WorldWideScience

Sample records for fungus fusarium graminearum

  1. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Chenfang Wang

    2011-12-01

    Full Text Available As in other eukaryotes, protein kinases play major regulatory roles in filamentous fungi. Although the genomes of many plant pathogenic fungi have been sequenced, systematic characterization of their kinomes has not been reported. The wheat scab fungus Fusarium graminearum has 116 protein kinases (PK genes. Although twenty of them appeared to be essential, we generated deletion mutants for the other 96 PK genes, including 12 orthologs of essential genes in yeast. All of the PK mutants were assayed for changes in 17 phenotypes, including growth, conidiation, pathogenesis, stress responses, and sexual reproduction. Overall, deletion of 64 PK genes resulted in at least one of the phenotypes examined, including three mutants blocked in conidiation and five mutants with increased tolerance to hyperosmotic stress. In total, 42 PK mutants were significantly reduced in virulence or non-pathogenic, including mutants deleted of key components of the cAMP signaling and three MAPK pathways. A number of these PK genes, including Fg03146 and Fg04770 that are unique to filamentous fungi, are dispensable for hyphal growth and likely encode novel fungal virulence factors. Ascospores play a critical role in the initiation of wheat scab. Twenty-six PK mutants were blocked in perithecia formation or aborted in ascosporogenesis. Additional 19 mutants were defective in ascospore release or morphology. Interestingly, F. graminearum contains two aurora kinase genes with distinct functions, which has not been reported in fungi. In addition, we used the interlog approach to predict the PK-PK and PK-protein interaction networks of F. graminearum. Several predicted interactions were verified with yeast two-hybrid or co-immunoprecipitation assays. To our knowledge, this is the first functional characterization of the kinome in plant pathogenic fungi. Protein kinase genes important for various aspects of growth, developmental, and infection processes in F. graminearum were

  2. Cellular Development Associated with Induced Mycotoxin Synthesis in the Filamentous Fungus Fusarium graminearum

    Science.gov (United States)

    Menke, Jon; Weber, Jakob; Broz, Karen; Kistler, H. Corby

    2013-01-01

    Several species of the filamentous fungus Fusarium colonize plants and produce toxic small molecules that contaminate agricultural products, rendering them unsuitable for consumption. Among the most destructive of these species is F. graminearum, which causes disease in wheat and barley and often infests the grain with harmful trichothecene mycotoxins. Synthesis of these secondary metabolites is induced during plant infection or in culture in response to chemical signals. Our results show that trichothecene biosynthesis involves a complex developmental process that includes dynamic changes in cell morphology and the biogenesis of novel subcellular structures. Two cytochrome P-450 oxygenases (Tri4p and Tri1p) involved in early and late steps in trichothecene biosynthesis were tagged with fluorescent proteins and shown to co-localize to vesicles we provisionally call “toxisomes.” Toxisomes, the inferred site of trichothecene biosynthesis, dynamically interact with motile vesicles containing a predicted major facilitator superfamily protein (Tri12p) previously implicated in trichothecene export and tolerance. The immediate isoprenoid precursor of trichothecenes is the primary metabolite farnesyl pyrophosphate. Changes occur in the cellular localization of the isoprenoid biosynthetic enzyme HMG CoA reductase when cultures non-induced for trichothecene biosynthesis are transferred to trichothecene biosynthesis inducing medium. Initially localized in the cellular endomembrane system, HMG CoA reductase, upon induction of trichothecene biosynthesis, increasingly is targeted to toxisomes. Metabolic pathways of primary and secondary metabolism thus may be coordinated and co-localized under conditions when trichothecene biosynthesis occurs. PMID:23667578

  3. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Hokyoung Son

    2011-10-01

    Full Text Available Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The fungus produces mycotoxins that are harmful to animal and human. In this study, a systematic analysis of 17 phenotypes of the mutants in 657 Fusarium graminearum genes encoding putative transcription factors (TFs resulted in a database of over 11,000 phenotypes (phenome. This database provides comprehensive insights into how this cereal pathogen of global significance regulates traits important for growth, development, stress response, pathogenesis, and toxin production and how transcriptional regulations of these traits are interconnected. In-depth analysis of TFs involved in sexual development revealed that mutations causing defects in perithecia development frequently affect multiple other phenotypes, and the TFs associated with sexual development tend to be highly conserved in the fungal kingdom. Besides providing many new insights into understanding the function of F. graminearum TFs, this mutant library and phenome will be a valuable resource for characterizing the gene expression network in this fungus and serve as a reference for studying how different fungi have evolved to control various cellular processes at the transcriptional level.

  4. The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Wilfried Jonkers

    Full Text Available WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity determents in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is required for pathogenicity and expression of key plant effector proteins. F. graminearum, an important pathogen of cereals, is not known to employ switching and no effector proteins from F. graminearum have been found to date that are required for infection. In this study, the potential role of the WOR1-like gene in pathogenesis was tested in this toxigenic fungus. Deletion of the WOR1 ortholog (called FGP1 in F. graminearum results in greatly reduced pathogenicity and loss of trichothecene toxin accumulation in infected wheat plants and in vitro. The loss of toxin accumulation alone may be sufficient to explain the loss of pathogenicity to wheat. Under toxin-inducing conditions, expression of genes for trichothecene biosynthesis and many other genes are not detected or detected at lower levels in Δfgp1 strains. FGP1 is also involved in the developmental processes of conidium formation and sexual reproduction and modulates a morphological change that accompanies mycotoxin production in vitro. The Wor1-like proteins in Fusarium species have highly conserved N-terminal regions and remarkably divergent C-termini. Interchanging the N- and C- terminal portions of proteins from F. oxysporum and F. graminearum resulted in partial to complete loss of function. Wor1-like proteins are conserved but have evolved to regulate pathogenicity in a range of fungi, likely by adaptations to the C-terminal portion of the protein.

  5. Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum.

    Science.gov (United States)

    Paper, Janet M; Scott-Craig, John S; Adhikari, Neil D; Cuomo, Christina A; Walton, Jonathan D

    2007-09-01

    High-throughput MS/MS was used to identify proteins secreted by Fusarium graminearum (Gibberella zeae) during growth on 13 media in vitro and in planta during infection of wheat heads. In vitro secreted proteins were collected from the culture filtrates, and in planta proteins were collected by vacuum infiltration. A total of 289 proteins (229 in vitro and 120 in planta) were identified with high statistical confidence. Forty-nine of the in planta proteins were not found in any of the in vitro conditions. The majority (91-100%) of the in vitro proteins had predicted signal peptides, but only 56% of the in planta proteins. At least 13 of the nonsecreted proteins found only in planta were single-copy housekeeping enzymes, including enolase, triose phosphate isomerase, phosphoglucomutase, calmodulin, aconitase, and malate dehydrogenase. The presence of these proteins in the in planta but not in vitro secretome might indicate that significant fungal lysis occurs during pathogenesis. On the other hand, several of the proteins lacking signal peptides that were found in planta have been reported to be potent immunogens secreted by animal pathogenic fungi, and therefore could be important in the interaction between F. graminearum and its host plants.

  6. Bacillomycin D Produced by Bacillus amyloliquefaciens Is Involved in the Antagonistic Interaction with the Plant-Pathogenic Fungus Fusarium graminearum.

    Science.gov (United States)

    Gu, Qin; Yang, Yang; Yuan, Qiming; Shi, Guangming; Wu, Liming; Lou, Zhiying; Huo, Rong; Wu, Huijun; Borriss, Rainer; Gao, Xuewen

    2017-10-01

    Fusarium graminearum (teleomorph: Ascomycota, Hypocreales, Gibberella , Gibberella zeae ) is a destructive fungal pathogen that threatens the production and quality of wheat and barley worldwide. Controlling this toxin-producing pathogen is a significant challenge. In the present study, the commercially available strain Bacillus amyloliquefaciens ( Bacteria , Firmicutes , Bacillales , Bacillus ) FZB42 showed strong activity against F. graminearum The lipopeptide bacillomycin D, produced by FZB42, was shown to contribute to the antifungal activity. Purified bacillomycin D showed strong activity against F. graminearum , and its 50% effective concentration was determined to be approximately 30 μg/ml. Analyses using scanning and transmission electron microscopy revealed that bacillomycin D caused morphological changes in the plasma membranes and cell walls of F. graminearum hyphae and conidia. Fluorescence microscopy combined with different dyes showed that bacillomycin D induced the accumulation of reactive oxygen species and caused cell death in F. graminearum hyphae and conidia. F. graminearum secondary metabolism also responded to bacillomycin D challenge, by increasing the production of deoxynivalenol. Biological control experiments demonstrated that bacillomycin D exerted good control of F. graminearum on corn silks, wheat seedlings, and wheat heads. In response to bacillomycin D, F. graminearum genes involved in scavenging reactive oxygen species were downregulated, whereas genes involved in the synthesis of deoxynivalenol were upregulated. Phosphorylation of MGV1 and HOG1, the mitogen-activated protein kinases of F. graminearum , was increased in response to bacillomycin D. Taken together, these findings reveal the mechanism of the antifungal action of bacillomycin D. IMPORTANCE Biological control of plant disease caused by Fusarium graminearum is desirable. Bacillus amyloliquefaciens FZB42 is a representative of the biocontrol bacterial strains. In this work

  7. Molecular Characterization and Functional Analysis of PR-1-Like Proteins Identified from the Wheat Head Blight Fungus Fusarium graminearum.

    Science.gov (United States)

    Lu, Shunwen; Edwards, Michael C

    2018-04-01

    The group 1 pathogenesis-related (PR-1) proteins originally identified from plants and their homologs are also found in other eukaryotic kingdoms. Studies on nonplant PR-1-like (PR-1L) proteins have been pursued widely in humans and animals but rarely in filamentous ascomycetes. Here, we report the characterization of four PR-1L proteins identified from the ascomycete fungus Fusarium graminearum, the primary cause of Fusarium head blight of wheat and barley (designated FgPR-1L). Molecular cloning revealed that the four FgPR-1L proteins are all encoded by small open reading frames (612 to 909 bp) that are often interrupted by introns, in contrast to plant PR-1 genes that lack introns. Sequence analysis indicated that all FgPR-1L proteins contain the PR-1-specific three-dimensional structure, and one of them features a C-terminal transmembrane (TM) domain that has not been reported for any stand-alone PR-1 proteins. Transcriptional analysis revealed that the four FgPR-1L genes are expressed in axenic cultures and in planta with different spatial or temporal expression patterns. Phylogenetic analysis indicated that fungal PR-1L proteins fall into three major groups, one of which harbors FgPR-1L-2-related TM-containing proteins from both phytopathogenic and human-pathogenic ascomycetes. Low-temperature sodium dodecyl sulfate polyacrylamide gel electrophoresis and proteolytic assays indicated that the recombinant FgPR-1L-4 protein exists as a monomer and is resistant to subtilisin of the serine protease family. Functional analysis confirmed that deletion of the FgPR-1L-4 gene from the fungal genome results in significantly reduced virulence on susceptible wheat. This study provides the first example that the F. graminearum-wheat interaction involves a pathogen-derived PR-1L protein that affects fungal virulence on the host.

  8. Dipeptide transporters in Fusarium graminearum

    DEFF Research Database (Denmark)

    Droce, Aida; Giese, Henriette; Søndergaard, Teis

    Fungi have evolved different transport mechanisms in order to utilize both inorganic and organic nitrogen sources because nitrogen availability often is one of the limiting factors in pathogenic processes. In this study we have characterized four di/tripeptide transporters in the necrotrophic plant...... pathogen Fusarium graminearum Fusarium that causes head blight (FHB) in wheat and barley....

  9. Application of proteomics to investigate barley-Fusarium graminearum interaction

    DEFF Research Database (Denmark)

    Yang, Fen

    in plants under low N and iv) proteomes of uninfected plants were similar under two N levels. Correlation of level of proteolysis induced by the fungus with measurement of Fusarium-damaged kernels, fungal biomass and mycotoxin levels indicated that FHB was more severe in barley with low N. In Chapter 3......, the molecular mechanisms of barley defense to Fusarium graminearum at the early infection stage were studied. Antibodies against barley β-amylases were shown to be the markers for infection at proteome level and for selection of the time for proteome analysis before extensive degradation caused by the fungus...... the disease. Due to the advantages of gel-based proteomics that differentially expressed proteins involved in the interaction can be directly detected by comparing protein profiles displayed on 2-D gels, it is used as a tool for studying the barley- Fusarium graminearum interaction form three different...

  10. A simple culture method inducing sexual reproduction by Fusarium graminearum, the primary causal agent of Fusarium head blight

    Science.gov (United States)

    The homothallic ascomycete fungus Fusarium graminearum is the primary causal agent of Fusarium head blight (FHB), a devastating disease of wheat and barley worldwide. The fungus undergoes both asexual and sexual stages in its life cycle. The asexual stage produces conidiospores, whereas the sexual s...

  11. Biosynthesis of fusarielins in Fusarium graminearum

    DEFF Research Database (Denmark)

    Saei, Wagma; Søndergaard, Teis; Giese, Henriette

    Polyketide synthase 9 (PKS9) is one of the 15 identified polyketide synthase (PKS) genes in Fusarium graminearum. The gene is coregulated along with five neighboring genes by a single transcription factor (TF). An overexpression of the transcription factor led to production of three novel...... by this cluster in Fusarium graminearum., deletion mutant of each gene was created in the overexpressed mutant by targeted gene replacemen...

  12. A network approach to predict pathogenic genes for Fusarium graminearum.

    Science.gov (United States)

    Liu, Xiaoping; Tang, Wei-Hua; Zhao, Xing-Ming; Chen, Luonan

    2010-10-04

    Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN) of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other pathogenic fungi, which

  13. Genome-wide expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium graminearum virus 1-DK21 infection

    Directory of Open Access Journals (Sweden)

    Cho Won

    2012-05-01

    Full Text Available Abstract Background Fusarium graminearum virus 1 strain-DK21 (FgV1-DK21 is a mycovirus that confers hypovirulence to F. graminearum, which is the primary phytopathogenic fungus that causes Fusarium head blight (FHB disease in many cereals. Understanding the interaction between mycoviruses and plant pathogenic fungi is necessary for preventing damage caused by F. graminearum. Therefore, we investigated important cellular regulatory processes in a host containing FgV1-DK21 as compared to an uninfected parent using a transcriptional approach. Results Using a 3′-tiling microarray covering all known F. graminearum genes, we carried out genome-wide expression analyses of F. graminearum at two different time points. At the early point of growth of an infected strain as compared to an uninfected strain, genes associated with protein synthesis, including ribosome assembly, nucleolus, and ribosomal RNA processing, were significantly up-regulated. In addition, genes required for transcription and signal transduction, including fungal-specific transcription factors and cAMP signaling, respectively, were actively up-regulated. In contrast, genes involved in various metabolic pathways, particularly in producing carboxylic acids, aromatic amino acids, nitrogen compounds, and polyamines, showed dramatic down-regulation at the early time point. Moreover, genes associated with transport systems localizing to transmembranes were down-regulated at both time points. Conclusion This is the first report of global change in the prominent cellular pathways in the Fusarium host containing FgV1-DK21. The significant increase in transcripts for transcription and translation machinery in fungal host cells seems to be related to virus replication. In addition, significant down-regulation of genes required for metabolism and transporting systems in a fungal host containing the virus appears to be related to the host defense mechanism and fungal virulence. Taken together

  14. A network approach to predict pathogenic genes for Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Xiaoping Liu

    Full Text Available Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB, which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other

  15. An arabinobio-hydrolase (Arb93B) from Fusarium graminearum is associated with wheat head blight disease

    Science.gov (United States)

    Fusarium head blight (FHB), caused by the fungus Fusarium graminearum, is one of the most important diseases of wheat and barley worldwide. FHB not only reduces crop yield, but the fungus also contaminates grains with mycotoxins, which are harmful to humans and animals. A previous study demonstrated...

  16. Fusarium graminearum and Fusarium verticillioides infection on maize seeds

    Directory of Open Access Journals (Sweden)

    Dayana Portes Ramos

    2014-03-01

    Full Text Available The previous knowledge of the infection process and pathogens behavior, for evaluating the physiological potential of maize seeds, is essential for decision making on the final destination of lots that can endanger sowing. This research was carried out in order to study the minimum period required for maize seeds contamination by Fusarium graminearum Schwabe and Fusarium verticillioides (Sacc. Nirenberg, as well as these pathogens influence on seed germination and vigor, by using the cold test. Three maize seeds hybrids, kept in contact with the pathogens for different periods, were evaluated with and without surface disinfection. After determining the most suitable period, new samples were contaminated by F. graminearum and F. verticillioides, under different infection levels, and subjected to germination tests in sand. The cold test was conducted with healthy and contaminated seeds, at different periods, in a cold chamber. The contact of maize seeds with F. graminearum and F. verticillioides for 16 hours was enough to cause infection. F. graminearum and F. verticillioides did not affect the maize seeds germination, however, F. graminearum reduced the vigor of seeds lots.

  17. Development of a Selective Medium for the Fungal Pathogen Fusarium graminearum Using Toxoflavin Produced by the Bacterial Pathogen Burkholderia glumae

    Directory of Open Access Journals (Sweden)

    Boknam Jung

    2013-12-01

    Full Text Available The ascomycete fungus Fusarium graminearum is a major causal agent for Fusarium head blight in cereals and produces mycotoxins such as trichothecenes and zearalenone. Isolation of the fungal strains from air or cereals can be hampered by various other airborne fungal pathogens and saprophytic fungi. In this study, we developed a selective medium specific to F. graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae. F. graminearum was resistant to toxoflavin, while other fungi were sensitive to this toxin. Supplementing toxoflavin into medium enhanced the isolation of F. graminearum from rice grains by suppressing the growth of saprophytic fungal species. In addition, a medium with or without toxoflavin exposed to wheat fields for 1 h had 84% or 25%, respectively, of colonies identified as F. graminearum. This selection medium provides an efficient tool for isolating F. graminearum, and can be adopted by research groups working on genetics and disease forecasting.

  18. Extracellular peptidases of the cereal pathogen Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Rohan George Thomas Lowe

    2015-11-01

    Full Text Available The plant pathogenic fungus Fusarium graminearum (Fgr creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab of wheat and stalk rot of corn, reducing yield, degrading grain quality and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterise the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviours. An orbitrap MS/MS proteomics technique defined the extracellular proteases secreted by Fusarium graminearum. A meta-classification based on sequence characters and transcriptional/translational activity in planta and in vitro provides a platform to develop control strategies that target Fgr peptidases.

  19. Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, Jens D.; Svensson, Birte

    2012-01-01

    Fusarium graminearum is a phytopathogenic fungus primarily infecting small grain cereals, including barley and wheat. Secreted enzymes play important roles in the pathogenicity of many fungi. In order to access the secretome of F. graminearum, the fungus was grown in liquid culture with barley...... or wheat flour as the sole nutrient source to mimic the host–pathogen interaction. A gel‐based proteomics approach was employed to identify the proteins secreted into the culture medium. Sixty‐nine unique fungal proteins were identified in 154 protein spots, including enzymes involved in the degradation...... between wheat and barley flour medium were mainly involved in fungal cell wall remodelling and the degradation of plant cell walls, starch and proteins. The in planta expression of corresponding F. graminearum genes was confirmed by quantitative reverse transcriptase‐polymerase chain reaction in barley...

  20. Biological Efficacy of Streptomyces sp. Strain BN1 against the Cereal Head Blight Pathogen Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Boknam Jung

    2013-03-01

    Full Text Available Fusarium head blight (FHB caused by the filamentous fungus Fusarium graminearum is one of the most severe diseases threatening the production of small grains. Infected grains are often contaminated with mycotoxins such as zearalenone and trichothecences. During survey of contamination by FHB in rice grains, we found a bacterial isolate, designated as BN1, antagonistic to F. graminearum. The strain BN1 had branching vegetative hyphae and spores, and its aerial hyphae often had long, straight filaments bearing spores. The 16S rRNA gene of BN1 had 100% sequence identity with those found in several Streptomyces species. Phylogenetic analysis of ITS regions showed that BN1 grouped with S. sampsonii with 77% bootstrap value, suggesting that BN1 was not a known Streptomyces species. In addition, the efficacy of the BN1 strain against F. graminearum strains was tested both in vitro and in vivo. Wheat seedling length was significantly decreased by F. graminearum infection. However, this effect was mitigated when wheat seeds were treated with BN1 spore suspension prior to F. graminearum infection. BN1 also significantly decreased FHB severity when it was sprayed onto wheat heads, whereas BN1 was not effective when wheat heads were point inoculated. These results suggest that spraying of BN1 spores onto wheat heads during the wheat flowering season can be efficient for plant protection. Mechanistic studies on the antagonistic effect of BN1 against F. graminearum remain to be analyzed.

  1. Fusarium graminearum and its interactions with cereal heads: studies in the proteomics era

    Directory of Open Access Journals (Sweden)

    Fen eYang

    2013-02-01

    Full Text Available The ascomycete fungal pathogen Fusarium graminearum is the causal agent of Fusarium head blight (FHB in wheat and barley. This disease leads to significant losses of crop yield, and especially quality through the contamination by diverse fungal mycotoxins, which constitute a significant threat to the health of humans and animals. In recent years, high-throughput proteomics, aiming at identifying a broad spectrum of proteins with a potential role in the pathogenicity and host resistance, has become a very useful tool in plant-fungus interaction research. In this review, we describe the progress in proteomics applications towards a better understanding of Fusarium graminearum pathogenesis, virulence and host defence mechanisms. The contribution of proteomics to the development of crop protection strategies against this pathogen is also discussed briefly.

  2. Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum

    DEFF Research Database (Denmark)

    Kosawang, Chatchai; Karlsson, Magnus; Vélëz, Heriberto

    2014-01-01

    The fungus Clonostachys rosea is antagonistic against plant pathogens, including Fusarium graminearum, which produces the oestrogenic mycotoxin zearalenone (ZEA). ZEA inhibits other fungi, and C. rosea can detoxify ZEA through the enzyme zearalenone lactonohydrolase (ZHD101). As the relevance...... wheat seedlings against foot rot caused by the ZEA-producing F. graminearum. These data show that ZEA detoxification by ZHD101 is important for the biocontrol ability of C. rosea against F. graminearum....

  3. Application of proteomics to investigate barley-Fusarium graminearum interaction

    OpenAIRE

    Yang, Fen; Finnie, Christine; Jacobsen, Susanne

    2011-01-01

    Due to the great loss of barley grain yield and quality in addition to mycotoxins contamination caused by Fusarium head blight (FHB), it is essential to understand the molecular interaction between barley and Fusarium graminearum, one of the primary Fusarium species causing FHB, in order to control the disease. Due to the advantages of gel-based proteomics that differentially expressed proteins involved in the interaction can be directly detected by comparing protein profiles displayed on 2-D...

  4. BIOLOGICAL CHARACTERISTICS OF FUSARIUM GRAMINEARUM SCHW. AND FUSARIUM CULMORUM (W.G. SMITH SACC.

    Directory of Open Access Journals (Sweden)

    Jasenka Ćosić

    2006-12-01

    Full Text Available Fusarium species from section Discolor are widespread and well-known and play an important role in disease etiology of wheat, barley and maize. F. graminearum and F. culmorum were isolated during a four-year period at several locations in Eastern Croatia and from different hosts. The mycelium development of 236isolates of F. graminearum and 2 isolates of F. culmorum was cultered during an eight day period on water agar, PDA, Bilai, Czapek's and CLA agar at temperatures 5°, 15°, 20°, 25° and 30°C and a 12 hour dark/light regime. The results show that agar medium does not influence colony diameter significantly. The agar medium influences the richness and density of the aerial mycelium significantly, although the shape and compactness of the mycelium is not only the result of the medium on which the fungus is developed, but also of the characteristics of the species itself. The sporulation of F. culmorum was abundant on all investigated medium, whereas the sporulation of F. graminearum was very weak on PDA and Bilai agar and it was medium on CLA.

  5. Fusarium graminearum and Its Interactions with Cereal Heads: Studies in the Proteomics Era

    Science.gov (United States)

    Yang, Fen; Jacobsen, Susanne; Jørgensen, Hans J. L.; Collinge, David B.; Svensson, Birte; Finnie, Christine

    2013-01-01

    The ascomycete fungal pathogen Fusarium graminearum (teleomorph stage: Gibberella zeae) is the causal agent of Fusarium head blight in wheat and barley. This disease leads to significant losses of crop yield, and especially quality through the contamination by diverse fungal mycotoxins, which constitute a significant threat to the health of humans and animals. In recent years, high-throughput proteomics, aiming at identifying a broad spectrum of proteins with a potential role in the pathogenicity and host resistance, has become a very useful tool in plant-fungus interaction research. In this review, we describe the progress in proteomics applications toward a better understanding of F. graminearum pathogenesis, virulence, and host defense mechanisms. The contribution of proteomics to the development of crop protection strategies against this pathogen is also discussed briefly. PMID:23450732

  6. Response of germinating barley seeds to Fusarium graminearum: The first molecular insight into Fusarium seedling blight

    DEFF Research Database (Denmark)

    Yang, Fen; Svensson, Birte; Finnie, Christine

    2011-01-01

    involved in primary metabolism and detoxification whereas the majority of down-regulated proteins were plant protease inhibitors. The results suggest that there is a link between increased energy metabolism and oxidative stress in the germinating barley seeds in response to F. graminearum infection, which......Fusarium seedling blight in cereals can result in significant reductions in plant establishment but has not received much attention. The disease often starts during seed germination due to sowing of the seeds infected by Fusarium spp. including Fusarium graminearum. In order to gain the first...

  7. Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review

    OpenAIRE

    Leplat , Johann; Friberg , Hanna; Abid , Muhammad; Steinberg , Christian

    2012-01-01

    International audience; Wheat is one of the most cultivated crops worldwide. In 2010, 20 % of wheat and durum wheat were cultivated in Europe, 17 % in China and 9 % in Russia and in North America. Wheat yield can be highly decreased by several factors. In particular Fusarium graminearum Schwabe is a worldwide fungal pest impacting wheat production. F. graminearum is the causal agent of Fusarium head blight, root and stem-base rot of cereals. Losses caused by Fusarium head blight in Northern a...

  8. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum.

    Science.gov (United States)

    Han, Jigang; Lakshman, Dilip K; Galvez, Leny C; Mitra, Sharmila; Baenziger, Peter Stephen; Mitra, Amitava

    2012-03-09

    The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Using the tools of plant genetic engineering, a broad-spectrum antimicrobial gene was tested for resistance against head blight caused by Fusarium graminearum Schwabe, a devastating disease of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) that reduces both grain yield and quality. A construct containing a bovine lactoferrin cDNA was used to transform wheat using an Agrobacterium-mediated DNA transfer system to express this antimicrobial protein in transgenic wheat. Transformants were analyzed by Northern and Western blots to determine lactoferrin gene expression levels and were inoculated with the head blight disease fungus F. graminearum. Transgenic wheat showed a significant reduction of disease incidence caused by F. graminearum compared to control wheat plants. The level of resistance in the highly susceptible wheat cultivar Bobwhite was significantly higher in transgenic plants compared to control Bobwhite and two untransformed commercial wheat cultivars, susceptible Wheaton and tolerant ND 2710. Quantification of the expressed lactoferrin protein by ELISA in transgenic wheat indicated a positive correlation between the lactoferrin gene expression levels and the levels of disease resistance. Introgression of the lactoferrin gene into elite commercial wheat, barley and other susceptible cereals may enhance resistance to F. graminearum.

  9. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Han Jigang

    2012-03-01

    Full Text Available Abstract Background The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Using the tools of plant genetic engineering, a broad-spectrum antimicrobial gene was tested for resistance against head blight caused by Fusarium graminearum Schwabe, a devastating disease of wheat (Triticum aestivum L. and barley (Hordeum vulgare L. that reduces both grain yield and quality. Results A construct containing a bovine lactoferrin cDNA was used to transform wheat using an Agrobacterium-mediated DNA transfer system to express this antimicrobial protein in transgenic wheat. Transformants were analyzed by Northern and Western blots to determine lactoferrin gene expression levels and were inoculated with the head blight disease fungus F. graminearum. Transgenic wheat showed a significant reduction of disease incidence caused by F. graminearum compared to control wheat plants. The level of resistance in the highly susceptible wheat cultivar Bobwhite was significantly higher in transgenic plants compared to control Bobwhite and two untransformed commercial wheat cultivars, susceptible Wheaton and tolerant ND 2710. Quantification of the expressed lactoferrin protein by ELISA in transgenic wheat indicated a positive correlation between the lactoferrin gene expression levels and the levels of disease resistance. Conclusions Introgression of the lactoferrin gene into elite commercial wheat, barley and other susceptible cereals may enhance resistance to F. graminearum.

  10. RNA-Seq Revealed Differences in Transcriptomes between 3ADON and 15ADON Populations of Fusarium graminearum In Vitro and In Planta

    OpenAIRE

    Puri, Krishna D.; Yan, Changhui; Leng, Yueqiang; Zhong, Shaobin

    2016-01-01

    Fusarium graminearum is the major causal agent of Fusarium head blight (FHB) in barley and wheat in North America. The fungus not only causes yield loss of the crops but also produces harmful trichothecene mycotoxins [Deoxynivalenol (DON) and its derivatives-3-acetyldeoxynivalenol (3ADON) and 15-acetyldeoxynivalenol (15ADON), and nivalenol (NIV)] that contaminate grains. Previous studies showed a dramatic increase of 3ADON-producing isolates with higher aggressiveness and DON production than ...

  11. Natural Contamination with Mycotoxins Produced by Fusarium graminearum and Fusarium poae in Malting Barley in Argentina

    Science.gov (United States)

    Nogueira, María Soledad; Decundo, Julieta; Martinez, Mauro; Dieguez, Susana Nelly; Moreyra, Federico; Moreno, Maria Virginia

    2018-01-01

    Two of the most common species of toxin-producing Fusarium contaminating small cereal grains are Fusarium graminearum and F. poae; with both elaborating diverse toxins, especially deoxynivalenol (DON) and nivalenol (NIV), respectively. The objective of our work during the 2012–2014 growing seasons was to screen crops for the most commonly isolated Fusarium species and to quantify DON and NIV toxins in natural malting-barley samples from different producing areas of Argentina. We identified 1180 Fusarium isolates in the 119 samples analyzed, with 51.2% being F. graminearum, 26.2% F. poae and 22.6% other species. We found high concentrations of mycotoxins, at maximum values of 12 μg/g of DON and 7.71 μg/g of NIV. Of the samples, 23% exhibited DON at an average of 2.36 μg/g, with 44% exceeding the maximum limits (average of 5.24 μg/g); 29% contained NIV at an average of 2.36 μg/g; 7% contained both DON and NIV; and 55% were without DON or NIV. Finally, we report the mycotoxin contamination of the grain samples produced by F. graminearum and F. poae, those being the most frequent Fusarium species present. We identified the main Fusarium species affecting natural malting-barley grains in Argentina and documented the presence of many samples with elevated concentrations of DON and NIV. To our knowledge, the investigation reported here was the first to quantify the contamination by Fusarium and its toxins in natural samples of malting barley in Argentina. PMID:29439459

  12. Natural Contamination with Mycotoxins Produced by Fusarium graminearum and Fusarium poae in Malting Barley in Argentina

    Directory of Open Access Journals (Sweden)

    María Soledad Nogueira

    2018-02-01

    Full Text Available Two of the most common species of toxin-producing Fusarium contaminating small cereal grains are Fusarium graminearum and F. poae; with both elaborating diverse toxins, especially deoxynivalenol (DON and nivalenol (NIV, respectively. The objective of our work during the 2012–2014 growing seasons was to screen crops for the most commonly isolated Fusarium species and to quantify DON and NIV toxins in natural malting-barley samples from different producing areas of Argentina. We identified 1180 Fusarium isolates in the 119 samples analyzed, with 51.2% being F. graminearum, 26.2% F. poae and 22.6% other species. We found high concentrations of mycotoxins, at maximum values of 12 μg/g of DON and 7.71 μg/g of NIV. Of the samples, 23% exhibited DON at an average of 2.36 μg/g, with 44% exceeding the maximum limits (average of 5.24 μg/g; 29% contained NIV at an average of 2.36 μg/g; 7% contained both DON and NIV; and 55% were without DON or NIV. Finally, we report the mycotoxin contamination of the grain samples produced by F. graminearum and F. poae, those being the most frequent Fusarium species present. We identified the main Fusarium species affecting natural malting-barley grains in Argentina and documented the presence of many samples with elevated concentrations of DON and NIV. To our knowledge, the investigation reported here was the first to quantify the contamination by Fusarium and its toxins in natural samples of malting barley in Argentina.

  13. Semi-selective medium for Fusarium graminearum detection in seed samples

    Directory of Open Access Journals (Sweden)

    Marivane Segalin

    2010-12-01

    Full Text Available Fungi of the genus Fusarium cause a variety of difficult to control diseases in different crops, including winter cereals and maize. Among the species of this genus Fusarium graminearum deserves attention. The aim of this work was to develop a semi-selective medium to study this fungus. In several experiments, substrates for fungal growth were tested, including fungicides and antibiotics such as iprodiona, nystatin and triadimenol, and the antibacterial agents streptomycin and neomycin sulfate. Five seed samples of wheat, barley, oat, black beans and soybeans for F. graminearum detection by using the media Nash and Snyder agar (NSA, Segalin & Reis agar (SRA and one-quarter dextrose agar (1/4PDA; potato 50g; dextrose 5g and agar 20g, either unsupplemented or supplemented with various concentrations of the antimicrobial agents cited above. The selected components and concentrations (g.L-1 of the proposed medium, Segalin & Reis agar (SRA-FG, were: iprodiona 0.05; nystatin 0,025; triadimenol 0.015; neomycin sulfate 0.05; and streptomycin sulfate, 0.3 added of ¼ potato sucrose agar. In the isolation from seeds of cited plant species, the sensitivity of this medium was similar to that of NSA but with de advantage of maintaining the colony morphological aspects similar to those observed in potato-dextrose-agar medium.

  14. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Wild maize (teosinte has been reported to be less susceptible to pests than their modern maize (corn relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER in modern maize and produces the mycotoxin, deoxynivalenol (DON. In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense.

  15. Selection of wheat lines with resistance to Fusarium graminearum by somaclonal variation

    International Nuclear Information System (INIS)

    Sun Guangzu

    1997-10-01

    The screening wheat new lines which have the resistance to Fusarium graminearum were completed by in vitro induced mutation and cell screening. Four new lines with resistance to Fusarium graminearum were obtained. The field inoculating determination in 1990∼1996 showed that their resistance was 1∼2 degree higher than that of parents, and there were variations in main agronomic traits between the new lines and their parents. Changes of the defensive enzymes (SOD, POD), sugar-protein on cell surface, and ultrastructure were investigated by using new lines and their parents under the action of toxin of Fusarium graminearum. The new lines under the action of toxin of Fusarium graminearum have the ability to increase the defensive enzyme activity and thickness of sugarprotein on cell surface and to reduce the damage of cell membrane system that would result in resistance increasing. (8 refs., 3 figs., 3 tabs.)

  16. Glutathione transferase-mediated benzimidazole-resistance in Fusarium graminearum.

    Science.gov (United States)

    Sevastos, A; Labrou, N E; Flouri, F; Malandrakis, A

    2017-09-01

    Fusarium graminearum laboratory mutants moderately (MR) and highly (HR) benzimidazole-resistant, carrying or not target-site mutations at the β 2 -tubulin gene were utilized in an attempt to elucidate the biochemical mechanism(s) underlying the unique BZM-resistance paradigm of this fungal plant pathogen. Relative expression analysis in the presence or absence of carbendazim (methyl-2-benzimidazole carbamate) using a quantitative Real Time qPCR (RT-qPCR) revealed differences between resistant and the wild-type parental strain although no differences in expression levels of either β 1 - or β 2 -tubulin homologue genes were able to fully account for two of the highly resistant phenotypes. Glutathione transferase (GST)-mediated detoxification was shown to be -at least partly- responsible for the elevated resistance levels of a HR isolate bearing the β 2 -tubulin Phe200Tyr resistance mutation compared with another MR isolate carrying the same mutation. This benzimidazole-resistance mechanism is reported for the first time in F. graminearum. No indications of detoxification involved in benzimidazole resistance were found for the rest of the isolates as revealed by GST and glutathione peroxidase (GPx) activities and bioassays using monoxygenase and hydrolase detoxification enzyme inhibiting synergists. Interestingly, besides the Phe200Tyr mutation-carrying HR isolate, the remaining highly-carbendazim resistant phenotypes could not be associated with any of the target site modification/overproduction, detoxification or reduced uptake-increased efflux mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Metabolomics to Decipher the Chemical Defense of Cereals against Fusarium graminearum and Deoxynivalenol Accumulation

    Directory of Open Access Journals (Sweden)

    Léa Gauthier

    2015-10-01

    Full Text Available Fusarium graminearum is the causal agent of Fusarium head blight (FHB and Gibberella ear rot (GER, two devastating diseases of wheat, barley, and maize. Furthermore, F. graminearum species can produce type B trichothecene mycotoxins that accumulate in grains. Use of FHB and GER resistant cultivars is one of the most promising strategies to reduce damage induced by F. graminearum. Combined with genetic approaches, metabolomic ones can provide powerful opportunities for plant breeding through the identification of resistant biomarker metabolites which have the advantage of integrating the genetic background and the influence of the environment. In the past decade, several metabolomics attempts have been made to decipher the chemical defense that cereals employ to counteract F. graminearum. By covering the major classes of metabolites that have been highlighted and addressing their potential role, this review demonstrates the complex and integrated network of events that cereals can orchestrate to resist to F. graminearum.

  18. Metabolomics to Decipher the Chemical Defense of Cereals against Fusarium graminearum and Deoxynivalenol Accumulation

    Science.gov (United States)

    Gauthier, Léa; Atanasova-Penichon, Vessela; Chéreau, Sylvain; Richard-Forget, Florence

    2015-01-01

    Fusarium graminearum is the causal agent of Fusarium head blight (FHB) and Gibberella ear rot (GER), two devastating diseases of wheat, barley, and maize. Furthermore, F. graminearum species can produce type B trichothecene mycotoxins that accumulate in grains. Use of FHB and GER resistant cultivars is one of the most promising strategies to reduce damage induced by F. graminearum. Combined with genetic approaches, metabolomic ones can provide powerful opportunities for plant breeding through the identification of resistant biomarker metabolites which have the advantage of integrating the genetic background and the influence of the environment. In the past decade, several metabolomics attempts have been made to decipher the chemical defense that cereals employ to counteract F. graminearum. By covering the major classes of metabolites that have been highlighted and addressing their potential role, this review demonstrates the complex and integrated network of events that cereals can orchestrate to resist to F. graminearum. PMID:26492237

  19. Real-time imaging of hydrogen peroxide dynamics in vegetative and pathogenic hyphae of Fusarium graminearum.

    Science.gov (United States)

    Mentges, Michael; Bormann, Jörg

    2015-10-08

    Balanced dynamics of reactive oxygen species in the phytopathogenic fungus Fusarium graminearum play key roles for development and infection. To monitor those dynamics, ratiometric analysis using the novel hydrogen peroxide (H2O2) sensitive fluorescent indicator protein HyPer-2 was established for the first time in phytopathogenic fungi. H2O2 changes the excitation spectrum of HyPer-2 with an excitation maximum at 405 nm for the reduced and 488 nm for the oxidized state, facilitating ratiometric readouts with maximum emission at 516 nm. HyPer-2 analyses were performed using a microtiter fluorometer and confocal laser scanning microscopy (CLSM). Addition of external H2O2 to mycelia caused a steep and transient increase in fluorescence excited at 488 nm. This can be reversed by the addition of the reducing agent dithiothreitol. HyPer-2 in F. graminearum is highly sensitive and specific to H2O2 even in tiny amounts. Hyperosmotic treatment elicited a transient internal H2O2 burst. Hence, HyPer-2 is suitable to monitor the intracellular redox balance. Using CLSM, developmental processes like nuclear division, tip growth, septation, and infection structure development were analyzed. The latter two processes imply marked accumulations of intracellular H2O2. Taken together, HyPer-2 is a valuable and reliable tool for the analysis of environmental conditions, cellular development, and pathogenicity.

  20. Two Cdc2 Kinase Genes with Distinct Functions in Vegetative and Infectious Hyphae in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Huiquan Liu

    2015-06-01

    Full Text Available Eukaryotic cell cycle involves a number of protein kinases important for the onset and progression through mitosis, most of which are well characterized in the budding and fission yeasts and conserved in other fungi. However, unlike the model yeast and filamentous fungi that have a single Cdc2 essential for cell cycle progression, the wheat scab fungus Fusarium graminearum contains two CDC2 orthologs. The cdc2A and cdc2B mutants had no obvious defects in growth rate and conidiation but deletion of both of them is lethal, indicating that these two CDC2 orthologs have redundant functions during vegetative growth and asexual reproduction. However, whereas the cdc2B mutant was normal, the cdc2A mutant was significantly reduced in virulence and rarely produced ascospores. Although deletion of CDC2A had no obvious effect on the formation of penetration branches or hyphopodia, the cdc2A mutant was limited in the differentiation and growth of infectious growth in wheat tissues. Therefore, CDC2A plays stage-specific roles in cell cycle regulation during infectious growth and sexual reproduction. Both CDC2A and CDC2B are constitutively expressed but only CDC2A was up-regulated during plant infection and ascosporogenesis. Localization of Cdc2A- GFP to the nucleus but not Cdc2B-GFP was observed in vegetative hyphae, ascospores, and infectious hyphae. Complementation assays with chimeric fusion constructs showed that both the N- and C-terminal regions of Cdc2A are important for its functions in pathogenesis and ascosporogenesis but only the N-terminal region is important for its subcellular localization. Among the Sordariomycetes, only three Fusarium species closely related to F. graminearum have two CDC2 genes. Furthermore, F. graminearum uniquely has two Aurora kinase genes and one additional putative cyclin gene, and its orthologs of CAK1 and other four essential mitotic kinases in the budding yeast are dispensable for viability. Overall, our data

  1. Two Cdc2 Kinase Genes with Distinct Functions in Vegetative and Infectious Hyphae in Fusarium graminearum.

    Science.gov (United States)

    Liu, Huiquan; Zhang, Shijie; Ma, Jiwen; Dai, Yafeng; Li, Chaohui; Lyu, Xueliang; Wang, Chenfang; Xu, Jin-Rong

    2015-06-01

    Eukaryotic cell cycle involves a number of protein kinases important for the onset and progression through mitosis, most of which are well characterized in the budding and fission yeasts and conserved in other fungi. However, unlike the model yeast and filamentous fungi that have a single Cdc2 essential for cell cycle progression, the wheat scab fungus Fusarium graminearum contains two CDC2 orthologs. The cdc2A and cdc2B mutants had no obvious defects in growth rate and conidiation but deletion of both of them is lethal, indicating that these two CDC2 orthologs have redundant functions during vegetative growth and asexual reproduction. However, whereas the cdc2B mutant was normal, the cdc2A mutant was significantly reduced in virulence and rarely produced ascospores. Although deletion of CDC2A had no obvious effect on the formation of penetration branches or hyphopodia, the cdc2A mutant was limited in the differentiation and growth of infectious growth in wheat tissues. Therefore, CDC2A plays stage-specific roles in cell cycle regulation during infectious growth and sexual reproduction. Both CDC2A and CDC2B are constitutively expressed but only CDC2A was up-regulated during plant infection and ascosporogenesis. Localization of Cdc2A- GFP to the nucleus but not Cdc2B-GFP was observed in vegetative hyphae, ascospores, and infectious hyphae. Complementation assays with chimeric fusion constructs showed that both the N- and C-terminal regions of Cdc2A are important for its functions in pathogenesis and ascosporogenesis but only the N-terminal region is important for its subcellular localization. Among the Sordariomycetes, only three Fusarium species closely related to F. graminearum have two CDC2 genes. Furthermore, F. graminearum uniquely has two Aurora kinase genes and one additional putative cyclin gene, and its orthologs of CAK1 and other four essential mitotic kinases in the budding yeast are dispensable for viability. Overall, our data indicate that cell cycle

  2. Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum.

    Science.gov (United States)

    Mousa, Walaa K; Shearer, Charles; Limay-Rios, Victor; Ettinger, Cassie L; Eisen, Jonathan A; Raizada, Manish N

    2016-09-26

    The ancient African crop, finger millet, has broad resistance to pathogens including the toxigenic fungus Fusarium graminearum. Here, we report the discovery of a novel plant defence mechanism resulting from an unusual symbiosis between finger millet and a root-inhabiting bacterial endophyte, M6 (Enterobacter sp.). Seed-coated M6 swarms towards root-invading Fusarium and is associated with the growth of root hairs, which then bend parallel to the root axis, subsequently forming biofilm-mediated microcolonies, resulting in a remarkable, multilayer root-hair endophyte stack (RHESt). The RHESt results in a physical barrier that prevents entry and/or traps F. graminearum, which is then killed. M6 thus creates its own specialized killing microhabitat. Tn5-mutagenesis shows that M6 killing requires c-di-GMP-dependent signalling, diverse fungicides and resistance to a Fusarium-derived antibiotic. Further molecular evidence suggests long-term host-endophyte-pathogen co-evolution. The end result of this remarkable symbiosis is reduced deoxynivalenol mycotoxin, potentially benefiting millions of subsistence farmers and livestock. Further results suggest that the anti-Fusarium activity of M6 may be transferable to maize and wheat. RHESt demonstrates the value of exploring ancient, orphan crop microbiomes.

  3. Population genomics of Fusarium graminearum reveals signatures of divergent evolution within a major cereal pathogen

    Science.gov (United States)

    The cereal pathogen Fusarium graminearum is the primary cause of Fusarium head blight (FHB) and a significant threat to food safety and crop production. To elucidate population structure and identify genomic targets of selection within major FHB pathogen populations in North America we sequenced the...

  4. Use of the polymerase chain reaction for detection of Fusarium graminearum in bulgur wheat

    Directory of Open Access Journals (Sweden)

    Carla Bertechini Faria

    2012-03-01

    Full Text Available The detection of mycotoxigenic fungi in foodstuff is important because their presence may indicate the possible associated mycotoxin contamination. Fusarium graminearum is a wheat pathogen and a producer of micotoxins. The polymerase chain reaction (PCR has been employed for the specific identification of F. graminearum. However, this methodology has not been commonly used for detection of F. graminearum in food. Thus, the objective of the present study was to develop a molecular methodology to detect F. graminearum in commercial samples of bulgur wheat. Two methods were tested. In the first method, a sample of this cereal was contaminated with F. graminearum mycelia. The genomic DNA was extracted from this mixture and used in a F. graminearum specific PCR reaction. The F. graminearum species was detected only in samples that were heavily contaminated. In the second method, samples of bulgur wheat were inoculated on a solid medium, and isolates having F. graminearum culture characteristics were obtained. The DNA extracted from these isolates was tested in F. graminearum specific PCR reactions. An isolate obtained had its trichothecene genotype identified by PCR. The established methodology could be used in surveys of food contamination with F. graminearum.

  5. Adjuvantes e herbicidas e a infectividade de Fusarium graminearum, agente potencial de biocontrole de Egeria densa e Egeria najas Adjuvants and herbicides and the infectivity of Fusarium graminearum, a potential biocontrol agent of Egeria densa and Egeria najas

    Directory of Open Access Journals (Sweden)

    C.R. Borges Neto

    2004-03-01

    Full Text Available Foram estudados os efeitos da adição de adjuvantes e a associação com herbicidas na infectividade do fungo dentro do patossistema Fusarium graminearum x Egeria spp. Foram utilizadas plantas sadias de Egeria densa e E. najas inoculadas com uma suspensão de arroz moído colonizado por F. graminearum, na concentração de 0,7 g L-1. Os tubos de ensaio contendo as plantas imersas na referida suspensão foram mantidos em incubadora à temperatura de 25 ºC e fotoperíodo de 12 horas diárias de luz, por oito dias, durante os quais foram avaliados os sintomas nas plantas a cada dois dias e o crescimento destas através do incremento de matéria fresca ao final do experimento. O efeito de 14 adjuvantes e 6 herbicidas, adicionados à suspensão de inóculo, sobre a ação de F. graminearum em E. densa e E. najas foi avaliado. De modo geral, os adjuvantes melhoraram a eficiência do bioerbicida e a associação herbicida + fungo proporcionou maior severidade de doença e controle do crescimento das plantas.The effects of adding adjuvants and their association with herbicides on fungus infectivity were studied in the Fusarium graminearum x Egeria spp. pathosystem. Healthy Egeria densa and E. naja plants were inoculated with suspension of ground rice with F. graminearum, at a concentration of 0.7 g L-1. The assay tubes with the plants immersed in the suspension were kept in the incubator at the temperature of 25 ºC and photoperiod of 12 hours daily, with plant symptoms being evaluated every two hours and plant growth monitored based on fresh matter increase at the end of the experiment. The effect of 14 adjuvants and 6 herbicides added to the inoculum on the action of F. graminearum against E. densa and E. najas was evaluated. In general, the adjuvants improved bioherbicide efficiency and the herbicide + fungus association increased disease severity and plant growth control.

  6. Functional roles of FgLaeA in controlling secondary metabolism, sexual development, and virulence in Fusarium graminearum

    Science.gov (United States)

    Fusarium graminearum, the causal agent of Fusarium head blight in cereal crops, produces mycotoxins such as trichothecenes and zearalenone in infected plants. Here, we focused on the function of FgLaeA in F. graminearum, a homolog of Aspergillus nidulans LaeA encoding the global regulator for both s...

  7. In vitro sensitivity of Fusarium graminearum isolates to fungicides

    Directory of Open Access Journals (Sweden)

    Aveline Avozani

    2014-09-01

    Full Text Available Head blight of wheat is a disease of global importance. In Brazil, it can cause damage of up to 27%. As resistant cultivars are not available yet, short-term disease control relies on the use of fungicides. The first step to reach effective management is to identify potent fungicides. In vitro experiments were conducted to determine the inhibitory concentration 50% (IC50 for mycelial growth or conidial germination, according to the chemical group of fungicides, of five Fusarium graminearum isolates of different origins. The following demethylation inhibitor (DMI fungicides were tested: epoxiconazole, cyproconazole, metconazole, prochloraz, protioconazole and tebuconazole. In addition, azoxystrobin, kresoxim-methyl, pyraclostrobin and trifloxystrobin were included in the study, representing Quinone outside inhibitor fungicides (QoI, as well as a tubulin synthesis inhibitor, carbendazim and two ready mixtures, trifloxystrobin + tebuconazole or trifloxistrobin + prothioconazole. DMI's showed lower IC50 values compared to the QoI's. For the five tested isolates, in the overall mean, IC50 considering mycelial growth ranged for DMI's from 0.01 mg/L (metconazole, prochloraz and prothioconazole to 0.12 mg/L (cyproconazole and considering conidial germination for QoI's from 0.21 mg/L (azoxystrobin to 1.33 mg/L (trifloxystrobin. The IC50 for carbendazim was 0.07 mg/L. All tested isolates can be considered sensitive to the studied DMI's, although certain differences in sensitivity could be detected between the isolates originating from one same state.

  8. A new PCR approach for the identification of Fusarium graminearum Um novo protocolo de PCR para a identificação de Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Gleison Ricardo de Biazio

    2008-09-01

    Full Text Available The main objective of this work was to develop a PCR protocol for the identification of Fusarium graminearum, based on a pair of primers targeted to a segment of the 3' coding region of the gaoA gene that codes for the enzyme galactose oxidase (GO. This region has low homology with the same region of GO genes from other fungi. Genomic DNA from 17 strains of Fusarium spp. isolated from diseased cereals, from several other Fusarium species, and from other fungi genera was analyzed in a PCR assay using this primer set. The 17 strains of Fusarium spp. were also analyzed for the GO enzyme production in submerse fermentation in a new formulated liquid medium. All strains that were morphologically and molecularly identified as F. graminearum were able to secrete the enzyme and had a positive result in the used PCR protocol. No DNA fragment was amplified using genomic DNA from other Fusarium species and species of other fungi genera. The results suggest that the proposed PCR protocol is specific and can be considered as a new molecular tool for the identification of F. graminearum. In addition, the new formulated medium is a cheap alternative for screening for GO screening production by F. graminearum.O principal objetivo deste trabalho foi desenvolver um novo protocolo de PCR para identificação de isolados de Fusarium graminearum, baseado no uso de um par de iniciadores direcionado para um segmento da região 3' codificadora do gene gaoA que codifica a enzima galactose oxidase (GO. Esta região possui baixa homologia com a mesma região de genes da GO de outros fungos. O DNA genômico de 17 cepas de Fusarium spp. isoladas de cereais infectados com sintomas, de vários outras espécies de Fusarium e de outros gêneros de fungos foi analisado em um protocolo de PCR utilizando os iniciadores desenhados. Os 17 isolados de Fusarium spp. também foram analisados para a produção da enzima GO em fermentação submersa em um novo meio líquido. Todas as

  9. Quantification of Fusarium graminearum and Fusarium culmorum by real-time PCR system and zearalenone assessment in maize

    International Nuclear Information System (INIS)

    Atoui, A.; El Khoury, A.; Kallassy, M.; Lebrihi, A.

    2012-01-01

    Zearalenone (ZEA) is a mycotoxin produced by some species of Fusarium, especially by Fusarium grami- nearum and F. culmorum. ZEA induces hyperoestrogenic responses in mammals and can result in reproductive disorders in farm animals. In the present study, a real-time PCR (qPCR) assay has been successfully developed for the detection and quantification of Fusarium graminearum based on primers targeting the gene PKS13 involved in ZEA biosynthesis. A standard curve was developed by plotting the logarithm of known concentrations of F. graminearum DNA against the cycle threshold (Ct) value. The developed real time PCR system was also used to analyze the occurrence of zearalenone producing F. graminearum strains on maize. In this context, DNA extractions were performed from thirty-two maize samples, and subjected to real time PCR. Maize samples also were analyzed for zearalenone content by HPLC. F. graminearum DNA content (pg DNA/ mg of maize) was then plotted against ZEA content (ppb) in maize samples. The regression curve showed a positive and good correlation (R2 = 0.760) allowing for the estimation of the potential risk from ZEA contamination. Consequently, this work offers a quick alternative to conventional methods of ZEA quantification and mycological detection and quantification of F. graminearum in maize. (author)

  10. TOR signaling downregulation increases resistance to the cereal killer Fusarium graminearum.

    Science.gov (United States)

    Aznar, Néstor R; Consolo, V Fabiana; Salerno, Graciela L; Martínez-Noël, Giselle M A

    2018-02-01

    TOR is the master regulator of growth and development that senses energy availability. Biotic stress perturbs metabolic and energy homeostasis, making TOR a good candidate to participate in the plant response. Fusarium graminearum (Fusarium) produces important losses in many crops all over the world. To date, the role of TOR in Fusarium infection has remained unexplored. Here, we show that the resistance to the pathogen increases in different Arabidopsis mutants impaired in TOR complex or in wild-type plants treated with a TOR inhibitor. We conclude that TOR signaling is involved in plant defense against Fusarium.

  11. Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt

    Directory of Open Access Journals (Sweden)

    Amer F. Mahmoud

    2016-04-01

    Full Text Available Fusarium graminearum Schwabe causes Fusarium head blight (FHB, a devastating disease that leads to extensive yield and quality loss of wheat and other cereal crops. Twelve isolates of F. graminearum were collected from naturally infected spikes of wheat from Assiut Egypt. These isolates were compared using SRAP. The results indicated distinct genetic groups exist within F. graminearum, and demonstrated that these groups have different biological properties, especially with respect to their pathogenicity on wheat. There were biologically significant differences between the groups; with group (B isolates being more aggressive towards wheat than groups (A and (C. Furthermore, Trichoderma harzianum (Rifai and Bacillus subtilis (Ehrenberg which isolated from wheat kernels were screened for antagonistic activity against F. graminearum. They significantly reduced the growth of F. graminearum colonies in culture. In order to gain insight into biological control effect in situ, highly antagonistic isolates of T. harzianum and B. subtilis were selected, based on their in vitro effectiveness, for greenhouse test. It was revealed that T. harzianum and B. subtilis significantly reduced FHB severity. The obtained results indicated that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in FHB and should be harnessed for further biocontrol applications. The accurate analysis of genetic variation and studies of population structures have significant implications for understanding the genetic traits and disease control programs in wheat. This is the first known report of the distribution and genetic variation of F. graminearum on wheat spikes in Assiut Egypt.

  12. Population genetic analysis and trichothecene profiling of Fusarium graminearum from wheat in Uruguay.

    Science.gov (United States)

    Pan, D; Mionetto, A; Calero, N; Reynoso, M M; Torres, A; Bettucci, L

    2016-03-11

    Fusarium graminearum sensu stricto (F. graminearum s.s.) is the major causal agent of Fusarium head blight of wheat worldwide, and contaminates grains with trichothecene mycotoxins that cause serious threats to food safety and animal health. An important aspect of managing this pathogen and reducing mycotoxin contamination of wheat is knowledge regarding its population genetics. Therefore, isolates of F. graminearum s.s. from the major wheat-growing region of Uruguay were analyzed by amplified fragment length polymorphism assays, PCR genotyping, and chemical analysis of trichothecene production. Of the 102 isolates identified as having the 15-ADON genotype via PCR genotyping, all were DON producers, but only 41 strains were also 15-ADON producers, as determined by chemical analysis. The populations were genotypically diverse but genetically similar, with significant genetic exchange occurring between them. Analysis of molecular variance indicated that most of the genetic variability resulted from differences between isolates within populations. Multilocus linkage disequilibrium analysis suggested that the isolates had a panmictic population genetic structure and that there is significant recombination occurs in F. graminearum s.s. In conclusion, tour findings provide the first detailed description of the genetic structure and trichothecene production of populations of F. graminearum s.s. from Uruguay, and expands our understanding of the agroecology of F. graminearum and of the correlation between genotypes and trichothecene chemotypes.

  13. Fusarium graminearum and its interactions with cereal heads: studies in the proteomics era

    OpenAIRE

    Fen eYang; Fen eYang; Susanne eJacobsen; Hans J. L. Jørgensen; David B. Collinge; Birte eSvensson; Christine eFinnie

    2013-01-01

    The ascomycete fungal pathogen Fusarium graminearum is the causal agent of Fusarium head blight (FHB) in wheat and barley. This disease leads to significant losses of crop yield, and especially quality through the contamination by diverse fungal mycotoxins, which constitute a significant threat to the health of humans and animals. In recent years, high-throughput proteomics, aiming at identifying a broad spectrum of proteins with a potential role in the pathogenicity and host resistance, has ...

  14. Expanding the substrate scope of chitooligosaccharide oxidase from Fusarium graminearum by structure-inspired mutagenesis

    NARCIS (Netherlands)

    Ferrari, Alessandro; Lee, Misun; Fraaije, Marco

    2015-01-01

    Chitooligosaccharide oxidase from Fusarium graminearum (ChitO) oxidizes N-acetyl-D-glucosamine (GlcNAc) and its oligomers with high efficiency at the C1-hydroxyl moiety while it shows poor or no activity with other carbohydrates. By sequence and structural comparison with other known carbohydrate

  15. The role of double covalent flavin binding in chito-oligosaccharide oxidase from Fusarium graminearum

    NARCIS (Netherlands)

    Heuts, Dominic P. H. M.; Winter, Remko T.; Damsma, Gerke E.; Janssen, Dick B.; Fraaije, Marco W.

    2008-01-01

    ChitO (chito-oligosaccharide oxidase) from Fusarium graminearum catalyses the regioselective oxidation of N-acetylated oligosaccharides. The enzyme harbours an FAD cofactor that is covalently attached to His(94) and Cys(154). The functional role of this unusual bi-covalent flavin-protein linkage was

  16. Infection of green fluorescence protein-tagged Fusarium graminearum on wheat and barley spikes

    NARCIS (Netherlands)

    Zhang, X.; Lee, van der T.A.J.; Dufresne, M.; Liu, T.; Lu, W.Z.; Yu, D.Z.; Ma, H.X.

    2008-01-01

    Fusorium head blight (FHB), mainly caused by Fusarium graminearum, is a very serious disease in wheat and barley production area. FHB epidemics cause yield decreases and production Of mycotoxin that renders the grain useless for flour and mail products. Understanding the infection mechanism of F.

  17. Systematic discovery of regulatory motifs in Fusarium graminearum by comparing four Fusarium genomes

    Directory of Open Access Journals (Sweden)

    Kistler Corby

    2010-03-01

    Full Text Available Abstract Background Fusarium graminearum (Fg, a major fungal pathogen of cultivated cereals, is responsible for billions of dollars in agriculture losses. There is a growing interest in understanding the transcriptional regulation of this organism, especially the regulation of genes underlying its pathogenicity. The generation of whole genome sequence assemblies for Fg and three closely related Fusarium species provides a unique opportunity for such a study. Results Applying comparative genomics approaches, we developed a computational pipeline to systematically discover evolutionarily conserved regulatory motifs in the promoter, downstream and the intronic regions of Fg genes, based on the multiple alignments of sequenced Fusarium genomes. Using this method, we discovered 73 candidate regulatory motifs in the promoter regions. Nearly 30% of these motifs are highly enriched in promoter regions of Fg genes that are associated with a specific functional category. Through comparison to Saccharomyces cerevisiae (Sc and Schizosaccharomyces pombe (Sp, we observed conservation of transcription factors (TFs, their binding sites and the target genes regulated by these TFs related to pathways known to respond to stress conditions or phosphate metabolism. In addition, this study revealed 69 and 39 conserved motifs in the downstream regions and the intronic regions, respectively, of Fg genes. The top intronic motif is the splice donor site. For the downstream regions, we noticed an intriguing absence of the mammalian and Sc poly-adenylation signals among the list of conserved motifs. Conclusion This study provides the first comprehensive list of candidate regulatory motifs in Fg, and underscores the power of comparative genomics in revealing functional elements among related genomes. The conservation of regulatory pathways among the Fusarium genomes and the two yeast species reveals their functional significance, and provides new insights in their

  18. Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum

    Science.gov (United States)

    Zhang, Fusheng; Chen, Qin; Chen, Cheng; Yu, Xiaorui; Liu, Qingya; Bao, Jinku

    2018-01-01

    Curcuma longa possesses powerful antifungal activity, as demonstrated in many studies. In this study, the antifungal spectrum of Curcuma longa alcohol extract was determined, and the resulting EC50 values (mg/mL) of its extract on eleven fungi, including Fusarium graminearum, Fusarium chlamydosporum, Alternaria alternate, Fusarium tricinctum, Sclerotinia sclerotiorum, Botrytis cinerea, Fusarium culmorum, Rhizopus oryzae, Cladosporium cladosporioides, Fusarium oxysporum and Colletotrichum higginsianum, were 0.1088, 0.1742, 0.1888, 0.2547, 0.3135, 0.3825, 0.4229, 1.2086, 4.5176, 3.8833 and 5.0183, respectively. Among them, F. graminearum was selected to determine the inhibitory effects of the compounds (including curdione, isocurcumenol, curcumenol, curzerene, β-elemene, curcumin, germacrone and curcumol) derived from Curcuma longa. In addition, the antifungal activities of curdione, curcumenol, curzerene, curcumol and isocurcumenol and the synergies of the complexes of curdione and seven other chemicals were investigated. Differential proteomics of F. graminearum was also compared, and at least 2021 reproducible protein spots were identified. Among these spots, 46 were classified as differentially expressed proteins, and these proteins are involved in energy metabolism, tRNA synthesis and glucose metabolism. Furthermore, several fungal physiological differences were also analysed. The antifungal effect included fungal cell membrane disruption and inhibition of ergosterol synthesis, respiration, succinate dehydrogenase (SDH) and NADH oxidase. PMID:29543859

  19. The Fungicidal Activity of Thymol against Fusarium graminearum via Inducing Lipid Peroxidation and Disrupting Ergosterol Biosynthesis

    Directory of Open Access Journals (Sweden)

    Tao Gao

    2016-06-01

    Full Text Available Thymol is a natural plant-derived compound that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism for thymol against phytopathogens remains unclear. In this study, we identified the antifungal action of thymol against Fusarium graminearum, an economically important phytopathogen showing severe resistance to traditional chemical fungicides. The sensitivity of thymol on different F. graminearum isolates was screened. The hyphal growth, as well as conidial production and germination, were quantified under thymol treatment. Histochemical, microscopic, and biochemical approaches were applied to investigate thymol-induced cell membrane damage. The average EC50 value of thymol for 59 F. graminearum isolates was 26.3 μg·mL−1. Thymol strongly inhibited conidial production and hyphal growth. Thymol-induced cell membrane damage was indicated by propidium iodide (PI staining, morphological observation, relative conductivity, and glycerol measurement. Thymol induced a significant increase in malondialdehyde (MDA concentration and a remarkable decrease in ergosterol content. Taken together, thymol showed potential antifungal activity against F. graminearum due to the cell membrane damage originating from lipid peroxidation and the disturbance of ergosterol biosynthesis. These results not only shed new light on the antifungal mechanism of thymol, but also imply a promising alternative for the control of Fusarium head blight (FHB disease caused by F. graminearum.

  20. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse.

    Science.gov (United States)

    Kheiri, A; Moosawi Jorf, S A; Malihipour, A; Saremi, H; Nikkhah, M

    2016-12-01

    Fusarium head blight (FHB) disease caused by Fusarium graminearum is one of the most important diseases of wheat in humid and warm areas. This disease significantly reduces yield as well as seed quality. The aim of this work was to evaluate the possibility of control of FHB by chitosan (CS) and chitosan nanoparticles (CS/NPs). In vitro, the application of various concentrations of CS and CS/NPs showed significant inhibition of both radial mycelial growth and number of colonies formed against F. graminearum. The application of 1000 and 5000ppm concentration of CS and CS/NPs produced maximum inhibition of radial mycelial growth in comparison to the control, respectively. The microscopic examination, of treated F. graminearum with the CS and CS/NPs, showed dehydration and deformation in mycelial growth and some hyphae were collapsed. The maximum percentage reduction number of colonies was observed in 5000ppm concentration of both CS and CS/NPs. To test the effect of CS and CS/NPs on spore germination, four concentrations were used for 4 and 24h incubation. The 24h incubation of F. graminearum spores with a 5000ppm solution of CS greatly reduced the number of germinating spores. In greenhouse trials, the disease severity percentage was low when CS and CS/NPs were applied before fungus inoculation on the plants and 1000ppm concentration. The spores of F. graminearum germinated on the anther, hyphae penetrated into anther and colonized the palea, lemma and glume after 24 and 72 hpi, respectively. Wherease, the spikelets treated with CS and CS/NPs were infected slowly. Light microscopy and TEM observations indicated that mycelium penetrated into the cells through stoma and transited to other cells by cell wall or plasmodesmata. Mycelial growth caused conidia into cells but CS and CS/NPs prevented of it's growth. Results showed that CS and CS/NPs could be a useful biological pesticide for controlling FHB. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Analysis of Quality-Related Parameters in Mature Kernels of Polygalacturonase Inhibiting Protein (PGIP) Transgenic Bread Wheat Infected with Fusarium graminearum.

    Science.gov (United States)

    Masci, Stefania; Laino, Paolo; Janni, Michela; Botticella, Ermelinda; Di Carli, Mariasole; Benvenuto, Eugenio; Danieli, Pier Paolo; Lilley, Kathryn S; Lafiandra, Domenico; D'Ovidio, Renato

    2015-04-22

    Fusarium head blight, caused by the fungus Fusarium graminearum, has a detrimental effect on both productivity and qualitative properties of wheat. To evaluate its impact on wheat flour, we compared its effect on quality-related parameters between a transgenic bread wheat line expressing a bean polygalacturonase inhibiting protein (PGIP) and its control line. We have compared metabolic proteins, the amounts of gluten proteins and their relative ratios, starch content, yield, extent of pathogen contamination, and deoxynivalenol (DON) accumulation. These comparisons showed that Fusarium significantly decreases the amount of starch in infected control plants, but not in infected PGIP plants. The flour of PGIP plants contained also a lower amount of pathogen biomass and DON accumulation. Conversely, both gluten and metabolic proteins were not significantly influenced either by the transgene or by fungal infection. These results indicate that the transgenic PGIP expression reduces the level of infection, without changing significantly the wheat seed proteome and other quality-related parameters.

  2. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat.

    Science.gov (United States)

    Zhu, Xiuliang; Li, Zhao; Xu, Huijun; Zhou, Miaoping; Du, Lipu; Zhang, Zengyan

    2012-08-01

    The fungus Cochliobolus sativus is the main pathogen of common root rot, a serious soil-borne disease of wheat (Triticum aestivum L.). The fungus Fusarium graminearum is the primary pathogen of Fusarium head blight, a devastating disease of wheat worldwide. In this study, the wheat lipid transfer protein gene, TaLTP5, was cloned and evaluated for its ability to suppress disease development in transgenic wheat. TaLTP5 expression was induced after C. sativus infection. The TaLTP5 expression vector, pA25-TaLTP5, was constructed and bombarded into Chinese wheat variety Yangmai 18. Six TaLTP5 transgenic wheat lines were established and characterized. PCR and Southern blot analyses indicated that the introduced TaLTP5 gene was integrated into the genomes of six transgenic wheat lines by distinct patterns, and heritable. RT-PCR and real-time quantitative RT-PCR revealed that the TaLTP5 gene was over-expressed in the transgenic wheat lines compared to segregants lacking the transgene and wild-type wheat plants. Following challenge with C. sativus or F. graminearum, all six transgenic lines overexpressing TaLTP5 exhibited significantly enhanced resistance to both common root rot and Fusarium head blight compared to the untransformed wheat Yangmai 18.

  3. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum.

    Science.gov (United States)

    Zhao, Yueju; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhou, Lu; Wang, Yan; Song, Huimin; Tan, Xinxin; Sun, Lichao; Sangare, Lancine; Folly, Yawa Minnie Elodie; Liu, Yang

    2014-01-01

    Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI), FHB index and DON (P ≤ 0.05). Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.

  4. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Yueju Zhao

    Full Text Available Fusarium graminearum causes Fusarium head blight (FHB, a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI, FHB index and DON (P ≤ 0.05. Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.

  5. Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum.

    Science.gov (United States)

    Ali, M Liakat; Taylor, Jeff H; Jie, Liu; Sun, Genlou; William, Manilal; Kasha, Ken J; Reid, Lana M; Pauls, K Peter

    2005-06-01

    Gibberella ear rot, caused by the fungus Fusarium graminearum Schwabe, is a serious disease of corn (Zea mays) grown in northern climates. Infected corn is lower yielding and contains toxins that are dangerous to livestock and humans. Resistance to ear rot in corn is quantitative, specific to the mode of fungal entry (silk channels or kernel wounds), and highly influenced by the environment. Evaluations of ear rot resistance are complex and subjective; and they need to be repeated over several years. All of these factors have hampered attempts to develop F. graminearum resistant corn varieties. The aim of this study was to identify molecular markers linked to the genes for resistance to Gibberella ear rot. A recombinant inbred (RI) population, produced from a cross between a Gibberella ear rot resistant line (CO387) and a susceptible line (CG62), was field-inoculated and scored for Gibberella ear rot symptoms in the F4, F6, and F7 generations. The distributions of disease scores were continuous, indicating that resistance is probably conditioned by multiple loci. A molecular linkage map, based on segregation in the F5 RI population, contained 162 markers distributed over 10 linkage groups and had a total length of 2237 cM with an average distance between markers of 13.8 cM. Composite interval mapping identified 11 quantitative trait loci (QTLs) for Gibberella ear rot resistance following silk inoculation and 18 QTLs following kernel inoculation in 4 environments that accounted for 6.7%-35% of the total phenotypic variation. Only 2 QTLs (on linkage group 7) were detected in more than 1 test for silk resistance, and only 1 QTL (on linkage group 5) was detected in more than 1 test for kernel resistance, confirming the strong influence of the environment on these traits. The majority of the favorable alleles were derived from the resistant parent (CO387). The germplasm and markers for QTLs with significant phenotypic effects may be useful for marker-assisted selection

  6. Presencia de Fusarium graminearum en muestras de trigo destinado al consumo humano

    Directory of Open Access Journals (Sweden)

    Mauro Martinez

    Full Text Available La fusariosis es una de las enfermedades más importantes de los cereales, Fusarium graminearum es su principal agente etiológico. Este hongo posee la capacidad de producir distintos tipos y niveles de toxinas, en especial deoxinivalenol (DON. En la campaña 2012-2013 se dieron condiciones ambientales predisponentes para el desarrollo de esta enfermedad. El objetivo de este trabajo fue evaluar la presencia del hongo y el contenido de DON en 50 muestras de trigo. Los resultados demostraron la presencia de Fusarium graminearum en el 80 % de las muestras analizadas. El 24 % de las muestras presentó valores de DON ≥ 1μg/g, el 26 % varió entre 0,5 y 0,99μg/g, mientras que el 50 % restante mostró valores inferiores a 0,5μg/g. Se observó correlación entre la presencia de Fusarium graminearum y de DON. Es necesario establecer valores límites de DON en granos de trigo destinados al consumo humano.

  7. Biological control of Fusarium graminearum sensu stricto, causal agent of Fusarium head blight of wheat, using formulated antagonists under field conditions in Argentina

    NARCIS (Netherlands)

    Palazzini, Juan M.; Alberione, Enrique; Torres, Adriana; Donat, Christina; Kohl, Jurgen; Chulze, Sofia

    2016-01-01

    Fusarium head blight (FHB) mainly caused by Fusarium graminearum is a devastating disease that causes extensive yield and quality losses to wheat in humid and semi-humid regions of the world. The biocontrol effect of two bacterial strains on FHB incidence, severity and deoxynivalenol (DON)

  8. The Transcription Cofactor Swi6 of the Fusarium graminearum Is Involved in Fusarium Graminearum Virus 1 Infection-Induced Phenotypic Alterations

    Directory of Open Access Journals (Sweden)

    Moonil Son

    2016-08-01

    Full Text Available The transcription cofactor Swi6 plays important roles in regulating vegetative growth and meiosis in Saccharomyces cerevisiae. Functions of Swi6 ortholog were also characterized in Fusarium graminearum which is one of the devastating plant pathogenic fungi. Here, we report possible role of FgSwi6 in the interaction between F. graminearum and Fusarium graminearum virus 1 (FgV1 strain DK21. FgV1 perturbs biological characteristics of host fungi such as vegetative growth, sporulation, pigmentation, and reduction of the virulence (hypovirulence of its fungal host. To characterize function(s of FgSWI6 gene during FgV1 infection, targeted deletion, over-expression, and complementation mutants were generated and further infected successfully with FgV1. Deletion of FgSwi6 led to severe reduction of vegetative growth even aerial mycelia while over-expression did not affect any remarkable alteration of phenotype in virus-free isolates. Virus-infected (VI FgSWI6 deletion isolate exhibited completely delayed vegetative growth. However, VI FgSWI6 over-expression mutant grew faster than any other VI isolates. To verify whether these different growth patterns in VI isolates, viral RNA quantification was carried out using qRT-PCR. Surprisingly, viral RNA accumulations in VI isolates were similar regardless of introduced mutations. These results provide evidence that FgSWI6 might play important role(s in FgV1 induced phenotype alteration such as delayed vegetative growth.

  9. A Simple Method for the Assessment of Fusarium Head Blight Resistance in Korean Wheat Seedlings Inoculated with Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Sanghyun Shin

    2014-03-01

    Full Text Available Fusarium head blight (FHB; scab caused mainly by Fusarium graminearum is a devastating disease of wheat and barley around the world. FHB causes yield reductions and contamination of grain with trichothecene mycotoxins such as deoxynivalenol (DON which are a major health concern for humans and animals. The objective of this research was to develop an easy seed or seedling inoculation assay, and to compare these assays with whole plant resistance of twenty-nine Korean winter wheat cultivars to FHB. The clip-dipping assay consists of cutting off the coleoptiles apex, dipping the coleoptiles apex in conidial suspension, covering in plastic bag for 3 days, and measuring the lengths of lesions 7 days after inoculation. There were significant cultivar differences after inoculation with F. graminearum in seedling relative to the controls. Correlation coefficients between the lesion lengths of clip-dipping inoculation and FHB Type II resistance from adult plants were significant (r=0.45; P<0.05. Results from two other seedling inoculation methods, spraying and pin-point inoculation, were not correlated with adult FHB resistance. Single linear correlation was not significant between seed germination assays (soaking and soak-dry and FHB resistance (Type I and Type II, respectively. These results showed that clip-dipping inoculation method using F. graminearum may offer a real possibility of simple, rapid, and reliable for the early screening of FHB resistance in wheat.

  10. Differential Contribution of RNA Interference Components in Response to Distinct Fusarium graminearum Virus Infections.

    Science.gov (United States)

    Yu, Jisuk; Lee, Kyung-Mi; Cho, Won Kyong; Park, Ju Yeon; Kim, Kook-Hyung

    2018-05-01

    The mechanisms of RNA interference (RNAi) as a defense response against viruses remain unclear in many plant-pathogenic fungi. In this study, we used reverse genetics and virus-derived small RNA profiling to investigate the contributions of RNAi components to the antiviral response against Fusarium graminearum viruses 1 to 3 (FgV1, -2, and -3). Real-time reverse transcription-quantitative PCR (qRT-PCR) indicated that infection of Fusarium graminearum by FgV1, -2, or -3 differentially induces the gene expression of RNAi components in F. graminearum Transcripts of the DICER-2 and AGO-1 genes of F. graminearum ( FgDICER-2 and FgAGO-1 ) accumulated at lower levels following FgV1 infection than following FgV2 or FgV3 infection. We constructed gene disruption and overexpression mutants for each of the Argonaute and dicer genes and for two RNA-dependent RNA polymerase (RdRP) genes and generated virus-infected strains of each mutant. Interestingly, mycelial growth was significantly faster for the FgV1-infected FgAGO-1 overexpression mutant than for the FgV1-infected wild type, while neither FgV2 nor FgV3 infection altered the colony morphology of the gene deletion and overexpression mutants. FgV1 RNA accumulation was significantly decreased in the FgAGO-1 overexpression mutant. Furthermore, the levels of induction of FgAGO-1 , FgDICER-2 , and some of the FgRdRP genes caused by FgV2 and FgV3 infection were similar to those caused by hairpin RNA-induced gene silencing. Using small RNA sequencing analysis, we documented different patterns of virus-derived small interfering RNA (vsiRNA) production in strains infected with FgV1, -2, and -3. Our results suggest that the Argonaute protein encoded by FgAGO-1 is required for RNAi in F. graminearum , that FgAGO-1 induction differs in response to FgV1, -2, and -3, and that FgAGO-1 might contribute to the accumulation of vsiRNAs in FgV1-infected F. graminearum IMPORTANCE To increase our understanding of how RNAi components in Fusarium

  11. A European database of Fusarium graminearum and F. culmorum trichothecene genotypes

    Directory of Open Access Journals (Sweden)

    Matias ePasquali

    2016-04-01

    Full Text Available Fusarium species, particularly Fusarium graminearum and F. culmorum, are the main cause of trichothecene type B contamination in cereals. Data on the distribution of Fusarium trichothecene genotypes in cereals in Europe are scattered in time and space. Furthermore, a common core set of related variables (sampling method, host cultivar, previous crop, etc. that would allow more effective analysis of factors influencing the spatial and temporal population distribution, is lacking. Consequently, based on the available data, it is difficult to identify factors influencing chemotype distribution and spread at the European level. Here we describe the results of a collaborative integrated work which aims 1 to characterize the trichothecene genotypes of strains from three Fusarium species, collected over the period 2000-2013, and 2 to enhance the standardization of epidemiological data collection.Information on host plant, country of origin, sampling location, year of sampling and previous crop of 1147 F. graminearum, 479 F. culmorum and 3 F. cortaderiae strains obtained from 17 European countries was compiled and a map of trichothecene type B genotype distribution was plotted for each species. All information on the strains was collected in a freely accessible and updatable database (www.catalogueeu.luxmcc.lu, which will serve as a starting point for epidemiological analysis of potential spatial and temporal trichothecene genotype shifts in Europe.The analysis of the currently available European dataset showed that in F. graminearum, the predominant genotype was 15-acetyldeoxynivalenol (15-ADON (82.9%, followed by 3-acetyldeoxynivalenol (3-ADON (13.6% and nivalenol (NIV (3.5%. In F. culmorum, the prevalent genotype was 3-ADON (59.9%, while the NIV genotype accounted for the remaining 40.1%. Both geographical and temporal patterns of trichothecene genotypes distribution were identified.

  12. Genetic Diversity in Fusarium graminearum from a Major Wheat-Producing Region of Argentina

    Directory of Open Access Journals (Sweden)

    Giuseppina Mulè

    2011-10-01

    Full Text Available The Fusarium graminearum species complex (FGSC is a group of mycotoxigenic fungi that are the primary cause of Fusarium head blight (FHB of wheat worldwide. The distribution, frequency of occurrence, and genetic diversity of FGSC species in cereal crops in South America is not well understood compared to some regions of Asia, Europe and North America. Therefore, we examined the frequency and genetic diversity of a collection of 183 FGSC isolates recovered from wheat grown during multiple growing seasons and across a large area of eastern Argentina, a major wheat producing region in South America. Sequence analysis of the translation elongation factor 1−α and β-tubulin genes as well as Amplified Fragment Length Polymorphism (AFLP analyses indicated that all isolates were the FGSC species F. graminearum sensu stricto. AFLP analysis resolved at least 11 subgroups, and all the isolates represented different AFLP haplotypes. AFLP profile and geographic origin were not correlated. Previously obtained trichothecene production profiles of the isolates revealed that the 15-acetyldeoxynivalenol chemotype was slightly more frequent than the 3-acetyldeoxynivalenol chemotype among the isolates. These data extend the current understanding of FGSC diversity and provide further evidence that F. graminearum sensu stricto is the predominant cause of FHB in the temperate main wheat-growing area of Argentina. Moreover, two isolates of F. crookwellense and four of F. pseudograminearum were also recovered from wheat samples and sequenced. The results also suggest that, although F. graminearum sensu stricto was the only FGSC species recovered in this study, the high level of genetic diversity within this species should be considered in plant breeding efforts and development of other disease management strategies aimed at reducing FHB.

  13. The Fusarium graminearum Histone Acetyltransferases Are Important for Morphogenesis, DON Biosynthesis, and Pathogenicity

    Directory of Open Access Journals (Sweden)

    Xiangjiu Kong

    2018-04-01

    Full Text Available Post-translational modifications of chromatin structure by histone acetyltransferase (HATs play a central role in the regulation of gene expression and various biological processes in eukaryotes. Although HAT genes have been studied in many fungi, few of them have been functionally characterized. In this study, we identified and characterized four putative HATs (FgGCN5, FgRTT109, FgSAS2, FgSAS3 in the plant pathogenic ascomycete Fusarium graminearum, the causal agent of Fusarium head blight of wheat and barley. We replaced the genes and all mutant strains showed reduced growth of F. graminearum. The ΔFgSAS3 and ΔFgGCN5 mutant increased sensitivity to oxidative and osmotic stresses. Additionally, ΔFgSAS3 showed reduced conidia sporulation and perithecium formation. Mutant ΔFgGCN5 was unable to generate any conidia and lost its ability to form perithecia. Our data showed also that FgSAS3 and FgGCN5 are pathogenicity factors required for infecting wheat heads as well as tomato fruits. Importantly, almost no Deoxynivalenol (DON was produced either in ΔFgSAS3 or ΔFgGCN5 mutants, which was consistent with a significant downregulation of TRI genes expression. Furthermore, we discovered for the first time that FgSAS3 is indispensable for the acetylation of histone site H3K4, while FgGCN5 is essential for the acetylation of H3K9, H3K18, and H3K27. H3K14 can be completely acetylated when FgSAS3 and FgGCN5 were both present. The RNA-seq analyses of the two mutant strains provide insight into their functions in development and metabolism. Results from this study clarify the functional divergence of HATs in F. graminearum, and may provide novel targeted strategies to control secondary metabolite expression and infections of F. graminearum.

  14. Toxigenic potential of Fusarium graminearum isolated from maize of northwest Argentina

    Directory of Open Access Journals (Sweden)

    D.A. Sampietro

    2013-01-01

    Full Text Available Twenty six isolates of Fusarium graminearum from grains of maize hybrids harvested in ±west Argentina were grown on autoclaved rice grain to assess their ability to produce type B trichothecenes. Chemical analysis indicated that 38% of isolates were nivalenol (NIV producers only, 31% were major NIV producers with high DON(deoxynivalenol/NIV ratios, 8% were major DON producers with minor NIV production, and 23% were DON producers only. Isolates showed a high variability in their toxigenic potential which was not related to fungal biomass. The distribution of the different chemotypes as well as the high and the low trichothecene-producing Fusarium isolates could not be associated to a geographical origin. Our results confirmed for the first time that isolates of Fusarium graminearum from maize of northwest Argentina are able to produce DON and NIV. A substancial contamination with both NIV and DON is likely in maize from northwest Argentina. Their contents should be quantified in regional surveillances for mycotoxin contamination.

  15. 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) inhibits trichothecene production by Fusarium graminearum through suppression of Tri6 expression

    DEFF Research Database (Denmark)

    Etzerodt, Thomas; Maeda, Kazuyuki; Nakajima, Yuichi

    2015-01-01

    Fusarium head blight (FHB) is a devastating disease of wheat (Triticum aestivum L.) caused by a mycotoxigenic fungus Fusarium graminearum resulting in significantly decreased yields and accumulation of toxic trichothecenes in grains. We tested 7 major secondary metabolites from wheat for their ef...... role against the accumulation of trichothecenes in wheat grain. Breeding or engineering of wheat with increased levels of benzoxazinoids could provide varieties with increased resistance against trichothecene contamination of grain and lower susceptibility to FHB...... for their effect on trichothecene production in liquid cultures of F. graminearum producing trichothecene 15-acetyldeoxynivalenol (15-ADON). 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) benzoxazinoid completely abolished toxin production without any apparent effect on fungal growth. DIMBOA strongly...

  16. Comparison of Fusarium graminearum transcriptomes on living or dead wheat differentiates substrate-responsive and defense-responsive genes.

    Directory of Open Access Journals (Sweden)

    Stefan Boedi

    2016-07-01

    Full Text Available Fusarium graminearum is an opportunistic pathogen of cereals where it causes severe yield losses and concomitant mycotoxin contamination of the grains. The pathogen has mixed biotrophic and necrotrophic (saprophytic growth phases during infection and the regulatory networks associated with these phases have so far always been analyzed together. In this study we compared the transcriptomes of fungal cells infecting a living, actively defending plant representing the mixed live style (pathogenic growth on living flowering wheat heads to the response of the fungus infecting identical, but dead plant tissues (cold-killed flowering wheat heads representing strictly saprophytic conditions. We found that the living plant actively suppressed fungal growth and promoted much higher toxin production in comparison to the identical plant tissue without metabolism suggesting that molecules signaling secondary metabolite induction are not pre-existing or not stable in the plant in sufficient amounts before infection. Differential gene expression analysis was used to define gene sets responding to the active or the passive plant as main impact factor and driver for gene expression. We correlated our results to the published F. graminearum transcriptomes, proteomes and secretomes and found that only a limited number of in planta- expressed genes require the living plant for induction but the majority uses simply the plant tissue as signal. Many secondary metabolite (SM gene clusters show a heterogeneous expression pattern within the cluster indicating that different genetic or epigenetic signals govern the expression of individual genes within a physically linked cluster. Our bioinformatic approach also identified fungal genes which were actively repressed by signals derived from the active plant and may thus represent direct targets of the plant defense against the invading pathogen.

  17. Distribution and genetic chemotyping of Fusarium graminearum and Fusarium culmorum populations in wheat fields in the eastern Mediterranean region of Turkey

    Directory of Open Access Journals (Sweden)

    Fatih Mehmet Tok

    2016-03-01

    Full Text Available Fusarium graminearum and Fusarium culmorum are among the major causal agents of Fusarium head blight, which reduces both crop yield and grain quality in wheat worldwide. The present study was conducted with 57 isolates collected from 23 different locations across four provinces in the 2011/2012 growing season. Out of the 57 Fusarium isolates, 32 isolates were identified as F. graminearum and 25 isolates were identified as F. culmorum. Both pathogens are of particular importance, since they produce several mycotoxins. Among these, deoxynivalenol (DON and nivalenol (NIV are well known for their toxicity towards human and animal health. Genetic chemotyping of F. graminearum and F. culmorum species indicated that both DON and NIV chemotypes were present in the surveyed area. Of the 32 F. graminearum isolates, the primer sets Tri13DON and Tri13NIV identified 87.5% as DON chemotypes and 12.5% as NIV chemotypes. Similarly, the 25 F. culmorum isolates displayed 88% DON and 12% NIV chemotypes. In addition, DON acetylated derivatives, 3-acetyldeoxynivalenol (3-AcDON and 15-AcDON, were identified by polymerase chain reaction based methods. It was determined that 15-AcDON sub-chemotype was dominant in F. graminearum populations, whereas 3-AcDON was dominant in F. culmorum populations. This is the first report demonstrating the presence of F. graminearum and F. culmorum isolates and the distribution of 3-AcDON and 15-AcDON chemotypes in both Fusarium species in wheat fields of eastern Mediterranean region of Turkey.

  18. Development of a PCR-RFLP method based on the transcription elongation factor 1-α gene to differentiate Fusarium graminearum from other species within the Fusarium graminearum species complex.

    Science.gov (United States)

    Garmendia, Gabriela; Umpierrez-Failache, Mariana; Ward, Todd J; Vero, Silvana

    2018-04-01

    Fusarium head blight (FHB) is a destructive disease of cereals crops worldwide and a major food safety concern due to grain contamination with trichothecenes and other mycotoxins. Fusarium graminearum, a member of the Fusarium graminearum species complex (FGSC) is the dominant FHB pathogen in many parts of the world. However, a number of other Fusarium species, including other members of the FGSC, may also be present for example in Argentina, New Zealand, Ethiopia, Nepal, Unites States in cereals such as wheat and barley. Proper species identification is critical to research aimed at improving disease and mycotoxin control programs. Identification of Fusarium species is are often unreliable by traditional, as many species are morphologically cryptic. DNA sequence-based methods offer a reliable means of species identification, but can be expensive when applied to the analyses of population samples. To facilitate identification of the major causative agent of FHB, this work describes an easy and inexpensive method to differentiate F. graminearum from the remaining species within the FGSC and from the other common Fusarium species causing FHB in cereals. The developed method is based on a PCR-RFLP of the transcription elongation factor (TEF 1-α) gene using the restriction enzyme BsaHI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Biocontrol of Fusarium graminearum Growth and Deoxynivalenol Production in Wheat Kernels with Bacterial Antagonists

    Directory of Open Access Journals (Sweden)

    Cuijuan Shi

    2014-01-01

    Full Text Available Fusarium graminearum is the main causal pathogen affecting small-grain cereals, and it produces deoxynivalenol, a kind of mycotoxin, which displays a wide range of toxic effects in human and animals. Bacterial strains isolated from peanut shells were investigated for their activities against F. graminearum by dual-culture plate and tip-culture assays. Among them, twenty strains exhibited potent inhibition to the growth of F. graminearum, and the inhibition rates ranged from 41.41% to 54.55% in dual-culture plate assay and 92.70% to 100% in tip-culture assay. Furthermore, eighteen strains reduced the production of deoxynivalenol by 16.69% to 90.30% in the wheat kernels assay. Finally, the strains with the strongest inhibitory activity were identified by morphological, physiological, biochemical methods and also 16S rDNA and gyrA gene analysis as Bacillus amyloliquefaciens. The current study highlights the potential application of antagonistic microorganisms and their metabolites in the prevention of fungal growth and mycotoxin production in wheat kernels. As a biological strategy, it might avoid safety problems and nutrition loss which always caused by physical and chemical strategies.

  20. Whey permeate fermented with kefir grains shows antifungal effect against Fusarium graminearum.

    Science.gov (United States)

    Gamba, Raúl Ricardo; De Antoni, Graciela; Peláez, Angela León

    2016-05-01

    The objective of the work reported here was to study the antifungal capability of cell-free supernatants obtained from whey permeates after fermentation by the kefir grains CIDCA AGK1 against Fusarium graminearum growth and zearalenone (ZEA) production. The assays were performed in order to study the conidial germination inhibition -in liquid media- and the effect on fungal growth rate and the Latency phase -in solid media. We observed that fermented supernatants of pH 3·5 produced the highest percentages of inhibition of conidial germination. The dilution and, particularly, alkalinisation of them led to the gradual loss of antifungal activity. In the fungal inhibition assays on plates we found that only the highest proportion of supernatant within solid medium had significant antifungal activity, which was determined as fungicidal. There was no ZEA biosynthesis in the medium with the highest proportion of supernatant, whereas at lower concentrations, the mycotoxin production was strain-dependent. From the results obtained we concluded that kefir supernatants had antifungal activity on the F. graminearum strains investigated and inhibited mycotoxin production as well, but in a strain-dependent fashion. The present work constitutes the first report of the effect of the products obtained from the kefir-grain fermentation of whey permeates - a readily available by-product of the dairy industry - on F. graminearum germination, growth, and toxin production.

  1. ( Azadirachta Indica ) Leaf Extracts on the Rot Fungus ( Fusarium ...

    African Journals Online (AJOL)

    The storage lifespan of kola nuts is challenged by the problem of decay of nuts in storage as a result of the attack by the rot fungus (Fusarium spp). The effect of the neem leaf (Azadirachta indica) extracts on the rot fungus was investigated in order to aid extended kola nuts storage. The aqueous and ethanolic leaf extracts of ...

  2. Monitoring and Predicting the Long Distance Transport of Fusarium graminearum, Causal Agent of Fusarium Head Blight in Wheat and Barley

    Science.gov (United States)

    Prussin, Aaron Justin, II

    Fusarium head blight (FHB), caused by Fusarium graminearum , is a serious disease of wheat and barley that has caused several billion dollars in crop losses over the last decade in the United States. Spores of F. graminearum are released from corn and small grain residues left-over from the previous growing season and are transported long distances in the atmosphere before being deposited. Current risk assessment tools consider environmental conditions favorable for disease development, but do not include spore transport. Long distance transport models have been proposed for a number of plant pathogens, but many of these models have not been experimentally validated. In order to predict the atmospheric transport of F. graminearum, the potential source strength ( Qpot) of inoculum must be known. We conducted a series of laboratory and field experiments to estimate Qpot from a field-scale source of inoculum of F. graminearum. Perithecia were generated on artificial (carrot agar) and natural (corn stalk) substrates. Artificial substrate (carrot agar) produced 15+/-0.4 perithecia cm-2, and natural substrate (corn stalk) produced 44+/-2 perithecia cm-2. Individual perithecia were excised from both substrate types and allowed to release ascospores every 24 hours. Perithecia generated from artificial (carrot agar) and natural (corn stalk) substrates released a mean of 104+/-5 and 276+/-16 ascospores, respectively. A volumetric spore trap was placed inside a 3,716 m2 clonal source of inoculum in 2011 and 2012. Results indicated that ascospores were released under field conditions predominantly (>90%) during the night (1900 to 0700 hours). Estimates of Qpot for our field-scale sources of inoculum were approximately 4 billion ascospores per 3,716 m 2. Release-recapture studies were conducted from a clonal field-scale source of F. graminearum in 2011 and 2012. Microsatellites were used to identify the released clone of F. graminearum at distances up to 1 km from the source

  3. In vitro sensitivity reduction of Fusarium graminearum to DMI and QoI fungicides

    Directory of Open Access Journals (Sweden)

    Aveline Avozani

    2014-12-01

    Full Text Available In Brazil, Fusarium head blight (FHB affecting wheat can cause up to 39.8% damage. Resistant cultivars are not available yet; thus, short-term disease control relies on the use of fungicides. The first step to improve control is to monitor fungal populations that are sensitivity to chemicals in order to achieve efficient FHB management. In vitro experiments were conducted to evaluate the inhibitory concentration (IC50 of fungicides for both mycelial growth and conidial germination of ten Fusarium graminearum isolates. The following demethylation inhibitor (DMI fungicides were tested: metconazole, prothioconazole and tebuconazole. In addition, pyraclostrobin and trifloxystrobin were included, representing QoI fungicides, as well as three co-formulations containing metconazole + pyraclostrobin, prothioconazole + trifloxystrobin, and tebuconazole + trifloxystrobin. For mycelial growth, the overall mean IC50 of isolates was: metconazole 0.07, prothioconazole 0.1, and tebuconazole 0.19 mg/L. For the co-formulations, it was: prothioconazole + trifloxystrobin 0.08, tebuconazole + trifloxystrobin 0.12, and metconazole + pyraclostrobin 0.14 mg/L. Regarding spore germination inhibition, IC50 for prothioconazole + trifloxystrobin was 0.06, for tebuconazole + trifloxystrobin, 0.12 mg/L, for QoI alone pyraclostrobin, was 0.09, and for trifloxystrobin, 0.28 mg/L. There was a sensitivity shift among isolates and the highest fungitoxicity to F. graminearum was confirmed for prothioconazole, metconazole and tebuconazole .

  4. Wheat crown rot pathogens Fusarium graminearum and F. pseudograminearum lack specialization.

    Science.gov (United States)

    Chakraborty, Sukumar; Obanor, Friday; Westecott, Rhyannyn; Abeywickrama, Krishanthi

    2010-10-01

    This article reports a lack of pathogenic specialization among Australian Fusarium graminearum and F. pseudograminearum causing crown rot (CR) of wheat using analysis of variance (ANOVA), principal component and biplot analysis, Kendall's coefficient of concordance (W), and κ statistics. Overall, F. pseudograminearum was more aggressive than F. graminearum, supporting earlier delineation of the crown-infecting group as a new species. Although significant wheat line-pathogen isolate interaction in ANOVA suggested putative specialization when seedlings of 60 wheat lines were inoculated with 4 pathogen isolates or 26 wheat lines were inoculated with 10 isolates, significant W and κ showed agreement in rank order of wheat lines, indicating a lack of specialization. The first principal component representing nondifferential aggressiveness explained a large part (up to 65%) of the variation in CR severity. The differential components were small and more pronounced in seedlings than in adult plants. By maximizing variance on the first two principal components, biplots were useful for highlighting the association between isolates and wheat lines. A key finding of this work is that a range of analytical tools are needed to explore pathogenic specialization, and a statistically significant interaction in an ANOVA cannot be taken as conclusive evidence of specialization. With no highly resistant wheat cultivars, Fusarium isolates mostly differ in aggressiveness; however, specialization may appear as more resistant cultivars become widespread.

  5. Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, J.D.; Svensson, Birte

    2010-01-01

    A proteomic analysis was conducted to map the events during the initial stages of the interaction between the fungal pathogen Fusarium graminearum and the susceptible barley cultivar Scarlett. Quantification of fungal DNA demonstrated a sharp increase in fungal biomass in barley spikelets at 3 da...

  6. Differences between the succinate dehydrogenase sequences of isopyrazam sensitive Zymoseptoria tritici and insensitive Fusarium graminearum strains.

    Science.gov (United States)

    Dubos, Tiphaine; Pasquali, Matias; Pogoda, Friederike; Casanova, Angèle; Hoffmann, Lucien; Beyer, Marco

    2013-01-01

    Forty-one Zymoseptoria tritici strains isolated in Luxembourg between 2009 and 2010 were highly sensitive towards the new succinate dehydrogenase inhibitor (SDHI) isopyrazam, with concentrations inhibiting fungal growth by 50% (EC50) ranging from 0.0281 to 4.53μM, whereas 41 Fusarium graminearum strains isolated in Europe and Northern America between 1969 and 2009 were insensitive with the average rate of inhibition converging towards 28% with increasing isopyrazam concentration. Seven isolates of both species covering the range of isopyrazam sensitivities observed in the present study were selected for the sequencing of the subunits B, C and D of the succinate dehydrogenase (sdh) gene. Predicted sdh amino acid sequences of subunits B, C and D were identical among F. graminearum strains. By comparing with fungal strains where resistance towards SDHIs was previously reported, three variations were unique to F. graminearum; B-D130N located in the iron-sulfur cluster [2Fe-2S], B-A275T located in the [3Fe-4S] cluster and an additional S at amino acid position 83-84 of sdhC, probably modifying structurally the ubiquinone binding site and therefore the biological activity of the fungicide. No variation was found among the Z. tritici strains in subunits B and D. Two variations were observed within the subunit C sequences of Z. tritici strains: C-N33T and C-N34T. The difference in EC50 values between Z. tritici strains with the NN and TT configuration was non-significant at P=0.289. Two outliers in the Z. tritici group with significantly higher EC50 values that were not related to mutations in the sdhB, sdhC, or sdhD were detected. The role of isopyrazam for the control of F. graminearum and Z. tritici in Luxembourg is discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum.

    Science.gov (United States)

    Yu, Fangwei; Gu, Qin; Yun, Yingzi; Yin, Yanni; Xu, Jin-Rong; Shim, Won-Bo; Ma, Zhonghua

    2014-07-01

    The target of rapamycin (TOR) signaling pathway plays critical roles in controlling cell growth in a variety of eukaryotes. However, the contribution of this pathway in regulating virulence of plant pathogenic fungi is unknown. We identified and characterized nine genes encoding components of the TOR pathway in Fusarium graminearum. Biological, genetic and biochemical functions of each component were investigated. The FgFkbp12-rapamycin complex binds to the FgTor kinase. The type 2A phosphatases FgPp2A, FgSit4 and FgPpg1 were found to interact with FgTap42, a downstream component of FgTor. Among these, we determined that FgPp2A is likely to be essential for F. graminearum survival, and FgSit4 and FgPpg1 play important roles in cell wall integrity by positively regulating the phosphorylation of FgMgv1, a key MAP kinase in the cell wall integrity pathway. In addition, the FgPpg1 interacting protein, FgTip41, is involved in regulating mycelial growth and virulence. Notably, FgTip41 does not interact with FgTap42 but with FgPpg1, suggesting the existence of FgTap42:FgPpg1:FgTip41 heterotrimer in F. graminearum, a complex not observed in the yeast model. Collectively, we defined a genetic regulatory framework that elucidates how the TOR pathway regulates virulence and vegetative development in F. graminearum. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  8. MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Yongsoo Kim

    Full Text Available We previously characterized members of the Myb protein family, MYT1 and MYT2, in Fusarium graminearum. MYT1 and MYT2 are involved in female fertility and perithecium size, respectively. To expand knowledge of Myb proteins in F. graminearum, in this study, we characterized the functions of the MYT3 gene, which encodes a putative Myb-like transcription factor containing two Myb DNA-binding domains and is conserved in the subphylum Pezizomycotina of Ascomycota. MYT3 proteins were localized in nuclei during most developmental stages, suggesting the role of MYT3 as a transcriptional regulator. Deletion of MYT3 resulted in impairment of conidiation, germination, and vegetative growth compared to the wild type, whereas complementation of MYT3 restored the wild-type phenotype. Additionally, the Δmyt3 strain grew poorly on nitrogen-limited media; however, the mutant grew robustly on minimal media supplemented with ammonium. Moreover, expression level of nitrate reductase gene in the Δmyt3 strain was decreased in comparison to the wild type and complemented strain. On flowering wheat heads, the Δmyt3 strain exhibited reduced pathogenicity, which corresponded with significant reductions in trichothecene production and transcript levels of trichothecene biosynthetic genes. When the mutant was selfed, mated as a female, or mated as a male for sexual development, perithecia were not observed on the cultures, indicating that the Δmyt3 strain lost both male and female fertility. Taken together, these results demonstrate that MYT3 is required for pathogenesis and sexual development in F. graminearum, and will provide a robust foundation to establish the regulatory networks for all Myb-like proteins in F. graminearum.

  9. PAM: Particle automata model in simulation of Fusarium graminearum pathogen expansion.

    Science.gov (United States)

    Wcisło, Rafał; Miller, S Shea; Dzwinel, Witold

    2016-01-21

    The multi-scale nature and inherent complexity of biological systems are a great challenge for computer modeling and classical modeling paradigms. We present a novel particle automata modeling metaphor in the context of developing a 3D model of Fusarium graminearum infection in wheat. The system consisting of the host plant and Fusarium pathogen cells can be represented by an ensemble of discrete particles defined by a set of attributes. The cells-particles can interact with each other mimicking mechanical resistance of the cell walls and cell coalescence. The particles can move, while some of their attributes can be changed according to prescribed rules. The rules can represent cellular scales of a complex system, while the integrated particle automata model (PAM) simulates its overall multi-scale behavior. We show that due to the ability of mimicking mechanical interactions of Fusarium tip cells with the host tissue, the model is able to simulate realistic penetration properties of the colonization process reproducing both vertical and lateral Fusarium invasion scenarios. The comparison of simulation results with micrographs from laboratory experiments shows encouraging qualitative agreement between the two. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Glycosylphosphatidylinositol-Anchored Proteins in Fusarium graminearum: Inventory, Variability, and Virulence

    Science.gov (United States)

    Rittenour, William R.; Harris, Steven D.

    2013-01-01

    The contribution of cell surface proteins to plant pathogenicity of fungi is not well understood. As such, the objective of this study was to investigate the functions and importance of glycosylphosphatidylinositol-anchored proteins (GPI-APs) in the wheat pathogen F. graminearum. GPI-APs are surface proteins that are attached to either the membrane or cell wall. In order to simultaneously disrupt several GPI-APs, a phosphoethanolamine transferase-encoding gene gpi7 was deleted and the resultant mutant characterized in terms of growth, development, and virulence. The Δgpi7 mutants exhibited slower radial growth rates and aberrantly shaped macroconidia. Furthermore, virulence tests and microscopic analyses indicated that Gpi7 is required for ramification of the fungus throughout the rachis of wheat heads. In parallel, bioinformatics tools were utilized to predict and inventory GPI-APs within the proteome of F. graminearum. Two of the genes identified in this screen (FGSG_01588 and FGSG_08844) displayed isolate-specific length variability as observed for other fungal cell wall adhesion genes. Nevertheless, deletion of these genes failed to reveal obvious defects in growth, development, or virulence. This research demonstrates the global importance of GPI-APs to in planta proliferation in F. graminearum, and also highlights the potential of individual GPI-APs as diagnostic markers. PMID:24312325

  11. Temporal dynamics and population genetic structure of Fusarium graminearum in the upper Midwestern United States.

    Science.gov (United States)

    Liang, J M; Xayamongkhon, H; Broz, K; Dong, Y; McCormick, S P; Abramova, S; Ward, T J; Ma, Z H; Kistler, H C

    2014-12-01

    Fusarium graminearum sensu stricto causes Fusarium head blight (FHB) in wheat and barley, and contaminates grains with several trichothecene mycotoxins, causing destructive yield losses and economic impact in the United States. Recently, a F. graminearum strain collected from Minnesota (MN) was determined to produce a novel trichothecene toxin, called NX-2. In order to determine the spatial and temporal dynamics of NX-2 producing strains in MN, North Dakota (ND) and South Dakota (SD), a total of 463 F. graminearum strains were collected from three sampling periods, 1999-2000, 2006-2007 and 2011-2013. A PCR-RFLP based diagnostic test was developed and validated for NX-2 producing strains based on polymorphisms in the Tri1 gene. Trichothecene biosynthesis gene (Tri gene)-based polymerase chain reaction (PCR) assays and ten PCR-restriction fragment length polymorphism (RFLP) markers were used to genotype all strains. NX-2 strains were detected in each sampling period but with a very low overall frequency (2.8%) and were mainly collected near the borders of MN, ND and SD. Strains with the 3ADON chemotype were relatively infrequent in 1999-2000 (4.5%) but increased to 29.4% in 2006-2007 and 17.2% in 2011-2013. The distribution of 3ADON producing strains also expanded from a few border counties between ND and MN in 1999-2000, southward toward the border between SD and MN in 2006-2007 and westward in 2011-2013. Genetic differentiation between 2006-2007 and 2011-2013 populations (3%) was much lower than that between 1999-2000 and 2006-2007 (22%) or 1999-2000 and 2011-2013 (20%) suggesting that most change to population genetic structure of F. graminearum occurred between 1999-2000 and 2006-2007. This change was associated with the emergence of a new population consisting largely of individuals with a 3ADON chemotype. A Bayesian clustering analysis suggested that NX-2 chemotype strains are part of a previously described Upper Midwestern population. However, these analyses

  12. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses

    Directory of Open Access Journals (Sweden)

    Deising Holger B

    2011-01-01

    Full Text Available Abstract Background The toxigenic fungal plant pathogen Fusarium graminearum compromises wheat production worldwide. Azole fungicides play a prominent role in controlling this pathogen. Sequencing of its genome stimulated the development of high-throughput technologies to study mechanisms of coping with fungicide stress and adaptation to fungicides at a previously unprecedented precision. DNA-microarrays have been used to analyze genome-wide gene expression patterns and uncovered complex transcriptional responses. A recently developed one-color multiplex array format allowed flexible, effective, and parallel examinations of eight RNA samples. Results We took advantage of the 8 × 15 k Agilent format to design, evaluate, and apply a novel microarray covering the whole F. graminearum genome to analyze transcriptional responses to azole fungicide treatment. Comparative statistical analysis of expression profiles uncovered 1058 genes that were significantly differentially expressed after azole-treatment. Quantitative RT-PCR analysis for 31 selected genes indicated high conformity to results from the microarray hybridization. Among the 596 genes with significantly increased transcript levels, analyses using GeneOntology and FunCat annotations detected the ergosterol-biosynthesis pathway genes as the category most significantly responding, confirming the mode-of-action of azole fungicides. Cyp51A, which is one of the three F. graminearum paralogs of Cyp51 encoding the target of azoles, was the most consistently differentially expressed gene of the entire study. A molecular phylogeny analyzing the relationships of the three CYP51 proteins in the context of 38 fungal genomes belonging to the Pezizomycotina indicated that CYP51C (FGSG_11024 groups with a new clade of CYP51 proteins. The transcriptional profiles for genes encoding ABC transporters and transcription factors suggested several involved in mechanisms alleviating the impact of the fungicide

  13. Trichothecene chemotype diversity of Fusarium graminearum isolated from wheat, maize and barley in Serbia

    Directory of Open Access Journals (Sweden)

    Obradović Ana

    2017-01-01

    Full Text Available Diversity of trichothecene chemotypes of Fusarium graminearum isolated from kernels of wheat, barley and maize grown under various agro-ecological conditions on 13 locations was analysed. Sixteen strains were tested for the effective capability to produce 15-ADON, 3-ADON and NIV, by using the liquid chromatography-tandem mass spectrometry (LC-MS/MS system. Fourteen out of sixteen analyzed strains produced 15-ADON, while remaining two were of the 3-ADON chemotype. Multiplex PCR reaction with two sets of specific primers for TRI3 and TRI12 genes was applied to identify trichothecene chemotypes (3-ADON, 15-ADON and NIV. The expected sizes of amplified fragments for TRI3 gene primer set are 840 bp (NIV, 610 bp (15-ADON and 243 bp (3-ADON. The amplified fragments for TRI12 gene primer set should be 840 bp (NIV, 670 bp (15-ADON and 410 bp (3-ADON. All F. graminearum isolates were of the 15-ADON chemotype, i.e. their bands were 610 bp and 670 bp size for TRI3 and TRI12 genes, respectively. The results indicate that genotypic characterisation does not correspond to determined chemotypes and this is a reason why the analyses for the risk of mycotoxins contamination should not be based only on trichotecene genotype determination. Due to high temperature differences in cereal growing regions in Serbia, the presence of other chemotypes could be expected. In order to determine whether besides 15-ADON there are other F. graminearum chemotypes on wheat, barley and maize kernels, further studies should include a large number of isolates from different agro-ecological conditions. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR31023

  14. Disruption of the GABA shunt affects mitochondrial respiration and virulence in the cereal pathogen Fusarium graminearum.

    Science.gov (United States)

    Bönnighausen, Jakob; Gebhard, Daniel; Kröger, Cathrin; Hadeler, Birgit; Tumforde, Thomas; Lieberei, Reinhard; Bergemann, Jörg; Schäfer, Wilhelm; Bormann, Jörg

    2015-12-01

    The cereal pathogen Fusarium graminearum threatens food and feed production worldwide. It reduces the yield and poisons the remaining kernels with mycotoxins, notably deoxynivalenol (DON). We analyzed the importance of gamma-aminobutanoic acid (GABA) metabolism for the life cycle of this fungal pathogen. GABA metabolism in F. graminearum is partially regulated by the global nitrogen regulator AreA. Genetic disruption of the GABA shunt by deletion of two GABA transaminases renders the pathogen unable to utilize the plant stress metabolites GABA and putrescine. The mutants showed increased sensitivity against oxidative stress, GABA accumulation in the mycelium, downregulation of two key enzymes of the TCA cycle, disturbed potential gradient in the mitochondrial membrane and lower mitochondrial oxygen consumption. In contrast, addition of GABA to the wild type resulted in its rapid turnover and increased mitochondrial steady state oxygen consumption. GABA concentrations are highly upregulated in infected wheat tissues. We conclude that GABA is metabolized by the pathogen during infection increasing its energy production, whereas the mutants accumulate GABA intracellularly resulting in decreased energy production. Consequently, the GABA mutants are strongly reduced in virulence but, because of their DON production, are able to cross the rachis node. © 2015 John Wiley & Sons Ltd.

  15. Comparative studies about fungal colonization and deoxynivalenol translocation in barley plants inoculated at the base with Fusarium graminearum, Fusarium culmorum and Fusarium pseudograminearum

    Directory of Open Access Journals (Sweden)

    Francesco Pecoraro

    2018-03-01

    Full Text Available Fusarium crown rot (FCR, an important disease of wheat and barley, is mainly caused by Fusarium graminearum, F. culmorum and F. pseudograminearum, which are also responsible for mycotoxin production. This is the first comparative investigation of their colonization on barley plants after stem base inoculation. At plant maturity, FCR symptoms were visually evaluated, fungal biomass was quantified by Real-Time quantitative PCR and deoxynivalenol (DON was detected by enzyme-linked immunosorbent assay (ELISA. All the inoculated strains caused the typical FCR necrotic symptoms. Real-Time PCR analysis showed that F. graminearum and F. culmorum were present in the head tissues, while F. pseudograminearum colonized only up to the area including the second node of the stem. Conversely, DON was detected up to the head for all the three species. This study shows that, as already demonstrated in previous research for wheat, DON may be detected up to the head as a consequence of stem base infection by the three FCR agents

  16. Biocontrol of Fusarium graminearum sensu stricto, Reduction of Deoxynivalenol Accumulation and Phytohormone Induction by Two Selected Antagonists.

    Science.gov (United States)

    Palazzini, Juan; Roncallo, Pablo; Cantoro, Renata; Chiotta, Maria; Yerkovich, Nadia; Palacios, Sofia; Echenique, Viviana; Torres, Adriana; Ramírez, María; Karlovsky, Petr; Chulze, Sofia

    2018-02-20

    Fusarium head blight (FHB) is a devastating disease that causes extensive yield and quality losses to wheat and other small cereal grains worldwide. Species within the Fusarium graminearum complex are the main pathogens associated with the disease, F. graminearum sensu stricto being the main pathogen in Argentina. Biocontrol can be used as part of an integrated pest management strategy. Phytohormones play a key role in the plant defense system and their production can be induced by antagonistic microorganisms. The aims of this study were to evaluate the effect of the inoculation of Bacillus velezensis RC 218, F. graminearum and their co-inoculation on the production of salicylic acid (SA) and jasmonic acid (JA) in wheat spikes at different periods of time under greenhouse conditions, and to evaluate the effect of B. velezensis RC 218 and Streptomyces albidoflavus RC 87B on FHB disease incidence, severity and deoxynivalenol accumulation on Triticum turgidum L. var. durum under field conditions. Under greenhouse conditions the production of JA was induced after F. graminearum inoculation at 48 and 72 h, but JA levels were reduced in the co-inoculated treatments. No differences in JA or SA levels were observed between the B. velezensis treatment and the water control. In the spikes inoculated with F. graminearum, SA production was induced early (12 h), as it was shown for initial FHB basal resistance, while JA was induced at a later stage (48 h), revealing different defense strategies at different stages of infection by the hemibiotrophic pathogen F. graminearum. Both B. velezensis RC 218 and S. albidoflavus RC 87B effectively reduced FHB incidence (up to 30%), severity (up to 25%) and deoxynivalenol accumulation (up to 51%) on durum wheat under field conditions.

  17. Biocontrol of Fusarium graminearum sensu stricto, Reduction of Deoxynivalenol Accumulation and Phytohormone Induction by Two Selected Antagonists

    Directory of Open Access Journals (Sweden)

    Juan Palazzini

    2018-02-01

    Full Text Available Fusarium head blight (FHB is a devastating disease that causes extensive yield and quality losses to wheat and other small cereal grains worldwide. Species within the Fusarium graminearum complex are the main pathogens associated with the disease, F. graminearum sensu stricto being the main pathogen in Argentina. Biocontrol can be used as part of an integrated pest management strategy. Phytohormones play a key role in the plant defense system and their production can be induced by antagonistic microorganisms. The aims of this study were to evaluate the effect of the inoculation of Bacillus velezensis RC 218, F. graminearum and their co-inoculation on the production of salicylic acid (SA and jasmonic acid (JA in wheat spikes at different periods of time under greenhouse conditions, and to evaluate the effect of B. velezensis RC 218 and Streptomyces albidoflavus RC 87B on FHB disease incidence, severity and deoxynivalenol accumulation on Triticum turgidum L. var. durum under field conditions. Under greenhouse conditions the production of JA was induced after F. graminearum inoculation at 48 and 72 h, but JA levels were reduced in the co-inoculated treatments. No differences in JA or SA levels were observed between the B. velezensis treatment and the water control. In the spikes inoculated with F. graminearum, SA production was induced early (12 h, as it was shown for initial FHB basal resistance, while JA was induced at a later stage (48 h, revealing different defense strategies at different stages of infection by the hemibiotrophic pathogen F. graminearum. Both B. velezensis RC 218 and S. albidoflavus RC 87B effectively reduced FHB incidence (up to 30%, severity (up to 25% and deoxynivalenol accumulation (up to 51% on durum wheat under field conditions.

  18. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis.

    Science.gov (United States)

    Li, Zhao; Zhou, Miaoping; Zhang, Zengyan; Ren, Lijuan; Du, Lipu; Zhang, Boqiao; Xu, Huijun; Xin, Zhiyong

    2011-03-01

    Fusarium head blight (scab), primarily caused by Fusarium graminearum, is a devastating disease of wheat (Triticum aestivum L.) worldwide. Wheat sharp eyespot, mainly caused by Rhizoctonia cerealis, is one of the major diseases of wheat in China. The defensin RsAFP2, a small cyteine-rich antifungal protein from radish (Raphanus sativus), was shown to inhibit growth in vitro of agronomically important fungal pathogens, such as F. graminearum and R. cerealis. The RsAFP2 gene was transformed into Chinese wheat variety Yangmai 12 via biolistic bombardment to assess the effectiveness of the defensin in protecting wheat from the fungal pathogens in multiple locations and years. The genomic PCR and Southern blot analyses indicated that RsAFP2 was integrated into the genomes of the transgenic wheat lines and heritable. RT-PCR and Western blot proved that the RsAFP2 was expressed in these transgenic wheat lines. Disease tests showed that four RsAFP2 transgenic lines (RA1-RA4) displayed enhanced resistance to F. graminearum compared to the untransformed Yangmai 12 and the null-segregated plants. Assays on Q-RT-PCR and disease severity showed that the express level of RsAFP2 was associated with the enhanced resistance degree. Two of these transgenic lines (RA1 and RA2) also exhibited enhanced resistance to R. cerealis. These results indicated that the expression of RsAFP2 conferred increased resistance to F. graminearum and R. cerealis in transgenic wheat.

  19. Acetohydroxyacid synthase FgIlv2 and FgIlv6 are involved in BCAA biosynthesis, mycelial and conidial morphogenesis, and full virulence in Fusarium graminearum.

    Science.gov (United States)

    Liu, Xin; Han, Qi; Xu, Jianhong; Wang, Jian; Shi, Jianrong

    2015-11-10

    In this study, we characterized FgIlv2 and FgIlv6, the catalytic and regulatory subunits of acetohydroxyacid synthase (AHAS) from the important wheat head scab fungus Fusarium graminearum. AHAS catalyzes the first common step in the parallel pathways toward branched-chain amino acids (BCAAs: isoleucine, leucine, valine) and is the inhibitory target of several commercialized herbicides. Both FgILV2 and FgILV6 deletion mutants were BCAA-auxotrophic and showed reduced aerial hyphal growth and red pigmentation when cultured on PDA plates. Conidial formation was completely blocked in the FgILV2 deletion mutant ΔFgIlv2-4 and significantly reduced in the FgILV6 deletion mutant ΔFgIlv6-12. The auxotrophs of ΔFgIlv2-4 and ΔFgIlv6-12 could be restored by exogenous addition of BCAAs but relied on the designated nitrogen source the medium contained. Deletion of FgILV2 or FgILV6 also leads to hypersensitivity to various cellular stresses and reduced deoxynivalenol production. ΔFgIlv2-4 lost virulence completely on flowering wheat heads, whereas ΔFgIlv6-12 could cause scab symptoms in the inoculated spikelet but lost its aggressiveness. Taken together, our study implies the potential value of antifungals targeting both FgIlv2 and FgIlv6 in F. graminearum.

  20. A Natural Mutation Involving both Pathogenicity and Perithecium Formation in the Fusarium graminearum Species Complex

    Directory of Open Access Journals (Sweden)

    Haruhisha Suga

    2016-12-01

    Full Text Available Members of the Fusarium graminearum species complex (Fg complex or FGSC are the primary pathogens causing Fusarium head blight in wheat and barley worldwide. A natural pathogenicity mutant (strain 0225022 was found in a sample of the Fg complex collected in Japan. The mutant strain did not induce symptoms in wheat spikes beyond the point of inoculation, and did not form perithecia. No segregation of phenotypic deficiencies occurred in the progenies of a cross between the mutant and a fully pathogenic wild-type strain, which suggested that a single genetic locus controlled both traits. The locus was mapped to chromosome 2 by using sequence-tagged markers; and a deletion of ∼3 kb was detected in the mapped region of the mutant strain. The wild-type strain contains the FGSG_02810 gene, encoding a putative glycosylphosphatidylinositol anchor protein, in this region. The contribution of FGSG_02810 to pathogenicity and perithecium formation was confirmed by complementation in the mutant strain using gene transfer, and by gene disruption in the wild-type strain.

  1. Analysis of deoxynivalenol and deoxynivalenol-3-glucosides content in Canadian spring wheat cultivars inoculated with Fusarium graminearum.

    Science.gov (United States)

    Amarasinghe, Chami C; Simsek, Senay; Brûlé-Babel, Anita; Fernando, W G Dilantha

    2016-07-01

    Contamination of wheat grains with Fusarium mycotoxins and their modified forms is an important issue in wheat industry. The objective of this study was to analyse the deoxynivalenol (DON) and deoxynivalenol-3-glucosides (D3G) content in Canadian spring wheat cultivars grown in two locations, inoculated with a mixture of 3-acetyldeoxynivalenol (3-ADON)-producing Fusarium graminearum strains and a mixture of 15-acetlyldeoxynivalenol (15-ADON)-producing F. graminearum strains. According to the analysis of variance, significant differences were observed among the cultivars for Fusarium head blight (FHB) disease index, Fusarium-damaged kernel percentage (%FDK), DON content and D3G content. When the effect of chemotype was considered, significant differences were observed for FHB disease index, FDK percentage and DON content. The D3G content and D3G/DON ratio were not significantly different between the chemotypes, except for D3G content at the Winnipeg location. The Pearson correlation coefficient between DON and D3G was 0.84 and 0.77 at Winnipeg and Carman respectively. The highest D3G/DON ratio was observed in cultivars Carberry (44%) in Carman and CDC Kernen (63.8%) in Winnipeg. The susceptible cultivars showed lower D3G/DON ratio compared with the cultivars rated as moderately resistant and intermediate. The current study indicated that Canadian spring cultivars produce D3G upon Fusarium infection.

  2. Identification of the Biosynthetic Gene Clusters for the Lipopeptides Fusaristatin A and W493 B in Fusarium graminearum and F. pseudograminearum

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Sondergaard, Teis Esben; Covarelli, Lorenzo

    2014-01-01

    The closely related species Fusarium graminearum and Fusarium pseudograminearum differ in that each contains a gene cluster with a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) that is not present in the other species. To identify their products, we deleted PKS6 and NRPS7...... Fusarium species. On the basis of genes in the putative gene clusters we propose a model for biosynthesis where the polyketide product is shuttled to the NPRS via a CoA ligase and a thioesterase in F. pseudograminearum. In F. graminearum the polyketide is proposed to be directly assimilated by the NRPS....

  3. Optimization for the Production of Deoxynivalenoland Zearalenone by Fusarium graminearum UsingResponse Surface Methodology

    Directory of Open Access Journals (Sweden)

    Li Wu

    2017-02-01

    Full Text Available Fusarium mycotoxins deoxynivalenol (DON and zearalenone (ZEN are the most common contaminants in cereals worldwide, causing a wide range of adverse health effects on animals and humans. Many environmental factors can affect the production of these mycotoxins. Here, we have used response surface methodology (RSM to optimize the Fusarium graminearum strain 29 culture conditions for maximal toxin production. Three factors, medium pH, incubation temperature and time, were optimized using a Box-Behnken design (BBD. The optimized conditions for DON production were pH 4.91 and an incubation temperature of 23.75 °C for 28 days, while maximal ZEN production required pH 9.00 and an incubation temperature of 15.05 °C for 28 days. The maximum levels of DON and ZEN production were 2811.17 ng/mL and 23789.70 ng/mL, respectively. Considering the total level of DON and ZEN, desirable yields of the mycotoxins were still obtained with medium pH of 6.86, an incubation temperature of 17.76 °C and a time of 28 days. The corresponding experimental values, from the validation experiments, fitted well with these predictions. This suggests that RSM could be used to optimize Fusarium mycotoxin levels, which are further purified for use as potential mycotoxin standards. Furthermore, it shows that acidic pH is a determinant for DON production, while an alkaline environment and lower temperature (approximately 15 °C are favorable for ZEN accumulation. After extraction, separation and purification processes, the isolated mycotoxins were obtained through a simple purification process, with desirable yields, and acceptable purity. The mycotoxins could be used as potential analytical standards or chemical reagents for routine analysis.

  4. Production, characterization, and identification using proteomic tools of a polygalacturonase from Fusarium graminearum.

    Science.gov (United States)

    Ortega, Leonel M; Kikot, Gisele E; Rojas, Natalia L; López, Laura M I; Astoreca, Andrea L; Alconada, Teresa M

    2014-07-01

    Since enzymatic degradation is a mechanism or component of the aggressiveness of a pathogen, enzymatic activities from a Fusarium graminearum isolate obtained from infected wheat spikes of Argentina Pampa region were studied in order to understand the disease progression, tending to help disease control. In particular, the significance of the study of polygalacturonase activity is based on that such activity is produced in the early stages of infection on the host, suggesting a crucial role in the establishment of disease. In this sense, polygalacturonase activity produced by this microorganism has been purified 375 times from 2-day-old culture filtrates by gel filtration and ion-exchange chromatography successively. The purified sample showed two protein bands in sodium dodecyl sulfate-polyacrylamide gels, with a molecular mass of 40 and 55 kDa. The protein bands were identified as an endopolygalacturonase and as a serine carboxypeptidase of F. graminearum, respectively, by peptide mass fingerprinting (matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF/TOF) fragment ion analysis). The pattern of substrate degradation analyzed by thin layer chromatography confirmed the mode of action of the enzyme as an endopolygalacturonase. High activity of the polygalacturonase against polygalacturonic acid was observed between 4 and 6 of pH, and between 30 and 50 °C, being 5 and 50 °C the optimum pH and temperature, respectively. The enzyme was fully stable at pH 5 for 120 min and 30 °C and sensible to the presence of some metal ions. This information would contribute to understand the most favorable environmental conditions for establishment of the disease. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Simultaneous detection of Fusarium culmorum and F. graminearum in plant material by duplex PCR with melting curve analysis.

    Science.gov (United States)

    Brandfass, Christoph; Karlovsky, Petr

    2006-01-23

    Fusarium head blight (FHB) is a disease of cereal crops, which has a severe impact on wheat and barley production worldwide. Apart from reducing the yield and impairing grain quality, FHB leads to contamination of grain with toxic secondary metabolites (mycotoxins), which pose a health risk to humans and livestock. The Fusarium species primarily involved in FHB are F. graminearum and F. culmorum. A key prerequisite for a reduction in the incidence of FHB is an understanding of its epidemiology. We describe a duplex-PCR-based method for the simultaneous detection of F. culmorum and F. graminearum in plant material. Species-specific PCR products are identified by melting curve analysis performed in a real-time thermocycler in the presence of the fluorescent dye SYBR Green I. In contrast to multiplex real-time PCR assays, the method does not use doubly labeled hybridization probes. PCR with product differentiation by melting curve analysis offers a cost-effective means of qualitative analysis for the presence of F. culmorum and F. graminearum in plant material. This method is particularly suitable for epidemiological studies involving a large number of samples.

  6. Simultaneous detection of Fusarium culmorum and F. graminearum in plant material by duplex PCR with melting curve analysis

    Directory of Open Access Journals (Sweden)

    Karlovsky Petr

    2006-01-01

    Full Text Available Abstract Background Fusarium head blight (FHB is a disease of cereal crops, which has a severe impact on wheat and barley production worldwide. Apart from reducing the yield and impairing grain quality, FHB leads to contamination of grain with toxic secondary metabolites (mycotoxins, which pose a health risk to humans and livestock. The Fusarium species primarily involved in FHB are F. graminearum and F. culmorum. A key prerequisite for a reduction in the incidence of FHB is an understanding of its epidemiology. Results We describe a duplex-PCR-based method for the simultaneous detection of F. culmorum and F. graminearum in plant material. Species-specific PCR products are identified by melting curve analysis performed in a real-time thermocycler in the presence of the fluorescent dye SYBR Green I. In contrast to multiplex real-time PCR assays, the method does not use doubly labeled hybridization probes. Conclusion PCR with product differentiation by melting curve analysis offers a cost-effective means of qualitative analysis for the presence of F. culmorum and F. graminearum in plant material. This method is particularly suitable for epidemiological studies involving a large number of samples.

  7. Fungal Cytochrome P450s and the P450 Complement (CYPome of Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Jiyoung Shin

    2018-03-01

    Full Text Available Cytochrome P450s (CYPs, heme-containing monooxygenases, play important roles in a wide variety of metabolic processes important for development as well as biotic/trophic interactions in most living organisms. Functions of some CYP enzymes are similar across organisms, but some are organism-specific; they are involved in the biosynthesis of structural components, signaling networks, secondary metabolisms, and xenobiotic/drug detoxification. Fungi possess more diverse CYP families than plants, animals, or bacteria. Various fungal CYPs are involved in not only ergosterol synthesis and virulence but also in the production of a wide array of secondary metabolites, which exert toxic effects on humans and other animals. Although few studies have investigated the functions of fungal CYPs, a recent systematic functional analysis of CYP genes in the plant pathogen Fusarium graminearum identified several novel CYPs specifically involved in virulence, asexual and sexual development, and degradation of xenobiotics. This review provides fundamental information on fungal CYPs and a new platform for further metabolomic and biochemical studies of CYPs in toxigenic fungi.

  8. MFS Transporters and GABA Metabolism Are Involved in the Self-Defense Against DON in Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Qinhu Wang

    2018-04-01

    Full Text Available Trichothecene mycotoxins, such as deoxynivalenol (DON produced by the fungal pathogen, Fusarium graminearum, are not only important for plant infection but are also harmful to human and animal health. Trichothecene targets the ribosomal protein Rpl3 that is conserved in eukaryotes. Hence, a self-defense mechanism must exist in DON-producing fungi. It is reported that TRI (trichothecene biosynthesis 101 and TRI12 are two genes responsible for self-defense against trichothecene toxins in Fusarium. In this study, however, we found that simultaneous disruption of TRI101 and TRI12 has no obvious influence on DON resistance upon exogenous DON treatment in F. graminearum, suggesting that other mechanisms may be involved in self-defense. By using RNA-seq, we identified 253 genes specifically induced in DON-treated cultures compared with samples from cultures treated or untreated with cycloheximide, a commonly used inhibitor of eukaryotic protein synthesis. We found that transporter genes are significantly enriched in this group of DON-induced genes. Of those genes, 15 encode major facilitator superfamily transporters likely involved in mycotoxin efflux. Significantly, we found that genes involved in the metabolism of gamma-aminobutyric acid (GABA, a known inducer of DON production in F. graminearum, are significantly enriched among the DON-induced genes. The GABA biosynthesis gene PROLINE UTILIZATION 2-2 (PUT2-2 is downregulated, while GABA degradation genes are upregulated at least twofold upon treatment with DON, resulting in decreased levels of GABA. Taken together, our results suggest that transporters influencing DON efflux are important for self-defense and that GABA mediates the balance of DON production and self-defense in F. graminearum.

  9. Fusarium graminearum growth inhibition mechanism using phenolic compounds from Spirulina sp Mecanismo de inibição de Fusarium graminearum por compostos fenólicos extraídos de Spirulina sp

    Directory of Open Access Journals (Sweden)

    Fernanda Arnhold Pagnussatt

    2013-02-01

    Full Text Available The application of natural antifungal substances is motivated by the need for alternatives to existing methods that are not always applicable, efficient, or that do not pose risk to consumers or the environment. Furthermore, studies on the behaviour of toxigenic species in the presence of natural fungicides have enabled their safe application in the food chain In this study, Spirulina LEB-18 phenolic extract was assessed for its antifungal activity on 12 toxigenic strains of Fusarium graminearum isolated from barley and wheat. The susceptible metabolic pathways were assessed through the determination of structural compounds (glucosamine and ergosterol and enzyme activity of the microorganisms' primary metabolism. The results indicate that phenolic extracts reduced the growth rate of the toxigenic species investigated. The IC50 was obtained by applying 3 to 8% (p/p of phenolic compounds in relation to the culture medium. The use of this natural fungicide proved promising for the inhibition of fungal multiplication, especially in terms of the inactivation of enzymatic systems (amylase and protease of Fusarium graminearum.A aplicação de substâncias naturais com efeito antifúngico é motivada pela necessidade de alternativas aos métodos existentes que nem sempre são aplicáveis, eficientes ou sem risco de danos ao consumidor ou meio ambiente. Além disso, estudos para elucidar o comportamento de espécies toxigênicas mediante fungicidas naturais tornam-se necessárias, contribuindo dessa forma com a segurança alimentar. Neste trabalho, extrato fenólico de Spirulina foi utilizado para avaliar a atividade antifúngica sobre 12 cepas toxigênicas de Fusarium graminearum, isoladas de cevada e trigo. As rotas metabólicas que poderiam ser afetadas foram avaliadas através da determinação de compostos estruturais (glicosamina e ergosterol e da atividade de enzimas do metabolismo primário dos micro-organismos. Os resultados indicaram que os

  10. The effect of agmatine on trichothecene type B and zearalenone production in Fusarium graminearum, F. culmorum and F. poae

    Directory of Open Access Journals (Sweden)

    Matias Pasquali

    2016-02-01

    Full Text Available Agmatine and other putrescines are known for being strong inducers of deoxynivalenol (DON production in Fusarium graminearum. Other important species produce DON and/or other trichothecene type B toxins (3 acetylated DON, 15 acetylated DON, Fusarenon-X, Nivalenol, such as F. culmorum and F. poae. In order to verify whether the mechanism of the regulation of trichothecene type B induction by agmatine is shared by different species of Fusarium, we tested the hypothesis on 19 strains belonging to 3 Fusarium species (F. graminearum, F. culmorum, F. poae with diverse genetic chemotypes (3ADON, 15ADON, NIV by measuring trichothecene B toxins such as DON, NIV, Fusarenon-X, 3ADON and 15ADON. Moreover, we tested whether other toxins like zearalenone were also boosted by agmatine. The trichothecene type B boosting effect was observed in the majority of strains (13 out of 19 in all the three species. Representative strains from all three genetic chemotypes were able to boost toxin production after agmatine treatment. We identified the non-responding strains to the agmatine stimulus, which may contribute to deciphering the regulatory mechanisms that link toxin production to agmatine (and, more generally, polyamines.

  11. Evaluation of deoxynivalenol production in dsRNA Carrying and Cured Fusarium graminearum isolates by AYT1 expressing transformed tobacco

    Directory of Open Access Journals (Sweden)

    Samira Shahbazi

    2015-12-01

    Full Text Available Introduction: Fusarium head blight (FHB, is the most destructive disease of wheat, producing the mycotoxin deoxynivalenol, a protein synthesis inhibitor, which is harmful to humans and livestock. dsRNAmycoviruses-infected-isolates of Fusariumgraminearum, showed changes in morphological and pathogenicity phenotypes including reduced virulence towards wheat and decreased production of trichothecene mycotoxin (deoxynivalenol: DON. Materials and methods: Previous studies indicated that over expression of yeast acetyl transferase gene (ScAYT1 encoding a 3-O trichothecene acetyl transferase that converts deoxynivalenol to a less toxic acetylated form, leads to suppression of the deoxynivalenol sensitivity in pdr5 yeast mutants. To identify whether ScAYT1 over-expression in transgenic tobacco plants can deal with mycotoxin (deoxynivalenol in fungal extract and studying the effect of dsRNA contamination on detoxification and resistance level, we have treated T1 AYT1 transgenic tobacco seedlings with complete extraction of normal F. graminearum isolate carrying dsRNA metabolites. First, we introduced AYT1into the model tobacco plants through Agrobacterium-mediated transformation in an attempt to detoxify deoxynivalenol. Results: In vitro tests with extraction of dsRNA carrying and cured isolates of F. graminearum and 10 ppm of deoxynivalenol indicated variable resistance levels in transgenic plants. Discussion and conclusion: The results of this study indicate that the transgene expression AYT1 and Fusarium infection to dsRNA can induce tolerance to deoxynivalenol, followed by increased resistance to Fusarium head blight disease of wheat.

  12. Fusariosis de la espiga del trigo : dinámica del inóculo de Fusarium graminearum ante un manejo sustentable

    OpenAIRE

    Mourelos, Cecilia Alejandra

    2015-01-01

    Mourelos, C. A. (2015). Fusariosis de la espiga del trigo: Dinámica del inóculo de Fusarium graminearum ante un manejo sustentable. (Tesis de doctorado). Universidad Nacional de Quilmes, Bernal, Argentina. La fusariosis de la espiga de trigo (FET) es una de las enfermedades fúngicas más importantes del cultivo de trigo y de otros cereales en la Argentina. En el país, la enfermedad es causada principalmente por Fusarium graminearum Schwabe [teleomorfo Gibberella zeae (Schwein.) Petch]. Esta...

  13. L-Threonine and its analogue added to autoclaved solid medium suppress trichothecene production by Fusarium graminearum.

    Science.gov (United States)

    Maeda, Kazuyuki; Nakajima, Yuichi; Tanahashi, Yoshikazu; Kitou, Yoshiyuki; Miwa, Akihiro; Kanamaru, Kyoko; Kobayashi, Tetsuo; Nishiuchi, Takumi; Kimura, Makoto

    2017-08-01

    Fusarium graminearum produces trichothecene mycotoxins under certain nutritional conditions. When L-Thr and its analogue L-allo-threonine were added to brown rice flour solid medium before inoculation, trichothecene production after 4 days of incubation was suppressed. A time-course analysis of gene expression demonstrated that L-Thr suppressed transcription of Tri6, a trichothecene master regulator gene, and a terpene cyclase Tri5 gene. Regulation of trichothecene biosynthesis by altering major primary metabolic processes may open up the possibility to develop safe chemicals for the reduction of mycotoxin contamination might be developed.

  14. Molecular characterization, fitness and mycotoxin production of Fusarium graminearum laboratory strains resistant to benzimidazoles.

    Science.gov (United States)

    Sevastos, A; Markoglou, A; Labrou, N E; Flouri, F; Malandrakis, A

    2016-03-01

    Six benzimidazole (BMZ)-resistant Fusarium graminearum strains were obtained after UV mutagenesis and selection on carbendazim (MBC)-amended medium. In vitro bioassays resulted in the identification of two resistant phenotypes that were highly HR (Rf: 40-170, based on EC50) and moderately MR (Rf: 10-20) resistant to carbendazim. Cross resistance studies with other fungicides showed that all mutant strains tested were also resistant to other BMZs, such as benomyl and thiabendazole, but retained their parental sensitivity to fungicides belonging to other chemical groups. A point mutation at codon 6 (His6Asn) was found in the β2-tubulin gene of MR isolates while another mutation at codon 200 (Phe200Tyr) was present in one MR and one HR isolates. Interestingly, low temperatures suppressed MBC-resistance in all isolates bearing the H6N mutation. The three-dimensional homology model of the wild-type and mutants of β-tubulins were constructed, and the possible carbendazim binding site was analyzed. Studies on fitness parameters showed that the mutation(s) for resistance to BMZs did not affect the mycelial growth rate whereas adverse effects were found in sporulation and conidial germination in most of the resistant mutants. Pathogenicity tests on corn cobs revealed that mutants were less or equally aggressive to the wild-type strain but expressed their BMZ-resistance after inoculation on maize cobs treated with MBC. Analysis of mycotoxin production by high performance liquid chromatography revealed that only two HR strains produced zearalenone (ZEA) at concentrations similar to that of the wild-type strain, while no ZEA levels were detected in the rest of the mutants. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Chemical Composition and Antifungal Effect of Echinophora platyloba Essential Oil against Aspergillus flavus, Penicillium expansum and Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Mohammad Hashemi

    2016-03-01

    Full Text Available Molds are one of the most important causes of food spoilage that produce toxic substances called mycotoxins, which endanger the consumer health. The adverse effects of synthetic food preservatives consumption made researches to focus on application of natural preservatives in order to increase shelf life of food as well as prevention of harmful effects of chemical preservatives. The present study was conducted to investigate the effects of Echinophora platyloba essential oil on spore growth of Aspergillus flavus, Penicillium expansum and Fusarium graminearum. The essential oil composition of E. platyloba was analyzed by gas chromatography–mass spectrometry (GC-MS and its antifungal effect was evaluated by disk diffusion and micro dilution methods. Results revealed that the MIC values of essential oil for A. flavus, P. expansum and F. graminearum were 0.625 mg.mL-1, 0.625 mg.mL-1 and 0.3125 mg.mL-1 and the MFC values were 0.625 mg.mL-1, 1.250 mg.mL-1 and 0.625 mg.mL-1. The essential oil had the highest and the lowest anti-fungal effect on F. graminearum and A. flavus respectively. In conclusion, due to notable antifungal effects of E. platyloba essential oil, it can be practically applied as a natural alternative to chemical preservatives in food industry.

  16. Functional roles of FgLaeA in controlling secondary metabolism, sexual development, and virulence in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Hee-Kyoung Kim

    Full Text Available Fusarium graminearum, the causal agent of Fusarium head blight in cereal crops, produces mycotoxins such as trichothecenes and zearalenone in infected plants. Here, we focused on the function of FgLaeA in F. graminearum, a homolog of Aspergillus nidulans LaeA encoding the global regulator for both secondary metabolism and sexual development. Prior to gene analysis, we constructed a novel luciferase reporter system consisting of a transgenic F. graminearum strain expressing a firefly luciferase gene under control of the promoter for either TRI6 or ZEB2 controlling the biosynthesis of these mycotoxins. Targeted deletion of FgLaeA led to a dramatic reduction of luminescence in reporter strains, indicating that FgLaeA controls the expression of these transcription factors in F. graminearum; reduced toxin accumulation was further confirmed by GC-MS analysis. Overexpression of FgLaeA caused the increased production of trichothecenes and additional metabolites. RNA seq-analysis revealed that gene member(s belonging to ~70% of total tentative gene clusters, which were previously proposed, were differentially expressed in the ΔFgLaeA strain. In addition, ΔFgLaeA strains exhibited an earlier induction of sexual fruiting body (perithecia formation and drastically reduced disease symptoms in wheat, indicating that FgLaeA seems to negatively control perithecial induction, but positively control virulence toward the host plant. FgLaeA was constitutively expressed under both mycotoxin production and sexual development conditions. Overexpression of a GFP-FgLaeA fusion construct in the ΔFgLaeA strain restored all phenotypic changes to wild-type levels and led to constitutive expression of GFP in both nuclei and cytoplasm at different developmental stages. A split luciferase assay demonstrated that FgLaeA was able to interact with FgVeA, a homolog of A. nidulans veA. Taken together, these results demonstrate that FgLaeA, a member of putative FgVeA complex

  17. The MADS-box transcription factor FgMcm1 regulates cell identity and fungal development in Fusarium graminearum.

    Science.gov (United States)

    Yang, Cui; Liu, Huiquan; Li, Guotian; Liu, Meigang; Yun, Yingzi; Wang, Chenfang; Ma, Zhonghua; Xu, Jin-Rong

    2015-08-01

    In eukaryotic cells, MADS-box genes are known to play major regulatory roles in various biological processes by combinatorial interactions with other transcription factors. In this study, we functionally characterized the FgMCM1 MADS-box gene in Fusarium graminearum, the causal agent of wheat and barley head blight. Deletion of FgMCM1 resulted in the loss of perithecium production and phialide formation. The Fgmcm1 mutant was significantly reduced in virulence, deoxynivalenol biosynthesis and conidiation. In yeast two-hybrid assays, FgMcm1 interacted with Mat1-1-1 and Fst12, two transcription factors important for sexual reproduction. Whereas Fgmcm1 mutants were unstable and produced stunted subcultures, Fgmcm1 mat1-1-1 but not Fgmcm1 fst12 double mutants were stable. Furthermore, spontaneous suppressor mutations occurred frequently in stunted subcultures to recover growth rate. Ribonucleic acid sequencing analysis indicated that a number of sexual reproduction-related genes were upregulated in stunted subcultures compared with the Fgmcm1 mutant, which was downregulated in the expression of genes involved in pathogenesis, secondary metabolism and conidiation. We also showed that culture instability was not observed in the Fvmcm1 mutants of the heterothallic Fusarium verticillioides. Overall, our data indicate that FgMcm1 plays a critical role in the regulation of cell identity, sexual and asexual reproduction, secondary metabolism and pathogenesis in F. graminearum. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Transgenic Wheat Expressing a Barley UDP-Glucosyltransferase Detoxifies Deoxynivalenol and Provides High Levels of Resistance to Fusarium graminearum.

    Science.gov (United States)

    Li, Xin; Shin, Sanghyun; Heinen, Shane; Dill-Macky, Ruth; Berthiller, Franz; Nersesian, Natalya; Clemente, Thomas; McCormick, Susan; Muehlbauer, Gary J

    2015-11-01

    Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is a devastating disease of wheat that results in economic losses worldwide. During infection, F. graminearum produces trichothecene mycotoxins, including deoxynivalenol (DON), that increase fungal virulence and reduce grain quality. Transgenic wheat expressing a barley UDP-glucosyltransferase (HvUGT13248) were developed and evaluated for FHB resistance, DON accumulation, and the ability to metabolize DON to the less toxic DON-3-O-glucoside (D3G). Point-inoculation tests in the greenhouse showed that transgenic wheat carrying HvUGT13248 exhibited significantly higher resistance to disease spread in the spike (type II resistance) compared with nontransformed controls. Two transgenic events displayed complete suppression of disease spread in the spikes. Expression of HvUGT13248 in transgenic wheat rapidly and efficiently conjugated DON to D3G, suggesting that the enzymatic rate of DON detoxification translates to type II resistance. Under field conditions, FHB severity was variable; nonetheless, transgenic events showed significantly less-severe disease phenotypes compared with the nontransformed controls. In addition, a seedling assay demonstrated that the transformed plants had a higher tolerance to DON-inhibited root growth than nontransformed plants. These results demonstrate the utility of detoxifying DON as a FHB control strategy in wheat.

  19. Comparison of the Fungicide Sensitivity of Alberta and Prince Edward Island Isolates of Fusarium graminearum Producing Either 3- or 15-acetyl Deoxynivalenol

    Science.gov (United States)

    Fusarium graminearum Schwabe of the ‘3ADON’ chemotype is now displacing ‘15ADON’ isolates in Canada. One concern regarding this shift in chemotypes is related to potential differences in fungicide sensitivity. This could have significant implications as fungicide application is an important strate...

  20. RNA-Seq Revealed Differences in Transcriptomes between 3ADON and 15ADON Populations of Fusarium graminearum In Vitro and In Planta.

    Science.gov (United States)

    Puri, Krishna D; Yan, Changhui; Leng, Yueqiang; Zhong, Shaobin

    2016-01-01

    Fusarium graminearum is the major causal agent of Fusarium head blight (FHB) in barley and wheat in North America. The fungus not only causes yield loss of the crops but also produces harmful trichothecene mycotoxins [Deoxynivalenol (DON) and its derivatives-3-acetyldeoxynivalenol (3ADON) and 15-acetyldeoxynivalenol (15ADON), and nivalenol (NIV)] that contaminate grains. Previous studies showed a dramatic increase of 3ADON-producing isolates with higher aggressiveness and DON production than the 15ADON-producing isolates in North America. However, the genetic and molecular basis of differences between the two types of isolates is unclear. In this study, we compared transcriptomes of the 3ADON and 15ADON isolates in vitro (in culture media) and in planta (during infection on the susceptible wheat cultivar 'Briggs') using RNA-sequencing. The in vitro gene expression comparison identified 479 up-regulated and 801 down-regulated genes in the 3ADON isolates; the up-regulated genes were mainly involved in C-compound and carbohydrate metabolism (18.6%), polysaccharide metabolism (7.7%) or were of unknown functions (57.6%). The in planta gene expression analysis revealed that 185, 89, and 62 genes were up-regulated in the 3ADON population at 48, 96, and 144 hours after inoculation (HAI), respectively. The up-regulated genes were significantly enriched in functions for cellular import, C-compound and carbohydrate metabolism, allantoin and allantoate transport at 48 HAI, for detoxification and virulence at 96 HAI, and for metabolism of acetic acid derivatives, detoxification, and cellular import at 144 HAI. Comparative analyses of in planta versus in vitro gene expression further revealed 2,159, 1,981 and 2,095 genes up-regulated in the 3ADON isolates, and 2,415, 2,059 and 1,777 genes up-regulated in the 15ADON isolates at the three time points after inoculation. Collectively, our data provides a foundation for further understanding of molecular mechanisms involved in

  1. RNA-Seq Revealed Differences in Transcriptomes between 3ADON and 15ADON Populations of Fusarium graminearum In Vitro and In Planta.

    Directory of Open Access Journals (Sweden)

    Krishna D Puri

    Full Text Available Fusarium graminearum is the major causal agent of Fusarium head blight (FHB in barley and wheat in North America. The fungus not only causes yield loss of the crops but also produces harmful trichothecene mycotoxins [Deoxynivalenol (DON and its derivatives-3-acetyldeoxynivalenol (3ADON and 15-acetyldeoxynivalenol (15ADON, and nivalenol (NIV] that contaminate grains. Previous studies showed a dramatic increase of 3ADON-producing isolates with higher aggressiveness and DON production than the 15ADON-producing isolates in North America. However, the genetic and molecular basis of differences between the two types of isolates is unclear. In this study, we compared transcriptomes of the 3ADON and 15ADON isolates in vitro (in culture media and in planta (during infection on the susceptible wheat cultivar 'Briggs' using RNA-sequencing. The in vitro gene expression comparison identified 479 up-regulated and 801 down-regulated genes in the 3ADON isolates; the up-regulated genes were mainly involved in C-compound and carbohydrate metabolism (18.6%, polysaccharide metabolism (7.7% or were of unknown functions (57.6%. The in planta gene expression analysis revealed that 185, 89, and 62 genes were up-regulated in the 3ADON population at 48, 96, and 144 hours after inoculation (HAI, respectively. The up-regulated genes were significantly enriched in functions for cellular import, C-compound and carbohydrate metabolism, allantoin and allantoate transport at 48 HAI, for detoxification and virulence at 96 HAI, and for metabolism of acetic acid derivatives, detoxification, and cellular import at 144 HAI. Comparative analyses of in planta versus in vitro gene expression further revealed 2,159, 1,981 and 2,095 genes up-regulated in the 3ADON isolates, and 2,415, 2,059 and 1,777 genes up-regulated in the 15ADON isolates at the three time points after inoculation. Collectively, our data provides a foundation for further understanding of molecular mechanisms involved

  2. Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function.

    Science.gov (United States)

    Fan, Jieru; Urban, Martin; Parker, Josie E; Brewer, Helen C; Kelly, Steven L; Hammond-Kosack, Kim E; Fraaije, Bart A; Liu, Xili; Cools, Hans J

    2013-05-01

    CYP51 encodes the cytochrome P450 sterol 14α-demethylase, an enzyme essential for sterol biosynthesis and the target of azole fungicides. In Fusarium species, including pathogens of humans and plants, three CYP51 paralogues have been identified with one unique to the genus. Currently, the functions of these three genes and the rationale for their conservation within the genus Fusarium are unknown. Three Fusarium graminearum CYP51s (FgCYP51s) were heterologously expressed in Saccharomyces cerevisiae. Single and double FgCYP51 deletion mutants were generated and the functions of the FgCYP51s were characterized in vitro and in planta. FgCYP51A and FgCYP51B can complement yeast CYP51 function, whereas FgCYP51C cannot. FgCYP51A deletion increases the sensitivity of F. graminearum to the tested azoles. In ΔFgCYP51B and ΔFgCYP51BC mutants, ascospore formation is blocked, and eburicol and two additional 14-methylated sterols accumulate. FgCYP51C deletion reduces virulence on host wheat ears. FgCYP51B encodes the enzyme primarily responsible for sterol 14α-demethylation, and plays an essential role in ascospore formation. FgCYP51A encodes an additional sterol 14α-demethylase, induced on ergosterol depletion and responsible for the intrinsic variation in azole sensitivity. FgCYP51C does not encode a sterol 14α-demethylase, but is required for full virulence on host wheat ears. This is the first example of the functional diversification of a fungal CYP51. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. Combined Metabonomic and Quantitative RT-PCR Analyses Revealed Metabolic Reprogramming Associated with Fusarium graminearum Resistance in Transgenic Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Fangfang Chen

    2018-01-01

    Full Text Available Fusarium head blight disease resulting from Fusarium graminearum (FG infection causes huge losses in global production of cereals and development of FG-resistant plants is urgently needed. To understand biochemistry mechanisms for FG resistance, here, we have systematically investigated the plant metabolomic phenotypes associated with FG resistance for transgenic Arabidopsis thaliana expressing a class-I chitinase (Chi, a Fusarium-specific recombinant antibody gene (CWP2 and fused Chi-CWP2. Plant disease indices, mycotoxin levels, metabonomic characteristics, and expression levels of several key genes were measured together with their correlations. We found that A. thaliana expressing Chi-CWP2 showed higher FG resistance with much lower disease indices and mycotoxin levels than the wild-type and the plants expressing Chi or CWP2 alone. The combined metabonomic and quantitative RT-PCR analyses revealed that such FG-resistance was closely associated with the promoted biosynthesis of secondary metabolites (phenylpropanoids, alkanoids and organic osmolytes (proline, betaine, glucose, myo-inositol together with enhanced TCA cycle and GABA shunt. These suggest that the concurrently enhanced biosyntheses of the shikimate-mediated secondary metabolites and organic osmolytes be an important strategy for A. thaliana to develop and improve FG resistance. These findings provide essential biochemical information related to FG resistance which is important for developing FG-resistant cereals.

  4. Antagonistic activity of Ocimum sanctum L. essential oil on growth and zearalenone production by Fusarium graminearum in maize grains

    Directory of Open Access Journals (Sweden)

    Naveen Kumar eKalagatur

    2015-09-01

    Full Text Available The present study was aimed to establish the antagonistic effects of Ocimum sanctum L. essential oil (OSEO on growth and zearalenone (ZEA production of Fusarium graminearum. GC-MS chemical profiling of OSEO revealed the existence of 43 compounds and the major compound was found to be eugenol (34.7%. DPPH free radical scavenging activity (IC50 of OSEO was determined to be 8.5µg/mL. Minimum inhibitory concentration (MIC and minimum fungicidal concentration (MFC of OSEO on F. graminearum were recorded as 1250 µg/mL and 1800 µg/mL, respectively. Scanning electron microscope observations showed significant micro morphological damage in OSEO exposed mycelia and spores compared to untreated control culture. Quantitative UHPLC studies revealed that OSEO negatively effected the production of ZEA; the concentration of toxin production was observed to be insignificant at 1500 µg/mL concentration of OSEO. On other hand ZEA concentration was quantified as 3.23 µg/mL in OSEO untreated control culture. Reverse transcriptase qPCR analysis of ZEA metabolic pathway genes (PKS4 and PKS13 revealed that increase in OSEO concentration (250 µg/mL to 1500 µg/mL significantly downregulated the expression of PKS4 and PKS13. These results were in agreement with the artificially contaminated maize grains as well. In conlusion, the antifungal and antimycotoxic effects of OSEO on F. graminearum in the present study reiterated that, the essential oil of O. sanctum could be a promising herbal fungicide in food processing industries as well as grain storage centers.

  5. 2-D DIGE proteomic profiles of three strains of Fusarium graminearum grown in agmatine or glutamic acid medium

    Directory of Open Access Journals (Sweden)

    Tommaso Serchi

    2016-03-01

    Full Text Available 2D DIGE proteomics data obtained from three strains belonging to Fusarium graminearum s.s. species growing in a glutamic acid or agmatine containing medium are provided.A total of 381 protein species have been identified which do differ for abundance among the two treatments and among the strains (ANOVA±1.3.Data on the diversity of protein species profiles between the two media for each strain are made available. Shared profiles among strains are discussed in Pasquali et al. [1].Here proteins that with diverse profile can be used to differentiate strains are highlighted. The full dataset allow to obtaining single strain proteomic profiles. Keywords: Comparative strain proteomics, Toxigenic fungi, Polyamines, Trichothecenes, Strain variability

  6. Overexpression of NRPS4 leads to increased surface hydrophobicity in fusarium graminearum

    DEFF Research Database (Denmark)

    Hansen, Frederik Teilfeldt; Droce, Aida; Sørensen, Jens Laurids

    2012-01-01

    ). Most of these are unknown as F. graminearum contains 19 NRPS encoding genes, but only three have been assigned products. For the first time, we use deletion and overexpression mutants to investigate the functions and product of NRPS4 in F. graminearum. Deletion of NRPS4 homologues in Alternaria...... brassicicola and Cochloibolus heterostrophus has been shown to result in mutants unable to repel water. In a time study of surface hydrophobicity we observed that water droplets could penetrate 7 d old colonies of the NRPS4 deletion mutants. Loss in ability to repel water was first observed on 13 d old...

  7. Two novel classes of enzymes are required for the biosynthesis of aurofusarin in Fusarium graminearum

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Schütt, Claes; Lund, Birgitte W.

    2011-01-01

    genes, aurZ and aurS. Targeted gene replacement of aurZ resulted in the discovery that the compound YWA1, rather than nor-rubrofusarin, is the primary product of F. graminearum polyketide synthase 12 (FgPKS12). AurZ is the first representative of a novel class of dehydratases that act on hydroxylated γ...

  8. Assessment and Reaction of Triticum aestivum Genotypes to Fusarium graminearum and effects on Traits Related to Grain Yield and Seed Quality

    OpenAIRE

    Chappell, Matthew Randolph

    2001-01-01

    Fusarium graminearum (Schwabe), causal organism of fusarium head blight (FHB), has become a major pathogen of wheat (Triticum aestivum L.) throughout North America. Since its discovery in the United States, the disease has spread south and east until at present it is an annual threat for growers of winter wheat in the Mid-Atlantic region. Yield losses for soft red winter (SRW) wheat averaged 908 kg ha-1 in the FHB outbreak of 1998 (Griffey et al., 1999). The economic loss from this single FHB...

  9. Sharing a Host Plant (Wheat [Triticum aestivum]) Increases the Fitness of Fusarium graminearum and the Severity of Fusarium Head Blight but Reduces the Fitness of Grain Aphids (Sitobion avenae)

    Science.gov (United States)

    Drakulic, Jassy; Caulfield, John; Woodcock, Christine; Jones, Stephen P. T.; Linforth, Robert; Bruce, Toby J. A.

    2015-01-01

    We hypothesized that interactions between fusarium head blight-causing pathogens and herbivores are likely to occur because they share wheat as a host plant. Our aim was to investigate the interactions between the grain aphid, Sitobion avenae, and Fusarium graminearum on wheat ears and the role that host volatile chemicals play in mediating interactions. Wheat ears were treated with aphids and F. graminearum inoculum, together or separately, and disease progress was monitored by visual assessment and by quantification of pathogen DNA and mycotoxins. Plants exposed to both aphids and F. graminearum inoculum showed accelerated disease progression, with a 2-fold increase in disease severity and 5-fold increase in mycotoxin accumulation over those of plants treated only with F. graminearum. Furthermore, the longer the period of aphid colonization of the host prior to inoculation with F. graminearum, the greater the amount of pathogen DNA that accumulated. Headspace samples of plant volatiles were collected for use in aphid olfactometer assays and were analyzed by gas chromatography-mass spectrometry (GC-MS) and GC-coupled electroantennography. Disease-induced plant volatiles were repellent to aphids, and 2-pentadecanone was the key semiochemical underpinning the repellent effect. We measured aphid survival and fecundity on infected wheat ears and found that both were markedly reduced on infected ears. Thus, interactions between F. graminearum and grain aphids on wheat ears benefit the pathogen at the expense of the pest. Our findings have important consequences for disease epidemiology, because we show increased spread and development of host disease, together with greater disease severity and greater accumulation of pathogen DNA and mycotoxin, when aphids are present. PMID:25769834

  10. Oxygen requirement for denitrification by the fungus Fusarium oxysporum.

    Science.gov (United States)

    Zhou, Z; Takaya, N; Sakairi, M A; Shoun, H

    2001-01-01

    The effects of dioxygen (O2) on the denitrification activity of the fungus Fusarium oxysporum MT-811 in fed-batch culture in a stirred jar fermentor were examined. The results revealed that fungal denitrifying activity requires a minimal amount of O2 for induction, which is repressed by excess O2. The optimal O2 supply differed between the denitrification substrates : 690 micromol O2 x h(-1) (g dry cell wt.)(-1) for nitrate (NO3-) and about 250 micromol O2 x h(-1) (g dry cell wt.)(-1) for nitrite (NO2-). The reduction of NO3- required more O2 than that of NO2- . With an optimal O2 supply, 80% and 52% of nitrogen atoms in NO3- and NO2-, respectively, were recovered as the denitrification product N2O. These features of F. oxysporum differ from those of bacterial denitrifiers that work exclusively under anoxic conditions. The denitrification activity of F. oxysporum MT-811 mutants with impaired NO3- assimilation was about double that of the wild-type strain, suggesting competition for the substrate between assimilatory and dissimilatory types of NO3- reduction. These results showed that denitrification by F. oxysporum has unique features, namely, a minimal O2 requirement and competition with assimilatory NO3-.

  11. GPCRs from fusarium graminearum detection, modeling and virtual screening - the search for new routes to control head blight disease.

    Science.gov (United States)

    Bresso, Emmanuel; Togawa, Roberto; Hammond-Kosack, Kim; Urban, Martin; Maigret, Bernard; Martins, Natalia Florencio

    2016-12-15

    Fusarium graminearum (FG) is one of the major cereal infecting pathogens causing high economic losses worldwide and resulting in adverse effects on human and animal health. Therefore, the development of new fungicides against FG is an important issue to reduce cereal infection and economic impact. In the strategy for developing new fungicides, a critical step is the identification of new targets against which innovative chemicals weapons can be designed. As several G-protein coupled receptors (GPCRs) are implicated in signaling pathways critical for the fungi development and survival, such proteins could be valuable efficient targets to reduce Fusarium growth and therefore to prevent food contamination. In this study, GPCRs were predicted in the FG proteome using a manually curated pipeline dedicated to the identification of GPCRs. Based on several successive filters, the most appropriate GPCR candidate target for developing new fungicides was selected. Searching for new compounds blocking this particular target requires the knowledge of its 3D-structure. As no experimental X-Ray structure of the selected protein was available, a 3D model was built by homology modeling. The model quality and stability was checked by 100 ns of molecular dynamics simulations. Two stable conformations representative of the conformational families of the protein were extracted from the 100 ns simulation and were used for an ensemble docking campaign. The model quality and stability was checked by 100 ns of molecular dynamics simulations previously to the virtual screening step. The virtual screening step comprised the exploration of a chemical library with 11,000 compounds that were docked to the GPCR model. Among these compounds, we selected the ten top-ranked nontoxic molecules proposed to be experimentally tested to validate the in silico simulation. This study provides an integrated process merging genomics, structural bioinformatics and drug design for proposing innovative

  12. Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes.

    Science.gov (United States)

    Chetouhi, Cherif; Bonhomme, Ludovic; Lasserre-Zuber, Pauline; Cambon, Florence; Pelletier, Sandra; Renou, Jean-Pierre; Langin, Thierry

    2016-03-01

    In many plant/pathogen interactions, host susceptibility factors are key determinants of disease development promoting pathogen growth and spreading in plant tissues. In the Fusarium head blight (FHB) disease, the molecular basis of wheat susceptibility is still poorly understood while it could provide new insights into the understanding of the wheat/Fusarium graminearum (Fg) interaction and guide future breeding programs to produce cultivars with sustainable resistance. To identify the wheat grain candidate genes, a genome-wide gene expression profiling was performed in the French susceptible wheat cultivar, Recital. Gene-specific two-way ANOVA of about 40 K transcripts at five grain developmental stages identified 1309 differentially expressed genes. Out of these, 536 were impacted by the Fg effect alone. Most of these Fg-responsive genes belonged to biological and molecular functions related to biotic and abiotic stresses indicating the activation of common stress pathways during susceptibility response of wheat grain to FHB. This analysis revealed also 773 other genes displaying either specific Fg-responsive profiles along with grain development stages or synergistic adjustments with the grain development effect. These genes were involved in various molecular pathways including primary metabolism, cell death, and gene expression reprogramming. An increasingly complex host response was revealed, as was the impact of both Fg infection and grain ontogeny on the transcription of wheat genes. This analysis provides a wealth of candidate genes and pathways involved in susceptibility responses to FHB and depicts new clues to the understanding of the susceptibility determinism in plant/pathogen interactions.

  13. Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum).

    Science.gov (United States)

    Zalila-Kolsi, Imen; Ben Mahmoud, Afif; Ali, Hacina; Sellami, Sameh; Nasfi, Zina; Tounsi, Slim; Jamoussi, Kaïs

    2016-11-01

    Bacillus species are attractive due to their potential use in the biological control of fungal diseases. Bacillus amyloliquefaciens strain BLB369, Bacillus subtilis strain BLB277, and Paenibacillus polymyxa strain BLB267 were isolated and identified using biochemical and molecular (16S rDNA, gyrA, and rpoB) approaches. They could produce, respectively, (iturin and surfactin), (surfactin and fengycin), and (fusaricidin and polymyxin) exhibiting broad spectrum against several phytopathogenic fungi. In vivo examination of wheat seed germination, plant height, phenolic compounds, chlorophyll, and carotenoid contents proved the efficiency of the bacterial cells and the secreted antagonist activities to protect Tunisian durum wheat (Triticum turgidum L. subsp. durum) cultivar Om Rabiia against F. graminearum fungus. Application of single bacterial culture medium, particularly that of B. amyloliquefaciens, showed better protection than combinations of various culture media. The tertiary combination of B. amyloliquefaciens, B. subtilis, and P. polymyxa bacterial cells led to the highest protection rate which could be due to strains synergistic or complementary effects. Hence, combination of compatible biocontrol agents could be a strategic approach to control plant diseases. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. FgLPMO9A from Fusarium graminearum cleaves xyloglucan independently of the backbone substitution pattern

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Petrović, Dejan M.; Westereng, Bjørge

    2016-01-01

    Lytic polysaccharide monooxygenases (LPMOs) are important for the enzymatic conversion of biomass and seem to play a key role in degradation of the plant cell wall. In this study, we characterize an LPMO from the fungal plant pathogen Fusarium graminearum (FgLPMO9A) that catalyzes the mixed C1/C4...... that when incubated with a mixture of xyloglucan and cellulose, FgLPMO9A efficiently attacks the xyloglucan, whereas cellulose conversion is inhibited. This suggests that removal of hemicellulose may be the true function of this LPMO during biomass conversion....

  15. Efeito de Fusarium graminearum e índice de infecção na germinação e vigor de sementes de milho

    OpenAIRE

    Galli, Juliana A; Fessel, Simone A; Panizzi, Rita C

    2005-01-01

    Patógenos em sementes de milho (Zea mays) causam sérios problemas, como a perda de sua capacidade germinativa. O objetivo do trabalho foi determinar qual o melhor tempo para infecção das sementes de milho com Fusarium graminearum, para posterior avaliação dos danos causados pelo fungo na germinação e vigor das mesmas. As sementes foram colocadas sobre meio de BDA contendo o patógeno e incubadas por 4, 8, 16 e 32 h. Após os respectivos períodos de incubação, estas foram submetidas ao teste de ...

  16. Agresividad, producción de micotoxinas y diversidad en las poblaciones de Fusarium graminearum de la región triguera argentina

    OpenAIRE

    Malbrán, Ismael

    2013-01-01

    La fusariosis de la espiga de trigo (FET)o golpe blanco, ocasionada por Fusarium graminearum Schwabe, es una enfermedad que afecta al cultivo de trigo (Triticum aestivum L. en todo el mundo, incluyendo la Argentina. La enfermedad ocasiona disminuciones del rendimiento, perjuicios sobre la calidad del trigo y la contaminación del grano con micotoxinas, que constituyen un riesgo para la salud y comprometen su utilización en la alimentación. Estos metabolitos, principalmente el deoxinivalenol (D...

  17. Fusarium graminearum PKS14 is involved in orsellinic acid and orcinol synthesis

    DEFF Research Database (Denmark)

    Jørgensen, Simon Hartung; Frandsen, Rasmus John Normand; Nielsen, Kristian Fog

    2014-01-01

    and cultivated two of the resulting mutants on RM medium. This led to the production of two compounds, which were only detected in the PKS14 overexpressing mutants and not in the wild type or PKS14 deletion mutants. The two compounds were tentatively identified as orsellinic acid and orcinol by comparing...... spectroscopic data (mass spectroscopy and chromatography) to authentic standards. NMR analysis of putative orcinol isolated from the PKS14 overexpressing mutant supported our identification. Orcinol and orsellinic acid, not previously detected in Fusarium, have primarily been detected in lichen fungi...

  18. BIOTRANSFORMATION OF 2,4,6-TRINITROTOLUENE (TNT) BY A PLANT-ASSOCIATED FUNGUS FUSARIUM OXYSPORUM

    Science.gov (United States)

    The capability of a plant-associated fungus, Fusarium oxyvorum, to transform TNT in liquid cultures was investigated. TNT was transformed into 2-amino-4, 6-dinitrotoluene (2-A-DNT), 4-amino-2, 6-dinitrotoluene (4-A- DNT), and 2, 4-diamino-6-nitrotoluene (2, 4-DAT) via 2- and 4-hy...

  19. Transcription factor ART1 mediates starch hydrolysis and mycotoxin production in Fusarium graminearum and F. verticillioides.

    Science.gov (United States)

    Oh, Mira; Son, Hokyoung; Choi, Gyung Ja; Lee, Chanhui; Kim, Jin-Cheol; Kim, Hun; Lee, Yin-Won

    2016-06-01

    Molecular mechanisms underlying the responses to environmental factors, such as nitrogen, carbon and pH, involve components that regulate the production of secondary metabolites, including mycotoxins. In this study, we identified and characterized a gene in the FGSG_02083 locus, designated as FgArt1, which was predicted to encode a Zn(II)2 Cys6 zinc finger transcription factor. An FgArt1 deletion mutant of Fusarium graminearum exhibited impaired starch hydrolysis as a result of significantly reduced α-amylase gene expression. The deletion strain was unable to produce trichothecenes and exhibited low Tri5 and Tri6 expression levels, whereas the complemented strain showed a similar ability to produce trichothecenes as the wild-type strain. In addition, FgArt1 deletion resulted in impairment of germination in starch liquid medium and reduced pathogenicity on flowering wheat heads. To investigate the roles of the FgArt1 homologue in F. verticillioides, we deleted the FVEG_02083 gene, and the resulting strain showed defects in starch hydrolysis, similar to the FgArt1 deletion strain, and produced no detectable level of fumonisin B1 . Fum1 and Fum12 expression levels were undetectable in the deletion strain. However, when the FvArt1-deleted F. verticillioides strain was complemented with FgArt1, the resulting strain was unable to recover the production of fumonisin B1 , although FgArt1 expression and starch hydrolysis were induced. Thus, our results suggest that there are different regulatory pathways governed by each ART1 transcription factor in trichothecene and fumonisin biosynthesis. Taken together, we suggest that ART1 plays an important role in both trichothecene and fumonisin biosynthesis by the regulation of genes involved in starch hydrolysis. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  20. Fusarium graminearum and Its Interactions with Cereal Heads: Studies in the Proteomics Era

    DEFF Research Database (Denmark)

    Yang, Fen; Jacobsen, Susanne; Jørgensen, Hans J L

    2013-01-01

    of humans and animals. In recent years, high-throughput proteomics, aiming at identifying a broad spectrum of proteins with a potential role in the pathogenicity and host resistance, has become a very useful tool in plant-fungus interaction research. In this review, we describe the progress in proteomics...... applications toward a better understanding of pathogenesis, virulence, and host defense mechanisms. The contribution of proteomics to the development of crop protection strategies against this pathogen is also discussed briefly....

  1. In-Vitro Inhibition of Pythium ultimum, Fusarium graminearum, and Rhizoctonia solani by a Stabilized Lactoperoxidase System alone and in Combination with Synthetic Fungicides

    Directory of Open Access Journals (Sweden)

    Zachariah R. Hansen

    2017-11-01

    Full Text Available Advances in enzyme stabilization and immobilization make the use of enzymes for industrial applications increasingly feasible. The lactoperoxidase (LPO system is a naturally occurring enzyme system with known antimicrobial activity. Stabilized LPO and glucose oxidase (GOx enzymes were combined with glucose, potassium iodide, and ammonium thiocyanate to create an anti-fungal formulation, which inhibited in-vitro growth of the plant pathogenic oomycete Pythium ultimum, and the plant pathogenic fungi Fusarium graminearum and Rhizoctonia solani. Pythium ultimum was more sensitive than F. graminearum and R. solani, and was killed at LPO and GOx concentrations of 20 nM and 26 nM, respectively. Rhizoctonia solani and F. graminearum were 70% to 80% inhibited by LPO and GOx concentrations of 242 nM and 315 nM, respectively. The enzyme system was tested for compatibility with five commercial fungicides as co-treatments. The majority of enzyme + fungicide co-treatments resulted in additive activity. Synergism ranging from 7% to 36% above the expected additive activity was observed when P. ultimum was exposed to the enzyme system combined with Daconil® (active ingredient (AI: chlorothalonil 29.6%, GardenTech, Lexington, KY, USA, tea tree oil, and mancozeb at select fungicide concentrations. Antagonism was observed when the enzyme system was combined with Tilt® (AI: propiconazole 41.8%, Syngenta, Basel, Switzerland at one fungicide concentration, resulting in activity 24% below the expected additive activity at that concentration.

  2. A European Database of Fusarium graminearum and F-culmorum Trichothecene Genotypes

    DEFF Research Database (Denmark)

    Pasquali, Matias; Beyer, Marco; Logrieco, Antonio

    2016-01-01

    variables (sampling method, host cultivar, previous crop, etc.) that would allow more effective analysis of factors influencing the spatial and temporal population distribution, is lacking. Consequently, based on the available data, it is difficult to identify factors influencing chemotype distribution...... information on the strains was collected in a freely accessible and updatable database (www.catalogueeu.luxmcc.lu), which will serve as a starting point for epidemiological analysis of potential spatial and temporal trichothecene genotype shifts in Europe. The analysis of the currently available European...... and spread at the European level. Here we describe the results of a collaborative integrated work which aims (1) to characterize the trichothecene genotypes of strains from three Fusarium species, collected over the period 2000-2013 and (2) to enhance the standardization of epidemiological data collection...

  3. Genome-wide characterization of pectin methyl esterase genes reveals members differentially expressed in tolerant and susceptible wheats in response to Fusarium graminearum.

    Science.gov (United States)

    Zega, Alessandra; D'Ovidio, Renato

    2016-11-01

    Pectin methyl esterase (PME) genes code for enzymes that are involved in structural modifications of the plant cell wall during plant growth and development. They are also involved in plant-pathogen interaction. PME genes belong to a multigene family and in this study we report the first comprehensive analysis of the PME gene family in bread wheat (Triticum aestivum L.). Like in other species, the members of the TaPME family are dispersed throughout the genome and their encoded products retain the typical structural features of PMEs. qRT-PCR analysis showed variation in the expression pattern of TaPME genes in different tissues and revealed that these genes are mainly expressed in flowering spikes. In our attempt to identify putative TaPME genes involved in wheat defense, we revealed a strong variation in the expression of the TaPME following Fusarium graminearum infection, the causal agent of Fusarium head blight (FHB). Particularly interesting was the finding that the expression profile of some PME genes was markedly different between the FHB-resistant wheat cultivar Sumai3 and the FHB-susceptible cultivar Bobwhite, suggesting a possible involvement of these PME genes in FHB resistance. Moreover, the expression analysis of the TaPME genes during F. graminearum progression within the spike revealed those genes that responded more promptly to pathogen invasion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. The secreted antifungal protein thionin 2.4 in Arabidopsis thaliana suppresses the toxicity of a fungal fruit body lectin from Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Tomoya Asano

    Full Text Available Plants possess active defense systems and can protect themselves from pathogenic invasion by secretion of a variety of small antimicrobial or antifungal proteins such as thionins. The antibacterial and antifungal properties of thionins are derived from their ability to induce open pore formation on cell membranes of phytopathogens, resulting in release of potassium and calcium ions from the cell. Wheat thionin also accumulates in the cell walls of Fusarium-inoculated plants, suggesting that it may have a role in blocking pathogen infection at the plant cell walls. Here we developed an anti-thionin 2.4 (Thi2.4 antibody and used it to show that Thi2.4 is localized in the cell walls of Arabidopsis and cell membranes of F. graminearum, when flowers are inoculated with F. graminearum. The Thi2.4 protein had an antifungal effect on F. graminearum. Next, we purified the Thi2.4 protein, conjugated it with glutathione-S-transferase (GST and coupled the proteins to an NHS-activated column. Total protein from F. graminearum was applied to GST-Thi2.4 or Thi2.4-binding columns, and the fungal fruit body lectin (FFBL of F. graminearum was identified as a Thi2.4-interacting protein. This interaction was confirmed by a yeast two-hybrid analysis. To investigate the biological function of FFBL, we infiltrated the lectin into Arabidopsis leaves and observed that it induced cell death in the leaves. Application of FFBL at the same time as inoculation with F. graminearum significantly enhanced the virulence of the pathogen. By contrast, FFBL-induced host cell death was effectively suppressed in transgenic plants that overexpressed Thi2.4. We found that a 15 kD Thi2.4 protein was specifically expressed in flowers and flower buds and suggest that it acts not only as an antifungal peptide, but also as a suppressor of the FFBL toxicity. Secreted thionin proteins are involved in this dual defense mechanism against pathogen invasion at the plant-pathogen interface.

  5. Evidence of an Unidentified Extracellular Heat-Stable Factor Produced by Lysobacter enzymogenes (OH11) that Degrade Fusarium graminearum PH1 Hyphae.

    Science.gov (United States)

    Odhiambo, Benard Omondi; Xu, Gaoge; Qian, Guoliang; Liu, Fengquan

    2017-04-01

    Lysobacter enzymogenes OH11 produces heat-stable antifungal factor (HSAF) and lytic enzymes possessing antifungal activity. This study bio-prospected for other potential antifungal factors besides those above. The cells and extracellular metabolites of L. enzymogenes OH11 and the mutants ΔchiA, ΔchiB, ΔchiC, Δclp, Δpks, and ΔpilA were examined for antifungal activity against Fusarium graminearum PH1, the causal agent of Fusarium head blight (FHB). Results evidenced that OH11 produces an unidentified extracellular heat-stable degrading metabolite (HSDM) that exhibit degrading activity on F. graminearum PH1 chitinous hyphae. Interestingly, both heat-treated and non-heat-treated extracellular metabolites of OH11 mutants exhibited hyphae-degrading activity against F. graminearum PH1. Enzyme activity detection of heat-treated metabolites ruled out the possibility of enzyme degradation activity. Remarkably, the PKS-NRPS-deficient mutant Δpks cannot produce HSAF or analogues, yet its metabolites exhibited hyphae-degrading activity. HPLC analysis confirmed no HSAF production by Δpks. Δclp lacks hyphae-degrading ability. Therefore, clp regulates HSDM and extracellular lytic enzymes production in L. enzymogenes OH11. ΔpilA had impaired surface cell motility and significantly reduced antagonistic properties. ΔchiA, ΔchiB, and ΔchiC retained hyphae-degrading ability, despite having reduced abilities to produce chitinase enzymes. Ultimately, L. enzymogenes OH11 can produce other unidentified HSDM independent of the PKS-NRPS genes. This suggests HSAF and lytic enzymes production are a fraction of the antifungal mechanisms in OH11. Characterization of HSDM, determination of its biosynthetic gene cluster and understanding its mode of action will provide new leads in the search for effective drugs for FHB management.

  6. Bioproduction of 3-acetyldeoxynivalenol and its metabolic regulation in the submerged cultures of Fusarium graminearum R 2118

    International Nuclear Information System (INIS)

    Vasavada, A.B.

    1988-01-01

    3-Acetyldeoxynivalenol (3-ADN) is a highly toxic secondary metabolite elaborated by several species of the filamentous fungus, Fusarium. The present research was aimed at investigating the cultural conditions governing the production of 3-ADN, and to elucidate the mechanism and metabolic regulation of the toxin production in submerged cultures. A two-stage submerged culture was developed in which the biosynthetically active mycelium from YEPD medium was transferred to the production medium to achieve as much as 90-105 mg/l 3-ADN. Phosphate inhibition was found to be a regulatory factor in 3-ADN biosynthesis. While Mg +2 and Zn +2 at 1 mM increased 3-ADN yields by 60% and 76% respectively, and Fe +2 at 5 mM doubled 3-ADN yields, Mn +2 completely inhibited 3-ADN biosynthesis at all concentrations used suggesting its regulatory role in the toxin production. Modulation of 3-ADN biosynthesis by using various metabolic inhibitors and stimulators of the TCA cycle, fatty acid biosynthesis, and ergosterol biosynthesis yielded increased levels of 3-ADN possibly by channelling more acetyl Co-A into the toxin production pathway. This was further evidenced by 14 C-acetate pulse-feeding studies where highly labelled 3-ADN was obtained by using known metabolic inhibitors of the competing pathways thereby specifically channelling the label into 3-ADN synthesis

  7. Genome Sequence of an Endophytic Fungus, Fusarium solani JS-169, Which Has Antifungal Activity.

    Science.gov (United States)

    Kim, Jung A; Jeon, Jongbum; Park, Sook-Young; Kim, Ki-Tae; Choi, Gobong; Lee, Hyun-Jung; Kim, Yangsun; Yang, Hee-Sun; Yeo, Joo-Hong; Lee, Yong-Hwan; Kim, Soonok

    2017-10-19

    An endophytic fungus, Fusarium solani strain JS-169, isolated from a mulberry twig, showed considerable antifungal activity. Here, we report the draft genome sequence of this strain. The assembly comprises 17 scaffolds, with an N 50 value of 4.93 Mb. The assembled genome was 45,813,297 bp in length, with a G+C content of 49.91%. Copyright © 2017 Kim et al.

  8. UV-B-irradiation effect on growth reactions of phytopathogenic fungus fusarium solani

    International Nuclear Information System (INIS)

    Gushcha, M.Yi.; Dyachenko, A.Yi.; Dmitryijev, O.P.

    2002-01-01

    The UV-B irradiation effect on spore germination and hyphae growth of phythopathogenic fungus Fusarium solani was studied. Spores irradiation by small doses of 0,1 - 1,0 kJ/m 2 results in growth stimulation of primary hyphae. Adaptive effect of UV-B small doses for fungi was shown. Preliminary irradiation in doses of 0,1 - 0,5 kJ/m 2 increased spore radioresistance and diminished the effect of the next damaging dose

  9. Paenibacillus polymyxa A26 sfp-type phosphopantetheinyl transferase inactivation limits bacterial antagonism against Fusarium graminearum but not of F. culmorum

    Directory of Open Access Journals (Sweden)

    Islam A eAbd El Daim

    2015-05-01

    Full Text Available Fusarium graminearum and F. culmorum are the causing agents of a destructive disease known as Fusarium head blight (FHB. FHB is a re-emerging disease in small grain cereals which impairs both the grain yield and the quality. Most serious consequence is the contamination of grain with Fusarium mycotoxins that are severe threat to humans and animals. Biological control has been suggested as one of the integrated management strategies to control FHB. Paenibacillus polymyxa is considered as a promising biocontrol agent due to its unique antibiotic spectrum. In order to optimize strain A26 production, formulation and application strategies traits important for its compatibility need to be revealed. Here we developed a toolbox comprising of dual culture plate assays and wheat kernel assays including simultaneous monitoring of FHB causing pathogens A26 and mycotoxins produced. Using this system we show that, besides generally known lipopeptide antibiotic production by P. polymyxa, biofilm formation ability may play a crucial role in the case of stain A26 F. culmorum antagonism.

  10. Consistent association of fungus Fusarium mangiferae Britz with ...

    African Journals Online (AJOL)

    In exotic ones, maximum and minimum infections of 97.33 and 70.67% were noted in the cultivars Sensation and Pop, respectively. Light and transmission electron microscopy proved helpful in investigating the morphological matrix and ultrastructure of the propagules of fungus F. mangiferae. Key words: Mangifera indica, ...

  11. Consistent association of fungus Fusarium mangiferae Britz with ...

    African Journals Online (AJOL)

    Administrator

    2011-06-15

    Jun 15, 2011 ... F. mangiferae proved to be the dominant fungus hosting majority of the malformed tissues. Among the indigenous ... tion amongst fruit crops due to its specific nature, growth pattern and ... It is affected by various animate and ...

  12. Fusarium graminearum in Stored Wheat: Use of CO2 Production to Quantify Dry Matter Losses and Relate This to Relative Risks of Zearalenone Contamination under Interacting Environmental Conditions

    Science.gov (United States)

    Kiaitsi, Elsa; Magan, Naresh

    2018-01-01

    Zearalenone (ZEN) contamination from Fusarium graminearum colonization is particularly important in food and feed wheat, especially during post-harvest storage with legislative limits for both food and feed grain. Indicators of the relative risk from exceeding these limits would be useful. We examined the effect of different water activities (aw; 0.95–0.90) and temperature (10–25 °C) in naturally contaminated and irradiated wheat grain, both inoculated with F. graminearum and stored for 15 days on (a) respiration rate; (b) dry matter losses (DML); (c) ZEN production and (d) relationship between DML and ZEN contamination relative to the EU legislative limits. Gas Chromatography was used to measure the temporal respiration rates and the total accumulated CO2 production. There was an increase in temporal CO2 production rates in wetter and warmer conditions in all treatments, with the highest respiration in the 25 °C × 0.95 aw treatments + F. graminearum inoculation. This was reflected in the total accumulated CO2 in the treatments. The maximum DMLs were in the 0.95 aw/20–25 °C treatments and at 10 °C/0.95 aw. The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Contamination with ZEN/ZEN-related compounds were quantified. Maximum production was at 25 °C/0.95–0.93 aw and 20 °C/0.95 aw. ZEN contamination levels plotted against DMLs for all the treatments showed that at ca. 1.0% DML, the risk was high. This type of data is important in building a database for the development of a post-harvest decision support system for relative risks of different mycotoxins. PMID:29462982

  13. Fusarium graminearum in Stored Wheat: Use of CO₂ Production to Quantify Dry Matter Losses and Relate This to Relative Risks of Zearalenone Contamination under Interacting Environmental Conditions.

    Science.gov (United States)

    Garcia-Cela, Esther; Kiaitsi, Elsa; Sulyok, Michael; Medina, Angel; Magan, Naresh

    2018-02-17

    Zearalenone (ZEN) contamination from Fusarium graminearum colonization is particularly important in food and feed wheat, especially during post-harvest storage with legislative limits for both food and feed grain. Indicators of the relative risk from exceeding these limits would be useful. We examined the effect of different water activities (a w ; 0.95-0.90) and temperature (10-25 °C) in naturally contaminated and irradiated wheat grain, both inoculated with F. graminearum and stored for 15 days on (a) respiration rate; (b) dry matter losses (DML); (c) ZEN production and (d) relationship between DML and ZEN contamination relative to the EU legislative limits. Gas Chromatography was used to measure the temporal respiration rates and the total accumulated CO₂ production. There was an increase in temporal CO₂ production rates in wetter and warmer conditions in all treatments, with the highest respiration in the 25 °C × 0.95 a w treatments + F. graminearum inoculation. This was reflected in the total accumulated CO₂ in the treatments. The maximum DMLs were in the 0.95 a w /20-25 °C treatments and at 10 °C/0.95 a w . The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Contamination with ZEN/ZEN-related compounds were quantified. Maximum production was at 25 °C/0.95-0.93 a w and 20 °C/0.95 a w . ZEN contamination levels plotted against DMLs for all the treatments showed that at ca 1.0% DML, the risk was high. This type of data is important in building a database for the development of a post-harvest decision support system for relative risks of different mycotoxins.

  14. Fusarium graminearum in Stored Wheat: Use of CO2 Production to Quantify Dry Matter Losses and Relate This to Relative Risks of Zearalenone Contamination under Interacting Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Esther Garcia-Cela

    2018-02-01

    Full Text Available Zearalenone (ZEN contamination from Fusarium graminearum colonization is particularly important in food and feed wheat, especially during post-harvest storage with legislative limits for both food and feed grain. Indicators of the relative risk from exceeding these limits would be useful. We examined the effect of different water activities (aw; 0.95–0.90 and temperature (10–25 °C in naturally contaminated and irradiated wheat grain, both inoculated with F. graminearum and stored for 15 days on (a respiration rate; (b dry matter losses (DML; (c ZEN production and (d relationship between DML and ZEN contamination relative to the EU legislative limits. Gas Chromatography was used to measure the temporal respiration rates and the total accumulated CO2 production. There was an increase in temporal CO2 production rates in wetter and warmer conditions in all treatments, with the highest respiration in the 25 °C × 0.95 aw treatments + F. graminearum inoculation. This was reflected in the total accumulated CO2 in the treatments. The maximum DMLs were in the 0.95 aw/20–25 °C treatments and at 10 °C/0.95 aw. The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Contamination with ZEN/ZEN-related compounds were quantified. Maximum production was at 25 °C/0.95–0.93 aw and 20 °C/0.95 aw. ZEN contamination levels plotted against DMLs for all the treatments showed that at ca. <1.0% DML, there was a low risk of ZEN contamination exceeding EU legislative limits, while at >1.0% DML, the risk was high. This type of data is important in building a database for the development of a post-harvest decision support system for relative risks of different mycotoxins.

  15. Involvement of a velvet protein FgVeA in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Jinhua Jiang

    Full Text Available The velvet protein, VeA, is involved in the regulation of diverse cellular processes. In this study, we explored functions of FgVeA in the wheat head blight pathogen, Fusarium graminearum,using a gene replacement strategy. The FgVEA deletion mutant exhibited a reduction in aerial hyphae formation, hydrophobicity, and deoxynivalenol (DON biosynthesis. Deletion of FgVEA gene led to an increase in conidial production, but a delay in conidial germination. Pathogencity assays showed that the mutant was impaired in virulence on flowering wheat head. Sensitivity tests to various stresses exhibited that the FgVEA deletion mutant showed increased resistance to osmotic stress and cell wall-damaging agents, but increased sensitivity to iprodione and fludioxonil fungicides. Ultrastructural and histochemical analyses revealed that conidia of FgVeA deletion mutant contained an unusually high number of large lipid droplets, which is in agreement with the observation that the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Serial analysis of gene expression (SAGE in the FgVEA mutant confirmed that FgVeA was involved in various cellular processes. Additionally, six proteins interacting with FgVeA were identified by yeast two hybrid assays in current study. These results indicate that FgVeA plays a critical role in a variety of cellular processes in F. graminearum.

  16. The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production.

    Science.gov (United States)

    Giese, Henriette; Sondergaard, Teis Esben; Sørensen, Jens Laurids

    2013-01-01

    Growth conditions are known to affect the production of secondary metabolites in filamentous fungi. The influence of different nitrogen sources and the transcription factor AreA on the production of mycotoxins in Fusarium graminearum was examined. Growth on glutamine or NH4-sources was poor and asparagine was found to be a preferential nitrogen source for F. graminearum. Deletion of areA led to poor growth on NaNO₃ suggesting its involvement in regulation of the nitrate reduction process. In addition utilization of aspartic acid, histidine, isoleucine, leucine, threonine, tyrosine, and valine as nitrogen sources was shown to depend of a functional AreA. AreA was shown to be required for the production of the mycotoxins deoxynivalenol (DON), zearalenone, and fusarielin H regardless of the nutrient medium. Deletion of nmr, the repressor of AreA under nitrogen sufficient conditions, had little effect on either growth or toxin production. AreA appears to regulate production of some mycotoxins directly or indirectly independent on nitrogen status and plays a role in utilization of certain amino acids. Copyright © 2013 The British Mycological Society. All rights reserved.

  17. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia.

    Directory of Open Access Journals (Sweden)

    Diane Mostert

    Full Text Available Fusarium oxysporum formae specialis cubense (Foc is a soil-borne fungus that causes Fusarium wilt, which is considered to be the most destructive disease of bananas. The fungus is believed to have evolved with its host in the Indo-Malayan region, and from there it was spread to other banana-growing areas with infected planting material. The diversity and distribution of Foc in Asia was investigated. A total of 594 F. oxysporum isolates collected in ten Asian countries were identified by vegetative compatibility groups (VCGs analysis. To simplify the identification process, the isolates were first divided into DNA lineages using PCR-RFLP analysis. Six lineages and 14 VCGs, representing three Foc races, were identified in this study. The VCG complex 0124/5 was most common in the Indian subcontinent, Vietnam and Cambodia; whereas the VCG complex 01213/16 dominated in the rest of Asia. Sixty-nine F. oxysporum isolates in this study did not match any of the known VCG tester strains. In this study, Foc VCG diversity in Bangladesh, Cambodia and Sri Lanka was determined for the first time and VCGs 01221 and 01222 were first reported from Cambodia and Vietnam. New associations of Foc VCGs and banana cultivars were recorded in all the countries where the fungus was collected. Information obtained in this study could help Asian countries to develop and implement regulatory measures to prevent the incursion of Foc into areas where it does not yet occur. It could also facilitate the deployment of disease resistant banana varieties in infested areas.

  18. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia.

    Science.gov (United States)

    Mostert, Diane; Molina, Agustin B; Daniells, Jeff; Fourie, Gerda; Hermanto, Catur; Chao, Chih-Ping; Fabregar, Emily; Sinohin, Vida G; Masdek, Nik; Thangavelu, Raman; Li, Chunyu; Yi, Ganyun; Mostert, Lizel; Viljoen, Altus

    2017-01-01

    Fusarium oxysporum formae specialis cubense (Foc) is a soil-borne fungus that causes Fusarium wilt, which is considered to be the most destructive disease of bananas. The fungus is believed to have evolved with its host in the Indo-Malayan region, and from there it was spread to other banana-growing areas with infected planting material. The diversity and distribution of Foc in Asia was investigated. A total of 594 F. oxysporum isolates collected in ten Asian countries were identified by vegetative compatibility groups (VCGs) analysis. To simplify the identification process, the isolates were first divided into DNA lineages using PCR-RFLP analysis. Six lineages and 14 VCGs, representing three Foc races, were identified in this study. The VCG complex 0124/5 was most common in the Indian subcontinent, Vietnam and Cambodia; whereas the VCG complex 01213/16 dominated in the rest of Asia. Sixty-nine F. oxysporum isolates in this study did not match any of the known VCG tester strains. In this study, Foc VCG diversity in Bangladesh, Cambodia and Sri Lanka was determined for the first time and VCGs 01221 and 01222 were first reported from Cambodia and Vietnam. New associations of Foc VCGs and banana cultivars were recorded in all the countries where the fungus was collected. Information obtained in this study could help Asian countries to develop and implement regulatory measures to prevent the incursion of Foc into areas where it does not yet occur. It could also facilitate the deployment of disease resistant banana varieties in infested areas.

  19. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia

    Science.gov (United States)

    Molina, Agustin B.; Daniells, Jeff; Fourie, Gerda; Hermanto, Catur; Chao, Chih-Ping; Fabregar, Emily; Sinohin, Vida G.; Masdek, Nik; Thangavelu, Raman; Li, Chunyu; Yi, Ganyun; Mostert, Lizel; Viljoen, Altus

    2017-01-01

    Fusarium oxysporum formae specialis cubense (Foc) is a soil-borne fungus that causes Fusarium wilt, which is considered to be the most destructive disease of bananas. The fungus is believed to have evolved with its host in the Indo-Malayan region, and from there it was spread to other banana-growing areas with infected planting material. The diversity and distribution of Foc in Asia was investigated. A total of 594 F. oxysporum isolates collected in ten Asian countries were identified by vegetative compatibility groups (VCGs) analysis. To simplify the identification process, the isolates were first divided into DNA lineages using PCR-RFLP analysis. Six lineages and 14 VCGs, representing three Foc races, were identified in this study. The VCG complex 0124/5 was most common in the Indian subcontinent, Vietnam and Cambodia; whereas the VCG complex 01213/16 dominated in the rest of Asia. Sixty-nine F. oxysporum isolates in this study did not match any of the known VCG tester strains. In this study, Foc VCG diversity in Bangladesh, Cambodia and Sri Lanka was determined for the first time and VCGs 01221 and 01222 were first reported from Cambodia and Vietnam. New associations of Foc VCGs and banana cultivars were recorded in all the countries where the fungus was collected. Information obtained in this study could help Asian countries to develop and implement regulatory measures to prevent the incursion of Foc into areas where it does not yet occur. It could also facilitate the deployment of disease resistant banana varieties in infested areas. PMID:28719631

  20. Effect of antagonistic fungi against Fusarium graminearum and F. culmorum on stubble of different cereals and at different temperatures

    NARCIS (Netherlands)

    El-Naggar, M.; Haas, de B.H.; Köhl, J.

    2003-01-01

    Bioassays were carried out with antagonists to suppress sporulation by F. culmorum and F. graminearum on cereal debris. A differential effect was found for temperatures on the effect of antagonistic fungal isolates. Isolates 10 and 11 were more effective at low temperature of 5 °C, while isolate 2

  1. The xylanase inhibitor TAXI-III counteracts the necrotic activity of a Fusarium graminearum xylanase in vitro and in durum wheat transgenic plants.

    Science.gov (United States)

    Moscetti, Ilaria; Faoro, Franco; Moro, Stefano; Sabbadin, Davide; Sella, Luca; Favaron, Francesco; D'Ovidio, Renato

    2015-08-01

    The xylanase inhibitor TAXI-III has been proven to delay Fusarium head blight (FHB) symptoms caused by Fusarium graminearum in transgenic durum wheat plants. To elucidate the molecular mechanism underlying the capacity of the TAXI-III transgenic plants to limit FHB symptoms, we treated wheat tissues with the xylanase FGSG_03624, hitherto shown to induce cell death and hydrogen peroxide accumulation. Experiments performed on lemmas of flowering wheat spikes and wheat cell suspension cultures demonstrated that pre-incubation of xylanase FGSG_03624 with TAXI-III significantly decreased cell death. Most interestingly, a reduced cell death relative to control non-transgenic plants was also obtained by treating, with the same xylanase, lemmas of TAXI-III transgenic plants. Molecular modelling studies predicted an interaction between the TAXI-III residue H395 and residues E122 and E214 belonging to the active site of xylanase FGSG_03624. These results provide, for the first time, clear indications in vitro and in planta that a xylanase inhibitor can prevent the necrotic activity of a xylanase, and suggest that the reduced FHB symptoms on transgenic TAXI-III plants may be a result not only of the direct inhibition of xylanase activity secreted by the pathogen, but also of the capacity of TAXI-III to avoid host cell death. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  2. Production of extracellular lipase by the phytopathogenic fungus Fusarium solani FS1

    OpenAIRE

    Maia, Maria de Mascena Diniz; Morais, Marcia Maria Camargo de; Morais Jr., Marcos Antonio de; Melo, Eduardo Henrique Magalhães; Lima Filho, José Luiz de

    1999-01-01

    A Brazilian strain of Fusarium solani was tested for extracellular lipase production in peptone-olive oil medium. The fungus produced 10,500 U.l-1 of lipase after 72 hours of cultivation at 25oC in shake-flask at 120 rpm in a medium containing 3% (w/v) peptone plus 0.5% (v/v) olive oil. Glucose (1% w/v) was found to inhibit the inductive effect of olive oil. Peptone concentrations below 3% (w/v) resulted in a reduced lipase production while increased olive oil concentration (above 0.5%) did n...

  3. The endosomal recycling of FgSnc1 by FgSnx41-FgSnx4 heterodimer is essential for polarized growth and pathogenicity in Fusarium graminearum.

    Science.gov (United States)

    Zheng, Wenhui; Lin, Yahong; Fang, Wenqin; Zhao, Xu; Lou, Yi; Wang, Guanghui; Zheng, Huawei; Liang, Qifu; Abubakar, Yakubu Saddeeq; Olsson, Stefan; Zhou, Jie; Wang, Zonghua

    2018-04-20

    Endosomal sorting machineries regulate the transport of their cargoes among intracellular compartments. However, the molecular nature of such intracellular trafficking processes in pathogenic fungal development and pathogenicity remains unclear. Here, we dissect the roles and molecular mechanisms of two sorting nexin proteins and their cargoes in endosomal recycling in Fusarium graminearum using high-resolution microscopy and high-throughput co-immunoprecipitation strategies. We show that the sorting nexins, FgSnx41 and FgSnx4, interact with each other and assemble into a functionally interdependent heterodimer through their respective BAR domains. Further analyses demonstrate that the dimer localizes to the early endosomal membrane and coordinates endosomal sorting. The small GTPase FgRab5 regulates the correct localization of FgSnx41-FgSnx4 and is consequently required for its trafficking function. The protein FgSnc1 is a cargo of FgSnx41-FgSnx4 and regulates the fusion of secreted vesicles with the fungal growing apex and plasma membrane. In the absence of FgSnx41 or FgSnx4, FgSnc1 is mis-sorted and degraded in the vacuole, and null deletion of either component causes defects in the fungal polarized growth and virulence. Overall, for the first time, our results reveal the mechanism of FgSnc1 endosomal recycling by FgSnx41-FgSnx4 heterodimer which is essential for polarized growth and pathogenicity in F. graminearum. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  4. In vitro competition between Fusarium graminearum and Epicoccum nigrum on media and wheat grains

    DEFF Research Database (Denmark)

    Jensen, Brita Dahl; Knorr, Kamilla; Nicolaisen, Mogens

    2016-01-01

    showed hyphae of F. graminearum and E. nigrum with many side branches when in close proximity, in contrast to pronounced apical hyphal growth when growing alone. Combinations of F. graminearum and E. nigrum on sterilised wheat grains were studied over time by qPCR. F. graminearum biomass...

  5. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum

    Science.gov (United States)

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-01-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557

  6. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-12-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. An Optimized Protocol for DNA Extraction from Wheat Seeds and Loop-Mediated Isothermal Amplification (LAMP to Detect Fusarium graminearum Contamination of Wheat Grain

    Directory of Open Access Journals (Sweden)

    Mohamed Moslem

    2011-06-01

    Full Text Available A simple, rapid, and efficient method for isolating genomic DNA from germinated seeds of wheat that is free from polysaccharides and polyphenols is reported. DNA was extracted, treated with RNase, measured and tested for completeness using agarose gel electrophoresis. DNA purification from wheat grains yielded abundant, amplifiable DNA with yields typically between 100 and 200 ng DNA/mg. The effectiveness and reliability of the method was tested by assessing quantity and quality of the isolated DNA using three PCR-based markers. Inter-simple sequence repeats (ISSRs were used to assess the genetic diversity between different wheat varieties. Specific PCR primer pair Tox5-1/Tox5-2 and a loop-mediated isothermal amplification (LAMP procedure were used to detect genomic DNA of Fusarium graminearum in contaminated wheat seeds. In this method there is no need to use liquid nitrogen for crushing germinated seedlings. The protocol takes approximately one hour to prepare high quality DNA. In combination with the LAMP assay it is a fast and cost-effective alternative to traditional diagnostic methods for the early detection of toxigenic fusaria in cereals.

  8. An optimized protocol for DNA extraction from wheat seeds and Loop-Mediated Isothermal Amplification (LAMP) to detect Fusarium graminearum contamination of wheat grain.

    Science.gov (United States)

    Abd-Elsalam, Kamel; Bahkali, Ali; Moslem, Mohamed; Amin, Osama E; Niessen, Ludwig

    2011-01-01

    A simple, rapid, and efficient method for isolating genomic DNA from germinated seeds of wheat that is free from polysaccharides and polyphenols is reported. DNA was extracted, treated with RNase, measured and tested for completeness using agarose gel electrophoresis. DNA purification from wheat grains yielded abundant, amplifiable DNA with yields typically between 100 and 200 ng DNA/mg. The effectiveness and reliability of the method was tested by assessing quantity and quality of the isolated DNA using three PCR-based markers. Inter-simple sequence repeats (ISSRs) were used to assess the genetic diversity between different wheat varieties. Specific PCR primer pair Tox5-1/Tox5-2 and a loop-mediated isothermal amplification (LAMP) procedure were used to detect genomic DNA of Fusarium graminearum in contaminated wheat seeds. In this method there is no need to use liquid nitrogen for crushing germinated seedlings. The protocol takes approximately one hour to prepare high quality DNA. In combination with the LAMP assay it is a fast and cost-effective alternative to traditional diagnostic methods for the early detection of toxigenic fusaria in cereals.

  9. Ethanol effect on metabolic activity of the ethalogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Paschos, Thomas; Xiros, Charilaos; Christakopoulos, Paul

    2015-03-12

    Fusarium oxysporum is a filamentous fungus which has attracted a lot of scientific interest not only due to its ability to produce a variety of lignocellulolytic enzymes, but also because it is able to ferment both hexoses and pentoses to ethanol. Although this fungus has been studied a lot as a cell factory, regarding applications for the production of bioethanol and other high added value products, no systematic study has been performed concerning its ethanol tolerance levels. In aerobic conditions it was shown that both the biomass production and the specific growth rate were affected by the presence of ethanol. The maximum allowable ethanol concentration, above which cells could not grow, was predicted to be 72 g/L. Under limited aeration conditions the ethanol-producing capability of the cells was completely inhibited at 50 g/L ethanol. The lignocellulolytic enzymatic activities were affected to a lesser extent by the presence of ethanol, while the ethanol inhibitory effect appears to be more severe at elevated temperatures. Moreover, when the produced ethanol was partially removed from the broth, it led to an increase in fermenting ability of the fungus up to 22.5%. The addition of F. oxysporum's system was shown to increase the fermentation of pretreated wheat straw by 11%, in co-fermentation with Saccharomyces cerevisiae. The assessment of ethanol tolerance levels of F. oxysporum on aerobic growth, on lignocellulolytic activities and on fermentative performance confirmed its biotechnological potential for the production of bioethanol. The cellulolytic and xylanolytic enzymes of this fungus could be exploited within the biorefinery concept as their ethanol resistance is similar to that of the commercial enzymes broadly used in large scale fermentations and therefore, may substantially contribute to a rational design of a bioconversion process involving F. oxysporum. The SSCF experiments on liquefied wheat straw rich in hemicellulose indicated that the

  10. A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Jinhua Jiang

    Full Text Available Type 2C protein phosphatases (PP2Cs play important roles in regulating many biological processes in eukaryotes. Currently, little is known about functions of PP2Cs in filamentous fungi. The causal agent of wheat head blight, Fusarium graminearum, contains seven putative PP2C genes, FgPTC1, -3, -5, -5R, -6, -7 and -7R. In order to investigate roles of these PP2Cs, we constructed deletion mutants for all seven PP2C genes in this study. The FgPTC3 deletion mutant (ΔFgPtc3-8 exhibited reduced aerial hyphae formation and deoxynivalenol (DON production, but increased production of conidia. The mutant showed increased resistance to osmotic stress and cell wall-damaging agents on potato dextrose agar plates. Pathogencity assays showed that ΔFgPtc3-8 is unable to infect flowering wheat head. All of the defects were restored when ΔFgPtc3-8 was complemented with the wild-type FgPTC3 gene. Additionally, the FgPTC3 partially rescued growth defect of a yeast PTC1 deletion mutant under various stress conditions. Ultrastructural and histochemical analyses showed that conidia of ΔFgPtc3-8 contained an unusually high number of large lipid droplets. Furthermore, the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Quantitative real-time PCR assays showed that basal expression of FgOS2, FgSLT2 and FgMKK1 in the mutant was significantly higher than that in the wild-type strain. Serial analysis of gene expression in ΔFgPtc3-8 revealed that FgPTC3 is associated with various metabolic pathways. In contrast to the FgPTC3 mutant, the deletion mutants of FgPTC1, FgPTC5, FgPTC5R, FgPTC6, FgPTC7 or FgPTC7R did not show aberrant phenotypic features when grown on PDA medium or inoculated on wheat head. These results indicate FgPtc3 is the key PP2C that plays a critical role in a variety of cellular and biological functions, including cell wall integrity, lipid and secondary metabolisms, and virulence in F. graminearum.

  11. Production of a new D-amino acid oxidase from the fungus Fusarium oxysporum.

    Science.gov (United States)

    Gabler, M; Fischer, L

    1999-08-01

    The fungus Fusarium oxysporum produced a D-amino acid oxidase (EC 1. 4.3.3) in a medium containing glucose as the carbon and energy source and ammonium sulfate as the nitrogen source. The specific D-amino acid oxidase activity was increased up to 12.5-fold with various D-amino acids or their corresponding derivatives as inducers. The best inducers were D-alanine (2.7 microkat/g of dry biomass) and D-3-aminobutyric acid (2.6 microkat/g of dry biomass). The addition of zinc ions was necessary to permit the induction of peroxisomal D-amino acid oxidase. Bioreactor cultivations were performed on a 50-liter scale, yielding a volumetric D-amino acid oxidase activity of 17 microkat liter(-1) with D-alanine as an inducer. Under oxygen limitation, the volumetric activity was increased threefold to 54 microkat liter(-1) (3,240 U liter(-1)).

  12. Biosorption of thorium(IV) from aqueous solution by living biomass of marine-derived fungus Fusarium sp. ZZF51

    International Nuclear Information System (INIS)

    Yang, S.K.; Tan, N.; Wu, W.L.; Hou, X.J.; Xiang, K.X.; Lin, Y.C.

    2015-01-01

    The biosportion of Th(IV) by the marine-derived Fungus Fusarium sp. ZZF51 was study. The Biosorption was found to be at a maximum (79.24 %), in a solution containing 50 mg Th/L, at pH 5.0, with 0.28 g dry biomass. The Temkin isotherm model and pseudo-second-order kinetic model was found to fit the data very well over the entire range of concentrations. The FTIR analysis reveals that the carboxyl, amino and hydroxyl groups on the cell wall of Fusarium sp. ZZF51 play an important role in Th(IV) biosorption process. (author)

  13. Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1 contributes to resistance against Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Raghavendra Gunnaiah

    Full Text Available BACKGROUND: Resistance in plants to pathogen attack can be qualitative or quantitative. For the latter, hundreds of quantitative trait loci (QTLs have been identified, but the mechanisms of resistance are largely unknown. Integrated non-target metabolomics and proteomics, using high resolution hybrid mass spectrometry, were applied to identify the mechanisms of resistance governed by the fusarium head blight resistance locus, Fhb1, in the near isogenic lines derived from wheat genotype Nyubai. FINDINGS: The metabolomic and proteomic profiles were compared between the near isogenic lines (NIL with resistant and susceptible alleles of Fhb1 upon F. graminearum or mock-inoculation. The resistance-related metabolites and proteins identified were mapped to metabolic pathways. Metabolites of the shunt phenylpropanoid pathway such as hydroxycinnamic acid amides, phenolic glucosides and flavonoids were induced only in the resistant NIL, or induced at higher abundances in resistant than in susceptible NIL, following pathogen inoculation. The identities of these metabolites were confirmed, with fragmentation patterns, using the high resolution LC-LTQ-Orbitrap. Concurrently, the enzymes of phenylpropanoid biosynthesis such as cinnamyl alcohol dehydrogenase, caffeoyl-CoA O-methyltransferase, caffeic acid O-methyltransferase, flavonoid O-methyltransferase, agmatine coumaroyltransferase and peroxidase were also up-regulated. Increased cell wall thickening due to deposition of hydroxycinnamic acid amides and flavonoids was confirmed by histo-chemical localization of the metabolites using confocal microscopy. CONCLUSION: The present study demonstrates that the resistance in Fhb1 derived from the wheat genotype Nyubai is mainly associated with cell wall thickening due to deposition of hydroxycinnamic acid amides, phenolic glucosides and flavonoids, but not with the conversion of deoxynivalenol to less toxic deoxynivalenol 3-O-glucoside.

  14. Molecular characterization of a subtilase from the vascular wilt fungus Fusarium oxysporum.

    Science.gov (United States)

    Di Pietro, A; Huertas-González, M D; Gutierrez-Corona, J F; Martínez-Cadena, G; Méglecz, E; Roncero, M I

    2001-05-01

    The gene prt1 was isolated from the tomato vascular wilt fungus Fusarium oxysporum f. sp. lycopersici, whose predicted amino acid sequence shows significant homology with subtilisin-like fungal proteinases. Prt1 is a single-copy gene, and its structure is highly conserved among different formae speciales of F. oxysporum. Prt1 is expressed constitutively at low levels during growth on different carbon and nitrogen sources and strongly induced in medium containing collagen and glucose. As shown by reverse transcription-polymerase chain reaction and fluorescence microscopy of F. oxysporum strains carrying a prt1-promoter-green fluorescent protein fusion, prt1 is expressed at low levels during the entire cycle of infection on tomato plants. F. oxysporum strains transformed with an expression vector containing the prt1 coding region fused to the inducible endopolygalacturonase pg1 gene promoter and grown under promoter-inducing conditions secreted high levels of extracellular subtilase activity that resolved into a single peak of pI 4.0 upon isoelectric focusing. The active fraction produced two clearing bands of 29 and 32 kDa in sodium dodecyl sulfate gels containing gelatin. Targeted inactivation of prt1 in F. oxysporum f. sp. lycopersici had no detectable effect on mycelial growth, sporulation, and pathogenicity on tomato plants.

  15. Fusarium

    DEFF Research Database (Denmark)

    Thrane, Ulf

    2014-01-01

    The genus Fusarium is one of the most important mycotoxigenic fungal genera in food and feed. Nearly all species are able to produce mycotoxins of which many are under international regulation. Well-known Fusarium mycotoxins are fumonisins, zearalenone, deoxynivalenol, and additional trichothecenes...

  16. Molecular characterization and functional analysis of PR-1-like proteins identified from the wheat head blight fungus Fusarium graminearum

    Science.gov (United States)

    The group 1 pathogenesis-related (PR-1) proteins originally identified from plants and their homologues are also found in other eukaryotic kingdoms. Studies on non-plant PR-1-like (PR-1L) proteins have been pursued widely in humans/animals but rarely in filamentous ascomycetes. Here we report the ch...

  17. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways.

    Science.gov (United States)

    Yun, Yingzi; Liu, Zunyong; Zhang, Jingze; Shim, Won-Bo; Chen, Yun; Ma, Zhonghua

    2014-07-01

    Mitogen-activated protein (MAP) kinases play crucial roles in regulating fungal development, growth and pathogenicity, and in responses to the environment. In this study, we characterized a MAP kinase kinase FgMkk1 in Fusarium graminearum, the causal agent of wheat head blight. Phenotypic analyses of the FgMKK1 mutant (ΔFgMKK1) showed that FgMkk1 is involved in the regulation of hyphal growth, pigmentation, conidiation, deoxynivalenol biosynthesis and virulence of F. graminearum. ΔFgMKK1 also showed increased sensitivity to cell wall-damaging agents, and to osmotic and oxidative stresses, but exhibited decreased sensitivity to the fungicides iprodione and fludioxonil. In addition, the mutant revealed increased sensitivity to a biocontrol agent, Trichoderma atroviride. Western blot assays revealed that FgMkk1 positively regulates phosphorylation of the MAP kinases Mgv1 and FgOs-2, the key component in the cell wall integrity (CWI) and high-osmolarity glycerol (HOG) signalling pathway respectively. Yeast two-hybrid assay indicated that Mgv1 interacts with a transcription factor FgRlm1. The FgRLM1 mutant (ΔFgRLM1) showed increased sensitivity to cell wall-damaging agents and exhibited decreased virulence. Taken together, our data indicated that FgMkk1 is an upstream component of Mgv1, and regulates vegetative differentiation, multiple stress response and virulence via the CWI and HOG signalling pathways. FgRlm1 may be a downstream component of Mgv1 in the CWI pathway in F. graminearum. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Protein kinase FgSch9 serves as a mediator of the target of rapamycin and high osmolarity glycerol pathways and regulates multiple stress responses and secondary metabolism in Fusarium graminearum.

    Science.gov (United States)

    Gu, Qin; Zhang, Chengqi; Yu, Fangwei; Yin, Yanni; Shim, Won-Bo; Ma, Zhonghua

    2015-08-01

    Saccharomyces cerevisiae protein kinase Sch9 is one of the downstream effectors of the target of rapamycin (TOR) complex 1 and plays multiple roles in stress resistance, longevity and nutrient sensing. However, the functions of Sch9 orthologs in filamentous fungi, particularly in pathogenic species, have not been characterized to date. Here, we investigated biological and genetic functions of FgSch9 in Fusarium graminearum. The FgSCH9 deletion mutant (ΔFgSch9) was defective in aerial hyphal growth, hyphal branching and conidial germination. The mutant exhibited increased sensitivity to osmotic and oxidative stresses, cell wall-damaging agents, and to rapamycin, while showing increased thermal tolerance. We identified FgMaf1 as one of the FgSch9-interacting proteins that plays an important role in regulating mycotoxin biosynthesis and virulence of F. graminearum. Co-immunoprecipitation and affinity capture-mass spectrometry assays showed that FgSch9 also interacts with FgTor and FgHog1. More importantly, both ΔFgSch9 and FgHog1 null mutant (ΔFgHog1) exhibited increased sensitivity to osmotic and oxidative stresses. This defect was more severe in the FgSch9/FgHog1 double mutant. Taken together, we propose that FgSch9 serves as a mediator of the TOR and high osmolarity glycerol pathways, and regulates vegetative differentiation, multiple stress responses and secondary metabolism in F. graminearum. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Isolation, identification, and culture optimization of a novel glycinonitrile-hydrolyzing fungus-Fusarium oxysporum H3.

    Science.gov (United States)

    Gong, Jin-Song; Lu, Zhen-Ming; Shi, Jing-Song; Dou, Wen-Fang; Xu, Hong-Yu; Zhou, Zhe-Min; Xu, Zheng-Hong

    2011-10-01

    Microbial transformation of glycinonitrile into glycine by nitrile hydrolase is of considerable interest to green chemistry. A novel fungus with high nitrile hydrolase was newly isolated from soil samples and identified as Fusarium oxysporum H3 through 18S ribosomal DNA, 28S ribosomal DNA, and the internal transcribed spacer sequence analysis, together with morphology characteristics. After primary optimization of culture conditions including pH, temperature, carbon/nitrogen sources, inducers, and metal ions, the enzyme activity was greatly increased from 326 to 4,313 U/L. The preferred carbon/nitrogen sources, inducer, and metal ions were glucose and yeast extract, caprolactam, and Cu(2+), Mn(2+), and Fe(2+), respectively. The maximum enzyme formation was obtained when F. oxysporum H3 was cultivated at 30 °C for 54 h with the initial pH of 7.2. There is scanty report about the optimization of nitrile hydrolase production from nitrile-converting fungus.

  20. Systemic Growth of F. graminearum in Wheat Plants and Related Accumulation of Deoxynivalenol

    Directory of Open Access Journals (Sweden)

    Antonio Moretti

    2014-04-01

    Full Text Available Fusarium head blight (FHB is an important disease of wheat worldwide caused mainly by Fusarium graminearum (syn. Gibberella zeae. This fungus can be highly aggressive and can produce several mycotoxins such as deoxynivalenol (DON, a well known harmful metabolite for humans, animals, and plants. The fungus can survive overwinter on wheat residues and on the soil, and can usually attack the wheat plant at their point of flowering, being able to infect the heads and to contaminate the kernels at the maturity. Contaminated kernels can be sometimes used as seeds for the cultivation of the following year. Poor knowledge on the ability of the strains of F. graminearum occurring on wheat seeds to be transmitted to the plant and to contribute to the final DON contamination of kernels is available. Therefore, this study had the goals of evaluating: (a the capability of F. graminearum causing FHB of wheat to be transmitted from the seeds or soil to the kernels at maturity and the progress of the fungus within the plant at different growth stages; (b the levels of DON contamination in both plant tissues and kernels. The study has been carried out for two years in a climatic chamber. The F. gramineraum strain selected for the inoculation was followed within the plant by using Vegetative Compatibility technique, and quantified by Real-Time PCR. Chemical analyses of DON were carried out by using immunoaffinity cleanup and HPLC/UV/DAD. The study showed that F. graminearum originated from seeds or soil can grow systemically in the plant tissues, with the exception of kernels and heads. There seems to be a barrier that inhibits the colonization of the heads by the fungus. High levels of DON and F. graminearum were found in crowns, stems, and straw, whereas low levels of DON and no detectable levels of F. graminearum were found in both heads and kernels. Finally, in all parts of the plant (heads, crowns, and stems at milk and vitreous ripening stages, and straw at

  1. Black perithecial pigmentation in Fusarium species is due to the accumulation of 5-deoxybostrycoidin-based melanin

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Rasmussen, Silas Anselm; Knudsen, Peter Boldsen

    2016-01-01

    Biosynthesis of the black perithecial pigment in the filamentous fungus Fusarium graminearum is dependent on the polyketide synthase PGL1 (oPKS3). A seven-membered PGL1 gene cluster was identified by over-expression of the cluster specific transcription factor pglR. Targeted gene replacement showed...... anthrone (4) and purpurfusarin (5). The novel dimeric bostrycoidin purpurfusarin (5) was found to inhibit the growth of Candida albicans with an IC50 of 8.0 +/-1.9 mu M. The results show that Fusarium species with black perithecia have a previously undescribed form of 5-deoxybostrycoidin based melanin...

  2. The antibiotic polymyxin B exhibits novel antifungal activity against Fusarium species.

    Science.gov (United States)

    Hsu, Li-Hang; Wang, Hsuan-Fu; Sun, Pei-Lun; Hu, Fung-Rong; Chen, Ying-Lien

    2017-06-01

    The genus Fusarium comprises many species, including Fusarium oxysporum, Fusarium solani, Fusarium graminearum and Fusarium verticillioides, and causes severe infections in plants and humans. In clinical settings, Fusarium is the third most frequent mould to cause invasive fungal infections after Aspergillus and the Mucorales. F. solani and F. oxysporum are the most prevalent Fusarium spp. causing clinical disease. However, few effective antifungal drugs are available to treat human and plant Fusarium infections. The cationic peptide antibiotic polymyxin B (PMB) exhibits antifungal activity against the human fungal pathogens Candida albicans and Cryptococcus neoformans, but its efficacy against Fusarium spp. is unknown. In this study, the antifungal activity of PMB was tested against 12 Fusarium strains that infect humans and plants (banana, tomato, melon, pea, wheat and maize). PMB was fungicidal against all 12 Fusarium strains, with minimum fungicidal concentrations of 32 µg/mL or 64 µg/mL for most strains tested, as evidenced by broth dilution, methylene blue staining and XTT reduction assays. PMB can reduce the germination rates of conidia, but not chlamydospores, and can cause defects in cell membrane integrity in Fusarium strains. PMB exhibits synergistic activity with posaconazole and can potentiate the effect of fluconazole, voriconazole or amphotericin B against Fusarium spp. However, PMB does not show synergistic effects with fluconazole against Fusarium spp. as it does against Candida glabrata and C. neoformans, indicating evolutionary divergence of mechanisms between yeast pathogens and the filamentous fungus Fusarium. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  3. Utilization of high performance liquid chromatography coupled to tandem mass spectrometry for characterization of 8-O-methylbostrycoidin production by species of the fungus Fusarium

    Science.gov (United States)

    The pigment, 8-O-methylbostrycoidin is a polyketide metabolite produced by multiple species of the fungus Fusarium that infects plant crops, including maize. A technique was developed for the analysis of 8-O-methylbostrycoidin by high performance liquid chromatography coupled to electrospray ionizat...

  4. Role in pathogenesis of two endo-beta-1,4-xylanase genes from the vascular wilt fungus Fusarium oxysporum.

    Science.gov (United States)

    Gómez-Gómez, E; Ruíz-Roldán, M C; Di Pietro, A; Roncero, M I G; Hera, C

    2002-04-01

    A gene, xyl4, whose predicted amino acid sequence shows significant homology with family 11 xylanases, was identified from the tomato vascular wilt fungus Fusarium oxysporum f. sp. lycopersici. Expression of xyl4 is induced on oat spelt xylan as the carbon source, subject to carbon catabolite repression and preferentially expressed at alkaline ambient pH. Transcript levels of xyl4 on an inducing carbon source are differentially regulated by the nature and concentration of the nitrogen source. As shown by RT-PCR, xyl4 is expressed by F. oxysporum during the entire cycle of infection on tomato plants. Targeted inactivation of xyl4 and of xyl3, a previously identified gene of F. oxysporum f. sp. lycopersici encoding a family 10 xylanase, had no detectable effect on virulence on tomato plants, demonstrating that both genes are not essential for pathogenicity.

  5. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum

    DEFF Research Database (Denmark)

    Josefsen, Lone; Droce, Aida; Sondergaard, Teis Esben

    2012-01-01

    starvation is severely inhibited in the Delta Fgatg8 strain demonstrating autophagy-dependent lipid utilization, lipophagy, in fungi. Radial growth rate of the Delta Fgatg8 strain is reduced compared with the wild type and the mutant does not grow over inert plastic surfaces in contrast to the wild type....... The ability to infect barley and wheat is normal but the mutant is unable to spread from spikelet to spikelet in wheat. Complementation by inserting the F. graminearum atg8 gene into a region adjacent to the actin gene in Delta Fgatg8 fully restores the WT phenotype. The results showed that autophagy plays...

  6. The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production

    DEFF Research Database (Denmark)

    Giese, Nanna Henriette; Sondergaard, Teis Esben; Sorensen, Jens Laurids

    2013-01-01

    and asparagine was found to be a preferential nitrogen source for F. graminearum. Deletion of areA led to poor growth on NaNO3 suggesting its involvement in regulation of the nitrate reduction process. In addition utilization of aspartic acid, histidine, isoleucine, leucine, threonine, tyrosine, and valine...... as nitrogen sources was shown to depend of a functional AreA. AreA was shown to be required for the production of the mycotoxins deoxynivalenol (DON), zearalenone, and fusarielin H regardless of the nutrient medium. Deletion of nmr, the repressor of AreA under nitrogen sufficient conditions, had little effect...

  7. Exocellular extract of Fusarium oxysporum, fungus free, is able to permeate and act selectively in skin.

    Science.gov (United States)

    Sibin Melo, Katia C; Correia, Marcelo H; Svidzinski, Terezinha I E; Hernandes, Luzmarina

    2018-05-01

    The skin is an important gateway for Fusarium infection in humans. Our hypothesis is that metabolites produced by Fusarium oxysporum should change the barrier structure to permeate the skin. Male Wistar rats received a topical application of a solution (0.05 mg/mL) of Fusarium metabolites. The animals were euthanized 3, 6, 12, 24 h after and the skin was processed for immunostaining by laminin and E-cadherin to investigate whether the Fusarium metabolites can break the barrier of healthy skin. Other techniques were employed: H&E to study the morphology; metalloproteinase-9 (MMP-9), TUNEL, and PCNA immunostaining to evaluate the inflammation, cell death, and proliferation, respectively. There was an inflammatory response mainly centered in the dermis. Qualitatively, the skin of the experimental group showed reduced E-cadherin and laminin immunostaining at 3, 12, and 24 h. Higher intensity staining by TUNEL at 3 h, and PCNA at 6, 12, and 24 h. There was intense MMP-9 activity at 6, 12, and 24 h. None of analyses revealed any changes in the epidermis. It was concluded that the fraction was able to permeate the skin and act selectively in dermis, inducing inflammatory response, increasing MMP-9 immunostaining, inducing apoptosis, and reducing E-cadherin and laminin immunostaining. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  8. How Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum

    NARCIS (Netherlands)

    Di, X.; Takken, F.L.W.; Tintor, N.

    2016-01-01

    Plants interact with a huge variety of soil microbes, ranging from pathogenic to mutualistic. The Fusarium oxysporum (Fo) species complex consists of ubiquitous soil inhabiting fungi that can infect and cause disease in over 120 different plant species including tomato, banana, cotton, and

  9. Interactions between the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae) and the saprobic fungus Fusarium oxysporum (Ascomycota: Hypocreales).

    Science.gov (United States)

    Navarro, P D; McMullen, J G; Stock, S P

    2014-01-01

    In this study, we assessed the effect of the saprobic fungus, Fusarium oxysporum (Ascomycota: Hypocreales) on the fitness of the entomopathogenic nematode Heterorhabditis sonorensis (Caborca strain). Sand column assays were considered to evaluate the effect of fungal mycelia on infective juvenile (IJ) movement and host access. Additionally, we investigated the effect of fungal spores on the nematodes' ability to search for a host, its virulence, penetration efficiency and reproduction. Three application timings were considered to assess interactions between the fungus and the nematodes. In vitro assays were also considered to determine the effect of fungal extracts on the nematode's symbiotic bacteria. Our observations indicate that presence and age of fungal mycelia significantly affect IJ movement in the sand columns and their ability to establish in the host. These results were also reflected in a reduced insect mortality. In particular, treatments with the 15 days old mycelia showed a significant reduction in insect mortality and penetration efficiency. Presence of fungal spores also impacted nematode virulence and reproduction. In particular, two of the application timings tested (simultaneous [EPN and fungal spores applied at the same time] and alternate I [EPN applied first, fungus applied 24h later]) resulted in antagonistic interactions. Moreover, IJ progeny was reduced to half in the simultaneous application. In vitro assays revealed that fungal extracts at the highest concentration tested (10mg/ml) inhibited the growth of the symbiotic bacteria. Overall, these results suggest that saprobic fungi may play an important role in regulating. EPN populations in the soil, and that they may be one of the factors that impact nematode survival in the soil and their access to insect hosts. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Fusarium proliferatum and fumonisin B1 co-occur with Fusarium species causing Fusarium Head Blight in durum wheat in Italy

    OpenAIRE

    Amato, Barbara; Pfohl, Katharina; Tonti, Stefano; Nipoti, Paola; Dastjerdi, Raana; Pisi, Annamaria; Karlovsky, Petr; Prodi, Antonio

    2015-01-01

    Fusarium Head Blight caused by phytopathogenic Fusarium spp. with Fusarium graminearum as main causal agent is a major disease of durum wheat (Triticum durum Desf.). Mycotoxins in wheat are dominated by trichothecenes B. Fumonisins have only occasionally been reported from wheat; their occurrence was attributed to Fusarium proliferatum and Fusarium verticillioides. We investigated kernels of durum wheat grown in Italy in 2008 - 2010 for colonization with Fusarium spp. and for the content o...

  11. The role of strigolactones during plant interactions with the pathogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Foo, Eloise; Blake, Sara N; Fisher, Brendan J; Smith, Jason A; Reid, James B

    2016-06-01

    Strigolactones (SLs) do not influence spore germination or hyphal growth of Fusarium oxysporum. Mutant studies revealed no role for SLs but a role for ethylene signalling in defence against this pathogen in pea. Strigolactones (SLs) play important roles both inside the plant as a hormone and outside the plant as a rhizosphere signal in interactions with mycorrhizal fungi and parasitic weeds. What is less well understood is any potential role SLs may play in interactions with disease causing microbes such as pathogenic fungi. In this paper we investigate the influence of SLs on the hemibiotrophic pathogen Fusarium oxysporum f.sp. pisi both directly via their effects on fungal growth and inside the plant through the use of a mutant deficient in SL. Given that various stereoisomers of synthetic and naturally occuring SLs can display different biological activities, we used (+)-GR24, (-)-GR24 and the naturally occurring SL, (+)-strigol, as well as a racemic mixture of 5-deoxystrigol. As a positive control, we examined the influence of a plant mutant with altered ethylene signalling, ein2, on disease development. We found no evidence that SLs influence spore germination or hyphal growth of Fusarium oxysporum and that, while ethylene signalling influences pea susceptibility to this pathogen, SLs do not.

  12. Conservation and divergence of the cyclic adenosine monophosphate–protein kinase A (cAMP–PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides

    Science.gov (United States)

    The importance of cAMP signaling in fungal development and pathogenesis has been well documented in many fungal species including several phytopathogenic Fusarium spp. Two key components of the cAMP-PKA pathway, adenylate cyclase (AC) and catalytic subunit of PKA (CPKA), have been functionally chara...

  13. Enhancement of uranium(VI) biosorption by chemically modified marine-derived mangrove endophytic fungus Fusarium sp. ZZF51

    International Nuclear Information System (INIS)

    Chen, F.; Tan, N.; Long, W.; Yang, S.K.; She, Z.G.; Lin, Y.C.

    2014-01-01

    Fusarium sp. ZZF51, mangrove endophytic fungus originated from South China Sea coast, was chemically modified by formaldehyde, methanol and acetic acid to enhance its affinity of uranium(VI) from waste water. The influencing factors about uranium(VI) adsorption such as contact time, solution pH, the ratio of solid/liquid (S/L) and initial uranium(VI) concentration were investigated, and the suitable adsorption isotherm and kinetic models were determined. In addition, the biosorption mechanism was also discussed by FTIR analysis. Experimental results show that the maximum biosorption capacity of formaldehyde-treated biomass for uranium(VI) at the optimized condition of pH 6.0, S/L 0.6 and equilibrium time 90 min is 318.04 mg g -1 , and those of methanol-treated and HAc-treated biomass are 311.95 and 351.67 mg g -1 at the same pH and S/L values but different equilibrium time of 60 and 90 min, respectively. Thus the maximum biosorption capacity of the three kind of modified biomass have greatly surpassed that of the raw biomass (21.42 mg g -1 ). The study of kinetic exhibits a high level of compliance with the Lagergren's pseudo-second-order kinetic models. Langumir and Freundlich models have proved to be well able to explain the sorption equilibrium with the satisfactory correlation coefficients higher than 0.96. FTIR analysis reveals that the carboxyl, amino and hydroxyl groups on the cell wall of Fusarium sp. ZZF51 play an important role in uranium(VI) biosorption process. (author)

  14. Poly-γ-glutamic acid productivity of Bacillus subtilis BsE1 has positive function in motility and biocontrol against Fusarium graminearum.

    Science.gov (United States)

    Wang, Luyao; Wang, Ning; Mi, Dandan; Luo, Yuming; Guo, Jianhua

    2017-07-01

    In this study, we investigate the relationship between γ-PGA productivity and biocontrol capacity of Bacillus subtilis BsE1; one bacterial isolate displayed 62.14% biocontrol efficacy against Fusarium root rot. The γ-PGA yield assay, motility assay, wheat root colonization assay, and biological control assay were analysed in different γ-PGA yield mutants of BsE1. The pgsB (PGA-synthase-CapB gene) deleted mutant of BsE1 reduced γ-PGA yield and exhibited apparent decline of in vitro motile ability. Deletion of pgsB impaired colonizing capacity of BsE1 on wheat root in 30 days, also lowered biocontrol efficacies from 62.08% (wild type BsE1) to 14.22% in greenhouse experiment against Fusarium root rot. The knockout of pgdS and ggt (genes relate to two γ-PGA degrading enzymes) on BsE1, leads to a considerable improvement in polymer yield and biocontrol efficacy, which attains higher level compared with wild type BsE1. Compared with ΔpgsB mutant, defense genes related to reactive oxygen species (ROS) and phytoalexin expressed changes by notable levels on wheat roots treated with BsE1, demonstrating the functional role γ-PGA plays in biocontrol against Fusarium root rot. γ-PGA is not only important to the motile and plant root colonization ability of BsE1, but also essential to the biological control performed by BsE1 against Fusarium root rot. Our goal in this study is to reveals a new perspective of BCAs screening on bacterial isolates, without good performance during pre-assays of antagonism ability.

  15. Polyketide synthase from Fusarium

    DEFF Research Database (Denmark)

    Kvesel, Kasper; Wimmer, Reinhard; Sørensen, Jens Laurids

    described, even fewer from fungi and none from Fusarium species. Multidomain proteins can be quite challenging to work with, which is why the project intends to solve the 3D-structures of single domains of PKS’s. In this project, the plan is to clone, express and purify the Acyl-carrier protein (ACP) domain...... from PKS6 in Fusarium graminearum for structural analysis....

  16. Fungus mediated biosynthesis of WO3 nanoparticles using Fusarium solani extract

    Science.gov (United States)

    Kavitha, N. S.; Venkatesh, K. S.; Palani, N. S.; Ilangovan, R.

    2017-05-01

    Currently nanoparticles were synthesized by emphasis bioremediation process due to less hazardous, eco-friendly and imperative applications on biogenic process. Fungus mediated biosynthesis strategy has been developed to prepare tungsten oxide nanoflakes (WO3, NFs) using the plant pathogenic fungus F.solani. The powder XRD pattern revealed the monoclinic crystal structure with improved crystalline nature of the synthesized WO3 nanoparticles. FESEM images showed the flake-like morphology of WO3, with average thickness and length around 40 nm and 300 nm respectively. The Raman spectrum of WO3 NFs showed their characteristic vibration modes that revealed the defect free nature of the WO3 NFs. Further, the elemental analysis indicated the stoichiometric composition of WO3 phase.

  17. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts

    Directory of Open Access Journals (Sweden)

    Kelly Ishida

    2014-04-01

    Full Text Available The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus .

  18. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity

    Science.gov (United States)

    Syed, Asad; Ahmad, Absar

    2013-04-01

    The growing demand for semiconductor [quantum dots (Q-dots)] nanoparticles has fuelled significant research in developing strategies for their synthesis and characterization. They are extensively investigated by the chemical route; on the other hand, use of microbial sources for biosynthesis witnessed the highly stable, water dispersible nanoparticles formation. Here we report, for the first time, an efficient fungal-mediated synthesis of highly fluorescent CdTe quantum dots at ambient conditions by the fungus Fusarium oxysporum when reacted with a mixture of CdCl2 and TeCl4. Characterization of these biosynthesized nanoparticles was carried out by different techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Photoluminescence (PL), X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. CdTe nanoparticles shows antibacterial activity against Gram positive and Gram negative bacteria. The fungal based fabrication provides an economical, green chemistry approach for production of highly fluorescent CdTe quantum dots.

  19. Production of diketopiperazine derivative cyclo (l-leu-l-arg) by streptomyces sp. tn262 after exposure to heat-killed fungus fusarium sp

    International Nuclear Information System (INIS)

    Elleuch, L.; Smaoui, S.; Najah, S.; Sellem, I

    2013-01-01

    In a screening program for new active secondary metabolites producers, a strain of Streptomyces called TN262 was isolated from Tunisian soil and selected for its ability to produce eleven active compounds in pure culture conditions. In this work, the effect of different concentrations of heat-killed fungus Fusarium sp. on the production of active compounds by TN262 strain was studied. The ethyl acetate extract from the culture of Streptomyces sp. TN262 combined with heat-killed Fusarium sp. at 50 micro g/ml inhibited the growth of the three used indicator microorganisms. In fact, an increase of 36%, 21% and 20% in inhibitory activity was obtained against Micrococcus luteus LB 14110, Escherichia coli ATCC 8739 and Fusarium sp. respectively. The HPLC chromatographic profiles of the ethyl acetate extracts from both culture conditions were different and an additional active compound was produced only under induced conditions. This active component was isolated and identified as Cyclo (L-Leu-L-Arg) (1), a diketopiperazine derivative, possessing antibacterial and antifungal activity. Consequently, this study showed that the addition of heat-killed fungus is a useful method for inducing the production of bioactive compounds. (author)

  20. Salicylic acid regulates basal resistance to Fusarium head blight in wheat.

    Science.gov (United States)

    Makandar, Ragiba; Nalam, Vamsi J; Lee, Hyeonju; Trick, Harold N; Dong, Yanhong; Shah, Jyoti

    2012-03-01

    Fusarium head blight (FHB) is a destructive disease of cereal crops such as wheat and barley. Previously, expression in wheat of the Arabidopsis NPR1 gene (AtNPR1), which encodes a key regulator of salicylic acid (SA) signaling, was shown to reduce severity of FHB caused by Fusarium graminearum. It was hypothesized that SA signaling contributes to wheat defense against F. graminearum. Here, we show that increased accumulation of SA in fungus-infected spikes correlated with elevated expression of the SA-inducible pathogenesis-related 1 (PR1) gene and FHB resistance. In addition, FHB severity and mycotoxin accumulation were curtailed in wheat plants treated with SA and in AtNPR1 wheat, which is hyper-responsive to SA. In support of a critical role for SA in basal resistance to FHB, disease severity was higher in wheat expressing the NahG-encoded salicylate hydroxylase, which metabolizes SA. The FHB-promoting effect of NahG was overcome by application of benzo (1,2,3), thiadiazole-7 carbothioic acid S-methyl ester, a synthetic functional analog of SA, thus confirming an important role for SA signaling in basal resistance to FHB. We further demonstrate that jasmonate signaling has a dichotomous role in wheat interaction with F. graminearum, constraining activation of SA signaling during early stages of infection and promoting resistance during the later stages of infection.

  1. RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini.

    Science.gov (United States)

    Galindo-González, Leonardo; Deyholos, Michael K

    2016-01-01

    Fusarium oxysporum f. sp. lini is a hemibiotrophic fungus that causes wilt in flax. Along with rust, fusarium wilt has become an important factor in flax production worldwide. Resistant flax cultivars have been used to manage the disease, but the resistance varies, depending on the interactions between specific cultivars and isolates of the pathogen. This interaction has a strong molecular basis, but no genomic information is available on how the plant responds to attempted infection, to inform breeding programs on potential candidate genes to evaluate or improve resistance across cultivars. In the current study, disease progression in two flax cultivars [Crop Development Center (CDC) Bethune and Lutea], showed earlier disease symptoms and higher susceptibility in the later cultivar. Chitinase gene expression was also divergent and demonstrated and earlier molecular response in Lutea. The most resistant cultivar (CDC Bethune) was used for a full RNA-seq transcriptome study through a time course at 2, 4, 8, and 18 days post-inoculation (DPI). While over 100 genes were significantly differentially expressed at both 4 and 8 DPI, the broadest deployment of plant defense responses was evident at 18 DPI with transcripts of more than 1,000 genes responding to the treatment. These genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signaling, activation of pathogenesis-related genes, and changes in secondary metabolism. Among these, several key genes that consistently appear in studies of plant-pathogen interactions, had increased transcript abundance in our study, and constitute suitable candidates for resistance breeding programs. These included: an induced R PMI-induced protein kinase; transcription factors WRKY3, WRKY70, WRKY75, MYB113 , and MYB108 ; the ethylene response factors ERF1 and ERF14 ; two genes involved in auxin/glucosinolate precursor synthesis ( CYP79B2 and CYP79B3 ); the flavonoid

  2. RNA-seq Transcriptome Response of Flax (Linum usitatissimum L. to the Pathogenic Fungus Fusarium oxysporum f. sp. lini.

    Directory of Open Access Journals (Sweden)

    Leonardo Miguel Galindo-González

    2016-11-01

    Full Text Available Fusarium oxysporum f. sp. lini is a hemibiotrophic fungus that causes wilt in flax. Along with rust, fusarium wilt has become an important factor in flax production worldwide. Resistant flax cultivars have been used to manage the disease, but the resistance varies, depending on the interactions between specific cultivars and isolates of the pathogen. This interaction has a strong molecular basis, but no genomic information is available on how the plant responds to attempted infection, to inform breeding programs on potential candidate genes to evaluate or improve resistance across cultivars. In the current study, disease progression in two flax cultivars (CDC Bethune and Lutea, showed earlier disease symptoms and higher susceptibility in the later cultivar. Chitinase gene expression was also divergent and demonstrated and earlier molecular response in Lutea. The most resistant cultivar (CDC Bethune was used for a full RNA-seq transcriptome study through a time-course at 2, 4, 8 and 18 days post-inoculation (DPI. While over 100 genes were significantly differentially expressed at both 4 and 8 DPI, the broadest deployment of plant defense responses was evident at 18 DPI with transcripts of more than 1,000 genes responding to the treatment. These genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signalling, activation of pathogenesis-related (PR genes, and changes in secondary metabolism. Among these several key genes, that consistently appear in studies of plant-pathogen interactions, had increased transcript abundance in our study, and constitute suitable candidates for resistance breeding programs. These included: an induced RPMI-induced protein kinase (RIPK; transcription factors WRKY3, WRKY70, WRKY75, MYB113 and MYB108; the ethylene response factors ERF1 and ERF14; two genes involved in auxin/glucosinolate precursor synthesis (CYP79B2 and CYP79B3; the flavonoid

  3. Chemical communication between the endophytic fungus Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum.

    Directory of Open Access Journals (Sweden)

    Audrey Combès

    Full Text Available Paraconiothyrium variabile, one of the specific endophytic fungi isolated from the host plant Cephalotaxus harringtonia, possesses the faculty to inhibit the growth of common phytopathogens, thus suggesting a role in its host protection. A strong antagonism between the endophyte P. variabile and Fusarium oxysporum was observed and studied using optic and electronic microscopies. A disorganization of the mycelium of F. oxysporum was thus noticed. Interestingly, the biological effect of the main secondary metabolites isolated from P. variabile against F. oxysporum did not account for this strong antagonism. However, a metabolomic approach of pure fungal strains and confrontation zones using the data analysis tool XCMS were analyzed and pointed out a competition-induced metabolite production by the endophyte in the presence of the phytopathogen. Subsequent MS/MS fragmentations permitted to identify one of the induced metabolites as 13-oxo-9,11-octadecadienoic acid and highlighted a negative modulation of the biosynthesis of beauvericin, one of the most potent mycotoxin of F. oxysporum, during the competition with the endophyte.

  4. How phytohormones shape interactions between plants and the soil-borne fungus Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Xiaotang eDi

    2016-02-01

    Full Text Available Plants interact with a huge variety of soil microbes, ranging from pathogenic to mutualistic. The Fusarium oxysporum (Fo species complex consists of ubiquitous soil inhabiting fungi that can infect and cause disease in over 120 different plant species including tomato, banana, cotton and Arabidopsis. However, in many cases Fo colonization remains symptomless or even has beneficial effects on plant growth and/or stress tolerance. Also in pathogenic interactions a lengthy asymptomatic phase usually precedes disease development. All this indicates a sophisticated and fine-tuned interaction between Fo and its host. The molecular mechanisms underlying this balance are poorly understood. Plant hormone signaling networks emerge as key regulators of plant-microbe interactions in general. In this review we summarize the effects of the major phytohormones on the interaction between Fo and its diverse hosts. Generally, Salicylic Acid (SA signaling reduces plant susceptibility, whereas Jasmonic Acid (JA, Ethylene (ET, Abscisic Acid (ABA and auxin have complex effects, and are potentially hijacked by Fo for host manipulation. Finally, we discuss how plant hormones and Fo effectors balance the interaction from beneficial to pathogenic and vice versa.

  5. Antifungal activity of Momordica charantia seed extracts toward the pathogenic fungus Fusarium solani L.

    Science.gov (United States)

    Wang, Shuzhen; Zheng, Yongliang; Xiang, Fu; Li, Shiming; Yang, Guliang

    2016-10-01

    Momordica charantia L., a vegetable crop with high nutritional value, has been used as an antimutagenic, antihelminthic, anticancer, antifertility, and antidiabetic agent in traditional folk medicine. In this study, the antifungal activity of M. charantia seed extract toward Fusarium solani L. was evaluated. Results showed that M. charantia seed extract effectively inhibited the mycelial growth of F. solani, with a 50% inhibitory rate (IC 50 ) value of 108.934 μg/mL. Further analysis with optical microscopy and fluorescence microscopy revealed that the seed extract led to deformation of cells with irregular budding, loss of integrity of cell wall, as well as disruption of the fungal cell membrane. In addition, genomic DNA was also severely affected, as small DNA fragments shorter than 50 bp appeared on agarose gel. These findings implied that M. charantia seed extract containing α-momorcharin, a typical ribosome-inactivating protein, could be an effective agent in the control of fungal pathogens, and such natural products would represent a sustainable alternative to the use of synthetic fungicides. Copyright © 2016. Published by Elsevier B.V.

  6. Production of extracellular lipase by the phytopathogenic fungus Fusarium solani FS1 Produção de lipase extracelular pelo fungo fitopatogênico Fusarium solani FS1

    OpenAIRE

    Maria de Mascena Diniz Maia; Marcia Maria Camargo de Morais; Marcos Antonio de Morais Jr.; Eduardo Henrique Magalhães Melo; José Luiz de Lima Filho

    1999-01-01

    A Brazilian strain of Fusarium solani was tested for extracellular lipase production in peptone-olive oil medium. The fungus produced 10,500 U.l-1 of lipase after 72 hours of cultivation at 25oC in shake-flask at 120 rpm in a medium containing 3% (w/v) peptone plus 0.5% (v/v) olive oil. Glucose (1% w/v) was found to inhibit the inductive effect of olive oil. Peptone concentrations below 3% (w/v) resulted in a reduced lipase production while increased olive oil concentration (above 0.5%) did n...

  7. Insights from the Fungus Fusarium oxysporum Point to High Affinity Glucose Transporters as Targets for Enhancing Ethanol Production from Lignocellulose

    Science.gov (United States)

    Ali, Shahin S.; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M.

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing. PMID:23382943

  8. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.

    Directory of Open Access Journals (Sweden)

    Shahin S Ali

    Full Text Available Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km((glucose was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.

  9. The complete mitogenome of Fusarium gerlachii

    NARCIS (Netherlands)

    Kulik, Tomasz; Brankovics, Balázs; Sawicki, Jakub; van Diepeningen, Anne D

    2014-01-01

    Abstract The structure of the Fusarium gerlachii mitogenome is similar to that of closely related Fusarium graminearum; it has a total length of 93,428 bp, the base composition of the genome is: A (35.3%), T (32.8%), C (14.7%) and G (17.2%). The mitogenome contains 13 protein-coding genes, 2

  10. Action and reaction of host and pathogen during Fusarium head blight disease

    DEFF Research Database (Denmark)

    Walter, Stephanie; Nicholson, Paul; Doohan, Fiona M

    2010-01-01

    The Fusarium species Fusarium graminearum and Fusarium culmorum, Which are responsible for Fusarium head blight (FHB) disease, reduced world-wide cereal crop yield and, as a consequence of their mycotoxin production in cereal grain, impact on both human and animal health. Their study is greatly p...

  11. One Fungus, One Name: Defining the genus Fusarium in a scientifically robust way that preserves longstanding use

    Science.gov (United States)

    In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine and basic research. This phylogenetically-guided circumscription will free scientists from any obligation to...

  12. One Fungus, One Name: Defining the Genus Fusarium in a Scientifically Robust Way That Preserves Longstanding Use

    DEFF Research Database (Denmark)

    Geiser, David M.; Aoki, Takayuki; Bacon, Charles W.

    2013-01-01

    In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligatio...

  13. Mycological survey of Korean cereals and production of mycotoxins by Fusarium isolates.

    OpenAIRE

    Lee, U S; Jang, H S; Tanaka, T; Toyasaki, N; Sugiura, Y; Oh, Y J; Cho, C M; Ueno, Y

    1986-01-01

    The fungal species isolated from Korean cereals (barley, polished barley, wheat, rye, and malt) were Alternaria spp., Aspergillus spp., Chaetomium spp., Drechslera spp., Epicoccum sp., Fusarium spp., and Penicillium spp., etc. The number of Fusarium strains isolated was 36, and their ability to produce Fusarium mycotoxins on rice was tested. Nivalenol (NIV) was produced by Fusarium graminearum (7 of 9 isolates), Fusarium oxysporum (3 of 10 isolates), and Fusarium spp. (7 of 15 isolates). Of 1...

  14. Architecture and Distribution of Introns in Core Genes of Four Fusarium Species

    Directory of Open Access Journals (Sweden)

    Mmatshepho M. Phasha

    2017-11-01

    Full Text Available Removal of introns from transcribed RNA represents a crucial step during the production of mRNA in eukaryotes. Available whole-genome sequences and expressed sequence tags (ESTs have increased our knowledge of this process and revealed various commonalities among eukaryotes. However, certain aspects of intron structure and diversity are taxon-specific, which can complicate the accuracy of in silico gene prediction methods. Using core genes, we evaluated the distribution and architecture of Fusarium circinatum spliceosomal introns, and linked these characteristics to the accuracy of the predicted gene models of the genome of this fungus. We also evaluated intron distribution and architecture in F. verticillioides, F. oxysporum, and F. graminearum, and made comparisons with F. circinatum. Results indicated that F. circinatum and the three other Fusarium species have canonical 5′ and 3′ splice sites, but with subtle differences that are apparently not shared with those of other fungal genera. The polypyrimidine tract of Fusarium introns was also found to be highly divergent among species and genes. Furthermore, the conserved adenosine nucleoside required during the first step of splicing is contained within unique branch site motifs in certain Fusarium introns. Data generated here show that introns of F. circinatum, as well as F. verticillioides, F. oxysporum, and F. graminearum, are characterized by a number of unique features such as the CTHAH and ACCAT motifs of the branch site. Incorporation of such information into genome annotation software will undoubtedly improve the accuracy of gene prediction methods used for Fusarium species and related fungi.

  15. Adsorption of thorium(IV) from aqueous solution by non-living biomass of mangrove endophytic fungus Fusarium sp. ZZF51

    International Nuclear Information System (INIS)

    Yang, S.K.; Tan, N.; Yan, X.M.; Chen, F.; Lin, Y.C.

    2013-01-01

    The adsorption of thorium(IV) from aqueous solution by mangrove endophytic fungus Fusarium sp. ZZF51 is studied by using a batch experiments. The parameters that affect the thorium(IV) sorption, such as solution pH, initial thorium(IV) concentration, contact time, and biomass dose, are discussed in detail. The maximum biosorption of thorium(IV) and the equilibrium sorption capacity are found to be 91 ± 1 % and 11.35 mg g -1 respectively at pH 3.0, contact time 20 min, initial thorium(IV) concentration 50 mg L -1 and non-living biomass dose 4.0 g L -1 . Kinetics data follow the pseudo-second-order model and equilibrium data agree with the Temkin isotherm model very well. FT-IR analysis indicates that hydroxyl and carbonyl groups play an important role in the biosorption process. (author)

  16. The cold-induced defensin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat.

    Science.gov (United States)

    Sasaki, Kentaro; Kuwabara, Chikako; Umeki, Natsuki; Fujioka, Mari; Saburi, Wataru; Matsui, Hirokazu; Abe, Fumitaka; Imai, Ryozo

    2016-06-20

    TAD1 (Triticum aestivum defensin 1) is induced during cold acclimation in winter wheat and encodes a plant defensin with antimicrobial activity. In this study, we demonstrated that recombinant TAD1 protein inhibits hyphal growth of the snow mold fungus, Typhula ishikariensis in vitro. Transgenic wheat plants overexpressing TAD1 were created and tested for resistance against T. ishikariensis. Leaf inoculation assays revealed that overexpression of TAD1 confers resistance against the snow mold. In addition, the TAD1-overexpressors showed resistance against Fusarium graminearum, which causes Fusarium head blight, a devastating disease in wheat and barley. These results indicate that TAD1 is a candidate gene to improve resistance against multiple fungal diseases in cereal crops. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Preliminary evidence of the role of hydrogen peroxide in the degradation of benzo[a]pyrene by a non-white rot fungus Fusarium solani

    International Nuclear Information System (INIS)

    Veignie, Etienne; Rafin, Catherine; Woisel, Patrice; Cazier, Fabrice

    2004-01-01

    In order to study the enzymatic mechanisms involved in the successive steps of BaP degradation by a Deuteromycete fungus Fusarium solani, we developed an indirect approach by using inhibitors of enzymes. We used either specific inhibitors of peroxidases (i.e. salicylhydroxamic acid) and of cytochrome P-450 (i.e. piperonyl butoxyde) or inhibitors of both enzymes (i.e. potassium cyanide). Surprisingly, no expected decrease of BaP degradation was observed with most inhibitors tested. On the contrary, more BaP was degraded. Only butylated hydroxytoluene, which acts as a free radical scavenger, inhibited BaP degradation. The inhibition of these enzymes, which use H 2 O 2 as a cosubstrat, might have resulted in an increase of hydrogen peroxide availability in the fungal cultures. This enhancement could induce formation of reactive oxygen species (ROS) which might be the agents that initiate benzo[a]pyrene oxidation. This study proposed a hypothetic alternative metabolic pathway involved in PAH metabolism by Fusarium solani. - An alternative metabolic pathway was demonstrated

  18. Structural elucidation of an antibiotic from the fungus Fusarium avenaceum Fries Sacc.; an amended structure for lateropyrone

    International Nuclear Information System (INIS)

    Gorst-Allman, C.P.; Van Rooyen, P.H.; Wnuk, S.; Golinski, P.; Chelkowski, J.

    1986-01-01

    The structural elucidation by X-ray crystallography of an antibiotic produced by Fusarium avenaceum Fries Sacc. is described. Some chemical reactions of the metabolite are reported, and the identity of the metabolite with lateropyrone is proposed. The structure reported for lateropyrone is amended. 1 H n.m.r. and 13 C n.m.r. are used in this study

  19. The arbuscular mycorrhizal fungus, Glomus irregulare, controls the mycotoxin production of Fusarium sambucinum in the pathogenesis of potato

    Science.gov (United States)

    Trichothecenes are an important family of mycotoxins produced by several species of the genus Fusarium. These fungi cause serious disease on infected plants and postharvest storage of crops and the toxins can cause health problems for humans and animals. Unfortunately, there are few methods for cont...

  20. Effect of soil biochar amendment on grain crop resistance to Fusarium mycotoxin contamination

    Science.gov (United States)

    Mycotoxin contamination of food and feed is among the top food safety concerns. Fusarium spp. cause serious diseases in cereal crops reducing yield and contaminating grain with mycotoxins that can be deleterious to human and animal health. Fusarium graminearum and Fusarium verticillioides infect whe...

  1. EVALUATION OF THE DEVELOPMENT OF MAIZE PLANTS (Zea mays L.) AFTER COLONIZATION BY ENDOPHYTE FUNGUS Fusarium verticillioides

    OpenAIRE

    Gomes, Ulisses de Deus; Orlandelli, Ravely Casarotti; Santos, Mariana Sanches; Polonio, Julio Cesar; Pamphile, João Alencar; Rubin Filho, Celso João

    2013-01-01

    Endophyte fungi inhabit the inside of plants without causing any damage. Benefits from endophyte-plant interactivities include vegetal growth and the plant´s defense against insects and other pathogens. Some endophytes, however, may act as latent pathogens which cause physiological changes and disease symptoms in the host. Current analysis evaluates the development of maize plants colonizer (treatment) and non-colonized (control) with the frequently found endophyte Fusarium verticillioides an...

  2. The effect of passaging of Fusarium culmorum (W.G.Sm. Sacc.on media containing calcium on the growth and development of this fungus and on disease development in wheat seedlings

    Directory of Open Access Journals (Sweden)

    Marlena Zielińska

    2013-12-01

    Full Text Available Fusarium culmorum was transferred ten times on media with a different content of calcium (O, 2, 4, 8 mM and then was used for inoculation of winter wheat seedlings (cv. Grana. It was found that the disease of wheat seedlings was weaker when they were infected with the suspension of mycelium of fungi passaged on media containing higher concentration of calcium ions. It was also found that passaging Fusarium culmorum on media containing calcium causes the inhibition of growth and development of this pathogen. Basing on the results of these experiments it can be concluded, that passaging Fusarium culmorum on media with calcium reduces the pathogenicity of this fungus to wheat seedlings.

  3. Anthesis, the infectious process and disease progress curves for fusarium head blight in wheat

    Directory of Open Access Journals (Sweden)

    Erlei Melo Reis

    2016-06-01

    Full Text Available ABSTRACT Fusarium head blight of wheat (Triticum aestivum, caused by the fungus Gibberella zeae, is a floral infecting disease that causes quantitative and qualitative losses to winter cereals. In Brazil, the sanitary situation of wheat has led to research in order to develop strategies for sustainable production, even under adverse weather conditions. To increase the knowledge of the relationship among the presence of anthesis, the infectious process, the disease progress and the saprophytic fungi present in wheat anthers, studies were conducted in the experimental field of University of Passo Fundo (UPF, using the cultivar Marfim, in the 2011 growing season. The disease incidence in spikes and spikelets was evaluated. The presence of exserted anthers increased the spike exposure time to the inoculum. The final incidence of fusarium head blight, in the field, was dependent on the presence of exserted anthers. The disease followed an aggregation pattern and its evolution increased with time, apparently showing growth according to secondary cycles. The fungi isolated from exserted anthers (Alternaria sp., Fusarium sp., Drechslera spp. and Epicoccum sp. did not compete for the infection site of fusarium head blight in wheat, not interfering with the incidence of F. graminearum.

  4. The fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death.

    Directory of Open Access Journals (Sweden)

    Mark Diamond

    Full Text Available The Fusarium genus of fungi is responsible for commercially devastating crop diseases and the contamination of cereals with harmful mycotoxins. Fusarium mycotoxins aid infection, establishment, and spread of the fungus within the host plant. We investigated the effects of the Fusarium mycotoxin deoxynivalenol (DON on the viability of Arabidopsis cells. Although it is known to trigger apoptosis in animal cells, DON treatment at low concentrations surprisingly did not kill these cells. On the contrary, we found that DON inhibited apoptosis-like programmed cell death (PCD in Arabidopsis cells subjected to abiotic stress treatment in a manner independent of mitochondrial cytochrome c release. This suggested that Fusarium may utilise mycotoxins to suppress plant apoptosis-like PCD. To test this, we infected Arabidopsis cells with a wild type and a DON-minus mutant strain of F. graminearum and found that only the DON producing strain could inhibit death induced by heat treatment. These results indicate that mycotoxins may be capable of disarming plant apoptosis-like PCD and thereby suggest a novel way that some fungi can influence plant cell fate.

  5. Harnessing the microbiome to reduce Fusarium head blight

    Science.gov (United States)

    Fusarium graminearum (Fg), the primary fungal pathogen responsible for Fusarium head blight (FHB), reduces crop yield and contaminates grain with trichothecene mycotoxins that are deleterious to plant, human and animal health. In this presentation, we will discuss two different research projects tha...

  6. The fungal myosin I is essential for Fusarium toxisome formation

    Science.gov (United States)

    The mycotoxin deoxynivalenol (DON) is the most frequently detected secondary metabolite produced by Fusarium graminearum and other Fusarium spp. To date, relatively few studies have addressed how mycotoxin biosynthesis occurs in fungal cells. Here we found that myosin I governs translation of DON bi...

  7. Genetic diversity and gene exchange in Pinus oocarpa, a Mesoamerican pine with resistance to the pitch canker fungus (Fusarium circinatum)

    Science.gov (United States)

    W.S. Dvorak; K.M. Potter

    2009-01-01

    Eleven highly polymorphic microsatellite markers were used to determine the genetic structure and levels of diversity in 51 natural populations of Pinus oocarpa across its geographic range of 3000 km in Mesoamerica. The study also included 17 populations of Pinus patula and Pinus tecunumanii chosen for their resistance or susceptibility to the pitch canker fungus based...

  8. Multiple garlic (Allium sativum L.) microRNAs regulate the immunity against the basal rot fungus Fusarium oxysporum f. sp. Cepae.

    Science.gov (United States)

    Chand, Subodh Kumar; Nanda, Satyabrata; Mishra, Rukmini; Joshi, Raj Kumar

    2017-04-01

    The basal plate rot fungus, Fusarium oxysporum f. sp. cepae (FOC), is the most devastating pathogen posing a serious threat to garlic (Allium sativum L.) production worldwide. MicroRNAs (miRNAs) are key modulators of gene expression related to development and defense responses in eukaryotes. However, the miRNA species associated with garlic immunity against FOC are yet to be explored. In the present study, a small RNA library developed from FOC infected resistant garlic line was sequenced to identify immune responsive miRNAs. Forty-five miRNAs representing 39 conserved and six novel sequences responsive to FOC were detected. qRT-PCR analyses further classified them into three classes based on their expression patterns in susceptible line CBT-As11 and in the resistant line CBT-As153. North-blot analyses of six selective miRNAs confirmed the qRT-PCR results. Expression studies on a selective set of target genes revealed a negative correlation with the complementary miRNAs. Furthermore, transgenic garlic plant overexpresing miR164a, miR168a and miR393 showed enhanced resistance to FOC, as revealed by decreased fungal growth and up-regulated expression of defense-responsive genes. These results indicate that multiple miRNAs are involved in garlic immunity against FOC and that the overexpression of miR164a, miR168a and miR393 can augment garlic resistance to Fusarium basal rot infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Banana infecting fungus, Fusarium musae, is also an opportunistic human pathogen: are bananas potential carriers and source of fusariosis?

    Science.gov (United States)

    Triest, David; Stubbe, Dirk; De Cremer, Koen; Piérard, Denis; Detandt, Monique; Hendrickx, Marijke

    2015-01-01

    During re-identification of Fusarium strains in the BCCM™/IHEM fungal collection by multilocus sequence-analysis we observed that five strains, previously identified as Fusarium verticillioides, were Fusarium musae, a species described in 2011 from banana fruits. Four strains were isolated from blood samples or biopsies of immune-suppressed patients and one was isolated from the clinical environment, all originating from different hospitals in Belgium or France, 2001-2008. The F. musae identity of our isolates was confirmed by phylogenetic analysis using reference sequences of type material. Absence of the gene cluster necessary for fumonisin biosynthesis, characteristic to F. musae, was also the case for our isolates. In vitro antifungal susceptibility testing revealed no important differences in their susceptibility compared to clinical F. verticillioides strains and terbinafine was the most effective drug. Additional clinical F. musae strains were searched by performing BLAST queries in GenBank. Eight strains were found, of which six were keratitis cases from the U.S. multistate contact lens-associated outbreak in 2005 and 2006. The two other strains were also from the U.S., causing either a skin infection or sinusitis. This report is the first to describe F. musae as causative agent of superficial and opportunistic, disseminated infections in humans. Imported bananas might act as carriers of F. musae spores and be a potential source of infection with F. musae in humans. An alternative hypothesis is that the natural distribution of F. musae is geographically a lot broader than originally suspected and F. musae is present on different plant hosts. © 2015 by The Mycological Society of America.

  10. Production of extracellular lipase by the phytopathogenic fungus Fusarium solani FS1 Produção de lipase extracelular pelo fungo fitopatogênico Fusarium solani FS1

    Directory of Open Access Journals (Sweden)

    Maria de Mascena Diniz Maia

    1999-12-01

    Full Text Available A Brazilian strain of Fusarium solani was tested for extracellular lipase production in peptone-olive oil medium. The fungus produced 10,500 U.l-1 of lipase after 72 hours of cultivation at 25oC in shake-flask at 120 rpm in a medium containing 3% (w/v peptone plus 0.5% (v/v olive oil. Glucose (1% w/v was found to inhibit the inductive effect of olive oil. Peptone concentrations below 3% (w/v resulted in a reduced lipase production while increased olive oil concentration (above 0.5% did not further stimulate lipase production. The optimum lipase activity was achieved at pH 8.6 and 30oC and a good enzyme stability (80% activity retention was observed at pH ranging from 7.6 to 8.6, and the activity rapidly dropped at temperatures above 50oC. Lipase activity was stimulated by the addition of n-hexane to the culture medium supernatants, in contrast to incubation with water-soluble solvents.

  11. Effect of Cow Urine on the Growth Characteristics of Fusarium lateritium, an Important Coffee Fungus in Zimbabwe

    Directory of Open Access Journals (Sweden)

    Timothy Gotora

    2014-01-01

    Full Text Available An in vitro assay was carried out to establish if cow urine at different concentrations (500 µL/mL, 300 µL/mL, 200 µL/mL, and 100 µL/mL can be used to control the growth of F. lateritium, the fungal agent causing Fusarium bark disease in coffee. The growth characteristics selected were conidial germination, germ tube length, mycelial growth rate, and sporulation. Copper oxychloride 50% W.P. was the standard, distilled water was the negative control, and undiluted cow urine was the positive control. The undiluted cow urine was most effective in inhibiting fungal growth with the rest of the cow urine concentrations showing dose dependent efficacy compared to the negative control (P < 0.01. Copper oxychloride had the highest efficacy of all treatments with the exception of the inhibition of mycelial growth where undiluted cow urine had higher efficacy and sporulation where efficacy was comparable to undiluted cow urine. There is potential for the use of cow urine as a means of controlling Fusarium bark disease with other advantages being availability, low cost, and limited environmental damage.

  12. Colonization of a Central Venous Catheter by the Hyaline Fungus Fusarium solani Species Complex: A Case Report and SEM Imaging

    Directory of Open Access Journals (Sweden)

    Alberto Colombo

    2013-01-01

    Full Text Available The incidence of opportunistic infections by filamentous fungi is increasing partly due to the widespread use of central venous catheters (CVC, indwelling medical devices, and antineoplastic/immunosuppressive drugs. The case of a 13-year-old boy under treatment for acute lymphoblastic leukemia is presented. The boy was readmitted to the Pediatric Ward for intermittent fever of unknown origin. Results of blood cultures drawn from peripheral venous sites or through the CVC were compared. CVC-derived bottles (but not those from peripheral veins yielded hyaline fungi that, based on morphology, were identified as belonging to the Fusarium solani species complex. Gene amplification and direct sequencing of the fungal ITS1 rRNA region and the EF-1alpha gene confirmed the isolate as belonging to the Fusarium solani species complex. Portions of the CVC were analyzed by scanning electron microscopy. Fungi mycelia with long protruding hyphae were seen into the lumen. The firm adhesion of the fungal formation to the inner surface of the catheter was evident. In the absence of systemic infection, catheter removal and prophylactic voriconazole therapy were followed by disappearance of febrile events and recovery. Thus, indwelling catheters are prone to contamination by environmental fungi.

  13. The tomato wilt fungus Fusarium oxysporum f. sp. lycopersici shares common ancestors with nonpathogenic F. oxysporum isolated from wild tomatoes in the Peruvian Andes.

    Science.gov (United States)

    Inami, Keigo; Kashiwa, Takeshi; Kawabe, Masato; Onokubo-Okabe, Akiko; Ishikawa, Nobuko; Pérez, Enrique Rodríguez; Hozumi, Takuo; Caballero, Liliana Aragón; de Baldarrago, Fatima Cáceres; Roco, Mauricio Jiménez; Madadi, Khalid A; Peever, Tobin L; Teraoka, Tohru; Kodama, Motoichiro; Arie, Tsutomu

    2014-01-01

    Fusarium oxysporum is an ascomycetous fungus that is well-known as a soilborne plant pathogen. In addition, a large population of nonpathogenic F. oxysporum (NPF) inhabits various environmental niches, including the phytosphere. To obtain an insight into the origin of plant pathogenic F. oxysporum, we focused on the tomato (Solanum lycopersicum) and its pathogenic F. oxysporum f. sp. lycopersici (FOL). We collected F. oxysporum from wild and transition Solanum spp. and modern cultivars of tomato in Chile, Ecuador, Peru, Mexico, Afghanistan, Italy, and Japan, evaluated the fungal isolates for pathogenicity, VCG, mating type, and distribution of SIX genes related to the pathogenicity of FOL, and constructed phylogenies based on ribosomal DNA intergenic spacer sequences. All F. oxysporum isolates sampled were genetically more diverse than FOL. They were not pathogenic to the tomato and did not carry SIX genes. Certain NPF isolates including those from wild Solanum spp. in Peru were grouped in FOL clades, whereas most of the NPF isolates were not. Our results suggested that the population of NPF isolates in FOL clades gave rise to FOL by gaining pathogenicity.

  14. Deoxynivalenol in wheat and wheat products from a harvest affected by fusarium head blight

    Directory of Open Access Journals (Sweden)

    Lidiane Viera MACHADO

    Full Text Available Abstract Fusarium head blight is an important disease occurring in wheat, caused mainly by the fungus Fusarium graminearum. In addition to direct damage to crops, reduced quality and yield losses, the infected grains can accumulate mycotoxins (toxic metabolites originating from prior fungal growth, especially deoxynivalenol (DON. Wheat crops harvested in 2014/2015 in southern Brazil were affected by high levels of Fusarium head blight. In this context, the aim of this study was evaluate the mycotoxicological quality of Brazilian wheat grains and wheat products (wheat flour and wheat bran for DON. DON contamination was evaluated in 1,504 wheat and wheat product samples produced in Brazil during 2014. It was determined by high performance liquid chromatograph fitted to a mass spectrometer (LC-MS / MS. The results showed that 1,000 (66.5% out of the total samples tested were positive for DON. The mean level of sample contamination was 1047 µg.kg-1, but only 242 samples (16.1% had contamination levels above the maximum permissible levels (MPL - the maximum content allowed by current Brazilian regulation. As of 2017, MPL will be stricter. Thus, research should be conducted on DON contamination of wheat and wheat products, since wheat is a raw material widely used in the food industry, and DON can cause serious harm to public health.

  15. Secretome analysis of the mycoparasitic fungus Trichoderma harzianum ALL 42 cultivated in different media supplemented with Fusarium solani cell wall or glucose.

    Science.gov (United States)

    Ramada, Marcelo Henrique Soller; Steindorff, Andrei Stecca; Bloch, Carlos; Ulhoa, Cirano José

    2016-02-01

    Trichoderma harzianum is a fungus well known for its potential as a biocontrol agent against many fungal phytopathogens. The aim of this study was to characterize the proteins secreted by T. harzianum ALL42 when its spores were inoculated and incubated for 48 h in culture media supplemented with glucose (GLU) or with cell walls from Fusarium solani (FSCW), a phytopathogen that causes severe losses in common bean and soy crops in Brazil, as well as other crop diseases around the world. Trichoderma harzianum was able to grow in Trichoderma Liquid Enzyme Production medium (TLE) and Minimal medium (MM) supplemented with FSCW and in TLE+GLU, but was unable to grow in MM+GLU medium. Protein quantification showed that TLE+FSCW and MM+FSCW had 45- and 30- fold, respectively, higher protein concentration on supernatant when compared to TLE+GLU, and this difference was observable on 2D gel electrophoresis (2DE). A total of 94 out of 105 proteins excised from 2DE maps were identified. The only protein observed in all three conditions was epl1. In the media supplemented with FSCW, different hydrolases such as chitinases, β-1,3-glucanases, glucoamylases, α-1,3-glucanases and proteases were identified, along with other proteins with no known functions in mycoparasitism, such as npp1 and cys. Trichoderma harzianum showed a complex and diverse arsenal of proteins that are secreted in response to the presence of FSCW, with novel proteins not previously described in mycoparasitic-related studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Extraction Optimization of Water-Extracted Mycelial Polysaccharide from Endophytic Fungus Fusarium oxysporum Dzf17 by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ligang Zhou

    2012-05-01

    Full Text Available Water-extracted mycelial polysaccharide (WPS from the endophytic fungus Fusarium oxysporum Dzf17 isolated from Dioscorea zingiberensis was found to be an efficient elicitor to enhance diosgenin accumulation in D. zingigerensis cultures, and also demonstrated antioxidant activity. In this study, response surface methodology (RSM was employed to optimize the extraction process of WPS from F. oxysporum Dzf17 using Box-Behnken design (BBD. The ranges of the factors investigated were 1–3 h for extraction time (X1, 80–100 °C for extraction temperature (X2, and 20–40 (v/w for ratio of water volume (mL to raw material weight (g (X3. The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis. Statistical analysis showed that the polynomial regression model was in good agreement with the experimental results with the determination coefficient (R2 of 0.9978. By solving the regression equation and analyzing the response surface contour plots, the extraction parameters were optimized as 1.7 h for extraction time, 95 °C for extraction temperature, 39 (v/w for ratio of water volume (mL to raw material weight (g, and with 2 extractions. The maximum value (10.862% of WPS yield was obtained when the WPS extraction process was conducted under the optimal conditions.

  17. Immunological detection of Fusarium species in cornmeal.

    Science.gov (United States)

    Iyer, M S; Cousin, M A

    2003-03-01

    An indirect enzyme-linked immunosorbent assay (ELISA) was developed to detect Fusarium species in foods. Antibodies to proteins extracted from the mycelia of Fusarium graminearum and Fusarium moniliforme (verticillioides) were produced in New Zealand white rabbits. These antibodies detected 13 Fusarium species in addition to the producer strains. Levels of Fusarium semitectum and Fusarium tricinctum strains were below the detection threshold. The specificity of the assay was tested against 70 molds and yeasts belonging to 23 genera. One strain of Monascus species and one strain of Phoma exigua were detected; however, these two molds are not common contaminants of cereal grains or foods and should not interfere with the assay. The indirect ELISA's detection limits for F. graminearum and F. moniliforme were 0.1 and 1 microg of mold mycelium per ml of a cornmeal mixture, respectively. When spores of each mold were added individually to cornmeal mixtures (at ca. 10 spores per g) and incubated at 25 degrees C, these spores were detected by the indirect ELISA when they reached levels of 10(2) to 10(3) CFU/ml after 24 to 36 h. The indirect ELISA developed here shows promise for the detection of Fusarium species in grains or foods.

  18. Investigation of the effect of nitrogen on severity of Fusarium Head Blight in barley

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, J.D.; Spliid, N.H.

    2010-01-01

    The effect of nitrogen on Fusarium Head Blight (FHB) in a susceptible barley cultivar was investigated using gel-based proteomics. Barley grown with either 15 or 100 kg ha(-1)N fertilizer was inoculated with Fusarium graminearum (Fg). The storage protein fraction did not change significantly...

  19. Tissue-specific and pathogen-inducible expression of a fusion protein containing a Fusarium-specific antibody and a fungal chitinase protects wheat against Fusarium pathogens and mycotoxins.

    Science.gov (United States)

    Cheng, Wei; Li, He-Ping; Zhang, Jing-Bo; Du, Hong-Jie; Wei, Qi-Yong; Huang, Tao; Yang, Peng; Kong, Xian-Wei; Liao, Yu-Cai

    2015-06-01

    Fusarium head blight (FHB) in wheat and other small grain cereals is a globally devastating disease caused by toxigenic Fusarium pathogens. Controlling FHB is a challenge because germplasm that is naturally resistant against these pathogens is inadequate. Current control measures rely on fungicides. Here, an antibody fusion comprised of the Fusarium spp.-specific recombinant antibody gene CWP2 derived from chicken, and the endochitinase gene Ech42 from the biocontrol fungus Trichoderma atroviride was introduced into the elite wheat cultivar Zhengmai9023 by particle bombardment. Expression of this fusion gene was regulated by the lemma/palea-specific promoter Lem2 derived from barley; its expression was confirmed as lemma/palea-specific in transgenic wheat. Single-floret inoculation of independent transgenic wheat lines of the T3 to T6 generations revealed significant resistance (type II) to fungal spreading, and natural infection assays in the field showed significant resistance (type I) to initial infection. Gas chromatography-mass spectrometry analysis revealed marked reduction of mycotoxins in the grains of the transgenic wheat lines. Progenies of crosses between the transgenic lines and the FHB-susceptible cultivar Huamai13 also showed significantly enhanced FHB resistance. Quantitative real-time PCR analysis revealed that the tissue-specific expression of the antibody fusion was induced by salicylic acid drenching and induced to a greater extent by F. graminearum infection. Histochemical analysis showed substantial restriction of mycelial growth in the lemma tissues of the transgenic plants. Thus, the combined tissue-specific and pathogen-inducible expression of this Fusarium-specific antibody fusion can effectively protect wheat against Fusarium pathogens and reduce mycotoxin content in grain. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Fusarium ear rot and how to screen for resistance in open pollinated maize in the Andean regions

    NARCIS (Netherlands)

    Silva, E.; Mora, E.A.; Medina, A.; Vasquez, J.; Valdez, D.; Danial, D.L.; Parlevliet, J.E.

    2007-01-01

    Ears infected with ear rot were collected from five provinces in Ecuador. Of the 44 samples analysed 26 carried Fusarium verticillioides, 11 F. subglutinans, two F. graminearum and five carried fungi different from Fusarium. The pathogenicity of ten isolates, seven of F. verticillioides and three of

  1. Genomic analysis of Bacillus subtilis OH 131.1 and coculturing with Cryptococcus flavescens for control of fusarium head blight

    Science.gov (United States)

    Bacillus subtilis OH131.1 is a bacterial antagonist of Fusarium graminearum, a plant pathogen which causes Fusarium head blight in wheat. The genome of B. subtilis OH131.1 was sequenced, annotated and analyzed to understand its potential to produce bioactive metabolites. The analysis identified 6 sy...

  2. Fusarium head blight of cereals in Denmark

    DEFF Research Database (Denmark)

    Kærgaard Nielsen, Linda; Jensen, Jens Due; Nielsen, Ghita Cordsen

    2011-01-01

    Quantitative real-time polymerase chain reaction differentiating 10 Fusarium spp. and Microdochium nivale or M. majus was applied to a total of 396 grain samples of wheat, barley, triticale, oat, and rye sampled across Denmark from 2003 to 2007, along with selected samples of wheat and barley from...... 1957 to 2000, to determine incidence and abundance of individual Fusarium spp. The mycotoxins deoxynivalenol (DON), nivalenol, zearalenone, T-2, and HT-2 were quantified using liquid chromatography–double mass spectrometry. Major differences in the Fusarium species complex among the five cereals...... as well as great yearly variation were seen. Fusarium graminearum, F. culmorum, and F. avenaceum were dominant in wheat, with DON as the dominant mycotoxin. F. langsethiae, F. culmorum, and F. avenaceum were dominant in barley and oat, leading to relatively high levels of the mycotoxins T-2 and HT-2. F...

  3. A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB.

    Science.gov (United States)

    López-Berges, Manuel S; Rispail, Nicolas; Prados-Rosales, Rafael C; Di Pietro, Antonio

    2010-07-01

    During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source-independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the DeltameaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi.

  4. A Nitrogen Response Pathway Regulates Virulence Functions in Fusarium oxysporum via the Protein Kinase TOR and the bZIP Protein MeaB[C][W

    Science.gov (United States)

    López-Berges, Manuel S.; Rispail, Nicolas; Prados-Rosales, Rafael C.; Di Pietro, Antonio

    2010-01-01

    During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source–independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the ΔmeaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi. PMID:20639450

  5. Draft Genome Sequence of Rhizobium sp. Strain TBD182, an Antagonist of the Plant-Pathogenic Fungus Fusarium oxysporum, Isolated from a Novel Hydroponics System Using Organic Fertilizer.

    Science.gov (United States)

    Iida, Yuichiro; Fujiwara, Kazuki; Someya, Nobutaka; Shinohara, Makoto

    2017-03-16

    Rhizobium sp. strain TBD182, isolated from a novel hydroponics system, is an antagonistic bacterium that inhibits the mycelial growth of Fusarium oxysporum but does not eliminate the pathogen. We report the draft genome sequence of TBD182, which may contribute to elucidation of the molecular mechanisms of its fungistatic activity. Copyright © 2017 Iida et al.

  6. Wheat Intercropping Enhances the Resistance of Watermelon to Fusarium Wilt

    OpenAIRE

    Huifang Lv; Huifang Lv; Haishun Cao; Muhammad A. Nawaz; Hamza Sohail; Yuan Huang; Fei Cheng; Qiusheng Kong; Zhilong Bie

    2018-01-01

    A fungus Fusarium oxysporum F. sp. niveum (FON) is the causal organism of Fusarium wilt in watermelon. In this study, we evaluated the effect of wheat intercropping on the Fusarium wilt of watermelon. Our results showed that wheat intercropping decreases the incidence of Fusarium wilt of watermelon, likely due to the secretion of coumaric acid from the roots of wheat that dramatically inhibits FON spore germination, sporulation, and growth. The secretion of p-hydroxybenzoic acid, ferulic acid...

  7. Mycotoxins produced by Fusarium spp. associated with Fusarium head blight of wheat in Western Australia.

    Science.gov (United States)

    Tan, Diana C; Flematti, Gavin R; Ghisalberti, Emilio L; Sivasithamparam, Krishnapillai; Chakraborty, Sukumar; Obanor, Friday; Jayasena, Kithsiri; Barbetti, Martin J

    2012-05-01

    An isolated occurrence of Fusarium head blight (FHB) of wheat was detected in the south-west region of Western Australia during the 2003 harvest season. The molecular identity of 23 isolates of Fusarium spp. collected from this region during the FHB outbreak confirmed the associated pathogens to be F. graminearum, F. acuminatum or F. tricinctum. Moreover, the toxicity of their crude extracts from Czapek-Dox liquid broth and millet seed cultures to brine shrimp (Artemia franciscana) was associated with high mortality levels. The main mycotoxins detected were type B trichothecenes (deoxynivalenol and 3-acetyldeoxynivalenol), enniatins, chlamydosporol and zearalenone. This study is the first report on the mycotoxin profiles of Fusarium spp. associated with FHB of wheat in Western Australia. This study highlights the need for monitoring not just for the presence of the specific Fusarium spp. present in any affected grain but also for their potential mycotoxin and other toxic secondary metabolites.

  8. Agricultural factors affecting Fusarium communities in wheat kernels.

    Science.gov (United States)

    Karlsson, Ida; Friberg, Hanna; Kolseth, Anna-Karin; Steinberg, Christian; Persson, Paula

    2017-07-03

    Fusarium head blight (FHB) is a devastating disease of cereals caused by Fusarium fungi. The disease is of great economic importance especially owing to reduced grain quality due to contamination by a range of mycotoxins produced by Fusarium. Disease control and prediction is difficult because of the many Fusarium species associated with FHB. Different species may respond differently to control methods and can have both competitive and synergistic interactions. Therefore, it is important to understand how agricultural practices affect Fusarium at the community level. Lower levels of Fusarium mycotoxin contamination of organically produced cereals compared with conventionally produced have been reported, but the causes of these differences are not well understood. The aim of our study was to investigate the effect of agricultural factors on Fusarium abundance and community composition in different cropping systems. Winter wheat kernels were collected from 18 organically and conventionally cultivated fields in Sweden, paired based on their geographical distance and the wheat cultivar grown. We characterised the Fusarium community in harvested wheat kernels using 454 sequencing of translation elongation factor 1-α amplicons. In addition, we quantified Fusarium spp. using real-time PCR to reveal differences in biomass between fields. We identified 12 Fusarium operational taxonomic units (OTUs) with a median of 4.5 OTUs per field. Fusarium graminearum was the most abundant species, while F. avenaceum had the highest occurrence. The abundance of Fusarium spp. ranged two orders of magnitude between fields. Two pairs of Fusarium species co-occurred between fields: F. poae with F. tricinctum and F. culmorum with F. sporotrichoides. We could not detect any difference in Fusarium communities between the organic and conventional systems. However, agricultural intensity, measured as the number of pesticide applications and the amount of nitrogen fertiliser applied, had an

  9. Updated survey of Fusarium species and toxins in Finnish cereal grains.

    Science.gov (United States)

    Hietaniemi, Veli; Rämö, Sari; Yli-Mattila, Tapani; Jestoi, Marika; Peltonen, Sari; Kartio, Mirja; Sieviläinen, Elina; Koivisto, Tauno; Parikka, Päivi

    2016-05-01

    The aim of the project was to produce updated information during 2005-14 on the Fusarium species found in Finnish cereal grains, and the toxins produced by them, as the last comprehensive survey study of Fusarium species and their toxins in Finland was carried out at the turn of the 1960s and the 1970s. Another aim was to use the latest molecular and chemical methods to investigate the occurrence and correlation of Fusarium species and their mycotoxins in Finland. The most common Fusarium species found in Finland in the FinMyco project 2005 and 2006 were F. avenaceum, F. culmorum, F. graminearum, F. poae, F. sporotrichioides and F. langsethiae. F. avenaceum was the most dominant species in barley, spring wheat and oat samples. The occurrence of F. culmorum and F. graminearum was high in oats and barley. Infection by Fusarium fungi was the lowest in winter cereal grains. The incidence of Fusarium species in 2005 was much higher than in 2006 due to weather conditions. F. langsethiae has become much more common in Finland since 2001. F. graminearum has also risen in the order of importance. A highly significant correlation was found between Fusarium graminearum DNA and deoxynivalenol (DON) levels in Finnish oats, barley and wheat. When comparing the FinMyco data in 2005-06 with the results of the Finnish safety monitoring programme for 2005-14, spring cereals were noted as being more susceptible to infection by Fusarium fungi and the formation of toxins. The contents of T-2 and HT-2 toxins and the frequency of exceptionally high DON concentrations all increased in Finland during 2005-14. Beauvericin (BEA), enniatins (ENNs) and moniliformin (MON) were also very common contaminants of Finnish grains in 2005-06. Climate change is leading to warmer weather, and this may indicate more changes in Finnish Fusarium mycobiota and toxin contents and profiles in the near future.

  10. [Features of interaction bacterial strains Micrococcus luteus LBK1 from plants varieties/hybrids cucumber and sweet pepper and with fungus Fusarium oxysporum Scelecht].

    Science.gov (United States)

    Parfeniuk, A; Sterlikova, O; Beznosko, I; Krut', V

    2014-01-01

    The article presents the results of studying the impact of bacterial strain M. luteus LBK1, stimulating the growth and development of plant varieties/hybrids of cucumber and sweet pepper on the intensity of sporulation of the fungus F. oxysporum Scelecht--fusariose rot pathogen.

  11. Fusion: a tale of recombination in an asexual fungus: The role of nuclear dynamics and hyphal fusion in horizontal chromosome transfer in Fusarium oxysporum

    NARCIS (Netherlands)

    Shahi, S.

    2016-01-01

    Recent studies have shown that not only meiotic recombination is responsible for the fast evolution of fungal pathogens. In the asexual fungus F. oxysporum (Fo) the "fast" evolving part of the genome is organized into small chromosomes and one such chromosome houses all effector genes and is

  12. Transcriptomic profiling to identify genes involved in Fusarium mycotoxin Deoxynivalenol and Zearalenone tolerance in the mycoparasitic fungus Clonostachys rosea

    DEFF Research Database (Denmark)

    Kosawang, Chatchai; Karlsson, Magnus; Jensen, Dan Funck

    2014-01-01

    a number of ATP-Binding Cassette (ABC) transporter transcripts were highly frequent in the ZEA-induced library. Subsequent bioinformatics analysis predicted that all transcripts with similarity to ABC transporters could be ascribed to only 2 ABC transporters genes, and phylogenetic analysis...... of the predicted ABC transporters suggested that they belong to group G (pleiotropic drug transporters) of the fungal ABC transporter gene family. This is the first report suggesting involvement of ABC transporters in ZEA tolerance. Expression patterns of a selected set of DON- and ZEA-induced genes were validated...... and ZEA in the mycoparasitic fungus C. rosea. Whilst metabolic readjustment is potentially the key to withstanding DON, the fungus produces ZHD101 to detoxify ZEA and ABC transporters to transport ZEA or its degradation products out from the fungal cell....

  13. Fungicidal activity of Eucalyptus tereticornis essential oil on the pathogenic fungus Fusarium oxysporum Actividad antimicótica del aceite esencial a partir de Eucalyptus tereticornis sobre el hongo patógeno Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Walter Murillo Arango

    2011-06-01

    Full Text Available The objective of present paper was to determine the antifungal activity of the Eucalyptus tereticornis (Myrtaceae essential oil and two fractions on the Fusarium oxysporum mushroom, a pathogen with clinical and agricultural significance. The total citronelal (44.8 % and geraniol (9.78 % essential oil had a fungicidal effect at a 3 g/L concentration and a fungicidal activity at small concentrations. The A and B fractions composed most of p-mentane-3,8-diol (18.95 % and geraniol acetate (24.34 %, respectively were more active than the total extract. The observations at microscopic level showed damages and changes in hyphae and chlamydospores, as well as a decrease in the number of conidia. The observed fungicidal activity and the morphologic damages were dependent on the concentration.El objetivo de este trabajo fue determinar la actividad antifúngica del aceite esencial de Eucalyptus tereticornis (Myrtaceae y 2 fracciones sobre el hongo Fusarium oxysporum, patógeno de importancia tanto clínica como agrícola. El aceite esencial total, compuesto principalmente por citronelal (44,8 %, citronelol (9,78 % presentó un efecto fungicida a una concentración de 3 g/L y actividad fungistática a concentraciones menores. La fracciones A y B compuestas en su mayoría por p-mentano-3,8-diol (18,95 % y acetato de citronelol (24,34 % respectivamente fueron más activas que el extracto total. Las observaciones a nivel microscópico mostraron daños y cambios en hifas y clamidosporas, así como disminución en el número de conidias. La actividad fungistática observada y los daños morfológicos fueron dependientes de la concentración.

  14. Studying of cellular interaction of hairpin-like peptide EcAMP1 from barnyard grass (Echinochloa crusgalli L.) seeds with plant pathogenic fungus Fusarium solani using microscopy techniques.

    Science.gov (United States)

    Vasilchenko, Alexey S; Yuryev, Mikhail; Ryazantsev, Dmitry Yu; Zavriev, Sergey K; Feofanov, Alexey V; Grishin, Eugene V; Rogozhin, Eugene A

    2016-11-01

    An interaction of recombinant hairpin-like cationic peptide EcAMP1 with conidia of plant pathogenic fungus Fusarium solani at the cellular level was studied by a combination of microscopic methods. EcAMP1 is from barnyard grass (Echinochloa crusgalli L.), and obtained by heterologous expression in Escherichia coli system. As a result, a direct relationship between hyphal growth inhibition and increasing active peptide concentration, time of incubation and fungal physiological condition has been determined. Dynamics of accumulation and redistribution of the peptide studied on fungal cellular cover and inside the conidia cells has been shown. The dynamics are dependent on time of coupling, as well as, a dissimilarity of EcAMP1 binding with cover of fungal conidia and its stepwise accumulation and diffuse localization in the cytoplasm. Correlation between structural disruption of fungal conidia and the presence of morphological changes has also been found. The correlation was found under the influence of peptide high concentrations at concentrations above 32 μM. The results indicate the presence of a binding of EcAMP1 with the surface of fungal conidia, thus, demonstrating a main specificity for its antifungal action at the cellular level. These results, however, cannot exclude the existence of attendant EcAMP1 action based on its intracellular localization on some specific targets. SCANNING 38:591-598, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  15. Fusarium graminearum in a Papilloma Virus Infected Friesian Bull in ...

    African Journals Online (AJOL)

    in their being used for animal feed rather than for human consumption (Charmley et al., 1994). A contaminated crop can be salvaged by feeding it to livestock or poultry, but further losses may be incurred due to the negative effects of mycotoxins on animal performance. Potent toxins such as the estrogenic toxin zearalenone ...

  16. Reorganization of the ER during mycotoxin production in Fusarium graminearum

    Science.gov (United States)

    Subcellular compartmentalization of metabolic pathways to particular organelles is a hallmark of eukaryotic cells, critical for their function. Understanding the developmental dynamics of organelles and attendant pathways under different metabolic states has been advanced by live cell imaging and or...

  17. Biogeography of Fusarium graminearum species complex and chemotypes: a review

    NARCIS (Netherlands)

    Lee, van der T.A.J.; Zhang, H.; Diepeningen, A.; Waalwijk, C.

    2015-01-01

    Differences in the geographic distribution of distinct trichothecene mycotoxins in wheat and barley were first recorded two decades ago. The different toxicological properties of deoxynivalenol (DON), nivalenol (NIV) and their acetylated derivatives require careful monitoring of the dynamics of

  18. Biogeography of Fusarium graminearum species complex and chemotypes : a review

    NARCIS (Netherlands)

    van der Lee, Theo; Zhang, Hao; Waalwijk, Cees; van Diepeningen, A.D.

    2015-01-01

    Differences in the geographic distribution of distinct trichothecene mycotoxins in wheat and barley were first recorded two decades ago. The different toxicological properties of deoxynivalenol (DON), nivalenol (NIV) and their acetylated derivatives require careful monitoring of the dynamics of

  19. Sorne aspects of Fusarium genus and the Fusarium oxysporum species Algunos aspectos de los hongos del genero Fusarium y de la especie Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Arbeláez Torres Germán

    2000-12-01

    Full Text Available Since the proposal of the utilization of the fungus Fusarium oxysporum for biological control of coca plants in Colombia, there is a serious discussion on different Colombian meetings about the advantages and disadvantages of its application. However in these discussions there was not enough knowledge of the fungus Fusarium oxysporum. This paper presents sorne biological and pathological aspects ofthe genus Fusarium and the species Fusarium oxysporum.Ante la propuesta de utilizar el hongo Fusarium oxysporum
    f.sp. erythoxyli para el control biológico de las plantas de
    coca en Colombia, se ha abierto una amplia discusión en distintos ámbitos nacionales sobre las bondades y los aspectos
    negativos de su aplicación. Sin embargo, en dicha discusión
    se ha notado un gran desconocimiento sobre el hongo
    Fusarium oxysporum. En este artículo se presentan diversos
    aspectos biológicos y patológicos del género Fusarium y de
    la especie Fusarium oxysporum.

  20. Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, Magnaporthe oryzae (Pyricularia oryzae) and Fusarium asiaticum.

    Science.gov (United States)

    Maeda, K; Izawa, M; Nakajima, Y; Jin, Q; Hirose, T; Nakamura, T; Koshino, H; Kanamaru, K; Ohsato, S; Kamakura, T; Kobayashi, T; Yoshida, M; Kimura, M

    2017-11-01

    Histone deacetylases (HDACs) play an important role in the regulation of chromatin structure and gene expression. We found that dark pigmentation of Magnaporthe oryzae (anamorph Pyricularia oryzae) ΔMohda1, a mutant strain in which an orthologue of the yeast HDA1 was disrupted by double cross-over homologous recombination, was significantly stimulated in liquid culture. Analysis of metabolites in a ΔMohda1 mutant culture revealed that the accumulation of shunt products of the 1,8-dihydroxynaphthalene melanin and ergosterol pathways were significantly enhanced compared to the wild-type strain. Northern blot analysis of the ΔMohda1 mutant revealed transcriptional activation of three melanin genes that are dispersed throughout the genome of M. oryzae. The effect of deletion of the yeast HDA1 orthologue was also observed in Fusarium asiaticum from the Fusarium graminearum species complex; the HDF2 deletion mutant produced increased levels of nivalenol-type trichothecenes. These results suggest that histone modification via HDA1-type HDAC regulates the production of natural products in filamentous fungi. Natural products of fungi have significant impacts on human welfare, in both detrimental and beneficial ways. Although HDA1-type histone deacetylase is not essential for vegetative growth, deletion of the gene affects the expression of clustered secondary metabolite genes in some fungi. Here, we report that such phenomena are also observed in physically unlinked genes required for melanin biosynthesis in the rice blast fungus. In addition, production of Fusarium trichothecenes, previously reported to be unaffected by HDA1 deletion, was significantly upregulated in another Fusarium species. Thus, the HDA1-inactivation strategy may be regarded as a general approach for overproduction and/or discovery of fungal metabolites. © 2017 The Society for Applied Microbiology.

  1. Root rot symptoms in sugar beet lines caused by Fusarium oxysporum f. sp. betae

    Science.gov (United States)

    The soil-borne fungus Fusarium oxysporum may cause both Fusarium yellows and Fusarium root rot diseases with severe yield losses in cultivated sugar beet worldwide. These two diseases cause similar foliar symptoms but different root response and have been proposed to be due to two distinct F. oxyspo...

  2. Combining fluorescent Pseudomonas spp. strains to enhance suppression of fusarium wilt of radish

    NARCIS (Netherlands)

    Boer, Marjan de; Sluis, Ientse van der; Loon, L.C. van; Bakker, P.A.H.M.

    1999-01-01

    Fusarium wilt diseases, caused by the fungus Fusarium oxysporum, lead to significant yield losses of crops. One strategy to control fusarium wilt is the use of antagonistic, root-colonizing Pseudomonas spp. It has been demonstrated that different strains of these bacteria suppress disease by

  3. Possible involvement of G-proteins and cAMP in the induction of progesterone hydroxylating enzyme system in the vascular wilt fungus Fusarium oxysporum.

    Science.gov (United States)

    Poli, Anna; Di Pietro, Antonio; Zigon, Dusan; Lenasi, Helena

    2009-02-01

    Fungi present the ability to hydroxylate steroids. In some filamentous fungi, progesterone induces an enzyme system which converts the compound into a less toxic hydroxylated product. We investigated the progesterone response in the vascular wilt pathogen Fusarium oxysporum, using mass spectrometry and high performance liquid chromatography (HPLC). Progesterone was mainly transformed into 15alpha-hydroxyprogesterone, which was found predominantly in the extracellular medium. The role of two conserved fungal signaling cascades in the induction of the progesterone-transforming enzyme system was studied, using knockout mutants lacking the mitogen-activated protein kinase Fmk1 or the heterotrimeric G-protein beta subunit Fgb1 functioning upstream of the cyclic adenosine monophosphate (cAMP) pathway. No steroid hydroxylation was induced in the Deltafgb1 strain, suggesting a role for the G-protein beta subunit in progesterone signaling. Exogenous cAMP restored the induction of progesterone-transforming activity in the Deltafgb1 strain, suggesting that steroid signaling in F. oxysporum is mediated by the cAMP-PKA pathway.

  4. Real-time imaging of the growth-inhibitory effect of JS399-19 on Fusarium.

    Science.gov (United States)

    Wollenberg, Rasmus D; Donau, Søren S; Nielsen, Thorbjørn T; Sørensen, Jens L; Giese, Henriette; Wimmer, Reinhard; Søndergaard, Teis E

    2016-11-01

    Real-time imaging was used to study the effects of a novel Fusarium-specific cyanoacrylate fungicide (JS399-19) on growth and morphology of four Fusarium sp. This fungicide targets the motor domain of type I myosin. Fusarium graminearum PH-1, Fusarium solani f. sp. pisi 77-13-4, Fusarium avenaceum IBT8464, and Fusarium avenaceum 05001, which has a K216Q amino-acid substitution at the resistance-implicated site in its myosin type I motor domain, were analyzed. Real-time imaging shows that JS399-19 inhibits fungal growth but not to the extent previously reported. The fungicide causes the hypha to become entangled and unable to extend vertically. This implies that type I myosin in Fusarium is essential for hyphal and mycelia propagation. The K216Q substitution correlates with reduced susceptibility in F. avenaceum. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Quick guide to polyketide synthase and nonribosomal synthetase genes in Fusarium

    DEFF Research Database (Denmark)

    Hansen, Jørgen T.; Sørensen, Jens L.; Giese, Henriette

    2012-01-01

    Fusarium species produce a plethora of bioactive polyketides and nonribosomal peptides that give rise to health problems in animals and may have drug development potential. Using the genome sequences for Fusarium graminearum, F. oxysporum, F. solani and F. verticillioides we developed a framework...... and NRPS genes in sequenced Fusarium species and their known products. With the rapid increase in the number of sequenced fungal genomes a systematic classification will greatly aid the scientific community in obtaining an overview of the number of different NRPS and PKS genes and their potential...

  6. Identification and Bioactivity of Compounds from the Mangrove Endophytic Fungus Alternaria sp.

    Directory of Open Access Journals (Sweden)

    Jinhua Wang

    2015-07-01

    Full Text Available Racemic new cyclohexenone and cyclopentenone derivatives, (±-(4R*,5S*,6S*-3-amino-4,5,6-trihydroxy-2-methoxy-5-methyl-2-cyclohexen-1-one (1 and (±-(4S*,5S*-2,4,5-trihydroxy-3-methoxy-4-methoxycarbonyl-5-methyl-2-cyclopenten-1-one (2, and two new xanthone derivatives 4-chloro-1,5-dihydroxy-3-hydroxymethyl-6-methoxycarbonyl-xanthen-9-one (3 and 2,8-dimethoxy-1,6-dimethoxycarbonyl-xanthen-9-one (4, along with one known compound, fischexanthone (5, were isolated from the culture of the mangrove endophytic fungus Alternaria sp. R6. The structures of these compounds were elucidated by analysis of their MS (Mass, one and two dimensional NMR (nuclear magnetic resonance spectroscopic data. Compounds 1 and 2 exhibited potent ABTS [2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid] scavenging activities with EC50 values of 8.19 ± 0.15 and 16.09 ± 0.01 μM, respectively. In comparison to Triadimefon, compounds 2 and 3 exhibited inhibitory activities against Fusarium graminearum with minimal inhibitory concentration (MIC values of 215.52 and 107.14 μM, respectively, and compound 3 exhibited antifungal activity against Calletotrichum musae with MIC value of 214.29 μM.

  7. Aphid Infestation Increases Fusarium langsethiae and T-2 and HT-2 Mycotoxins in Wheat

    Science.gov (United States)

    Drakulic, Jassy; Ajigboye, Olubukola; Swarup, Ranjan; Bruce, Toby

    2016-01-01

    ABSTRACT Fusarium langsethiae is a fungal pathogen of cereal crops that is an increasing problem in northern Europe, but much of its epidemiology is poorly understood. The species produces the mycotoxins T-2 and HT-2, which are highly toxic. It was hypothesized that grain aphids, Sitobion avenae, may transmit F. langsethiae inoculum between wheat plants, and a series of transmission experiments and volatile chemical analyses was performed to test this. Manual translocation of aphids from inoculated to uninfected hosts resulted in pathogen DNA accumulation in hosts. However, the free movement of wingless aphids from infected to healthy plants did not. The addition of winged aphids reared on F. langsethiae-inoculated wheat seedlings to wheat plants also did not achieve successful pathogen transfer. While our data suggested that aphid transmission of the pathogen was not very efficient, we observed an increase in disease when aphids were present. After seedling inoculation, an increase in pathogen DNA accumulation in seedling leaves was observed upon treatment with aphids. Furthermore, the presence of aphids on wheat plants with F. langsethiae-inoculated ears not only led to a rise in the amount of F. langsethiae DNA in infected grain but also to an increase in the concentrations of T-2 and HT-2 toxins, with more than 3-fold higher toxin levels than diseased plants without aphids. This work highlights that aphids increase the susceptibility of wheat host plants to F. langsethiae and that aphid infestation is a risk factor for accumulating increased levels of T-2 and HT-2 in wheat products. IMPORTANCE Fusarium langsethiae is shown here to cause increased contamination levels of grain with toxins produced by fungus when aphids share the host plant. This effect has also recently been demonstrated with Fusarium graminearum, yet the two fungal species show stark differences in their effect on aphid populations. In both cases, aphids improve the ability of the pathogens to

  8. A proteomics survey on wheat susceptibility to Fusarium head blight during grain development.

    Science.gov (United States)

    Chetouhi, Cherif; Bonhomme, Ludovic; Lecomte, Philippe; Cambon, Florence; Merlino, Marielle; Biron, David Georges; Langin, Thierry

    2015-02-01

    The mycotoxigenic fungal species Fusarium graminearum is able to attack several important cereal crops, such as wheat and barley. By causing Fusarium Head Blight (FHB) disease, F. graminearum induces yield and quality losses and poses a public health concern due to in planta mycotoxin production. The molecular and physiological plant responses to FHB, and the cellular biochemical pathways used by F. graminearum to complete its infectious process remain still unknown. In this study, a proteomics approach, combining 2D-gel approach and mass spectrometry, has been used to determine the specific protein patterns associated with the development of the fungal infection during grain growth on susceptible wheat. Our results reveal that F. graminearum infection does not deeply alter the grain proteome and does not significantly disturb the first steps of grain ontogeny but impacts molecular changes during the grain filling stage (impact on starch synthesis and storage proteins). The differentially regulated proteins identified were mainly involved in stress and defence mechanisms, primary metabolism, and main cellular processes such as signalling and transport. Our survey suggests that F. graminearum could take advantage of putative susceptibility factors closely related to grain development processes and thus provide new insights into key molecular events controlling the susceptible response to FHB in wheat grains.

  9. Influence of Agronomic and Climatic Factors on Fusarium Infestation and Mycotoxin Contamination of Cereals in Norway

    Science.gov (United States)

    Bernhoft, A.; Torp, M.; Clasen, P.-E.; Løes, A.-K.; Kristoffersen, A.B.

    2012-01-01

    A total of 602 samples of organically and conventionally grown barley, oats and wheat was collected at grain harvest during 2002–2004 in Norway. Organic and conventional samples were comparable pairs regarding cereal species, growing site and harvest time, and were analysed for Fusarium mould and mycotoxins. Agronomic and climatic factors explained 10–30% of the variation in Fusarium species and mycotoxins. Significantly lower Fusarium infestation and concentrations of important mycotoxins were found in the organic cereals. The mycotoxins deoxynivalenol (DON) and HT-2 toxin (HT-2) constitute the main risk for human and animal health in Norwegian cereals. The impacts of various agronomic and climatic factors on DON and HT-2 as well as on their main producers F. graminearum and F. langsethiae and on total Fusarium were tested by multivariate statistics. Crop rotation with non-cereals was found to reduce all investigated characteristics significantly – mycotoxin concentrations as well as various Fusarium infestations. No use of mineral fertilisers and herbicides was also found to decrease F. graminearum, whereas lodged fields increased the occurrence of this species. No use of herbicides was also found to decrease F. langsethiae, but for this species the occurrence was lower in lodged fields. Total Fusarium infestation was decreased with no use of fungicides or mineral fertilisers, and with crop rotation, as well as by using herbicides and increased by lodged fields. Clay and to some extent silty soils seemed to reduce F. graminearum in comparison with sandy soils. Concerning climate factors, low temperature before grain harvest was found to increase DON; and high air humidity before harvest to increase HT-2. F. graminearum was negatively correlated with precipitation in July but correlated with air humidity before harvest. F. langsethiae was correlated with temperature in July. Total Fusarium increased with increasing precipitation in July. Organic cereal

  10. Multiplexed imaging surface plasmon resonance (iSPR) biosensor assay for the detection of Fusarium toxins in wheat

    Science.gov (United States)

    Certain Fusarium species (F. graminearum and F. verticilloides in particular) infest grains and can produce a wide range of fungal (myco)-toxins, causing huge economic losses worldwide. A reproducible and sensitive imaging surface plasmon resonance (iSPR) assay was developed and validated for three ...

  11. Investigations on Fusarium spp. and their mycotoxins causing Fusarium ear rot of maize in Kosovo.

    Science.gov (United States)

    Shala-Mayrhofer, Vitore; Varga, Elisabeth; Marjakaj, Robert; Berthiller, Franz; Musolli, Agim; Berisha, Defrime; Kelmendi, Bakir; Lemmens, Marc

    2013-01-01

    After wheat, maize (Zea mays L.) is the second most important cereal crop in Kosovo and a major component of animal feed. The purpose of this study was to analyse the incidence and identity of the Fusarium species isolated from naturally infected maize kernels in Kosovo in 2009 and 2010, as well as the mycotoxin contamination. The disease incidence of Fusarium ear rot (from 0.7% to 40% diseased ears) on maize in Kosovo is high. The most frequently Fusarium spp. identified on maize kernels were Fusarium subglutinans, F. verticillioides/F. proliferatum and F. graminearum. Maize kernel samples were analysed by LC-MS/MS and found to be contaminated with deoxynivalenol (DON), DON-3-glucoside, 3-acetyl-DON, 15-acetyl-DON, zearalenone, zearalenone-14-sulphate, moniliformin, fumonisin B1 and fumonisin B2. This is the first report on the incidence and identification of Fusarium species isolated from naturally infected maize as well as the mycotoxin contamination in Kosovo.

  12. Suppressive Effect of Trichoderma spp. on toxigenic Fusarium species.

    Science.gov (United States)

    Błaszczyk, Lidia; Basińska-Barczak, Aneta; Ćwiek-Kupczyńska, Hanna; Gromadzka, Karolina; Popiel, Delfina; Stępień, Łukasz

    2017-03-30

    The aim of the present study was to examine the abilities of twenty-four isolates belonging to ten different Trichoderma species (i.e., Trichoderma atroviride, Trichoderma citrinoviride, Trichoderma cremeum, Trichoderma hamatum, Trichoderma harzianum, Trichoderma koningiopsis, Trichoderma longibrachiatum, Trichoderma longipile, Trichoderma viride and Trichoderma viridescens) to inhibit the mycelial growth and mycotoxin production by five Fusarium strains (i.e., Fusarium avenaceum, Fusarium cerealis, Fusarium culmorum, Fusarium graminearum and Fusarium temperatum). Dual-culture bioassay on potato dextrose agar (PDA) medium clearly documented that all of the Trichoderma strains used in the study were capable of influencing the mycelial growth of at least four of all five Fusarium species on the fourth day after co-inoculation, when there was the first apparent physical contact between antagonist and pathogen. The qualitative evaluation of the interaction between the colonies after 14 days of co-culturing on PDA medium showed that ten Trichoderma strains completely overgrew and sporulated on the colony at least one of the tested Fusarium species. Whereas, the microscopic assay provided evidence that only T. atroviride AN240 and T. viride AN255 formed dense coils around the hyphae of the pathogen from where penetration took place. Of all screened Trichoderma strains, T. atroviride AN240 was also found to be the most efficient (69-100% toxin reduction) suppressors of mycotoxins (deoxynivalenol, 3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, nivalenol, zearalenone, beauvericin, moniliformin) production by all five Fusarium species on solid substrates. This research suggests that T. atroviride AN240 can be a promising candidate for the biological control of toxigenic Fusarium species.

  13. Synthesis and characterization of chitosan nanoparticles and their effect on Fusarium head blight and oxidative activity in wheat.

    Science.gov (United States)

    Kheiri, A; Moosawi Jorf, S A; Malihipour, A; Saremi, H; Nikkhah, M

    2017-09-01

    The main aim of present study was to prepare chitosan (CS) and chitosan nanoparticles (CS/NPs) to evaluate their antifungal and oxidative activity. CS/NPs were prepared based on the ionic gelation of CS with tripolyphosphate (TPP) anions by using centrifugation and pH change. The obtained nanoparticles (NPs) were characterized by size and zeta potential analysis. The antifungal activity of the CS and CS/NPs were evaluated on the Fusarium graminearum, which causes Fusarium head blight (FHB) on wheat by the method of spraying on the Potato dextrose agar (PDA) medium. The Dynamic light scattering (DLS) indicated that particle diameter (z-average) was approximately 180.9±35.5-339.4±50.9 and 225.7±42.81-595.7±81.7nm for NPs prepared from CS with different molecular weights by using centrifugation and pH change methods, respectively. Different concentrations of CS and NPs were tested to know the inhibitory effect of F. graminearum. Low molecular weight (LMW) CS and its NPs had high potential of antifungal activity on suppress of fungus growth. The maximum percentage of growth reduction was 68.18%, and 77.5% by CS and its NPs at concentrations of 1000 and 5000ppm, respectively. In greenhouse trials, at 28days after inoculation (dpi), the area under the disease progress curve (AUDPC) from 7 dpi to 28 dpi of control plants treated with acetic acid aqueous solution and distilled water was almost up to 7.36 and 7.7, respectively, while plants treated with CS and NPs only had approximately 3.61 and 3.34, respectively. Results revealed that H 2 O 2 accumulations displayed a different pattern during the activation of plant defense systems, it had brownish sites on the infected palea. Since 24h post inoculation (hpi), the H 2 O 2 accumulations were shown in both CS and NPs, and the elevated H 2 O 2 accumulation appeared in 72 hpi in both treatments. CS and NPs at high concentration increased the degree of tissue and cell injury. The obtained results clearly suggest that CS

  14. Morphological and molecular characterization of Fusarium spp pathogenic to pecan tree in Brazil.

    Science.gov (United States)

    Lazarotto, M; Milanesi, P M; Muniz, M F B; Reiniger, L R S; Beltrame, R; Harakava, R; Blume, E

    2014-11-11

    The occurrence of Fusarium spp associated with pecan tree (Carya illinoinensis) diseases in Brazil has been observed in recent laboratory analyses in Rio Grande do Sul State. Thus, in this study, we i) obtained Fusarium isolates from plants with disease symptoms; ii) tested the pathogenicity of these Fusarium isolates to pecan; iii) characterized and grouped Fusarium isolates that were pathogenic to the pecan tree based on morphological characteristics; iv) identified Fusarium spp to the species complex level through TEF-1α sequencing; and v) compared the identification methods used in the study. Fifteen isolates collected from the inflorescences, roots, and seeds of symptomatic plants (leaf necrosis or root rot) were used for pathogenicity tests. Morphological characterization was conducted using only pathogenic isolates, for a total of 11 isolates, based on the mycelial growth rate, sporulation, colony pigmentation, and conidial length and width variables. Pathogenic isolates were grouped based on morphological characteristics, and molecular characterization was performed by sequencing TEF-1α genes. Pathogenic isolates belonging to the Fusarium chlamydosporum species complex, Fusarium graminearum species complex, Fusarium proliferatum, and Fusarium oxysporum were identified based on the TEF-1α region. Morphological characteristics were used to effectively differentiate isolates and group the isolates according to genetic similarity, particularly conidial width, which emerged as a key morphological descriptor in this study.

  15. Infection of corn ears by Fusarium spp. induces the emission of volatile sesquiterpenes.

    Science.gov (United States)

    Becker, Eva-Maria; Herrfurth, Cornelia; Irmisch, Sandra; Köllner, Tobias G; Feussner, Ivo; Karlovsky, Petr; Splivallo, Richard

    2014-06-04

    Infection of corn (Zea mays L.) ears with fungal pathogens of the Fusarium genus might result in yield losses and in the accumulation of mycotoxins. The aim of this study was to investigate whether volatile profiles could be used to identify Fusarium-infected corn ears. The volatiles released by corn ears infected by Fusarium graminearum, Fusarium verticillioides, and Fusarium subglutinans were studied. Volatile emission was recorded at 24 days postinoculation (dpi) and in a time series (from 4 to 24 dpi). Twenty-two volatiles were differentially emitted from Fusarium-infected versus healthy corn ears. These included C6-C8 compounds and sesquiterpenoids. All volatiles indicative of Fusarium infection were detectable as early as 4-8 dpi and continued to be produced to the final sampling time (early milk maturity stage). The induced emission of β-macrocarpene and β-bisabolene correlated with an increased transcript accumulation of corn terpene synthase 6/11 (tps6/11). Additionally, the modification of volatile profiles after Fusarium infection was accompanied by the induction of plant defense compounds such as zealexins and oxylipins. Together, these results reveal a broad metabolic response of the plant to pathogen attack. Volatile biomarkers of Fusarium infection are promising indicators for the early detection of fungal infection before disease symptoms become visible.

  16. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Poten tial Mycotoxin Production in China

    Directory of Open Access Journals (Sweden)

    Canxing Duan

    2016-06-01

    Full Text Available Ear rot is a serious disease that affects maize yield and grain quality worldwide. The mycotoxins are often hazardous to humans and livestock. In samples collected in China between 2009 and 2014, Fusarium verticillioides and F. graminearum species complex were the dominant fungi causing ear rot. According to the TEF-1α gene sequence, F. graminearum species complex in China included three independent species: F. graminearum, F. meridionale, and F. boothii. The key gene FUM1 responsible for the biosynthesis of fumonisin was detected in all 82 F. verticillioides isolates. Among these, 57 isolates mainly produced fumonisin B1, ranging from 2.52 to 18,416.44 µg/g for each gram of dry hyphal weight, in vitro. Three different toxigenic chemotypes were detected among 78 F. graminearum species complex: 15-ADON, NIV and 15-ADON+NIV. Sixty and 16 isolates represented the 15-ADON and NIV chemotypes, respectively; two isolates carried both 15-ADON and NIV-producing segments. All the isolates carrying NIV-specific segment were F. meridionale. The in vitro production of 15-ADON, 3-ADON, DON, and ZEN varied from 5.43 to 81,539.49; 6.04 to 19,590.61; 13.35 to 19,795.33; and 1.77 to 430.24 µg/g of dry hyphal weight, respectively. Altogether, our present data demonstrate potential main mycotoxin production of dominant pathogenic Fusarium in China.

  17. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Potential Mycotoxin Production in China

    Science.gov (United States)

    Duan, Canxing; Qin, Zihui; Yang, Zhihuan; Li, Weixi; Sun, Suli; Zhu, Zhendong; Wang, Xiaoming

    2016-01-01

    Ear rot is a serious disease that affects maize yield and grain quality worldwide. The mycotoxins are often hazardous to humans and livestock. In samples collected in China between 2009 and 2014, Fusarium verticillioides and F. graminearum species complex were the dominant fungi causing ear rot. According to the TEF-1α gene sequence, F. graminearum species complex in China included three independent species: F. graminearum, F. meridionale, and F. boothii. The key gene FUM1 responsible for the biosynthesis of fumonisin was detected in all 82 F. verticillioides isolates. Among these, 57 isolates mainly produced fumonisin B1, ranging from 2.52 to 18,416.44 µg/g for each gram of dry hyphal weight, in vitro. Three different toxigenic chemotypes were detected among 78 F. graminearum species complex: 15-ADON, NIV and 15-ADON+NIV. Sixty and 16 isolates represented the 15-ADON and NIV chemotypes, respectively; two isolates carried both 15-ADON and NIV-producing segments. All the isolates carrying NIV-specific segment were F. meridionale. The in vitro production of 15-ADON, 3-ADON, DON, and ZEN varied from 5.43 to 81,539.49; 6.04 to 19,590.61; 13.35 to 19,795.33; and 1.77 to 430.24 µg/g of dry hyphal weight, respectively. Altogether, our present data demonstrate potential main mycotoxin production of dominant pathogenic Fusarium in China. PMID:27338476

  18. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Potential Mycotoxin Production in China.

    Science.gov (United States)

    Duan, Canxing; Qin, Zihui; Yang, Zhihuan; Li, Weixi; Sun, Suli; Zhu, Zhendong; Wang, Xiaoming

    2016-06-21

    Ear rot is a serious disease that affects maize yield and grain quality worldwide. The mycotoxins are often hazardous to humans and livestock. In samples collected in China between 2009 and 2014, Fusarium verticillioides and F. graminearum species complex were the dominant fungi causing ear rot. According to the TEF-1α gene sequence, F. graminearum species complex in China included three independent species: F. graminearum, F. meridionale, and F. boothii. The key gene FUM1 responsible for the biosynthesis of fumonisin was detected in all 82 F. verticillioides isolates. Among these, 57 isolates mainly produced fumonisin B₁, ranging from 2.52 to 18,416.44 µg/g for each gram of dry hyphal weight, in vitro. Three different toxigenic chemotypes were detected among 78 F. graminearum species complex: 15-ADON, NIV and 15-ADON+NIV. Sixty and 16 isolates represented the 15-ADON and NIV chemotypes, respectively; two isolates carried both 15-ADON and NIV-producing segments. All the isolates carrying NIV-specific segment were F. meridionale. The in vitro production of 15-ADON, 3-ADON, DON, and ZEN varied from 5.43 to 81,539.49; 6.04 to 19,590.61; 13.35 to 19,795.33; and 1.77 to 430.24 µg/g of dry hyphal weight, respectively. Altogether, our present data demonstrate potential main mycotoxin production of dominant pathogenic Fusarium in China.

  19. Family disintegration: one fusarium verticillioides beta-lactamase at a time

    Science.gov (United States)

    Fusarium verticillioides is a mycotoxigenic fungus found commonly on maize, where it primarily exhibits asymptomatic endophytic growth. The F. verticillioides genome possesses approximately 30 regions that potentially encode beta-lactamase enzymatic domains. These enzymes are classically involved ...

  20. de Fusarium isolé du fruit de tomate (Solanum lycopersicum L ...

    African Journals Online (AJOL)

    Dina

    A phytopathogenic fungus Fusarium F-02 is isolated from rotten tomato fruit. ..... between Trichoderma harzianum and Pythium ultimum”. .... [31] - HAAS, and C. KEEL, “Regulation of antibiotic production in root-colonizing Pseudomonas spp.

  1. Onychomycosis by Fusarium oxysporum probably acquired in utero

    Directory of Open Access Journals (Sweden)

    Vania O. Carvalho

    2014-10-01

    Full Text Available Fusarium oxysporum has been described as a pathogen causing onychomycosis, its incidence has been increasing in immunocompetent and disseminated infection can occur in immunosuppressed individuals. We describe the first case of congenital onychomycosis in a child caused by Fusarium oxysporum. The infection being acquired in utero was proven by molecular methods with the identification of the fungus both in the nail and placenta, most probably as an ascending contamination/infection in a HIV-positive, immunosuppressed mother.

  2. Occurrence of Fusarium spp. and Fumonisins in Stored Wheat Grains Marketed in Iran

    Directory of Open Access Journals (Sweden)

    Baharuddin Salleh

    2010-12-01

    Full Text Available Wheat grains are well known to be invaded by Fusarium spp. under field and storage conditions and contaminated with fumonisins. Therefore, determining Fusarium spp. and fumonisins in wheat grains is of prime importance to develop suitable management strategies and to minimize risk. Eighty-two stored wheat samples produced in Iran were collected from various supermarkets and tested for the presence of Fusarium spp. by agar plate assay and fumonisins by HPLC. A total of 386 Fusarium strains were isolated and identified through morphological characteristics. All these strains belonged to F. culmorum, F. graminearum, F. proliferatum and F. verticillioides. Of the Fusarium species, F. graminearum was the most prevalent species, followed by F. verticillioides, F. proliferatum and then F. culmorum. Natural occurrence of fumonisin B1 (FB1 could be detected in 56 (68.2% samples ranging from 15–155 μg/kg, fumonisin B2 (FB2 in 35 (42.6% samples ranging from 12–86 μg/kg and fumonisin B3 (FB3 in 26 (31.7% samples ranging from 13–64 μg/kg. The highest FB1 levels were detected in samples from Eilam (up to 155 μg/kg and FB2 and FB3 in samples from Gilan Gharb (up to 86 μg/kg and 64 μg/kg.

  3. Occurrence of Fusarium spp. and Fumonisins in Stored Wheat Grains Marketed in Iran

    Science.gov (United States)

    Chehri, Khosrow; Jahromi, Saeed Tamadoni; Reddy, Kasa R. N.; Abbasi, Saeed; Salleh, Baharuddin

    2010-01-01

    Wheat grains are well known to be invaded by Fusarium spp. under field and storage conditions and contaminated with fumonisins. Therefore, determining Fusarium spp. and fumonisins in wheat grains is of prime importance to develop suitable management strategies and to minimize risk. Eighty-two stored wheat samples produced in Iran were collected from various supermarkets and tested for the presence of Fusarium spp. by agar plate assay and fumonisins by HPLC. A total of 386 Fusarium strains were isolated and identified through morphological characteristics. All these strains belonged to F. culmorum, F. graminearum, F. proliferatum and F. verticillioides. Of the Fusarium species, F. graminearum was the most prevalent species, followed by F. verticillioides, F. proliferatum and then F. culmorum. Natural occurrence of fumonisin B1 (FB1) could be detected in 56 (68.2%) samples ranging from 15–155 μg/kg, fumonisin B2 (FB2) in 35 (42.6%) samples ranging from 12–86 μg/kg and fumonisin B3 (FB3) in 26 (31.7%) samples ranging from 13–64 μg/kg. The highest FB1 levels were detected in samples from Eilam (up to 155 μg/kg) and FB2 and FB3 in samples from Gilan Gharb (up to 86 μg/kg and 64 μg/kg). PMID:22069576

  4. Fusarium and mycotoxin spectra in Swiss barley are affected by various cropping techniques.

    Science.gov (United States)

    Schöneberg, Torsten; Martin, Charlotte; Wettstein, Felix E; Bucheli, Thomas D; Mascher, Fabio; Bertossa, Mario; Musa, Tomke; Keller, Beat; Vogelgsang, Susanne

    2016-10-01

    Fusarium head blight is one of the most important cereal diseases worldwide. Cereals differ in terms of the main occurring Fusarium species and the infection is influenced by various factors, such as weather and cropping measures. Little is known about Fusarium species in barley in Switzerland, hence harvest samples from growers were collected in 2013 and 2014, along with information on respective cropping factors. The incidence of different Fusarium species was obtained by using a seed health test and mycotoxins were quantified by LC-MS/MS. With these techniques, the most dominant species, F. graminearum, and the most prominent mycotoxin, deoxynivalenol (DON), were identified. Between the three main Swiss cropping systems, Organic, Extenso and Proof of ecological performance, we observed differences with the lowest incidence and toxin accumulation in organically cultivated barley. Hence, we hypothesise that this finding was based on an array of growing techniques within a given cropping system. We observed that barley samples from fields with maize as previous crop had a substantially higher F. graminearum incidence and elevated DON accumulation compared with other previous crops. Furthermore, the use of reduced tillage led to a higher disease incidence and toxin content compared with samples from ploughed fields. Further factors increasing Fusarium infection were high nitrogen fertilisation as well as the application of fungicides and growth regulators. Results from the current study can be used to develop optimised cropping systems that reduce the risks of mycotoxin contamination.

  5. Occurrence of Fusarium spp. and fumonisins in stored wheat grains marketed in Iran.

    Science.gov (United States)

    Chehri, Khosrow; Jahromi, Saeed Tamadoni; Reddy, Kasa R N; Abbasi, Saeed; Salleh, Baharuddin

    2010-12-01

    Wheat grains are well known to be invaded by Fusarium spp. under field and storage conditions and contaminated with fumonisins. Therefore, determining Fusarium spp. and fumonisins in wheat grains is of prime importance to develop suitable management strategies and to minimize risk. Eighty-two stored wheat samples produced in Iran were collected from various supermarkets and tested for the presence of Fusarium spp. by agar plate assay and fumonisins by HPLC. A total of 386 Fusarium strains were isolated and identified through morphological characteristics. All these strains belonged to F. culmorum, F. graminearum, F. proliferatum and F.verticillioides. Of the Fusarium species, F. graminearum was the most prevalent species, followed by F. verticillioides, F. proliferatum and then F. culmorum. Natural occurrence of fumonisin B1 (FB1) could be detected in 56 (68.2%) samples ranging from 15-155 μg/kg, fumonisin B2 (FB2) in 35 (42.6%) samples ranging from 12-86 μg/kg and fumonisin B3 (FB3) in 26 (31.7%) samples ranging from 13-64 μg/kg. The highest FB1 levels were detected in samples from Eilam (up to 155 μg/kg) and FB2 and FB3 in samples from Gilan Gharb (up to 86 μg/kg and 64 μg/kg).

  6. Síntese e caracterização de um novo composto obtido pela reação entre hidreto de trifenilestanho e ácido (±-mandélico e avaliação de seu potencial biocida sobre o fungo Fusarium oxysporum f. sp. cubense Synthesis, characterization and evaluation of the biocide effect on the fungus Fusarium oxysporum f. sp. cubense of a new compound obtained by reaction of triphenyltin hydride and (±-mandelic acid

    Directory of Open Access Journals (Sweden)

    Roberto Santos Barbiéri

    2006-06-01

    Full Text Available O presente artigo refere-se à síntese e caracterização de um novo composto organoestânico, pela reação de ácido (±-mandélico e hidreto de trifenilestanho, em meio de acetonitrila e sob refluxo, [(C6H52SnMand 2] {Mand = C6H5CH(OHCOO], identificado por análise elementar de carbono e hidrogênio, espectroscopia no infravermelho e espectrometria de massa de alta resolução, para o qual foi proposta estrutura octaédrica com o grupo fenila em posição trans. Verificou-se que o composto apresenta ação biocida sobre o fungo Fusarium oxysporum f. sp. cubense, sendo mais efetivo que o ácido (±-mandélico livre. No entanto, a atividade biocida do composto foi menos intensa que a observada para cloreto de estanho hidratado, acetato de trifenilestanho e hidreto de trifenilestanho, empregados para fins de comparação. Nos testes de germinação de conídios e microconídios do mesmo fungo, na presença de [(C6H52SnMand 2], os índices de germinação ficaram abaixo de 11%.The present paper refers to the synthesis and characterization of a new organotin compound that was obtained by reaction of (±-mandelic acid with triphenyltin hydride in acetonitrile medium under reflux. According to hydrogen and carbon elemental analysis, infrared spectroscopy and high resolution mass spectrometry the formula of such compounds is (C6H52SnMand 2 {Mand = C6H5CH(OHCOO}. An octahedral complex, with the phenyl groups in trans position was proposed for its structure. It was observed that this compound was active against the fungus Fusarium oxysporum f. sp. cubense. The biocide effect was more intense than the one observed for(±-mandelic acid. However, it was less efficient than tin chloride hydrate, triphenyltin acetate and triphenyltin hydride. In germination assays with conides and microconides of the same fungus in the presence of [(C6H52SnMand 2], the germination rates were below 11%.

  7. Genetic transformation of Fusarium oxysporum f.sp. gladioli with Agrobacterium to study pathogenesis in Gladiolus

    Science.gov (United States)

    Fusarium rot caused by Fusarium oxysporum f.sp. gladioli (Fog) is one of the most serious diseases of Gladiolus, both in the field and in stored bulbs. In order to study the pathogenesis of this fungus, we have transformed Fog with Agrobacterium tumefaciens binary vectors containing the hygromycin B...

  8. Aerial remote sensing survey of Fusarium wilt of cotton in New Mexico and Texas

    Science.gov (United States)

    Fusarium wilt of cotton, caused by the fungus Fusarium oxysporum f. sp. vasinfectum (FOV), is a widespread cotton disease, but the more virulent FOV race 4 (FOV4) has recently been identified in the New Mexico-Texas border area near El Paso, Texas. A preliminary aerial remote sensing survey was cond...

  9. Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato

    NARCIS (Netherlands)

    Rep, Martijn; Dekker, Henk L.; Vossen, Jack H.; de Boer, Albert D.; Houterman, Petra M.; Speijer, Dave; Back, Jaap W.; de Koster, Chris G.; Cornelissen, Ben J. C.

    2002-01-01

    The protein content of tomato (Lycopersicon esculentum) xylem sap was found to change dramatically upon infection with the vascular wilt fungus Fusarium oxysporum. Peptide mass fingerprinting and mass spectrometric sequencing were used to identify the most abundant proteins appearing during

  10. Fusarium pathogenesis investigated using Galleria mellonella as a heterologous host

    Science.gov (United States)

    Coleman, Jeffrey J.; Muhammed, Maged; Kasperkovitz, Pia V.; Vyas, Jatin M.; Mylonakis, Eleftherios

    2011-01-01

    Members of the fungal genus Fusarium are capable of manifesting in a multitude of clinical infections, most commonly in immunocompromised patients. In order to better understand the interaction between the fungus and host, we have developed the larvae of the greater wax moth, Galleria mellonella, as a heterologous host for fusaria. When conidia are injected into the hemocoel of this Lepidopteran system, both clinical and environmental isolates of the fungus are able to kill the larvae at 37°C, although killing occurs more rapidly when incubated at 30°C. This killing was dependent on several other factors besides temperature, including the Fusarium strain, the number of conidia injected, and the conidia morphology, where macroconidia are more virulent than their microconidia counterpart. There was a correlation in the killing rate of Fusarium spp. when evaluated in G. mellonella and a murine model. In vivo studies indicated G. mellonella hemocytes were capable of initially phagocytosing both conidial morphologies. The G. mellonella system was also used to evaluate antifungal agents, and amphotericin B was able to confer a significant increase in survival to Fusarium infected-larvae. The G. mellonella-Fusarium pathogenicity system revealed that virulence of Fusarium spp. is similar, regardless of the origin of the isolate, and that mammalian endothermy is a major deterrent for Fusarium infection and therefore provides a suitable alternative to mammalian models to investigate the interaction between the host and this increasingly important fungal pathogen. PMID:22115447

  11. Multiplex polymerase chain reaction assay for the differential detection of trichothecene- and fumonisin-producing species of Fusarium in cornmeal.

    Science.gov (United States)

    Bluhm, B H; Flaherty, J E; Cousin, M A; Woloshuk, C P

    2002-12-01

    The genus Fusarium comprises a diverse group of fungi including several species that produce mycotoxins in food commodities. In this study, a multiplex polymerase chain reaction (PCR) assay was developed for the group-specific detection of fumonisin-producing and trichothecene-producing species of Fusarium. Primers for genus-level recognition of Fusarium spp. were designed from the internal transcribed spacer regions (ITS1 and ITS2) of rDNA. Primers for group-specific detection were designed from the TRI6 gene involved in trichothecene biosynthesis and the FUM5 gene involved in fumonisin biosynthesis. Primer specificity was determined by testing for cross-reactivity against purified genomic DNA from 43 fungal species representing 14 genera, including 9 Aspergillus spp., 9 Fusarium spp., and 10 Penicillium spp. With purified genomic DNA as a template, genus-specific recognition was observed at 10 pg per reaction; group-specific recognition occurred at 100 pg of template per reaction for the trichothecene producer Fusarium graminearum and at 1 ng of template per reaction for the fumonisin producer Fusarium verticillioides. For the application of the PCR assay, a protocol was developed to isolate fungal DNA from cornmeal. The detection of F. graminearum and its differentiation from F. verticillioides were accomplished prior to visible fungal growth at cornmeal. This level of detection is comparable to those of other methods such as enzyme-linked immunosorbent assay, and the assay described here can be used in the food industry's effort to monitor quality and safety.

  12. Causal agents of Fusarium head blight of durum wheat (Triticum durum Desf.) in central Italy and their in vitro biosynthesis of secondary metabolites.

    Science.gov (United States)

    Beccari, G; Colasante, V; Tini, F; Senatore, M T; Prodi, A; Sulyok, M; Covarelli, L

    2018-04-01

    Durum wheat samples harvested in central Italy (Umbria) were analyzed to: evaluate the occurrence of the fungal community in the grains, molecularly identify the Fusarium spp. which are part of the Fusarium head blight (FHB) complex and characterize the in vitro secondary metabolite profiles of a subset of Fusarium strains. The Fusarium genus was one of the main components of the durum wheat fungal community. The FHB complex was composed of eight species: Fusarium avenaceum (61%), F. graminearum (22%), F. poae (9%), F. culmorum (4%), F. proliferatum (2%), F. sporotrichioides (1%), F. sambucinum (0.5%) and F. langsethiae (0.5%). F. graminearum population was mainly composed of the 15-acetyldeoxynivalenol chemotype, while, F. culmorum population was composed of the 3-acetyldeoxynivalenol chemotype. In vitro characterization of secondary metabolite biosynthesis was conducted for a wide spectrum of substances, showing the mycotoxigenic potential of the species complex. F. avenaceum strains were characterized by high enniantin and moniliformin production. F. graminearum strains were in prevalence deoxynivalenol producers. F. poae strains were characterized by a high biosynthesis of beauvericin like the F. sporotrichioides strain which was also found to be a high T-2/HT-2 toxins producer. Production of aurofusarin, butenolide, gibepyrone D, fusarin C, apicidin was also reported for the analyzed strains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fungemia Due to Fusarium sacchari in an Immunosuppressed Patient

    Science.gov (United States)

    Guarro, Josep; Nucci, Marcio; Akiti, Tiyomi; Gené, Josepa; Barreiro, M. Da Gloria C.; Gonçalves, Renato T.

    2000-01-01

    The fungus Fusarium sacchari was isolated repeatedly from the blood of an immunosuppressed host. The infection was treated successfully with a small dose of amphotericin B. The strain was resistant to this antifungal in vitro. MICs and minimum fungicidal concentrations of six antifungals for the clinical isolate are provided. To our knowledge, this is the first report involving this fungus in a case of fungemia. PMID:10618130

  14. TAXONOMY OF FUSARIUM SPECIES ISOLATED FROM CULTIVATED PLANTS, WEEDS AND THEIR PATHOGENICITY FOR WHEAT

    Directory of Open Access Journals (Sweden)

    Jasenka Ćosić

    2002-06-01

    Full Text Available Fusarium species are wide-spread and known to be pathogenic agents to cultivated plants in various agroclimatic areas. During a four year investigation 10 Fusarium species and Microdochium nivale were isolated from wheat, barley, maize and soybean as well as from 10 weeds collected from 10 locations in Slavonia and Baranya. Fusarium graminearum was dominant on wheat and barley, F. moniliforme on maize and F. oxysporum on soybean. Regarding weeds, the presence of the following Fusarium species was established: F. graminearum on Amaranthus hybridus, Capsella bursa-pastoris, Lamium purpureum, Sorghum halepense and Urtica dioica, F. moniliforme on Abutilon theophrasti, F. subglutinans on Polygonum aviculare, F. avenaceum on Capsella bursa-pastoris, Rumex crispus and Matricaria sp., F. culmorum on Abutilon theophrasti, F. sporotrichioides on Polygonum aviculare, F. proliferatum and F. poae on Artemisia vulgaris. Pathogenicity test to wheat seedlings was done in our laboratory on winter wheat cultivars Slavonija and Demetra (totally 146 isolates. The most pathogenic species to wheat seedilings were F. graminearum, F. culmorum and F. sporotrichioides and the least pathogenic F. moniliforme, F. solani, F. oxysporum and F. poae. Pathogenicity test for wheat ears was done on genotypes Osk.8c9/3-94 and Osk.6.11/2 (totally 25 isolates. The results obtained by our investigation showed that there were no significant differences in pathogenicity of Fusarium species isolated from both cultivated plants and weeds. Weeds represent a constant source of inoculum of F. species for cultivated plants and they serve as epidemiologic bridges among vegetations.

  15. Suppressive effects of mycoviral proteins encoded by Magnaporthe oryzae chrysovirus 1 strain A on conidial germination of the rice blast fungus.

    Science.gov (United States)

    Urayama, Syun-Ichi; Kimura, Yuri; Katoh, Yu; Ohta, Tomoko; Onozuka, Nobuya; Fukuhara, Toshiyuki; Arie, Tsutomu; Teraoka, Tohru; Komatsu, Ken; Moriyama, Hiromitsu

    2016-09-02

    Magnaporthe oryzae chrysovirus 1 strain A (MoCV1-A) is the causal agent of growth repression and attenuated virulence (hypovirulence) of the rice blast fungus, Magnaporthe oryzae. We previously revealed that heterologous expression of the MoCV1-A ORF4 protein resulted in cytological damage to the yeasts Saccharomyces cerevisiae and Cryptococcus neoformans. Since the ORF4 protein is one of the components of viral particles, we evaluated the inhibitory effects of the purified virus particle against the conidial germination of M. oryzae, and confirmed its suppressive effects. Recombinant MoCV1-A ORF4 protein produced in Pichia pastoris was also effective for suppression of conidial germination of M. oryzae. MoCV1-A ORF4 protein sequence showed significant similarity to 6 related mycoviral proteins; Botrysphaeria dothidea chrysovirus 1, two Fusarium graminearum viruses, Fusarium oxysporum f. sp. dianthi mycovirus 1, Penicillium janczewski chrysovirus and Agaricus bisporus virus 1 in the Chrysoviridae family. Multiple alignments of the ORF4-related protein sequences showed that their central regions (210-591 aa in MoCV1-A ORF4) are relatively conserved. Indeed, yeast transformants expressing the conserved central region of MoCV1-A ORF4 protein (325-575 aa) showed similar impaired growth phenotypes as those observed in yeasts expressing the full-length MoCV1-A ORF4 protein. These data suggest that the mycovirus itself and its encoded viral protein can be useful as anti-fungal proteins to control rice blast disease caused by M. oryzae and other pathogenic fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Relationship between Fusarium spp. diversity and mycotoxin contents of mature grains in southern Belgium.

    Science.gov (United States)

    Hellin, Pierre; Dedeurwaerder, Géraldine; Duvivier, Maxime; Scauflaire, Jonathan; Huybrechts, Bart; Callebaut, Alfons; Munaut, Françoise; Legrève, Anne

    2016-07-01

    Over a 4-year period (2010-13), a survey aiming at determining the occurrence of Fusarium spp. and their relations to mycotoxins in mature grains took place in southern Belgium. The most prevalent species were F. graminearum, F. avenaceum, F. poae and F. culmorum, with large variations between years and locations. An even proportion of mating type found for F. avenaceum, F. culmorum, F. cerealis and F. tricinctum is usually a sign of ongoing sexual recombination. In contrast, an unbalanced proportion of mating type was found for F. poae and no MAT1-2 allele was present in the F. langsethiae population. Genetic chemotyping indicates a majority of deoxynivalenol (DON)-producing strains in F. culmorum (78%, all 3-ADON producers) and F. graminearum (95%, mostly 15-ADON producers), while all F. cerealis strains belong to the nivalenol (NIV) chemotype. Between 2011 and 2013, DON, NIV, enniatins (ENNs) and moniliformin (MON) were found in each field in various concentrations. By comparison, beauvericin (BEA) was scarcely detected and T-2 toxin, zearalenone and α- and β-zearalenols were never detected. Principal component analysis revealed correlations of DON with F. graminearum, ENNs and MON with F. avenaceum and NIV with F. culmorum, F. cerealis and F. poae. BEA was associated with the presence of F. tricinctum and, to a lesser extent, with the presence of F. poae. The use of genetic chemotype data revealed that DON concentrations were mostly influenced by DON-producing strains of F. graminearum and F. culmorum, whereas the concentrations of NIV were influenced by the number of NIV-producing strains of both species added to the number of F. cerealis and F. poae strains. This study emphasises the need to pay attention to less-studied Fusarium spp. for future Fusarium head blight management strategies, as they commonly co-occur in the field and are associated with a broad spectrum of mycotoxins.

  17. Impact of selected antagonistic fungi on Fusarium species – toxigenic cereal pathogens

    Directory of Open Access Journals (Sweden)

    Delfina Popiel

    2013-12-01

    Full Text Available Fusarium-ear blight is a destructive disease in various cereal-growing regions and leads to significant yield and quality losses for farmers and to contamination of cereal grains with mycotoxins, mainly deoxynivalenol and derivatives, zearalenone and moniliformin. Fusarium pathogens grow well and produce significant inoculum on crop resiudues. Reduction of mycotoxins production and pathogen sporulation may be influenced by saprophytic fungi, exhibiting antagonistic effect. Dual culture bioassays were used to examine the impact of 92 isolates (belonging to 29 fungal species against three toxigenic species, i.e. Fusarium avenaceum (Corda Saccardo, F. culmorum (W.G.Smith Saccardo and F. graminearum Schwabe. Both F.culmorum and F. graminearum isolates produce trichothecene mycotoxins and mycohormone zearalenone and are considered to be the most important cereal pathogens worldwide. Infection with those pathogens leads to accumulation of mycotoxins: deoxynivalenol (DON and zearalenone (ZEA in grains. Fusarium avenaceum isolates are producers of moniliformin (MON and enniatins. Isolates of Trichoderma sp. were found to be the most effective ones to control the growth of examined Fusarium species. The response of Fusarium isolates to antagonistic activity of Trichoderma isolates varied and also the isolates of Trichoderma differed in their antagonistic activity against Fusarium isolates. The production of MON by two isolates of F. avenaceum in dual culture on rice was reduced by 95% to 100% by T. atroviride isolate AN 35. The same antagonist reduced the amount of moniliformin from 100 μg/g to 6.5 μg/g when inoculated to rice culture contaminated with MON, which suggests the possible decomposition of this mycotoxin.

  18. MORPHOLOGICAL AND MOLECULAR IDENTIFICATION OF Fusarium SPECIES AND THEIR PATHOGENICITY FOR WHEAT

    Directory of Open Access Journals (Sweden)

    Jelena Poštić

    2012-12-01

    Full Text Available From the root and lower stem parts of weeds and plant debris of maize, wheat, oat and sunflower we isolated 300 isolates of Fusarium spp. and performed morphological and molecular identification. With molecular identification using AFLP method we determined 14 Fusarium species: F. acuminatum, F. avenaceum, F. concolor, F. crookwellense, F. equiseti, F. graminearum, F. oxysporum, F. proliferatum, F. semitectum, F. solani, F. sporotrichioides, F. subglutinans, F. venenatum and F. verticillioides.By comparing results of morphological and molecular identification we found out that determination of 16,7% isolates was incorrect. Out of 300 isolates identified with molecular methods, 50 did not belong to the species determined with morphological determination.With pathogenicity tests of 30 chosen Fusarium isolates we determined that many of them were pathogenic to wheat and maize seedlings and to wheat heads. The most pathogenic were isolates of F. graminearum from A. retroflexus, A. theophrasti and C. album, F. venenatum from maize debris and and A. theophrasti, F. crookwellense from A. lappa. Antifungal influence of 11 essential oils on mycelia growth and sporulation of chosen Fusarium isolates determined that essential oils of T. vulgaris, P. anisum and E. caryophyllus had the strongest effect on mycelial growth. Influence of essential oils on sporulation was not statistically significant.

  19. Screening of Lactic Acid Bacteria for Anti-Fusarium Activity and Optimization of Incubation Conditions.

    Science.gov (United States)

    Zhao, Hui; Vegi, Anuradha; Wolf-Hall, Charlene

    2017-10-01

    Anti-Fusarium activities of lactic acid bacteria (LAB) Lactobacillus plantarum 299V, L. plantarum NRRL-4496, and Lactobacillus rhamnosus VT1 were determined by a microdilution assay developed in this study against Fusarium graminearum 08/RG/BF/51. A cell-free Lactobacillus culture supernatant (CFLCS) of L. rhamnosus VT1 had the highest anti-Fusarium activity. Response surface methodology was used to optimize the incubation conditions for production of CFLCS. A Box-Behnken factorial design was used to investigate the effects of incubation time, shaking speed, and incubation temperature on the inhibition rate of CFLCS. A model equation was generated to predict the inhibition rate of CFLCS under various incubation conditions. A low probability value (0.0012) and associated F value of 25.10 suggested that the model was highly significant. A high R 2 value (0.978) indicated a very satisfactory model performance. Response surface methodology analysis suggested that an incubation temperature at 34°C, a shaking speed at 170 rpm, and an incubation time of 55 h were the best combination for production of CFLCS from L. rhamnosus VT1. Under these incubation conditions, a 10% L. rhamnosus VT1 CFLCS solution was predicted to inhibit the growth of F. graminearum by 75.6% in vitro and inhibited 83.7% of the growth in the validation experiment. Thus, the CFLCS of L. rhamnosus VT1 was an effective anti-Fusarium mixture.

  20. The depudecin cluster – a genetic curiosity in Fusarium langsethiae

    Science.gov (United States)

    Fusarium langsethiae is a consistent fungal contaminant on oat cereals in the Nordic region, the UK, as well as other parts of Europe. Leaving few symptoms of disease on the plant, the fungus is, however, the main producer of T-2 and HT-2 mycotoxins which can be found contaminating food and feed der...

  1. Studies on the Fusarium-lily interaction : a breeding approach

    NARCIS (Netherlands)

    Straathof, T.P.

    1994-01-01

    The soil-borne fungus Fusarium oxysporum f.sp . lilii Imle causes bulb and scale rot of lilies ( Lilium L.) , annually resulting in a considerable economical damage in bulb and flower cultivation. Presently,

  2. A novel single-stranded RNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, with similarity to hypo-like viruses

    Directory of Open Access Journals (Sweden)

    Rui eZhang

    2014-07-01

    Full Text Available Here we report a biological and molecular characterization of a novel positive-sense RNA virus isolated from a field isolate (NW10 of a filamentous phytopathogenic fungus, the white root rot fungus that is designated as Rosellinia necatrix fusarivirus 1 (RnFV1. A recently developed technology using zinc ions allowed us to transfer RnFV1 to two mycelially incompatible Rosellinia necatrix strains. A biological comparison of the virus-free and -recipient isogenic fungal strains suggested that RnFV1 infects latently and thus has no potential as a virocontrol agent. The virus has an undivided positive-sense RNA genome of 6286 nucleotides excluding a poly (A tail. The genome possesses two non-overlapping open reading frames (ORFs: a large ORF1 that encodes polypeptides with RNA replication functions and a smaller ORF2 that encodes polypeptides of unknown function. A lack of coat protein genes was suggested by the failure of virus particles from infected mycelia. No evidence was obtained by Northern analysis or classical 5'-RACE for the presence of subgenomic RNA for the downstream ORF. Sequence similarities were found in amino-acid sequence between RnFV1 putative proteins and counterparts of a previously reported mycovirus, Fusarium graminearum virus 1 (FgV1. Interestingly, several related sequences were detected by BLAST searches of independent transcriptome assembly databases one of which probably represents an entire virus genome. Phylogenetic analysis based on the conserved RNA-dependent RNA polymerase showed that RnFV1, FgV1, and these similar sequences are grouped in a cluster distinct from distantly related hypoviruses. It is proposed that a new taxonomic family termed Fusariviridae be created to include RnFV1and FgV1.

  3. Fusarium musae infected banana fruits as potential source of human fusariosis: May occur more frequently than we might think and hypotheses about infection

    Science.gov (United States)

    Triest, David; Piérard, Denis; De Cremer, Koen; Hendrickx, Marijke

    2016-01-01

    ABSTRACT The banana fruit infecting fungus Fusarium musae was originally known as a distinct population within Fusarium verticillioides. However, recently, Fusarium musae was installed as a separate species and the first cases of human infection associated with Fusarium musae were found. In this article, we report an additional survey indicating that human pathogenic Fusarium musae infections may occur more frequently than we might think. Moreover, we evaluate the hypotheses on how infection can be acquired. A first hypothesis is that banana fruits act as carriers of Fusarium musae spores and thereby be the source of human infection with Fusarium musae. Acquisition is likely to be caused through contact with Fusarium musae contaminated banana fruits, either being imported or after traveling of the patient to a banana-producing country. An alternative hypothesis is that Fusarium musae is not only present on banana fruits, but also on other plant hosts or environmental sources. PMID:27195070

  4. Phylogenomic and functional domain analysis of polyketide synthases in Fusarium

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daren W.; Butchko, Robert A.; Baker, Scott E.; Proctor, Robert H.

    2012-02-01

    Fusarium species are ubiquitous in nature, cause a range of plant diseases, and produce a variety of chemicals often referred to as secondary metabolites. Although some fungal secondary metabolites affect plant growth or protect plants from other fungi and bacteria, their presence in grain based food and feed is more often associated with a variety of diseases in plants and in animals. Many of these structurally diverse metabolites are derived from a family of related enzymes called polyketide synthases (PKSs). A search of genomic sequence of Fusarium verticillioides, F. graminearum, F. oxysporum and Nectria haematococca (anamorph F. solani) identified a total of 58 PKS genes. To gain insight into how this gene family evolved and to guide future studies, we conducted a phylogenomic and functional domain analysis. The resulting genealogy suggested that Fusarium PKSs represent 34 different groups responsible for synthesis of different core metabolites. The analyses indicate that variation in the Fusarium PKS gene family is due to gene duplication and loss events as well as enzyme gain-of-function due to the acquisition of new domains or of loss-of-function due to nucleotide mutations. Transcriptional analysis indicate that the 16 F. verticillioides PKS genes are expressed under a range of conditions, further evidence that they are functional genes that confer the ability to produce secondary metabolites.

  5. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity

    Science.gov (United States)

    Sperschneider, Jana; Gardiner, Donald M.; Thatcher, Louise F.; Lyons, Rebecca; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.

    2015-01-01

    Pathogens and hosts are in an ongoing arms race and genes involved in host–pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host–pathogen interactions for experimental verification. PMID:25994930

  6. pH regulation of recombinant glucoamylase production in Fusarium venenatum JeRS 325, a transformant with a Fusarium oxysporum alkaline (trypsin-like) protease promoter.

    Science.gov (United States)

    Wiebe, M G; Robson, G D; Shuster, J R; Trinci, A P

    1999-08-05

    Fusarium venenatum (formerly Fusarium graminearum) JeRS 325 produces heterologous glucoamylase (GAM) under the regulation of a Fusarium oxysporum alkaline (trypsin-like) protease promoter. The glucoamylase gene was used as a reporter gene to study the effects of ammonium and pH on GAM production under the control of the alkaline protease promoter. Between pH 4.0 and 5.8, GAM production in glucose-limited chemostat cultures of JeRS 325 grown at a dilution rate of 0.10 h-1 (doubling time, 6.9 h) on (NH4)2SO4 medium increased in a linear manner with increase in pH. However, at pH 4.0 and below GAM production was almost completely repressed in glucose-limited chemostat cultures grown on (NH4)2SO4 or NaNO3 medium. Thus GAM production in JeRS 325 is regulated by culture pH, not by the nature of the nitrogen source in the medium. The difficulty of using unbuffered medium when investigating putative ammonium repression is also shown. The study demonstrates the potential for use of the alkaline protease promoter in F. graminearum for the production of recombinant proteins in a pH dependent man ner. Copyright 1999 John Wiley & Sons, Inc.

  7. An endophytic fungus isolated from finger millet (Eleucine coracona produces anti-fungal natural products

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes that contribute to the antifungal activity. Here we report the first isolation of endophyte(s from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp. was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  8. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products.

    Science.gov (United States)

    Mousa, Walaa K; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N

    2015-01-01

    Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  9. Fusarium Wilt Caused by Fusarium oxysporum on Passionfruit in Korea

    Directory of Open Access Journals (Sweden)

    Jae-Ho Joa

    2018-03-01

    Full Text Available From 2014 to 2016, Fusarium wilt disease was found on fassionfruit in Iksan and Jeju, Korea. Symptoms included wilting of foliage, drying and withering of leaves, and stunting of the plants. The infected plants eventually died during growth. Colonies on potato dextrose agar were pinkish white, and felted with cottony and aerial mycelia with 35 mm after one week. Macroconidia were falcate to almost straight, thin-walled and usually 2-3 septate. Microconidia were usually formed on monophialides of the hyphae and were hyaline, smooth, oval to ellipsoidal, aseptate or medianly 1-septate, very occasionally 2-septate, slightly constricted at the septa, 3-12 x 2.5-6 μm. On the basis of the morphological characteristics and phylogenetic analyses of two molecular markers, internal transcribed spacer rDNA and translation elongation factor 1α, the fungus was identified as Fusarium oxysporum. Pathogenicity of a representative isolate was proved by artificial inoculation, fulfilling Koch's postulates. To our knowledge, this is the first report on the occurrence of F. oxysporum on fassionfruit in Korea.

  10. Interacting Environmental Stress Factors Affects Targeted Metabolomic Profiles in Stored Natural Wheat and That Inoculated with F. graminearum

    Directory of Open Access Journals (Sweden)

    Esther Garcia-Cela

    2018-01-01

    Full Text Available Changes in environmental stress impact on secondary metabolite (SM production profiles. Few studies have examined targeted SM production patterns in relation to interacting environmental conditions in stored cereals. The objectives were to examine the effect of water activity (aw; 0.95–0.90 x temperature (10–25 °C on SM production on naturally contaminated stored wheat and that inoculated with Fusarium graminearum. Samples were analysed using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS on (a total number of known SMs, (b their concentrations and (c changes under environmental stress. 24 Fusarium metabolites were quantified. Interestingly, statistical differences (ChisSq., p < 0.001 were observed in the number of SMs produced under different sets of interacting environmental conditions. The dominant metabolites in natural stored grain were deoxynivalenol (DON and nivalenol (NIV followed by a range of enniatins (A, A1, B, B1, apicidin and DON-3-glucoside at 10 °C. Increasing temperature promoted the biosynthesis of other SMs such as aurofusarin, moniliformin, zearalenone (ZEN and their derivatives. Natural wheat + F. graminearum inoculation resulted in a significant increase in the number of metabolites produced (ChisSq., p < 0.001. For ZEN and its derivatives, more was produced under cooler storage conditions. Fusarin C was enhanced in contrast to that for the enniatin group. The relative ratios of certain groups of targeted SM changed with environmental stress. Both temperature and aw affected the amounts of metabolites present, especially of DON and ZEN. This study suggests that the dominant SMs produced in stored temperate cereals are the mycotoxins for which legislation exists. However, there are changes in the ratios of key metabolites which could influence the relative contamination with individual compounds. Thus, in the future, under more extreme environmental stresses, different dominant SMs may be formed which could

  11. Antioxidant Secondary Metabolites in Cereals: Potential Involvement in Resistance to Fusarium and Mycotoxin Accumulation

    Directory of Open Access Journals (Sweden)

    Vessela eATANASOVA-PENICHON

    2016-04-01

    Full Text Available Gibberella and Fusarium Ear Rot and Fusarium Head Blight are major diseases affecting European cereals. These diseases are mainly caused by fungi of the Fusarium genus, primarily Fusarium graminearum and Fusarium verticillioides. These Fusarium species pose a serious threat to food safety because of their ability to produce a wide range of mycotoxins, including type B trichothecenes and fumonisins. Many factors such as environmental, agronomic or genetic ones may contribute to high levels of accumulation of mycotoxins in the grain and there is an urgent need to implement efficient and sustainable management strategies to reduce mycotoxin contamination. Actually, fungicides are not fully efficient to control the mycotoxin risk. In addition, because of harmful effects on human health and environment, their use should be seriously restricted in the near future. To durably solve the problem of mycotoxin accumulation, the breeding of tolerant genotypes is one of the most promising strategies for cereals. A deeper understanding of the molecular mechanisms of plant resistance to both Fusarium and mycotoxin contamination will shed light on plant-pathogen interactions and provide relevant information for improving breeding programs. Resistance to Fusarium depends on the plant ability in preventing initial infection and containing the development of the toxigenic fungi while resistance to mycotoxin contamination is also related to the capacity of plant tissues in reducing mycotoxin accumulation. This capacity can result from two mechanisms: metabolic transformation of the toxin into less toxic compounds and inhibition of toxin biosynthesis. This last mechanism involves host metabolites able to interfere with mycotoxin biosynthesis. This review aims at gathering the latest scientific advances that support the contribution of grain antioxidant secondary metabolites to the mechanisms of plant resistance to Fusarium and mycotoxin accumulation.

  12. Inoculum Potential of Fusarium spp. Relates to Tillage and Straw Management in Norwegian Fields of Spring Oats

    Science.gov (United States)

    Hofgaard, Ingerd S.; Seehusen, Till; Aamot, Heidi U.; Riley, Hugh; Razzaghian, Jafar; Le, Vinh H.; Hjelkrem, Anne-Grete R.; Dill-Macky, Ruth; Brodal, Guro

    2016-01-01

    The increased occurrence of Fusarium-mycotoxins in Norwegian cereals over the last decade, is thought to be caused by increased inoculum resulting from more cereal residues at the soil surface as a result of reduced tillage practices. In addition, weather conditions have increasingly promoted inoculum development and infection by Fusarium species. The objective of this work was to elucidate the influence of different tillage regimes (autumn plowing; autumn harrowing; spring plowing; spring harrowing) on the inoculum potential (IP) and dispersal of Fusarium spp. in spring oats. Tillage trials were conducted at two different locations in southeast Norway from 2010 to 2012. Oat residues from the previous year’s crop were collected within a week after sowing for evaluation. IP was calculated as the percentage of residues infested with Fusarium spp. multiplied by the proportion of the soil surface covered with residues. Fusarium avenaceum and F. graminearum were the most common Fusarium species recovered from oat residues. The IP of Fusarium spp. was significantly lower in plowed plots compared to those that were harrowed. Plowing in either the autumn or spring resulted in a low IP. Harrowing in autumn was more effective in reducing IP than the spring harrowing, and IP levels for the spring harrowed treatments were generally higher than all other tillage treatments examined. Surprisingly low levels of F. langsethiae were detected in the residues, although this species is a common pathogen of oat in Norway. The percentage of the residues infested with F. avenaceum, F. graminearum, F. culmorum, and F. langsethiae generally related to the quantity of DNA of the respective Fusarium species determined using quantitative PCR (qPCR). Fusarium dispersal, quantified by qPCR analysis of spore trap samples collected at and after heading, generally corresponded to the IP. Fusarium dispersal was also observed to increase after rainy periods. Our findings are in line with the

  13. Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests.

    Science.gov (United States)

    Comby, Morgane; Gacoin, Marie; Robineau, Mathilde; Rabenoelina, Fanja; Ptas, Sébastien; Dupont, Joëlle; Profizi, Camille; Baillieul, Fabienne

    2017-09-01

    In order to find biological control agents (BCAs) for the management of Fusarium head blight (FHB), a major disease on wheat crops worldwide, 86 microorganisms isolated from inner tissues of wheat plants were discriminated for their ability to inhibit the growth of Fusarium graminearum and Fusarium culmorum by in vitro dual culture assays. A group of 22 strains appeared very effective to inhibit F. graminearum (inhibition of 30-51%) and they were also globally effective in controlling F. culmorum (inhibition of 15-53%). Further evaluation of a subselection of strains by screening on detached spikelets in vitro confirmed three species, namely Phoma glomerata, Aureobasidium proteae and Sarocladium kiliense, that have not yet been reported for their efficacy against Fusarium spp., indicating that looking for BCAs toward FHB among wheat endophytes proved to be promising. The efficacy of some strains turned out different between both in vitro screening approaches, raising the importance of finding the most appropriate screening approach for the search of BCAs. This study pointed out the interest of the test on detached wheat spikelets that provided information about a potential pathogenicity, the growth capacity and efficacy of the endophyte strains on the targeted plant, before testing them on whole plants. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Prevalence, Characterization, and Mycotoxin Production Ability of Fusarium Species on Korean Adlay (Coix lacrymal-jobi L. Seeds

    Directory of Open Access Journals (Sweden)

    Tae Jin An

    2016-10-01

    Full Text Available Adlay seed samples were collected from three adlay growing regions (Yeoncheon, Hwasun, and Eumseong region in Korea during 2012. Among all the samples collected, 400 seeds were tested for fungal occurrence by standard blotter and test tube agar methods and different taxonomic groups of fungal genera were detected. The most predominant fungal genera encountered were Fusarium, Phoma, Alternaria, Cladosporium, Curvularia, Cochliobolus and Leptosphaerulina. Fusarium species accounted for 45.6% of all species found; and, with phylogenetic analysis based on the combined sequences of two protein coding genes (EF-1α and β-tubulin, 10 Fusarium species were characterized namely, F. incarnatum (11.67%, F. kyushuense (10.33%, F. fujikuroi (8.67%, F. concentricum (6.00%, F. asiaticum (5.67%, F. graminearum (1.67%, F. miscanthi (0.67%, F. polyphialidicum (0.33%, F. armeniacum (0.33%, and F. thapsinum (0.33%. The Fusarium species were then examined for their morphological characteristics to confirm their identity. Morphological observations of the species correlated well with and confirmed their molecular identification. The ability of these isolates to produce the mycotoxins fumonisin (FUM and zearalenone (ZEN was tested by the ELISA quantitative analysis method. The result revealed that FUM was produced only by F. fujikuroi and that ZEN was produced by F. asiaticum and F. graminearum.

  15. Changes in the Fusarium Head Blight Complex of Malting Barley in a Three-Year Field Experiment in Italy

    Science.gov (United States)

    Beccari, Giovanni; Prodi, Antonio; Tini, Francesco; Bonciarelli, Umberto; Onofri, Andrea; Oueslati, Souheib; Limayma, Marwa; Covarelli, Lorenzo

    2017-01-01

    In this study, conducted for three years on eleven malting barley varieties cultivated in central Italy, the incidence of different mycotoxigenic fungal genera, the identification of the Fusarium species associated with the Fusarium Head Blight (FHB) complex, and kernels contamination with deoxynivalenol (DON) and T-2 mycotoxins were determined. The influence of climatic conditions on Fusarium infections and FHB complex composition was also investigated. Fusarium species were always present in the three years and the high average and maximum temperatures during anthesis mainly favored their occurrence. The FHB complex was subject to changes during the three years and the main causal agents were F. poae, F. avenaceum, F. tricinctum and F. graminearum, which, even if constantly present, never represented the principal FHB agent. The relative incidence of Fusarium species changed because of climatic conditions occurring during the seasons. The FHB complex was composed of many different Fusarium species and some of them were associated with a specific variety and/or with specific weather parameters, indicating that the interaction between a certain plant genotype and climatic conditions may influence the presence of Fusarium spp. causing infections. With regard to mycotoxin contamination, T-2 toxin, in some cases, was found in kernels at levels that exceeded EU recommended values. PMID:28353653

  16. Changes in the Fusarium Head Blight Complex of Malting Barley in a Three-Year Field Experiment in Italy

    Directory of Open Access Journals (Sweden)

    Giovanni Beccari

    2017-03-01

    Full Text Available In this study, conducted for three years on eleven malting barley varieties cultivated in central Italy, the incidence of different mycotoxigenic fungal genera, the identification of the Fusarium species associated with the Fusarium Head Blight (FHB complex, and kernels contamination with deoxynivalenol (DON and T-2 mycotoxins were determined. The influence of climatic conditions on Fusarium infections and FHB complex composition was also investigated. Fusarium species were always present in the three years and the high average and maximum temperatures during anthesis mainly favored their occurrence. The FHB complex was subject to changes during the three years and the main causal agents were F. poae, F. avenaceum, F. tricinctum and F. graminearum, which, even if constantly present, never represented the principal FHB agent. The relative incidence of Fusarium species changed because of climatic conditions occurring during the seasons. The FHB complex was composed of many different Fusarium species and some of them were associated with a specific variety and/or with specific weather parameters, indicating that the interaction between a certain plant genotype and climatic conditions may influence the presence of Fusarium spp. causing infections. With regard to mycotoxin contamination, T-2 toxin, in some cases, was found in kernels at levels that exceeded EU recommended values.

  17. Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides

    DEFF Research Database (Denmark)

    Thrane, Ulf; Adler, A.; Clasen, P.E.

    2004-01-01

    The production of mycotoxins and other metabolites by 109 strains of Fusarium langsethiae, Fusarium poae, Fusarium sporotrichioides, and F. kyushuense was investigated independently in four laboratories by liquid or gas chromatography analyses of cultural extracts with UV diode array, electron...

  18. Inoculum potential of Fusarium spp. relates to tillage and straw management in Norwegian fields of spring oats

    Directory of Open Access Journals (Sweden)

    Ingerd Skow Hofgaard

    2016-04-01

    Full Text Available The increased occurrence of Fusarium-mycotoxins in Norwegian cereals over the last decade, is thought to be caused by increased inoculum resulting from more cereal residues at the soil surface as a result of reduced tillage practices. In addition, weather conditions have increasingly promoted inoculum development and infection by Fusarium species. The objective of this work was to elucidate the influence of different tillage regimes (autumn plowing; autumn harrowing; spring plowing; spring harrowing on the inoculum potential (IP and dispersal of Fusarium spp. in spring oats. Tillage trials were conducted at two different locations in southeast Norway from 2010 to 2012. Oat residues from the previous year’s crop were collected within a week after sowing for evaluation. IP was calculated as the percentage of residues infested with Fusarium spp. multiplied by the proportion of the soil surface covered with residues. F. avenaceum and F. graminearum were the most common Fusarium species recovered from oat residues. The IP of Fusarium spp. was significantly lower in plowed plots compared to those that were harrowed. Plowing in either the autumn or spring resulted in a low IP. Harrowing in autumn was more effective in reducing IP than the spring harrowing, and IP levels for the spring harrowed treatments were generally higher than all other tillage treatments examined. Surprisingly low levels of F. langsethiae were detected in the residues, although this species is a common pathogen of oat in Norway. The percentage of the residues infested with F. avenaceum, F. graminearum, F. culmorum and F. langsethiae generally related to the quantity of DNA of the respective Fusarium species determined using qPCR. Fusarium dispersal, quantified by quantitative PCR analysis of spore trap samples collected at and after heading, generally corresponded to IP. Fusarium dispersal was also observed to increase after rainy periods. Our findings are in line with the

  19. Genetic mapping and identification of quantitative trait loci associated with resistance to Fusarium oxysporum f. sp. niveum races 1 and 2 in watermelon

    Science.gov (United States)

    Fusarium wilt is a major disease of watermelon caused by the soil-borne fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). Fon race 1 is most prevalent throughout the U.S. while race 2 is more virulent. Our overall objective is to identify and utilize ...

  20. Effectiveness of composts and Trichoderma strains for control of Fusarium wilt of tomato

    Directory of Open Access Journals (Sweden)

    Yousra TAGHDI

    2015-09-01

    Full Text Available Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (FOL is a major limiting disease in tomato production in Morocco. Commercial and locally produced Moroccan composts and peat were found to reduce Fusarium wilt in tomato plants. We explored the presence of Trichoderma strains in these materials, and in six soils sampled in the North West of Morocco, where a low incidence of Fusarium wilt had been previously observed. The most abundant Trichoderma-like fungus was selected from each soil, compost or peat sample. Twelve Trichoderma strains were isolated and identified molecularly. Trichoderma asperellum CT9 and Trichoderma virens ST11 showed the greatest overall antagonistic activity against FOL, Rhizoctonia solani, Botrytis cinerea and Pythium ultimum. The three strains evaluated in in planta tests, CT9, ST11 and T. virens ST10, reduced tomato Fusarium wilt, and strain ST11  also promoted growth of tomato plants.

  1. Evaluation of two methods for direct detection of Fusarium spp. in water.

    Science.gov (United States)

    Graça, Mariana G; van der Heijden, Inneke M; Perdigão, Lauro; Taira, Cleison; Costa, Silvia F; Levin, Anna S

    2016-04-01

    Fusarium is a waterborne fungus that causes severe infections especially in patients with prolonged neutropenia. Traditionally, the detection of Fusarium in water is done by culturing which is difficult and time consuming. A faster method is necessary to prevent exposure of susceptible patients to contaminated water. The objective of this study was to develop a molecular technique for direct detection of Fusarium in water. A direct DNA extraction method from water was developed and coupled to a genus-specific PCR, to detect 3 species of Fusarium (verticillioides, oxysporum and solani). The detection limits were 10 cells/L and 1 cell/L for the molecular and culture methods, respectively. To our knowledge, this is the first method developed to detect Fusarium directly from water. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effect of Environmental Factors on Fusarium Species and Associated Mycotoxins in Maize Grain Grown in Poland.

    Directory of Open Access Journals (Sweden)

    Elżbieta Czembor

    Full Text Available Maize is one of the most important crops and Poland is the fifth largest producing country in Europe. Diseases caused by Fusarium spp. can affect the yield and grain quality of maize because of contamination with numerous mycotoxins produced by these fungi. The present study was performed to identify the prevailing Fusarium species and the environmental factors affecting their frequencies and the contamination of grain with the main mycotoxins deoxynivalenol (DON, zearalenone (ZON and fumonisin B1 (FB1. Thirty kernel samples were collected in three locations in 2011 and in seven locations in 2012 from three hybrids. On average, 25.24% kernels were colonized by Fusarium spp. (424 strains were isolated. Fusarium verticillioides and F. temperatum were the most prevalent species, F. subglutinans, F. proliferatum and F. graminearum were in minor abundance. In total, 272 isolates of F. verticillioides and 81 isolates of F. temperatum were identified. Fusarium temperatum frequency ranged from 1.70% to 28.57% and differences between locations were significant. Fumonisin B1 was found in all tested samples. DON was found in 66.67% and ZON in 43.33% of samples. Rainfall amount positively affected F. temperatum and F. subglutinans frequency in opposite to mean temperatures in July. On the other hand, relationships between frequency of these species and historical data from 1950-2000 for annual temperature range were negative in contrast to the coldest quarter temperatures.

  3. Differences in Fusarium Species in brown midrib Sorghum and in Air Populations in Production Fields.

    Science.gov (United States)

    Funnell-Harris, Deanna L; Scully, Erin D; Sattler, Scott E; French, Roy C; O'Neill, Patrick M; Pedersen, Jeffrey F

    2017-11-01

    Several Fusarium spp. cause sorghum (Sorghum bicolor) grain mold, resulting in deterioration and mycotoxin production in the field and during storage. Fungal isolates from the air (2005 to 2006) and from leaves and grain from wild-type and brown midrib (bmr)-6 and bmr12 plants (2002 to 2003) were collected from two locations. Compared with the wild type, bmr plants have reduced lignin content, altered cell wall composition, and different levels of phenolic intermediates. Multilocus maximum-likelihood analysis identified two Fusarium thapsinum operational taxonomic units (OTU). One was identified at greater frequency in grain and leaves of bmr and wild-type plants but was infrequently detected in air. Nine F. graminearum OTU were identified: one was detected at low levels in grain and leaves while the rest were only detected in air. Wright's F statistic (F ST ) indicated that Fusarium air populations differentiated between locations during crop anthesis but did not differ during vegetative growth, grain development, and maturity. F ST also indicated that Fusarium populations from wild-type grain were differentiated from those in bmr6 or bmr12 grain at one location but, at the second location, populations from wild-type and bmr6 grain were more similar. Thus, impairing monolignol biosynthesis substantially effected Fusarium populations but environment had a strong influence.

  4. Effect of Environmental Factors on Fusarium Species and Associated Mycotoxins in Maize Grain Grown in Poland

    Science.gov (United States)

    Czembor, Elżbieta; Stępień, Łukasz; Waśkiewicz, Agnieszka

    2015-01-01

    Maize is one of the most important crops and Poland is the fifth largest producing country in Europe. Diseases caused by Fusarium spp. can affect the yield and grain quality of maize because of contamination with numerous mycotoxins produced by these fungi. The present study was performed to identify the prevailing Fusarium species and the environmental factors affecting their frequencies and the contamination of grain with the main mycotoxins deoxynivalenol (DON), zearalenone (ZON) and fumonisin B1 (FB1). Thirty kernel samples were collected in three locations in 2011 and in seven locations in 2012 from three hybrids. On average, 25.24% kernels were colonized by Fusarium spp. (424 strains were isolated). Fusarium verticillioides and F. temperatum were the most prevalent species, F. subglutinans, F. proliferatum and F. graminearum were in minor abundance. In total, 272 isolates of F. verticillioides and 81 isolates of F. temperatum were identified. Fusarium temperatum frequency ranged from 1.70% to 28.57% and differences between locations were significant. Fumonisin B1 was found in all tested samples. DON was found in 66.67% and ZON in 43.33% of samples. Rainfall amount positively affected F. temperatum and F. subglutinans frequency in opposite to mean temperatures in July. On the other hand, relationships between frequency of these species and historical data from 1950–2000 for annual temperature range were negative in contrast to the coldest quarter temperatures. PMID:26225823

  5. An antibody that confers plant disease resistance targets a membrane-bound glyoxal oxidase in Fusarium.

    Science.gov (United States)

    Song, Xiu-Shi; Xing, Shu; Li, He-Ping; Zhang, Jing-Bo; Qu, Bo; Jiang, Jin-He; Fan, Chao; Yang, Peng; Liu, Jin-Long; Hu, Zu-Quan; Xue, Sheng; Liao, Yu-Cai

    2016-05-01

    Plant germplasm resources with natural resistance against globally important toxigenic Fusarium are inadequate. CWP2, a Fusarium genus-specific antibody, confers durable resistance to different Fusarium pathogens that infect cereals and other crops, producing mycotoxins. However, the nature of the CWP2 target is not known. Thus, investigation of the gene coding for the CWP2 antibody target will likely provide critical insights into the mechanism underlying the resistance mediated by this disease-resistance antibody. Immunoblots and mass spectrometry analysis of two-dimensional electrophoresis gels containing cell wall proteins from Fusarium graminearum (Fg) revealed that a glyoxal oxidase (GLX) is the CWP2 antigen. Cellular localization studies showed that GLX is localized to the plasma membrane. This GLX efficiently catalyzes hydrogen peroxide production; this enzymatic activity was specifically inhibited by the CWP2 antibody. GLX-deletion strains of Fg, F. verticillioides (Fv) and F. oxysporum had significantly reduced virulence on plants. The GLX-deletion Fg and Fv strains had markedly reduced mycotoxin accumulation, and the expression of key genes in mycotoxin metabolism was downregulated. This study reveals a single gene-encoded and highly conserved cellular surface antigen that is specifically recognized by the disease-resistance antibody CWP2 and regulates both virulence and mycotoxin biosynthesis in Fusarium species. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Biological control of Fusarium moniliforme in maize.

    Science.gov (United States)

    Bacon, C W; Yates, I E; Hinton, D M; Meredith, F

    2001-05-01

    Fusarium moniliforme Sheldon, a biological species of the mating populations within the (italic)Gibberella fujikuroi species complex, i.e., population A [= G. moniliformis (Sheld.) Wineland], is an example of a facultative fungal endophyte. During the biotrophic endophytic association with maize, as well as during saprophytic growth, F. moniliforme produces the fumonisins. The fungus is transmitted vertically and horizontally to the next generation of plants via clonal infection of seeds and plant debris. Horizontal infection is the manner by which this fungus is spread contagiously and through which infection occurs from the outside that can be reduced by application of certain fungicides. The endophytic phase is vertically transmitted. This type infection is important because it is not controlled by seed applications of fungicides, and it remains the reservoir from which infection and toxin biosynthesis takes place in each generation of plants. Thus, vertical transmission of this fungus is just as important as horizontal transmission. A biological control system using an endophytic bacterium, Bacillus subtilis, has been developed that shows great promise for reducing mycotoxin accumulation during the endophytic (vertical transmission) growth phase. Because this bacterium occupies the identical ecological niche within the plant, it is considered an ecological homologue to F. moniliforme, and the inhibitory mechanism, regardless of the mode of action, operates on the competitive exclusion principle. In addition to this bacterium, an isolate of a species of the fungus Trichoderma shows promise in the postharvest control of the growth and toxin accumulation from F. moniliforme on corn in storage.

  7. Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium.

    Science.gov (United States)

    Brown, Daren W; Proctor, Robert H

    2016-04-01

    Species of the fungus Fusarium collectively cause disease on almost all crop plants and produce numerous natural products (NPs), including some of the mycotoxins of greatest concern to agriculture. Many Fusarium NPs are derived from polyketide synthases (PKSs), large multi-domain enzymes that catalyze sequential condensation of simple carboxylic acids to form polyketides. To gain insight into the biosynthesis of polyketide-derived NPs in Fusarium, we retrieved 488 PKS gene sequences from genome sequences of 31 species of the fungus. In addition to these apparently functional PKS genes, the genomes collectively included 81 pseudogenized PKS genes. Phylogenetic analysis resolved the PKS genes into 67 clades, and based on multiple lines of evidence, we propose that homologs in each clade are responsible for synthesis of a polyketide that is distinct from those synthesized by PKSs in other clades. The presence and absence of PKS genes among the species examined indicated marked differences in distribution of PKS homologs. Comparisons of Fusarium PKS genes and genes flanking them to those from other Ascomycetes provided evidence that Fusarium has the genetic potential to synthesize multiple NPs that are the same or similar to those reported in other fungi, but that have not yet been reported in Fusarium. The results also highlight ways in which such analyses can help guide identification of novel Fusarium NPs and differences in NP biosynthetic capabilities that exist among fungi. Published by Elsevier Inc.

  8. Antifungal and antimycotoxigenic metabolites in Anacardiaceae species from northwest Argentina: isolation, identification and potential for control of Fusarium species.

    Science.gov (United States)

    Aristimuño Ficoseco, M E; Vattuone, M A; Audenaert, K; Catalán, C A N; Sampietro, D A

    2014-05-01

    The purpose of this research was to identify antifungal compounds from leaves of Schinus and Schinopsis species useful for the control of toxigenic Fusarium species responsible of ear rot diseases. Leaves of Schinopsis (S. lorentzii and S. haenkeana) and Schinus (S. areira, S. gracilipes and S. fasciculatus) were sequentially extracted with dichloromethane, ethyl acetate and methanol. The antifungal activity of the fraction soluble in methanol of these extracts (fCH2Cl2, fAcEt and fMeOH, respectively) was determined by the broth microdilution method and the disc-diffusion method. The minimum inhibitory dose (MID), the diameter of growth inhibition (DGI) and the minimum concentration for 50% inhibition of fungal growth (MIC50) were calculated. The fCH2Cl2 and fAcEt of the Schinopsis species had the lowest MID and MIC50 values and the highest DGI. The antifungal compounds were identified as lupeol and a mix of phenolic lipids. The last one had the highest antifungal activity with MIC50 31-28 μg g(-1) and 165-150 μg g(-1) on Fusarium graminearum and Fusarium verticillioides, respectively. The identified metabolites completely inhibited fumonisin and deoxynivalenol production at lower concentrations than ferulic acid, a natural antimycotoxigenic compound. It was proven that lupeol and phenolic lipids were inhibitors of both fungal growth and mycotoxin production of toxigenic Fusarium species. This fact is specially interesting in the control of the toxigenic Fusarium species because several commercial antifungals showed to stimulate mycotoxin biosynthesis at sublethal concentrations. Control of toxigenic Fusarium species requires compounds able to inhibit both fungal growth and mycotoxin production. Our results suggest that the use of lupeol as food preservative and the phenolic lipids as fungal growth inhibitors of F. verticillioides and F. graminearum did not imply an increase in mycotoxin accumulation. © 2014 The Society for Applied Microbiology.

  9. Fusarium Keratitis in Germany

    Science.gov (United States)

    Stasch, Serena; Kaerger, Kerstin; Hamprecht, Axel; Roth, Mathias; Cornely, Oliver A.; Geerling, Gerd; Mackenzie, Colin R.; Kurzai, Oliver; von Lilienfeld-Toal, Marie

    2017-01-01

    ABSTRACT Fusarium keratitis is a destructive eye infection that is difficult to treat and results in poor outcome. In tropical and subtropical areas, the infection is relatively common and associated with trauma or chronic eye diseases. However, in recent years, an increased incidence has been reported in temperate climate regions. At the German National Reference Center, we have observed a steady increase in case numbers since 2014. Here, we present the first German case series of eye infections with Fusarium species. We identified Fusarium isolates from the eye or eye-related material from 22 patients in 2014 and 2015. Thirteen isolates belonged to the Fusarium solani species complex (FSSC), 6 isolates belonged to the Fusarium oxysporum species complex (FOSC), and three isolates belonged to the Fusarium fujikuroi species complex (FFSC). FSSC was isolated in 13 of 15 (85%) definite infections and FOSC in 3 of 4 (75%) definite contaminations. Furthermore, diagnosis from contact lens swabs or a culture of contact lens solution turned out to be highly unreliable. FSSC isolates differed from FOSC and FFSC by a distinctly higher MIC for terbinafine. Outcome was often adverse, with 10 patients requiring keratoplasty or enucleation. The use of natamycin as the most effective agent against keratitis caused by filamentous fungi was rare in Germany, possibly due to restricted availability. Keratitis caused by Fusarium spp. (usually FSSC) appears to be a relevant clinical problem in Germany, with the use of contact lenses as the predominant risk factor. Its outcome is often adverse. PMID:28747368

  10. Production of novel fusarielins by ectopic activation of the polyketide synthase 9 cluster in Fusarium graminearum

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Hansen, Frederik Teilfeldt; Sondergaard, Teis Esben

    2012-01-01

    specific transcription factors. We have developed a system in which an expression cassette containing the transcription factor from the targeted PKS cluster disrupts the production of the red mycelium pigment aurofusarin. This aids with identification of mutants as they appear as white colonies...... and metabolite analyses where aurofusarin and its intermediates are normally among the most abundant compounds. The system was used for constitutive expression of the local transcription factor from the PKS9 cluster (renamed FSL) leading to production of three novel fusarielins, F, G and H. This group...

  11. Effect of Early Foliar Disease Control on Wheat Scab Severity (Fusarium graminearum in Argentina

    Directory of Open Access Journals (Sweden)

    Jorge David Mantecón

    2013-01-01

    Full Text Available Wheat scab is common in Argentina mainly durum wheat and some bread varieties. The epidemics occur every 5 to 7 years. During the 2007, 2008, and 2009 growing seasons, three trials were conducted at the INTA Balcarce Experimental Station. Each plot had six rows of 5 m long, spaced 0.15 m apart and was set up in a randomized complete block design with four replications. Trifloxystrobin plus cyproconazole was sprayed at Z3.1 stage. Treatments were sprayed at Z6.1 stage with tebuconazole, prochloraz, and metconazole to improve scab control. Artificial inoculations were made in Z6.1. Severity of Septoria leaf bloth and leaf rust was assessed in boot stage (Z3.9. Scab severity was rated at early dough stage (Z8.3. Yields were recorded each year. Fungicide only applied at Z3.1 stage did not reduce field scab severity but reduced the seeds infection and increased the yields. Early fungicide spray produced yield increase at about 22% and a decrease in seed infection of up to 40%. Yields increased in a 55.3% and in a 19.6% when compared with the inoculated and not inoculated check, respectively. The purpose of this study was to evaluate the effect of foliar disease control on scab, crop yield, and seed health.

  12. Fusarium Wilt Affecting Chickpea Crop

    Directory of Open Access Journals (Sweden)

    Warda Jendoubi

    2017-03-01

    Full Text Available Chickpea (Cicer arietinum L. contributes 18% of the global production of grain legume and serves as an important source of dietary protein. An important decrease in cropping area and production has been recorded during the last two decades. Several biotic and abiotic constraints underlie this decrease. Despite the efforts deployed in breeding and selection of several chickpea varieties with high yield potential that are tolerant to diseases, the situation has remained the same for the last decade. Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris (Foc is the major soilborne fungus affecting chickpeas globally. Fusarium wilt epidemics can devastate crops and cause up to 100% loss in highly infested fields and under favorable conditions. To date, eight pathogenic races of Foc (races 0, 1A, 1B/C, 2, 3, 4, 5 and 6 have been reported worldwide. The development of resistant cultivars is the most effective method to manage this disease and to contribute to stabilizing chickpea yields. Development of resistant varieties to fusarium wilt in different breeding programs is mainly based on conventional selection. This method is time‐consuming and depends on inoculum load and specific environmental factors that influence disease development. The use of molecular tools offers great potential for chickpea improvement, specifically by identifying molecular markers closely linked to genes/QTLs controlling fusarium wilt.

  13. AKTIVITAS ANTIFUNGI EKSTRAK DAUN KEMANGI (Ocimum americanum L. TERHADAP FUNGI Fusarium oxysporum Schlecht

    Directory of Open Access Journals (Sweden)

    Zainal Berlian

    2016-01-01

    Full Text Available Fusarium oxysporum Schlecht. a parasitic fungus that cause leaf wilt disease in plants. Meanwhile, basil (Ocimum americanum L. is a plant that contains of the active compound in the form of phenols which have antifungal activity. This study aimed to test whether the extract of leaves of basil have antifungal activity againts Fusarium oxysporum Schlecht. and determine the optimum concentration to inhibit the growth of the fungus Fusarium oxysporum Schlecht. Antifungal test is done by using paper disc diffusion method. The study design used was a completely randomized design with 4 treatments and 6 replications. The treatment is K0 (0% w/v, K1 (5% w/v, K2 (10% w/v, and K3 (15% w/v. The results showed that the leaf extract of basil have antifungal activity against Fusarium oxysporum Schlecht. Inhibition zone on K0, K1, K2, and K3 are each 0,0 mm, 1,49 mm, 2,46 mm, and 2,01 mm. The optimum concentration of antifungal activity of extract of basil, namely the K2 concentration (10% w/v. Based on analysis of variance (ANOVA, the concentration of basil leaf extract provides significant differences (p > 0,05 on fungus Fusarium oxysporum Schlecht., where Fcount > Ftable is 4,5 > 3,1.

  14. Fusarium and Aspergillus mycotoxins contaminating wheat silage for dairy cattle feeding in Uruguay

    Directory of Open Access Journals (Sweden)

    Agustina del Palacio

    Full Text Available Abstract Wheat is one of the most important cultivated cereals in Uruguay for human consumption; however, when harvest yields are low, wheat is usually used in ensiling for animal feeding. Ensiling is a forage preservation method that allows for storage during extended periods of time while maintaining nutritional values comparable to fresh pastures. Silage is vulnerable to contamination by spoilage molds and mycotoxins because ensilage materials are excellent substrates for fungal growth. The aim of the study was to identify the mycobiota composition and occurrence of aflatoxins and DON from wheat silage. A total of 220 samples of wheat were collected from four farms in the southwest region of Uruguay were silage practices are developed. The main fungi isolated were Fusarium (43% and Aspergillus (36%, with Fusarium graminearum sensu lato and Aspergillus section Flavi being the most prevalent species. Aflatoxin concentrations in silo bags ranged from 6.1 to 23.3 µg/kg, whereas DON levels ranged between 3000 µg/kg and 12,400 µg/kg. When evaluating aflatoxigenic capacity, 27.5% of Aspergillus section Flavi strains produced AFB1, 5% AFB2, 10% AFG1 and 17.5% AFG2. All isolates of F. graminearum sensu lato produced DON and 15-AcDON. The results from this study contribute to the knowledge of mycobiota and mycotoxins present in wheat silage.

  15. Fusarium and Aspergillus mycotoxins contaminating wheat silage for dairy cattle feeding in Uruguay.

    Science.gov (United States)

    Del Palacio, Agustina; Bettucci, Lina; Pan, Dinorah

    Wheat is one of the most important cultivated cereals in Uruguay for human consumption; however, when harvest yields are low, wheat is usually used in ensiling for animal feeding. Ensiling is a forage preservation method that allows for storage during extended periods of time while maintaining nutritional values comparable to fresh pastures. Silage is vulnerable to contamination by spoilage molds and mycotoxins because ensilage materials are excellent substrates for fungal growth. The aim of the study was to identify the mycobiota composition and occurrence of aflatoxins and DON from wheat silage. A total of 220 samples of wheat were collected from four farms in the southwest region of Uruguay were silage practices are developed. The main fungi isolated were Fusarium (43%) and Aspergillus (36%), with Fusarium graminearum sensu lato and Aspergillus section Flavi being the most prevalent species. Aflatoxin concentrations in silo bags ranged from 6.1 to 23.3μg/kg, whereas DON levels ranged between 3000μg/kg and 12,400μg/kg. When evaluating aflatoxigenic capacity, 27.5% of Aspergillus section Flavi strains produced AFB1, 5% AFB2, 10% AFG1 and 17.5% AFG2. All isolates of F. graminearum sensu lato produced DON and 15-AcDON. The results from this study contribute to the knowledge of mycobiota and mycotoxins present in wheat silage. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  16. Reducing production of fumonisin mycotoxins in Fusarium verticillioides by RNA interference

    Science.gov (United States)

    The fungus Fusarium verticillioides (Fv) is a maize pathogen that can produce fumonisin mycotoxins in ears under certain environmental conditions. Because fumonisins pose health risks to humans and livestock, control strategies with minimal risk to the environment are needed to reduce fumonisin cont...

  17. Engineering of the redox imbalance of Fusarium oxysporum enables anaerobic growth on xylose

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Christakopoulos, Paul; Grotkjær, Thomas

    2006-01-01

    Dissimilatory nitrate reduction metabolism, of the natural xylose-fermenting fungus Fusarium oxysporum, was used as a strategy to achieve anaerobic growth and ethanol production from xylose. Beneficial alterations of the redox fluxes and thereby of the xylose metabolism were obtained by taking ad...

  18. The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection

    NARCIS (Netherlands)

    Gawehns, Fleur; Ma, Lisong; Bruning, Oskar; Houterman, Petra M.; Boeren, Sjef; Cornelissen, B.J.C.; Rep, Martijn; Takken, Frank L.W.

    2015-01-01

    Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f.sp. lycopersici (Fol) secretes small proteins that are referred to as SIX (Secreted In Xylem) proteins. Of these, Six1

  19. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum

    NARCIS (Netherlands)

    Schmidt, S.M.; Houterman, P.M.; Schreiver, I.; Ma, L.; Amyotte, S.; Chellappan, B.; Boeren, S.; Takken, F.L.W.; Rep, M.

    2013-01-01

    Background The plant-pathogenic fungus Fusarium oxysporum f.sp.lycopersici (Fol) has accessory, lineage-specific (LS) chromosomes that can be transferred horizontally between strains. A single LS chromosome in the Fol4287 reference strain harbors all known Fol effector genes. Transfer of this

  20. Comparative genomics and transcriptomics of sexual development in a nematode-associated strain of Fusarium neocosmosporiellum

    Science.gov (United States)

    Fusarium neocosmosporiellum (formerly Neocosmospora vasinfecta) is a ubiquitous saprobic fungus that has been isolated from plants, fungi, nematodes, dung and soil. This homothallic species is nested in a clade within the F. solani species complex near a lineage of fusaria farmed by ambrosia beetles...

  1. Interaction of Fusarium oxysporum with Meloidogyne incognita on Roselle

    Directory of Open Access Journals (Sweden)

    K. H. Ooi

    1999-12-01

    Full Text Available Forty isolates of Fusarium oxysporum were tested for their pathogenicity to roselle (Hibiscus sabdariffa L. var. sabdariffa in a plant house. The most virulent isolate was later used in a disease complex experiment with a root-knot nematode Meloidogyne incognita. Disease severity of roselle seedlings inoculated with a combination of fungus and nematode was higher than those inoculated with either fungus or nematode individually. Seedlings that were inoculated with fungus two weeks after nematode inoculation showed the highest disease severity compared to that inoculated with nematode two weeks after fungal inoculation or that inoculated simultaneously with both pathogens. It seems that root infections by M. incognita increased the colonization of roselle by F. oxysporum and subsequently caused higher damage to the roselle seedlings. The high wilt incidence in the presence of M. incognita and F. oxysporum may be due to the synergistic relationship between these two pathogens.

  2. Genomic analysis of Fusarium verticillioides.

    Science.gov (United States)

    Brown, D W; Butchko, R A E; Proctor, R H

    2008-09-01

    Fusarium verticillioides (teleomorph Gibberella moniliformis) can be either an endophyte of maize, causing no visible disease, or a pathogen-causing disease of ears, stalks, roots and seedlings. At any stage, this fungus can synthesize fumonisins, a family of mycotoxins structurally similar to the sphingolipid sphinganine. Ingestion of fumonisin-contaminated maize has been associated with a number of animal diseases, including cancer in rodents, and exposure has been correlated with human oesophageal cancer in some regions of the world, and some evidence suggests that fumonisins are a risk factor for neural tube defects. A primary goal of the authors' laboratory is to eliminate fumonisin contamination of maize and maize products. Understanding how and why these toxins are made and the F. verticillioides-maize disease process will allow one to develop novel strategies to limit tissue destruction (rot) and fumonisin production. To meet this goal, genomic sequence data, expressed sequence tags (ESTs) and microarrays are being used to identify F. verticillioides genes involved in the biosynthesis of toxins and plant pathogenesis. This paper describes the current status of F. verticillioides genomic resources and three approaches being used to mine microarray data from a wild-type strain cultured in liquid fumonisin production medium for 12, 24, 48, 72, 96 and 120h. Taken together, these approaches demonstrate the power of microarray technology to provide information on different biological processes.

  3. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li Jun; van der Does, H. C.; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Jose; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Wolochuk, Charles; Xie, Xiaohui; Xu, Jin Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald; Goff, Steven; Hammond-Kossack, Kim; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. C.; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, Barbara G.; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2010-03-18

    Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, members of the F. oxysporum species complex exhibit wide host range but discontinuously distributed host specificity, reflecting remarkable genetic adaptability. To understand the molecular underpinnings of diverse phenotypic traits and their evolution in Fusarium, we compared the genomes of three economically important and phylogenetically related, yet phenotypically diverse plant-pathogenic species, F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici. Our analysis revealed greatly expanded lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes, accounting for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity. Experimentally, we demonstrate for the first time the transfer of two LS chromosomes between strains of F. oxysporum, resulting in the conversion of a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in the F. oxysporum species complex, putting the evolution of fungal pathogenicity into a new perspective.

  4. The fungal myosin I is essential for Fusarium toxisome formation.

    Directory of Open Access Journals (Sweden)

    Guangfei Tang

    2018-01-01

    Full Text Available Myosin-I molecular motors are proposed to function as linkers between membranes and the actin cytoskeleton in several cellular processes, but their role in the biosynthesis of fungal secondary metabolites remain elusive. Here, we found that the myosin I of Fusarium graminearum (FgMyo1, the causal agent of Fusarium head blight, plays critical roles in mycotoxin biosynthesis. Inhibition of myosin I by the small molecule phenamacril leads to marked reduction in deoxynivalenol (DON biosynthesis. FgMyo1 also governs translation of the DON biosynthetic enzyme Tri1 by interacting with the ribosome-associated protein FgAsc1. Disruption of the ATPase activity of FgMyo1 either by the mutation E420K, down-regulation of FgMyo1 expression or deletion of FgAsc1 results in reduced Tri1 translation. The DON biosynthetic enzymes Tri1 and Tri4 are mainly localized to subcellular structures known as toxisomes in response to mycotoxin induction and the FgMyo1-interacting protein, actin, participates in toxisome formation. The actin polymerization disruptor latrunculin A inhibits toxisome assembly. Consistent with this observation, deletion of the actin-associated proteins FgPrk1 and FgEnd3 also results in reduced toxisome formation. Unexpectedly, the FgMyo1-actin cytoskeleton is not involved in biosynthesis of another secondary metabolite tested. Taken together, this study uncovers a novel function of myosin I in regulating mycotoxin biosynthesis in filamentous fungi.

  5. The fungal myosin I is essential for Fusarium toxisome formation.

    Science.gov (United States)

    Tang, Guangfei; Chen, Yun; Xu, Jin-Rong; Kistler, H Corby; Ma, Zhonghua

    2018-01-01

    Myosin-I molecular motors are proposed to function as linkers between membranes and the actin cytoskeleton in several cellular processes, but their role in the biosynthesis of fungal secondary metabolites remain elusive. Here, we found that the myosin I of Fusarium graminearum (FgMyo1), the causal agent of Fusarium head blight, plays critical roles in mycotoxin biosynthesis. Inhibition of myosin I by the small molecule phenamacril leads to marked reduction in deoxynivalenol (DON) biosynthesis. FgMyo1 also governs translation of the DON biosynthetic enzyme Tri1 by interacting with the ribosome-associated protein FgAsc1. Disruption of the ATPase activity of FgMyo1 either by the mutation E420K, down-regulation of FgMyo1 expression or deletion of FgAsc1 results in reduced Tri1 translation. The DON biosynthetic enzymes Tri1 and Tri4 are mainly localized to subcellular structures known as toxisomes in response to mycotoxin induction and the FgMyo1-interacting protein, actin, participates in toxisome formation. The actin polymerization disruptor latrunculin A inhibits toxisome assembly. Consistent with this observation, deletion of the actin-associated proteins FgPrk1 and FgEnd3 also results in reduced toxisome formation. Unexpectedly, the FgMyo1-actin cytoskeleton is not involved in biosynthesis of another secondary metabolite tested. Taken together, this study uncovers a novel function of myosin I in regulating mycotoxin biosynthesis in filamentous fungi.

  6. Relationship between mycoparasites lifestyles and biocontrol behaviors against Fusarium spp. and mycotoxins production.

    Science.gov (United States)

    Kim, Seon Hwa; Vujanovic, Vladimir

    2016-06-01

    Global food security research is seeking eco-friendly solutions to control mycotoxins in grain infected by fungi (molds). In particular, mycotoxigenic Fusarium spp. outbreak is a chronic threat for cereal grain production, human, and animal health. In this review paper, we discuss up-to-date biological control strategies in applying mycoparasites as biological control agents (BCA) to prevent plant diseases in crops and mycotoxins in grain, food, and feed. The aim is to increase food safety and to minimize economic losses due to the reduced grain yield and quality. However, recent papers indicate that the study of the BCA specialists with biotrophic lifestyle lags behind our understanding of the BCA generalists with necrotrophic lifestyle. We examine critical behavioral traits of the two BCA groups of mycoparasites. The goal is to highlight their major characteristics in the context of future research towards an efficient biocontrol strategy against mycotoxin-producing Fusarium species. The emphasis is put on biocontrol of Fusarium graminearum, F. avenaceum, and F. culmorum causing Fusarium head blight (FHB) in cereals and their mycotoxins.

  7. In vitro effects of various xenobiotics on Fusarium spp. strains isolated from cereals.

    Science.gov (United States)

    Wolny-Koładka, Katarzyna A

    2014-01-01

    This study aimed to determine the susceptibility of Fusarium spp. strains isolated from cereals to selected heavy metals, fungicides and silver nanoparticles. The experiments were conducted using 50 Fusarium strains belonging to five species: F. graminearum, F. culmorum, F. oxysporum, F. sporotrichioides and F. avenaceum. The strains were found to be highly resistant to Pb(2+) and Zn(2+). Medium resistance to Cu(2+) and Mn(2+) and low resistance to Cd(2+) and Fe(3+) was also observed. Among the tested fungicides, formulations containing azoxystrobin, prochloraz and tebuconazole proved to be the most effective in inhibiting the growth of fungi, as they affected fungal growth in each of the applied doses. Susceptibility of Fusarium spp. to nanosilver, demonstrated in this study, shows the legitimacy of using nanostructures as fungicidal agents. The results confirm high diversity of the analyzed fungal species in terms of susceptibility to the tested substances, and encourage to continue research on the resistance of Fusarium spp. to various fungicidal agents.

  8. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance.

    Science.gov (United States)

    Zhang, Xincheng; Lin, Li; Chen, Mingyue; Zhu, Zhiqiang; Yang, Weidong; Chen, Bao; Yang, Xiaoe; An, Qianli

    2012-08-30

    Low biomass and shallow root systems limit the application of heavy metal phytoextraction by hyperaccumulators. Plant growth-promoting microbes may enhance hyperaccumulators'phytoextraction. A heavy metal-resistant fungus belonged to the Fusarium oxysporum complex was isolated from the Zn/Cd co-hyperaccumulator Sedum alfredii Hance grown in a Pb/Zn mined area. This Fusarium fungus was not pathogenic to plants but promoted host growth. Hydroponic experiments showed that 500 μM Zn(2+) or 50 μM Cd(2+) combined with the fungus increased root length, branches, and surface areas, enhanced nutrient uptake and chlorophyll synthesis, leading to more vigorous hyperaccumulators with greater root systems. Soil experiments showed that the fungus increased root and shoot biomass and S. alfredii-mediated heavy metal availabilities, uptake, translocation or concentrations, and thus increased phytoextraction of Zn (144% and 44%), Cd (139% and 55%), Pb (84% and 85%) and Cu (63% and 77%) from the original Pb/Zn mined soil and a multi-metal contaminated paddy soil. Together, the nonpathogenic Fusarium fungus was able to increase S. alfredii root systems and function, metal availability and accumulation, plant biomass, and thus phytoextraction efficiency. This study showed a great application potential for culturable indigenous fungi other than symbiotic mycorrhizas to enhance the phytoextraction by hyperaccumulators. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Method evaluation of Fusarium DNA extraction from mycelia and wheat for down-stream real-time PCR quantification and correlation to mycotoxin levels.

    Science.gov (United States)

    Fredlund, Elisabeth; Gidlund, Ann; Olsen, Monica; Börjesson, Thomas; Spliid, Niels Henrik Hytte; Simonsson, Magnus

    2008-04-01

    Identification of Fusarium species by traditional methods requires specific skill and experience and there is an increased interest for new molecular methods for identification and quantification of Fusarium from food and feed samples. Real-time PCR with probe technology (Taqman) can be used for the identification and quantification of several species of Fusarium from cereal grain samples. There are several critical steps that need to be considered when establishing a real-time PCR-based method for DNA quantification, including extraction of DNA from the samples. In this study, several DNA extraction methods were evaluated, including the DNeasy Plant Mini Spin Columns (Qiagen), the Bio robot EZ1 (Qiagen) with the DNeasy Blood and Tissue Kit (Qiagen), and the Fast-DNA Spin Kit for Soil (Qbiogene). Parameters such as DNA quality and stability, PCR inhibitors, and PCR efficiency were investigated. Our results showed that all methods gave good PCR efficiency (above 90%) and DNA stability whereas the DNeasy Plant Mini Spin Columns in combination with sonication gave the best results with respect to Fusarium DNA yield. The modified DNeasy Plant Mini Spin protocol was used to analyse 31 wheat samples for the presence of F. graminearum and F. culmorum. The DNA level of F. graminearum could be correlated to the level of DON (r(2) = 0.9) and ZEN (r(2) = 0.6) whereas no correlation was found between F. culmorum and DON/ZEA. This shows that F. graminearum and not F. culmorum, was the main producer of DON in Swedish wheat during 2006.

  10. Cutinase of Fusarium solani F. sp. pisi: mechanism of induction and relatedness to other Fusarium species

    International Nuclear Information System (INIS)

    Woloshuk, C.P.

    1986-01-01

    Three studies were made on the extracellular cutinase of the phytopathogenic fungus Fusarium solani f. sp. pisi. I. The production of cutinase was found to be induced in spores of F. solani f. sp. pisi, strain T-8, by cutin and cutin hydrolysate. Fractionation and analysis of the cutin hydrolysate indicated that dihydroxy-C 16 acid and trihydroxy-C 18 acid were the cutin monomers most active for inducing cutinase. Measurement of cutinase-specific RNA levels by dot-blot hybridization with a [ 32 P]-labeled cutinase cDNA showed that the cutinase gene transcripts could be detected within 15 min after addition of the inducers. The results indicated that the fungal spores have the capacity to recognize the unique monomer components of the plant cuticle and rapidly respond by the synthesis of cutinase. II. Analysis of the genomic DNA's of seven strains of F. solani f. sp. pisi indicated that both high and low cutinase-producing strains contain at least one copy of the cutinase structural gene and a homologous promoter region. The data suggest a different promoter sequence exists in these additional copies. III. Relatedness of five phytopathogenic Fusarium species to F. solani f. sp. pisi was determined by their cutinase antigenic properties and gene homologies of cutinase cDNA from F. solani f. sp. pisi. The results suggest that formae specialis of F. solani are phylogenetically identical and that F. solani is quite distinct from the other Fusarium species tested

  11. Fusarium head blight incidence and mycotoxin accumulation in three durum wheat cultivars in relation to sowing date and density

    Science.gov (United States)

    Gorczyca, Anna; Oleksy, Andrzej; Gala-Czekaj, Dorota; Urbaniak, Monika; Laskowska, Magdalena; Waśkiewicz, Agnieszka; Stępień, Łukasz

    2018-02-01

    Durum wheat ( Triticum turgidum var. durum) is an important crop in Europe, particularly in the Mediterranean countries. Fusarium head blight (FHB) is considered as one of the most damaging diseases, resulting in yield and quality reduction as well as contamination of grain with mycotoxins. Three winter durum wheat cultivars originating from Austria, Slovakia, and Poland were analyzed during 2012-2014 seasons for FHB incidence and Fusarium mycotoxin accumulation in harvested grain. Moreover, the effects of sowing density and delayed sowing date were evaluated in the climatic conditions of Southern Poland. Low disease severity was observed in 2011/2012 in all durum wheat cultivars analyzed, and high FHB occurrence was recorded in 2012/2013 and 2013/2014 seasons. Fusarium graminearum was the most abundant pathogen, followed by Fusarium avenaceum. Through all three seasons, cultivar Komnata was the most susceptible to FHB and to mycotoxin accumulation, while cultivars Auradur and IS Pentadur showed less symptoms. High susceptibility of cv. Komnata was reflected by the number of Fusarium isolates and elevated mycotoxin (deoxynivalenol, zearalenone, and moniliformin) content in the grain of this cultivar across all three seasons. Nivalenol was identified in the samples of cv. Komnata only. Genotype-dependent differences in FHB susceptibility were observed for the plants sown at optimal date but not at delayed sowing date. It can be hypothesized that cultivars bred in Austria and Slovakia show less susceptibility towards FHB than the cultivar from Poland because of the environmental conditions allowing for more efficient selection of breeding materials.

  12. Multidrug resistant Fusarium keratitis.

    Science.gov (United States)

    Antequera, P; Garcia-Conca, V; Martín-González, C; Ortiz-de-la-Tabla, V

    2015-08-01

    We report a case of keratitis in a female contact lens wearer, who developed a deep corneal abscess. The culture of a corneal biopsy scraping was positive for multiresistant Fusarium solani. The patient has a complicated clinical course and failed to respond to local and systemic antifungal treatment, requiring eye enucleation. Fusarium keratitis may progress to severe endophthalmitis. Clinical suspicion is paramount in order to start antifungal therapy without delay. Therapy is complex due to the high resistance of this organism to usual antifungal drugs. Copyright © 2014 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  13. PATHOGENICITY OF FUSARIUM SPP. ISOLATED FROM WEEDS AND PLANT DEBRIS IN EASTERN CROATIA TO WHEAT AND MAIZE

    Directory of Open Access Journals (Sweden)

    Jelena Ilić

    2012-12-01

    Full Text Available Pathogenicity of thirty isolates representing 14 Fusarium species isolated from weeds and plant debris in eastern Croatia was investigated in the laboratory. Pathogenicity tests were performed on wheat and maize seedlings. The most pathogenic Fusarium spp. was F. graminearum isolated from Amaranthus retroflexus, Abutilon theophrasti and Chenopodium album. There was a noticeable inter- and intraspecies variability in pathogenicity towards wheat and maize. Isolates of F. solani from Sonchus arvensis and F. verticillioides from C. album were highly pathogenic to wheat seedlings and apathogenic to maize seedlings. Isolates of F. venenatum were very pathogenic to wheat and maize being the first report about pathogenicity of this species. This experiment proves that weeds and plant debris can serve as alternate hosts and source of inoculum of plant pathogens.

  14. Natural incidence of Fusarium species and fumonisins B1 and B2 associated with maize kernels from nine provinces in China in 2012.

    Science.gov (United States)

    Fu, Meng; Li, Renjie; Guo, Congcong; Pang, Minhao; Liu, Yingchao; Dong, Jingao

    2015-01-01

    Fusarium species, which can produce mycotoxins, are the predominant pathogens causing maize ear rot, a disease that results in severe economic losses and serves as a potential health risk for humans and animals. A survey was conducted in 2012 to investigate the contamination of maize by Fusarium species and fumonisins B1 and B2. A total of 250 maize samples were randomly collected from nine provinces (Hebei, Shanxi, Inner Mongolia, Yunnan, Sichuan, Guizhou, Heilongjiang, Liaoning and Ningxia) in China. Fusarium species were isolated and identified using morphological (electron microscope) and molecular methods (polymerase chain reaction (PCR) and sequencing). Fumonisins B1 and B2 were analysed using high-performance liquid chromatography with fluorescence detection (HPLC-FLD) with OPA (2-Mercaptoethanol, o-phthaldialdehyde) post-column derivatisation. A total of 2321 Fusarium isolates (20.7%) were obtained from all the samples. These isolates included nine Fusarium species, namely, F. graminearum, F. verticillioides, F. subglutinans, F. proliferatum, F. temperatum, F. oxysporum, F. equiseti, F. meridionale and F. chlamydosporum. The incidence of occurrence of Fusarium species in Guizhou was the highest, while in Inner Mongolia it was the lowest. F. verticillioides was the dominant species of maize ear rot in Liaoning, Sichuan, Hebei and Ningxia. F. graminearum was the dominant species in Yunnan, Guizhou and Shanxi. F. subglutinans was the dominant species in Heilongjiang. F. verticillioides and F. graminearum percentages were the same in Inner Mongolia. The incidence of fumonisins in Liaoning was high (up to 81.0%) and in Heilongjiang low (up to 10.3%). Except Shanxi, more than 50% of maize samples from other provinces were contaminated with fumonisins, with concentrations less than 500 ng g(-1). About 33% of maize samples from Yunnan were contaminated with high levels of fumonisins, and average of fumonisin levels were 5191 ng g(-1). Fusarium species causing maize

  15. Genomics reveals traces of fungal phenylpropanoid-flavonoid metabolic pathway in the f ilamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Juvvadi, Praveen Rao; Seshime, Yasuyo; Kitamoto, Katsuhiko

    2005-12-01

    Fungal secondary metabolites constitute a wide variety of compounds which either play a vital role in agricultural, pharmaceutical and industrial contexts, or have devastating effects on agriculture, animal and human affairs by virtue of their toxigenicity. Owing to their beneficial and deleterious characteristics, these complex compounds and the genes responsible for their synthesis have been the subjects of extensive investigation by microbiologists and pharmacologists. A majority of the fungal secondary metabolic genes are classified as type I polyketide synthases (PKS) which are often clustered with other secondary metabolism related genes. In this review we discuss on the significance of our recent discovery of chalcone synthase (CHS) genes belonging to the type III PKS superfamily in an industrially important fungus, Aspergillus oryzae. CHS genes are known to play a vital role in the biosynthesis of flavonoids in plants. A comparative genome analyses revealed the unique character of A. oryzae with four CHS-like genes (csyA, csyB, csyC and csyD) amongst other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus) which contained none of the CHS-like genes. Some other fungi such as Neurospora crassa, Fusarium graminearum, Magnaporthe grisea, Podospora anserina and Phanerochaete chrysosporium also contained putative type III PKSs, with a phylogenic distinction from bacteria and plants. The enzymatically active nature of these newly discovered homologues is expected owing to the conservation in the catalytic residues across the different species of plants and fungi, and also by the fact that a majority of these genes (csyA, csyB and csyD) were expressed in A. oryzae. While this finding brings filamentous fungi closer to plants and bacteria which until recently were the only ones considered to possess the type III PKSs, the presence of putative genes encoding other principal enzymes involved in the phenylpropanoid and flavonoid biosynthesis (viz

  16. Production of fusarielins by Fusarium

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Akk, Elina; Thrane, Ulf

    2013-01-01

    conditions being: pH6, 25°C, 26days and 60mg fructose/mL. Wheat spikes were inoculated with F. graminearum to determine whether fusarielins are produced in infected cereals and fusarielin H was detected in all samples ranging from 392 to 1865ng/g (mean: 989ng/g) indicating that fusarielins are produced...

  17. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains

    Directory of Open Access Journals (Sweden)

    De Souza Gabriel IH

    2005-07-01

    Full Text Available Abstract Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver nanoparticles were in the range of 20–50 nm in dimensions. The reduction of the metal ions occurs by a nitrate-dependent reductase and a shuttle quinone extracellular process. The potentialities of this nanotechnological design based in fugal biosynthesis of nanoparticles for several technical applications are important, including their high potential as antibacterial material.

  18. De novo transcriptome assembly associated with fumonisin production by the rice pathogen Fusarium fujikuroi

    Directory of Open Access Journals (Sweden)

    Keerthi S. Guruge

    2018-06-01

    Full Text Available The present study employed a next-generation sequencing method to assemble a de novo transcriptome database designed to distinguish gene expression changes exhibited by the fumonisin-producing fungus Fusarium fujikuroi when grown under ‘fumonisin-producing’ compared to ‘non-fumonisin-producing’ conditions. The raw data of this study have been deposited at DNA Data Bank of Japan (DDBJ under the accession ID DRA006146. Keywords: Fusarium fujikuroi, Fumonisin, Next-generation sequencing, Transcriptome, Gene-expression

  19. Constitutive expression of the xylanase inhibitor TAXI-III delays Fusarium head blight symptoms in durum wheat transgenic plants.

    Science.gov (United States)

    Moscetti, Ilaria; Tundo, Silvio; Janni, Michela; Sella, Luca; Gazzetti, Katia; Tauzin, Alexandra; Giardina, Thierry; Masci, Stefania; Favaron, Francesco; D'Ovidio, Renato

    2013-12-01

    Cereals contain xylanase inhibitor (XI) proteins which inhibit microbial xylanases and are considered part of the defense mechanisms to counteract microbial pathogens. Nevertheless, in planta evidence for this role has not been reported yet. Therefore, we produced a number of transgenic plants constitutively overexpressing TAXI-III, a member of the TAXI type XI that is induced by pathogen infection. Results showed that TAXI-III endows the transgenic wheat with new inhibition capacities. We also showed that TAXI-III is correctly secreted into the apoplast and possesses the expected inhibition parameters against microbial xylanases. The new inhibition properties of the transgenic plants correlate with a significant delay of Fusarium head blight disease symptoms caused by Fusarium graminearum but do not significantly influence leaf spot symptoms caused by Bipolaris sorokiniana. We showed that this contrasting result can be due to the different capacity of TAXI-III to inhibit the xylanase activity of these two fungal pathogens. These results provide, for the first time, clear evidence in planta that XI are involved in plant defense against fungal pathogens and show the potential to manipulate TAXI-III accumulation to improve wheat resistance against F. graminearum.

  20. Antifungal Activity of a Synthetic Cationic Peptide against the Plant Pathogens Colletotrichum graminicola and Three Fusarium Species

    Directory of Open Access Journals (Sweden)

    Eric T. Johnson

    2015-09-01

    Full Text Available A small cationic peptide (JH8944 was tested for activity against a number of pathogens of agricultural crops. JH8944 inhibited conidium growth in most of the tested plant pathogens with a dose of 50 μg/ml, although one isolate of Fusarium oxysporum was inhibited at 5 μg/ml of JH8944. Most conidia of Fusarium graminearum were killed within 6 hours of treatment with 50 μg/ml of JH8944. Germinating F. graminearum conidia required 238 μg/ml of JH8944 for 90% growth inhibition. The peptide did not cause any damage to tissues surrounding maize leaf punctures when tested at a higher concentration of 250 μg/ml even after 3 days. Liposomes consisting of phosphatidylglycerol were susceptible to leakage after treatment with 25 and 50 μg/ml of JH8944. These experiments suggest this peptide destroys fungal membrane integrity and could be utilized for control of crop fungal pathogens.

  1. The Genome of the Generalist Plant Pathogen Fusarium avenaceum Is Enriched with Genes Involved in Redox, Signaling and Secondary Metabolism

    DEFF Research Database (Denmark)

    Lysøe, Erik; Harris, Linda J.; Walkowiak, Sean

    2014-01-01

    Fusarium avenaceum is a fungus commonly isolated from soil and associated with a wide range of host plants. We present here three genome sequences of F. avenaceum, one isolated from barley in Finland and two from spring and winter wheat in Canada. The sizes of the three genomes range from 41.6-43...

  2. Fusarium Rot of Orobanche ramosa Parasitizing Tobacco in Southern Italy

    Directory of Open Access Journals (Sweden)

    B. Nanni

    2005-08-01

    Full Text Available In tobacco crops grown in the province of Caserta (southern Italy, we noted, for the first time in Italy, very many broomrape (Orobanche ramosa plants exhibiting mycosis caused by a strain of Fusarium oxysporum that is not pathogenic to tobacco. After a brief description of the symptoms of the disease and its incidence in the field, we discuss, on the basis of the observations made and the data supplied by the literature, the feasibility of using this fungus in programmes to control Orobanche.

  3. Influence of fungicides on occurence of Fusarium spp. and other stem base diseases on winter wheat

    Directory of Open Access Journals (Sweden)

    Václav Sklenář

    2008-01-01

    Full Text Available From 1999 to 2004 the occurence of fungi: Pseudocercosporella herpotrichoides (Fron. and Fusarium spp. was evaluated in small plot field trials on seven varieties of winter wheat. The efficacy of fungicide protection against stem base diseases and influence on yields was monitored in field conditions in Velká Bystřice near Olomouc.For diagnostic of casual fungi two methods were used: 1. Method of coloring mycelium in stems, 2. Method of cultivation of mycelim on agar.Results from detection of casual fungi are following: Pseudocercosporella herpotrichoides (Fron., Fusarium culmorum (W. G. Sm. Sacc. and Fusarium graminearum Schwabe.For high efficacy of protection against roots and stem base disease the following fungicide variants should be applied: Sportak Alpha 1.5 l . ha−1 (BBCH 30/Cerelux Plus 0.7 l . ha−1 (BBCH 51, Sportak HF 1 l . ha−1 (BBCH 30/Cerelux Plus 0.7 l . ha−1, Alert S 1.0 l . ha−1 (BBCH 30/Cerelux Plus 0.7 l . ha−1 (BBCH 51. The application of fungicides positively influenced yields. Yield increased at average by10–20 % after the aplication but the rise in yields was not in total correlation with the efficacy. These results can be possibly used in the system of integral control of winter wheat against stem base disease in wheat.

  4. Mycotoxigenic Potentials of Fusarium Species in Various Culture Matrices Revealed by Mycotoxin Profiling

    Science.gov (United States)

    Shi, Wen; Tan, Yanglan; Wang, Shuangxia; Gardiner, Donald M.; De Saeger, Sarah; Liao, Yucai; Wang, Cheng; Fan, Yingying; Wang, Zhouping; Wu, Aibo

    2016-01-01

    In this study, twenty of the most common Fusarium species were molecularly characterized and inoculated on potato dextrose agar (PDA), rice and maize medium, where thirty three targeted mycotoxins, which might be the secondary metabolites of the identified fungal species, were detected by liquid chromatography–tandem mass spectrometry (LC-MS/MS). Statistical analysis was performed with principal component analysis (PCA) to characterize the mycotoxin profiles for the twenty fungi, suggesting that these fungi species could be discriminated and divided into three groups as follows. Group I, the fusaric acid producers, were defined into two subgroups, namely subgroup I as producers of fusaric acid and fumonisins, comprising of F. proliferatum, F. verticillioides, F. fujikuroi and F. solani, and subgroup II considered to only produce fusaric acid, including F. temperatum, F. subglutinans, F. musae, F. tricinctum, F. oxysporum, F. equiseti, F. sacchari, F. concentricum, F. andiyazi. Group II, as type A trichothecenes producers, included F. langsethiae, F. sporotrichioides, F. polyphialidicum, while Group III were found to mainly produce type B trichothecenes, comprising of F. culmorum, F. poae, F. meridionale and F. graminearum. A comprehensive picture, which presents the mycotoxin-producing patterns by the selected fungal species in various matrices, is obtained for the first time, and thus from an application point of view, provides key information to explore mycotoxigenic potentials of Fusarium species and forecast the Fusarium infestation/mycotoxins contamination. PMID:28035973

  5. Degradation of the benzoxazolinone class of phytoalexins is important for virulence of Fusarium pseudograminearum towards wheat.

    Science.gov (United States)

    Kettle, Andrew J; Batley, Jacqueline; Benfield, Aurelie H; Manners, John M; Kazan, Kemal; Gardiner, Donald M

    2015-12-01

    Wheat, maize, rye and certain other agriculturally important species in the Poaceae family produce the benzoxazolinone class of phytoalexins on pest and pathogen attack. Benzoxazolinones can inhibit the growth of pathogens. However, certain fungi can actively detoxify these compounds. Despite this, a clear link between the ability to detoxify benzoxazolinones and pathogen virulence has not been shown. Here, through comparative genome analysis of several Fusarium species, we have identified a conserved genomic region around the FDB2 gene encoding an N-malonyltransferase enzyme known to be involved in benzoxazolinone degradation in the maize pathogen Fusarium verticillioides. Expression analyses demonstrated that a cluster of nine genes was responsive to exogenous benzoxazolinone in the important wheat pathogen Fusarium pseudograminearum. The analysis of independent F. pseudograminearum FDB2 knockouts and complementation of the knockout with FDB2 homologues from F. graminearum and F. verticillioides confirmed that the N-malonyltransferase enzyme encoded by this gene is central to the detoxification of benzoxazolinones, and that Fdb2 contributes quantitatively to virulence towards wheat in head blight inoculation assays. This contrasts with previous observations in F. verticillioides, where no effect of FDB2 mutations on pathogen virulence towards maize was observed. Overall, our results demonstrate that the detoxification of benzoxazolinones is a strategy adopted by wheat-infecting F. pseudograminearum to overcome host-derived chemical defences. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  6. Microbial Inhibition of Fusarium Pathogens and Biological Modification of Trichothecenes in Cereal Grains

    Directory of Open Access Journals (Sweden)

    Urszula Wachowska

    2017-12-01

    Full Text Available Fungi of the genus Fusarium infect cereal crops during the growing season and cause head blight and other diseases. Their toxic secondary metabolites (mycotoxins contaminate grains. Several dozen toxic compounds produced by fungal pathogens have been identified to date. Type B trichothecenes—deoxynivalenol, its acetyl derivatives and nivalenol (produced mainly by F. graminearum and F. culmorum—are most commonly detected in cereal grains. “T-2 toxin” (produced by, among others, F. sporotrichioides belongs to type-A trichothecenes which are more toxic than other trichothecenes. Antagonistic bacteria and fungi can affect pathogens of the genus Fusarium via different modes of action: direct (mycoparasitism or hyperparasitism, mixed-path (antibiotic secretion, production of lytic enzymes and indirect (induction of host defense responses. Microbial modification of trichothecenes involves acetylation, deacetylation, oxidation, de-epoxidation, and epimerization, and it lowers the pathogenic potential of fungi of the genus Fusarium. Other modifing mechanisms described in the paper involve the physical adsorption of mycotoxins in bacterial cells and the conjugation of mycotoxins to glucose and other compounds in plant and fungal cells. The development of several patents supports the commercialization and wider application of microorganisms biodegrading mycotoxins in grains and, consequently, in feed additives.

  7. Fusarium oxysporum and the Fusarium Wilt Syndrome.

    Science.gov (United States)

    Gordon, Thomas R

    2017-08-04

    The Fusarium oxysporum species complex (FOSC) comprises a multitude of strains that cause vascular wilt diseases of economically important crops throughout the world. Although sexual reproduction is unknown in the FOSC, horizontal gene transfer may contribute to the observed diversity in pathogenic strains. Development of disease in a susceptible crop requires F. oxysporum to advance through a series of transitions, beginning with spore germination and culminating with establishment of a systemic infection. In principle, each transition presents an opportunity to influence the risk of disease. This includes modifications of the microbial community in soil, which can affect the ability of pathogen propagules to survive, germinate, and infect plant roots. In addition, many host attributes, including the composition of root exudates, the structure of the root cortex, and the capacity to recognize and respond quickly to invasive growth of a pathogen, can impede development of F. oxysporum.

  8. Occurrence and infection of Cladosporium, Fusarium, Epicoccum and Aureobasidium in withered rotten grapes during post-harvest dehydration.

    Science.gov (United States)

    Lorenzini, Marilinda; Zapparoli, Giacomo

    2015-11-01

    Fungi like Cladosporium, Fusarium, Epicoccum and Aureobasidium can occur on withered grapes causing spoilage of passito wine. There is little or no information on the pathogenic role of these fungi. This study describes the isolation, incidence and identification of several isolates from different withered rotten grapes. Representative isolates grouped in several phenotypes were identified by phylogenetic analysis of internal transcribed spacer, actin or elongation factor gene sequences. Isolates of Cladosporium and Fusarium were ascribed to different species, of these C. ramotenellum, C. halotolerans and F. graminearum were isolated from Vitis vinifera for the first time. All Epicoccum and Aureobasidium isolates belonged to E. nigrum and A. pullulans, respectively. Random amplified DNA polymorphism analysis showed high level of heterogenicity among Epicoccum and Fusarium isolates. Infection assays were carried out to evaluate infectivity in some strains under different withering conditions. Fusarium spp. strains had similar infectivity, while significant variability was observed among Cladosporium spp. and E. nigrum strains. A. pullulans resulted particularly infective. This study provided insights into the occurrence and infection of these fungi in fruit-drying rooms with important implications towards control management during the withering.

  9. Induction of chlamydospore formation in fusarium by cyclic lipopeptide antibiotics from Bacillus subtilis C2.

    Science.gov (United States)

    Li, Lei; Ma, Mingchuan; Huang, Rong; Qu, Qing; Li, Guohong; Zhou, Jinwei; Zhang, Keqin; Lu, Kaiping; Niu, Xuemei; Luo, Jun

    2012-08-01

    The culture filtrate of Bacillus subtilis strain C2 showed strong activity against the pathogenic fungus Fusarium solani f. sp. radicicola. A partially purified fraction (PPF) from the extract induced chlamydospore formation in Fusarium. Reverse-phase high performance liquid chromatography yielded 8 different fractions, six of which had chlamydospore-inducing activity. Mass spectrometry and nuclear magnetic resonance analyses identified the main active constituent as C(17) fengycin A (FA17), a cyclic lipopeptide. The effect of FA17 on morphology and physiology of two Fusarium species was dependent on the lipopeptide concentration. When challenged with FA17 at concentrations (0.5, 8, 64 μg ml(-1)) below the minimum inhibitory concentration (MIC) (128 μg ml(-1)), two species of Fusarium formed chlamydospores from hyphae, germ tubes, or inside the conidia within 2 days. At concentrations close to the MIC, FA17 caused Fusarium to form sparse and swollen hyphae or lysed conidia. The other five fractions were identified as fengycin A homologues. The homologues could also induce chlamydospore-like structures in 17 species of filamentous fungi including some specimens that do not normally produce chlamydospores, according to their taxonomic descriptions. Like other chlamydospores, these structures contained nuclei and lipid bodies as revealed by DAPI and Nile Red staining, and could germinate. This is the first study to demonstrate that under laboratory conditions fengycin, an antifungal lipopeptide produced by B. subtilis, can induce chlamydospore formation in Fusarium and chlamydospore-like structures in many filamentous fungi.

  10. Using Spores for Fusarium spp. Classification by MALDI-Based Intact Cell/Spore Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Wolfgang Winkler

    2012-01-01

    Full Text Available Fusarium is a widespread genus of filamentous fungi and a member of the soil microbial community. Certain subspecies are health threatening because of their mycotoxin production that affects the human and animal food chain. Thus, for early and effective pest control, species identification is of particular interest; however, differentiation on the subspecies level is challenging and time-consuming for this fungus. In the present study, we show the possibilities of intact cell mass spectrometry for spore analysis of 22 different Fusarium strains belonging to six Fusarium subspecies. We found that species differentiation is possible if mass spectrometric analyses are performed under well-defined conditions with fixed parameters. A critical point for analysis is a proper sample preparation of spores, which increases the quality of mass spectra with respect to signal intensity and m/z value variations. It was concluded that data acquistion has to be performed automatically; otherwise, user-specific variations are introduced generating data which cannot fit the existing datasets. Data that show clearly that matrix-assisted laser desorption ionization-based intact cell/intact spore mass spectrometry (IC/ISMS can be applied to differentiate closely related Fusarium spp. are presented. Results show a potential to build a database on Fusarium species for accurate species identification, for fast response in the case of infections in the cornfield. We furthermore demonstrate the high precision of our approach in classification of intact Fusarium species according to the location of their collection.

  11. Evaluation of biocontrol ability of native strains of Trichoderma spp on Rhizoctonia and Fusarium sp in coffee (Coffea arabica in experimental conditions

    Directory of Open Access Journals (Sweden)

    Nina Rudy

    2016-06-01

    Full Text Available Due to the indiscriminate use agrochemicals in conventional agriculture, it is causing pollution problems in the environment (soil, air and water, hence the search for alternatives that contribute to agricultural production by agro-chemical free sustainable production. This paper studies the biological control of damping off in coffee (Coffea arabica by applying antagonistic fungus Trichoderma sp. Under experimental conditions at laboratory facilities of the Academic Unit Carmen Pampa Campesina, a community of Carmen Pampa, Township Coroico. The aim of this study was to biologically control the "damping off", they found two genera that cause damping off in seedbed of coffee: Rhizoctonia sp. and Fusarium sp.To determine the percentage of growth and control in the culture medium, we used the method of counting quarters, where they gave the mycelial growth of antagonistic fungus Trichoderma sp., And the fungal pathogens Rhizoctonia sp. and Fusarium sp. Statistically there was a highly significant difference in the variable growth rate of Trichoderma sp. on pathogenic fungi Rhizoctonia sp. and Fusarium sp. at 3, 6 and 9 days that announces the time factor and treatments are interdependent. The control variable showed a highly significant difference in the time factor and treatment, but the interaction shows no significant difference this makes known factors that are independent, so the fungus Trichoderma sp. not depend on time in treatment, thus showing its inhibitory power to Rhizoctonia sp. and Fusarium sp .. This test gives references that there is antagonistic fungus control on the fungal pathogens Rhizoctonia sp. and Fusarium sp.

  12. Biological control of wilt disease complex on tomato crop caused by Meloidogyne javanica and Fusarium oxysporum f.sp. lycopersici by Verticillium leptobactrum.

    Science.gov (United States)

    Hajji-Hedfi, Lobna; Regaieg, Hajer; Larayedh, Asma; Chihani, Noura; Horrigue-Raouani, Najet

    2017-09-23

    The efficacy of Verticillium leptobactrum isolate (HR1) was evaluated in the control of root-knot nematode and Fusarium wilt fungus under laboratory and greenhouse conditions. Five concentrations of V. leptobactrum (HR1) isolate were tested for their nematicidal and fungicidal activities against Meloidogyne javanica and Fusarium oxysporum f.sp. lycopersici in vitro. Laboratory trials showed that mycelium growth inhibition of Fusarium wilt fungus was correlated to the increase of the concentration of culture filtrate. All dilutions showed efficiency in reducing the growth of Fusarium oxysporum f.sp. lycopersici. The greatest nematicidal activity was observed at 50, 75, and 100% filtrate dilutions. The egg hatching percentage reached 42%, and the juvenile's corrected mortality registered 90% for the above treatments. In greenhouse experiment, the biocontrol agent fungus enhanced significantly tomato growth components (height and weight of plant and root). The multiplication rate of root-knot nematode and the Fusarium wilt disease incidence declined significantly with soil application of V. leptobactrum as with chemical treatments. The isolate HR1 was efficient to control wilt disease complex caused by M. javanica and Fusarium oxysporum f.sp. lycopersici.

  13. Fungal community, Fusarium head blight complex and secondary metabolites associated with malting barley grains harvested in Umbria, central Italy.

    Science.gov (United States)

    Beccari, Giovanni; Senatore, Maria Teresa; Tini, Francesco; Sulyok, Michael; Covarelli, Lorenzo

    2018-05-20

    In recent years, due to the negative impact of toxigenic mycobiota and of the accumulation of their secondary metabolites in malting barley grains, monitoring the evolution of fungal communities in a certain cultivation area as well as detecting the different mycotoxins present in the raw material prior to malting and brewing processes have become increasingly important. In this study, a survey was carried out on malting barley samples collected after their harvest in the Umbria region (central Italy). Samples were analyzed to determine the composition of the fungal community, to identify the isolated Fusarium species, to quantify fungal secondary metabolites in the grains and to characterize the in vitro mycotoxigenic profile of a subset of the isolated Fusarium strains. The fungal community of barley grains was mainly composed of microorganisms belonging to the genus Alternaria (77%), followed by those belonging to the genus Fusarium (27%). The Fusarium head blight (FHB) complex was represented by nine species with the predominance of Fusarium poae (37%), followed by Fusarium avenaceum (23%), Fusarium graminearum (22%) and Fusarium tricinctum (7%). Secondary metabolites biosynthesized by Alternaria and Fusarium species were present in the analyzed grains. Among those biosynthesized by Fusarium species, nivalenol and enniatins were the most prevalent ones. Type A trichothecenes (T-2 and HT-2 toxins) as well as beauvericin were also present with a high incidence. Conversely, the number of samples contaminated with deoxynivalenol was low. Conjugated forms, such as deoxynivalenol-3-glucoside and HT-2-glucoside, were detected for the first time in malting barley grains cultivated in the surveyed area. In addition, strains of F. avenaceum and F. tricinctum showed the ability to biosynthesize in vitro high concentrations of enniatins. The analysis of fungal secondary metabolites, both in the grains and in vitro, revealed also the presence of other compounds, for which

  14. Detection of Fusarium spp. and Trichoderma spp. and antagonism of Trichoderma sp. in soybean under no-tillage

    Directory of Open Access Journals (Sweden)

    Paola Mendes Milanesi

    2013-12-01

    Full Text Available This study aimed i to quantify the occurrence of Fusarium spp. and Trichoderma spp. in rhizospheric soil, with and without symptoms of Sudden Death Syndrome (SDS in eight soybean genotypes; ii morphologically identify isolates of Fusarium spp. from roots with SDS; iii evaluate the antagonism between Trichoderma spp. and Fusarium spp. isolates from rhizospheric soil and roots from with and without SDS, respectively; and iv characterize through the ITS1-5.8S-ITS2 region of rDNA the isolates of Trichoderma spp. with better performance in the direct confrontation. The sampling of soil and roots was performed in an experimental area located in Cruz Alta, RS, Brazil. In the laboratory, serial dilutions of soil samples, counting of the number of Colony Forming Units (UFCs/g-1 of rhizospheric soil were performed as well as isolation for identification of isolates of Fusarium spp. and Trichoderma spp. and testing of direct confrontation. There were significant differences between the population of Trichoderma spp. in the rhizosphere of plants with and without symptoms of SDS. For the population of Fusarium spp., significant difference was observed only in the rhizosphere of plants without symptoms of SDS. In diseased roots the following species were identified: F. solani, F. avenaceum, F. graminearum, F. oxysporum and F. verticillioides. In the test of direct confrontation, eight isolates of Trichoderma spp. achieved the best performance in the antagonism to Fusarium spp. and Trichoderma spp. from areas with symptoms of SDS had a higher control efficiency in vitro. These isolates showed high similarity to the species of T. koningii agregate.

  15. Variability of Pathogenicity of Fusarium spp. Originating from Maize and Wheat Grains

    Directory of Open Access Journals (Sweden)

    Sonja Tančić

    2009-01-01

    Full Text Available Differences in the pathogenicity of 93 isolates of seven species belonging to the genus Fusarium (F. graminearum, F. verticillioides, F. proliferatum, F. subglutinans, F. sporotrichioides, F. semitectum and F. equiseti, originating from maize kernels (61 and wheat grains (32, were examined based on the germination percentage of inoculated seeds. The studied species demonstrated inter- and intraspecies variability regarding the effects on maize seed germination. On the average, the greatest germination reduction was found in seeds inoculated with the spore suspensions of F. sporotrichioides and F. graminearum. A similar reduction was detected in seeds inoculated with F. proliferatum and F. subglutinans. The effect of F. subglutinans on seed germination reduction was higher compared to the two latter species, while the effects of F. semitectum and F. equiseti were smallest. The majority of isolates were of moderate pathogenicity, while the lowest number of isolates was either very pathogenic (7 or apathogenic (10. Pathogenicity of the isolates originating from wheat grains was generally lower than the pathogenicity of isolates originating from maize kernels, with the exception of F. sporotrichioides.

  16. Effect of Gamma Rays on the Distribution of Toxigenic Fusarium Moulds and Chemical Changes in Whole and Dry Milled Fractions of Wheat

    International Nuclear Information System (INIS)

    Mahrous, S.R.

    2008-01-01

    The influence of gamma-irradiation on Fusarium-mycotoxins and the chemical composition of whole and dry-milled fractions of wheat grains was investigated. Wheat samples collected from the Egyptian markets were found to be heavily contaminated by, Fusarium graminearum (70-100%), F. moniliforme (40-60%) and F.subglutinilils (10-30%). Fusarium counts in wheat fractions were 1.1-2.7 x 10 1 CFU/g in flour; 1.1 x 10 3 to 3.7 X 10 4 CFU/g in bran and 1.4 x 10 2 to 1.6 X 10 3 in shorts. The levels of deoxynivalenol (DON) and zearalenone were generally highest in the bran and lowest in the flour. The levels of DON and zearalenone. in whole wheat samples were generally lower than the levels in the bran and shorts. Irradiation at a dose 5.0 kGy reduced the Fusarium moulds growth greatly relative to unirradiated controls and there was no growth at 7.0 kGy. Application of radiation at 15.0 kGy reduced the levels of DON and zearalenon by less than 1 ppm and Fusarium toxins were eliminated at 20.0 kGy. The chemical composition of the raw and irradiated whole and dry- milled fractions of-wheat grains up to 20.0 kGy was similar

  17. The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK

    Science.gov (United States)

    Nielsen, L.K.; Cook, D.J.; Edwards, S.G.; Ray, R.V.

    2014-01-01

    Fusarium head blight (FHB) caused by Fusarium and Microdochium species can significantly affect the yield of barley grain as well as the quality and safety of malt and beer. The present study provides new knowledge on the impacts of the FHB pathogen complex on the malting and brewing quality parameters of naturally infected barley. Quantitative real-time PCR and liquid chromatography double mass spectrometry were used to quantify the predominant FHB pathogens and Fusarium mycotoxins, respectively, in commercially grown UK malting barley samples collected between 2007 and 2011. The predominant Fusarium species identified across the years were F. poae, F. tricinctum and F. avenaceum. Microdochium majus was the predominant Microdochium species in 2007, 2008, 2010 and 2011 whilst Microdochium nivale predominated in 2009. Deoxynivalenol and zearalenone quantified in samples collected between 2007 and 2009 were associated with F. graminearum and F. culmorum, whilst HT-2 and T-2, and nivalenol in samples collected between 2010 and 2011 correlated positively with F. langsethiae and F. poae, respectively. Analysis of the regional distribution and yearly variation in samples from 2010 to 2011 showed significant differences in the composition of the FHB species complex. In most regions (Scotland, the South and North of England) the harvest in 2010 had higher concentrations of Fusarium spp. than in 2011, although no significant difference was observed in the Midlands between the two years. Microdochium DNA was significantly higher in 2011 and in the North of England and Scotland compared to the South or Midlands regions. Pathogens of the FHB complex impacted negatively on grain yield and quality parameters. Thousand grain weight of malting barley was affected significantly by M. nivale and M. majus whilst specific weight correlated negatively with F. avenaceum and F. graminearum. To determine the impact of sub-acute infections of the identified Fusarium and Microdochium

  18. Isolation and characterization of two mitoviruses and a putative alphapartitivirus from Fusarium spp.

    Science.gov (United States)

    Osaki, Hideki; Sasaki, Atsuko; Nomiyama, Koji; Sekiguchi, Hiroyuki; Tomioka, Keisuke; Takehara, Toshiaki

    2015-06-01

    The filamentous fungus Fusarium spp. includes several important plant pathogens. We attempted to reveal presence of double-stranded (ds) RNAs in the genus. Thirty-seven Fusarium spp. at the MAFF collection were analyzed. In the strains of Fusarium coeruleum, Fusarium globosum and Fusarium solani f. sp. pisi, single dsRNA bands were detected. The strains of F. coeruleum and F. solani f. sp. pisi cause potato dry rot and mulberry twig blight, respectively. Sequence analyses revealed that dsRNAs in F. coeruleum and F. globosum consisted of 2423 and 2414 bp, respectively. Using the fungal mitochondrial translation table, the positive strands of these cDNAs were found to contain single open reading frames with the potential to encode a protein of putative 757 and 717 amino acids (molecular mass 88.5 and 84.0 kDa, respectively), similar to RNA-dependent RNA polymerases of members of the genus Mitovirus. These dsRNAs in F. coeruleum and F. globosum were assigned to the genus Mitovirus (family Narnaviridae), and these two mitoviruses were designated as Fusarium coeruleum mitovirus 1 and Fusarium globosum mitovirus 1. On the other hand, a positive strand of cDNA (1950 bp) from dsRNA in F. solani f. sp. pisi contained an ORF potentially encoding a putative RdRp of 608 amino acids (72.0 kDa). The putative RdRp was shown to be related to those of members of the genus of Alphapartitivirus (family Partitiviridae). We coined the name Fusarium solani partitivirus 2 for dsRNA in F. solani f. sp. pisi.

  19. Penggunaan Jamur Antagonis Trichoderma sp. dan Gliocladium sp. untuk Mengendalikan Penyakit Layu (Fusarium oxysporum) pada Tanaman Bawang Merah (Allium ascalonicum L.)

    OpenAIRE

    Ramadhina, Arie

    2015-01-01

    Arie Ramadhina, 2012. The Use of Antagonism Fungus of Trichoderma sp and Gliocladium sp. for Controlling Wilt (Fusarium oxysporum) in Red Onion Plants (Allium ascolanicum). Supervised by Lisnawita and Lahmuddin Lubis. The aim of the research was to know the effectiveness of antagonism fungus of Trichoderma sp. and Gliocladium sp. in controlling wilt in red onion plants. The research was performed in the green-house at the faculty of Agriculture, USU, from February until May, 2012. The researc...

  20. A RALDH-like enzyme involved in Fusarium verticillioides development

    KAUST Repository

    Díaz-Sánchez, Violeta

    2015-12-11

    Retinaldehyde dehydrogenases (RALDHs) convert retinal to retinoic acid, an important chordate morphogen. Retinal also occurs in some fungi, such as Fusarium and Ustilago spp., evidenced by the presence of rhodopsins and β–carotene cleaving, retinal-forming dioxygenases. Based on the assumption that retinoic acid may also be formed in fungi, we searched the Fusarium protein databases for RALDHs homologs, focusing on Fusarium verticillioides. Using crude lysates of Escherichia coli cells expressing the corresponding cDNAs, we checked the capability of best matches to convert retinal into retinoic acid in vitro. Thereby, we identified an aldehyde dehydrogenase, termed CarY, as a retinoic acid-forming enzyme, an activity that was also exerted by purified CarY. Targeted mutation of the carY gene in F. verticillioides resulted in alterations of mycelia development and conidia morphology in agar cultures, and reduced capacity to produce perithecia as a female in sexual crosses. Complementation of the mutant with a wild-type carY allele demonstrated that these alterations are caused by the lack of CarY. However, retinoic acid could not be detected by LC-MS analysis either in the wild type or the complemented carY strain in vivo, making elusive the connection between CarY enzymatic activity and retinoic acid formation in the fungus.

  1. A RALDH-like enzyme involved in Fusarium verticillioides development

    KAUST Repository

    Dí az-Sá nchez, Violeta; Carmen Limó n, M.; Schaub, Patrick; Al-Babili, Salim; Avalos, Javier

    2015-01-01

    Retinaldehyde dehydrogenases (RALDHs) convert retinal to retinoic acid, an important chordate morphogen. Retinal also occurs in some fungi, such as Fusarium and Ustilago spp., evidenced by the presence of rhodopsins and β–carotene cleaving, retinal-forming dioxygenases. Based on the assumption that retinoic acid may also be formed in fungi, we searched the Fusarium protein databases for RALDHs homologs, focusing on Fusarium verticillioides. Using crude lysates of Escherichia coli cells expressing the corresponding cDNAs, we checked the capability of best matches to convert retinal into retinoic acid in vitro. Thereby, we identified an aldehyde dehydrogenase, termed CarY, as a retinoic acid-forming enzyme, an activity that was also exerted by purified CarY. Targeted mutation of the carY gene in F. verticillioides resulted in alterations of mycelia development and conidia morphology in agar cultures, and reduced capacity to produce perithecia as a female in sexual crosses. Complementation of the mutant with a wild-type carY allele demonstrated that these alterations are caused by the lack of CarY. However, retinoic acid could not be detected by LC-MS analysis either in the wild type or the complemented carY strain in vivo, making elusive the connection between CarY enzymatic activity and retinoic acid formation in the fungus.

  2. Zoneamento e identificação de Fusarium spp. causadores de podridão de raízes em plantios de erva-mate (Ilex paraguariensis A. St.-Hil. na região do vale do Taquarí, RS

    Directory of Open Access Journals (Sweden)

    Igor Poletto

    2006-01-01

    Full Text Available In 2004, symptoms of root rot disease were observed in erva-mate plantings in high areas of Region Taquari Valley, RS. With the help of EMATER, the municipal districts presenting plantings with symptoms were surveyed. In 10% of the affected plantings, root samples were collected and sent for analysis at the Plant Disease Laboratory at the Department of Plant Protection/CCR/UFSM. Five different species of at fungus Fusarium associated with the disease were isolated and identified: Fusarium oxysporum, Fusarium solani, Fusarium decemcellulare, Fusarium tabacinum and Fusarium tricinctum. All species were pathogenic when inoculated in erva-mate plants (Ilex paraguariensis A. St.-Hil.. At the moment of sampling, information about the management of the erva-mate plantings was obtained and the similarity between the symptoms presented in erva-mate and in agronomic crops discussed, as well as hypotheses on the origin of the inoculum of Fusarium spp. that infected the erva-mate plantings.

  3. Fusarium solani breast abscess

    Directory of Open Access Journals (Sweden)

    Anandi V

    2005-01-01

    Full Text Available An unusual manifestation of breast fusariosis was encountered in a 55-year-old female diabetic patient. Two fine needle aspirates (FNA from the abscess were done at three days interval and they showed hyaline, septate, branched, fungal hypahe in 10% potassium hydroxide mount. Fungal infection was confirmed by demonstrating the fungal hyphae in the midst of lymphocytes, macrophages and neutrophils in Leishman stained smears. Culture of both FNAs yielded a heavy and pure growth of Fusarium solani . The patient responded to oral ketoconazole 200 mg once daily for 3 weeks. The breast fusariosis reported here is presumably the first case in India.

  4. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    Science.gov (United States)

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  5. Fusarium growth on culture media made of tissue juice from irradiated and unirradiated potato tubers

    International Nuclear Information System (INIS)

    Taczanowski, M.

    1994-01-01

    Fusarium Sulphureum Schlecht is one of the tuber pathogens causing potato storage disease knowing as dry rot. Because irradiation can disturb the tissue defence mechanism against the pathogen, it was decided to carry out experiments on influence of the treatment on subsequent tuber tissue reaction to a maceration process. The maceration as a physical stress was a substitute for the pathogen activity. Tubers of two potato varieties were tested: Mila -a resistant variety to Fusarium and Atol - susceptible one. Tubers of both varieties were irradiated with a dose of 105 kGy. Unirradiated tubers were taken as a control. A day after irradiation the cortex tissue was macerated using an ordinary rasper and the resulted tissue pulp was strained through medical gauze to obtain crude juice. The juice was clarified by centrifugation and then added to dissolved PDA. The volume ratio of juice to PDA was 1:1. The prepared media were dispensed into Petri dishes. Small pieces of the Fusarium culture were put on the surface of the medium at the centre of each Petri dish. Subsequent growth of the fungus was assessed by measurement of culture diameters every 24 hours. Linear functions of the Fusarium growth were obtained for Mila control and Atol control. In the case of Mila, the Fusarium found more favourable conditions for its growth in the presence of juice from irradiated tubers than from the control ones. Making the same comparison for Atol, no difference was detected. (author)

  6. Genetic transformation of Fusarium avenaceum by Agrobacterium tumefaciens mediated transformation and the development of a USER-Brick vector construction system

    DEFF Research Database (Denmark)

    Sorensen, Lisette Quaade; Lysøe, Erik; Larsen, Jesper Erup

    2014-01-01

    The plant pathogenic and saprophytic fungus Fusarium avenaceum causes considerable in-field and post-field losses worldwide due to its infections of a wide range of different crops. Despite its significant impact on the profitability of agriculture production and a desire to characterize the infe...

  7. AMELIORATIVE EFFECT OF GAMMA RADIATION ON SODIUM CHLORIDE STRESSED TOMATO PLANT GROWTH IN SOIL INFESTED WITH FUSARIUM OXYSPORUM F.SP. LYCOPERSICI

    International Nuclear Information System (INIS)

    RIZK, M.A.; BOTROS, H.W.

    2009-01-01

    The present study was carried out to investigate the influence of saline stress and/or gamma radiation on the tomato seedlings development, mycelial growth and sporulation of Fusarium oxysporum. Irradiation of the fungus ameliorated the detrimental effect of salinity and improved the percentage of seedlings emergence and increased the root and shoot lengths and dry weight of tomato seedlings. Also, coupling salinity with irradiation significantly increased the mycelial growth in soil and biomass gain of Fusarium oxysporum up to 2 kGy, above which the growth and sporulation were hardly affected and completely suppressed at 5 kGy. On the other hand, exposure of the tomato seeds up to 4 Gy counteracted the suppressive effect of salinity and increased the growth parameters in presence or absence of the fungus. Fusarium oxysporum f.sp. lycopersici appeared to be tolerant to salinity up to 4.8 EC (millimohse) and highly sensitive to irradiation dose 5 kGy.

  8. Biochemical Characterization of Fungus Isolated during In vitro Propagation of Bambusa balcooa.

    Science.gov (United States)

    Tyagi, Bhawna; Tewari, Salil; Dubey, Ashutosh

    2018-01-01

    Bambusa balcooa ( Poaceae: Bambusoideae ) is a multipurpose bamboo species, which is native of the Indian subcontinent. B. balcooa is regarded as one of the best species for scaffolding and building purposes because of its strong culm. Other uses include paper pulp, handicrafts, and products of the wood chip industry. Due to these various uses in industries, this species has been identified as one of the priority bamboos by the National Bamboo Mission. This study is designed to analyze the identification of fungus and develop the strategy to eliminate the contamination during in vitro establishment of B. balcooa through nodal part. Fungus contamination is a problem which is encountered during in vitro establishment of B. balcooa cultures. In the present study, fungus contamination from in vitro cultured plant has been isolated and subjected to partial sequence analysis of the 18S rRNA gene to identify the fungus strain. Experiments were designed to develop a strategy for removal of the fungus contamination with the help of antifungal compounds and commercial antimicrobial supplement supplied by HiMedia. Fusarium equiseti was identified as endophytic fungus. It was observed that antimicrobial supplement at concentration of 500 μl/l was more effective concentration to remove fungus contamination and not showed any detrimental effect on growth parameters of shoot. This experiment would help in identification and to get rid of fungal contamination and improve the in vitro establishment of B. balcooa cultures for large-scale propagation. Endogenous fungus was isolated from contaminated culture of B. balcooa , and it was identified as Fusarium equiseti and submitted to NCBI under accession no. KP274872. The endophytic fungus had shown substantial production of amylase, cellulase, and protease media. Gibberellic acid (GA 3 ) production by F. equiseti was maximum on the 7 th day on inoculation. Abbreviations used: B. balcooa : Bambusa balcooa , F. equiseti : Fusarium

  9. The effects of Fusarium oxysporum on broomrape (Orobanche egyptiaca) seed germination.

    Science.gov (United States)

    Hasannejad, S; Zad, S Javad; Alizade, H Mohamad; Rahymian, H

    2006-01-01

    Broomrape (Orobanche aegyptiaca L.), one of the most important parasitic weeds in Iran, is a root parasitic plant that can attack several crops such as tobacco, sunflower, tomato and etc. Several methods were used for Orobanche control, however these methods are inefficient and very costly. Biological control is an additional recent tool for the control of parasitic weeds. In order to study of the fungus Fusarium oxysporum (biocontrol agent) effects on broomrape seed germination, two laboratory studies were conducted in Tehran University. In the first experiment, different concentration of GR60 (0, 1, 2 and 5 ppm) as stimulation factor for Orobanche seeds germination were experimented. Results showed that concentrations of GR60 had a significant effect on seed germination. The highest seed germination percent was obtained in 1 ppm. In the second experiment, the effect of Fusarium oxysporum was tested on O. aegyptiaca seeds germination. The fungus Fusarium oxysporum were isolated from infested and juvenile O. aegyptiaca ower stalks in tomato field in karaj. Fungus spores suspension in different concentrations (0 (Control), 10(5) (T1), 10(6) (T2), 10(7) (T3) and 3 x 10(7) (T4)) from potato dextrose agar (PDA) prepared and together with 1ppm of GR60 concentration were tested on O. aegyptiaca seeds. Results show that the highest inhibition of seed germination obtained in 10(5) spores/ml. With increasing of suspension concentrations, inhibition percent was reduced and mortality of seeds germ tube was increased. In this investigation, Fusarium oxysporum can be used to inhibit seed germination, stimulate the "suicidal germination" of seeds and reduce the Orobanche seed bank.

  10. Root Proteomic Analysis of Grapevine Rootstocks Inoculated with Rhizophagus irregularis and Fusarium oxysporum f. sp. herbemontis

    Directory of Open Access Journals (Sweden)

    Elisa Vilvert

    Full Text Available ABSTRACT Grapevine decline and death caused by the pathogenic fungus Fusarium oxysporum f. sp. herbemontis is among the main phytosanitary problem for viticulture in southern Brazil. The eradication of infected plants is presently the most common procedure for disease control in vineyards. Inoculation with arbuscular mycorrhizal fungi is an option to reduce or neutralize the negative impacts of soil pathogenic microorganisms, but the mechanisms of plant response involved in this process are not yet completely elucidated. In order to better understand these mechanisms, an experiment was carried out to identify proteins related to plant defence induced by the mycorrhizal fungus after infection with the pathogenic fungus. We used the grapevine rootstocks SO4 and R110 (susceptible and resistant to the pathogenic fungus, respectively inoculated or not inoculated with the mycorrhizal fungus Rhizophagus irregularis, and inoculated or not inoculated with Fusarium oxysporum f. sp. herbemontis. Growth of the rootstocks’ shoot and root and presence of pathogenic symptoms were evaluated. The protein profiles of roots were characterized by two-dimensional electrophoresis and proteins were identified using mass spectrometry. The grapevine rootstocks inoculated with R. irregularis had higher biomass production and lower level of pathogenic symptoms. The R110 rootstock differentially accumulated 73 proteins, while SO4 accumulated 59 proteins. Nine plant-defence proteins were expressed by SO4 rootstock, and six were expressed by R110 rootstock plants. The results confirm the effect of mycorrhizal fungi in plant growth promotion and their potential for biological control against soil pathogenic fungus. Protein expression is dependent on rootstock characteristics and on the combination of plant material with the fungi.

  11. Vinegar residue compost as a growth substrate enhances cucumber resistance against the Fusarium wilt pathogen Fusarium oxysporum by regulating physiological and biochemical responses.

    Science.gov (United States)

    Shi, Lu; Du, Nanshan; Yuan, Yinghui; Shu, Sheng; Sun, Jin; Guo, Shirong

    2016-09-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cucumerinum (FOC) is the most severe soil-borne disease attacking cucumber. To assess the positive effects of vinegar residue substrate (VRS) on the growth and incidence of Fusarium wilt on cucumber, we determined the cucumber growth parameters, disease severity, defense-related enzyme and pathogenesis-related (PR) protein activities, and stress-related gene expression levels. In in vitro and pot experiments, we demonstrated the following results: (i) the VRS extract exhibited a higher biocontrol activity than that of peat against FOC, and significantly improved the growth inhibition of FOC, with values of 48.3 %; (ii) in response to a FOC challenge, antioxidant enzymes and the key enzymes of phenylpropanoid metabolic activities, as well as the PR protein activities in the roots of cucumber, were significantly increased. Moreover, the activities of these proteins were higher in VRS than in peat; (iii) the expression levels of stress-related genes (including glu, pal, and ethylene receptor) elicited responses to the pathogens inoculated in cucumber leaves; and (iv) the FOC treatment significantly inhibited the growth of cucumber seedlings. Moreover, all of the growth indices of plants grown in VRS were significantly higher than those grown in peat. These results offer a new strategy to control cucumber Fusarium wilt, by upregulating the activity levels of defense-related enzymes and PR proteins and adjusting gene expression levels. They also provide a theoretical basis for VRS applications.

  12. Examining the Transcriptional Response in Wheat Fhb1 Near-Isogenic Lines to Fusarium graminearum Infection and Deoxynivalenol Treatment

    Directory of Open Access Journals (Sweden)

    Anna N. Hofstad

    2016-03-01

    Full Text Available head blight (FHB is a disease caused predominantly by the fungal pathogen that affects wheat and other small-grain cereals and can lead to severe yield loss and reduction in grain quality. Trichothecene mycotoxins, such as deoxynivalenol (DON, accumulate during infection and increase pathogen virulence and decrease grain quality. The locus on wheat chromosome 3BS confers Type II resistance to FHB and resistance to the spread of infection on the spike and has been associated with resistance to DON accumulation. To gain a better genetic understanding of the functional role of and resistance or susceptibility to FHB, we examined DON and ergosterol accumulation, FHB resistance, and the whole-genome transcriptomic response using RNA-seq in a near-isogenic line (NIL pair carrying the resistant and susceptible alleles for during infection and DON treatment. Our results provide a gene expression atlas for the resistant and susceptible wheat– interaction. The DON concentration and transcriptomic results show that the rachis is a key location for conferring Type II resistance. In addition, the wheat transcriptome analysis revealed a set of -responsive genes that may play a role in resistance and a set of DON-responsive genes that may play a role in trichothecene resistance. Transcriptomic results from the pathogen show that the genome responds differently to the host level of resistance. The results of this study extend our understanding of host and pathogen responses in the wheat– interaction.

  13. Antibiotic Resistance and Fungus

    Centers for Disease Control (CDC) Podcasts

    2017-02-28

    Dr. David Denning, President of the Global Action Fund for Fungal Infections and an infectious diseases clinician, discusses antimicrobial resistance and fungus.  Created: 2/28/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/28/2017.

  14. Fusarium basal rot in the Netherlands

    NARCIS (Netherlands)

    Visser, de C.L.M.; Broek, van den R.C.F.M.; Brink, van den L.

    2006-01-01

    Fusarium basal rot of onion, caused by Fusarium oxysporum f.sp. cepae, is a steadily increasing problem in The Netherlands. Financial losses for Dutch farmers confronted with Fusarium basal rot is substantial, due to yield reduction and high storage costs. This paper describes the development and

  15. Penggunaan Jamur Antagonis Trichoderma SP. Dan Gliocladium SP. Untuk Mengendalikan Penyakit Layu Fusarium Pada Tanaman Bawang Merah (Allium Ascalonicum L.)

    OpenAIRE

    Arie Ramadhina, Arie Ramadhina; Lisnawita, Lisnawita; Lubis, Lahmuddin

    2013-01-01

    The use of antagonism fungus of Trichoderma sp. and Gliocladium sp. for controlling wilt(Fusarium oxysporum) in red onion plants. The aim of the research was to know the effectiviness ofantagonism fungus of Trichoderma sp. and Gliocladium sp. in controlling wilt in red onion plants.The research used non-factorial RAK (random group design) with eight treatments: control, 10grams of F. oxysporum, 12 grams of Trichoderma sp., 18 grams of Trichoderma sp., 24 grams ofTrichoderma sp., and 12 grams ...

  16. Incidence of Fusarium spp. and Levels of Fumonisin B1 in Maize in Western Kenya

    Science.gov (United States)

    Kedera, C. J.; Plattner, R. D.; Desjardins, A. E.

    1999-01-01

    Maize kernel samples were collected in 1996 from smallholder farm storages in the districts of Bomet, Bungoma, Kakamega, Kericho, Kisii, Nandi, Siaya, Trans Nzoia, and Vihiga in the tropical highlands of western Kenya. Two-thirds of the samples were good-quality maize, and one-third were poor-quality maize with a high incidence of visibly diseased kernels. One hundred fifty-three maize samples were assessed for Fusarium infection by culturing kernels on a selective medium. The isolates obtained were identified to the species level based on morphology and on formation of the sexual stage in Gibberella fujikuroi mating population tests. Fusarium moniliforme (G. fujikuroi mating population A) was isolated most frequently, but F. subglutinans (G. fujikuroi mating population E), F. graminearum, F. oxysporum, F. solani, and other Fusarium species were also isolated. The high incidence of kernel infection with the fumonisin-producing species F. moniliforme indicated a potential for fumonisin contamination of Kenyan maize. However, analysis of 197 maize kernel samples by high-performance liquid chromatography found little fumonisin B1 in most of the samples. Forty-seven percent of the samples contained fumonisin B1 at levels above the detection limit (100 ng/g), but only 5% were above 1,000 ng/g, a proposed level of concern for human consumption. The four most-contaminated samples, with fumonisin B1 levels ranging from 3,600 to 11,600 ng/g, were from poor-quality maize collected in the Kisii district. Many samples with a high incidence of visibly diseased kernels contained little or no fumonisin B1, despite the presence of F. moniliforme. This result may be attributable to the inability of F. moniliforme isolates present in Kenyan maize to produce fumonisins, to the presence of other ear rot fungi, and/or to environmental conditions unfavorable for fumonisin production. PMID:9872757

  17. Fusarium species and fumonisins associated with maize kernels produced in Rio Grande do Sul State for the 2008/09 and 2009/10 growing seasons

    Directory of Open Access Journals (Sweden)

    R. Stumpf

    2013-01-01

    Full Text Available Ear rots caused by Fusarium spp. are among the main fungal diseases that contribute to poor quality and the contamination of maize grains with mycotoxins. This study aimed to determine the visual incidence of fungal-damaged kernels (FDKs, the incidence of two main Gibberella (a teleomorph of Fusarium complexes (G. fujikuroi and G. zeae associated with maize using a seed health blotter test, and the fumonisin levels, using high performance liquid chromatography, in samples of maize grains grown across 23 municipalities during the 2008/09 and 2009/10 growing seasons. Additionally, 104 strains that were representative of all of the analysed samples were identified to species using PCR assays. The mean FDK was seven per cent, and only six of the samples had levels greater than six per cent. Fusarium spp. of the G. fujikuroi complex were present in 96% of the samples, and G. zeae was present in 18% of the samples (5/27. The mean incidence of G. fujikuroi was 58%, and the incidence of G. zeae varied from 2 to 6%. FB1 was found in 58.6%, FB2 in 37.9%, and both toxins in 37.9% of the samples. The FB1 and FB2 levels were below the quantification limits for 41.3% of the samples, and the mean FB1 levels (0.66 µg/g were higher than the mean FB2 levels (0.42 µg/g. The PCR identification separated the 104 isolates into three of the G. fujikuroi complex: F. verticillioides (76%, F. subglutinans (4% and F. proliferatum (2%; and G. zeae (anamorph = F. graminearum (18%. Our results confirmed the dominance of F. verticillioides, similar to other regions of Brazil, but they differed due to the relatively higher incidence of F. graminearum. Total fumonisin levels were below the maximum limit determined by current Brazilian regulations.

  18. Biocontrol of the toxigenic plant pathogen Fusarium culmorum by soil fauna in an agroecosystem.

    Science.gov (United States)

    Meyer-Wolfarth, Friederike; Schrader, Stefan; Oldenburg, Elisabeth; Weinert, Joachim; Brunotte, Joachim

    2017-08-01

    In 2011 and 2013, a field experiment was conducted in a winter wheat field at Adenstedt (northern Germany) to investigate biocontrol and interaction effects of important members of the soil food web (Lumbricus terrestris, Annelida; Folsomia candida, Collembola and Aphelenchoides saprophilus, Nematoda) on the phytopathogenic fungus Fusarium culmorum in wheat straw. Therefore, soil fauna was introduced in mesocosms in defined numbers and combinations and exposed to either Fusarium-infected or non-infected wheat straw. L. terrestris was introduced in all faunal treatments and combined either with F. candida or A. saprophilus or both. Mesocosms filled with a Luvisol soil, a cover of different types of wheat straw and respective combinations of faunal species were established outdoors in the topsoil of a winter wheat field after harvest of the crop. After a time span of 4 and 8 weeks, the degree of wheat straw coverage of mesocosms was quantified to assess its attractiveness for the soil fauna. The content of Fusarium biomass in residual wheat straw and soil was determined using a double-antibody sandwich (DAS)-ELISA method. In both experimental years, the infected wheat straw was incorporated more efficiently into the soil than the non-infected control straw due to the presence of L. terrestris in all faunal treatments than the non-infected control straw. In addition, Fusarium biomass was reduced significantly in all treatments after 4 weeks (2011: 95-99%; 2013:15-54%), whereupon the decline of fungal biomass was higher in faunal treatments than in non-faunal treatments and differed significantly from them. In 2011, Fusarium biomass of the faunal treatments was below the quantification limit after 8 weeks. In 2013, a decline of Fusarium biomass was observed, but the highest content of Fusarium biomass was still found in the non-faunal treatments after 8 weeks. In the soil of all treatments, Fusarium biomass was below the quantification limit. The earthworm species

  19. Identification and regulation of fusA, the polyketide synthase gene responsible for fusarin production in Fusarium fujikuroi.

    Science.gov (United States)

    Díaz-Sánchez, Violeta; Avalos, Javier; Limón, M Carmen

    2012-10-01

    Fusarins are a class of mycotoxins of the polyketide family produced by different Fusarium species, including the gibberellin-producing fungus Fusarium fujikuroi. Based on sequence comparisons between polyketide synthase (PKS) enzymes for fusarin production in other Fusarium strains, we have identified the F. fujikuroi orthologue, called fusA. The participation of fusA in fusarin biosynthesis was demonstrated by targeted mutagenesis. Fusarin production is transiently stimulated by nitrogen availability in this fungus, a regulation paralleled by the fusA mRNA levels in the cell. Illumination of the cultures results in a reduction of the fusarin content, an effect partially explained by a high sensitivity of these compounds to light. Mutants of the fusA gene exhibit no external phenotypic alterations, including morphology and conidiation, except for a lack of the characteristic yellow and/or orange pigmentation of fusarins. Moreover, the fusA mutants are less efficient than the wild type at degrading cellophane on agar cultures, a trait associated with pathogenesis functions in Fusarium oxysporum. The fusA mutants, however, are not affected in their capacities to grow on plant tissues.

  20. Fusarium dimerum Species Complex (Fusarium penzigii) Keratitis After Corneal Trauma.

    Science.gov (United States)

    do Carmo, Anália; Costa, Esmeralda; Marques, Marco; Quadrado, Maria João; Tomé, Rui

    2016-12-01

    We report a case of a keratitis associated with a Fusarium penzigii-a Fusarium dimerum species complex (FDSC)-in a 81-year-old woman after a corneal trauma with a tree branch. At patient admittance, slit lamp biomicroscopy revealed an exuberant chemosis, an inferior corneal ulcer with an associated inflammatory infiltrate, a central corneal abscess, bullous keratopathy and posterior synechiae. Corneal scrapes were obtained for identification of bacteria and fungi, and the patient started antibiotic treatment on empirical basis. Few days later, the situation worsened with the development of hypopyon. By that time, Fusarium was identified in cultures obtained from corneal scrapes and the patient started topical amphotericin B 0.15 %. Upon the morphological identification of the Fusarium as a FDSC, and since there was no clinical improvement, the treatment with amphotericin B was suspended and the patient started voriconazole 10 mg/ml, eye drops, hourly and voriconazole 200 mg iv, every 12 h for 1 month. The hypopyon resolved and the inflammatory infiltrate improved, but the abscess persisted at the last follow-up visit. The molecular identification revealed that the FDSC was a F. penzigii.

  1. Development of DNA marker for Fusarium resistance in Pisang Berangan

    International Nuclear Information System (INIS)

    Affrida Abu Hassan; Mohd Nazir Basiran; Rosmawati Shaharuddin

    2000-01-01

    Fusarium wilt (Panama disease), a disease caused by a soil-bome fungus Fusarium oxysporum f. sp. cubense, is regarded as one of the most significant threats to banana (Musa spp.) production worldwide. In Malaysia, it is affecting the Cavendish as well as Pisang Berangan which are widely planted for export as well as for local consumption. Pisang Berangan mutant line (MB96) which was obtained through induced mutation by gamma irradiation has showed certain degree of tolerance towards the disease. Attempts were made to utilise Polymerase Chain Reaction (PCR) based techniques i.e. RAPD (Random Amplified Polymorphic DNA) to screen for unique DNA sequences that are associated or closely linked to these tolerance characteristics. Four single 1 Obp primers and five duplex 1 Obp primers combinations were used to detect polymorphism between the DNA of control and 4 mutant lines micropropagated from MB96. As further control, DNA of Pisang Mas was included. Duplex arbitrary primer combinations 11-89 and single primer OPA-3 have produced DNA fragments that are polymorphic between cultivar, Pisang Berangan and Pisang Mas. However the RAPD analysis failed to show any polymorphism between the control and the mutant lines or in between the mutant lines

  2. Somaclonal variation of sugar beet resistant to pathogenic root rot Fusarium oxysporum var. orthoceras

    Directory of Open Access Journals (Sweden)

    Urazaliev Kairat

    2013-01-01

    Full Text Available Sugar beet (Beta vulgaris L. - one of the most important crop in the world. In Kazakhstan, it is a traditional and major source of domestic sugar. The industry of cultivation and production of sugar beet is one of the priority areas of agricultural development of the country. In this paper, we studied the regeneration ability of different genotypes of sugar beet explants on selective media with the culture filtrate of the pathogen fungus F. oxysporum var. orthoceras. From the roots and shoots of sugar beet the pathogen Fusarium root rot was isolated. Was obtained pure cultures of the isolated pathogen. As a result, of morphological and cultural descriptions, as well as microbiological analysis it was revealed that the isolated pathogen is Fusarium Oxysporum. The results showed the pathogenicity of the fungus. For regeneration in vitro of the sugar beet genotypes resistant to the pathogen the culture media was optimized to the culture filtrate of the fungus F. oxysporum var. orthoceras. The frequency of shoot regeneration, depending on the genotype, was 1,0-12,5 %. On these explants the multiple shoot formations were observed.

  3. Fusarium infection causes genotoxic disorders and antioxidant-based damages in Orobanche spp.

    Science.gov (United States)

    Aybeke, Mehmet

    2017-08-01

    This study aims to evaluate the toxic effects of Fusarium oxysporum on root parasitic weed, Orobanche spp. Comparative genetic and gene expression studies were conducted on uninfected and fungus-infected orobanches. In genetic studies, isolated total DNA was amplified by RAPD PCR. Fragment properties were analysed by GTS test. According to the results, the fragment properties of control and Fusarium infected (experimental) groups varied widely; and it has been observed that Fusarium has genotoxic effects on the DNA of orobanches. In gene expression studies, the expression levels of genes encoding enzymes or proteins were associated with ROS damage and toxic effects, therefore, gene expressions of Mn-superoxide dismutase (SOD), Zn-superoxide dismutase (=SOD2, mitochondrial), glutamine synthetase (GS), heat shock protein gene (HSP70), BAX, Caspase-3 and BCL2 were significantly higher in the experimental group. In the light of obtained data, it was concluded that F. oxysporum (1) caused heavy ROS damage in Orobanche (2) induced significant irrevocable genotoxic effects on the DNA of Orobanche, (3) degraded protein metabolism and synthesis, and finally (4) triggered apoptosis. The results of this study can be a ground for further research on reducing the toxic effects of Fusarium on agricultural products, so that advancements in bio-herbicide technology may provide a sustainable agricultural production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production

    Directory of Open Access Journals (Sweden)

    Rusu Anca

    2010-12-01

    Full Text Available Abstract Background The fungal pathogen Fusarium graminearum causes Fusarium Head Blight (FHB disease on wheat which can lead to trichothecene mycotoxin (e.g. deoxynivalenol, DON contamination of grain, harmful to mammalian health. DON is produced at low levels under standard culture conditions when compared to plant infection but specific polyamines (e.g. putrescine and agmatine and amino acids (e.g. arginine and ornithine are potent inducers of DON by F. graminearum in axenic culture. Currently, host factors that promote mycotoxin synthesis during FHB are unknown, but plant derived polyamines could contribute to DON induction in infected heads. However, the temporal and spatial accumulation of polyamines and amino acids in relation to that of DON has not been studied. Results Following inoculation of susceptible wheat heads by F. graminearum, DON accumulation was detected at two days after inoculation. The accumulation of putrescine was detected as early as one day following inoculation while arginine and cadaverine were also produced at three and four days post-inoculation. Transcripts of ornithine decarboxylase (ODC and arginine decarboxylase (ADC, two key biosynthetic enzymes for putrescine biosynthesis, were also strongly induced in heads at two days after inoculation. These results indicated that elicitation of the polyamine biosynthetic pathway is an early response to FHB. Transcripts for genes encoding enzymes acting upstream in the polyamine biosynthetic pathway as well as those of ODC and ADC, and putrescine levels were also induced in the rachis, a flower organ supporting DON production and an important route for pathogen colonisation during FHB. A survey of 24 wheat genotypes with varying responses to FHB showed putrescine induction is a general response to inoculation and no correlation was observed between the accumulation of putrescine and infection or DON accumulation. Conclusions The activation of the polyamine biosynthetic

  5. Распространенность грибов рода Fusarium в зерне яровой пшеницы в южной лесостепи республики Башкортостан

    OpenAIRE

    ХАЙРУЛЛИН Р.М.; КУТЛУБЕРДИНА Д.Р.

    2008-01-01

    Проведен анализ распространения фузариоза зерна яровой пшеницы репродукции 2007 года южной лесостепной природно-сельскохозяйственной зоны Республики Башкортостан. Выявлены виды Fusarium sporotrichioides, Fusarium poae, Fusarium oxysporum, Fusarium avenaceum, Fusarium graminearum, Fusarium сulmorum, Fusarium acuminatum, Fusarium tricinctum, Fusarium sambucinum, Fusarium subglutinans, Fusarium equiseti. Средняя зараженность зерна составила 12,7%. По частоте встречаемости доминировали виды F. sp...

  6. Structural dynamics of Fusarium genomes

    NARCIS (Netherlands)

    Kistler, H.C.; Rep, M.; Ma, L.-J.; Brown, D.W.; Proctor, R.H.

    2013-01-01

    Fungi in the genus Fusarium have a great negative impact on the world economy, yet also hold great potential for answering many fundamental biological questions. The advance of sequencing technologies has made possible the connection between phenotypes and genetic mechanisms underlying the

  7. Host specificity in Fusarium oxysporum

    NARCIS (Netherlands)

    van Dam, P.

    2017-01-01

    Fusarium oxysporum is a fungal pathogen that can cause severe wilt disease and root rot in various plant species. Every individual strain is restricted to causing disease in only one or a few plant species. In this thesis, we focused on identifying novel virulence factors (‘effectors’) secreted by

  8. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions.

    Science.gov (United States)

    Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna

    2015-01-01

    Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four

  9. Challenges in Fusarium, a Trans-Kingdom Pathogen.

    Science.gov (United States)

    van Diepeningen, Anne D; de Hoog, G Sybren

    2016-04-01

    Fusarium species are emerging human pathogens, next to being plant pathogens. Problems with Fusarium are in their diagnostics and in their difficult treatment, but also in what are actual Fusarium species or rather Fusarium-like species. In this issue Guevara-Suarez et al. (Mycopathologia. doi: 10.1007/s11046-016-9983-9 , 2016) characterized 89 isolates of Fusarium from Colombia showing especially lineages within the Fusarium solani and oxysporum species complexes to be responsible for onychomycosis.

  10. Biocontrol of Fusarium circinatum Infection of Young Pinus radiata Trees

    Directory of Open Access Journals (Sweden)

    Eugenia Iturritxa

    2017-01-01

    Full Text Available Pitch canker, caused by the fungus Fusarium circinatum, is a major disease of Pinus radiata currently controlled to some extent in nurseries by good hygiene and application of synthetic fungicides. The aim of this study was to evaluate alternative strategies to control fungal infections in nurseries and young pine plantations. The antagonistic effects of biocontrol bacteria and essential oils against F. circinatum in vitro and in young P. radiata trees were assessed. Pseudomonas fluorescens, Erwinia billingiae, and Bacillus simplex reduced the growth of the fungus in vitro by 17%–29%, and decreased the density of the mycelial mat. In young P. radiata trees, the length of F. circinatum lesions was reduced by 22%–25% by the same bacterial strains. Direct application of cinnamon and/or clove essential oils to wounds in stems of two-year-old P. radiata trees also limited the damage caused by F. circinatum. Lesion length was reduced by 51% following treatment with cinnamon oil (10% v/v, and by 45% following treatment with clove oil (15% v/v or a combination of both oils. However, the oils were toxic to younger trees. The biocontrol bacteria and essential oils show promise as prophylactic treatments to reduce the devastating effects of F. circinatum on P. radiata.

  11. Isolation screening and characterisation of local beneficial rhizobacteria based upon their ability to suppress the growth of Fusarium oxysporum f. sp. radicis-lycopersici and tomato foot and root rot

    Science.gov (United States)

    Tomato crown and root rot or tomato foot and root rot (TFRR) is caused by the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici (Forl). The disease occurs in both greenhouse and outdoor tomato cultivations and cannot be treated efficiently with the existing fungicides. We conducte...

  12. Analysis of carbohydrates in Fusarium verticillioides using size-exclusion HPLC – DRI and direct analysis in real time ionization – time-of-flight – mass spectrometry (DART-MS)

    Science.gov (United States)

    Direct analysis in real time ionization – time-of-flight – mass spectrometry (DART-MS) and size-exclusion HPLC – DRI are used, respectively, to qualitatively and quantitatively determine the carbohydrates extracted from the corn rot fungus Fusarium verticillioides. In situ permethylation in the DART...

  13. Fusarium oxysporum protects Douglas-fir (Pseudotsuga menziesii) seedlings from root disease caused by Fusarium commune

    Science.gov (United States)

    R. Kasten Dumroese; Mee-Sook Kim; Robert L. James

    2012-01-01

    Fusarium root disease can be a serious problem in forest and conservation nurseries in the western United States. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Fusarium spp. within the F. oxysporum species complex have been recognized as pathogens for more than a...

  14. Molecular characterization of Fusarium oxysporum and fusarium commune isolates from a conifer nursery

    Science.gov (United States)

    Jane E. Stewart; Mee-Sook Kim; Robert L. James; R. Kasten Dumroese; Ned B. Klopfenstein

    2006-01-01

    Fusarium species can cause severe root disease and damping-off in conifer nurseries. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Isolates of Fusarium spp. can differ in virulence; however, virulence and...

  15. First report of Fusarium wilt of alfalfa caused by Fusarium oxysporum f. sp. medicaginis in Wisconsin

    Science.gov (United States)

    Fusarium wilt, caused by Fusarium oxysporum f. sp. medicaginis, is an economically important vascular disease of alfalfa (Medicago sativa) throughout the world. Alfalfa plants with foliar wilt symptoms and reddish-brown arcs in roots consistent with Fusarium wilt were observed in disease assessment ...

  16. The Effect of Nanosilver on Pigments Production by Fusarium culmorum (W. G. Sm.) Sacc

    DEFF Research Database (Denmark)

    Kasprowicz, Marek J.; Gorczyca, Anna; Frandsen, Rasmus John Normand

    2013-01-01

    A disk-diffusion method experiment assessed the impact of nanosilver on production of secondary metabolites (pigments) by the Fusarium culmorum fungus. Nanosilver colloidal particles in water have been obtained by the use of a method based on high voltage electric arcs between silver electrodes....... The silver nanoparticles size in colloid ranged between 15 and 100 nm and 7, 35 and 70 ppm concentration. Nanosilver modifies the metabolism of the researched F. culmorum strain. Coming into contact with nanosilver colloids induces more intensive mycelia pigmentation correlated with nanosilver concentration...

  17. Incidence of Fusarium moniliforme Sheld. in Zea mays L. in the rainforest zone of Nigeria.

    Science.gov (United States)

    Iloba, C

    1979-01-01

    45 seed samples from 7 states of the rainforest zone of Nigeria (Ogun, Ondo, Oyo, Bendel, Anambra, Imo, and Cross River) were screened for phytopathogen incidence. Whereas Drechslera maydis was found in 30 and Cephalosporium maydis in 79% of the samples were infected by Fusarium moniliforme, with 70% of the samples showing heavy infection. In view of the widespread nature of this economically important fungus on maize in the main cultivation area of Nigeria, the necessity for routine laboratory seed health tests is clearly indicated.

  18. Fulltext PDF

    Indian Academy of Sciences (India)

    2016-05-08

    May 8, 2016 ... Fusarium graminearum, a pathogen of wheat and barley, is a haploid homothallic ascomycete filamentous fungus (Goswami and Kistler 2004). It overwinters as saprophytic hyphae in plant debris and undergoes the sexual cycle in spring to produce fruiting bodies (perithecia) bearing the progeny ...

  19. The prevalence of selected genes involved in the biosynthesis of trichothecenes assessed with the specific PCR tests in Fusarium spp. isolated from cereals in southern Poland.

    Science.gov (United States)

    Wolny-Koładka, Katarzyna A

    2015-01-01

    The analysis was conducted using 50 isolates of fungi of the genus Fusarium belonging to the species classified as major trichothecene mycotoxin producers: F. graminearum, F. culmorum, F. sporotrichioides, and F. poae. The tested fungi were isolated from ears of cereal crops in southern Poland during the two growing seasons (2011 and 2012). The aim of this study was to evaluate the prevalence of genes involved in the biosynthesis of trichothecene mycotoxins using the specific PCR tests. Molecular analyses indicated that the genes responsible for the production of trichothecenes (Tri3, Tri5, Tri7, Tri13) were abundant in the examined genetic material. The tested fungal isolates were characterized by a large diversity in terms of the number and composition of the possessed Tri genes. On the other hand, 14 of 50 isolates were found not to carry any of Tri genes.

  20. Fate of Fusarium Toxins during Brewing.

    Science.gov (United States)

    Habler, Katharina; Geissinger, Cajetan; Hofer, Katharina; Schüler, Jan; Moghari, Sarah; Hess, Michael; Gastl, Martina; Rychlik, Michael

    2017-01-11

    Some information is available about the fate of Fusarium toxins during the brewing process, but only little is known about the single processing steps in detail. In our study we produced beer from two different barley cultivars inoculated with three different Fusarium species, namely, Fusarium culmorum, Fusarium sporotrichioides, and Fusarium avenaceum, producing a wide range of mycotoxins such as type B trichothecenes, type A trichothecenes, and enniatins. By the use of multi-mycotoxin LC-MS/MS stable isotope dilution methods we were able to follow the fate of Fusarium toxins during the entire brewing process. In particular, the type B trichothecenes deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol showed similar behaviors. Between 35 and 52% of those toxins remained in the beer after filtration. The contents of the potentially hazardous deoxynivalenol-3-glucoside and the type A trichothecenes increased during mashing, but a rapid decrease of deoxynivalenol-3-glucoside content was found during the following steps of lautering and wort boiling. The concentration of enniatins greatly decreased with the discarding of spent grains or finally with the hot break. The results of our study show the retention of diverse Fusarium toxins during the brewing process and allow for assessing the food safety of beer regarding the monitored Fusarium mycotoxins.

  1. The complete mitogenome of Fusarium culmorum

    NARCIS (Netherlands)

    Kulik, Tomasz; Brankovics, Balázs; Sawicki, Jakub; van Diepeningen, A.D.

    2015-01-01

    The structure of the Fusarium culmorum mitogenome is similar to that of closely related Fusarium spp.: it has a total length of 103,844 bp, the base composition of the genome is the following: A (35.4%), T (32.9%), C (14.6%), and G (17.1%). The mitogenome contains 13 protein-coding genes, 2

  2. Identification and pathogenicity assessment of Fusarium spp ...

    African Journals Online (AJOL)

    Durum wheat is the major cereal crop cultivated in Tunisia; covering over 40% of the cereal growing areas. Durum wheat production remains below expectation due to its low productivity that is attributed to the chronically abiotic and biotic stresses. Fusarium head blight (FHB) caused by Fusarium spp. has become an ...

  3. Evaluating Genetic Association between Fusarium and Pythium ...

    African Journals Online (AJOL)

    Resistance to Fusarium root rot (Fusarium solani f.s.p phaseoli) has been reported in common bean (Phaseolus vulgaris L.) sources and is usually associated with Pythium root rot resistance. Pythium root rot (Pythium ultimum var ultimum) resistance is controlled by a single dominant gene, marked by a SCAR marker ...

  4. Challenges in Fusarium, a Trans-Kingdom Pathogen

    NARCIS (Netherlands)

    van Diepeningen, Anne D; de Hoog, G Sybren

    Fusarium species are emerging human pathogens, next to being plant pathogens. Problems with Fusarium are in their diagnostics and in their difficult treatment, but also in what are actual Fusarium species or rather Fusarium-like species. In this issue Guevara-Suarez et al. (Mycopathologia. doi:

  5. Regional differences in the composition of Fusarium Head Blight pathogens and mycotoxins associated with wheat in Mexico.

    Science.gov (United States)

    Cerón-Bustamante, Minely; Ward, Todd J; Kelly, Amy; Vaughan, Martha M; McCormick, Susan P; Cowger, Christina; Leyva-Mir, Santos G; Villaseñor-Mir, Héctor E; Ayala-Escobar, Victoria; Nava-Díaz, Cristian

    2018-05-20

    Fusarium Head Blight (FHB) is a destructive disease of small grain cereals and a major food safety concern. Epidemics result in substantial yield losses, reduction in crop quality, and contamination of grains with trichothecenes and other mycotoxins. A number of different fusaria can cause FHB, and there are significant regional differences in the occurrence and prevalence of FHB pathogen species and their associated mycotoxins. Information on FHB pathogen and mycotoxin diversity in Mexico has been extremely limited, but is needed to improve disease and mycotoxin control efforts. To address this, we used a combination of DNA sequence-based methods and in-vitro toxin analyses to characterize FHB isolates collected from symptomatic wheat in Mexico during the 2013 and 2014 growing seasons. Among 116 Fusarium isolates, we identified five species complexes including nine named Fusarium species and 30 isolates representing unnamed or potentially novel species. Significant regional differences (P 90% of isolates from the Mixteca region in southern Mexico, whereas F. avenaceum and related members of the F. tricinctum species complex (FTSC) accounted for nearly 75% of isolates from the Highlands region in Central Mexico. F. graminearum, which is the dominant FHB pathogen in other parts of North America, was not present among the isolates from Mexico. F. boothii isolates had the 15-acetyldeoxynivalenol toxin type, and some of the minor FHB species produced trichothecenes, such as nivalenol, T-2 toxin and diacetoxyscirpenol. None of the FTSC isolates tested was able to produce trichothecenes, but many produced chlamydosporol and enniatin B. Published by Elsevier B.V.

  6. Pasinler İlçesi (Erzurum’nde Şeker Pancarı (Beta vulgaris Bitkilerinden İzole Edilen Fusarium spp. ve Patojeniteleri

    Directory of Open Access Journals (Sweden)

    Ömer Faruk KARYAĞDI

    2016-05-01

    Full Text Available Bu çalışma Pasinler ilçesi (Erzurum’nde şeker pancarı (Beta vulgaris L. bitkilerinden izole edilen Fusarium türlerini ve patojenitelerini belirlemek amacıyla 2009 yılında yürütülmüştür. Şeker pancarı bitkisinden yapılan izolasyon çalışmaları sonucunda 194 Fusarium izolatı elde edilmiştir. Çalışmada elde edilen izolatların %37,63’ü F. equiseti, %31,44’ü F. oxysporum, %13,92’i F. acuminatum, %10,82’si F. solani, %4,12’si F. heterosporum, %1,55’i F. avenaceum ve %0,52’si F. graminearum olarak saptanmıştır. Yapılan patojenite testlerinde F. acuminatum (P2-8A1, F. equiseti (P1-6, F. heterosporum (P10-30, F. oxysporum (P8-24, P9-36 ve F. solani (P8-2 izolatları en yüksek hastalık şiddeti oluşturmuştur. F. acuminatum ve F. graminearum için şeker pancarı bitkisi, Türkiye’de yeni konukçu kaydı olarak belirlenmiştir.

  7. A Nitrogen Response Pathway Regulates Virulence Functions in Fusarium oxysporum via the Protein Kinase TOR and the bZIP Protein MeaB

    OpenAIRE

    López-Berges, Manuel S.; Rispail, Nicolas; Prados-Rosales, Rafael C.; Pietro, Antonio D.

    2010-01-01

    During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine s...

  8. First report of Fusarium oxysporum species complex infection in zebrafish culturing system.

    Science.gov (United States)

    Kulatunga, D C M; Dananjaya, S H S; Park, B K; Kim, C-H; Lee, J; De Zoysa, M

    2017-04-01

    Fusarium oxysporum species complex (FOSC) is a highly diverse fungus. Recently, F. oxysporum infection was identified from zebrafish (Danio rerio) culturing system in Korea. Initially, a rapid whitish smudge was appeared in the water with the fungal blooming on walls of fish tanks. Microscopic studies were conducted on fungal hyphae, colony pigmentation and chlamydospore formation and the presence of macro- and microspores confirmed that the isolated fungus as F. oxysporum. Furthermore, isolated F. oxysporum was confirmed by internal transcribed spacer sequencing which matched (100%) to nine F. oxysporum sequences available in GenBank. Experimental hypodermic injection of F. oxysporum into adult zebrafish showed the development of fungal mycelium and pathogenicity similar to signs observed. Histopathologic results revealed a presence of F. oxysporum hyphae in zebrafish muscle. Fusarium oxysporum growth was increased with sea salt in a concentration-dependent manner. Antifungal susceptibility results revealed that F. oxysporum is resistant to copper sulphate (up to 200 μg mL -1 ) and sensitive to nystatin (up to 40 μg mL -1 ). This is the first report of FOSC from zebrafish culture system, suggesting it appears as an emerging pathogen, thus posing a significant risk on zebrafish facilities in the world. © 2016 John Wiley & Sons Ltd.

  9. Evaluation of the significance of cell wall polymers in flax infected with a pathogenic strain of Fusarium oxysporum.

    Science.gov (United States)

    Wojtasik, Wioleta; Kulma, Anna; Dymińska, Lucyna; Hanuza, Jerzy; Czemplik, Magdalena; Szopa, Jan

    2016-03-22

    Fusarium oxysporum infection leads to Fusarium-derived wilt, which is responsible for the greatest losses in flax (Linum usitatissimum) crop yield. Plants infected by Fusarium oxysporum show severe symptoms of dehydration due to the growth of the fungus in vascular tissues. As the disease develops, vascular browning and leaf yellowing can be observed. In the case of more virulent strains, plants die. The pathogen's attack starts with secretion of enzymes degrading the host cell wall. The main aim of the study was to evaluate the role of the cell wall polymers in the flax plant response to the infection in order to better understand the process of resistance and develop new ways to protect plants against infection. For this purpose, the expression of genes involved in cell wall polymer metabolism and corresponding polymer levels were investigated in flax seedlings after incubation with Fusarium oxysporum. This analysis was facilitated by selecting two groups of genes responding differently to the infection. The first group comprised genes strongly affected by the infection and activated later (phenylalanine ammonia lyase and glucosyltransferase). The second group comprised genes which are slightly affected (up to five times) and their expression vary as the infection progresses. Fusarium oxysporum infection did not affect the contents of cell wall polymers, but changed their structure. The results suggest that the role of the cell wall polymers in the plant response to Fusarium oxysporum infection is manifested through changes in expression of their genes and rearrangement of the cell wall polymers. Our studies provided new information about the role of cellulose and hemicelluloses in the infection process, the change of their structure and the expression of genes participating in their metabolism during the pathogen infection. We also confirmed the role of pectin and lignin in this process, indicating the major changes at the mRNA level of lignin metabolism genes

  10. IDENTIFICATION OF DIFFERENT FUSARIUM SPP. IN ALLIUM SPP. IN GERMANY.

    Science.gov (United States)

    Boehnke, B; Karlovsky, P; Pfohl, K; Gamliel, A; Isack, Y; Dehne, H W

    2015-01-01

    In 2013 Allium cepa bulbs from different fields in Northern and Southern Germany, seeds and sets from onion breeders were analysed for infestation with Fusarium species. The same investigation was done in 2014 with different edible Allium spp. from local markets. Different Fusarium spp. were isolated and identified by morphological characterisation. 24 different Fusarium spp. were identified. The diversity of Fusarium spp. and the intensity of infestation was higher on edible bulbs compared to the younger sets and seeds. The analysed onions and other edible Allium spp. from local markets showed also high contents of different Fusarium species. The most prevalent identified Fusarium sp. in the analysed Allium spp. in Germany was Fusarium oxysporum which can cause the Fusarium Basal Rot, followed by Fusarium solani. Fusarium proliferatum, which can cause the Fusarium Salmon Blotch in onions, could be detected in about half of the sampled onion fields and in approximately 10% of all analysed onions from fields. Also in the onion sets, on the surface of the seeds and in other edible Allium spp. F. proliferatum could be identified. Besides F. proliferatum, further mycotoxin producing Fusarium spp. like Fusarium equiseti or Fusarium tricinctum were identified. Other Fusarium spp. like Fusarium sporotrichioides and Fusarium poae were first described in Allium sp. in this study. The two most prevalent Fusarium spp. F. oxysporum and F. solani are able to produce mycotoxins like enniatins, fumonisins, moniliformin and T-2 toxins. Fusarium sp. like F. proliferatum, F. equiseti and F. tricinctum are able to produce additional toxins like beauvericins, zearalenone and diacetoscirpenol. This high number of Fusarium spp., which are able to produce a broad spectrum of different mycotoxins, could be a potential health risk for human beings and livestock.

  11. HYPOVIRULENT ISOLATES OF FUSARIUM COLLECTED FROM CHILI CROPS IN BOYOLALI REGENCY, CENTRAL JAVA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Supyani

    2015-02-01

    Full Text Available Fusarium, a genus of filamentous fungi, has many species which serving as important pathogens to many diseases in crops. Till today, there have not been effective and efficient control methods for such fungi. Recently, scientists agree that application of biological agents is a tactful choice. Development of hypovirulent strains of fungus as biocontrol agents is very limited. This research was aimed to find hypovirulent isolates of Fusarium from field as biological agents. A hundred isolates of Fusarium from chili were collected in Boyolali, Central Java. Morphological characterization revealed that isolates performed varied colony phenotypes. Based on colony phenotype pattern, isolates were classified into five groups. From each group, one hypovirulent isolate was selected based on colony growth rate on potato dextrose agar media. The selected hypovirulent isolates were used for virulence assay in apple. The result showed that there were four hypovirulent isolates i.e.: B6, C15, D19, and E20 isolates. Total RNA extraction of the identified hypovirulent isolates revealed the existence of viral RNA in C15 isolate. Based on the existence of viral RNA in C15 isolate, the hypovirulent traits were due to mycoviral infection, whereas the hypovirulent traits performed by the other three were due to genetic factors.

  12. Detection of Fusarium oxysporum f.sp. basilici in substrates and roots by PCR.

    Science.gov (United States)

    Pugliese, M; Ferrocino, I; Gullino, M L; Garibaldi, A

    2013-01-01

    Fusarium oxysporum is a soil-borne fungus that causes vascular wilts in a wide variety of plant species. Basil is recognized as an ecological niche for Fusarium oxysporum f.sp. basilici (FOB) and this fungus is now present in most countries where basil is cultivated. The rapid identification of the species affecting basil plants is necessary to define a successful method for crop protection. The aim of this study was to develop a PCR method for the rapid detection of Fusarium oxysporum f. sp. basilici in substrates. The specificity of the primers used was tested using the DNA extracted directly from substrate samples. Fusarium oxysporum f.sp. basilici was artificially inoculated with decreasing amounts in a commercial substrate (sphagnum peat moss) and in a mixture with 40% of municipal compost, after steam disinfestation. Basil seeds (cv. Fine verde) were sown in pots that were laid on a bench in the greenhouse. At time 0 and after 7, 14 and 21 days from the inoculation, substrate and root samples were collected and prepared for microbial analysis and for the DNA extraction. DNA extraction was carried out using NucleoSpin Soil Kit (Macherey-Nagel, Germany). PCR amplification for the specific detection was carried out using primer sets Bik 1 (5'-ATT CAA GAG CTA AAG GTC C-3') and Bik 4 (5'-TTT GAC CAA GAT AGA TGC C-3') for the first PCR, while primers Bik 1 + Bik 2 (5'-AAA GGT AGT ATA TCG GAG G-3') for the nested PCR to increase detection sensitivity. Disease incidence was also assessed 21 days after seeding. The results showed the presence of amplified fragments of the expected size when the concentration of F. oxysporum f.sp. basilici was at least 3.5 Log CFU g(-1) by using DNA extract directly from substrate, before roots were infected by the pathogen. The detection of Fusarium oxysporum f. sp. basilici by PCR method developed in this study is certainly simple and fast and can be useful for its reliable detection in substrate samples, but not to guarantee that

  13. Antifungal activity and computational study of constituents from Piper divaricatum essential oil against Fusarium infection in black pepper.

    Science.gov (United States)

    da Silva, Joyce Kelly R; Silva, José Rogério A; Nascimento, Soelange B; da Luz, Shirlley F M; Meireles, Erisléia N; Alves, Cláudio N; Ramos, Alessandra R; Maia, José Guilherme S

    2014-11-04

    Fusarium disease causes considerable losses in the cultivation of Piper nigrum, the black pepper used in the culinary world. Brazil was the largest producer of black pepper, but in recent years has lost this hegemony, with a significant reduction in its production, due to the ravages produced by the Fusarium solani f. sp. piperis, the fungus which causes this disease. Scientific research seeks new alternatives for the control and the existence of other Piper species in the Brazilian Amazon, resistant to disease, are being considered in this context. The main constituents of the oil of Piper divaricatum are methyleugenol (75.0%) and eugenol (10.0%). The oil and these two main constituents were tested individually at concentrations of 0.25 to 2.5 mg/mL against F. solani f. sp. piperis, exhibiting strong antifungal index, from 18.0% to 100.0%. The 3D structure of the β-glucosidase from Fusarium solani f. sp. piperis, obtained by homology modeling, was used for molecular docking and molecular electrostatic potential calculations in order to determine the binding energy of the natural substrates glucose, methyleugenol and eugenol. The results showed that β-glucosidase (Asp45, Arg113, Lys146, Tyr193, Asp225, Trp226 and Leu99) residues play an important role in the interactions that occur between the protein-substrate and the engenol and methyleugenol inhibitors, justifying the antifungal action of these two phenylpropenes against Fusarium solani f. sp. piperis.

  14. Fungus-Mediated Preferential Bioleaching of Waste Material Such as Fly - Ash as a Means of Producing Extracellular, Protein Capped, Fluorescent and Water Soluble Silica Nanoparticles

    Science.gov (United States)

    Khan, Shadab Ali; Uddin, Imran; Moeez, Sana; Ahmad, Absar

    2014-01-01

    In this paper, we for the first time show the ability of the mesophilic fungus Fusarium oxysporum in the bioleaching of waste material such as Fly-ash for the extracellular production of highly crystalline and highly stable, protein capped, fluorescent and water soluble silica nanoparticles at ambient conditions. When the fungus Fusarium oxysporum is exposed to Fly-ash, it is capable of selectively leaching out silica nanoparticles of quasi-spherical morphology within 24 h of reaction. These silica nanoparticles have been completely characterized by UV-vis spectroscopy, Photoluminescence (PL), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Energy dispersive analysis of X-rays (EDAX). PMID:25244567

  15. Fungus-mediated preferential bioleaching of waste material such as fly - ash as a means of producing extracellular, protein capped, fluorescent and water soluble silica nanoparticles.

    Directory of Open Access Journals (Sweden)

    Shadab Ali Khan

    Full Text Available In this paper, we for the first time show the ability of the mesophilic fungus Fusarium oxysporum in the bioleaching of waste material such as Fly-ash for the extracellular production of highly crystalline and highly stable, protein capped, fluorescent and water soluble silica nanoparticles at ambient conditions. When the fungus Fusarium oxysporum is exposed to Fly-ash, it is capable of selectively leaching out silica nanoparticles of quasi-spherical morphology within 24 h of reaction. These silica nanoparticles have been completely characterized by UV-vis spectroscopy, Photoluminescence (PL, Transmission electron microscopy (TEM, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and Energy dispersive analysis of X-rays (EDAX.

  16. Especies de Fusarium en granos de maíz recién cosechado y desgranado en el campo en la región de Ciudad Serdán, Puebla Fusarium species from corn kernels recently harvested and shelled in the fields in the Ciudad Serdán Region, Puebla

    Directory of Open Access Journals (Sweden)

    Genoveva García-Aguirre

    2010-04-01

    Full Text Available Se analizaron 16 muestras de maíz, 10 de maíz blanco nacional y 6 de maíz criollo blanco para determinar las especies de Fusarium presentes en los granos, en especial aquellas registradas como inductoras de pudriciones de mazorca y grano, principalmente las que producen micotoxinas. Las especies identificadas en orden del número de aislamientos obtenidos fueron: Fusarium oxysporum, F. subglutinans, F. moniliforme, F. graminearum, F. anthophilum, F. poae, F. tricinctum, F. sporotrichioides y F. proliferatum. Con excepción de F. oxysporum, F. tricinctum y F. anthophilum, las demás han sido registradas como inductoras de pudriciones de mazorca, grano y de tallo, y la mayoría son productoras de diversas micotoxinas, algunas de las cuales pueden ocasionar problemas a la salud humana y animal.Sixteen corn samples, 10 of national white corn and 6 of "criollo" white were analyzed to determine the Fusaria species present on the kernels, especially those reported as ear and kernel rot inducers, mainly those mycotoxin producers. The identified species, ordered in relation to the number of obtained isolates were F. oxysporum, F. subglutinans, F. moniliforme, F. graminearum, F. anthophilum, F. poae, F. tricinctum, F. sporotrichioides, and F. proliferatum. The species F. oxysporum, F. tricinctum, and F. anthophilum have not been reported causing ear or kernel rots. All of the others have been reported as ear and kernel rots inducers, as well as stalk rots. Besides, most of these species produce various mycotoxins, many of which are capable of causing health problems to humans and animals.

  17. IAA-producing Penicillium sp. NICS01 triggers plant growth and suppresses Fusarium sp.-induced oxidative stress in sesame (Sesamum indicum L.).

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Shim, Kang-Bo; Lee, Byeong-Won; Hwang, Chung-Dong; Pae, Suk-Bok; Park, Chang-Hwan; Kim, Sung-Up; Lee, Choon-Ki; Baek, In-Youl

    2013-06-28

    Application of rhizospheric fungi is an effective and environmentally friendly method of improving plant growth and controlling many plant diseases. The current study was aimed to identify phytohormone-producing fungi from soil, to understand their roles in sesame plant growth, and to control Fusarium disease. Three predominant fungi (PNF1, PNF2, and PNF3) isolated from the rhizospheric soil of peanut plants were screened for their growth-promoting efficiency on sesame seedlings. Among these isolates, PNF2 significantly increased the shoot length and fresh weight of seedlings compared with controls. Analysis of the fungal culture filtrate showed a higher concentration of indole acetic acid in PNF2 than in the other isolates. PNF2 was identified as Penicillium sp. on the basis of phylogenetic analysis of ITS sequence similarity. The in vitro biocontrol activity of Penicillium sp. against Fusarium sp. was exhibited by a 49% inhibition of mycelial growth in a dual culture bioassay and by hyphal injuries as observed by scanning electron microscopy. In addition, greenhouse experiments revealed that Fusarium inhibited growth in sesame plants by damaging lipid membranes and reducing protein content. Co-cultivation with Penicillium sp. mitigated Fusarium-induced oxidative stress in sesame plants by limiting membrane lipid peroxidation, and by increasing the protein concentration, levels of antioxidants such as total polyphenols, and peroxidase and polyphenoloxidase activities. Thus, our findings suggest that Penicillium sp. is a potent plant growthpromoting fungus that has the ability to ameliorate damage caused by Fusarium infection in sesame cultivation.

  18. Morphological and molecular detection of Fusarium ...

    African Journals Online (AJOL)

    USER

    2010-06-28

    Jun 28, 2010 ... Fusarium has a cosmopolitan distribution, with some species able to cause diseases ... packaged potato dextrose agar (PDA), accurate micro- ..... the probability of nucleotide substitutions per site, based on the .... Processing.

  19. The histone chaperone ASF1 is essential for sexual development in the filamentous fungus Sordaria macrospora.

    Science.gov (United States)

    Gesing, Stefan; Schindler, Daniel; Fränzel, Benjamin; Wolters, Dirk; Nowrousian, Minou

    2012-05-01

    Ascomycetes develop four major types of fruiting bodies that share a common ancestor, and a set of common core genes most likely controls this process. One way to identify such genes is to search for conserved expression patterns. We analysed microarray data of Fusarium graminearum and Sordaria macrospora, identifying 78 genes with similar expression patterns during fruiting body development. One of these genes was asf1 (anti-silencing function 1), encoding a predicted histone chaperone. asf1 expression is also upregulated during development in the distantly related ascomycete Pyronema confluens. To test whether asf1 plays a role in fungal development, we generated an S. macrospora asf1 deletion mutant. The mutant is sterile and can be complemented to fertility by transformation with the wild-type asf1 and its P. confluens homologue. An ASF1-EGFP fusion protein localizes to the nucleus. By tandem-affinity purification/mass spectrometry as well as yeast two-hybrid analysis, we identified histones H3 and H4 as ASF1 interaction partners. Several developmental genes are dependent on asf1 for correct transcriptional expression. Deletion of the histone chaperone genes rtt106 and cac2 did not cause any developmental phenotypes. These data indicate that asf1 of S. macrospora encodes a conserved histone chaperone that is required for fruiting body development. © 2012 Blackwell Publishing Ltd.

  20. Changes in metabolic activities of Fusarium oxysporum f. fabae and Rhizoctonia solani in response to Dithan A-40 fungicide.

    Science.gov (United States)

    Zaki, M M; Mahmoud, S A; Hamed, A S; Sahab, A F

    1979-01-01

    The effect of different concentrations of Dithan A-40 fungicide on the metabolic activities of the wilt fungus Fusarium oxysporum f. fabae and the root rot agent Rhizoctonia solani was studied. All toxicant concentrations reduced energy generation, total phosphorus and nitrogen content of both fungi. In addition, the toxicant caused a shift in free amino acids pool. As a result of these changes, the mycelium dry weight of both fungi was greatly reduced. R. solani was more sensitive to the toxic effect of Dithan A-40 than F. oxysporum.

  1. Effector profiles distinguish formae speciales of Fusarium oxysporum.

    Science.gov (United States)

    van Dam, Peter; Fokkens, Like; Schmidt, Sarah M; Linmans, Jasper H J; Kistler, H Corby; Ma, Li-Jun; Rep, Martijn

    2016-11-01

    Formae speciales (ff.spp.) of the fungus Fusarium oxysporum are often polyphyletic within the species complex, making it impossible to identify them on the basis of conserved genes. However, sequences that determine host-specific pathogenicity may be expected to be similar between strains within the same forma specialis. Whole genome sequencing was performed on strains from five different ff.spp. (cucumerinum, niveum, melonis, radicis-cucumerinum and lycopersici). In each genome, genes for putative effectors were identified based on small size, secretion signal, and vicinity to a "miniature impala" transposable element. The candidate effector genes of all genomes were collected and the presence/absence patterns in each individual genome were clustered. Members of the same forma specialis turned out to group together, with cucurbit-infecting strains forming a supercluster separate from other ff.spp. Moreover, strains from different clonal lineages within the same forma specialis harbour identical effector gene sequences, supporting horizontal transfer of genetic material. These data offer new insight into the genetic basis of host specificity in the F. oxysporum species complex and show that (putative) effectors can be used to predict host specificity in F. oxysporum. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Extracellular mycosynthesis of gold nanoparticles using Fusarium solani

    Science.gov (United States)

    Gopinath, K.; Arumugam, A.

    2014-08-01

    The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.

  3. Aspects of resistance to fusarium head blight caused by Fusarium culmorum in wheat

    NARCIS (Netherlands)

    Snijders, C.H.A.

    1990-01-01

    In the Netherlands, Fusarium head blight of wheat is predominantly caused by Fusarium culmorum . A low infection level leads to important yield losses and contaminates the grain with mycotoxins, particularly deoxynivalenol. This mycotoxin is suggested to have toxic

  4. Formation of trichothecenes by Fusarium solani var. coeruleum and Fusarium sambucinum in potatoes.

    OpenAIRE

    el-Banna, A A; Scott, P M; Lau, P Y; Sakuma, T; Platt, H W; Campbell, V

    1984-01-01

    Fusarium solani var. coeruleum can form deoxynivalenol in potato tubers and in liquid medium, although concentrations observed in the rot were highly variable; acetyldeoxynivalenol and HT-2 toxin were detected in 1 to 3 tubers only (of 57). Trichothecenes were also detected in a very few (3 of 20) cultures of Fusarium sambucinum in potato tubers.

  5. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles.

    Science.gov (United States)

    Palazzini, Juan M; Dunlap, Christopher A; Bowman, Michael J; Chulze, Sofía N

    2016-11-01

    Bacillus subtilis RC 218 was originally isolated from wheat anthers as a potential antagonist of Fusarium graminearum, the causal agent of Fusarium head blight (FHB). It was demonstrated to have antagonist activity against the plant pathogen under in vitro and greenhouse assays. The current study extends characterizing B. subtilis RC 218 with a field study and genome sequencing. The field study demonstrated that B. subtilis RC 218 could reduce disease severity and the associated mycotoxin (deoxynivalenol) accumulation, under field conditions. The genome sequencing allowed us to accurately determine the taxonomy of the strain using a phylogenomic approach, which places it in the Bacillus velezensis clade. In addition, the draft genome allowed us to use bioinformatics to mine the genome for potential metabolites. The genome mining allowed us to identify 9 active secondary metabolites conserved by all B. velezensis strains and one additional secondary metabolite, the lantibiotic ericin, which is unique to this strain. This study represents the first confirmed production of ericin by a B. velezensis strain. The genome also allowed us to do a comparative genomics with its closest relatives and compare the secondary metabolite production of the publically available B. velezensis genomes. The results showed that the diversity in secondary metabolites of strains in the B. velezensis clade is driven by strains making different antibacterials. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Single Nucleotide Polymorphisms in B-Genome Specific UDP-Glucosyl Transferases Associated with Fusarium Head Blight Resistance and Reduced Deoxynivalenol Accumulation in Wheat Grain.

    Science.gov (United States)

    Sharma, Pallavi; Gangola, Manu P; Huang, Chen; Kutcher, H Randy; Ganeshan, Seedhabadee; Chibbar, Ravindra N

    2018-01-01

    An in vitro spike culture method was optimized to evaluate Fusarium head blight (FHB) resistance in wheat (Triticum aestivum) and used to screen a population of ethyl methane sulfonate treated spike culture-derived variants (SCDV). Of the 134 SCDV evaluated, the disease severity score of 47 of the variants was ≤30%. Single nucleotide polymorphisms (SNP) in the UDP-glucosyltransferase (UGT) genes, TaUGT-2B, TaUGT-3B, and TaUGT-EST, differed between AC Nanda (an FHB-susceptible wheat variety) and Sumai-3 (an FHB-resistant wheat cultivar). SNP at 450 and 1,558 bp from the translation initiation site in TaUGT-2B and TaUGT-3B, respectively were negatively correlated with FHB severity in the SCDV population, whereas the SNP in TaUGT-EST was not associated with FHB severity. Fusarium graminearum strain M7-07-1 induced early expression of TaUGT-2B and TaUGT-3B in FHB-resistant SCDV lines, which were associated with deoxynivalenol accumulation and reduced FHB disease progression. At 8 days after inoculation, deoxynivalenol concentration varied from 767 ppm in FHB-resistant variants to 2,576 ppm in FHB-susceptible variants. The FHB-resistant SCDV identified can be used as new sources of FHB resistance in wheat improvement programs.

  7. PENEKANAN PERKEMBANGAN PENYAKIT BUSUK BATANG VANILI (FUSARIUM OXYSPORUM F.SP. VANILLAE MELALUI SELEKSI ASAM FUSARAT SECARA IN VITRO

    Directory of Open Access Journals (Sweden)

    Endang Nurcahyani

    2013-09-01

    fungus has been initiated by in vitro selection on medium containing fusaric acid. The aims of this research were: (1 to investigate effective concentration of fusaric acid used for in vitro selection, (2 to characterize mutants which have been set up and also to test those mutants for their resistance to the fungus. The results showed that: (1 fusaric acid at the concentration of 110 ppm effectively suppressed the disease intensity up to 25% compared to the concentration of 90 ppm and 100 ppm. In other words, 110 ppm of fusaric acid has increased the category criterion from moderate to resistant, (2 there was an increase of the total phenol content and thickness of lignin in vanilla stem, and (3 the protein profile of vanilla plantlet was different from the control. There was an initiation of a new band of about 18 kD in a mutant predicted as a protein which is responsible for vanilla resistance to Fusarium.

  8. Fumonisin B1 and beauvericin accumulation in wheat kernels after seed-borne infection with Fusarium proliferatum

    Directory of Open Access Journals (Sweden)

    Zhiqing Guo

    2016-08-01

    Full Text Available Fusarium proliferatum is a fungal pathogen causing ear rot of maize. The fungus infects a range of other plants but the economic impact of these diseases has not been established. Recently, F. proliferatum and its mycotoxin fumonisin were found in wheat grains. Here we report that seed-borne infection of wheat with F. proliferatum resulted in systemic colonization of wheat plants and contamination of wheat grains with fumonisins and beauvericin. F. proliferatum strains originating from different hosts were able to infect wheat via seeds. Colonization of wheat plants with the fungus was highest in the stems, followed by leaves; one third of the strains reached kernels, causing accumulation of fumonisins and beauvericin to 15–55 µg kg-1. The results show that seed-borne infection of wheat with F. proliferatum can lead to contamination of wheat kernels with mycotoxins fumonisins and beauvericin.  

  9. Use of AFLPs to differentiate between Fusarium species causing ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Fusarium spp. and. Helmintosporium sativum) diseases are common. The aim of this study was to use the AFLP technique to determine variation and genetic relationships between Syrian Fusarium isolates; and compare them.

  10. Fusarium Infection in Lung Transplant Patients

    Science.gov (United States)

    Carneiro, Herman A.; Coleman, Jeffrey J.; Restrepo, Alejandro; Mylonakis, Eleftherios

    2013-01-01

    Fusarium is a fungal pathogen of immunosuppressed lung transplant patients associated with a high mortality in those with severe and persistent neutropenia. The principle portal of entry for Fusarium species is the airways, and lung involvement almost always occurs among lung transplant patients with disseminated infection. In these patients, the immunoprotective mechanisms of the transplanted lungs are impaired, and they are, therefore, more vulnerable to Fusarium infection. As a result, fusariosis occurs in up to 32% of lung transplant patients. We studied fusariosis in 6 patients following lung transplantation who were treated at Massachusetts General Hospital during an 8-year period and reviewed 3 published cases in the literature. Cases were identified by the microbiology laboratory and through discharge summaries. Patients presented with dyspnea, fever, nonproductive cough, hemoptysis, and headache. Blood tests showed elevated white blood cell counts with granulocytosis and elevated inflammatory markers. Cultures of Fusarium were isolated from bronchoalveolar lavage, blood, and sputum specimens. Treatments included amphotericin B, liposomal amphotericin B, caspofungin, voriconazole, and posaconazole, either alone or in combination. Lung involvement occurred in all patients with disseminated disease and it was associated with a poor outcome. The mortality rate in this group of patients was high (67%), and of those who survived, 1 patient was treated with a combination of amphotericin B and voriconazole, 1 patient with amphotericin B, and 1 patient with posaconazole. Recommended empirical treatment includes voriconazole, amphotericin B or liposomal amphotericin B first-line, and posaconazole for refractory disease. High-dose amphotericin B is recommended for treatment of most cases of fusariosis. The echinocandins (for example, caspofungin, micafungin, anidulafungin) are generally avoided because Fusarium species have intrinsic resistance to them. Treatment

  11. PCR identification of Fusarium genus based on nuclear ribosomal ...

    African Journals Online (AJOL)

    We have developed two taxon-selective primers for quick identification of the Fusarium genus. These primers, ITS-Fu-f and ITS-Fu-r were designed by comparing the aligned sequences of internal transcribed spacer regions (ITS) of a range of Fusarium species. The primers showed good specificity for the genus Fusarium, ...

  12. Difference between resistant and susceptible maize to systematic colonization as revealed by DsRed-labeled Fusarium verticillioides

    Directory of Open Access Journals (Sweden)

    Lei Wu

    2013-10-01

    Full Text Available Fusarium verticillioides was labeled with DsRed via Agrobacterium tumefaciens-mediated transformation to examine differences in colonization and reactions of resistant and susceptible inbred lines of maize (Zea mays L.. The extent of systemic colonization of F. verticillioides in roots from maize lines either resistant or susceptible to the fungus was studied by visualizing the red fluorescence produced by the fungus expressing DsRed. The difference in quantities of colony forming units (CFU in roots and basal stems, production of fumonisin B1, and pH of root were determined. Although F. verticillioides colonized both resistant and susceptible lines, differences were observed in the pattern and extent of fungal colonization in the two types of maize lines. The fungus colonized the susceptible lines producing mosaic patterns by filling the individual root cells with hyphae. Such a pattern of colonization was rarely observed in resistant lines, which were less colonized by the fungus than the susceptible lines in terms of CFUs. The production of mycotoxin fumonisin B1 in roots from different lines was closely correlated with the amount of F. verticillioides colonization, rather than the pH or amylopectin concentrations in the root. The findings from this study contribute to a better understanding of the defense mechanism in resistant maize lines to F. verticillioides.

  13. Fusarium species as pathogen on orchids.

    Science.gov (United States)

    Srivastava, Shikha; Kadooka, Chris; Uchida, Janice Y

    2018-03-01

    The recent surge in demand for exotic ornamental crops such as orchids has led to a rise in international production, and a sharp increase in the number of plant and plant products moving between countries. Along with the plants, diseases are also being transported and introduced into new areas. Fusarium is one of the major diseases causing pathogens infecting orchids that is spreading through international trade. Studies have identified several species of Fusarium associated with orchids, some are pathogenic and cause symptoms such as leaf and flower spots, leaf or sheath blights, pseudostem or root rots, and wilts. Infection and damage caused by Fusarium reduces the quality of plants and flowers, and can cause severe economic losses. This review documents the current status of the Fusarium-orchid interaction, and illustrates challenges and future perspectives based on the available literature. This review is the first of Fusarium and orchid interactions, and integrates diverse results that both furthers the understanding and knowledge of this disease complex, and will enable the development of effective disease management practices. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Molecular identification of Fusarium spp. causing wilt of chickpea and the first report of Fusarium redolens in Turkey

    Science.gov (United States)

    Chickpea (Cicer arietinum L.) is an important food legume crop and Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris is one of the most important diseases of chickpea in Turkey. Fusarium redolens is known to cause wilt-like disease of chickpea in other countries, but has not been reported fr...

  15. A γ-lactamase from cereal infecting Fusarium spp. catalyses the first step in the degradation of the benzoxazolinone class of phytoalexins.

    Science.gov (United States)

    Kettle, Andrew J; Carere, Jason; Batley, Jacqueline; Benfield, Aurelie H; Manners, John M; Kazan, Kemal; Gardiner, Donald M

    2015-10-01

    The benzoxazolinone class of phytoalexins are released by wheat, maize, rye and other agriculturally important species in the Poaceae family upon pathogen attack. Benzoxazolinones show antimicrobial effects on plant pathogens, but certain fungi have evolved mechanisms to actively detoxify these compounds which may contribute to the virulence of the pathogens. In many Fusarium spp. a cluster of genes is thought to be involved in the detoxification of benzoxazolinones. However, only one enzyme encoded in the cluster has been unequivocally assigned a role in this process. The first step in the detoxification of benzoxazolinones in Fusarium spp. involves the hydrolysis of a cyclic ester bond. This reaction is encoded by the FDB1 locus in F. verticillioides but the underlying gene is yet to be cloned. We previously proposed that FDB1 encodes a γ-lactamase, and here direct evidence for this is presented. Expression analyses in the important wheat pathogen F. pseudograminearum demonstrated that amongst the three predicted γ-lactamase genes only the one designated as FDB1, part of the proposed benzoxazolinone cluster in F. pseudograminearum, was strongly responsive to exogenous benzoxazolinone application. Analysis of independent F. pseudograminearum and F. graminearum FDB1 gene deletion mutants, as well as biochemical assays, demonstrated that the γ-lactamase enzyme, encoded by FDB1, catalyses the first step in detoxification of benzoxazolinones. Overall, our results support the notion that Fusarium pathogens that cause crown rot and head blight on wheat have adopted strategies to overcome host-derived chemical defences. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4.

    Science.gov (United States)

    Dale, James; James, Anthony; Paul, Jean-Yves; Khanna, Harjeet; Smith, Mark; Peraza-Echeverria, Santy; Garcia-Bastidas, Fernando; Kema, Gert; Waterhouse, Peter; Mengersen, Kerrie; Harding, Robert

    2017-11-14

    Banana (Musa spp.) is a staple food for more than 400 million people. Over 40% of world production and virtually all the export trade is based on Cavendish banana. However, Cavendish banana is under threat from a virulent fungus, Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) for which no acceptable resistant replacement has been identified. Here we report the identification of transgenic Cavendish with resistance to TR4. In our 3-year field trial, two lines of transgenic Cavendish, one transformed with RGA2, a gene isolated from a TR4-resistant diploid banana, and the other with a nematode-derived gene, Ced9, remain disease free. Transgene expression in the RGA2 lines is strongly correlated with resistance. Endogenous RGA2 homologs are also present in Cavendish but are expressed tenfold lower than that in our most resistant transgenic line. The expression of these homologs can potentially be elevated through gene editing, to provide non-transgenic resistance.

  17. The effect of nanosilver on pigments production by Fusarium culmorum (W. G. Sm.) Sacc.

    Science.gov (United States)

    Kasprowicz, Marek J; Gorczyca, Anna; Frandsen, Rasmus J N

    2013-01-01

    A disk-diffusion method experiment assessed the impact of nanosilver on production of secondary metabolites (pigments) by the Fusarium culmorum fungus. Nanosilver colloidal particles in water have been obtained by the use of a method based on high voltage electric arcs between silver electrodes. The silver nanoparticles size in colloid ranged between 15 and 100 nm and 7, 35 and 70 ppm concentration. Nanosilver modifies the metabolism of the researched F. culmorum strain. Coming into contact with nanosilver colloids induces more intensive mycelia pigmentation correlated with nanosilver concentration levels. The performed analysis of metabolites indicates that under the influence of nanosilver fungi biosynthesise aurofusarin more intensively and the conversion of rubrofusarin to aurofusarin is intensified as compared to the control culture. Under the influence of nanosilver F. culmorum intensively biosynthesises an unidentified dye which shares structural features with aurofusarin but which is not produced by fungi in standard cultures.

  18. Live-cell imaging of conidial anastomosis tube fusion during colony initiation in Fusarium oxysporum.

    Directory of Open Access Journals (Sweden)

    Smija M Kurian

    Full Text Available Fusarium oxysporum exhibits conidial anastomosis tube (CAT fusion during colony initiation to form networks of conidial germlings. Here we determined the optimal culture conditions for this fungus to undergo CAT fusion between microconidia in liquid medium. Extensive high resolution, confocal live-cell imaging was performed to characterise the different stages of CAT fusion, using genetically encoded fluorescent labelling and vital fluorescent organelle stains. CAT homing and fusion were found to be dependent on adhesion to the surface, in contrast to germ tube development which occurs in the absence of adhesion. Staining with fluorescently labelled concanavalin A indicated that the cell wall composition of CATs differs from that of microconidia and germ tubes. The movement of nuclei, mitochondria, vacuoles and lipid droplets through fused germlings was observed by live-cell imaging.

  19. Use of gamma radiation to control fusarium verticilloides producing two known mycotoxins in infected corn grains

    International Nuclear Information System (INIS)

    Youssef, K.A.; Abouzeid, M.A.; Hassan, A.A.; Abd-Elrahman, D.G.; Hammad, A.A.

    2007-01-01

    Fusarium verticillioides Sacc. (Nirenberg) was isolated from fresh grains collected from corn fields with ears symptoms. When cultured in liquid media under controlled incubation conditions, two already known mycotoxins were produced. The two mycotoxins were obtained through the extraction process of the lyophilized culture filtrate under acidic condition using ethyl acetate and were detected by thin layer chromatography and high performance liquid chromatography in comparison with the authentic of both acids. Mass spectroscopic investigations confirmed the molecular weight of the two toxic compounds which are known as fusaric and 9, 10-dehydro fusaric acids. Application of gamma radiation at doses up to 3 KGy caused a slight decrease in the mould count of isolated pathogen while a 5 KGy dose caused a dramatic reduction in fungal count and at irradiation dose of 12.5 KGy the fungus was completely inhibited for up to 12 weeks of storage

  20. Antifungal Attributes of Lactobacillus plantarum MYS6 against Fumonisin Producing Fusarium proliferatum Associated with Poultry Feeds.

    Science.gov (United States)

    Deepthi, B V; Poornachandra Rao, K; Chennapa, G; Naik, M K; Chandrashekara, K T; Sreenivasa, M Y

    2016-01-01

    Fumonisins, being common in occurrence in maize-based feeds, pose a great threat to animal and human health. The present study is aimed at determining the antifungal activity of Lactobacillus plantarum MYS6 against a fumonisin producing fungus, Fusarium proliferatum MYS9. The isolate was subjected to standard tests for determining its probiotic attributes and antifungal properties. L. plantarum MYS6 thrived well at pH 3.0 and 6.0, and exhibited strong resistance up to 3% bile. The isolate showed a high degree of cell surface hydrophobicity corresponding to its strong adhesion to chicken crop epithelial cells. Co-inoculation with the fungus on modified de Man Rogosa Sharpe medium revealed the inhibitory effect of L. plantarum MYS6 on fungal growth and biomass. Observation using scanning electron microscopy showed distortion of hyphal structures, swollen tips and disrupted conidia. Conidia germination inhibition assay restrained germination and showed deformed hyphae. The bioprotective feature of the isolate was evident by the inhibition of fungal development in maize-kernel treated with the cell free supernatant of L. plantarum MYS6. Both the isolate and its extracellular metabolites lowered fumonisin content in feed model up to 0.505 mg/Kg of feed and 0.3125 mg/Kg of feed respectively when compared to the level of 0.870 mg/Kg of feed in control. The major antifungal compounds produced by the isolate were 10-Octadecenoic acid, methyl ester; palmitic acid, methyl ester; heptadecanoic acid, 16-methyl ester; stearic acid and lauric acid. L. plantarum MYS6 reduced 61.7% of fumonisin possibly by a binding mechanism. These findings suggest the application of L. plantarum MYS6 as an efficient probiotic additive and biocontrol agent in feed used in poultry industry. Additionally, the antifungal metabolites pose a conspicuous inhibition of Fusarium growth and fumonisin production.

  1. Antifungal Attributes of Lactobacillus plantarum MYS6 against Fumonisin Producing Fusarium proliferatum Associated with Poultry Feeds

    Science.gov (United States)

    Deepthi, B. V.; Poornachandra Rao, K.; Chennapa, G.; Naik, M. K.; Chandrashekara, K. T.; Sreenivasa, M. Y.

    2016-01-01

    Fumonisins, being common in occurrence in maize-based feeds, pose a great threat to animal and human health. The present study is aimed at determining the antifungal activity of Lactobacillus plantarum MYS6 against a fumonisin producing fungus, Fusarium proliferatum MYS9. The isolate was subjected to standard tests for determining its probiotic attributes and antifungal properties. L. plantarum MYS6 thrived well at pH 3.0 and 6.0, and exhibited strong resistance up to 3% bile. The isolate showed a high degree of cell surface hydrophobicity corresponding to its strong adhesion to chicken crop epithelial cells. Co-inoculation with the fungus on modified de Man Rogosa Sharpe medium revealed the inhibitory effect of L. plantarum MYS6 on fungal growth and biomass. Observation using scanning electron microscopy showed distortion of hyphal structures, swollen tips and disrupted conidia. Conidia germination inhibition assay restrained germination and showed deformed hyphae. The bioprotective feature of the isolate was evident by the inhibition of fungal development in maize-kernel treated with the cell free supernatant of L. plantarum MYS6. Both the isolate and its extracellular metabolites lowered fumonisin content in feed model up to 0.505 mg/Kg of feed and 0.3125 mg/Kg of feed respectively when compared to the level of 0.870 mg/Kg of feed in control. The major antifungal compounds produced by the isolate were 10-Octadecenoic acid, methyl ester; palmitic acid, methyl ester; heptadecanoic acid, 16-methyl ester; stearic acid and lauric acid. L. plantarum MYS6 reduced 61.7% of fumonisin possibly by a binding mechanism. These findings suggest the application of L. plantarum MYS6 as an efficient probiotic additive and biocontrol agent in feed used in poultry industry. Additionally, the antifungal metabolites pose a conspicuous inhibition of Fusarium growth and fumonisin production. PMID:27285317

  2. Fusarium verwelkingsziekte in tomaat geen probleem meer dankzij resistentie: Speciale vormen Fusarium oxysporum veroorzaken ziekten

    NARCIS (Netherlands)

    Paternotte, S.J.

    2011-01-01

    Fusarium oxysporum is een algemeen voorkomende bodemschimmel. Speciale vormen kunnen problemen veroorzaken zoals verwelkingsziekte en voet- en wortelrot in verschillende vruchtgroentegewassen, potplanten en snijbloemen en zuur in bolgewassen. Per gewas kan de schade variëren van minimaal, doordat

  3. Inhibitory effects of antimicrobial agents against Fusarium species.

    Science.gov (United States)

    Kawakami, Hideaki; Inuzuka, Hiroko; Hori, Nobuhide; Takahashi, Nobumichi; Ishida, Kyoko; Mochizuki, Kiyofumi; Ohkusu, Kiyofumi; Muraosa, Yasunori; Watanabe, Akira; Kamei, Katsuhiko

    2015-08-01

    We investigated the inhibitory effects of antibacterial, biocidal, and antifungal agents against Fusarium spp. Seven Fusarium spp: four F. falciforme (Fusarium solani species complex), one Fusarium spp, one Fusarium spp. (Fusarium incarnatum-equiseti species complex), and one F. napiforme (Gibberella fujikuroi species complex), isolated from eyes with fungal keratitis were used in this study. Their susceptibility to antibacterial agents: flomoxef, imipenem, gatifloxacin, levofloxacin, moxifloxacin, gentamicin, tobramycin, and Tobracin® (contained 3,000 μg/ml of tobramycin and 25 μg/ml of benzalkonium chloride (BAK), a biocidal agent: BAK, and antifungal agents: amphotericin B, pimaricin (natamycin), fluconazole, itraconazole, miconazole, voriconazole, and micafungin, was determined by broth microdilution tests. The half-maximal inhibitory concentration (IC50), 100% inhibitory concentration (IC100), and minimum inhibitory concentration (MIC) against the Fusarium isolates were determined. BAK had the highest activity against the Fusarium spp. except for the antifungal agents. Three fluoroquinolones and two aminoglycosides had inhibitory effects against the Fusarium spp. at relatively high concentrations. Tobracin® had a higher inhibitory effect against Fusarium spp. than tobramycin alone. Amphotericin B had the highest inhibitory effect against the Fusarium spp, although it had different degrees of activity against each isolate. Our findings showed that fluoroquinolones, aminoglycosides, and BAK had some degree of inhibitory effect against the seven Fusarium isolates, although these agents had considerably lower effect than amphotericin B. However, the inhibitory effects of amphotericin B against the Fusarium spp. varied for the different isolates. Further studies for more effective medications against Fusarium, such as different combinations of antibacterial, biocidal, and antifungal agents are needed. © The Author 2015. Published by Oxford University Press on

  4. Light affects fumonisin production in strains of Fusarium fujikuroi, Fusarium proliferatum, and Fusarium verticillioides isolated from rice.

    Science.gov (United States)

    Matić, Slavica; Spadaro, Davide; Prelle, Ambra; Gullino, Maria Lodovica; Garibaldi, Angelo

    2013-09-16

    Three Fusarium species associated with bakanae disease of rice (Fusarium fujikuroi, Fusarium proliferatum, and Fusarium verticillioides) were investigated for their ability to produce fumonisins (FB1 and FB2) under different light conditions, and for pathogenicity. Compared to darkness, the conditions that highly stimulated fumonisin production were yellow and green light in F. verticillioides strains; white and blue light, and light/dark alternation in F. fujikuroi and F. proliferatum strains. In general, all light conditions positively influenced fumonisin production with respect to the dark. Expression of the FUM1 gene, which is necessary for the initiation of fumonisin production, was in accordance with the fumonisin biosynthetic profile. High and low fumonisin-producing F. fujikuroi strains showed typical symptoms of bakanae disease, abundant fumonisin-producing F. verticillioides strains exhibited chlorosis and stunting of rice plants, while fumonisin-producing F. proliferatum strains were asymptomatic on rice. We report that F. fujikuroi might be an abundant fumonisin producer with levels comparable to that of F. verticillioides and F. proliferatum, highlighting the need of deeper mycotoxicological analyses on rice isolates of F. fujikuroi. Our results showed for the first time the influence of light on fumonisin production in isolates of F. fujikuroi, F. proliferatum, and F. verticillioides from rice. © 2013 Elsevier B.V. All rights reserved.

  5. In silico comparison of transcript abundances during Arabidopsis thaliana and Glycine max resistance to Fusarium virguliforme

    Directory of Open Access Journals (Sweden)

    Iqbal M Javed

    2008-09-01

    Full Text Available Abstract Background Sudden death syndrome (SDS of soybean (Glycine max L. Merr. is an economically important disease, caused by the semi-biotrophic fungus Fusarium solani f. sp. glycines, recently renamed Fusarium virguliforme (Fv. Due to the complexity and length of the soybean-Fusarium interaction, the molecular mechanisms underlying plant resistance and susceptibility to the pathogen are not fully understood. F. virguliforme has a very wide host range for the ability to cause root rot and a very narrow host range for the ability to cause a leaf scorch. Arabidopsis thaliana is a host for many types of phytopathogens including bacteria, fungi, viruses and nematodes. Deciphering the variations among transcript abundances (TAs of functional orthologous genes of soybean and A. thaliana involved in the interaction will provide insights into plant resistance to F. viguliforme. Results In this study, we reported the analyses of microarrays measuring TA in whole plants after A. thaliana cv 'Columbia' was challenged with fungal pathogen F. virguliforme. Infection caused significant variations in TAs. The total number of increased transcripts was nearly four times more than that of decreased transcripts in abundance. A putative resistance pathway involved in responding to the pathogen infection in A. thaliana was identified and compared to that reported in soybean. Conclusion Microarray experiments allow the interrogation of tens of thousands of transcripts simultaneously and thus, the identification of plant pathways is likely to be involved in plant resistance to Fusarial pathogens. Dissection of the set functional orthologous genes between soybean and A. thaliana enabled a broad view of the functional relationships and molecular interactions among plant genes involved in F. virguliforme resistance.

  6. Multi-Homologous Recombination-Based Gene Manipulation in the Rice Pathogen Fusarium fujikuroi

    Directory of Open Access Journals (Sweden)

    In Sun Hwang

    2016-06-01

    Full Text Available Gene disruption by homologous recombination is widely used to investigate and analyze the function of genes in Fusarium fujikuroi, a fungus that causes bakanae disease and root rot symptoms in rice. To generate gene deletion constructs, the use of conventional cloning methods, which rely on restriction enzymes and ligases, has had limited success due to a lack of unique restriction enzyme sites. Although strategies that avoid the use of restriction enzymes have been employed to overcome this issue, these methods require complicated PCR steps or are frequently inefficient. Here, we introduce a cloning system that utilizes multi-fragment assembly by In-Fusion to generate a gene disruption construct. This method utilizes DNA fragment fusion and requires only one PCR step and one reaction for construction. Using this strategy, a gene disruption construct for Fusarium cyclin C1 (FCC1 , which is associated with fumonisin B1 biosynthesis, was successfully created and used for fungal transformation. In vivo and in vitro experiments using confirmed fcc1 mutants suggest that fumonisin production is closely related to disease symptoms exhibited by F. fujikuroi strain B14. Taken together, this multi-fragment assembly method represents a simpler and a more convenient process for targeted gene disruption in fungi.

  7. A Clonal Lineage of Fusarium oxysporum Circulates in the Tap Water of Different French Hospitals.

    Science.gov (United States)

    Edel-Hermann, Véronique; Sautour, Marc; Gautheron, Nadine; Laurent, Julie; Aho, Serge; Bonnin, Alain; Sixt, Nathalie; Hartemann, Philippe; Dalle, Frédéric; Steinberg, Christian

    2016-11-01

    Fusarium oxysporum is typically a soilborne fungus but can also be found in aquatic environments. In hospitals, water distribution systems may be reservoirs for the fungi responsible for nosocomial infections. F. oxysporum was previously detected in the water distribution systems of five French hospitals. Sixty-eight isolates from water representative of all hospital units that were previously sampled and characterized by translation elongation factor 1α sequence typing were subjected to microsatellite analysis and full-length ribosomal intergenic spacer (IGS) sequence typing. All but three isolates shared common microsatellite loci and a common two-locus sequence type (ST). This ST has an international geographical distribution in both the water networks of hospitals and among clinical isolates. The ST dominant in water was not detected among 300 isolates of F. oxysporum that originated from surrounding soils. Further characterization of 15 isolates by vegetative compatibility testing allowed us to conclude that a clonal lineage of F. oxysporum circulates in the tap water of the different hospitals. We demonstrated that a clonal lineage of Fusarium oxysporum inhabits the water distribution systems of several French hospitals. This clonal lineage, which appears to be particularly adapted to water networks, represents a potential risk for human infection and raises questions about its worldwide distribution. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death.

    Science.gov (United States)

    Gawehns, F; Houterman, P M; Ichou, F Ait; Michielse, C B; Hijdra, M; Cornelissen, B J C; Rep, M; Takken, F L W

    2014-04-01

    Plant pathogens secrete effectors to manipulate their host and facilitate colonization. Fusarium oxysporum f. sp. lycopersici is the causal agent of Fusarium wilt disease in tomato. Upon infection, F. oxysporum f. sp. lycopersici secretes numerous small proteins into the xylem sap (Six proteins). Most Six proteins are unique to F. oxysporum, but Six6 is an exception; a homolog is also present in two Colletotrichum spp. SIX6 expression was found to require living host cells and a knockout of SIX6 in F. oxysporum f. sp. lycopersici compromised virulence, classifying it as a genuine effector. Heterologous expression of SIX6 did not affect growth of Agrobacterium tumefaciens in Nicotiana benthamiana leaves or susceptibility of Arabidopsis thaliana toward Verticillium dahliae, Pseudomonas syringae, or F. oxysporum, suggesting a specific function for F. oxysporum f. sp. lycopersici Six6 in the F. oxysporum f. sp. lycopersici- tomato pathosystem. Remarkably, Six6 was found to specifically suppress I-2-mediated cell death (I2CD) upon transient expression in N. benthamiana, whereas it did not compromise the activity of other cell-death-inducing genes. Still, this I2CD suppressing activity of Six6 does not allow the fungus to overcome I-2 resistance in tomato, suggesting that I-2-mediated resistance is independent from cell death.

  9. Management of Fusarium oxysporum f. sp. capsici by leaf extract of Eucalyptus citriodora

    International Nuclear Information System (INIS)

    Shafique, S.; Asif, M.; Shafique, S.

    2015-01-01

    Fusarium wilt of chili (Capsicum annum L.) is an important disease in Pakistan that causes significant yield losses. In the present study, pathogenicity test was conducted using four strains of Fusarium oxysporum f.sp. capsici and ten chili varieties. It revealed that strain B was the most pathogenic strain and variety sky red was the most susceptible while variety Anchal was the most resistant against F. oxysporum strain B. Antifungal bioassays were conducted to find out antimycotic effect of extracts of fruit, bark and leaves of Eucalyptus citriodora (Hook.) against F. oxysporum. Ten concentrations (0, 1.0, 1.5, 2.0, 2.5 and 5%) of methanolic extracts of each plant part were employed against the target pathogen. Leaf extract imparted the maximum (up to 98%) and significant suppression in fungal growth while fruit and bark extracts proved less effective exhibiting only 50-60% reduction in fungal mycelial growth. The work concludes that methanolic extract of leaves of E. citriodora have potential to restrain the disastrous effects of the pathogenic fungus as the plant extracts of Eucalyptus conferred about 85% disease control in chilli plants with significantly high intensity of defense related enzymes under pathogenic stress. (author)

  10. Pengendalian Hayati Penyakit Layu Fusarium Pisang (Fusarium Oxysporum F.sp. Cubense) dengan Trichoderma SP.

    OpenAIRE

    Sudirman, Albertus; Sumardiyono, Christanti; Widyastuti, Siti Muslimah

    2011-01-01

    The aim of this research was to study the inhibiting ability of Trichoderma sp. to control fusarium wilt of banana in greenhouse condition. The experiments consisted of the antagonism test between Trichoderma sp. and Fusarium oxysporum f.sp. cubense (Foc) in vitro using dual culture method and glass house experiment which was arranged in 3×3 Factorial Complete Randomized Design. First factor of the latter experiment was the dose of Trichoderma sp. culture (0, 25, and 50 g per polybag), second...

  11. Study on usability of Fusarium oxysporum Schlecht.f.sp. tulipae Apt. metabolites for screening for basal rot resistance in tulip

    Directory of Open Access Journals (Sweden)

    Małgorzata Podwyszyńska

    2013-12-01

    Full Text Available The usefulness of fungus culture filtrates and fusaric acid as selecting agents for Fusarium resistance breeding in tulip was examined on in vitro cultures of shoots and embryonic calli of seven tulip genotypes differing in resistance to Fusarium oxysporum Schlecht. f. sp. tulipae Apt. (F.o.t. and four virulent F.o.t. isolates. Fusaric acid influenced the shoot growth of all cultivars tested in a similar way, irrespectively of their greenhouse resistance to basal rot. Also, the sensitivity of calli of the cultivars studied to fusaric acid did not correspond with their resistance to F.o.t. evaluated in the greenhouse screening. The phytotoxity of F.o.t. culture filtrates did not depend on their fusaric acid contents. There was a negative correlation between cultivar's resistance to F.o.t in greenhouse tests and the sensitivity of their shoots to fungus culture filtrates in in vitro tests. This indicates that defence mechanism against F.o.t. in tulip tissue may have a nature of hypersensitive response. Considering the results of our study, it may be concluded that the use of fusaric acid or fungus culture filtrates for the in vitro selection of somaclones resistant to F.o.t. in tulip is not feasible.

  12. Fumonisin detection and analysis of potential fumonisin-producing Fusarium spp. in asparagus (Asparagus officinalis L.) in Zhejiang Province of China.

    Science.gov (United States)

    Wang, Jiansheng; Wang, Xiaoping; Zhou, Ying; Du, Liangcheng; Wang, Qiaomei

    2010-04-15

    Fumonisins are mycotoxins produced by a number of Fusarium species, including several pathogens of asparagus plants. China is one of the largest asparagus producers in the world. In this study, we analysed the contamination of fumonisins and fumonisin-producing fungi in asparagus spear samples from Zhejiang Province, the major asparagus production province in China. The asparagus did not contain a detectable level of fumonisins. However, the recovery of Fusarium in asparagus was 72.7%, including F. proliferatum (40.9%), F. oxysporum (22.7%), F. acuminatum (4.55%) and F. equesti (4.55%). A multiplex PCR targeting the internal transcribed spacer sequence (ITS), translation elongation factor 1-alpha (TEF), and key biosynthetic genes FUM1 and FUM8, was used to simultaneously determine the identity and the biosynthetic ability of the fungal isolates. Fungal isolates containing the FUM genes also produced fumonisins in cultures, ranging from 28 to 4204 microg g(-1). F. proliferatum was the only fumonisin-producing Fusarium species in asparagus. Although no fumonisin contamination was detected in asparagus in the current survey, we found that the majority of samples contained Fusarium spp. Because F. proliferatum is a high fumonisin-producing species, potential health risks for human consumption of asparagus exist, if the appropriate environmental conditions are present for this fungus. (c) 2010 Society of Chemical Industry.

  13. Rapid molecular technique to distinguish Fusarium species

    CSIR Research Space (South Africa)

    Lodolo, EJ

    1993-03-01

    Full Text Available The nuclear DNA (nDNA) of different isolates of three closely related, toxin-producing Fusarium species, F. moniliforme, F. nygamai and F. napiforme, was compared to ascertain the sensitivity of a molecular method to distinguish these three species...

  14. Fusarium mycotoxins: a trans-disciplinary overview

    Science.gov (United States)

    Due to health risks and economic losses associated with mycotoxins produced by plant pathogenic Fusarium species, there is a compelling need for improved understanding of these fungi from across diverse perspectives and disciplinary approaches. Phylogenetic studies have made tremendous progress in d...

  15. IGS-RFLP analysis and development of molecular markers for identification of Fusarium poae, Fusarium langsethiae, Fusarium sporotrichioides and Fusarium kyushuense

    NARCIS (Netherlands)

    Konstantinova, P.S.; Yli-Mattila, T.

    2004-01-01

    The intergenic spacer (IGS) regions of the rDNA of several Fusarium spp. strains obtained from the collaborative researchers (Int. J. Food Microbiol. (2003)) were amplified by polymerase chain reaction (PCR), and an IGS¿RFLP analysis was performed. Restriction digestion with AluI, MspI and PstI

  16. Fusarium Species and Their Associated Mycotoxins.

    Science.gov (United States)

    Munkvold, Gary P

    2017-01-01

    The genus Fusarium includes numerous toxigenic species that are pathogenic to plants or humans, and are able to colonize a wide range of environments on earth. The genus comprises around 70 well-known species, identified by using a polyphasic approach, and as many as 300 putative species, according to phylogenetic species concepts; many putative species do not yet have formal names. Fusarium is one of the most economically important fungal genera because of yield loss due to plant pathogenic activity; mycotoxin contamination of food and feed products which often render them unaccep for marketing; and health impacts to humans and livestock, due to consumption of mycotoxins. Among the most important mycotoxins produced by species of Fusarium are the trichothecenes and the fumonisins. Fumonisins cause fatal livestock diseases and are considered potentially carcinogenic mycotoxins for humans, while trichothecenes are potent inhibitors of protein synthesis. This chapter summarizes the main aspects of morphology, pathology, and toxigenicity of the main Fusarium species that colonize different agricultural crops and environments worldwide, and cause mycotoxin contamination of food and feed.

  17. Fusarium and other opportunistic hyaline fungi

    Science.gov (United States)

    This chapter focuses on those fungi that grow in tissue in the form of hyaline or lightly colored septate hyphae. These fungi include Fusarium and other hyaline fungi. Disease caused by hyaline fungi is referred to as hyalohyphomycosis. Hyaline fungi described in this chapter include the anamorphic,...

  18. The cell wall of Fusarium oxysporum

    NARCIS (Netherlands)

    Schoffelmeer, EAM; Klis, FM; Sietsma, JH; Cornelissen, BJC

    1999-01-01

    Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for

  19. Characterization and intraspecific variation of Fusarium semitectum ...

    African Journals Online (AJOL)

    A total of 79 isolates of Fusarium semitectum were characterized by morphological and IGS-RFLP analysis to assess its intraspecific variation. Based on morphological characteristics, the isolates of F. semitectum were classified into 2 distinct groups, morphotypes I and II. Morphotype I was characterized by longer ...

  20. Conservation and divergence of the cyclic adenosine monophosphate-protein kinase A (cAMP–PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides

    Science.gov (United States)

    The cyclic AMP (cAMP)-PKA pathway is a central signaling cascade that transmits extracellular stimuli and governs cell responses through the second messenger cAMP. The importance of cAMP signaling in fungal biology has been well documented. Two key conserved components, adenylate cyclase (AC) and ca...

  1. A quantitative PCR method for determining relative infection rates of maize callus by Fusarium graminearum in screening for fungal resistance genes

    Science.gov (United States)

    Corn grown in the United States is susceptible to contamination by ear mold fungi. Some of these fungi can produce mycotoxins which are harmful to animals and humans. It is important to identify novel ways of reducing corn ear mold contamination. Some genetic studies of corn over the years have iden...

  2. Identification of Ina proteins from Fusarium acuminatum

    Science.gov (United States)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Freezing of water above -36° C is based on ice nucleation activity (INA) mediated by ice nucleators (IN) which can be of various origins. Beside mineral IN, biological particles are a potentially important source of atmospheric IN. The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is induced by a surface protein on the outer cell membrane, which is fully characterized. In contrast, much less is known about the nature of fungal IN. The fungal genus Fusarium is widely spread throughout the earth. It belongs to the Ascomycota and is one of the most severe fungal pathogens. It can affect a variety of organisms from plants to animals including humans. INA of Fusarium was already described about 30 years ago and INA of Fusarium as well as other fungal genera is assumed to be mediated by proteins or at least to contain a proteinaceous compound. Although many efforts were made the precise INA machinery of Fusarium and other fungal species including the proteins and their corresponding genes remain unidentified. In this study preparations from living fungal samples of F. acuminatum were fractionated by liquid chromatography and IN active fractions were identified by freezing assays. SDS-page and de novo sequencing by mass spectrometry were used to identify the primary structure of the protein. Preliminary results show that the INA protein of F. acuminatum is contained in the early size exclusion chromatography fractions indicating a high molecular size. Moreover we could identify a single protein band from IN active fractions at 130-145 kDa corresponding to sizes of IN proteins from bacterial species. To our knowledge this is for the first time an isolation of a single protein from in vivo samples, which can be assigned as IN active from Fusarium.

  3. Identification of an Endophytic Antifungal Bacterial Strain Isolated from the Rubber Tree and Its Application in the Biological Control of Banana Fusarium Wilt.

    Directory of Open Access Journals (Sweden)

    Deguan Tan

    Full Text Available Banana Fusarium wilt (also known as Panama disease is one of the most disastrous plant diseases. Effective control methods are still under exploring. The endophytic bacterial strain ITBB B5-1 was isolated from the rubber tree, and identified as Serratia marcescens by morphological, biochemical, and phylogenetic analyses. This strain exhibited a high potential for biological control against the banana Fusarium disease. Visual agar plate assay showed that ITBB B5-1 restricted the mycelial growth of the pathogenic fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4. Microscopic observation revealed that the cell wall of the FOC4 mycelium close to the co-cultured bacterium was partially decomposed, and the conidial formation was prohibited. The inhibition ratio of the culture fluid of ITBB B5-1 against the pathogenic fungus was 95.4% as estimated by tip culture assay. Chitinase and glucanase activity was detected in the culture fluid, and the highest activity was obtained at Day 2 and Day 3 of incubation for chitinase and glucanase, respectively. The filtrated cell-free culture fluid degraded the cell wall of FOC4 mycelium. These results indicated that chitinase and glucanase were involved in the antifungal mechanism of ITBB B5-1. The potted banana plants that were inoculated with ITBB B5-1 before infection with FOC4 showed 78.7% reduction in the disease severity index in the green house experiments. In the field trials, ITBB B5-1 showed a control effect of approximately 70.0% against the disease. Therefore, the endophytic bacterial strain ITBB B5-1 could be applied in the biological control of banana Fusarium wilt.

  4. Rhamnolipid biosurfactant against Fusarium sacchari--the causal organism of pokkah boeng disease of sugarcane.

    Science.gov (United States)

    Goswami, Debahuti; Handique, Pratap Jyoti; Deka, Suresh

    2014-06-01

    Pokkah boeng disease on sugarcane caused by the fungus Fusarium sacchari results considerable damage to the crop leading to top rot, the most serious and advanced stage of pokkah boeng, where the growing point is killed and the entire top of the plant dies. In the present study, the effect of rhamnolipid biosurfactant as an antifungal agent against F. sacchari to control pokkah boeng disease was investigated. On the basis of surface tension reduction, 12 bacterial isolates were selected as potent biosurfactant producers and eight of them showed antagonistic effect against F. sacchari. Among the eight, the isolate DS9 was found as the effective inhibitor of the fungus in vitro which was further evaluated using its biosurfactant present in whole culture, cell-free culture supernatant and crude biosurfactant at various concentrations. Reductions of fungal growths were found more with crude biosurfactant. By sequencing 16S rRNA, DS9 was identified as P. aeruginosa and the produced biosurfactant was characterized as rhamnolipid by Liquid Chromatography-Mass Spectrometry (LC-MS) analysis. The rhamnolipid biosurfactant inhibits phytopathogenic fungi F. sacchari and therefore seems to be a good biocontrol agent to control pokkah boeng disease of sugarcane. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Secondary metabolism in Fusarium fujikuroi: strategies to unravel the function of biosynthetic pathways.

    Science.gov (United States)

    Janevska, Slavica; Tudzynski, Bettina

    2018-01-01

    The fungus Fusarium fujikuroi causes bakanae disease of rice due to its ability to produce the plant hormones, the gibberellins. The fungus is also known for producing harmful mycotoxins (e.g., fusaric acid and fusarins) and pigments (e.g., bikaverin and fusarubins). However, for a long time, most of these well-known products could not be linked to biosynthetic gene clusters. Recent genome sequencing has revealed altogether 47 putative gene clusters. Most of them were orphan clusters for which the encoded natural product(s) were unknown. In this review, we describe the current status of our research on identification and functional characterizations of novel secondary metabolite gene clusters. We present several examples where linking known metabolites to the respective biosynthetic genes has been achieved and describe recent strategies and methods to access new natural products, e.g., by genetic manipulation of pathway-specific or global transcritption factors. In addition, we demonstrate that deletion and over-expression of histone-modifying genes is a powerful tool to activate silent gene clusters and to discover their products.

  6. Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicles

    International Nuclear Information System (INIS)

    Verdin, Anthony; Lounes-Hadj Sahraoui, Anissa; Newsam, Ray; Robinson, Gary; Durand, Roger

    2005-01-01

    Accumulation and elimination of polycyclic aromatic hydrocarbons (PAHs) were studied in the fungus Fusarium solani. When the fungus was grown on a synthetic medium containing benzo[a]pyrene, hyphae of F. solani contained numerous lipid vesicles which could be stained by the lipid-specific dyes: Sudan III and Rhodamine B. The fluorescence produced by Rhodamine B and PAH benzo[a]pyrene were at the same locations in the fungal hyphae, indicating that F. solani stored PAH in pre-existing lipid vesicles. A passive temperature-independent process is involved in the benzo[a]pyrene uptake and storage. Sodium azide, a cytochrome c oxidation inhibitor, and the two cytoskeleton inhibitors colchicine and cytochalasin did not prevent the transport and accumulation of PAH in lipid vesicles of F. solani hyphae. F. solani degraded a large range of PAHs at different rates. PAH intracellular storage in lipid vesicles was not necessarily accompanied by degradation and was common to numerous other fungi. - Fungi can store PAHs intracellularly in lipid vesicles independently of their PAH degradation abilities

  7. Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Verdin, Anthony [Laboratoire de Mycologie/Phytopathologie/Environnement, Universite du Littoral-Cote d' Opale, 17 avenue Bleriot, BP 699, 62228 Calais Cedex (France); Lounes-Hadj Sahraoui, Anissa [Laboratoire de Mycologie/Phytopathologie/Environnement, Universite du Littoral-Cote d' Opale, 17 avenue Bleriot, BP 699, 62228 Calais Cedex (France)]. E-mail: lounes@univ-littoral.fr; Newsam, Ray [Department of Biosciences, University of Kent, Canterbury CT2 7NJ (United Kingdom); Robinson, Gary [Department of Biosciences, University of Kent, Canterbury CT2 7NJ (United Kingdom); Durand, Roger [Laboratoire de Mycologie/Phytopathologie/Environnement, Universite du Littoral-Cote d' Opale, 17 avenue Bleriot, BP 699, 62228 Calais Cedex (France)

    2005-01-01

    Accumulation and elimination of polycyclic aromatic hydrocarbons (PAHs) were studied in the fungus Fusarium solani. When the fungus was grown on a synthetic medium containing benzo[a]pyrene, hyphae of F. solani contained numerous lipid vesicles which could be stained by the lipid-specific dyes: Sudan III and Rhodamine B. The fluorescence produced by Rhodamine B and PAH benzo[a]pyrene were at the same locations in the fungal hyphae, indicating that F. solani stored PAH in pre-existing lipid vesicles. A passive temperature-independent process is involved in the benzo[a]pyrene uptake and storage. Sodium azide, a cytochrome c oxidation inhibitor, and the two cytoskeleton inhibitors colchicine and cytochalasin did not prevent the transport and accumulation of PAH in lipid vesicles of F. solani hyphae. F. solani degraded a large range of PAHs at different rates. PAH intracellular storage in lipid vesicles was not necessarily accompanied by degradation and was common to numerous other fungi. - Fungi can store PAHs intracellularly in lipid vesicles independently of their PAH degradation abilities.

  8. Fate of Fusarium Toxins during the Malting Process.

    Science.gov (United States)

    Habler, Katharina; Hofer, Katharina; Geißinger, Cajetan; Schüler, Jan; Hückelhoven, Ralph; Hess, Michael; Gastl, Martina; Rychlik, Michael

    2016-02-17

    Little is known about the fate of Fusarium mycotoxins during the barley malting process. To determine the fungal DNA and mycotoxin concentrations during malting, we used barley grain harvested from field plots that we had inoculated with Fusarium species that produce type A or type B trichothecenes or enniatins. Using a recently developed multimycotoxin liquid chromatography-tandem mass stable isotope dilution method, we identified Fusarium-species-specific behaviors of mycotoxins in grain and malt extracts and compared toxin concentrations to amounts of fungal DNA in the same samples. In particular, the type B trichothecenes and Fusarium culmorum DNA contents were increased dramatically up to 5400% after kilning. By contrast, the concentrations of type A trichothecenes and Fusarium sporotrichioides DNA decreased during the malting process. These data suggest that specific Fusarium species that contaminate the raw grain material might have different impacts on malt quality.

  9. Antibody-mediated Prevention of Fusarium Mycotoxins in the Field

    Directory of Open Access Journals (Sweden)

    Yu-Cai Liao

    2008-10-01

    Full Text Available Fusarium mycotoxins directly accumulated in grains during the infection of wheat and other cereal crops by Fusarium head blight (FHB pathogens are detrimental to humans and domesticated animals. Prevention of the mycotoxins via the development of FHB-resistant varieties has been a challenge due to the scarcity of natural resistance against FHB pathogens. Various antibodies specific to Fusarium fungi and mycotoxins are widely used in immunoassays and antibody-mediated resistance in planta against Fusarium pathogens has been demonstrated. Antibodies fused to antifungal proteins have been shown to confer a very significantly enhanced Fusarium resistance in transgenic plants. Thus, antibody fusions hold great promise as an effective tool for the prevention of mycotoxin contaminations in cereal grains. This review highlights the utilization of protective antibodies derived from phage display to increase endogenous resistance of wheat to FHB pathogens and consequently to reduce mycotoxins in field. The role played by Fusarium-specific antibody in the resistance is also discussed.

  10. Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds

    Science.gov (United States)

    Abd-Elsalam, Kamel A.; Khokhlov, Alexei R.

    2015-02-01

    The current research deals with the formulation and characterization of bio-based oil-in-water nanoemulsion. The formulated eugenol oil nanoemulsion was characterized by dynamic light scattering, stability test, transmission electron microscopy and thin layer chromatography. The nanoemulsion droplets were found to have a Z-average diameter of 80 nm and TEM study reveals the spherical shape of eugenol oil nanoemulsion (EON). The size of the nanoemulsion was found to be physically stable up to more than 1-month when it was kept at room temperature (25 °C). The TEM micrograph showed that the EON was spherical in shape and moderately mono or di-dispersed and was in the range of 50-110 nm. Three concentrations of the nanoformulation were used to evalute the anti-fusarium activity both in vitro and in vivo experiments. SDS-PAGE results of total protein from the Fusarium oxysporum f. sp. vasinfectum (FOV) isolate before and after treatment with eugenol oil nanoemulsion indicate that the content of extra cellular soluble small molecular proteins decreased significantly in EON-treated fungus. Light micrographs of mycelia and spores treated with EON showed the disruption of the fungal structures. The analysis of variance (ANOVA) for Fusarium wilt incidence indicated highly significant ( p = 0.000) effects of concentration, genotype, and their interaction. The difference in wilt incidence between concentrations and control was not the same for each genotype, that is, the genotypes responded differently to concentrations. Effects of three EON concentration on germination percentage, and radicle length, were determined in the laboratory. One very interesting finding in the current study is that cotton genotypes was the most important factors in determining wilt incidence as it accounted for 93.18 % of the explained (model) variation. In vitro experiments were conducted to evaluate the potential phytotoxic effect of three EON concentrations. Concentration, genotype and

  11. Isolation of vanilla-endophytic bacteria (Vanilla planifolia with in vitro biocontrol activity against Fusarium oxysporum f. sp. Vanillae

    Directory of Open Access Journals (Sweden)

    Karol Jiménez-Quesada

    2015-06-01

    Full Text Available Vanilla sp. genus belongs to Orchidaceae family, and V. planifolia, V. pompona and V. tahitensis. are species of commercial interest. The quality classification of vanilla is made according to the length of the capsule and vanillin content, which is used to make food and beverage, as raw material in the pharmaceutical industry and for the production of cosmetics and perfumes, among others. Currently, root rot caused by the fungus Fusarium oxyporum f. sp. Vanillae is considered to be the biggest problem facing vanilla production, causing 30 to 52% of plant death, attacking adventitious roots and preventing this plant is able to absorb water and nutrients. The fungus cannot be eradicated by the action of chemicals that damage the viability of the plants, and because the cultivation of vanilla in agroforestry systems without the application of agrochemicals is an activity that is gaining interest among small producers country. It is for this reason why was studied the ability of control of vanilla endophytic bacteria isolated from samples from Corcovado, Puriscal, Dota and Guápiles, by testing in vitro antagonism between asylee bacteria and fungus F. oxysporum, giving results about promising candidate B1M11 to respond to pathogen attack, which was corroborated by the appearance of a halo of inhibition of fungal growth on plate.

  12. Molecular Characterization and Expression of a Phytase Gene from the Thermophilic Fungus Thermomyces lanuginosus

    Science.gov (United States)

    Berka, Randy M.; Rey, Michael W.; Brown, Kimberly M.; Byun, Tony; Klotz, Alan V.

    1998-01-01

    The phyA gene encoding an extracellular phytase from the thermophilic fungus Thermomyces lanuginosus was cloned and heterologously expressed, and the recombinant gene product was biochemically characterized. The phyA gene encodes a primary translation product (PhyA) of 475 amino acids (aa) which includes a putative signal peptide (23 aa) and propeptide (10 aa). The deduced amino acid sequence of PhyA has limited sequence identity (ca. 47%) with Aspergillus niger phytase. The phyA gene was inserted into an expression vector under transcriptional control of the Fusarium oxysporum trypsin gene promoter and used to transform a Fusarium venenatum recipient strain. The secreted recombinant phytase protein was enzymatically active between pHs 3 and 7.5, with a specific activity of 110 μmol of inorganic phosphate released per min per mg of protein at pH 6 and 37°C. The Thermomyces phytase retained activity at assay temperatures up to 75°C and demonstrated superior catalytic efficiency to any known fungal phytase at 65°C (the temperature optimum). Comparison of this new Thermomyces catalyst with the well-known Aspergillus niger phytase reveals other favorable properties for the enzyme derived from the thermophilic gene donor, including catalytic activity over an expanded pH range. PMID:9797301

  13. Genetic diversity and antifungal susceptibility of Fusarium isolates in onychomycosis.

    Science.gov (United States)

    Rosa, Priscila D; Heidrich, Daiane; Corrêa, Carolina; Scroferneker, Maria Lúcia; Vettorato, Gerson; Fuentefria, Alexandre M; Goldani, Luciano Z

    2017-09-01

    Fusarium species have emerged as an important human pathogen in skin disease, onychomycosis, keratitis and invasive disease. Onychomycosis caused by Fusarium spp. The infection has been increasingly described in the immunocompetent and immunosuppressed hosts. Considering onychomycosis is a difficult to treat infection, and little is known about the genetic variability and susceptibility pattern of Fusarium spp., further studies are necessary to understand the pathogenesis and better to define the appropriate antifungal treatment for this infection. Accordingly, the objective of this study was to describe the in vitro susceptibility to different antifungal agents and the genetic diversity of 35 Fusarium isolated from patients with onychomycosis. Fusarium spp. were isolated predominantly from female Caucasians, and the most frequent anatomical location was the nail of the hallux. Results revealed that 25 (71.4%) of isolates belonged to the Fusarium solani species complex, followed by 10 (28.5%) isolates from the Fusarium oxysporum species complex. Noteworthy, the authors report the first case of Neocosmospora rubicola isolated from a patient with onychomycosis. Amphotericin B was the most effective antifungal agent against the majority of isolates (60%, MIC ≤4 μg/mL), followed by voriconazole (34.2%, MIC ≤4 μg/mL). In general, Fusarium species presented MIC values >64 μg/mL for fluconazole, itraconazole and terbinafine. Accurate pathogen identification, characterisation and susceptibility testing provide a better understanding of pathogenesis of Fusarium in onychomycosis. © 2017 Blackwell Verlag GmbH.

  14. Présence en Tunisie d'isolats de Fusarium sambucinum résistants aux benzimidazoles : développement in vitro et agressivité sur tubercules de pomme de terre

    Directory of Open Access Journals (Sweden)

    El Mahjoub M.

    2006-01-01

    Full Text Available Presence in Tunisia of Fusarium sambucinum isolates resistant to benzimidazoles: in vitro growth and aggressiveness on potato tubers. The behaviour of 55 isolates of Fusarium spp. causing dry rot of the potato tubers, is studied against some enzimidazoles fungicides. Tunisian isolates of F. solani (12, F. oxysporum (23 and F. graminearum (10 are sensitive in vitro to carbendazime and benomyl at 5 mg.l-1. Their interaction with thiophanate-methyl is different; a complete inhibition of their mycelial growth is observed at doses higher than 500 mg.l-1. Tunisian isolates of F. sambucinum collected during 2002, 2003 and 2004 are resistant to these benzimidazoles showing existence of a cross-resistance. In fact, these isolates tolerated carbendazime (and benomyl at 200 mg.l-1 and thiophanate-methyl at 1000 mg.l-1. This is the first study in Tunisia indicating emergence of this type of F. sambucinum resistance. Control isolates of F. sambucinum and those treated with carbendazime at 100 mg.l-1 showed a similar aggressiveness on potato tubers of the Spunta cultivar.

  15. Investigation about selecting strong type of melons by using melon paleness factor fusarium oxysporum f.sp.melonis and mutation techniques

    International Nuclear Information System (INIS)

    Kantoglu, Y.; Secer, E.; Kunter, B.; Erzurum, K.; Maden, S.; Yanmaz, R.

    2009-01-01

    Fusarium wilt is a vascular disease of the Cucurbitaceae family, especially in muskmelon (Cucumis melo L.), caused by the soil fungus Fusarium oxysporum f. sp. melonis (FOM). This pathogen persists in the soil for extended periods of time, and the only effective control is the use of resistant varieties. Fusarium oxysporum f. sp. melonis is a very serious disease factor for farmers in Turkey. In this research, we show a method for mass-selection of melon mutants resistant to Fusarium wilt. In vitro selection of resistant cells, which are come from irradiated and non-irradiated explants, is done using culture filtrates of different FOM races. According to our results we determined effective irradiation doses and filtrate treatment dose by Linear Regression Analysis. According to our results 21.75 Gy is effective dose for in vitro Yuva cv. explants to induce mutation and for filtrate treatment 6.73% is the proper dose to select survive calluses and plantlets. We recommended using 10 and 20 Gy gamma ray doses for in vitro melon plantlets to induce mutation by our results. We succeed to regenerate 6% plantlets which were obtained and selected from irradiated plantlets and regenerated in in vitro medias which were include 6.73 % filtrate. Although 16.7% of resistant or tolerant plantlets can continue their viability in greenhouse conditions after disease inoculation treatment, we observed 4 plants had a surviving capability in a limited time. That is very important for breeding cycle and this research can lead to the development of new melon cultivars that will be resistant to Fusarium wilt.

  16. Fusarium verticillioides from finger millet in Uganda.

    Science.gov (United States)

    Saleh, Amgad A; Esele, J P; Logrieco, Antonio; Ritieni, Alberto; Leslie, John F

    2012-01-01

    Finger millet (Eleusine coracana) is a subsistence crop grown in Sub-Saharan Africa and the Indian Sub-continent. Fusarium species occurring on this crop have not been reported. Approximately 13% of the Fusarium isolates recovered from finger millet growing at three different locations in eastern Uganda belong to Fusarium verticillioides, and could produce up to 18,600 µg/g of total fumonisins when cultured under laboratory conditions. These strains are all genetically unique, based on AFLP analyses, and form fertile perithecia when crossed with the standard mating type tester strains for this species. All but one of the strains is female-fertile and mating-type segregates 13:20 Mat-1:Mat-2. Three new sequences of the gene encoding translation elongation factor 1-α were found within the population. These results indicate a potential health risk for infants who consume finger millet gruel as a weaning food, and are consistent with the hypothesis that F. verticillioides originated in Africa and not in the Americas, despite its widespread association with maize grown almost anywhere worldwide.

  17. Microsatellite Primers for Fungus-Growing Ants

    DEFF Research Database (Denmark)

    Villesen Fredsted, Palle; Gertsch, Pia J.; Boomsma, Jacobus Jan (Koos)

    2002-01-01

    We isolated five polymorphic microsatellite loci from a library of two thousand recombinant clones of two fungus-growing ant species, Cyphomyrmex longiscapus and Trachymyrmex cf. zeteki. Amplification and heterozygosity were tested in five species of higher attine ants using both the newly...... developed primers and earlier published primers that were developed for fungus-growing ants. A total of 20 variable microsatellite loci, developed for six different species of fungus-growing ants, are now available for studying the population genetics and colony kin-structure of these ants....

  18. Microsatellite primers for fungus-growing ants

    DEFF Research Database (Denmark)

    Villesen, Palle; Gertsch, P J; Boomsma, JJ

    2002-01-01

    We isolated five polymorphic microsatellite loci from a library of two thousand recombinant clones of two fungus-growing ant species, Cyphomyrmex longiscapus and Trachymyrmex cf. zeteki. Amplification and heterozygosity were tested in five species of higher attine ants using both the newly...... developed primers and earlier published primers that were developed for fungus-growing ants. A total of 20 variable microsatellite loci, developed for six different species of fungus-growing ants, are now available for studying the population genetics and colony kin-structure of these ants....

  19. Incidence of fungus and physiological quality of seeds of Jatropha curcas L. after cryogenic storage

    Directory of Open Access Journals (Sweden)

    Míriam Goldfarb

    2010-03-01

    Full Text Available The objective of this work was to evaluate the incidence of fungi in stored seeds of Jatropha curcas. The research was carried out at Cryogenic/UFCG, Sanity/UFPB and Cotton/Embrapa. The material for analysis showed an 8% water level, and 200 seeds were stored for treatment in cryogenic containers with nitrogen in the vapor and liquid phases. Four periods of crioconservation (0, 30, 60 and 90 days, were employed. After each period, the seeds were tested for sanity (Blotter test and germination. Superficial disinfestation, was carried out and seeds were distributed in Petri dishes, for incubation at 25 ± 2ºC, over a period of 7 days. The evaluation of the incidence of fungi was carried out in a stereoscopic microscope with observation of fungal structures, and values were expressed as percentages of seeds with fungus. The statistical experiment was completely randomized with temperature x days of storage. Analysis of variance was conducted and the means were compared by Tukey’s test at 5%. After 30 days of cryogenic storage, a greater incidence of Aspergillus sp., Cladosporium sp. and Fusarium sp. was detected. It was concluded that crioconservation at cryogenic temperatures did not reduce the incidence of fungus on Jatropha curcas seeds. The physiological quality was preserved during the cryoconservation.

  20. Characterizing heterogeneity of disease incidence in a spatial hierarchy: a case study from a decade of observations of fusarium head blight of wheat.

    Science.gov (United States)

    Kriss, A B; Paul, P A; Madden, L V

    2012-09-01

    A multilevel analysis of heterogeneity of disease incidence was conducted based on observations of Fusarium head blight (caused by Fusarium graminearum) in Ohio during the 2002-11 growing seasons. Sampling consisted of counting the number of diseased and healthy wheat spikes per 0.3 m of row at 10 sites (about 30 m apart) in a total of 67 to 159 sampled fields in 12 to 32 sampled counties per year. Incidence was then determined as the proportion of diseased spikes at each site. Spatial heterogeneity of incidence among counties, fields within counties, and sites within fields and counties was characterized by fitting a generalized linear mixed model to the data, using a complementary log-log link function, with the assumption that the disease status of spikes was binomially distributed conditional on the effects of county, field, and site. Based on the estimated variance terms, there was highly significant spatial heterogeneity among counties and among fields within counties each year; magnitude of the estimated variances was similar for counties and fields. The lowest level of heterogeneity was among sites within fields, and the site variance was either 0 or not significantly greater than 0 in 3 of the 10 years. Based on the variances, the intracluster correlation of disease status of spikes within sites indicated that spikes from the same site were somewhat more likely to share the same disease status relative to spikes from other sites, fields, or counties. The estimated best linear unbiased predictor (EBLUP) for each county was determined, showing large differences across the state in disease incidence (as represented by the link function of the estimated probability that a spike was diseased) but no consistency between years for the different counties. The effects of geographical location, corn and wheat acreage per county, and environmental conditions on the EBLUP for each county were not significant in the majority of years.