van tarwe

    NARCIS (Netherlands)

    Köhl, J.; Haas, de B.H.; Kastelein, P.; Burgers, S.L.G.E.; Waalwijk, C.

    2005-01-01

    Samenvattingen van 5 presentaties: 'Heterogenity of Dutch Fusarium oxysporum strains isolated as forma specialis radicis-lycopersici';'Een proteomics benadering om eiwitten te identificeren die door Fusarium oxysporum worden uitgescheiden in xyleemsap van tomaat'; 'Ontwikkeling en implementatie van

  7. Granular formulation of Fusarium oxysporum for biological control of faba bean and tomato Orobanche.

    Science.gov (United States)

    Nemat Alla, Mamdouh M; Shabana, Yasser M; Serag, Mamdouh M; Hassan, Nemat M; El-Hawary, Mohamed M

    2008-12-01

    Orobanche spp. represent a serious threat to a wide range of crops. They are difficult targets for herbicides, and biological control could provide a possible solution. This work therefore aimed to formulate mycoherbicides of Fusarium with adequate shelf life and virulence against Orobanche but safe to faba bean and tomato. Only two isolates of Fusarium oxysporum Schlecht. (Foxy I and Foxy II) obtained from diseased Orobanche shoots were found to be pathogenic to Orobanche crenata Forsk. and Orobanche ramosa L. Conidial suspension of both isolates significantly decreased germination, attachments and tubercles of Orobanche. Microconidia and chlamydospores of both isolates were formulated as mycoherbicides encapsulated in a wheat flour-kaolin matrix (four different formulations). All formulations greatly diminished Orobanche emerged shoots, total shoot number, shoot height, attachment of emerged shoots, the germinated seeds that succeeded in emerging above the soil surface and dry weight. Meanwhile, disease incidence and disease severity of emerged shoots were enhanced. The shelf life was adequate, particularly for coarse, freshly prepared, low-temperature-stored, microconidia-rich formulations. The induced growth reduction of Orobanche-infected host plants seemed to be nullified by formulations, particularly at the highest dose. These formulations seemed to destroy Orobanche but appeared harmless to host plants. Hence, they could be efficiently used as mycoherbicides for biological control of Orobanche in faba bean and tomato.

  8. A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid-stable cellulase: consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid.

    Science.gov (United States)

    Xu, Jiaxing; Wang, Xinfeng; Hu, Lei; Xia, Jun; Wu, Zhen; Xu, Ning; Dai, Benlin; Wu, Bin

    2015-04-01

    In this study, microbial communities from chemicals polluted microhabitats were cultured with the addition of imidazolium-based ionic liquid (IL) to enrich for IL-tolerant microbes. A strain of Fusarium oxysporum BN producing cellulase from these enrichments was capable of growing in 10% (w/v) 1-ethyl-3-methylimidazolium phosphinate, much higher than the normal IL concentrations in the lignocellulose regenerated from ILs. Cellulase secreted by the strain showed high resistance to ILs based on phosphate and sulfate radicals, evidencing of a high conformational stability in relevant media. Gratifyingly, F. oxysporum BN can directly convert IL-pretreated rice straw to bioethanol via consolidated bioprocessing (I-CBP). At optimum fermentation condition, a maximum ethanol yield of 0.125 g ethanol g(-1) of rice straw was finally obtained, corresponding to 64.2% of the theoretical yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Integrated management of Fusarium wilt of chickpea (Cicer ...

    African Journals Online (AJOL)

    user

    2013-07-17

    Jul 17, 2013 ... Key words: Integrated management, Fusarium wilt, Fusarium oxysporum f. sp. ciceris, chickpea (Cicer arietinum L.), antagonists, botanicals, fungicides. INTRODUCTION. Chickpea (Cicer arietinum L.) is a vital source of plant- derived edible protein in many countries. Chickpea also has advantages in the ...

  10. Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum.

    Science.gov (United States)

    Guleria, Shiwani; Walia, Abhishek; Chauhan, Anjali; Shirkot, C K

    2016-09-02

    An alkaline protease gene was amplified from genomic DNA of Bacillus amyloliquefaciens SP1 which was involved in effective biocontrol of Fusarium oxysporum. We investigated the antagonistic capacity of protease of B. amyloliquifaciens SP1, under in vitro conditions. The 5.62 fold purified enzyme with specific activity of 607.69U/mg reported 24.14% growth inhibition of F. oxysporum. However, no antagonistic activity was found after addition of protease inhibitor i.e. PMSF (15mM) to purified enzyme. An 1149bp nucleotide sequence of protease gene encoded 382 amino acids of 43kDa and calculated isoelectric point of 9.29. Analysis of deduced amino acid sequence revealed high homology (86%) with subtilisin E of Bacillus subtilis. The B. amyloliquefaciens SP1 protease gene was expressed in Escherichiax coli BL21. The expressed protease was secreted into culture medium by E. coli and exhibited optimum activity at pH8.0 and 60°C. The most reliable three dimensional structure of alkaline protease was determined using Phyre 2 server which was validated on the basis of Ramachandran plot and ERRAT value. The expression and structure prediction of the enzyme offers potential value for commercial application in agriculture and industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Computational Mining and Genome Wide Distribution of Microsatellite in Fusarium oxysporum f. sp. lycopersici

    Directory of Open Access Journals (Sweden)

    Sudheer KUMAR

    2012-11-01

    Full Text Available Simple sequence repeat (SSR is currently the most preferred molecular marker system owing to their highly desirable properties viz., abundance, hyper-variability, and suitability for high-throughput analysis. Hence, in present study an attempt was made to mine and analyze microsatellite dynamics in whole genome of Fusarium oxysporum f. sp. lycopersici. The distribution pattern of different SSR motifs provides the evidence of greater accumulation of tetra-nucleotide (3837 repeats followed by tri-nucleotide (3367 repeats. Maximum frequency distribution in coding region was shown by mono-nucleotide SSR motifs (34.8%, where as minimum frequency is observed for penta-nucleotide SSR (0.87%. Highest relative abundance (1023 SSR/Mb and density of SSRs (114.46 bp/Mb were observed on chromosome 1, while least density of SSR motifs was recorded on chromosome 11 (7.40 bp/Mb and 12 (7.41 bp/Mb, respectively. Maximum trinucleotide (34.24% motifs code for glutamic acid (GAA while GT/CT were the most frequent repeat of dinucleotide SSRs. Most common and highly repeated SSR motifs were identified as (A64, (T48, (GT24, (GAA31, (TTTC24, (TTTCT28 and (AACCAG27. Overall, the generated information may serve as baseline information for developing SSR markers that could find applications in genomic analysis of F. oxysporum f. sp. lycopersici for better understanding of evolution, diversity analysis, population genetics, race identification and acquisition of new virulence.

  12. Identification of Immunity Related Genes to Study the Physalis peruviana – Fusarium oxysporum Pathosystem

    Science.gov (United States)

    Enciso-Rodríguez, Felix E.; González, Carolina; Rodríguez, Edwin A.; López, Camilo E.; Landsman, David; Barrero, Luz Stella; Mariño-Ramírez, Leonardo

    2013-01-01

    The Cape gooseberry ( Physalis peruviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P . peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC–NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance. PMID:23844210

  13. Molecular characterization of Fusarium oxysporum and fusarium commune isolates from a conifer nursery

    Science.gov (United States)

    Jane E. Stewart; Mee-Sook Kim; Robert L. James; R. Kasten Dumroese; Ned B. Klopfenstein

    2006-01-01

    Fusarium species can cause severe root disease and damping-off in conifer nurseries. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Isolates of Fusarium spp. can differ in virulence; however, virulence and...

  14. Fusarium Infection Causes Phenolic Accumulations and Hormonal Disorders in Orobanche spp.

    Science.gov (United States)

    Aybeke, Mehmet

    2017-12-01

    The physiological effects of Fusarium oxysporum on in-root parasitic weed, Orobanche spp. (broomrape) with references to change in plant hormones and secondary plant constituents were investigated. The levels of IAA, GA, ABA and JA in the experimental group were significantly lower than those in the control group, while the level of SA was higher in the experimental group. In secondary metabolic studies, the quantities of various phenols were measured in the two groups and catechin, syringic acid and p-coumaric acid amounts were significantly higher in the experimental group than in the control group, unlike gallic acid which have a lower amount. Consequently, in the light of all data, it was concluded that Fusarium oxysporum (1) causes heavy hormonal disorder, (2) triggered only SA-mediated defense and (3) induced intensively accumulation of phenolic substances in orobanche. Fusarium oxysporum causes lethal physiological damage on Orobanche spp.

  15. Adaptation of Fusarium oxysporum and Fusarium dimerum to the specific aquatic environment provided by the water systems of hospitals.

    Science.gov (United States)

    Steinberg, Christian; Laurent, Julie; Edel-Hermann, Véronique; Barbezant, Marie; Sixt, Nathalie; Dalle, Frédéric; Aho, Serge; Bonnin, Alain; Hartemann, Philippe; Sautour, Marc

    2015-06-01

    Members of the Fusarium group were recently detected in water distribution systems of several hospitals in the world. An epidemiological investigation was conducted over 2 years in hospital buildings in Dijon and Nancy (France) and in non-hospital buildings in Dijon. The fungi were detected only within the water distribution systems of the hospital buildings and also, but at very low concentrations, in the urban water network of Nancy. All fungi were identified as Fusarium oxysporum species complex (FOSC) and Fusarium dimerum species complex (FDSC) by sequencing part of the translation elongation factor 1-alpha (TEF-1α) gene. Very low diversity was found in each complex, suggesting the existence of a clonal population for each. Density and heterogeneous distributions according to buildings and variability over time were explained by episodic detachments of parts of the colony from biofilms in the pipes. Isolates of these waterborne populations as well as soilborne isolates were tested for their ability to grow in liquid medium in the presence of increasing concentrations of sodium hypochlorite, copper sulfate, anti-corrosion pipe coating, at various temperatures (4°-42 °C) and on agar medium with amphotericin B and voriconazole. The waterborne isolates tolerated higher sodium hypochlorite and copper sulfate concentrations and temperatures than did soilborne isolates but did not show any specific resistance to fungicides. In addition, unlike waterborne isolates, soilborne isolates did not survive in water even supplemented with glucose, while the former developed in the soil as well as soilborne isolates. We concluded the existence of homogeneous populations of FOSC and FDSC common to all contaminated hospital sites. These populations are present at very low densities in natural waters, making them difficult to detect, but they are adapted to the specific conditions offered by the complex water systems of public hospitals in Dijon and Nancy and probably other

  16. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li Jun; van der Does, H. C.; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Jose; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Wolochuk, Charles; Xie, Xiaohui; Xu, Jin Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald; Goff, Steven; Hammond-Kossack, Kim; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. C.; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, Barbara G.; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2010-03-18

    Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, members of the F. oxysporum species complex exhibit wide host range but discontinuously distributed host specificity, reflecting remarkable genetic adaptability. To understand the molecular underpinnings of diverse phenotypic traits and their evolution in Fusarium, we compared the genomes of three economically important and phylogenetically related, yet phenotypically diverse plant-pathogenic species, F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici. Our analysis revealed greatly expanded lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes, accounting for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity. Experimentally, we demonstrate for the first time the transfer of two LS chromosomes between strains of F. oxysporum, resulting in the conversion of a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in the F. oxysporum species complex, putting the evolution of fungal pathogenicity into a new perspective.

  17. Antagonism of Trichoderma spp. strains against pea (Pisum sativum L. Fusarium wilt caused by Fusarium oxysporum f. sp. pisi.

    Directory of Open Access Journals (Sweden)

    Oscar Eduardo Checa Coral

    2017-07-01

    Full Text Available The antagonistic effectiveness of native strains of Trichoderma spp. on Fusarium oxysporum f. sp. pisi. in vitro, greenhouse and field conditions, were evaluated. in vitro conditions, the antagonistic capacity of 12 strains of Trichoderma spp., C2, C7, C12 and C21 strains, exhibited a better behavior measured by the following variables: inhibition halo and mycelial growth. In greenhouse conditions, the four strains, which showed the best in vitro antagonistic behavior, were evaluated using a DIA experimental design with factorial arrangement for three factors, which corresponded to strain, concentration and dose. The results of this evaluation, showed that C12 and C21 strains at doses of 20 mL, and at concentrations of 108 and 106 conidia.mL-1, respectively. The best antagonistic response was determined by variables as follows: plant height, fresh root weight and incidence. Under field conditions, the evaluations were carried out in the municipalities of Ipiales, Pupiales and Gualmatán, in the department of Nariño, Colombia. In each location, a BCA experimental design was used with four treatments and five replicates, treatments were as follows: C12 strains at 108 concentration, C21 at 106 concentration, chemical control and absolute control. In Gualmatan location, C12 and C21 strains, showed no antagonistic capacity, whereas in Ipiales and Pupiales locations, strain C12, presented a lower incidence of F. oxysporum than the control, but with no effect on yields. In Pupiales location, C21 strain surpassed in performance to the control treatment, even though the two treatments had similar incidence.

  18. Growth, hydrolases and ultrastructure of Fusarium oxysporum as affected by phenolic rich extracts from several xerophytic plants.

    Science.gov (United States)

    Mohamed, Mahmoud S M; Saleh, Ahmed M; Abdel-Farid, Ibrahim B; El-Naggar, Sabry A

    2017-09-01

    Fusarium oxysporum, the causal agent of rot and wilt diseases, is one of the most detrimental phytopathogens for the productivity of many economic crops. The present study was conducted to evaluate the potentiality of some xerophytic plants as eco-friendly approach for management of F. oxysporum. Phenolic rich extracts from five plants namely: Horwoodia dicksoniae, Citrullus colocynthis, Gypsophila capillaris, Pulicaria incisa and Rhanterium epapposum were examined in vitro. The different extracts showed high variability in their phenolic and flavonoid contents as well as total antioxidant capacity. A strong positive correlation existed between the antifungal activity of the tested extracts and their contents of both total phenolics and flavonoids (r values are 0.91 and 0.82, respectively). Extract of P. incisa was the most effective in reducing the mycelial growth (IC 50 =0.92mg/ml) and inhibiting the activities of CMCase, pectinase, amylase and protease by 36, 42, 58 and 55%, respectively. The high performance liquid chromatography analysis of P. incisa extract revealed the presence of eight phenolic acids along with five polyphenolic compounds. The flavonol, quercetin and its glycosides rutin and quercetrin were the most abundant followed by the phenolic acids, t-cinnamic, caffeic, ferulic and vanillic. P. incisa extract not only affects the growth and hydrolases of F. oxysporum but also induces ultrastructure changes in the mycelium, as revealed by transmission electron microscopy. To our knowledge, this is the first study to investigate the mechanisms underlying the antifungal activity of P. incisa. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effects of oligosaccharides from endophytic Fusarium oxysporum Dzf17 on activities of defense-related enzymes in Dioscorea zingiberensis suspension cell and seedling cultures

    Directory of Open Access Journals (Sweden)

    Peiqin Li

    2014-07-01

    Conclusions: Both EOS and WOS significantly increased the activities of PAL, PPO and POD in the suspension cell and seedling cultures of D. zingiberensis. The results suggested that the oligosaccharides from the endophytic fungus F. oxysporum Dzf17 may be related to the activation and enhancement of the defensive mechanisms of D. zingiberensis suspension cell and seedling cultures.

  20. Genome Sequence of an Endophytic Fungus, Fusarium solani JS-169, Which Has Antifungal Activity.

    Science.gov (United States)

    Kim, Jung A; Jeon, Jongbum; Park, Sook-Young; Kim, Ki-Tae; Choi, Gobong; Lee, Hyun-Jung; Kim, Yangsun; Yang, Hee-Sun; Yeo, Joo-Hong; Lee, Yong-Hwan; Kim, Soonok

    2017-10-19

    An endophytic fungus, Fusarium solani strain JS-169, isolated from a mulberry twig, showed considerable antifungal activity. Here, we report the draft genome sequence of this strain. The assembly comprises 17 scaffolds, with an N 50 value of 4.93 Mb. The assembled genome was 45,813,297 bp in length, with a G+C content of 49.91%. Copyright © 2017 Kim et al.

  1. Zoneamento e identificação de Fusarium spp. causadores de podridão de raízes em plantios de erva-mate (Ilex paraguariensis A. St.-Hil. na região do vale do Taquarí, RS

    Directory of Open Access Journals (Sweden)

    Igor Poletto

    2006-01-01

    Full Text Available In 2004, symptoms of root rot disease were observed in erva-mate plantings in high areas of Region Taquari Valley, RS. With the help of EMATER, the municipal districts presenting plantings with symptoms were surveyed. In 10% of the affected plantings, root samples were collected and sent for analysis at the Plant Disease Laboratory at the Department of Plant Protection/CCR/UFSM. Five different species of at fungus Fusarium associated with the disease were isolated and identified: Fusarium oxysporum, Fusarium solani, Fusarium decemcellulare, Fusarium tabacinum and Fusarium tricinctum. All species were pathogenic when inoculated in erva-mate plants (Ilex paraguariensis A. St.-Hil.. At the moment of sampling, information about the management of the erva-mate plantings was obtained and the similarity between the symptoms presented in erva-mate and in agronomic crops discussed, as well as hypotheses on the origin of the inoculum of Fusarium spp. that infected the erva-mate plantings.

  2. Functional characterization of the gene FoOCH1 encoding a putative α-1,6-mannosyltransferase in Fusarium oxysporum f. sp. cubense.

    Science.gov (United States)

    Li, Min-Hui; Xie, Xiao-Ling; Lin, Xian-Feng; Shi, Jin-Xiu; Ding, Zhao-Jian; Ling, Jin-Feng; Xi, Ping-Gen; Zhou, Jia-Nuan; Leng, Yueqiang; Zhong, Shaobin; Jiang, Zi-De

    2014-04-01

    Fusarium oxysporum f. sp. cubense (FOC) is the causal agent of banana Fusarium wilt and has become one of the most destructive pathogens threatening the banana production worldwide. However, few genes related to morphogenesis and pathogenicity of this fungal pathogen have been functionally characterized. In this study, we identified and characterized the disrupted gene in a T-DNA insertional mutant (L953) of FOC with significantly reduced virulence on banana plants. The gene disrupted by T-DNA insertion in L953 harbors an open reading frame, which encodes a protein with homology to α-1,6-mannosyltransferase (OCH1) in fungi. The deletion mutants (ΔFoOCH1) of the OCH1 orthologue (FoOCH1) in FOC were impaired in fungal growth, exhibited brighter staining with fluorescein isothiocyanate (FITC)-Concanavalin A, had less cell wall proteins and secreted more proteins into liquid media than the wild type. Furthermore, the mutation or deletion of FoOCH1 led to loss of ability to penetrate cellophane membrane and decline in hyphal attachment and colonization as well as virulence to the banana host. The mutant phenotypes were fully restored by complementation with the wild type FoOCH1 gene. Our data provide a first evidence for the critical role of FoOCH1 in maintenance of cell wall integrity and virulence of F. oxysporum f. sp. cubense. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis.

    Science.gov (United States)

    Castillejo, María Ángeles; Bani, Moustafa; Rubiales, Diego

    2015-07-01

    Fusarium oxysporum f. sp. pisi (Fop) is an important and destructive pathogen affecting pea crop (Pisum sativum) throughout the world. Control of this disease is achieved mainly by integration of different disease management procedures. However, the constant evolution of the pathogen drives the necessity to broaden the molecular basis of resistance to Fop. Our proteomic study was performed on pea with the aim of identifying proteins involved in different resistance mechanisms operating during F. oxysporum infection. For such purpose, we used a two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MALDI-TOF/TOF) analysis to study the root proteome of three pea genotypes showing different resistance response to Fop race 2. Multivariate statistical analysis identified 132 differential protein spots under the experimental conditions (genotypes/treatments). All of these protein spots were subjected to mass spectrometry analysis to deduce their possible functions. A total of 53 proteins were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. The following main functional categories were assigned to the identified proteins: carbohydrate and energy metabolism, nucleotides and aminoacid metabolism, signal transduction and cellular process, folding and degradation, redox and homeostasis, defense, biosynthetic process and transcription/translation. Results obtained in this work suggest that the most susceptible genotypes have increased levels of enzymes involved in the production of reducing power which could then be used as cofactor for enzymes of the redox reactions. This is in concordance with the fact that a ROS burst occurred in the same genotypes, as well as an increase of PR proteins. Conversely, in the resistant genotype proteins responsible to induce changes in the membrane and cell wall composition related to reinforcement were identified. Results are discussed in terms of the differential response to Fop

  4. Arabidopsis thaliana resistance to fusarium oxysporum 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection.

    Directory of Open Access Journals (Sweden)

    Yunping Shen

    2013-05-01

    Full Text Available In the plant Arabidopsis thaliana, multiple quantitative trait loci (QTLs, including RFO2, account for the strong resistance of accession Columbia-0 (Col-0 and relative susceptibility of Taynuilt-0 (Ty-0 to the vascular wilt fungus Fusarium oxysporum forma specialis matthioli. We find that RFO2 corresponds to diversity in receptor-like protein (RLP genes. In Col-0, there is a tandem pair of RLP genes: RFO2/At1g17250 confers resistance while RLP2 does not. In Ty-0, the highly diverged RFO2 locus has one RLP gene conferring weaker resistance. While the endogenous RFO2 makes a modest contribution to resistance, transgenic RFO2 provides strong pathogen-specific resistance. The extracellular leucine-rich repeats (eLRRs in RFO2 and RLP2 are interchangeable for resistance and remarkably similar to eLRRs in the receptor-like kinase PSY1R, which perceives tyrosine-sulfated peptide PSY1. Reduced infection in psy1r and mutants of related phytosulfokine (PSK receptor genes PSKR1 and PSKR2 shows that tyrosine-sulfated peptide signaling promotes susceptibility. The related eLRRs in RFO2 and PSY1R are not interchangeable; and expression of the RLP nPcR, in which eLRRs in RFO2 are replaced with eLRRs in PSY1R, results in constitutive resistance. Counterintuitively, PSY1 signaling suppresses nPcR because psy1r nPcR is lethal. The fact that PSK signaling does not similarly affect nPcR argues that PSY1 signaling directly downregulates the expression of nPcR. Our results support a speculative but intriguing model to explain RFO2's role in resistance. We propose that F. oxysporum produces an effector that inhibits the normal negative feedback regulation of PSY1R, which stabilizes PSY1 signaling and induces susceptibility. However, RFO2, acting as a decoy receptor for PSY1R, is also stabilized by the effector and instead induces host immunity. Overall, the quantitative resistance of RFO2 is reminiscent of the better-studied monogenic resistance traits.

  5. Potential of Burkholderia seminalis TC3.4.2R3 as Biocontrol Agent Against Fusarium oxysporum Evaluated by Mass Spectrometry Imaging

    Science.gov (United States)

    Araújo, Francisca Diana da Silva; Araújo, Welington Luiz; Eberlin, Marcos Nogueira

    2017-05-01

    Species of genus Burkholderia display different interaction profiles in the environment, causing either several diseases in plants and animals or being beneficial to some plants, promoting their growth, and suppressing phytopathogens. Burkholderia spp. also produce many types of biomolecules with antimicrobial activity, which may be commercially used to protect crops of economic interest, mainly against fungal diseases. Herein we have applied matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate secondary metabolites produced by B. seminalis TC3.4.2R3 in monoculture and coculture with plant pathogen Fusarium oxysporum. The siderophore pyochelin and the rhamnolipid Rha-Rha-C15-C14 were detected in wild-type B. seminalis strain, and their productions were found to vary in mutant strains carrying disruptions in gene clusters associated with antimicrobial compounds. Two mycotoxins were detected in F. oxysporum. During coculture with B. seminalis, metabolites probably related to defense mechanisms of these microorganisms were observed in the interspecies interaction zone. Our findings demonstrate the effective application of MALDI-MSI in the detection of bioactive molecules involved in the defense mechanism of B. seminalis, and these findings suggest the potential use of this bacterium in the biocontrol of plant diseases caused by F. oxysporum.

  6. [Effect of aeration on composting of date palm residues contaminated with Fusarium oxysporum f.sp. albedinis].

    Science.gov (United States)

    Chakroune, K; Bouakka, M; Hakkou, A

    2005-01-01

    Composting of date palm (Phoenix dactylifera L.) residues contaminated with Fusarium f.sp oxysporum albedinis, causal agent of the vascular wilt (Bayoud) of the date palm, has been achieved. The effect of the aeration of the piles by manual turning has been studied. The maintenance of an adequate humidity of 60%-70%, necessary to the good progress of the composting process, required the contribution of 11.4 L of water/kg of the dried residues. The evolution of the temperatures in the three piles presents the same phases. A latency phase, followed after 2-3 d of composting by a thermophilic phase, which lasts about 24 d, where the temperature remains elevated between 50 and 70 degrees C. Then a cooling phase that takes about 15 d, during which the temperatures fall to values between 25 and 35 degrees C, near room temperature. Fusarium f.sp oxysporum albedinis is eliminated completely during the thermophilic phase of composting, and increasing frequencies of turning accelerate its disappearance to a certain extent. On the other hand, pH remained steady and relatively basic oscillating between 8.2 and 8.7. Ninety percent (90%) of the the date palm residues are composed exclusively of organic matters. The total nitrogen represents only 0.4%. The contribution of manure decreases the ratio of carbon to nitrogen (C/N) from 115 to 48 in the initial mixture. After 80 d of composting and according to the frequency of return up, there is a reduction of the granulometry of the substratum, the C/N ratio (from 29% to 44%), the organic matter (from 15% to 23%), the total volume (from 25% to 35%), and of the dry weight of the swaths (from 16% to 24%). On the other hand there is an increase in total nitrogen rate (from 20% to 40%) and in the mineral matter (from 23% to 35%).

  7. RNAi-mediated silencing of MAP kinase signalling genes (Fmk1, Hog1, and Pbs2) in Fusarium oxysporum reduces pathogenesis on tomato plants.

    Science.gov (United States)

    Pareek, Manish; Rajam, Manchikatla Venkat

    2017-09-01

    Fusarium oxysporum is a soil-borne plant fungal pathogen, and causes colossal losses in several crop plants including tomato. Effective control measures include the use of harmful fungicides and resistant cultivars, but these methods have shown limited success. Conventional methods to validate fungal pathogenic genes are labour intensive. Therefore, an alternative strategy is required to efficiently characterize unknown pathogenic genes. RNA interference (RNAi) has emerged as a potential tool to functionally characterize novel fungal pathogenic genes and also to control fungal diseases. Here, we report an efficient method to produce stable RNAi transformants of F. oxysporum using Agrobacterium-mediated transformation (AMT). We have transformed F. oxysporum spores using RNAi constructs of Fmk1, Hog1, and Pbs2 MAP kinase signalling genes. Fmk1 RNAi fungal transformants showed loss of surface hydrophobicity, reduced invasive growth on tomato fruits and hypo-virulence on tomato seedlings. Hog1 and Pbs2 RNAi transformants showed altered conidial size, and reduced invasive growth and pathogenesis. These results showed that AMT using RNAi constructs is an effective approach for dissecting the role of genes involved in pathogenesis in F. oxysporum and this could be extended for other fungal systems. The obtained knowledge can be easily translated for developing fungal resistant crops by RNAi. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. Three Fusarium oxysporum mitogen-activated protein kinases (MAPKs) have distinct and complementary roles in stress adaptation and cross-kingdom pathogenicity.

    Science.gov (United States)

    Segorbe, David; Di Pietro, Antonio; Pérez-Nadales, Elena; Turrà, David

    2017-09-01

    Mitogen-activated protein kinase (MAPK) cascades mediate cellular responses to environmental signals. Previous studies in the fungal pathogen Fusarium oxysporum have revealed a crucial role of Fmk1, the MAPK orthologous to Saccharomyces cerevisiae Fus3/Kss1, in vegetative hyphal fusion and plant infection. Here, we genetically dissected the individual and combined contributions of the three MAPKs Fmk1, Mpk1 and Hog1 in the regulation of development, stress response and virulence of F. oxysporum on plant and animal hosts. Mutants lacking Fmk1 or Mpk1 were affected in reactive oxygen species (ROS) homeostasis and impaired in hyphal fusion and aggregation. Loss of Mpk1 also led to increased sensitivity to cell wall and heat stress, which was exacerbated by simultaneous inactivation of Fmk1, suggesting that both MAPKs contribute to cellular adaptation to high temperature, a prerequisite for mammalian pathogens. Deletion of Hog1 caused increased sensitivity to hyperosmotic stress and resulted in partial rescue of the restricted colony growth phenotype of the mpk1Δ mutant. Infection assays on tomato plants and the invertebrate animal host Galleria mellonella revealed distinct and additive contributions of the different MAPKs to virulence. Our results indicate that positive and negative cross-talk between the three MAPK pathways regulates stress adaptation, development and virulence in the cross-kingdom pathogen F. oxysporum. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  9. Cross-talk interactions of exogenous nitric oxide and sucrose modulates phenylpropanoid metabolism in yellow lupine embryo axes infected with Fusarium oxysporum.

    Science.gov (United States)

    Morkunas, Iwona; Formela, Magda; Floryszak-Wieczorek, Jolanta; Marczak, Łukasz; Narożna, Dorota; Nowak, Witold; Bednarski, Waldemar

    2013-10-01

    The aim of the study was to examine cross-talk of exogenous nitric oxide (NO) and sucrose in the mechanisms of synthesis and accumulation of isoflavonoids in embryo axes of Lupinus luteus L. cv. Juno. It was verified whether the interaction of these molecules can modulate the defense response of axes to infection and development of the pathogenic fungus Fusarium oxysporum f. sp. lupini. Sucrose alone strongly stimulated a high level of genistein glucoside in axes pretreated with exogenous nitric oxide (SNP or GSNO) and non-pretreated axes. As a result of amplification of the signal coming from sucrose and GSNO, high isoflavonoids accumulation was observed (+Sn+GSNO). It needs to be stressed that infection in tissues pretreated with SNP/GSNO and cultured on the medium with sucrose (+Si+SNP/+Si+GSNO) very strongly enhances the accumulation of free isoflavone aglycones. In +Si+SNP axes phenylalanine ammonia-lyase activity was high up to 72h. As early as at 12h in +Si+SNP axes an increase was recorded in gene expression level of the specific isoflavonoid synthesis pathway. At 24h in +Si+SNP axes a very high total antioxidant capacity dependent on the pool of fast antioxidants was noted. Post-infection generation of semiquinone radicals was lower in axes with a high level of sucrose than with a deficit. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Evaluation of biological control of fusarium wilt in gerbera with Trichoderma asperellum

    Directory of Open Access Journals (Sweden)

    Daiani Brandler

    2017-09-01

    Full Text Available The increase in flower cultivation in recent years has been reflecting the higher incidence of soil pathogens that can cause serious problems. This study aimed to evaluate the biological control of Fusarium wilt in gerbera with Trichoderma asperellum. The evaluated treatments were: T1 Control, only sterile substrate; T2 Substrate + Fusarium oxysporum; T3 Substrate + Fusarium oxysporum + Trichoderma asperellum; and T4 Substrate + Trichoderma asperellum. For this, the pathogen was isolated from gerbera with disease symptoms and, subsequently, it was identified according to morphological characters. Furthermore, the degree of antagonism of T. asperellum against F. oxysporum was evaluated through the culture pairing test. For greenhouse evaluations, commercial autoclaved substrate was used and infested with corn grains infected by the pathogen. Morphological identification confirmed the pathogen species as Fusarium oxysporum. In the culture pairing test, it was found that T. asperellum did not present a high degree of antagonism. The plants cultivated on substrate infested by the pathogen had no visible symptoms of wilt, but the substrate infestation with the pathogen provided lower values of fresh and dry mass of shoots and roots. The treatment with T. asperellum obtained higher values of fresh and dry mass of both shoots and roots, and also more vigorous inflorescences in relation to the plants treated with the pathogen

  11. A simple culture method inducing sexual reproduction by Fusarium graminearum, the primary causal agent of Fusarium head blight

    Science.gov (United States)

    The homothallic ascomycete fungus Fusarium graminearum is the primary causal agent of Fusarium head blight (FHB), a devastating disease of wheat and barley worldwide. The fungus undergoes both asexual and sexual stages in its life cycle. The asexual stage produces conidiospores, whereas the sexual s...

  12. Production of extracellular lipase by the phytopathogenic fungus Fusarium solani FS1

    OpenAIRE

    Maia, Maria de Mascena Diniz; Morais, Marcia Maria Camargo de; Morais Jr., Marcos Antonio de; Melo, Eduardo Henrique Magalhães; Lima Filho, José Luiz de

    1999-01-01

    A Brazilian strain of Fusarium solani was tested for extracellular lipase production in peptone-olive oil medium. The fungus produced 10,500 U.l-1 of lipase after 72 hours of cultivation at 25oC in shake-flask at 120 rpm in a medium containing 3% (w/v) peptone plus 0.5% (v/v) olive oil. Glucose (1% w/v) was found to inhibit the inductive effect of olive oil. Peptone concentrations below 3% (w/v) resulted in a reduced lipase production while increased olive oil concentration (above 0.5%) did n...

  13. NADPH-dependent D-aldose reductases and xylose fermentation in Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Christakopoulos, P.

    2004-01-01

    for NADPH over NADH. In this study, the influence of aeration and the response to the addition of electron acceptors on xylose fermentation by F. oxysporum were also studied. The batch cultivation of F. oxysporum on xylose was performed under aerobic, anaerobic and oxygen-limited conditions in stirred tank...... conditions (0.3 vvm). When the artificial electron acceptor acetoin was added to an anaerobic batch fermentation of xylose by F. oxysporum, the ethanol yield increased while xylitol excretion was also decreased....

  14. INFLUENCE OF ROOTSTOCKS ON Fusarium WILT, NEMATODE INFESTATION, YIELD AND FRUIT QUALITY IN WATERMELON PRODUCTION

    Directory of Open Access Journals (Sweden)

    Juan Carlos Álvarez-Hernández

    2015-08-01

    Full Text Available Cucurbita maxima x Cucurbita moschata rootstock are used to prevent infection with Fusarium oxysporum f. sp. niveum in watermelon production; however, this rootstock is not effective against nematode attack. Because of their vigor, the grafted plants can be planted at lower plant densities than the non-grafted plants. The tolerance to Fusarium oxysporum f. sp. niveum and Meloidogyne incognita was assessed in watermelon plants grafted onto a hybrid of Citrullus lanatus cv Robusta or the Cucurbita maxima x Cucurbita moschata cv Super Shintoza rootstocks. The densities of plants were 2083 and 4166 plants ha-1. Non-grafted watermelons were the controls. The Crunchy Red and Sangría watermelon cultivars were used as the scions, it the latter as a pollinator. The experiments were performed for two production cycles in soils infested with Fusarium oxysporum f. sp. niveum and Meloidogyne incognita. The incidence of Fusarium oxysporum f. sp. niveum was significantly greater in the non-grafted than in the grafted plants. The grafted plants presented similar resistance to Fusarium regardless of the rootstock. The root-knot galling index for Meloidogyne incognita was significantly lower in plants grafted onto Citrullus lanatus cv Robusta than onto the other rootstock. The yields of plants grafted onto Citrullus lanatus cv Robusta grown at both plant densities were significantly higher than in the other treatments.

  15. Determinación de las razas fisiológicas de Fusarium Oxysporum f.sp. Dianthi en clavel en la Sabana de Bogotá Determination of physiological races of Fussrium Oxysporium f.sp. Dianthi in carnation in the savanna of Bogotá

    Directory of Open Access Journals (Sweden)

    Cevallos José Francisco

    1990-12-01

    Full Text Available El marchitamiento vascular del clavel ocasionado por el hongo Fusarium oxysporum f. sp. dianthi es la enfermedad más limitante en el cultivo del clavel en la Sabana de Bogotá. Aunque el uso de variedades resistentes es un método promisorio y económ ico para el manejo de la enfermedad, algunas variedades no se comportan de una manera similar en su resistencia en diferentes fincas, y hay evidencias de la variabilidad del patógeno. El objetivo del trabajo fue determinar las posibles razas fisiológicas del hongo en la Sabana de Bogotá. Cien aislamientos del patógeno se obtuvieron en 49 fincas de plantas de clavel estándar, ecotipos "americano" y "mediterráneo", y de clavel miniatura afectadas por la enfermedad y ubicadas en diferentes áreas, los aislamientos del hongo se inocularon en las variedades diferenciales Duca, Pink Calypso, Raggio di Sole y San
    Remo. Noventa y siete de los cien aislamientos probados correspondieron a la raza 2, que es la raza más frecuente en el mundo y los otros tres aislamientos correspondieron a la raza 4, que es prevalente en Italia.Vascular wilt caused by the fungus Fusarium oxysporum f. sp. dianthi is the most important disease on carnation in Colombia. Although the use of resistant varieties is an economical and promlsmg method for the management of the disease, some varietiss do not behave in a similar way
    in different farms, and there are evidences of the variability ofthe pathogen. The objective of this research was to determine the presence of physiological races, of the pathogen in the Bogota Plateau. One hundred isolates
    of the pathogen were obtained in 49 farms from different varieties of standar and miniature carnation affected by the disease. The isolates of the fungus were ínoculated
    in four differential varieties: Duca, Pink Calypso, Raggio di Sole and San Remo. Ninety seven isolates corresponded to the race 2, that is the most frequent race in the world and the other three

  16. ASAI ISOLAT BAKTERI KITINOLITIK BACILLUS SP. BK17 PADA MEDIA PEMBAWA TANAH GAMBUT DAN KOMPOS JANJANG KELAPA SAWIT DALAM MENGHAMBAT PERTUMBUHAN JAMUR PATOGEN SCLEROTIUM ROLFSII DAN FUSARIUM OXYSPORUM PADA KECAMBAH CABAI

    Directory of Open Access Journals (Sweden)

    Deswidya Hutauruk

    2016-10-01

    Full Text Available Assay of chitinolytic bacterial isolate of Bacillus sp. Bk17 in peat and palm oil bunch compost as carrier media in inhibiting Sclerotium rolfsii and Fusarium oxysporum of chilli seedlings. Sclerotium rolfsii and Fusarium oxysporum have been known as causal agents of seedling-off of chilli. Biological control has been used as an alternative control to replace chemical control. This study was aimed to determine the viability and ability of chitinolityc bacteria Bacillus sp. BK17 in carrier media of peat and palm oil bunch compost and in growing media to control seedling-off caused by S. rolfsii dan F. oxysporum of chilli. Our previous study showed that Bacillus sp. BK17 could reduce disease severity and intensity. Bacterial viability was measured as colony number grown after 90 days of storage in minimum salt medium with colloidal chitin as sole C source. Reduction of disease infection was measured as seedling number infected by S. rolfsii dan F. oxysporum. Seedling performances were measured as seedling height, leaf number and dry-weight after 30-days of growth. The result showed that bacterial cell viability was still high in both peat and palm oil bunch compost both with and without colloidal chitin addition after 90 days of storage. It was also shown that during application bacterial cell could grow. Seedling performaces i.e. seedling height, leaf number and dry-weight showed to be normal or even increase compared to those of pathogenic fungal inoculation only and (- control.

  17. Evaluating methyl jasmonate for induction of resistance to Fusarium oxysporum, F. circinatum and Ophiostoma novo-ulmi

    Energy Technology Data Exchange (ETDEWEB)

    Vivas, M.; Martin, J. a.; Gil, L.; Solla, A.

    2012-11-01

    Damping off is probably the most common disease affecting seedlings in forest nurseries. In south-western Europe, the pitch canker and the Dutch elm disease cause relevant economic looses in forests, mostly in adult trees. The ability of the chemical plant elicitor methyl jasmonate (MeJA) to induce resistance in Pinus pinaster against Fusarium oxysporum and F. circinatum, and in Ulmus minor against Ophiostoma novo-ulmi was examined. In a first experiment, an aqueous solution of MeJA 5 mM was applied to P. pinaster seeds by immersion or spray, and different concentrations of MeJA (0, 0.1, 0.5, 1, 5 and 10 mM) were tested in seedlings before inoculations with F. oxysporum (105 and 107 spores mL{sup -}1). In a second experiment, 6-months-old P. pinaster seedlings were sprayed with 0 and 25 mM of MeJA, and later challenged with mycelium of F. circinatum. Finally, 4-year-old U. minor trees were sprayed with 0, 50 and 100 mM of MeJA and subsequently inoculated with O. novo-ulmi (106 spores mL{sup -}1). MeJA did not protect P. pinaster seeds and seedlings against F. oxysporum, probably because plants were too young for the physiological mechanisms responsible for resistance to be induced. Based on the morphological changes observed in the treated 6-months-old P. pinaster seedlings (reduction of growth and increased resin duct density), there is evidence that MeJA could have activated the mechanisms of resistance. However, 25 mM MeJA did not reduce plant mortality, probably because the spread of the virulent F. circinatum strain within the tree tissues was faster than the formation of effective defense responses. Based on the lack of phenological changes observed in the treated elms, there is no evidence that MeJA would cause induction of resistance. These results suggest that the use of MeJA to prevent F. oxysporum and F. circinatum in P. pinaster seedlings in nurseries and O. novo-ulmi in U. minor trees should be discarded. (Author) 42 refs.

  18. Screening fusarium resistant rootstocks for plant parasitic nematode resistance

    Science.gov (United States)

    The phase out of methyl bromide has directed research toward alternative methods of managing soil-borne pathogens. A limiting factor in many watermelon producing regions is Fusarium wilt caused by the soil-borne fungi Fusarium oxysporum f.sp. niveum (FON). There is no varietal resistance to FON depl...

  19. Reduction of Fusarium wilt in watermelon by Pseudomonas chlororaphis PCL1391 and P. fluorescens WCS365

    Directory of Open Access Journals (Sweden)

    G.T. Tziros

    2007-12-01

    Full Text Available Fusarium wilt of watermelon (Citrullus lanatus caused by Fusarium oxysporum f. sp. niveum is a devastatine soil-borne disease that causes extensive losses throughout the world. Two known Pseudomonas biocontrol strains were used separately and in combination to assess their antagonistic effectiveness against F. oxysporum f. sp. niveum in pot experiments. P. chlororaphis PCL1391 signifi cantly reduced disease severity. P. fl uorescens WCS365 was less effective in disease suppression, while a combination of the two bacteria had intermediate effects. The biological control of Fusarium wilt with P. chlororaphis offers a potentially useful tool in an integrated pest management program to control Fusarium wilt of watermelon.

  20. Genetic relatedness of Trichoderma isolates antagonistic against Fusarium oxysporum f.sp. dianthi inflicting carnation wilt.

    Science.gov (United States)

    Shanmugam, V; Sharma, Vivek; Ananthapadmanaban

    2008-01-01

    Twenty-eight isolates of Trichoderma belonging to four different species were screened in vitro for their antagonistic ability against Fusarium oxysporum f.sp. dianthi causing carnation wilt. Three different levels of antagonism observed in dual plate assay were further confirmed by cell-free culture filtrate experiments. Isolates showing class I level of antagonism produced maximum lytic enzymes, chitinases and beta-1,3-glucanases. Genetic variability of 25 selected isolates was assessed by random amplified polymorphic DNA technique and the amplified products were correlated for their level of antagonism. Unweighed pair-group method with arithmetical averages cluster analysis revealed prominent inter-and intraspecific genetic variation among the isolates. Based on their genetic relationship, the isolates were mainly distributed into 3 major groups representing T. atroviride, T. pseudokoningii and T. harzianum, with 20-35% interspecific dissimilarity. However, the polymorphism shown by the isolates did not correlate to their level of antagonism.

  1. Transcriptome Profiling of Resistance to Fusarium oxysporum f. sp. conglutinans in Cabbage (Brassica oleracea Roots.

    Directory of Open Access Journals (Sweden)

    Miaomiao Xing

    Full Text Available Fusarium wilt caused by Fusarium oxysporum f. sp. conglutinans (FOC is a destructive disease of Brassica crops, which results in severe yield losses. There is little information available about the mechanism of disease resistance. To obtain an overview of the transcriptome profiles in roots of R4P1, a Brassica oleracea variety that is highly resistant to fusarium wilt, we compared the transcriptomes of samples inoculated with FOC and samples inoculated with distilled water. RNA-seq analysis generated more than 136 million 100-bp clean reads, which were assembled into 62,506 unigenes (mean size = 741 bp. Among them, 49,959 (79.92% genes were identified based on sequence similarity searches, including SwissProt (29,050, 46.47%, Gene Ontology (GO (33,767, 54.02%, Clusters of Orthologous Groups (KOG (14,721, 23.55% and Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG (12,974, 20.76% searches; digital gene expression analysis revealed 885 differentially expressed genes (DEGs between infected and control samples at 4, 12, 24 and 48 hours after inoculation. The DEGs were assigned to 31 KEGG pathways. Early defense systems, including the MAPK signaling pathway, calcium signaling and salicylic acid-mediated hypersensitive response (SA-mediated HR were activated after pathogen infection. SA-dependent systemic acquired resistance (SAR, ethylene (ET- and jasmonic (JA-mediated pathways and the lignin biosynthesis pathway play important roles in plant resistance. We also analyzed the expression of defense-related genes, such as genes encoding pathogenesis-related (PR proteins, UDP-glycosyltransferase (UDPG, pleiotropic drug resistance, ATP-binding cassette transporters (PDR-ABC transporters, myrosinase, transcription factors and kinases, which were differentially expressed. The results of this study may contribute to efforts to identify and clone candidate genes associated with disease resistance and to uncover the molecular mechanism underlying

  2. Mycological survey of Korean cereals and production of mycotoxins by Fusarium isolates.

    OpenAIRE

    Lee, U S; Jang, H S; Tanaka, T; Toyasaki, N; Sugiura, Y; Oh, Y J; Cho, C M; Ueno, Y

    1986-01-01

    The fungal species isolated from Korean cereals (barley, polished barley, wheat, rye, and malt) were Alternaria spp., Aspergillus spp., Chaetomium spp., Drechslera spp., Epicoccum sp., Fusarium spp., and Penicillium spp., etc. The number of Fusarium strains isolated was 36, and their ability to produce Fusarium mycotoxins on rice was tested. Nivalenol (NIV) was produced by Fusarium graminearum (7 of 9 isolates), Fusarium oxysporum (3 of 10 isolates), and Fusarium spp. (7 of 15 isolates). Of 1...

  3. Heterotrophic Bioleaching of Sulfur, Iron, and Silicon Impurities from Coal by Fusarium oxysporum FE and Exophiala spinifera FM with Growing and Resting Cells.

    Science.gov (United States)

    Etemadzadeh, Shekoofeh Sadat; Emtiazi, Giti; Etemadifar, Zahra

    2016-06-01

    Coal is the most abundant fossil fuel containing sulfur and other elements which promote environmental pollution after burning. Also the silicon impurities make the transportation of coal expensive. In this research, two isolated fungi from oil contaminated soil with accessory number KF554100 (Fusarium oxysporum FE) and KC925672 (Exophiala spinifera FM) were used for heterotrophic biological leaching of coal. The leaching were detected by FTIR, CHNS, XRF analyzer and compared with iron and sulfate released in the supernatant. The results showed that E. spinifera FM produced more acidic metabolites in growing cells, promoting the iron and sulfate ions removal while resting cells of F. oxysporum FE enhanced the removal of aromatic sulfur. XRF analysis showed that the resting cells of E. spinifera FM proceeded maximum leaching for iron and silicon (48.8, 43.2 %, respectively). CHNS analysis demonstrated that 34.21 % of sulfur leaching was due to the activities of resting cells of F. oxysporum FE. Also F. oxysporum FE removed organic sulfur more than E. spinifera FM in both growing and resting cells. FTIR data showed that both fungi had the ability to remove pyrite and quartz from coal. These data indicated that inoculations of these fungi to the coal are cheap and impurity removals were faster than autotrophic bacteria. Also due to the removal of dibenzothiophene, pyrite, and quartz, we speculated that they are excellent candidates for bioleaching of coal, oil, and gas.

  4. IDENTIFICATION OF DIFFERENT FUSARIUM SPP. IN ALLIUM SPP. IN GERMANY.

    Science.gov (United States)

    Boehnke, B; Karlovsky, P; Pfohl, K; Gamliel, A; Isack, Y; Dehne, H W

    2015-01-01

    In 2013 Allium cepa bulbs from different fields in Northern and Southern Germany, seeds and sets from onion breeders were analysed for infestation with Fusarium species. The same investigation was done in 2014 with different edible Allium spp. from local markets. Different Fusarium spp. were isolated and identified by morphological characterisation. 24 different Fusarium spp. were identified. The diversity of Fusarium spp. and the intensity of infestation was higher on edible bulbs compared to the younger sets and seeds. The analysed onions and other edible Allium spp. from local markets showed also high contents of different Fusarium species. The most prevalent identified Fusarium sp. in the analysed Allium spp. in Germany was Fusarium oxysporum which can cause the Fusarium Basal Rot, followed by Fusarium solani. Fusarium proliferatum, which can cause the Fusarium Salmon Blotch in onions, could be detected in about half of the sampled onion fields and in approximately 10% of all analysed onions from fields. Also in the onion sets, on the surface of the seeds and in other edible Allium spp. F. proliferatum could be identified. Besides F. proliferatum, further mycotoxin producing Fusarium spp. like Fusarium equiseti or Fusarium tricinctum were identified. Other Fusarium spp. like Fusarium sporotrichioides and Fusarium poae were first described in Allium sp. in this study. The two most prevalent Fusarium spp. F. oxysporum and F. solani are able to produce mycotoxins like enniatins, fumonisins, moniliformin and T-2 toxins. Fusarium sp. like F. proliferatum, F. equiseti and F. tricinctum are able to produce additional toxins like beauvericins, zearalenone and diacetoscirpenol. This high number of Fusarium spp., which are able to produce a broad spectrum of different mycotoxins, could be a potential health risk for human beings and livestock.

  5. Wilted cucumber plants infected by Fusarium oxysporum f. sp. cucumerinum do not suffer from water shortage.

    Science.gov (United States)

    Sun, Yuming; Wang, Min; Li, Yingrui; Gu, Zechen; Ling, Ning; Shen, Qirong; Guo, Shiwei

    2017-09-01

    Fusarium wilt is primarily a soil-borne disease and results in yield loss and quality decline in cucumber (Cucumis sativus). The main symptom of fusarium wilt is the wilting of entire plant, which could be caused by a fungal toxin(s) or blockage of water transport. To investigate whether this wilt arises from water shortage, the physiological responses of hydroponically grown cucumber plants subjected to water stress using polyethylene glycol (PEG, 6000) were compared with those of plants infected with Fusarium oxysporum f. sp. cucumerinum (FOC). Parameters reflecting plant water status were measured 8d after the start of treatment. Leaf gas exchange parameters and temperature were measured with a LI-COR portable open photosynthesis system and by thermal imaging. Chlorophyll fluorescence and chloroplast structures were assessed by imaging pulse amplitude-modulated fluorometry and transmission electron microscopy, respectively. Cucumber water balance was altered after FOC infection, with decreased water absorption and hydraulic conductivity. However, the responses of cucumber leaves to FOC and PEG differed in leaf regions. Under water stress, measures of lipid peroxidation (malondialdehyde) and chlorophyll fluorescence indicated that the leaf edge was more seriously injured, with a higher leaf temperature and disrupted leaf water status compared with the centre. Here, abscisic acid (ABA) and proline were negatively correlated with water potential. In contrast, under FOC infection, membrane damage and a higher temperature were observed in the leaf centre while ABA and proline did not vary with water potential. Cytologically, FOC-infected cucumber leaves exhibited circular chloroplasts and swelled starch grains in the leaf centre, in which they again differed from PEG-stressed cucumber leaves. This study illustrates the non-causal relationship between fusarium wilt and water transport blockage. Although leaf wilt occurred in both water stress and FOC infection, the

  6. Biopesticide effect of green compost against fusarium wilt on melon plants.

    Science.gov (United States)

    Ros, M; Hernandez, M T; Garcia, C; Bernal, A; Pascual, J A

    2005-01-01

    The biopesticide effect of four green composts against fusarium wilt in melon plants and the effect of soil quality in soils amended with composts were assayed. The composts consisted of pruning wastes, with or without addition of coffee wastes (3/1 and 4/1, dry wt/dry wt) or urea (1000/1, dry wt/dry wt). In vitro experiments suggested the biopesticide effect of the composts against Fusarium oxysporum, while only the compost of pine bark and urea (1000/1dry wt/dry wt) had an abiotic effect. Melon plant growth with composts and F. oxysporum was one to four times greater than in the non-amended soil, although there was no significant decrease in the level of the F. oxysporum in the soil. The addition of composts to the soil also improved its biological quality, as assessed by microbiological and biochemical parameters: ATP and hydrolases involved in the P (phosphatase), C (beta-glucosidase) and N (urease) cycles. Green composts had greater beneficial characteristics, improved plant growth and controlled fusarium wilt in melon plants. These composts improve the soil quality of semi-arid agricultural soils. Biotic and abiotic factors from composts have been tested as responsible of their biopesticide activity against fusarium wilt.

  7. Structural and Biochemical Changes in Salicylic-Acid-Treated Date Palm Roots Challenged with Fusarium oxysporum f. sp. albedinis

    Directory of Open Access Journals (Sweden)

    Abdelhi Dihazi

    2011-01-01

    Full Text Available Histochemical and ultrastructural analyses were carried out to assess structural and biochemical changes in date palm roots pretreated with salicylic acid (SA then inoculated with Fusarium oxysporum f. sp. albedinis (Foa. Flavonoids, induced proteins, and peroxidase activity were revealed in root tissues of SA-treated plants after challenge by Foa. These reactions were closely associated with plant resistance to Foa. Host reactions induced after inoculation of SA-treated plants with Foa included the plugging of intercellular spaces, the deposition of electron-dense materials at the sites of pathogen penetration, and several damages to fungal cells. On the other hand, untreated inoculated plants showed marked cell wall degradation and total cytoplasm disorganization, indicating the protective effects provided by salicylic acid in treated plants.

  8. An allene oxide and 12-oxophytodienoic acid are key intermediates in jasmonic acid biosynthesis by Fusarium oxysporum.

    Science.gov (United States)

    Oliw, Ernst H; Hamberg, Mats

    2017-08-01

    Fungi can produce jasmonic acid (JA) and its isoleucine conjugate in large quantities, but little is known about the biosynthesis. Plants form JA from 18:3 n -3 by 13 S -lipoxygenase (LOX), allene oxide synthase, and allene oxide cyclase. Shaking cultures of Fusarium oxysporum f. sp. tulipae released over 200 mg of jasmonates per liter. Nitrogen powder of the mycelia expressed 10 R -dioxygenase-epoxy alcohol synthase activities, which was confirmed by comparison with the recombinant enzyme. The 13 S -LOX of F. oxysporum could not be detected in the cell-free preparations. Incubation of mycelia in phosphate buffer with [17,17,18,18,18- 2 H 5 ]18:3 n -3 led to biosynthesis of a [ 2 H 5 ]12-oxo-13-hydroxy-9 Z ,15 Z -octadecadienoic acid (α-ketol), [ 2 H 5 ]12-oxo-10,15 Z -phytodienoic acid (12-OPDA), and [ 2 H 5 ]13-keto- and [ 2 H 5 ]13 S -hydroxyoctadecatrienoic acids. The α-ketol consisted of 90% of the 13 R stereoisomer, suggesting its formation by nonenzymatic hydrolysis of an allene oxide with 13 S configuration. Labeled and unlabeled 12-OPDA were observed following incubation with 0.1 mM [ 2 H 5 ]18:3 n -3 in a ratio from 0.4:1 up to 47:1 by mycelia of liquid cultures of different ages, whereas 10 times higher concentration of [ 2 H 5 ]13 S -hydroperoxyoctadecatrienoic acid was required to detect biosynthesis of [ 2 H 5 ]12-OPDA. The allene oxide is likely formed by a cytochrome P450 or catalase-related hydroperoxidase. We conclude that F. oxysporum , like plants, forms jasmonates with an allene oxide and 12-OPDA as intermediates. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  9. Linkage mapping in a watermelon population segregating for fusarium wilt resistance

    Science.gov (United States)

    Leigh K. Hawkins; Fenny Dane; Thomas L. Kubisiak; Billy B. Rhodes; Robert L. Jarret

    2001-01-01

    Isozyme, randomly amplified polymorphic DNA (RAPD), and simple sequence repeats (SSR) markers were used to generate a linkage map in an F2 and F3 watermelon (Citrullus lanatus (Thumb.) Matsum. & Nakai) population derived from a cross between the fusarium wilt (Fusarium oxysporum f....

  10. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Hokyoung Son

    2011-10-01

    Full Text Available Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The fungus produces mycotoxins that are harmful to animal and human. In this study, a systematic analysis of 17 phenotypes of the mutants in 657 Fusarium graminearum genes encoding putative transcription factors (TFs resulted in a database of over 11,000 phenotypes (phenome. This database provides comprehensive insights into how this cereal pathogen of global significance regulates traits important for growth, development, stress response, pathogenesis, and toxin production and how transcriptional regulations of these traits are interconnected. In-depth analysis of TFs involved in sexual development revealed that mutations causing defects in perithecia development frequently affect multiple other phenotypes, and the TFs associated with sexual development tend to be highly conserved in the fungal kingdom. Besides providing many new insights into understanding the function of F. graminearum TFs, this mutant library and phenome will be a valuable resource for characterizing the gene expression network in this fungus and serve as a reference for studying how different fungi have evolved to control various cellular processes at the transcriptional level.

  11. Statistical optimization of culture conditions for the production of enniatins H, I, and MK1688 by Fusarium oxysporum KFCC 11363P.

    Science.gov (United States)

    Lee, Hee-Seok; Kang, Jea-Wook; Kim, Byung Hee; Park, Sang-Gyu; Lee, Chan

    2011-03-01

    The aim of this study was to optimize the culture conditions for the production of biological cyclic hexadepsipeptides (enniatins H, I and MK1688) from Fusarium oxysporum KFCC 11363P. Tests of 10 complete or chemically defined liquid culture media revealed that Fusarium defined medium was the best for the production of enniatins (produced amounts: enniatin H, 185.4 mg/L; enniatin I, 349.1mg/L; enniatin MK1688, 541.1mg/L; and total enniatins, 1075.6 mg/L). On the eighth day after inoculation, the maximal production of enniatins was observed at 25°C in Fusarium defined medium. The optimal carbon and nitrogen sources for producing biological cyclic hexadepsipeptides (enniatins H, I, and MK1688) were sucrose and NaNO(3), respectively, and their optimal concentrations were determined by the principle of response surface methodology. It was confirmed that using the optimized growth medium compositions increased the amounts of enniatins H, I, and MK1688, and total enniatins produced to 695.2, 882.4, 824.8, and 2398.5mg/L, respectively. These findings will assist in formulating microbiological media useful for enniatin research. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape-gooseberry- and tomato-infecting formae speciales of Fusarium oxysporum.

    Science.gov (United States)

    Simbaqueba, Jaime; Catanzariti, Ann-Maree; González, Carolina; Jones, David A

    2018-05-22

    RNAseq reads from cape-gooseberry plants (Physalis peruviana) infected with Fusarium oxysporum f. sp. physali (Foph) were mapped against the lineage-specific transcriptome of Fusarium oxysporum f. sp. lycopersici (Fol) to look for putative effector genes. Homologues of Fol SIX1 (designated SIX1a and SIX1b), SIX7, SIX10, SIX12, SIX15 and Ave1 were identified. The near identity of the Foph and Fol SIX7, SIX10 and SIX12 genes and their intergenic regions suggest that this gene cluster may have undergone recent lateral transfer. Foph SIX1a and SIX1b were tested for their ability to complement a SIX1 knockout mutant of Fol. This mutant has reduced pathogenicity on susceptible tomato plants, but is able to infect otherwise resistant tomato plants carrying the I-3 gene for Fusarium wilt resistance (SIX1 corresponds to Avr3). Neither, SIX1a nor SIX1b could restore full pathogenicity on susceptible tomato plants, suggesting that any role they may play in pathogenicity is likely to be specific to cape gooseberry. SIX1b, but not SIX1a, was able to restore avirulence on tomato plants carrying I-3. These findings separate the recognition of SIX1 from its role as an effector and suggest direct recognition by I-3. A hypervariable region of SIX1 undergoing diversifying selection within the F. oxysporum species complex is likely to play an important role in SIX1 recognition. These findings also indicate that I-3 could potentially be deployed as a transgene in cape gooseberry to protect this emerging crop from Foph. Alternatively, cape gooseberry germplasm could be explored for I-3 homologues capable of providing resistance to Foph. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  13. Biosorption of thorium(IV) from aqueous solution by living biomass of marine-derived fungus Fusarium sp. ZZF51

    International Nuclear Information System (INIS)

    Yang, S.K.; Tan, N.; Wu, W.L.; Hou, X.J.; Xiang, K.X.; Lin, Y.C.

    2015-01-01

    The biosportion of Th(IV) by the marine-derived Fungus Fusarium sp. ZZF51 was study. The Biosorption was found to be at a maximum (79.24 %), in a solution containing 50 mg Th/L, at pH 5.0, with 0.28 g dry biomass. The Temkin isotherm model and pseudo-second-order kinetic model was found to fit the data very well over the entire range of concentrations. The FTIR analysis reveals that the carboxyl, amino and hydroxyl groups on the cell wall of Fusarium sp. ZZF51 play an important role in Th(IV) biosorption process. (author)

  14. Biological Control of Fusarium Wilt of Tomato – A Review | Monda ...

    African Journals Online (AJOL)

    Fusarium wilt of tomato (Lycopersicum esculentum) caused by Fusarium oxysporum f.sp. lycopersici leads to high losses of tomatoes in many countries. Increasing restraints on the use of pesticides encourages adoption of use of alternative strategies of controlling the disease. Alternative strategies include use of biocontrol ...

  15. INDUCCIÓN DE DOS ENZIMAS PECTOLÍTICAS EN EL MODELO Fusarium oxysporum f. sp. dianthi - CLAVEL

    Directory of Open Access Journals (Sweden)

    Liliana Goméz García

    2008-03-01

    Full Text Available Se estudió por ensayos in vitro la posible participación de las enzimas endopoligalacturonasa (PG (EC.3.2.1.15 y pectato liasa (PL (EC.4.2.2.2, consideradas factores de virulencia en el proceso de infección del clavel por el hongo Fusarium oxysporum f. sp. dianthi (FOD.Los resultados muestran la inducción de la expresión de la enzima PG en presencia de los inductores artificiales, ácido poligalacturónico (APG y pectina, y un nivel de expresión muy bajo en cultivos con pared celular (PC de clavel de variedades resistente y susceptible. La enzima PL no presentó expresión en presencia de inductores artificiales (APG y pectina, mientras que en cultivos inducidos con pared celular de raíz presentó un alto nivel de expresión.

  16. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors.

    Science.gov (United States)

    Thatcher, Louise F; Williams, Angela H; Garg, Gagan; Buck, Sally-Anne G; Singh, Karam B

    2016-11-03

    Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing necrotrophic fungi. We previously developed a model legume-infecting pathosystem based on the reference legume Medicago truncatula and a pathogenic F. oxysporum forma specialis (f. sp.) medicaginis (Fom). To dissect the molecular pathogenicity arsenal used by this root-infecting pathogen, we sequenced its transcriptome during infection of a susceptible and resistant host accession. High coverage RNA-Seq of Fom infected root samples harvested from susceptible (DZA315) or resistant (A17) M. truncatula seedlings at early or later stages of infection (2 or 7 days post infection (dpi)) and from vegetative (in vitro) samples facilitated the identification of unique and overlapping sets of in planta differentially expressed genes. This included enrichment, particularly in DZA315 in planta up-regulated datasets, for proteins associated with sugar, protein and plant cell wall metabolism, membrane transport, nutrient uptake and oxidative processes. Genes encoding effector-like proteins were identified, including homologues of the F. oxysporum f. sp. lycopersici Secreted In Xylem (SIX) proteins, and several novel candidate effectors based on predicted secretion, small protein size and high in-planta induced expression. The majority of the effector candidates contain no known protein domains but do share high similarity to predicted proteins predominantly from other F. oxysporum ff. spp. as well as other Fusaria (F. solani, F. fujikori, F. verticilloides, F. graminearum and F. pseudograminearum), and from another wilt pathogen of the same class, a Verticillium species. Overall, this suggests these novel effector candidates may play important roles in Fusaria and wilt pathogen virulence. Combining high coverage in planta RNA-Seq with knowledge of fungal pathogenicity

  17. ANTAGONISMO IN VITRO DE Trichoderma harzianum Rifai SOBRE Fusarium oxysporum Schlecht f. sp passiflorae EN MARACUYÁ (Passiflora edulis Sims var. Flavicarpa DEL MUNICIPIO ZONA BANANERA COLOMBIANA ANTAGONISM IN VITRO OF Trichoderma harzianum Rifai AGAINST Fusarium oxysporum Schlecht f. sp passiflorae IN PASSION FRUIT (Passiflora edulis Sims var. Flavicarpa FROM COLOMBIAN BANANERA ZONE MUNICIPALITY

    Directory of Open Access Journals (Sweden)

    Reinel José Fernández Barbosa

    2009-06-01

    Full Text Available Fusarium oxysporum Schlecht f. sp passiflorae causa la marchitez del maracuyá (Passiflora edulis Sims var. Flavicarpa, afectando su rendimiento. En la búsqueda de alternativas para su control se realizó la presente investigación con el objetivo de determinar la capacidad antagónica de 6 aislamientos de Trichoderma harzianum sobre dicho patógeno. Se evaluaron 3 aislamientos comerciales (TCC-001, TCC-005 y TCC-006 y 3 aislamientos nativos de suelo cultivado con palma de aceite en el Centro de Investigación Caribia de Corpoica (TCN-009, TCN-010, TCN-014. Se hizo la prueba in vitro empleando la técnica de cultivo dual en platos Petri con Agar Sabouraud. Se evaluó competencia por nutrientes y espacio, micoparasitismo y porcentaje de inhibición del crecimiento radial (PICR, por 10 días a 28 ºC. Se estableció un diseño completamente aleatorio, con 13 tratamientos y 3 repeticiones. Todos los aislamientos de T. harzianum superaron en crecimiento a F. oxysporum con radios de de 7,42 cm en cultivo dual. Mientras que el patógeno mostró un radio de 1,99 cm. TCN-009 y TCC-006 expresaron los mejores radios al crecer 4 veces mas rápido que F. oxysporum y reducir 3 veces menos el RCP con respecto al testigo, sin diferencias significativas entre estos tratamientos (P=0,0001; además, produjeron el mayor PICR a los 10 días con valores de 64,61 y 65,91%, respectivamente. No hubo diferencias significativas al comparar los aislamientos comerciales y nativos; sin embargo, por la naturaleza autóctona TCN-009, resulta ser a nivel in vitro, el aislamiento mas promisorio en el biocontrol de F. oxysporum por hallarse en condiciones agroclimáticas similares en la Zona Bananera Colombiana.Fusarium oxysporum Schlecht f. sp passiflorae cause withering of the passion fruit (Passiflora edulis Sims var. Flavicarpa, affecting their performance. In the search of alternatives for its control was carried out the present investigation with the objective of

  18. Eksplorasi Fusarium Nonpatogen untuk Pengendalian Penyakit Busuk Pangkal pada Bawang Merah

    Directory of Open Access Journals (Sweden)

    Umi Sallamatul Isniah

    2015-02-01

    Full Text Available Fusarium oxysporum f. sp. cepae causing basal rot disease is one of an important constrains in shallot productions. Result from several studies showed that non-pathogenic F.  oxysporum was very potential to control fusarium basal rot in shallot. This study was conducted to explore non-pathogenic isolates of F. oxysporum from shallot fields which might be effective for controlling basal rot disease.  Eighteen out of 21 isolates did not cause any disease symptom, they even promoted shallot growth when inoculated onto bulbs. Three out of 18 selected isolates, i.e. P13a, T14a, and P21a were the most effective isolates in controlling the disease in two consecutive experiments with level of efficacy ranges from 61.2% to 83.3%. This level of efficacy was higher than those of fungicide (benomyl treatment.

  19. Cutinase production by Fusarium oxysporum in liquid medium using central composite design.

    Science.gov (United States)

    Pio, Tatiana Fontes; Macedo, Gabriela Alves

    2008-01-01

    The objective of the present study was to measure the production of cutinase by Fusarium oxysporum in the presence of several carbon and nitrogen sources (glycides, fatty acids and oils, and several organic and inorganic nitrogen sources), trying to find a cost-effective substitute for cutin in the culture medium as an inducer of cutinase production. The results were evaluated by the Tukey test, and flaxseed oil was found to give the best results as a cutinase inducer. The authors optimized the composition of the growth medium employing response surface methodology. The experimental results were fitted to a second-order polynomial model at a 95% level of significance (p < 0.05). The greatest cutinolytic activity was obtained in a liquid mineral medium supplemented with flaxseed oil, showing an increase in enzymatic activity from 11 to 22.68 U/mL after 48 h of fermentation. A CCD study of the fermentation conditions was carried out, and the best production of cutinase was registered with the use of 30 degrees C and 100 rpm. These results support the use of flaxseed oil as a substitute for cutin, which is difficult and expensive to obtain, for the production of cutinase in a larger scale.

  20. Fed-batch culture for the direct conversion of cellulosic substrates to acetic acid/ethanol by Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.K.R.; Singh, A.; Schuegerl, K. (Hannover Univ. (Germany). Inst. fuer Technische Chemie)

    1991-01-01

    The production of acetic acid/ethanol and hydrolytic enzymes from potato waste (cellulosic waste from potato starch industries) by Fusarium oxysporum 841 was improved considerably by using fed-batch culture. In this, two types of feed policies were adopted consisting of different substrate concentrations and feeding times. In fed-batch culture, the enzymes tested, namely avicelase, CMCase, cellobiase and xylanase, showed significant improvements over batch fermentations with regard to enzyme titres and productivities. The maximum concentration, yield and productivity of acetic acid were 22.5 g litre{sup -1}, 0.38 g (g {sub strate}){sup -1} and 0.09 g litre{sup -1} h{sup -1}, respectively, and these values for ethanol were 5.7 g litre{sup -1}, 0.1 g (g substrate){sup -1} and 0.03 g litre{sup -1}h{sup -1}, respectively. (author).

  1. H1-A, a compound isolated from Fusarium oxysporum inhibits hepatitis C virus (HCV) NS3 serine protease.

    Science.gov (United States)

    Yang, Li-Yuan; Lin, Jun; Zhou, Bin; Liu, Yan-Gang; Zhu, Bao-Quan

    2016-04-01

    The present study was aimed to isolate the active compounds from the fermentation products of Fusarium oxysporum, which had hepatitis C virus (HCV) NS3 protease inhibitory activity. A bioactive compound was isolated by reverse-phase silica-gel column chromatography, silica-gel column chromatography, semi-preparative reverse-phase High Performance Liquid Chromatography (HPLC), and then its molecular structure was elucidated based on the spectrosopic analysis. As a result, the compound (H1-A, 1) Ergosta-5, 8 (14), 22-trien-7-one, 3-hydroxy-,(3β, 22E) was isolated and identified. To the best of our knowledge, this was the first report on the isolation of H1-A from microorganisms with the inhibitory activity of NS3 protease. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  2. EVALUACIÓN DE MICROORGANISMOS AISLADOS DE GALLINAZA POR SU POTENCIAL PARA EL BIOCONTROL DE FUSARIUM (F. OXYSPORUM EN PLÁNTULAS DE UCHUVA (PHYSALIS PERUVIANA EVALUATION OF MICROORGANISMS INSOLATED FROM HEN MANURE FOR THEIR POTENCIAL AS BIOCONTROL AGENTS OF FUSARIUM (F. OXYSPORUM IN GOOSEBERRY (PHYSALIS PERUVIANA SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Rodríguez Amézquita

    2010-12-01

    Full Text Available En Colombia, las pérdidas económicas ocasionadas por Fusarium oxysporum en el cultivo de uchuva son considerables. Se evaluaron hongos y bacterias aislados de 2 fuentes de gallinaza, su potencial como agentes de biocontrol de este patógeno. La evaluación se realizó en cajas de Petri con PDA para lo cual se colocó en el centro de las mismas, un disco de 5 mm de diámetro colonizado por el patógeno y a 3 cm del centro, sobre los ejes horizontal y vertical, cada uno de los aislamientos de la gallinaza. Los aislamientos que mostraron antagonismo fueron posteriormente evaluados in vitro por su capacidad de restringir el crecimiento y esporulación de F. oxysporum. Cada uno de los aislamientos que mostró el mayor potencial antagónico fue inoculado simultáneamente con el patógeno en plántulas de uchuva y evaluado por sus efectos en contra de la incidencia de la enfermedad y la muerte de las plántulas. Los resultados indicaron que de los 39 microorganismos aislados de la gallinaza pura, 6 mostraron antagonismo contra F. oxysporum y entre ellos los más efectivos para restringir in vitro su crecimiento y esporulación fueron los hongos H2 y H6 y las bacterias B17 y B19. Las bacterias B17 y B19 resultaron ser las más efectivas en reducir no sólo la incidencia sino también la muerte de plántulas ocasionada por el patógeno. Según los resultados de la identificación, los hongos H2 y H6 pertenecen a los géneros Geotrichum sp. y Trichoderma sp, respectivamente y las bacterias B17 y B19 al género Bacillus.In Colombia, economic losses due to attack of Fusarium oxysporum in the gooseberry plantation are considerable. Fungi and bacteria isolated from 2 hen manure sources were evaluated for their potential as biological control agents of this pathogen. The evaluation was conducted in Petri dishes containing PDA by placing a 5 mm diameter disk, colonized by this pathogen, in the center of the plates and at 3 cm from the center, over the

  3. Biological control of Egyptian broomrape (Orobanche aegyptiaca using Fusarium spp.

    Directory of Open Access Journals (Sweden)

    I. Ghannam

    2007-08-01

    Full Text Available The broomrape (Orobanche spp. is an obligate holoparasitic weed that causes severe damage to many important vegetable crops. Many broomrape control strategies have been tested over the years. In this investigation, 125 Fusarium spp. isolates were recovered from diseased broomrape spikes collected from fields in agricultural areas near Hebron. The pathogenicity of isolates on broomrape was evaluated using an inoculum suspension containing mycelia and conidia. The most effective Fusarium isolates significantly increased the dead spikes of broomrape by 33.6–72.7% compared to the control; there was no obvious pathogenic effect on the tomato plants. Fusarium spp. isolates Fu 20, 25 and 119 were identified as F. solani, while Fu 30, 52, 59, 87 and 12-04 were F. oxysporum. In addition, the two previously known Fusarium strains, F. oxysporum strain EId (CNCM-I-1622 (Foxy and F. arthrosporioides strain E4a (CNCM-I-1621 (Farth were equally effective in controlling broomrape parasitizing tomato plants grown in pots, where the dead spikes of broomrape increased by 50.0 and 51.6%, respectively.

  4. Dynamics of Colonization and Expression of Pathogenicity Related Genes in Fusarium oxysporum f.sp. ciceri during Chickpea Vascular Wilt Disease Progression.

    Directory of Open Access Journals (Sweden)

    Medha L Upasani

    Full Text Available Fusarium wilt caused by Fusarium oxysporum f.sp. ciceri (Foc is a constant threat to chickpea productivity in several parts of the world. Understanding the molecular basis of chickpea-Foc interaction is necessary to improve chickpea resistance to Foc and thereby the productivity of chickpea. We transformed Foc race 2 using green fluorescent protein (GFP gene and used it to characterize pathogen progression and colonization in wilt-susceptible (JG62 and wilt-resistant (Digvijay chickpea cultivars using confocal microscopy. We also employed quantitative PCR (qPCR to estimate the pathogen load and progression across various tissues of both the chickpea cultivars during the course of the disease. Additionally, the expression of several candidate pathogen virulence genes was analyzed using quantitative reverse transcriptase PCR (qRT-PCR, which showed their characteristic expression in wilt-susceptible and resistant chickpea cultivars. Our results suggest that the pathogen colonizes the susceptible cultivar defeating its defense; however, albeit its entry in the resistant plant, further proliferation is severely restricted providing an evidence of efficient defense mechanism in the resistant chickpea cultivar.

  5. Micorrização e indução de quitinases e β-1,3-glucanases e resistência à fusariose em porta-enxerto de videira Mycorrhizal inoculation and induction of chitinases and β-1,3-glucanases and fusarium resistance in grapevine rootstock

    Directory of Open Access Journals (Sweden)

    Murilo Dalla Costa

    2010-04-01

    Full Text Available O objetivo deste trabalho foi avaliar os níveis de expressão de β-1,3-glucanases e quitinases nos porta-enxertos de videira SO4 e R110, respectivamente suscetível e resistente a Fusarium oxysporum f. sp. herbemontis, bem como avaliar o efeito do fungo micorrízico arbuscular Glomus intraradices no crescimento, na expressão dessas enzimas e na supressão do patógeno no porta-enxerto suscetível. Foram quantificadas as atividades enzimáticas de β-1,3-glucanases e quitinases nas raízes dos porta-enxertos. Mudas do porta-enxerto SO4 receberam inóculos de G. intraradices e F. oxysporum, e foram avaliadas quanto ao crescimento, atividade das duas enzimas e sintomas de doença. As atividades das enzimas nas raízes do porta-enxerto resistente aumentaram entre 0 e 5 dias após a inoculação do patógeno. A atividade de quitinases nas raízes do porta-enxerto suscetível aumentou com a inoculação do fungo micorrízico e do patógeno. A atividade de β-1,3-glucanases foi maior somente com a presença do fungo micorrízico e do patógeno. Videiras com inoculação de G. intraradices apresentaram diminuição nos sintomas de infecção por Fusarium spp., o que indica que o fungo micorrízico promove a indução de quitinases e β-1,3-glucanases especificamente na supressão ou inibição do patógeno.The objective of this work was to evaluate the expression levels of β-1,3-glucanases and chitinases in SO4 and 110 grapevine rootstocks, respectively susceptible and resistant to Fusarium oxysporum f. sp. herbemontis, as well as to evaluate the effect of the arbuscular mycorrhizal fungus Glomus intraradices on plant growth, on enzyme expression and on pathogen suppression in the susceptible rootstock. The enzyme activities of β-1,3-glucanases and chitinases in the rootstocks roots were evaluated. Plant growth, enzyme activity, and disease symptoms were evaluated in SO4 plantlets inoculated with G. intraradices and F. oxysporum. Enzyme activities

  6. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum

    Science.gov (United States)

    Thatcher, Louise F.; Cevik, Volkan; Grant, Murray; Zhai, Bing; Jones, Jonathan D.G.; Manners, John M.; Kazan, Kemal

    2016-01-01

    In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen Pst DC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes. PMID:26896849

  7. [Effects of lime-ammonium bicarbonate fumigation and biofertilizer application on Fusarium wilt and biomass of continuous cropping cucumber and watermelon.

    Science.gov (United States)

    Shen, Zong Zhuan; Sun, Li; Wang, Dong Sheng; Lyu, Na Na; Xue, Chao; Li, Rong; Shen, Qi Rong

    2017-10-01

    In this study, the population size of soil microbes was determined using plate counting method after the application of lime-ammonium bicarbonate and ammonium bicarbonate fumigation. In addition, biofertilizer was applied after soil fumigation and population of Fusarium oxysporum, Fusarium wilt disease control efficiency and plant biomass were determined in the cucumber and watermelon continuous cropping soil. The results showed that the population of F. oxysporum in cucumber mono-cropped soil fumigated with lime-ammonium bicarbonate or ammonium bicarbonate was decreased by 95.4% and 71.4%, while that in watermelon mono-cropped soil was decreased by 87.3% and 61.2%, respectively compared with non-fumigated control (CK). Furthermore, the greenhouse experiment showed that biofertilizer application, soil fumigation and crop type showed significant effects on the number of soil F. oxysporum, Fusarium wilt disease incidence, disease control efficiency and plant biomass based on multivariate analysis of variance. In the lime-ammonium bicarbonate fumigated soil amended with biofertilizer (LFB), significant reductions in the numbers of F. oxysporum and Fusarium wilt disease incidence were observed in both cucumber and watermelon cropped soil compared to non-fumigated control soil applied with organic fertilizer. The disease control rate was 91.9% and 92.5% for cucumber and watermelon, respectively. Moreover, LFB also significantly increased the plant height, stem diameter, leaf SPAD, and dry biomass for cucumber and watermelon. It was indicated that biofertilizer application after lime-ammonium bicarbonate fumigation could effectively reduce the abundance of F. oxysporum in soil, control Fusarium wilt disease and improve plant biomass in cucumber and watermelon mono-cropping systems.

  8. Evaluation of potential bio-control agents on root-knot nematode ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-05-11

    May 11, 2016 ... fungus Fusarium oxysporum f.sp. conglutinans in vitro. Rajinikanth Rompalli ... Indigenous strains of Trichoderma viride (ITCC No. 6889), Pseudomonas ..... antibiotic rather than protein might be responsible for the nematicidal ...

  9. Use of Phenols, Peroxidase and Polyphenoloxidase of Seed to Quantify Resistance of Cotton Genotypes to Damping-off Incited by Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Heba I. Mohamed

    2014-03-01

    Full Text Available A greenhouse test was conducted in 2011 and 2012 growing seasons at Giza Agricultural Research Station to evaluate the reaction of six cotton genotypes to damping-off incited by Fusarium oxysporum. Damping-off incidence on the genotypes ranged from 70-88%. In general, the genotypes could be divided into highly susceptible, susceptible, and moderately susceptible. Data for damping-off incidence and level or activity of some biochemical components (phenols, peroxidase, and polyphenoloxidase were entered into a computerized linear regression analysis. The analysis contrasted seven predictive models by using the biochemical components, singly or in combination, as biochemical predictors. It was evident that models nos. 2 and 6 were the best models for predicting incidence of damping-off. The superiority of these models was attributed to their high RІ values (0.748 and 0.902, respectively and the significance of their F. values (P = 0.026 and P = 0.031, respectively. The results of the present study suggest that peroxidase alone or both peroxidase and polyphenoloxidase, which may or may not parts of damping-off resistance mechanisms, can be used as biochemical markers to predict resistance to damping-off incited by F. oxysporum.

  10. In vitro sensitivity of medically significant Fusarium species to various antimycotics.

    Science.gov (United States)

    Sekhon, A S; Padhye, A A; Garg, A K; Ahmad, H; Moledina, N

    1994-01-01

    Sixteen isolates belonging to Fusarium chlamydosporum (n = 4), Fusarium equiseti (n = 1), Fusarium moniliforme (n = 2), Fusarium oxysporum (n = 3), Fusarium proliferatum (n = 1), and Fusarium solani (n = 5) were tested against amphotericin B, 5-fluorocytosine, fluconazole, itraconazole, ketoconazole, JAI-amphotericin B (water-soluble compound), hamycin and amphotericin B combined with 5-fluorocytosine, using antibiotic medium M3, high-resolution broth (pH 7.1), Sabouraud's dextrose, and yeast-nitrogen broth media (1 ml/tube). The minimal inhibitory and minimal fungicidal concentrations of 5-fluorocytosine and fluconazole for all species were > 100 micrograms/ml. All Fusarium isolates, except F. equiseti (3.125 micrograms), gave minimal inhibitory concentrations of 12.5-100 micrograms/ml for hamycin. The values for amphotericin B, itraconazole, ketoconazole, JAI-amphotericin B, and amphotericin B combined with 5-fluorocytosine were 1.56-100, 0.78-50, 3.125-100,50-100, and 1.56 to > 100 micrograms/ml, respectively. Although a wide range of minimal inhibitory concentrations was recorded for most of the isolates studied, it appears that some--F. solani, F. oxysporum, F. chlamydosporum, F. equiseti, and F. moliniforme--were more susceptible to amphotericin B, itraconazole, ketoconazole, hamycin, and amphotericin B in the presence of 5-fluorocytosine. All isolates showed resistance to 5-fluorocytosine and fluconazole. The minimal fungicidal concentrations were either the same or several times higher than the minimal inhibitory concentrations.

  11. Comparative Digital Gene Expression Analysis of Tissue-Cultured Plantlets of Highly Resistant and Susceptible Banana Cultivarsin Response to Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Yuqing Niu

    2018-01-01

    Full Text Available Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc is one of the most destructive soil-borne diseases. In this study, young tissue-cultured plantlets of banana (Musa spp. AAA cultivars differing in Foc susceptibility were used to reveal their differential responses to this pathogen using digital gene expression (DGE. Data were evaluated by various bioinformatic tools (Venn diagrams, gene ontology (GO annotation and Kyoto encyclopedia of genes and genomes (KEGG pathway analyses and immunofluorescence labelling method to support the identification of gene candidates determining the resistance of banana against Foc. Interestingly, we have identified MaWRKY50 as an important gene involved in both constitutive and induced resistance. We also identified new genes involved in the resistance of banana to Foc, including several other transcription factors (TFs, pathogenesis-related (PR genes and some genes related to the plant cell wall biosynthesis or degradation (e.g., pectinesterases, β-glucosidases, xyloglucan endotransglucosylase/hydrolase and endoglucanase. The resistant banana cultivar shows activation of PR-3 and PR-4 genes as well as formation of different constitutive cell barriers to restrict spreading of the pathogen. These data suggest new mechanisms of banana resistance to Foc.

  12. Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato

    Directory of Open Access Journals (Sweden)

    Raheem Shahzad

    2017-03-01

    Full Text Available Fungal pathogenic attacks are one of the major threats to the growth and productivity of crop plants. Currently, instead of synthetic fungicides, the use of plant growth-promoting bacterial endophytes has been considered intriguingly eco-friendly in nature. Here, we aimed to investigate the in vitro and in vivo antagonistic approach by using seed-borne endophytic Bacillus amyloliquefaciens RWL-1 against pathogenic Fusarium oxysporum f. sp. lycopersici. The results revealed significant suppression of pathogenic fungal growth by Bacillus amyloliquefaciens in vitro. Further to this, we inoculated tomato plants with RWL-1 and F. oxysporum f. sp. lycopersici in the root zone. The results showed that the growth attributes and biomass were significantly enhanced by endophytic-inoculation during disease incidence as compared to F. oxysporum f. sp. lycopersici infected plants. Under pathogenic infection, the RWL-1-applied plants showed increased amino acid metabolism of cell wall related (e.g., aspartic acid, glutamic acid, serine (Ser, and proline (Pro as compared to diseased plants. In case of endogenous phytohormones, significantly lower amount of jasmonic acid (JA and higher amount of salicylic acid (SA contents was recorded in RWL-1-treated diseased plants. The phytohormones regulation in disease incidences might be correlated with the ability of RWL-1 to produce organic acids (e.g., succinic acid, acetic acid, propionic acid, and citric acid during the inoculation and infection of tomato plants. The current findings suggest that RWL-1 inoculation promoted and rescued plant growth by modulating defense hormones and regulating amino acids. This suggests that bacterial endophytes could be used for possible control of F. oxysporum f. sp. lycopersici in an eco-friendly way.

  13. A PCR-denaturing gradient gel electrophoresis (DGGE) approach to assess Fusarium diversity in asparagus

    NARCIS (Netherlands)

    Yergeau, E.; Filion, M.; Vujanovic, V.; St-Arnaud, M.

    2005-01-01

    In North America, asparagus (Asparagus officinalis) production suffers from a crown and root rot disease mainly caused by Fusarium oxysporum f. sp. asparagi and F. proliferatum. Many other Fusarium species are also found in asparagus fields, whereas accurate detection and identification of these

  14. Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum.

    Directory of Open Access Journals (Sweden)

    Ning Ling

    Full Text Available Grafting watermelon onto bottle gourd rootstock is commonly used method to generate resistance to Fusarium oxysporum f. sp. niveum (FON, but knowledge of the effect of the root exudates of grafted watermelon on this soil-borne pathogen in rhizosphere remains limited. To investigate the root exudate profiles of the own-root bottle gourd, grafted-root watermelon and own-root watermelon, recirculating hydroponic culture system was developed to continuously trap these root exudates. Both conidial germination and growth of FON were significantly decreased in the presence of root exudates from the grafted-root watermelon compared with the own-root watermelon. HPLC analysis revealed that the composition of the root exudates released by the grafted-root watermelon differed not only from the own-root watermelon but also from the bottle gourd rootstock plants. We identified salicylic acid in all 3 root exudates, chlorogenic acid and caffeic acid in root exudates from own-root bottle gourd and grafted-root watermelon but not own-root watermelon, and abundant cinnamic acid only in own-root watermelon root exudates. The chlorogenic and caffeic acid were candidates for potentiating the enhanced resistance of the grafted watermelon to FON, therefore we tested the effects of the two compounds on the conidial germination and growth of FON. Both phenolic acids inhibited FON conidial germination and growth in a dose-dependent manner, and FON was much more susceptible to chlorogenic acid than to caffeic acid. In conclusion, the key factor in attaining the resistance to Fusarium wilt is grafting on the non-host root stock, however, the root exudates profile also showed some contribution in inhibiting FON. These results will help to better clarify the disease resistance mechanisms of grafted-root watermelon based on plant-microbe communication and will guide the improvement of strategies against Fusarium-mediated wilt of watermelon plants.

  15. Production of diketopiperazine derivative cyclo (l-leu-l-arg) by streptomyces sp. tn262 after exposure to heat-killed fungus fusarium sp

    International Nuclear Information System (INIS)

    Elleuch, L.; Smaoui, S.; Najah, S.; Sellem, I

    2013-01-01

    In a screening program for new active secondary metabolites producers, a strain of Streptomyces called TN262 was isolated from Tunisian soil and selected for its ability to produce eleven active compounds in pure culture conditions. In this work, the effect of different concentrations of heat-killed fungus Fusarium sp. on the production of active compounds by TN262 strain was studied. The ethyl acetate extract from the culture of Streptomyces sp. TN262 combined with heat-killed Fusarium sp. at 50 micro g/ml inhibited the growth of the three used indicator microorganisms. In fact, an increase of 36%, 21% and 20% in inhibitory activity was obtained against Micrococcus luteus LB 14110, Escherichia coli ATCC 8739 and Fusarium sp. respectively. The HPLC chromatographic profiles of the ethyl acetate extracts from both culture conditions were different and an additional active compound was produced only under induced conditions. This active component was isolated and identified as Cyclo (L-Leu-L-Arg) (1), a diketopiperazine derivative, possessing antibacterial and antifungal activity. Consequently, this study showed that the addition of heat-killed fungus is a useful method for inducing the production of bioactive compounds. (author)

  16. Inoculation methods and aggressiveness of five Fusarium species against peach palm

    Directory of Open Access Journals (Sweden)

    Tiago Miguel Jarek

    2018-04-01

    Full Text Available ABSTRACT: Fusarium wilt is a major disease which affects peach palm (Bactris gasipaes Kunth.var gasipaes Henderson. This study aimed to evaluate inoculation methods and aggressiveness of isolates of five Fusarium species on peach palm. Fusarium proliferatum can infect the leaves, stem, and roots of peach palm. F. proliferatum, F. oxysporum species complex (FOSC, F. verticillioides, F. solani species complex (FSSC, and Gibberella fujikuroi species complex (GFSC are pathogenic to peach palm. The use of Fusarium-colonized ground corn for root inoculation was effective and reduced the level of damage to plants.

  17. Biotechnological tools against Fusarium oxysporum f. sp. cubense Tropical race 4 in Musa spp.

    Directory of Open Access Journals (Sweden)

    Idalmis Bermúdez-Caraballoso

    2014-10-01

    attacking Musa worldwide. Race 1 caused an epidemic that destroyed the banana export industry based cultivar ‘Gros Michel’ (Musa AAA in America as well as the disappearance of commercial production of cultivar ‘Manzano’ (Musa AAB in Cuba. The Foc tropical race 4 (TR4 was first recognized in 1990 in Taiwan, causing serious damage to the standards for the export crops sub Cavendish group in several countries in Southeast Asia. Most troubling is that over 80% banana cultivars produced worldwide are susceptibles to this race, and thus represents a potential risk for producing countries of Latin America and the Caribbean where threat has not yet reached the pathogen. This review was conducted with the aim of presenting the possible implications of the entry into Cuba of tropical race 4 of Panama disease and strategies to prevent future damages caused by the disease. Include aspects of the symptomatology of the disease, mechanisms of infection, pathogenic complexity and dispersion of the pathogen as well as several biotechnological tools against the disease among which are: varietal resistance, resistance inducers and development of tolerant cultivars. Key words: bananas, fungi disease, Fusarium oxysporum, plantains, varietal resistance

  18. Combinatorial efficacy of Trichoderma spp. and Pseudomonas fluorescens to enhance suppression of cell wall degrading enzymes produced by Fusarium wilt of Arachis hypogaea.L

    Directory of Open Access Journals (Sweden)

    P Rajeswari

    2017-12-01

    Full Text Available Fusarium oxysporum, the soil borne pathogen causes vascular wilt, on majority of crop plants. It has been demonstrated that two different species of Trichoderma and Pseudomonas fluorescens suppress disease by different mechanisms. Therefore, application of a mixture of these biocontrol agents, and thus of several suppressive mechanisms, may represent a viable control strategy. A necessity for biocontrol by combinations of biocontrol agents can be the compatibility of the co-inoculated micro-organisms. Hence, compatibility between Trichoderma spp. and Pseudomonas fluorescens that have the ability to suppress Fusarium oxysporum in vitro on the activity of pectinolytic enzymes of Fusarium oxysporum. The activity of pectinolytic enzymes, i.e. pectin methyl esterase, endo and exo polymethylgalacturonases and exo and endo pectin trans eliminases produced by Fusarium oxysporum (Control was higher. Maximum inhibition of pectin methylesterase, exo and endo polymethylgalacturonase and exo and endopectin trans eliminase was shown by culture filtrate of Trichoderma viride + Pseudomonas fluorescens (Tv+Pf (1+2%, followed by Trichoderma harzianum + Pseudomonas fluorescens, (Th +Pf (1.5+2% and Trichoderma viride + Trichoderma harzianum (Tv+Th (1+1.5%. However, pathogenecity suppression of Fusarium oxysporum, a causative of Arachis hypogaea. L by the compatible combination of Trichodema viride + Pseudomonas fluorescens (1+2% was significantly better as compared to the single bio-agent. This indicates that specific interactions between biocontrol agents influence suppression of pathogenicity factors directly by combinations of these compatible bio-agents.

  19. The Fusarium oxysporum gnt2, encoding a putative N-acetylglucosamine transferase, is involved in cell wall architecture and virulence.

    Directory of Open Access Journals (Sweden)

    Loida López-Fernández

    Full Text Available With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity.

  20. The Fusarium oxysporum gnt2, Encoding a Putative N-Acetylglucosamine Transferase, Is Involved in Cell Wall Architecture and Virulence

    Science.gov (United States)

    López-Fernández, Loida; Ruiz-Roldán, Carmen; Pareja-Jaime, Yolanda; Prieto, Alicia; Khraiwesh, Husam; Roncero, M. Isabel G.

    2013-01-01

    With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity. PMID:24416097

  1. Assessment of compost for suppression of Fusarium oxysporum and ...

    African Journals Online (AJOL)

    user

    2012-08-28

    Aug 28, 2012 ... Biological characteristics including compost inhabiting microbial ... A solid-liquid extraction was carried out then; pH was determined by using AS-501 pH ...... oxysporum in sweet basil. Crop Prot. ... Pesticide Biochem. Physiol.

  2. Development of DNA marker for Fusarium resistance in Pisang Berangan

    International Nuclear Information System (INIS)

    Affrida Abu Hassan; Mohd Nazir Basiran; Rosmawati Shaharuddin

    2000-01-01

    Fusarium wilt (Panama disease), a disease caused by a soil-bome fungus Fusarium oxysporum f. sp. cubense, is regarded as one of the most significant threats to banana (Musa spp.) production worldwide. In Malaysia, it is affecting the Cavendish as well as Pisang Berangan which are widely planted for export as well as for local consumption. Pisang Berangan mutant line (MB96) which was obtained through induced mutation by gamma irradiation has showed certain degree of tolerance towards the disease. Attempts were made to utilise Polymerase Chain Reaction (PCR) based techniques i.e. RAPD (Random Amplified Polymorphic DNA) to screen for unique DNA sequences that are associated or closely linked to these tolerance characteristics. Four single 1 Obp primers and five duplex 1 Obp primers combinations were used to detect polymorphism between the DNA of control and 4 mutant lines micropropagated from MB96. As further control, DNA of Pisang Mas was included. Duplex arbitrary primer combinations 11-89 and single primer OPA-3 have produced DNA fragments that are polymorphic between cultivar, Pisang Berangan and Pisang Mas. However the RAPD analysis failed to show any polymorphism between the control and the mutant lines or in between the mutant lines

  3. Biochemical characterization of Fusarium oxysporum f. sp. cubense ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-25

    Jan 25, 2010 ... qualities such as taste, aroma, color, fibrous texture and nutritional content. It has a .... instance two proteins of molecular weight 51.9 and 43.0. kDa were detected only .... Earlier investigations support this view in F. oxysporum f. sp. apii ... Comparison of multi-locus enzyme and protein gel electrophoresis in.

  4. Regulatory Mechanisms of a Highly Pectinolytic Mutant of Penicillium occitanis and Functional Analysis of a Candidate Gene in the Plant Pathogen Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Gustavo Bravo-Ruiz

    2017-09-01

    Full Text Available Penicillium occitanis is a model system for enzymatic regulation. A mutant strain exhibiting constitutive overproduction of different pectinolytic enzymes both under inducing (pectin or repressing conditions (glucose was previously isolated after chemical mutagenesis. In order to identify the molecular basis of this regulatory mechanism, the genomes of the wild type and the derived mutant strain were sequenced and compared, providing the first reference genome for this species. We used a phylogenomic approach to compare P. occitanis with other pectinolytic fungi and to trace expansions of gene families involved in carbohydrate degradation. Genome comparison between wild type and mutant identified seven mutations associated with predicted proteins. The most likely candidate was a mutation in a highly conserved serine residue of a conserved fungal protein containing a GAL4-like Zn2Cys6 binuclear cluster DNA-binding domain and a fungus-specific transcription factor regulatory middle homology region. To functionally characterize the role of this candidate gene, the mutation was recapitulated in the predicted orthologue Fusarium oxysporum, a vascular wilt pathogen which secretes a wide array of plant cell wall degrading enzymes, including polygalacturonases, pectate lyases, xylanases and proteases, all of which contribute to infection. However, neither the null mutant nor a mutant carrying the analogous point mutation exhibited a deregulation of pectinolytic enzymes. The availability, annotation and phylogenomic analysis of the P. occitanis genome sequence represents an important resource for understanding the evolution and biology of this species, and sets the basis for the discovery of new genes of biotechnological interest for the degradation of complex polysaccharides.

  5. The F-box protein Fbp1 functions in the invasive growth and cell wall integrity mitogen-activated protein kinase (MAPK) pathways in Fusarium oxysporum.

    Science.gov (United States)

    Miguel-Rojas, Cristina; Hera, Concepcion

    2016-01-01

    F-box proteins determine substrate specificity of the ubiquitin-proteasome system. Previous work has demonstrated that the F-box protein Fbp1, a component of the SCF(Fbp1) E3 ligase complex, is essential for invasive growth and virulence of the fungal plant pathogen Fusarium oxysporum. Here, we show that, in addition to invasive growth, Fbp1 also contributes to vegetative hyphal fusion and fungal adhesion to tomato roots. All of these functions have been shown previously to require the mitogen-activated protein kinase (MAPK) Fmk1. We found that Fbp1 is required for full phosphorylation of Fmk1, indicating that Fbp1 regulates virulence and invasive growth via the Fmk1 pathway. Moreover, the Δfbp1 mutant is hypersensitive to sodium dodecylsulfate (SDS) and calcofluor white (CFW) and shows reduced phosphorylation levels of the cell wall integrity MAPK Mpk1 after SDS treatment. Collectively, these results suggest that Fbp1 contributes to both the invasive growth and cell wall integrity MAPK pathways of F. oxysporum. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  6. New Geographical Insights of the Latest Expansion of Fusarium oxysporum f.sp. cubense Tropical Race 4 Into the Greater Mekong Subregion

    Directory of Open Access Journals (Sweden)

    Si-Jun Zheng

    2018-04-01

    Full Text Available Banana is the most popular and most exported fruit and also a major food crop for millions of people around the world. Despite its importance and the presence of serious disease threats, research into this crop is limited. One of those is Panama disease or Fusarium wilt. In the previous century Fusarium wilt wiped out the “Gros Michel” based banana industry in Central America. The epidemic was eventually quenched by planting “Cavendish” bananas. However, 50 years ago the disease recurred, but now on “Cavendish” bananas. Since then the disease has spread across South-East Asia, to the Middle-East and the Indian subcontinent and leaped into Africa. Here, we report the presence of Fusarium oxysporum f.sp. cubense Tropical Race 4 (Foc TR4 in “Cavendish” plantations in Laos, Myanmar, and Vietnam. A combination of classical morphology, DNA sequencing, and phenotyping assays revealed a very close relationship between the Foc TR4 strains in the entire Greater Mekong Subregion (GMS, which is increasingly prone to intensive banana production. Analyses of single-nucleotide polymorphisms enabled us to initiate a phylogeography of Foc TR4 across three geographical areas—GMS, Indian subcontinent, and the Middle East revealing three distinct Foc TR4 sub-lineages. Collectively, our data place these new incursions in a broader agroecological context and underscore the need for awareness campaigns and the implementation of validated quarantine measures to prevent further international dissemination of Foc TR4.

  7. Characterization of Fusarium isolates from asparagus fields in southwestern Ontario and influence of soil organic amendments on Fusarium crown and root rot.

    Science.gov (United States)

    Borrego-Benjumea, Ana; Basallote-Ureba, María J; Melero-Vara, José M; Abbasi, Pervaiz A

    2014-04-01

    Fusarium crown and root rot (FCRR) of asparagus has a complex etiology with several soilborne Fusarium spp. as causal agents. Ninety-three Fusarium isolates, obtained from plant and soil samples collected from commercial asparagus fields in southwestern Ontario with a history of FCRR, were identified as Fusarium oxysporum (65.5%), F. proliferatum (18.3%), F. solani (6.4%), F. acuminatum (6.4%), and F. redolens (3.2%) based on morphological or cultural characteristics and polymerase chain reaction (PCR) analysis with species-specific primers. The intersimple-sequence repeat PCR analysis of the field isolates revealed considerable variability among the isolates belonging to different Fusarium spp. In the in vitro pathogenicity screening tests, 50% of the field isolates were pathogenic to asparagus, and 22% of the isolates caused the most severe symptoms on asparagus. The management of FCRR with soil organic amendments of pelleted poultry manure (PPM), olive residue compost, and fish emulsion was evaluated in a greenhouse using three asparagus cultivars of different susceptibility in soils infested with two of the pathogenic isolates (F. oxysporum Fo-1.5 and F. solani Fs-1.12). Lower FCRR symptom severity and higher plant weights were observed for most treatments on 'Jersey Giant' and 'Grande' but not on 'Mary Washington'. On all three cultivars, 1% PPM consistently reduced FCRR severity by 42 to 96% and increased plant weights by 77 to 152% compared with the Fusarium control treatment. Populations of Fusarium and total bacteria were enumerated after 1, 3, 7, and 14 days of soil amendment. In amended soils, the population of Fusarium spp. gradually decreased while the population of total culturable bacteria increased. These results indicate that soil organic amendments, especially PPM, can decrease disease severity and promote plant growth, possibly by decreasing pathogen population and enhancing bacterial activity in the soil.

  8. Development of quantitative proteomics using iTRAQ based on the immunological response of Galleria mellonella larvae challenged with Fusarium oxysporum microconidia.

    Directory of Open Access Journals (Sweden)

    Amalia Muñoz-Gómez

    Full Text Available Galleria mellonella has emerged as a potential invertebrate model for scrutinizing innate immunity. Larvae are easy to handle in host-pathogen assays. We undertook proteomics research in order to understand immune response in a heterologous host when challenged with microconidia of Fusarium oxysporum. The aim of this study was to investigate hemolymph proteins that were differentially expressed between control and immunized larvae sets, tested with F. oxysporum at two temperatures. The iTRAQ approach allowed us to observe the effects of immune challenges in a lucid and robust manner, identifying more than 50 proteins, 17 of them probably involved in the immune response. Changes in protein expression were statistically significant, especially when temperature was increased because this was notoriously affected by F. oxysporum 104 or 106 microconidia/mL. Some proteins were up-regulated upon immune fungal microconidia challenge when temperature changed from 25 to 37°C. After analysis of identified proteins by bioinformatics and meta-analysis, results revealed that they were involved in transport, immune response, storage, oxide-reduction and catabolism: 20 from G. mellonella, 20 from the Lepidoptera species and 19 spread across bacteria, protista, fungi and animal species. Among these, 13 proteins and 2 peptides were examined for their immune expression, and the hypothetical 3D structures of 2 well-known proteins, unannotated for G. mellonella, i.e., actin and CREBP, were resolved using peptides matched with Bombyx mori and Danaus plexippus, respectively. The main conclusion in this study was that iTRAQ tool constitutes a consistent method to detect proteins associated with the innate immune system of G. mellonella in response to infection caused by F. oxysporum. In addition, iTRAQ was a reliable quantitative proteomic approach to detect and quantify the expression levels of immune system proteins and peptides, in particular, it was found that 104

  9. Respuesta de variedades de clavel a la inoculacion con Fusarium oxysporum f. Sp. dianthi y Phialophora cinerescens: produccion de fitoalexinas

    Directory of Open Access Journals (Sweden)

    Orozco de Amezquita Martha

    1997-06-01

    Full Text Available

    La resistencia del clavel a Fusarium oxysporum f. sp. dianthi se ha correlacionado con el metabolismo de compuestos fenólicos. Por lo tanto, con el fin de profundizar en el conocimiento de las relaciones que existen entre el patógeno vascular y su hospedante, en este trabajo, se propuso evaluar la producci6n de compuestos feno1icos en cinco variedades de clavel inoculadas con el aislamiento 15 de la raza 2, un aislamiento de la raza 4 y el aislamiento 71 de baja patogeninidad de Fusarium oxysporum f. sp. dianthi y un aislamiento de Phialophora cinerescens. En todas las variedades se presenta acumulación de compuestos fenolicos independientemente de si fueron o no inoculadas con los patógenos. La proporción de estos compuestos y el tipo de ellos fue diferente en los distintos tratamientos. Ya que los perfiles cromatograficos obtenidos en este experimento coinciden con los correspondientes a la muestra enviada por el doctor Schoffelmeer, se puede señalar que los compuestos separados por cromatografía corresponden a dianthialexinas, pero que, los resultados de este trabaje aun no permiten establecer su relación con las respuestas de resistencia.

    Palabras claves: Asistencia, Metabolismo, Compuestos fenólicos, Dianthialexinas.

  10. PENEKANAN PERKEMBANGAN PENYAKIT BUSUK BATANG VANILI (FUSARIUM OXYSPORUM F.SP. VANILLAE MELALUI SELEKSI ASAM FUSARAT SECARA IN VITRO

    Directory of Open Access Journals (Sweden)

    Endang Nurcahyani

    2013-09-01

    fungus has been initiated by in vitro selection on medium containing fusaric acid. The aims of this research were: (1 to investigate effective concentration of fusaric acid used for in vitro selection, (2 to characterize mutants which have been set up and also to test those mutants for their resistance to the fungus. The results showed that: (1 fusaric acid at the concentration of 110 ppm effectively suppressed the disease intensity up to 25% compared to the concentration of 90 ppm and 100 ppm. In other words, 110 ppm of fusaric acid has increased the category criterion from moderate to resistant, (2 there was an increase of the total phenol content and thickness of lignin in vanilla stem, and (3 the protein profile of vanilla plantlet was different from the control. There was an initiation of a new band of about 18 kD in a mutant predicted as a protein which is responsible for vanilla resistance to Fusarium.

  11. Análise proteômica de genótipos de porta-enxertos de videira inoculados com RFhizophagus irregularis e Fusarium oxysporum f. sp. herbemontis

    OpenAIRE

    Vilvert, Elisa

    2013-01-01

    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Agrárias. Programa de Pós-graduação em Recursos Genéticos Vegetais, Florianópolis, 2013 O declínio e morte das videiras, causados pelo fungo Fusarium oxysporum f. sp. herbemontis, é um dos principais problemas fitossanitários da viticultura no Sul do Brasil. A erradicação das plantas contaminadas é a principal forma de controle desta doença, por não haver controle químico eficiente. A inoculação com fungos ...

  12. Identification of an Endophytic Antifungal Bacterial Strain Isolated from the Rubber Tree and Its Application in the Biological Control of Banana Fusarium Wilt.

    Directory of Open Access Journals (Sweden)

    Deguan Tan

    Full Text Available Banana Fusarium wilt (also known as Panama disease is one of the most disastrous plant diseases. Effective control methods are still under exploring. The endophytic bacterial strain ITBB B5-1 was isolated from the rubber tree, and identified as Serratia marcescens by morphological, biochemical, and phylogenetic analyses. This strain exhibited a high potential for biological control against the banana Fusarium disease. Visual agar plate assay showed that ITBB B5-1 restricted the mycelial growth of the pathogenic fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4. Microscopic observation revealed that the cell wall of the FOC4 mycelium close to the co-cultured bacterium was partially decomposed, and the conidial formation was prohibited. The inhibition ratio of the culture fluid of ITBB B5-1 against the pathogenic fungus was 95.4% as estimated by tip culture assay. Chitinase and glucanase activity was detected in the culture fluid, and the highest activity was obtained at Day 2 and Day 3 of incubation for chitinase and glucanase, respectively. The filtrated cell-free culture fluid degraded the cell wall of FOC4 mycelium. These results indicated that chitinase and glucanase were involved in the antifungal mechanism of ITBB B5-1. The potted banana plants that were inoculated with ITBB B5-1 before infection with FOC4 showed 78.7% reduction in the disease severity index in the green house experiments. In the field trials, ITBB B5-1 showed a control effect of approximately 70.0% against the disease. Therefore, the endophytic bacterial strain ITBB B5-1 could be applied in the biological control of banana Fusarium wilt.

  13. dianthiBiological aspects of one fungi Rhizoctoniaand its in vitrointeraction withFusarium oxysporum f. sp.dianthi

    Directory of Open Access Journals (Sweden)

    Marina A. Correa de Restrepo

    2002-01-01

    Full Text Available ABSTRACTGrowth in different culture media and temperature as well as its antagonic roleagainst Fusarium oxysporumSchlencht f. sp. dianthi(Prill & Del Snyder & Hansen, werestudied on an isolated of the fungi Theobroma grandiflorum(Spreng K. Schum. Lowgrowth and the presence of abundat moniloid cells were detected when the fungi wascultured in PDA in microculture, with natural light and at 20ºC. Higher temperatures(27ºC and 30ºC increased growh rate. When cultured at 20ºC, in darkness, similarresults as those recorded at 30ºC in natural light were found. After a month sclerotiagrotwh was present. Culture in AMS in Petri dishes, with natural light at 20ºC showedgrowth in patches which suggests phenotype variability. Poor growth was recordedwhen cultured in AAg. Our results showed that rapid and vigorous growth isobtanined when the fungi is cultured in PDA at 30ºC in darkness producing conidiaand sclerotia. T. grandiflorumalso has an antagonic role against F.oxysporumsp. dianthi,growing faster and inihibitingits growth.

  14. Phenotypic evaluation of the resistance in F1 carnation populations to vascular wilt caused by Fusarium oxysporum f.sp. dianthi

    Directory of Open Access Journals (Sweden)

    Johana Carolina Soto-Sedano

    2012-08-01

    Full Text Available One of the most important phytosanitary problems of the carnation crops in Colombia and in the entire world is vascular wilting produced by Fusarium oxysporum f.sp. dianthi. Currently, an effective treatment against the pathogen does not exist; the search for resistant varieties has been the most successful method for control of this disease. Breeding programs are vital to solving the problem of the carnation fusariosis. The objective of this research was the phenotypic evaluation of carnation F1 populations, products of contrasting crossing, resistant per susceptible to F. oxysporum f.sp. dianthi, in order to determine if the resistance is inherited in the lines. This information will contribute to the selection of material and to the successful introduction of the resistant characteristic, whose expression is commercially acceptable, to the gene pool. The methodology adopted was a phenotypic evaluation of the response to the parasite in the population (450 individuals and in the parental. This evaluation estimated the area under the curve (AU DPC, using a scale of symptoms reported for carnation vascular wilt. Three different phenotypes were established with this evaluation. The moderately susceptible one is the predominant phenotype and an analysis of phenotypic frequencies was carried out on it. The results show that the individuals of the evaluated F1 population were distributed between two extreme ranges, resistant and susceptible; this shows that there is segregation for the trait resistant to F. oxysporum f.sp dianthi. We did not observe clearly differentiated classes, i.e. with complete absence or presence of the disease, indicating a possible control of the resistance in the evaluated carnation material, governed by more than one gene and with a possible additive genetic action

  15. Avaliação da atividade fungitóxica de óleos essenciais de folhas de Eucalyptus sobre Fusarium oxysporum, Botrytis cinerea e Bipolaris sorokiniana Fungitoxic activity evaluation of essential leaf oils of Eucalyptus on Fusarium oxysporum, Botrytis cinerea and Bipolaris sorokiniana

    Directory of Open Access Journals (Sweden)

    Ana Paula Soares P. Salgado

    2003-04-01

    Full Text Available A maioria das plantas são resistentes aos diferentes patógenos, e essa resistência pode estar relacionada à existência de compostos fungistáticos naturalmente produzidos. Com o presente trabalho, avaliou-se a atividade fungitóxica de óleos essenciais de eucaliptos. Os óleos foram obtidos de folhas dos eucaliptos mediante arraste a vapor de água, utilizando o aparelho de Clevenger modificado. Nos ensaios biológicos, foram empregados os fitopatógenos Fusarium oxysporum, Botrytis cinerea e Bipolaris sorokiniana. O crescimento dos microorganismos na presença de diferentes concentrações de óleo (5, 50 e 500 mg/Kg, usando os meios de cultura BDA (Batata-Dextrose-Ágar e PCA (Batata-Cenoura-Ágar, foi avaliado. Nas concentrações de 500 mg/Kg dos óleos, foram observadas inibições significativas no crescimento micelial das espécies fúngicas, após período de 7 dias. No entanto, o óleo essencial de Eucalyptus urophylla foi o que apresentou maior ação fungitóxica, que foi atribuída à presença do composto denominado globulol, ausente no E.camaldulensis e no E. citriodora.Most plants are resistant to different pathogens and this resistance may be related to the existence of naturally produced fungistatic components. The present work evaluated the fungitoxic activity of essential oils from three eucalyptus species. The essential oils were obtained from eucalyptus leaves by steam distillation using a modified Clevenger apparatus. The phytopatogens Fusarium oxysporum, Botrytis cinerea and Bipolaris sorokiniana were employed in the biological tests. The growth of fungi in the presence of different concentrations of oil (5, 50, and 500 mg/kg, using BDA (Potato-Dextrose-agar and PCA (Potato-Carrot-agar culture media were evaluated. Significant inhibition of the micelial growth of the fungal species was observed at the concentration of 500 mg/kg of oil after a period of seven days. The essential oil of Eucalyptus urophylla showed the

  16. The effect of D,L-β-aminobutyric acid on the growth and development of Fusarium oxysporum f. sp. tulipae (Apt.

    Directory of Open Access Journals (Sweden)

    Anna Jarecka

    2012-12-01

    Full Text Available The effect of D,L-β-aminobutyric acid (BABA on the growth and development of the root system and the development of fusariosis on tulip bulbs cv. Apeldoorn infected by Fusarium oxysporum f. sp. tulipae (F.ox.t. 218 was studied. The length and fresh weight of roots, the development of fusariosis on bulbs and the linear growth of mycelium of F.ox.t. 218 on PDA medium were measured. Preventively used BABA at a concentration of 100, 250 and 300 µg·cm-3 for soaking uncooled and cooled tulip bulbs greatly inhibited the development of fusariosis on the root system; the length and fresh weight of roots were similar to those of the bulbs not inoculated with F.ox.t. 218. At a concentration of 100 µg·cm-3;, BABA used for soaking bulbs limited the development of fusariosis on scales in about 50% and the concentration of 200 µg·cm-3 totally inhibited the disease symptoms induced by F.ox.t. 218. At a concentration of 100 - 1000 µg·cm-3, BABA did not inhibit the mycelium growth of F.ox.t. 17 and F.xo.t. 218 on PDA medium. This study suggests that BABA protects tulip roots and bulb scales against F. oxysporum f. sp. tulipae by inducing resistance in these organs and has no direct influence on the pathogen.

  17. Marker-assisted selection of Fusarium wilt-resistant and gynoecious melon (Cucumis melo L.).

    Science.gov (United States)

    Gao, P; Liu, S; Zhu, Q L; Luan, F S

    2015-12-08

    In this study, molecular markers were designed based on the sex determination genes ACS7 (A) and WIP1 (G) and the domain in the Fusarium oxysporum-resistant gene Fom-2 (F) in order to achieve selection of F. oxysporum-resistant gynoecious melon plants. Markers of A and F are cleaved amplified polymorphic sequences that distinguish alleles according to restriction analysis. Twenty F1 and 1863 F2 plants derived from the crosses between the gynoecious line WI998 and the Fusarium wilt-resistant line MR-1 were genotyped based on the markers. The results showed that the polymerase chain reaction and enzyme digestion results could be effectively used to identify plants with the AAggFF genotype in F2 populations. In the F2 population, 35 gynoecious wilt-resistant plants were selected by marker-assisted selection and were confirmed by disease infection assays, demonstrating that these markers can be used in breeding to select F. oxysporum-resistant gynoecious melon plants.

  18. Fumonisin detection and analysis of potential fumonisin-producing Fusarium spp. in asparagus (Asparagus officinalis L.) in Zhejiang Province of China.

    Science.gov (United States)

    Wang, Jiansheng; Wang, Xiaoping; Zhou, Ying; Du, Liangcheng; Wang, Qiaomei

    2010-04-15

    Fumonisins are mycotoxins produced by a number of Fusarium species, including several pathogens of asparagus plants. China is one of the largest asparagus producers in the world. In this study, we analysed the contamination of fumonisins and fumonisin-producing fungi in asparagus spear samples from Zhejiang Province, the major asparagus production province in China. The asparagus did not contain a detectable level of fumonisins. However, the recovery of Fusarium in asparagus was 72.7%, including F. proliferatum (40.9%), F. oxysporum (22.7%), F. acuminatum (4.55%) and F. equesti (4.55%). A multiplex PCR targeting the internal transcribed spacer sequence (ITS), translation elongation factor 1-alpha (TEF), and key biosynthetic genes FUM1 and FUM8, was used to simultaneously determine the identity and the biosynthetic ability of the fungal isolates. Fungal isolates containing the FUM genes also produced fumonisins in cultures, ranging from 28 to 4204 microg g(-1). F. proliferatum was the only fumonisin-producing Fusarium species in asparagus. Although no fumonisin contamination was detected in asparagus in the current survey, we found that the majority of samples contained Fusarium spp. Because F. proliferatum is a high fumonisin-producing species, potential health risks for human consumption of asparagus exist, if the appropriate environmental conditions are present for this fungus. (c) 2010 Society of Chemical Industry.

  19. Biological control of fusarium wilt of tomato by antagonist fungi and ...

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... Key words: Biological control, fusarium wilt, tomato, antagonist fungi, cyanobacteria. INTRODUCTION ... severely affected by wilt disease caused by F. oxysporum f. sp. ..... Changing options for the control of deciduous fruit.

  20. Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum.

    Science.gov (United States)

    Gholami-Shabani, Mohammadhassan; Akbarzadeh, Azim; Norouzian, Dariush; Amini, Abdolhossein; Gholami-Shabani, Zeynab; Imani, Afshin; Chiani, Mohsen; Riazi, Gholamhossein; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2014-04-01

    Nanostructures from natural sources have received major attention due to wide array of biological activities and less toxicity for humans, animals, and the environment. In the present study, silver nanoparticles were successfully synthesized using a fungal nitrate reductase, and their biological activity was assessed against human pathogenic fungi and bacteria. The enzyme was isolated from Fusarium oxysporum IRAN 31C after culturing on malt extract-glucose-yeast extract-peptone (MGYP) medium. The enzyme was purified by a combination of ultrafiltration and ion exchange chromatography on DEAE Sephadex and its molecular weight was estimated by gel filtration on Sephacryl S-300. The purified enzyme had a maximum yield of 50.84 % with a final purification of 70 folds. With a molecular weight of 214 KDa, it is composed of three subunits of 125, 60, and 25 KDa. The purified enzyme was successfully used for synthesis of silver nanoparticles in a way dependent upon NADPH using gelatin as a capping agent. The synthesized silver nanoparticles were characterized by X-ray diffraction, dynamic light scattering spectroscopy, and transmission and scanning electron microscopy. These stable nonaggregating nanoparticles were spherical in shape with an average size of 50 nm and a zeta potential of -34.3. Evaluation of the antimicrobial effects of synthesized nanoparticles by disk diffusion method showed strong growth inhibitory activity against all tested human pathogenic fungi and bacteria as evident from inhibition zones that ranged from 14 to 25 mm. Successful green synthesis of biologically active silver nanoparticles by a nitrate reductase from F. oxysporum in the present work not only reduces laborious downstream steps such as purification of nanoparticle from interfering cellular components, but also provides a constant source of safe biologically-active nanomaterials with potential application in agriculture and medicine.

  1. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4.

    Science.gov (United States)

    Dale, James; James, Anthony; Paul, Jean-Yves; Khanna, Harjeet; Smith, Mark; Peraza-Echeverria, Santy; Garcia-Bastidas, Fernando; Kema, Gert; Waterhouse, Peter; Mengersen, Kerrie; Harding, Robert

    2017-11-14

    Banana (Musa spp.) is a staple food for more than 400 million people. Over 40% of world production and virtually all the export trade is based on Cavendish banana. However, Cavendish banana is under threat from a virulent fungus, Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) for which no acceptable resistant replacement has been identified. Here we report the identification of transgenic Cavendish with resistance to TR4. In our 3-year field trial, two lines of transgenic Cavendish, one transformed with RGA2, a gene isolated from a TR4-resistant diploid banana, and the other with a nematode-derived gene, Ced9, remain disease free. Transgene expression in the RGA2 lines is strongly correlated with resistance. Endogenous RGA2 homologs are also present in Cavendish but are expressed tenfold lower than that in our most resistant transgenic line. The expression of these homologs can potentially be elevated through gene editing, to provide non-transgenic resistance.

  2. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage.

    Science.gov (United States)

    Liu, Yiqing; Wisniewski, Michael; Kennedy, John F; Jiang, Yusong; Tang, Jianmin; Liu, Jia

    2016-10-20

    The ability of chitosan and oligochitosan to enhance ginger (Zingiber officinale) resistance to rhizome rot caused by Fusarium oxysporum in storage was investigated. Both chitosan and oligochitosan at 1 and 5g/L significantly inhibited rhizome rot, with the best control at 5g/L. Chitosan and oligochitosan applied at 5g/L also reduced weight loss, measured as a decrease in fresh weight, but did not affect soluble solids content or titratable acidity of rhizomes. The two compounds applied at 5g/L induced β-1,3-glucanase and phenylalanine ammonia-lyase enzyme activity and the transcript levels of their coding genes, as well as the total phenolic compounds in rhizome tissues. Therefore, the ability of chitosan and oligochitosan to reduce rot in stored rhizomes may be associated with their ability to induce defense responses in ginger. These results have practical implications for the application of chitosan and oligochitosan to harvested ginger rhizomes to reduce postharvest losses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Quick guide to polyketide synthase and nonribosomal synthetase genes in Fusarium

    DEFF Research Database (Denmark)

    Hansen, Jørgen T.; Sørensen, Jens L.; Giese, Henriette

    2012-01-01

    Fusarium species produce a plethora of bioactive polyketides and nonribosomal peptides that give rise to health problems in animals and may have drug development potential. Using the genome sequences for Fusarium graminearum, F. oxysporum, F. solani and F. verticillioides we developed a framework...... and NRPS genes in sequenced Fusarium species and their known products. With the rapid increase in the number of sequenced fungal genomes a systematic classification will greatly aid the scientific community in obtaining an overview of the number of different NRPS and PKS genes and their potential...

  4. Utilization of high performance liquid chromatography coupled to tandem mass spectrometry for characterization of 8-O-methylbostrycoidin production by species of the fungus Fusarium

    Science.gov (United States)

    The pigment, 8-O-methylbostrycoidin is a polyketide metabolite produced by multiple species of the fungus Fusarium that infects plant crops, including maize. A technique was developed for the analysis of 8-O-methylbostrycoidin by high performance liquid chromatography coupled to electrospray ionizat...

  5. Effect of Nanoencapsulated Vitamin B1 Derivative on Inhibition of Both Mycelial Growth and Spore Germination of Fusarium oxysporum f. sp. raphani

    Directory of Open Access Journals (Sweden)

    Hyeon Yong Lee

    2013-02-01

    Full Text Available Nanoencapsulation of thiamine dilauryl sulfate (TDS, a vitamin B1 derivative, was proved to effectively inhibit the spore germination of Fusarium oxysporum f. sp. raphani (F. oxysporum, as well as mycelial growth. The average diameter of nanoparticles was measured as 136 nm by being encapsulated with an edible encapsulant, lecithin, whose encapsulation efficiency was about 55% in containing 200 ppm of TDS concentration: the 100 ppm TDS nanoparticle solution showed a mycelial growth inhibition rate of 59%. These results were about similar or even better than the cases of treating 100 ppm of dazomet, a positive antifungal control (64%. Moreover, kinetic analysis of inhibiting spore germination were estimated as 6.6% reduction of spore germination rates after 24 h treatment, which were 3.3% similar to the case of treating 100 ppm of a positive control (dazomet for the same treatment time. It was also found that TDS itself could work as an antifungal agent by inhibiting both mycelial growth and spore germination, even though its efficacy was lower than those of nanoparticles. Nanoparticles especially played a more efficient role in limiting the spore germination, due to their easy penetration into hard cell membranes and long resident time on the surface of the spore shell walls. In this work, it was first demonstrated that the nanoparticle of TDS not a harmful chemical can control the growth of F. oxysporum by using a lower dosage than commercial herbicides, as well as the inhibiting mechanism of the TDS. However, field trials of the TDS nanoparticles encapsulated with lecithin should be further studied to be effectively used for field applications.

  6. Caracterización morfológica y evaluación de resistencia a Fusarium oxysporum en especies silvestres del género Solanum sección Lycopersicon

    Directory of Open Access Journals (Sweden)

    Maria Natalia Morales Palacio

    2014-01-01

    Título corto: Caracterización morfológica y evaluación de resistencia a Fusarium oxysporum Resumen:  Con el objetivo de evaluar la variación morfológica y la resistencia a Fusarium oxysporum en la colección del banco de germoplasma de la Universidad Nacional de Loja (UNL, 146 accesiones de cuatro especies silvestres fueron seleccionadas (Solanum pimpinellifolium, S. neorickii, S. habrochaites, S. lycopersicum var. cerasiforme; y, 20 accesiones de tomate cultivado (S. lycopersicum. Un total de 723 plántulas se transplantaron al campo y se evaluaron morfológicamente durante todo su ciclo biológico, con un descriptor que incluyó 20 caracteres cuantitativos y 25 cualitativos. Se estimó la variabilidad morfológica y se detectaron diferencias fenotípicas relacionadas con el fruto, características vegetativas de las plantas y los componentes del rendimiento. Las variables morfológicas mostraron que S. habrochaites es la especie más diferenciada con relación a las restantes. La podredumbre vascular causada por F. oxysporum es responsable de enormes pérdidas en la producción de tomate en el mundo; sin embargo, las especies silvestres que originaron las variedades cultivadas poseen genes de interés agronómico, utilizados por décadas para la generación de variedades resistentes. Por ello, entre 64 y 228 individuos por especie, se evaluaron por tres procedimientos de inoculación. Todas las especies fueron significativamente diferentes en los niveles de resistencia, tolerancia o susceptibilidad. S. neorickii fue más resistente y tolerante, seguida de S. pimpinellifolium y S. lycopersicum var. cerasiforme, mientras que todas las variedades cultivadas (S. lycopersicum fueron susceptibles. Tales circunstancias permitieron determinar sin lugar a dudas, que las plantas sobrevivientes y tolerantes poseen un genotipo particular que determina esa característica. Palabras clave:  Ecuador, tomate, tolerancia, susceptibilidad, inoculación. Abstract: In order

  7. Uji Daya Hambat Jamur Endofit dan Eksofit dalam Menekan Pertumbuhan Fusarium oxysporum f.sp. vanillae Penyebab Busuk Batang Panili Secara In Vitro

    Directory of Open Access Journals (Sweden)

    NI WAYAN SUNITI

    2016-11-01

    Full Text Available Study on In Vitro Inhibitory Ability of Endophytic and Exophytic Fungusin Suppressing the Growth of Fusarium oxysporum f.sp. vanillae thatCauses Stem Rot of Vanilla. Vanilla stem rot disease caused by Fusarium oxysporumf.sp. vanillae , is still a very dangerous disease and feared by vanilla farmers. Disease until thepresent time there does not yet appear adequate control strategies for the disease. On the basisof these problems interested studied the use of endophytic fungi and exophytic existing on theleaves and stems of healthy plants , which have potential as a biological agent to controlpathogens . The study was conducted in three stages: (1 isolation of the pathogen and fungalendophyte and exophytic, (2 identification of pathogenic microscopic morphology, fungalendophyte and exophytic, and (3 test the inhibition of fungal endophyte and exophyticagainst pathogens. Fungi are found as the leaves are Aspergillus niger and Rhizopus spp., Onexophytic on the trunk is Trichoderma sp . and Fusarium spp., as a leaf endophytic found A.niger and Neurospora spp. and as endophytic rod is Neurospora spp . The highest prevalenceachieved by Neurospora spp . which is equal to 100 % on endophyte stem, while Rhizopusspp., and Fusarium spp. by 90 % respectively, exophytic on the leaves and stems. The testresults found that the inhibition of leaf eksofit Rhisopus spp . give up inhibition ranged from70.37±3.2% - 100% , while A. niger amounted to 72.22% . In exophytic on rod found onlyTrichoderma sp. inhibit pathogens by 73.70±3.57%. In endophytic on leaf found A. niger at70.37±3.2% , while Neorospora spp. ranging from 79.11±3.21% - 88.50±2.10%. In theendophytic on trunk was found Neurosporas spp. amounting to 70.74±3.57% - 79.26±1.28%.

  8. Isolation of fusarium species from some food and feed and prevention their growth by irradiation

    International Nuclear Information System (INIS)

    Youssef, K.A.; Abouzeid, M.A.; Hassan, A.A.; Abd-Elrahman, D.G.; Hammad, A.A.

    2007-01-01

    Seventy samples of different cereal grains, garlic, onion and animal feed were collected from the Egyptian markets to isolate associated moulds. Fusarium, Aspergillus, Penicillium and Rhizopus were the most common fungal genera isolated from the different samples. The genus Fusarium was the most dominant among the fungal genera and all isolates were identified as F. verticillioides, F. solani, F. oxysporum, F. dimerum, F. tabacinum and F. xylaroides. Fusarium verticillioides and F. solani were the most dominant comprising 58% of the total isolates. All Fusarium isolates were proved to produce one or more of zearalenone, diacetoxyscirpenol and fusaric acids in liquid medium. Irradiation at a dose of 5 KGy reduced the Fusarium growth greatly relative to non-irradiated controls. On the basis of the radiation survival data, the radiation decimal reduction doses (D 10 values) for F. oxysporum, F. solani, F. verticillioides and F. dimerum were 1.44, 1.66, 1.73 and 1.00 KGy in corn, respectively. Application of radiation at a dose of 12.5 KGy made corn samples free from mould throughout all the storage period (12 weeks) and there was no fungal growth and no mycotoxins have been produced

  9. In vitro mutants identification of banana (Musa sp.) with tolerance to toxin from Fusarium oxysporum f. sp cubense, treating buds with several gamma radiation doses

    International Nuclear Information System (INIS)

    Moura, Adriana Muniz Mendes de; Houllou-Kido, Laureen Michelle; Franca, Jose Geraldo Eugenio de; Colaco, Waldeciro

    1999-01-01

    Mutants of banana, obtained through treatment with different level of gamma-radiation (0; 10; 20; 30; 40 Gy), were initially cultivated in vitro in medium for rapid clonal propagation during 30 days. These treatment affected the shoot tips development ratio. Some plants developed necrosis and died, but some of the shoot tips emitted new gems. These material were cultivated in medium 20% of the toxin of Fusarium oxysporum cubense. During the selection period, the necrosis occurrence and death of susceptible shoot tips were observed. Whereas the tolerant shoot tips kept themselves green during the entire selection process. At the end of the selection process, eight shoot tips were obtained. (author)

  10. Efecto antifúngico de extractos fenólicos y de carotenoides de chiltepín (Capsicum annum var. glabriusculum en Alternaria alternata y Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Alfonso Rodriguez-Maturino

    2015-03-01

    Full Text Available En el presente estudio se evaluó el efecto de extractos fenólicos y de carotenoides procedentes de frutos de chiltepín sobre el crecimiento micelial y la germinación de conidios de Alternaria alternata y Fusarium oxysporum, 2 importantes hongos causantes de podredumbres en frutas y hortalizas. Los extractos fenólicos presentaron una inhibición en el crecimiento micelial de A. alternata del 38,46 %, y redujeron significativamente la germinación de conidios al quinto día después del tratamiento al 92 % en relación al control. No se observaron cambios significativos en el crecimiento micelial de F. oxysporum, pero sí se redujo significativamente al 85 % en relación al control, el número de conidios germinados a los 5 días de tratamiento. Los extractos de carotenoides mostraron una inhibición del 38,5 % en el crecimiento micelial y del 85,3 % en la germinación de conidios de A. alternata, 5 días después del tratamiento. Frente a F. oxysporum, dichos extractos presentaron menor inhibición del crecimiento micelial (20,3 %, mientras que hubo una mayor inhibición en la germinación de conidios (96 %. Los extractos fenólicos y de carotenoides de chiltepín pueden ser una alternativa promisoria de importancia agrícola como fungicidas naturales.

  11. Effect of corn steep liquor on lettuce root rot (Fusarium oxysporum f.sp. lactucae) in hydroponic cultures.

    Science.gov (United States)

    Chinta, Yufita D; Kano, Kazuki; Widiastuti, Ani; Fukahori, Masaru; Kawasaki, Shizuka; Eguchi, Yumi; Misu, Hideyuki; Odani, Hiromitsu; Zhou, Songying; Narisawa, Kazuhiko; Fujiwara, Kazuki; Shinohara, Makoto; Sato, Tatsuo

    2014-08-01

    Recent reports indicate that organic fertilisers have a suppressive effect on the pathogens of plants grown under hydroponic systems. Furthermore, microorganisms exhibiting antagonistic activity to diseases have been observed in organic hydroponic systems. This study evaluated the effect of corn steep liquor (CSL) on controlling lettuce root rot disease [Fusarium oxysporum f.sp. lactucae (FOL)] in a hydroponic system. The effect of CSL and Otsuka A (a chemical fertiliser) on the inhibition of FOL in terms of mycelial growth inhibition was tested in vivo. Addition of CSL suppressed FOL infection rates. CSL inhibited FOL infection by 26.3-42.5% from 2 days after starting incubation. In comparison, Otsuka A inhibited FOL growth by 5.5-19.4%. In addition, four of 10 bacteria isolated from the nutrient media containing CSL exhibited inhibition zones preventing FOL mycelial growth. We found that CSL suppressed FOL in lettuce via its antifungal and biostimulatory effects. We suggest that activation of beneficial microorganisms present in CSL may be used to decrease lettuce root rot disease and contribute to lettuce root growth. © 2014 Society of Chemical Industry.

  12. Effect of Fusarium isolates and their filtrates on respiratory rate and chemical analysis of squash plants.

    Science.gov (United States)

    El-Shenawy, Z; Mansour, M A; El-Behrawi, S

    1978-01-01

    The highly pathogenic isolate stimulated the emergence of the squash seedlings first, caused, however, the highest death rate of the seedlings finally. Fusarium isolates and their culture filtrates inhibited the respiratory rate of squash plants significantly. However, F. oxysporum isolates inhibited respiration more than F. solani isolates. Seasonal changes of respiration decline show that the respiratory rate decreased with plant growth in the case of infested soil and of plants injected with culture filtrates. However, spraying Fusarium culture filtrates on the foliage gave opposite results when the plants grew older. Fusarium solani isolates decreased nitrogen content of squash stems and leaves, while F. oxysporum isolates gave reverse results. Injecting Fusarium culture filtrate into the plant decreased nitrogen content of both stems and leaves, while spraying the foliage with the filtrates increased nitrogen content more than that of the control. Phosphorus content of the stems of squash plants, sown in infested soil, was less than in the control when the plants were treated with F. solani and higher when they were treated with F. oxysporum isolates. On the other hand, the phosphorus content of squash leaves was higher than in the control. In the case of injected plants, however, the phosphorus content in stems and leaves was equal to that of the control or less, and with sprayed plants it was higher than in the control. Infesting the soil with Fusarium isolates and spraying the foliage with their culture filtrates increased potassium content of squash stems and leaves, while injecting the filtrates into the plants decreased potassium content of both stems and leaves.

  13. Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici

    Science.gov (United States)

    Nirmaladevi, D.; Venkataramana, M.; Srivastava, Rakesh K.; Uppalapati, S. R.; Gupta, Vijai Kumar; Yli-Mattila, T.; Clement Tsui, K. M.; Srinivas, C.; Niranjana, S. R.; Chandra, Nayaka S.

    2016-01-01

    The present study aimed at the molecular characterization of pathogenic and non pathogenic F. oxysporum f. sp. lycopersici strains isolated from tomato. The causal agent isolated from symptomatic plants and soil samples was identified based on morphological and molecular analyses. Pathogenicity testing of 69 strains on five susceptible tomato varieties showed 45% of the strains were highly virulent and 30% were moderately virulent. Molecular analysis based on the fingerprints obtained through ISSR indicated the presence of wide genetic diversity among the strains. Phylogenetic analysis based on ITS sequences showed the presence of at least four evolutionary lineages of the pathogen. The clustering of F. oxysporum with non pathogenic isolates and with the members of other formae speciales indicated polyphyletic origin of F. oxysporum f. sp. lycopersici. Further analysis revealed intraspecies variability and nucleotide insertions or deletions in the ITS region among the strains in the study and the observed variations were found to be clade specific. The high genetic diversity in the pathogen population demands for development of effective resistance breeding programs in tomato. Among the pathogenic strains tested, toxigenic strains harbored the Fum1 gene clearly indicating that the strains infecting tomato crops have the potential to produce Fumonisin. PMID:26883288

  14. Occurrence and distribution of soil Fusarium species under wheat crop in zero tillage

    Energy Technology Data Exchange (ETDEWEB)

    Silvestro, L. B.; Stenglein, S. A.; Forjan, H.; Dinolfo, M. I.; Aramburri, A. M.; Manso, L.; Moreno, M. V.

    2013-05-01

    The presence of Fusarium species in cultivated soils is commonly associated with plant debris and plant roots. Fusarium species are also soil saprophytes. The aim of this study was to examine the occurrence and distribution of soil Fusarium spp. at different soil depths in a zero tillage system after the wheat was harvested. Soil samples were obtained at three depths (0-5 cm, 5-10 cm and 10-20 cm) from five crop rotations: I, conservationist agriculture (wheat-sorghum-soybean); II, mixed agriculture/livestock with pastures, without using winter or summer forages (wheat-sorghum-soybean-canola-pastures); III, winter agriculture in depth limited soils (wheat-canola-barley-late soybean); IV, mixed with annual forage (wheat-oat/Vicia-sunflower); V, intensive agriculture (wheat-barley-canola, with alternation of soybean or late soybean). One hundred twenty two isolates of Fusarium were obtained and identified as F. equiseti, F. merismoides, F. oxysporum, F. scirpi and F. solani. The most prevalent species was F. oxysporum, which was observed in all sequences and depths. The Tukey's test showed that the relative frequency of F. oxysporum under intensive agricultural management was higher than in mixed traditional ones. The first 5 cm of soil showed statistically significant differences (p=0.05) with respect to 5-10 cm and 10-20 cm depths. The ANOVA test for the relative frequency of the other species as F. equiseti, F. merismoides, F. scirpi and F. solani, did not show statistically significant differences (p<0.05). We did not find significant differences (p<0.05) in the effect of crop rotations and depth on Shannon, Simpson indexes and species richness. Therefore we conclude that the different sequences and the sampling depth did not affect the alpha diversity of Fusarium community in this system. (Author) 51 refs.

  15. Methyl salicylate production in tomato affects biotic interactions

    NARCIS (Netherlands)

    Ament, K.; Krasikov, V.; Allmann, S.; Rep, M.; Takken, F.L.W.; Schuurink, R.C.

    2010-01-01

    The role of methyl salicylate (MeSA) production was studied in indirect and direct defence responses of tomato (Solanum lycopersicum) to the spider mite Tetranychus urticae and the root-invading fungus Fusarium oxysporum f. sp. lycopersici, respectively. To this end, we silenced the tomato gene

  16. A rapid inoculation technique for assessing pathogenicity of Fusarium oxysporum f. sp. niveum and F. o. melonis on Cucurbits

    Science.gov (United States)

    Freeman, S.; Rodriguez, R.J.

    1993-01-01

    A continuous-dip inoculation technique for rapid assessment of pathogenicity of Fusarium oxysporum f. sp. niveum and F. o. melonis was developed. The method, adapted from a similar procedure for determining pathogenicity of Colletotrichum magna (causal agent of anthracnose of cucurbits), involves constant exposure of seedlings and cuttings (seedlings with root systems excised) of watermelon and muskmelon to conidial suspensions contained in small scintillation vials. Disease development in intact seedlings corresponded well to disease responses observed with the standard root-dip inoculation/pot assay. The continuous-dip inoculation technique resulted in rapid disease development, with 50% of watermelon cuttings dying after 4–6 days of exposure to F. o. niveum. A mortality of 30% also was observed in watermelon cuttings exposed to conidia of F. o. melonis, as opposed to only a 0–2.5% mortality in seedlings with intact roots. Disease response was similar with muskmelon seedlings and cuttings continuously dip-inoculated with F. o. melonis isolates. However, no disease symptoms were observed in muskmelon seedlings or cuttings inoculated with F. o. niveum. Four nonpathogenic isolates of F. oxysporum did not cause disease symptoms in either watermelon or muskmelon cuttings and seedlings when assayed by this technique. The proposed method enables a rapid screening of pathogenicity and requires less time, labor, and greenhouse space than the standard root-dip inoculation/pot assay. The reliability of the continuous-dip inoculation technique is limited, however, to exposure of intact seedlings at a concentration of 1 × 106conidia per milliliter; the method is not accurate at this range for excised seedlings.

  17. Survey of diseases caused by Fusarium spp. on palm trees in the Canary Islands

    Directory of Open Access Journals (Sweden)

    Julio Hernández-Hernández

    2010-05-01

    Full Text Available Between 2006 and 2007, palm trees growing in both gardens and public parks and natural palm groves in the Canary Islands (Spain, and showing symptoms of wilt and dieback, were surveyed. Isolates were recovered from affected tissues of the crowns, leaves and vascular fragments on potato dextrose agar (PDA. After incubation, the Fusarium spp. colonies recovered were single-spored. They were transferred to PDA and Spezieller Nahrstoffarmer Agar (SNA for morphological identification. Identification of Fusarium oxysporum f. sp. Canariensis was confirmed by PCR with the specific primers HK66 and HK67, which amplified a fragment of 567 bp. Fusarium wilt caused by F. oxysporum f. sp. canariensis was found on 54 Phoenix canariensis trees growing on four islands: Gran Canaria, Fuerteventura, La Palma and Tenerife. F. proliferatum occurred on fifteen palms (10 P. canariensis, 1 P. dactylifera, 3 Roystonea regia and 1 Veitchia joannis located in Gran Canaria, Fuerteventura and Tenerife. Both these Fusarium species were found only in diseased palms from gardens and public parks, but not in natural palm groves. The results show that Fusarium wilt of P. canariensis is common in the Canary Islands and for the first time report F. proliferatum affecting different palm species in those islands.

  18. Identification of predictor parameters to determine agro-industrial compost suppressiveness against Fusarium oxysporum and Phytophthora capsici diseases in muskmelon and pepper seedlings.

    Science.gov (United States)

    Blaya, Josefa; Lloret, Eva; Ros, Margarita; Pascual, Jose Antonio

    2015-05-01

    The lack of reliable prediction tools for evaluation of the level and specificity of compost suppressiveness limits its application. In our study, different chemical, biological and microbiological parameters were used to evaluate their potential use as a predictor parameter for the suppressive effect of composts against Fusarium oxysporum f. sp. melonis (FOM) and Phytophthora capsici (P. capsici) in muskmelon and pepper seedlings respectively. Composts were obtained from artichoke sludge, chopped vineyard pruning waste and various agro-industrial wastes (C1: blanched artichokes; C2: garlic waste; C3: dry olive cake). Compost C3 proved to offer the highest level of resistance against FOM, and compost C2 the highest level of resistance against P. capsici. Analysis of phospholipid fatty acids isolated from compost revealed that the three composts showed different microbial community structures. Protease, NAGase and chitinase activities were significantly higher in compost C3, as was dehydrogenase activity in compost C2. The use of specific parameters such as general (dehydrogenase activity) and specific enzymatic activities (protease, NAGase and chitinase activities) may be useful to predict compost suppressiveness against both pathogens. The selection of raw materials for agro-industrial composts is important in controlling Fusarium wilt and Phytophthora root rot. © 2014 Society of Chemical Industry.

  19. In vitro mutants identification of banana (Musa sp.) with tolerance to toxin from Fusarium oxysporum f. sp cubense, treating buds with several gamma radiation doses; Identificacao in vitro de mutantes de banana maca (Musa sp.) tolerantes a toxina do Fusarium oxysporum f. sp. cubense, a partir de gemas tratadas com diferentes doses de radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Adriana Muniz Mendes de; Houllou-Kido, Laureen Michelle; Franca, Jose Geraldo Eugenio de [Empresa Pernambucana de Pesquisa Agropecuaria, Recife, PE (Brazil); Colaco, Waldeciro [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear

    1999-11-01

    Mutants of banana, obtained through treatment with different level of gamma-radiation (0; 10; 20; 30; 40 Gy), were initially cultivated in vitro in medium for rapid clonal propagation during 30 days. These treatment affected the shoot tips development ratio. Some plants developed necrosis and died, but some of the shoot tips emitted new gems. These material were cultivated in medium 20% of the toxin of Fusarium oxysporum cubense. During the selection period, the necrosis occurrence and death of susceptible shoot tips were observed. Whereas the tolerant shoot tips kept themselves green during the entire selection process. At the end of the selection process, eight shoot tips were obtained. (author) 7 refs.

  20. Fungal polygalacturonase activity reflects susceptibility of carnation cultivars to Fusarium wilt

    NARCIS (Netherlands)

    Baayen, R.P.; Schoffelmeer, E.A.M.; Toet, S.; Elgersma, D.M.

    1997-01-01

    Carnation cultivars with different levels of partial resistance were inoculated with race 2 of Fusarium oxysporum f.sp. dianthi and monitored for accumulation of host phytoalexins, fungal escape from compartmentalization, production of fungal pectin-degrading enzymes and development of external

  1. Development of a thematic collection of Musa spp accessions using SCAR markers for preventive breeding against Fusarium oxysporum f. sp cubense tropical race 4.

    Science.gov (United States)

    Silva, P R O; de Jesus, O N; Bragança, C A D; Haddad, F; Amorim, E P; Ferreira, C F

    2016-03-11

    Bananas are one of the most consumed fruits worldwide, but are affected by many pests and diseases. One of the most devastating diseases is Fusarium wilt, caused by Fusarium oxysporum f. sp cubense (Foc). Recently, Fusarium tropical race 4 (Foc TR4) has been causing irreparable damage, especially in Asia and Africa where it has devastated entire plantations, including areas with Cavendish, which is known to be resistant to Foc race 1. Although this race is not yet present in Brazil, results obtained by Embrapa in partnership with the University of Wageningen, The Netherlands, indicate that 100% of the cultivars used by Brazilian growers are susceptible to Foc TR 4. In our study, 276 banana accessions were screened with sequence characterized amplified region (SCAR) markers that have been linked to the resistance of Foc TR 4. Two SCAR primers were tested and the results revealed that SCAR ScaU1001 was efficient at discriminating accessions with possible resistance in 36.6% of the evaluated accessions. This is the first attempt to develop a thematic collection of possible Foc TR 4 resistant banana accessions in Brazil, which could be tested in Asian or African countries to validate marker-assisted selection (MAS), and for use in the preventive breeding of the crop to safeguard our banana plantations against Foc TR 4. We believe that this is an important step towards the prevention of this devastating disease, especially considering that our banana plantations are at risk.

  2. Production of extracellular lipase by the phytopathogenic fungus Fusarium solani FS1 Produção de lipase extracelular pelo fungo fitopatogênico Fusarium solani FS1

    OpenAIRE

    Maria de Mascena Diniz Maia; Marcia Maria Camargo de Morais; Marcos Antonio de Morais Jr.; Eduardo Henrique Magalhães Melo; José Luiz de Lima Filho

    1999-01-01

    A Brazilian strain of Fusarium solani was tested for extracellular lipase production in peptone-olive oil medium. The fungus produced 10,500 U.l-1 of lipase after 72 hours of cultivation at 25oC in shake-flask at 120 rpm in a medium containing 3% (w/v) peptone plus 0.5% (v/v) olive oil. Glucose (1% w/v) was found to inhibit the inductive effect of olive oil. Peptone concentrations below 3% (w/v) resulted in a reduced lipase production while increased olive oil concentration (above 0.5%) did n...

  3. Comparative study of the bioconversion process using R-(+)- and S-(-)-limonene as substrates for Fusarium oxysporum 152B.

    Science.gov (United States)

    Molina, Gustavo; Bution, Murillo L; Bicas, Juliano L; Dolder, Mary Anne Heidi; Pastore, Gláucia M

    2015-05-01

    This study compared the bioconversion process of S-(-)-limonene into limonene-1,2-diol with the already established biotransformation of R-(+)-limonene into α-terpineol using the same biocatalyst in both processes, Fusarium oxysporum 152B. The bioconversion of the S-(-)-isomer was tested on cell permeabilisation under anaerobic conditions and using a biphasic system. When submitted to permeabilisation trials, this biocatalyst has shown a relatively high resistance; still, no production of limonene-1,2-diol and a loss of activity of the biocatalyst were observed after intense cell treatment, indicating a complete loss of cell viability. Furthermore, the results showed that this process can be characterised as an aerobic system that was catalysed by limonene-1,2-epoxide hydrolase, had an intracellular nature and was cofactor-dependent because the final product was not detected by an anaerobic process. Finally, this is the first report to characterise the bioconversion of R-(+)- and S-(-)-limonene by cellular detoxification using ultra-structural analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Fusarium Keratitis in Germany

    Science.gov (United States)

    Stasch, Serena; Kaerger, Kerstin; Hamprecht, Axel; Roth, Mathias; Cornely, Oliver A.; Geerling, Gerd; Mackenzie, Colin R.; Kurzai, Oliver; von Lilienfeld-Toal, Marie

    2017-01-01

    ABSTRACT Fusarium keratitis is a destructive eye infection that is difficult to treat and results in poor outcome. In tropical and subtropical areas, the infection is relatively common and associated with trauma or chronic eye diseases. However, in recent years, an increased incidence has been reported in temperate climate regions. At the German National Reference Center, we have observed a steady increase in case numbers since 2014. Here, we present the first German case series of eye infections with Fusarium species. We identified Fusarium isolates from the eye or eye-related material from 22 patients in 2014 and 2015. Thirteen isolates belonged to the Fusarium solani species complex (FSSC), 6 isolates belonged to the Fusarium oxysporum species complex (FOSC), and three isolates belonged to the Fusarium fujikuroi species complex (FFSC). FSSC was isolated in 13 of 15 (85%) definite infections and FOSC in 3 of 4 (75%) definite contaminations. Furthermore, diagnosis from contact lens swabs or a culture of contact lens solution turned out to be highly unreliable. FSSC isolates differed from FOSC and FFSC by a distinctly higher MIC for terbinafine. Outcome was often adverse, with 10 patients requiring keratoplasty or enucleation. The use of natamycin as the most effective agent against keratitis caused by filamentous fungi was rare in Germany, possibly due to restricted availability. Keratitis caused by Fusarium spp. (usually FSSC) appears to be a relevant clinical problem in Germany, with the use of contact lenses as the predominant risk factor. Its outcome is often adverse. PMID:28747368

  5. Molecular Characterization and Expression of a Phytase Gene from the Thermophilic Fungus Thermomyces lanuginosus

    Science.gov (United States)

    Berka, Randy M.; Rey, Michael W.; Brown, Kimberly M.; Byun, Tony; Klotz, Alan V.

    1998-01-01

    The phyA gene encoding an extracellular phytase from the thermophilic fungus Thermomyces lanuginosus was cloned and heterologously expressed, and the recombinant gene product was biochemically characterized. The phyA gene encodes a primary translation product (PhyA) of 475 amino acids (aa) which includes a putative signal peptide (23 aa) and propeptide (10 aa). The deduced amino acid sequence of PhyA has limited sequence identity (ca. 47%) with Aspergillus niger phytase. The phyA gene was inserted into an expression vector under transcriptional control of the Fusarium oxysporum trypsin gene promoter and used to transform a Fusarium venenatum recipient strain. The secreted recombinant phytase protein was enzymatically active between pHs 3 and 7.5, with a specific activity of 110 μmol of inorganic phosphate released per min per mg of protein at pH 6 and 37°C. The Thermomyces phytase retained activity at assay temperatures up to 75°C and demonstrated superior catalytic efficiency to any known fungal phytase at 65°C (the temperature optimum). Comparison of this new Thermomyces catalyst with the well-known Aspergillus niger phytase reveals other favorable properties for the enzyme derived from the thermophilic gene donor, including catalytic activity over an expanded pH range. PMID:9797301

  6. Evolution and Diversity of Biosynthetic Gene Clusters in Fusarium

    Directory of Open Access Journals (Sweden)

    Koen Hoogendoorn

    2018-06-01

    Full Text Available Plant pathogenic fungi in the Fusarium genus cause severe damage to crops, resulting in great financial losses and health hazards. Specialized metabolites synthesized by these fungi are known to play key roles in the infection process, and to provide survival advantages inside and outside the host. However, systematic studies of the evolution of specialized metabolite-coding potential across Fusarium have been scarce. Here, we apply a combination of bioinformatic approaches to identify biosynthetic gene clusters (BGCs across publicly available genomes from Fusarium, to group them into annotated families and to study gain/loss events of BGC families throughout the history of the genus. Comparison with MIBiG reference BGCs allowed assignment of 29 gene cluster families (GCFs to pathways responsible for the production of known compounds, while for 57 GCFs, the molecular products remain unknown. Comparative analysis of BGC repertoires using ancestral state reconstruction raised several new hypotheses on how BGCs contribute to Fusarium pathogenicity or host specificity, sometimes surprisingly so: for example, a gene cluster for the biosynthesis of hexadehydro-astechrome was identified in the genome of the biocontrol strain Fusarium oxysporum Fo47, while being absent in that of the tomato pathogen F. oxysporum f.sp. lycopersici. Several BGCs were also identified on supernumerary chromosomes; heterologous expression of genes for three terpene synthases encoded on the Fusarium poae supernumerary chromosome and subsequent GC/MS analysis showed that these genes are functional and encode enzymes that each are able to synthesize koraiol; this observed functional redundancy supports the hypothesis that localization of copies of BGCs on supernumerary chromosomes provides freedom for evolutionary innovations to occur, while the original function remains conserved. Altogether, this systematic overview of biosynthetic diversity in Fusarium paves the way for

  7. Conversion of fusaric acid to fusarinol by Aspergillus niger: A detoxification reaction

    Science.gov (United States)

    The fungus Fusarium oxysporum causes wilt diseases of plants and produces a potent phytotoxin fusaric acid (FA) which is also toxic to many microorganisms. An Aspergillus strain with high tolerance to FA was isolated from soil. HPLC analysis of culture filtrates from A. niger grown with the addition...

  8. Development of Loop-Mediated Isothermal Amplification (LAMP) assay for rapid detection of Fusarium oxysporum f. sp. ciceris - wilt pathogen of chickpea.

    Science.gov (United States)

    Ghosh, Raju; Nagavardhini, Avuthu; Sengupta, Anindita; Sharma, Mamta

    2015-02-11

    Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of Fusarium wilt is a devastating pathogen of chickpea. In chickpea, various soil borne pathogens produce (s) similar symptoms, therefore cannot be distinguished easily at field level. There is real need for a rapid, inexpensive, and easy to operate and maintain genotyping tool to facilitate accurate disease diagnosis and surveillance for better management of Fusarium wilt outbreaks. In this study, we developed a loop-mediated isothermal amplification (LAMP) assay targeting the elongation factor 1 alpha gene sequence for visual detection of Foc. The LAMP reaction was optimal at 63°C for 60 min. When hydroxynaphthol blue (HNB) was added before amplification, samples with Foc DNA developed a characteristic sky blue colour but those without DNA or with the DNA of six other plant pathogenic fungi did not. Results obtained with LAMP and HNB were confirmed when LAMP products were subjected to gel electrophoresis. The detection limit of this LAMP assay for Foc was 10 fg of genomic DNA per reaction, while that of conventional PCR was 100 pg. In conclusion, it was found that a LAMP assay combined with HNB is simple, rapid, sensitive, and specific. The LAMP assay does not require specialized equipment, hence can be used in the field for the rapid detection of Foc. This is the first report of the use of LAMP assay for the detection of Foc. The presented LAMP method provides a specific, sensitive and rapid diagnostic tool for the distinction of Foc, with the potential to be standardized as a detection method for Foc in endemic areas and will be very useful for monitoring the disease complex in the field further suggesting the management strategies.

  9. Streptomycetes antagonism against Cladosporium fulvum Cooke and Fusarium oxysporium f.sp. lycopersici Antagonismo de estreptomicetos a Cladosporium fulvum Cooke e Fusarium oxysporium f.sp. lycopersici

    Directory of Open Access Journals (Sweden)

    Ana Cristina Fermino Soares

    2009-09-01

    Full Text Available This research aimed to evaluate the secondary effects of secondary metabolites produced by streptomycetes on spore germination and mycelial growth of the phytopathogenic fungi Cladosporium fulvum Cooke and Fusarium oxysporium f. sp. lycopersici from tomato plants. Metabolites produced by streptomycete isolates codified as AC-147 and AC-92 caused 94.1% inhibition of C. fulvum while AC-95 isolate caused 33.9% inhibition. AC-92 was the most efficient for F. oxysporum f. sp. lycopersici, causing 94.2% inhibition of spore germination. For mycelial growth, AC-26 and AC-92 were the most efficient in inhibiting C. fulvum growth by 46.6% and F. oxysporum f. sp. lycopersici by 29.9%. These streptomycetes are potential agents for biocontrol development methods of these tomato plant pathogenic fungi.Este trabalho teve como objetivo avaliar o efeito de metabólitos secundários produzidos por estreptomicetos na germinação de esporos e no crescimento micelial dos fungos Cladosporium fulvum Cooke e Fusarium oxysporum sp. f. lycopersici da cultura do tomateiro. Metabólitos produzidos pelos isolados AC-147 e AC-92 causaram 94,1% de inibição da germinação de esporos de C. fluvum, enquanto que o isolado AC-95 causou 33,9% de inibição. O AC-92 foi o mais eficiente para F. oxysporum f. sp. lycopersici, causando 94,2% de inibição na germinação de esporos. Para o crescimento micelial, AC-26 e AC-92 foram os mais eficientes na inibição dos fungos C. fulvum, em 46,6%, e F. oxysporum f. sp. Lycopersici, em 29,9%. Esses estreptomicetos são potenciais agentes para o desenvolvimento de métodos de controle biológico desses fungos fitopatogênicos do tomateiro.

  10. An arabinobio-hydrolase (Arb93B) from Fusarium graminearum is associated with wheat head blight disease

    Science.gov (United States)

    Fusarium head blight (FHB), caused by the fungus Fusarium graminearum, is one of the most important diseases of wheat and barley worldwide. FHB not only reduces crop yield, but the fungus also contaminates grains with mycotoxins, which are harmful to humans and animals. A previous study demonstrated...

  11. Virulence of Fusarium oxysporum and F. commune to Douglas-fir (Pseudotsuga menziesii) seedlings

    Science.gov (United States)

    J. E. Stewart; Z. Abdo; R. K. Dumroese; N. B. Klopfenstein; M. -S. Kim

    2012-01-01

    Fusarium species can cause damping-off and root rot of young conifer seedlings, resulting in severe crop and economic losses in forest nurseries. Disease control within tree nurseries is difficult because of the inability to characterize and quantify Fusarium spp. populations with regard to disease potential because of high variability in isolate virulence. Fusarium...

  12. Purification and characterization of an extracellular trypsin-like protease of Fusarium oxysporum var. lini.

    Science.gov (United States)

    Barata, Ricardo Andrade; Andrade, Milton Hercules Guerra; Rodrigues, Roberta Dias; Castro, Ieso Miranda

    2002-01-01

    An alkaline serineprotease, capable of hydrolyzing Nalpha-benzoyl- dl arginine p-nitroanilide, was secreted by Fusarium oxysporum var. lini grown in the presence of gelatin as the sole nitrogen and carbon source. The protease was purified 65-fold to electrophoretic homogenity from the culture supernatant in a three-step procedure comprising QSepharose chromatography, affinity chromatography, and FPLC on a MonoQ column. SDS-PAGE analysis of the purified protein indicated an estimated molecular mass of 41 kDa. The protease had optimum activity at a reaction temperature of 45 degrees C and showed a rapid decrease of activity at 48 degrees C. The optimum pH was around 8.0. Characterization of the protease showed that Ca2+ and Mg2+ cations increased the activity, which was not inhibited by EDTA or 1,10-phenanthroline. The enzyme activity on Nalpha-benzoyl-DL arginine p-nitroanilide was inhibited by 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride, p-aminobenzamidine dihydrochloride, aprotinin, 3-4 dichloroisocoumarin, and N-tosyl-L-lysine chloromethyl ketone. The enzyme is also inhibited by substrate concentrations higher than 2.5 x 10(-4)M. The protease had a Michaelis-Menten constant of 0.16 mM and a V(max) of 0.60 mumol released product.min(-1).mg(-1) enzyme when assayed in a non-inhibiting substrate concentration. The activity on Nalpha-benzoyl- dl arginine p-nitroanilide was competitively inhibited by p-aminobenzamidine dihydrochoride. A K(i) value of 0.04 mM was obtained.

  13. Biological control of fusarium wilt of tomato by antagonist fungi and ...

    African Journals Online (AJOL)

    Biological control of Fusarium oxysporum f. sp. lycopersici (FOL) causing wilt disease of tomato was studied in vitro as well as under pot conditions. Dual culture technique showed that Aspergillus niger, Penicillium citrinum, Penicillium sp. and Trichoderma harzianum inhibited the radial colony growth of the test pathogen.

  14. Patogeniczność wybranych form specjalnych Fusarium oxysporum względem goździków

    Directory of Open Access Journals (Sweden)

    Maria Werner

    2014-08-01

    Full Text Available The studies were carried out on the pathogenicity of 8 formae speciales of F. oxysporum towards Dianthus caryophyllus, D. barhatus, D. chinensis and D. caryophyllus x semperflorens. The wilting was neither observed on plants growing in soil infested with F. oxyspotum f. sp. lupini nor on plants inoculated with an isolate obtained from Pinus sylvestris. However these isolates were reisolated occasionally from D. barbatus, less frequently from D. chinensis and D. caryophyllus and never from D. caryophyllus semperflorens. Only F. oxysporum f. sp. dianthi and in less degree F. oxysporum f. sp. pisi caused always the wilting off all studied carnations, while the others were responsible for occasional wilting of some plants.

  15. Distribution and Genetic Variability of Fusarium oxysporum Associated with Tomato Diseases in Algeria and a Biocontrol Strategy with Indigenous Trichoderma spp.

    Science.gov (United States)

    Debbi, Ali; Boureghda, Houda; Monte, Enrique; Hermosa, Rosa

    2018-01-01

    Fifty fungal isolates were sampled from diseased tomato plants as result of a survey conducted in seven tomato crop areas in Algeria from 2012 to 2015. Morphological criteria and PCR-based identification, using the primers PF02 and PF03, assigned 29 out of 50 isolates to Fusarium oxysporum ( Fo ). The banding patterns amplified for genes SIX1, SIX3 and SIX4 served to identify races 2 and 3 of Fo f. sp. lycopersici (FOL), and Fo f. sp. radicis lycopersici (FORL) among the Algerian isolates. All FOL isolates showed pathogenicity on the susceptible tomato cv. "Super Marmande," while nine of out 10 Algerian FORL isolates were pathogenic on tomato cv. "Rio Grande." Inter simple sequence repeat (ISSR) fingerprints showed high genetic diversity among Algerian Fo isolates. Seventeen Algerian Trichoderma isolates were also obtained and assigned to the species T. asperellum (12 isolates), T. harzianum (four isolates) and T. ghanense (one isolate) based on ITS and tef1 α gene sequences. Different in vitro tests identified the antagonistic potential of native Trichoderma isolates against FORL and FOL. Greenhouse biocontrol assays performed on "SM" tomato plants with T. ghanense T8 and T. asperellum T9 and T17, and three Fo isolates showed that isolate T8 performed well against FORL and FOL. This finding was based on an incidence reduction of crown and root rot and Fusarium wilt diseases by 53.1 and 48.3%, respectively.

  16. Distribution and Genetic Variability of Fusarium oxysporum Associated with Tomato Diseases in Algeria and a Biocontrol Strategy with Indigenous Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    Ali Debbi

    2018-02-01

    Full Text Available Fifty fungal isolates were sampled from diseased tomato plants as result of a survey conducted in seven tomato crop areas in Algeria from 2012 to 2015. Morphological criteria and PCR-based identification, using the primers PF02 and PF03, assigned 29 out of 50 isolates to Fusarium oxysporum (Fo. The banding patterns amplified for genes SIX1, SIX3 and SIX4 served to identify races 2 and 3 of Fo f. sp. lycopersici (FOL, and Fo f. sp. radicis lycopersici (FORL among the Algerian isolates. All FOL isolates showed pathogenicity on the susceptible tomato cv. “Super Marmande,” while nine of out 10 Algerian FORL isolates were pathogenic on tomato cv. “Rio Grande.” Inter simple sequence repeat (ISSR fingerprints showed high genetic diversity among Algerian Fo isolates. Seventeen Algerian Trichoderma isolates were also obtained and assigned to the species T. asperellum (12 isolates, T. harzianum (four isolates and T. ghanense (one isolate based on ITS and tef1α gene sequences. Different in vitro tests identified the antagonistic potential of native Trichoderma isolates against FORL and FOL. Greenhouse biocontrol assays performed on “SM” tomato plants with T. ghanense T8 and T. asperellum T9 and T17, and three Fo isolates showed that isolate T8 performed well against FORL and FOL. This finding was based on an incidence reduction of crown and root rot and Fusarium wilt diseases by 53.1 and 48.3%, respectively.

  17. Tolerantie tegen en uitzieking van Fusarium in de teelt van zaaiuien

    NARCIS (Netherlands)

    Kalkdijk, J.R.; Esselink, L.J.; Lamers, J.G.

    2004-01-01

    Fusarium oxysporum f. sp. cepae is een moeilijk te bestrijden bodemschimmel. Of en in welke mate de schimmel aantasting veroorzaakt is erg seizoensafhankelijk. Bij vroege aantasting in het groeiseizoen treedt wegval op, later in het seizoen rot aan de bol. Ook tijdens de bewaring kunnen in het veld

  18. FUNGICIDAL PROPERTIES OF ARTEMISIA AROMATIC PLANTS TOWARDS FUSARIUM OXYSPORUM

    Directory of Open Access Journals (Sweden)

    Ivashchenko Iryna Vіctorovna

    2015-08-01

    Full Text Available The article establishes the fungicidal activity of water extracts of Artemisia maritimа L., Artemisia austriaca Jacq., under the concentration of 100, 50 and 25 mg/ml on dry matter with regard to the phytopathogenic mushroom Fusarium oxysporum. It also shows the fungistatic influence of extract of Artemisia dracunculus L. under concentration 25 and 50 mg/ml, fungicidal – under 100 mg/ml. Concerning Artemisia abrotanum L., the slow growth of mushroom is observed under the concentration 25 mg/ml, fungicidal effect – under 50 and 100 mg/ml. The paper provides the information on the component composition of ethereal oil and phenolic compounds of Artemisia maritimа, Artemisia austriaca, Artemisia abrotanum, Artemisia dracunculus, cultivated in Zhytomyr Polissya. The chief ingredients of ethereal oil which is synthesized by the plant of Artemisia abrotanum are 1,8-cineole (30.44% and camphor (31.92%. A high 1,8-cineole and camphor content determines antimicrobial properties of the plants. Amount of phenolic compounds in the air-dry raw Artemisia abrotanum is 2.98 percent. By the method of highly efficient solution chromatography (HESChr in the grass of Artemisia abrotanum we have detected 23 phenolic compounds, of which we identified such flavonoids as rutin, luteolin-7-glycoside as well as caffeic, chlorogenic and isochlorogenic acids. The main compounds of ethereal oil of Artemisia austriaca are trans-verbenole (30.77 %, pinocarvone (10.77 % and sabinilacetate (18.16 %. In the grass of Artemisia austriaca we have detected 31 phenolic compounds, of which we identified such flavonoids as rutin, apigenin, quercetin-bioside and the following acids: caffeic, chlorogenic, and isochlorogenic. Amount of phenolic compounds in the air-dry raw Austrian wormwood is 27.25 mg / g (2.73 %. The main component of ethereal oil of Artemisia dracunculus is methyleugenol (94.65 %. We have discovered 31 phenolic compounds in the grass of linear-leaved wormwood

  19. Patogenic fungi associated with blue lupine seeds

    Directory of Open Access Journals (Sweden)

    Bogdan Nowicki

    2013-12-01

    Full Text Available Over 10% ofseeds harvested in 1991 and 1992 (50 samples, 400 seeds in each sample proved to be infested with various fungi. Fusarium spp. and Botrytis cinerea were the most common pathogens isolated. Fusarium avenaceum was the most common and highIy pathogenic species. Fusarium semitectum and F. tricinctum were highly pathogenic to lupin seedlings but they were the least common Fusarium isolated from seeds. Similarily, Sclerotinia sclerotiorum was isolated only from 0,2% seeds tested but this fungus was highly pathogenic to lupin seedlings. Some other fungi know as lupin pathogens (F. oxysporum, Stemphylium botryosum, Pleiochaeta setosa and Phomopsis leptostromiformis were also noted in tested seeds.

  20. Identifikasi Ras Fisiologis Fusarium Oxysporum F.sp. Cubense Berdasarkan Sifat Kompatibel secara Vegetatif dan Pembentukan Bahan Volatil

    OpenAIRE

    Wibowo, Arif; Suryanti, Suryanti; Sumardiyono, Christanti

    2002-01-01

    Race characterization of F. oxysporum Schlecht. f.sp. cubense (E.F. Smith) Snyd. & Hans. by determining disease reaction is difficult because the result may be biased due to the variability of growing condition. This study is aimed to identify physiological races of F. oxysporum f.sp. cubense in banana plantation in the province of Daerah Istimewa Yogyakarta by examining the relation of the fungal pathogen isolates. The identification of physiological races of F. oxysporum f.sp. cubense was b...