WorldWideScience

Sample records for fungus fusarium graminearum

  1. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum

    Science.gov (United States)

    As in many other eukaryotes, protein kinases play major regulatory roles in filamentous fungi. Although the genomes of numerous plant pathogenic fungi have been sequenced, systematic characterization of their kinomes has not been reported. The wheat scab fungus Fusarium graminearum has 116 putative ...

  2. Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum.

    Science.gov (United States)

    Li, Pengfei; Zhang, Hailong; Chen, Xiaoguang; Qiu, Dewen; Guo, Lihua

    2015-07-01

    A novel mycovirus, termed Fusarium graminearum Hypovirus 2 (FgHV2/JS16), isolated from a plant pathogenic fungus, Fusarium graminearum strain JS16, was molecularly and biologically characterized. The genome of FgHV2/JS16 is 12,800 nucleotides (nts) long, excluding the poly (A) tail. This genome has only one large putative open reading frame, which encodes a polyprotein containing three normal functional domains, papain-like protease, RNA-dependent RNA polymerase, RNA helicase, and a novel domain with homologous bacterial SMC (structural maintenance of chromosomes) chromosome segregation proteins. A defective RNA segment that is 4553-nts long, excluding the poly (A) tail, was also detected in strain JS16. The polyprotein shared significant aa identities with Cryphonectria hypovirus 1 (CHV1) (16.8%) and CHV2 (16.2%). Phylogenetic analyses based on multiple alignments of the polyprotein clearly divided the members of Hypoviridae into two major groups, suggesting that FgHV2/JS16 was a novel hypovirus of a newly proposed genus-Alphahypovirus-composed of the members of Group 1, including CHV1, CHV2, FgHV1 and Sclerotinia sclerotiorum hypovirus 2. FgHV2/JS16 was shown to be associated with hypovirulence phenotypes according to comparisons of the biological properties shared between FgHV2/JS16-infected and FgHV2/JS16-free isogenic strains. Furthermore, we demonstrated that FgHV2/JS16 infection activated the RNA interference pathway in Fusarium graminearum by relative quantitative real time RT-PCR. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. FgFlbD regulates hyphal differentiation required for sexual and asexual reproduction in the ascomycete fungus Fusarium graminearum.

    Science.gov (United States)

    Son, Hokyoung; Kim, Myung-Gu; Chae, Suhn-Kee; Lee, Yin-Won

    2014-11-01

    Fusarium graminearum is a filamentous fungal plant pathogen that infects major cereal crops. The fungus produces both sexual and asexual spores in order to endure unfavorable environmental conditions and increase their numbers and distribution across plants. In a model filamentous fungus, Aspergillus nidulans, early induction of conidiogenesis is orchestrated by the fluffy genes. The objectives of this study were to characterize fluffy gene homologs involved in conidiogenesis and their mechanism of action in F. graminearum. We characterized five fluffy gene homologs in F. graminearum and found that FlbD is the only conserved regulator for conidiogenesis in A. nidulans and F. graminearum. Deletion of fgflbD prevented hyphal differentiation and the formation of perithecia. Successful interspecies complementation using A. nidulans flbD demonstrated that the molecular mechanisms responsible for FlbD functions are conserved in F. graminearum. Moreover, abaA-wetA pathway is positively regulated by FgFlbD during conidiogenesis in F. graminearum. Deleting fgflbD abolished morphological effects of abaA overexpression, which suggests that additional factors for FgFlbD or an AbaA-independent pathway for conidiogenesis are required for F. graminearum conidiation. Importantly, this study led to the construction of a genetic pathway of F. graminearum conidiogenesis and provides new insights into the genetics of conidiogenesis in fungi.

  4. Network-based data integration for selecting candidate virulence associated proteins in the cereal infecting fungus Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Artem Lysenko

    Full Text Available The identification of virulence genes in plant pathogenic fungi is important for understanding the infection process, host range and for developing control strategies. The analysis of already verified virulence genes in phytopathogenic fungi in the context of integrated functional networks can give clues about the underlying mechanisms and pathways directly or indirectly linked to fungal pathogenicity and can suggest new candidates for further experimental investigation, using a 'guilt by association' approach. Here we study 133 genes in the globally important Ascomycete fungus Fusarium graminearum that have been experimentally tested for their involvement in virulence. An integrated network that combines information from gene co-expression, predicted protein-protein interactions and sequence similarity was employed and, using 100 genes known to be required for virulence, we found a total of 215 new proteins potentially associated with virulence of which 29 are annotated as hypothetical proteins. The majority of these potential virulence genes are located in chromosomal regions known to have a low recombination frequency. We have also explored the taxonomic diversity of these candidates and found 25 sequences, which are likely to be fungal specific. We discuss the biological relevance of a few of the potentially novel virulence associated genes in detail. The analysis of already verified virulence genes in phytopathogenic fungi in the context of integrated functional networks can give clues about the underlying mechanisms and pathways directly or indirectly linked to fungal pathogenicity and can suggest new candidates for further experimental investigation, using a 'guilt by association' approach.

  5. [Fusarium graminearum presence in wheat samples for human consumption].

    Science.gov (United States)

    Martinez, Mauro; Castañares, Eliana; Dinolfo, María I; Pacheco, Walter G; Moreno, María V; Stenglein, Sebastián A

    2014-01-01

    One of the most important diseases in cereal crops is Fusarium head blight, being Fusarium graminearum the main etiological agent. This fungus has the ability to produce a wide spectrum and quantity of toxins, especially deoxynivalenol (DON). During the last crop season (2012-2013) the climatic conditions favored Fusarium colonization. The objective of this work was to determine the presence of this fungus as well as the DON content in 50 wheat grain samples. Our results showed that 80% of the samples were contaminated with Fusarium graminearum. Twenty four percent (24%) of the samples contained ≥ 1μg/g DON, 26% ranged from 0,5 and 0,99μg/g, and the remaining 50% had values lower than 0,5μg/g. Correlation was found between the presence of Fusarium graminearum and DON. It is necessary to establish DON limit values in wheat grains for human consumption.

  6. TaFROG Encodes a Pooideae Orphan Protein That Interacts with SnRK1 and Enhances Resistance to the Mycotoxigenic Fungus Fusarium graminearum.

    Science.gov (United States)

    Perochon, Alexandre; Jianguang, Jia; Kahla, Amal; Arunachalam, Chanemougasoundharam; Scofield, Steven R; Bowden, Sarah; Wallington, Emma; Doohan, Fiona M

    2015-12-01

    All genomes encode taxonomically restricted orphan genes, and the vast majority are of unknown function. There is growing evidence that such genes play an important role in the environmental adaptation of taxa. We report the functional characterization of an orphan gene (Triticum aestivum Fusarium Resistance Orphan Gene [TaFROG]) as a component of resistance to the globally important wheat (T. aestivum) disease, Fusarium head blight. TaFROG is taxonomically restricted to the grass subfamily Pooideae. Gene expression studies showed that it is a component of the early wheat response to the mycotoxin deoxynivalenol (DON), which is a virulence factor produced by the causal fungal agent of Fusarium head blight, Fusarium graminearum. The temporal induction of TaFROG by F. graminearum in wheat spikelets correlated with the activation of the defense Triticum aestivum Pathogenesis-Related-1 (TaPR1) gene. But unlike TaPR1, TaFROG induction by F. graminearum was toxin dependent, as determined via comparative analysis of the effects of wild-type fungus and a DON minus mutant derivative. Using virus-induced gene silencing and overexpressing transgenic wheat lines, we present evidence that TaFROG contributes to host resistance to both DON and F. graminearum. TaFROG is an intrinsically disordered protein, and it localized to the nucleus. A wheat alpha subunit of the Sucrose Non-Fermenting1-Related Kinase1 was identified as a TaFROG-interacting protein based on a yeast two-hybrid study. In planta bimolecular fluorescence complementation assays confirmed the interaction. Thus, we conclude that TaFROG encodes a new Sucrose Non-Fermenting1-Related Kinase1-interacting protein and enhances biotic stress resistance.

  7. Population genomics of Fusarium graminearum head blight pathogens in North America

    Science.gov (United States)

    In this study we utilized comparative genomics to identify candidate adaptive alleles in the fungus Fusarium graminearum, the primary pathogen of Fusarium head blight (FHB) in cereal crops. Recent epidemics of FHB have been economically devastating to agriculture, as F. graminearum reduces cereal yi...

  8. Functional analysis of the Fusarium graminearum phosphatome.

    Science.gov (United States)

    Yun, Yingzi; Liu, Zunyong; Yin, Yanni; Jiang, Jinhua; Chen, Yun; Xu, Jin-Rong; Ma, Zhonghua

    2015-07-01

    Phosphatases are known to play important roles in the regulation of various cellular processes in eukaryotes. However, systematic characterization of the phosphatome has not been reported in phytopathogenic fungi. The wheat scab fungus Fusarium graminearum contains 82 putative phosphatases. The biological functions of each phosphatase were investigated in this study. Although 11 phosphatase genes appeared to be essential, deletion mutants of the other 71 phosphatase genes were obtained and characterized for changes in 15 phenotypes, including vegetative growth, nutrient response and virulence. Overall, the deletion of 63 phosphatase genes resulted in changes in at least one of the phenotypes assayed. Interestingly, the deletion of four genes (Fg06297, Fg03333, Fg03826 and Fg07932) did not dramatically affect hyphal growth, but led to strongly reduced virulence. Western blot analyses showed that three phosphatases (Fg10516, Fg03333 and Fg12867) functioned as negative regulators of the mitogen-activated protein kinase signaling pathways. In addition, we found, for the first time, that FgCdc14 is dispensable for growth, but plays an important role in ribosome biogenesis. Overall, in this first functional characterization of the fungal phosphatome, phosphatases important for various aspects of hyphal growth, development, plant infection and secondary metabolism were identified in the phytopathogenic fungus F. graminearum.

  9. Biosynthesis of fusarielins in Fusarium graminearum

    DEFF Research Database (Denmark)

    Saei, Wagma; Søndergaard, Teis; Giese, Henriette;

    Polyketide synthase 9 (PKS9) is one of the 15 identified polyketide synthase (PKS) genes in Fusarium graminearum. The gene is coregulated along with five neighboring genes by a single transcription factor (TF). An overexpression of the transcription factor led to production of three novel...... by this cluster in Fusarium graminearum., deletion mutant of each gene was created in the overexpressed mutant by targeted gene replacemen...

  10. Characterization of effectors from Fusarium graminearum

    Science.gov (United States)

    Fusarium graminearum is the causal agent of Fusarium head blight (FHB), which reduces crop yield and quality by producing various mycotoxins. Effectors play an important role in the pathogenesis of many bacterial and fungal pathogens. In this study, 26 effector candidates were selected for investiga...

  11. Genome-wide expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium graminearum virus 1-DK21 infection

    Directory of Open Access Journals (Sweden)

    Cho Won

    2012-05-01

    Full Text Available Abstract Background Fusarium graminearum virus 1 strain-DK21 (FgV1-DK21 is a mycovirus that confers hypovirulence to F. graminearum, which is the primary phytopathogenic fungus that causes Fusarium head blight (FHB disease in many cereals. Understanding the interaction between mycoviruses and plant pathogenic fungi is necessary for preventing damage caused by F. graminearum. Therefore, we investigated important cellular regulatory processes in a host containing FgV1-DK21 as compared to an uninfected parent using a transcriptional approach. Results Using a 3′-tiling microarray covering all known F. graminearum genes, we carried out genome-wide expression analyses of F. graminearum at two different time points. At the early point of growth of an infected strain as compared to an uninfected strain, genes associated with protein synthesis, including ribosome assembly, nucleolus, and ribosomal RNA processing, were significantly up-regulated. In addition, genes required for transcription and signal transduction, including fungal-specific transcription factors and cAMP signaling, respectively, were actively up-regulated. In contrast, genes involved in various metabolic pathways, particularly in producing carboxylic acids, aromatic amino acids, nitrogen compounds, and polyamines, showed dramatic down-regulation at the early time point. Moreover, genes associated with transport systems localizing to transmembranes were down-regulated at both time points. Conclusion This is the first report of global change in the prominent cellular pathways in the Fusarium host containing FgV1-DK21. The significant increase in transcripts for transcription and translation machinery in fungal host cells seems to be related to virus replication. In addition, significant down-regulation of genes required for metabolism and transporting systems in a fungal host containing the virus appears to be related to the host defense mechanism and fungal virulence. Taken together

  12. A network approach to predict pathogenic genes for Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Xiaoping Liu

    Full Text Available Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB, which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other

  13. A Network Approach to Predict Pathogenic Genes for Fusarium graminearum

    Science.gov (United States)

    Liu, Xiaoping; Tang, Wei-Hua; Zhao, Xing-Ming; Chen, Luonan

    2010-01-01

    Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN) of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other pathogenic fungi, which

  14. Fusarium graminearum forms mycotoxin producing infection structures on wheat

    Directory of Open Access Journals (Sweden)

    Boenisch Marike J

    2011-07-01

    Full Text Available Abstract Background The mycotoxin producing fungal pathogen Fusarium graminearum is the causal agent of Fusarium head blight (FHB of small grain cereals in fields worldwide. Although F. graminearum is highly investigated by means of molecular genetics, detailed studies about hyphal development during initial infection stages are rare. In addition, the role of mycotoxins during initial infection stages of FHB is still unknown. Therefore, we investigated the infection strategy of the fungus on different floral organs of wheat (Triticum aestivum L. under real time conditions by constitutive expression of the dsRed reporter gene in a TRI5prom::GFP mutant. Additionally, trichothecene induction during infection was visualised with a green fluorescent protein (GFP coupled TRI5 promoter. A tissue specific infection pattern and TRI5 induction were tested by using different floral organs of wheat. Through combination of bioimaging and electron microscopy infection structures were identified and characterised. In addition, the role of trichothecene production for initial infection was elucidated by a ΔTRI5-GFP reporter strain. Results The present investigation demonstrates the formation of foot structures and compound appressoria by F. graminearum. All infection structures developed from epiphytic runner hyphae. Compound appressoria including lobate appressoria and infection cushions were observed on inoculated caryopses, paleas, lemmas, and glumes of susceptible and resistant wheat cultivars. A specific trichothecene induction in infection structures was demonstrated by different imaging techniques. Interestingly, a ΔTRI5-GFP mutant formed the same infection structures and exhibited a similar symptom development compared to the wild type and the TRI5prom::GFP mutant. Conclusions The different specialised infection structures of F. graminearum on wheat florets, as described in this study, indicate that the penetration strategy of this fungus is far more

  15. Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum

    DEFF Research Database (Denmark)

    Kosawang, Chatchai; Karlsson, Magnus; Vélëz, Heriberto

    2014-01-01

    The fungus Clonostachys rosea is antagonistic against plant pathogens, including Fusarium graminearum, which produces the oestrogenic mycotoxin zearalenone (ZEA). ZEA inhibits other fungi, and C. rosea can detoxify ZEA through the enzyme zearalenone lactonohydrolase (ZHD101). As the relevance...... wheat seedlings against foot rot caused by the ZEA-producing F. graminearum. These data show that ZEA detoxification by ZHD101 is important for the biocontrol ability of C. rosea against F. graminearum....

  16. Enhancement of trichothecene production in Fusarium graminearum by cobalt chloride.

    Science.gov (United States)

    Tsuyuki, Rie; Yoshinari, Tomoya; Sakamoto, Naoko; Nagasawa, Hiromichi; Sakuda, Shohei

    2011-03-09

    The effects of cobalt chloride on the production of trichothecene and ergosterol in Fusarium graminearum were examined. Incorporation experiments with (13)C-labeled acetate and leucine confirmed that both 3-acetyldeoxynivalenol and ergosterol were biosynthesized via a mevalonate pathway by the fungus, although hydroxymethyl-glutaryl CoA (HMG-CoA) from intact leucine was able to be partially used for ergosterol production. Addition of cobalt chloride at concentrations of 3-30 μM into liquid culture strongly enhanced 3-acetyldeoxynivalenol production by the fungus, whereas the amount of ergosterol and the mycelial weight of the fungus did not change. The mRNA levels of genes encoding trichothecene biosynthetic proteins (TRI4 and TRI6), ergosterol biosynthetic enzymes (ERG3 and ERG25), and enzymes involved in the mevalonate pathway (HMG-CoA synthase (HMGS) and HMG-CoA reductase (HMGR)) were all strongly up-regulated in the presence of cobalt chloride. Precocene II, a specific trichothecene production inhibitor, suppressed the effects of cobalt chloride on Tri4, Tri6, HMGS, and HMGR, but did not affect erg3 and erg25. These results indicate that cobalt chloride is useful for investigating regulatory mechanisms of trichothecene and ergosterol production in F. graminearum.

  17. Development of a Selective Medium for the Fungal Pathogen Fusarium graminearum Using Toxoflavin Produced by the Bacterial Pathogen Burkholderia glumae

    Directory of Open Access Journals (Sweden)

    Boknam Jung

    2013-12-01

    Full Text Available The ascomycete fungus Fusarium graminearum is a major causal agent for Fusarium head blight in cereals and produces mycotoxins such as trichothecenes and zearalenone. Isolation of the fungal strains from air or cereals can be hampered by various other airborne fungal pathogens and saprophytic fungi. In this study, we developed a selective medium specific to F. graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae. F. graminearum was resistant to toxoflavin, while other fungi were sensitive to this toxin. Supplementing toxoflavin into medium enhanced the isolation of F. graminearum from rice grains by suppressing the growth of saprophytic fungal species. In addition, a medium with or without toxoflavin exposed to wheat fields for 1 h had 84% or 25%, respectively, of colonies identified as F. graminearum. This selection medium provides an efficient tool for isolating F. graminearum, and can be adopted by research groups working on genetics and disease forecasting.

  18. Extracellular peptidases of the cereal pathogen Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Rohan George Thomas Lowe

    2015-11-01

    Full Text Available The plant pathogenic fungus Fusarium graminearum (Fgr creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab of wheat and stalk rot of corn, reducing yield, degrading grain quality and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterise the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviours. An orbitrap MS/MS proteomics technique defined the extracellular proteases secreted by Fusarium graminearum. A meta-classification based on sequence characters and transcriptional/translational activity in planta and in vitro provides a platform to develop control strategies that target Fgr peptidases.

  19. 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) inhibits trichothecene production by Fusarium graminearum through suppression of Tri6 expression

    DEFF Research Database (Denmark)

    Etzerodt, Thomas; Maeda, Kazuyuki; Nakajima, Yuichi;

    2015-01-01

    Fusarium head blight (FHB) is a devastating disease of wheat (Triticum aestivum L.) caused by a mycotoxigenic fungus Fusarium graminearum resulting in significantly decreased yields and accumulation of toxic trichothecenes in grains. We tested 7 major secondary metabolites from wheat...

  20. Response of germinating barley seeds to Fusarium graminearum: The first molecular insight into Fusarium seedling blight

    DEFF Research Database (Denmark)

    Yang, Fen; Svensson, Birte; Finnie, Christine

    2011-01-01

    Fusarium seedling blight in cereals can result in significant reductions in plant establishment but has not received much attention. The disease often starts during seed germination due to sowing of the seeds infected by Fusarium spp. including Fusarium graminearum. In order to gain the first...... provides the first molecular insight into Fusarium seedling blight....

  1. Biological Efficacy of Streptomyces sp. Strain BN1 against the Cereal Head Blight Pathogen Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Boknam Jung

    2013-03-01

    Full Text Available Fusarium head blight (FHB caused by the filamentous fungus Fusarium graminearum is one of the most severe diseases threatening the production of small grains. Infected grains are often contaminated with mycotoxins such as zearalenone and trichothecences. During survey of contamination by FHB in rice grains, we found a bacterial isolate, designated as BN1, antagonistic to F. graminearum. The strain BN1 had branching vegetative hyphae and spores, and its aerial hyphae often had long, straight filaments bearing spores. The 16S rRNA gene of BN1 had 100% sequence identity with those found in several Streptomyces species. Phylogenetic analysis of ITS regions showed that BN1 grouped with S. sampsonii with 77% bootstrap value, suggesting that BN1 was not a known Streptomyces species. In addition, the efficacy of the BN1 strain against F. graminearum strains was tested both in vitro and in vivo. Wheat seedling length was significantly decreased by F. graminearum infection. However, this effect was mitigated when wheat seeds were treated with BN1 spore suspension prior to F. graminearum infection. BN1 also significantly decreased FHB severity when it was sprayed onto wheat heads, whereas BN1 was not effective when wheat heads were point inoculated. These results suggest that spraying of BN1 spores onto wheat heads during the wheat flowering season can be efficient for plant protection. Mechanistic studies on the antagonistic effect of BN1 against F. graminearum remain to be analyzed.

  2. Recent advances in genes involved in secondary metabolite synthesis, hyphal development, energy metabolism and pathogenicity in Fusarium graminearum (teleomorph Gibberella zeae).

    Science.gov (United States)

    Geng, Zongyi; Zhu, Wei; Su, Hao; Zhao, Yong; Zhang, Ke-Qin; Yang, Jinkui

    2014-01-01

    The ascomycete fungus, Fusarium graminearum (teleomorph Gibberella zeae), is the most common causal agent of Fusarium head blight (FHB), a devastating disease for cereal crops worldwide. F. graminearum produces ascospores (sexual spores) and conidia (asexual spores), which can serve as disease inocula of FHB. Meanwhile, Fusarium-infected grains are often contaminated with mycotoxins such as trichothecenes (TRIs), fumonisins, and zearalenones, among which TRIs are related to the pathogenicity of F. graminearum, and these toxins are hazardous to humans and livestock. In recent years, with the complete genome sequencing of F. graminearum, an increasing number of functional genes involved in the production of secondary metabolites, hyphal differentiation, sexual and asexual reproduction, virulence and pathogenicity have been identified from F. graminearum. In this review, the secondary metabolite synthesis, hyphal development and pathogenicity related genes in F. graminearum were thoroughly summarized, and the genes associated with secondary metabolites, sexual reproduction, energy metabolism, and pathogenicity were highlighted.

  3. BIOLOGICAL CHARACTERISTICS OF FUSARIUM GRAMINEARUM SCHW. AND FUSARIUM CULMORUM (W.G. SMITH SACC.

    Directory of Open Access Journals (Sweden)

    Jasenka Ćosić

    2006-12-01

    Full Text Available Fusarium species from section Discolor are widespread and well-known and play an important role in disease etiology of wheat, barley and maize. F. graminearum and F. culmorum were isolated during a four-year period at several locations in Eastern Croatia and from different hosts. The mycelium development of 236isolates of F. graminearum and 2 isolates of F. culmorum was cultered during an eight day period on water agar, PDA, Bilai, Czapek's and CLA agar at temperatures 5°, 15°, 20°, 25° and 30°C and a 12 hour dark/light regime. The results show that agar medium does not influence colony diameter significantly. The agar medium influences the richness and density of the aerial mycelium significantly, although the shape and compactness of the mycelium is not only the result of the medium on which the fungus is developed, but also of the characteristics of the species itself. The sporulation of F. culmorum was abundant on all investigated medium, whereas the sporulation of F. graminearum was very weak on PDA and Bilai agar and it was medium on CLA.

  4. Genome-wide analysis and functional characterization of candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions

    Science.gov (United States)

    Fungal pathogens often produce certain small secreted cysteine-rich proteins (SSCPs) during pathogenesis that may function in triggering resistance or susceptibility in specific host plants. We have identified a total of 190 SSCPs encoded in the genome of the wheat scab fungus Fusarium graminearum a...

  5. Insights Into Triticum aestivum Seedling Root Rot Caused by Fusarium graminearum.

    Science.gov (United States)

    Wang, Qing; Vera Buxa, Stefanie; Furch, Alexandra; Friedt, Wolfgang; Gottwald, Sven

    2015-12-01

    Fusarium graminearum is one of the most common and potent fungal pathogens of wheat (Triticum aestivum), known for causing devastating spike infections and grain yield damage. F. graminearum is a typical soil-borne pathogen that builds up during consecutive cereal cropping. Speculation on systemic colonization of cereals by F. graminearum root infection have long existed but have not been proven. We have assessed the Fusarium root rot disease macroscopically in a diverse set of 12 wheat genotypes and microscopically in a comparative study of two genotypes with diverging responses. Here, we show a 'new' aspect of the F. graminearum life cycle, i.e., the head blight fungus uses a unique root-infection strategy with an initial stage typical for root pathogens and a later stage typical for spike infection. Root colonization negatively affects seedling development and leads to systemic plant invasion by tissue-adapted fungal strategies. Another major outcome is the identification of partial resistance to root rot. Disease severity assessments and histological examinations both demonstrated three distinct disease phases that, however, proceeded differently in resistant and susceptible genotypes. Soil-borne inoculum and root infection are considered significant components of the F. graminearum life cycle with important implications for the development of new strategies of resistance breeding and disease control.

  6. Identification and characterization of gushing-active hydrophobins from Fusarium graminearum and related species.

    Science.gov (United States)

    Sarlin, Tuija; Kivioja, Teemu; Kalkkinen, Nisse; Linder, Markus B; Nakari-Setälä, Tiina

    2012-04-01

    Fungal infection of barley and malt, particularly by the Fusarium species, is a direct cause of spontaneous overfoaming of beer, referred to as gushing. We have shown previously that small fungal proteins, hydrophobins, act as gushing-inducing factors in beer. The aim of our present study was to isolate and characterize hydrophobins from a gushing-active fungus, Fusarium graminearum (teleomorph Gibberella zeae) and related species. We generated profile hidden Markov models (profile HMMs) for the hydrophobin classes Ia, Ib and II from the multiple sequence alignments of their known members available in public domain databases. We searched the published Fusarium graminearum genome with the Markov models. The best matching sequences and the corresponding genes were isolated from F. graminearum and the related species F. culmorum and F. poae by PCR and characterized. One each of the putative F. graminearum and F. poae hydrophobin genes were expressed in the heterologous host Trichoderma reesei. The proteins corresponding to the genes were purified and identified as hydrophobins and named GzHYD5 and FpHYD5, respectively. Concentrations of 0.003 ppm of these hydrophobins were observed to induce vigorous beer gushing.

  7. Fusarium graminearum on plant cell wall: no fewer than 30 xylanase genes transcribed.

    Science.gov (United States)

    Hatsch, Didier; Phalip, Vincent; Petkovski, Elizabet; Jeltsch, Jean-Marc

    2006-07-07

    The transcription of a set of 32 putative xylanase genes from Fusarium graminearum was examined by quantitative PCR after growth on different carbon sources (hop cell wall, xylan, xylose, or carboxymethylcellulose). Growing on plant cell wall medium, this fungus displays a great diversity of expression of xylan-related genes, with 30 being induced. A second level of diversity exists because expression patterns can be very different for loci encoding enzymes with the same activity (the same EC number). The wealth of xylan-degrading enzymes and the differential expression confer on the fungus a great flexibility of reaction to variation in its environment.

  8. Trichothecene chemotype composition of Fusarium graminearum and related species in Finland and Russia

    Science.gov (United States)

    Fusarium graminearum and type B trichothecene producers can be divided into three chemotypes. Analysis of 290 single-spore isolates of F. graminearum and related Fusarium species revealed that all F. graminearum isolates from Finland (15) and western Russian (26) possessed the 3ADON chemotype, whil...

  9. Viabilidade de Fusarium graminearum em sementes de trigo durante o armazenamento Viability of Fusarium graminearum in stored wheat seeds

    Directory of Open Access Journals (Sweden)

    Francisco Xavier de Barros Telles Neto

    2007-12-01

    Full Text Available A intensidade da giberela em espigas de trigo tem aumentado em função da adoção generalizada do plantio direto, com conseqüente aumento da incidência do agente causal em sementes. Sementes de trigo da cultivar Fundacep 36, com 29,8% de incidência natural de Fusarium graminearum, foram armazenadas em sacos de polipropileno trançado, em câmara climatizada, com temperatura entre 18 e 20ºC e controle parcial de umidade relativa do ar, durante 12 meses. O objetivo foi quantificar a viabilidade do fungo em função do tempo de armazenamento. As análises foram procedidas a intervalo de dois meses, por um período de 14 meses. Em cada época de avaliação foram tomadas 400 sementes, as quais foram submetidas ao teste de sanidade feito em meio de cultura de ¼ batata-sacarose-ágar. As sementes foram incubadas durante sete dias, a temperatura de 25°C ± 2 °C e fotoperíodo de 12 horas. O fungo não foi detectado após 12 meses de armazenamento. Considerando-se a redução da viabilidade em função do tempo de armazenamento, sugere-se que a análise de sanidade de sementes de trigo, em relação à presença de F. graminearum, deva ser feita pouco tempo antes da semeadura, a fim de decidir-se pela necessidade ou não do tratamento das sementes com fungicida específico para o controle do patógeno.Wheat head blight disease intensity has increased under notill, management with the consequence of increasing the incidence of the causal agent of scab in seeds. Wheat seeds of Fundacep 36 cultivar with 29.8% natural incidence of Fusarium graminearum, were stored in braided polypropylene bags, in climatic chamber at temperature between 18 and 20ºC and partial control of air relative humidity, for 12 months. The objective of this work was to quantify the fungus viability according to the storage time. Seed testing was performed every two months, during 14 months. In each assessment time 400 seeds were taken which were submitted to the test using

  10. Application of proteomics to investigate barley-Fusarium graminearum interaction

    DEFF Research Database (Denmark)

    Yang, Fen

    the disease. Due to the advantages of gel-based proteomics that differentially expressed proteins involved in the interaction can be directly detected by comparing protein profiles displayed on 2-D gels, it is used as a tool for studying the barley- Fusarium graminearum interaction form three different....... The functional characterization of two proteins is undergoing. In Chapter 6, microarray data of F. graminearum during interaction with barley and wheat was analysed. The expression patterns of 11fungal genes in microarray analysis were different from qRT-PCR results in Chapter 4. Overall, our results will give...... some insights into the cellular activities during the interaction between barley and Fusarium graminearum for designing new efficient strategies for the control of FHB disease....

  11. The HEX1 gene of Fusarium graminearum is required for fungal asexual reproduction and pathogenesis and for efficient viral RNA accumulation of Fusarium graminearum virus 1.

    Science.gov (United States)

    Son, Moonil; Lee, Kyung-Mi; Yu, Jisuk; Kang, Minji; Park, Jin Man; Kwon, Sun-Jung; Kim, Kook-Hyung

    2013-09-01

    The accumulation of viral RNA depends on many host cellular factors. The hexagonal peroxisome (Hex1) protein is a fungal protein that is highly expressed when the DK21 strain of Fusarium graminearum virus 1 (FgV1) infects its host, and Hex1 affects the accumulation of FgV1 RNA. The Hex1 protein is the major constituent of the Woronin body (WB), which is a peroxisome-derived electron-dense core organelle that seals the septal pore in response to hyphal wounding. To clarify the role of Hex1 and the WB in the relationship between FgV1 and Fusarium graminearum, we generated targeted gene deletion and overexpression mutants. Although neither HEX1 gene deletion nor overexpression substantially affected vegetative growth, both changes reduced the production of asexual spores and reduced virulence on wheat spikelets in the absence of FgV1 infection. However, the vegetative growth of deletion and overexpression mutants was increased and decreased, respectively, upon FgV1 infection compared to that of an FgV1-infected wild-type isolate. Viral RNA accumulation was significantly decreased in deletion mutants but was significantly increased in overexpression mutants compared to the viral RNA accumulation in the virus-infected wild-type control. Overall, these data indicate that the HEX1 gene plays a direct role in the asexual reproduction and virulence of F. graminearum and facilitates viral RNA accumulation in the FgV1-infected host fungus.

  12. Involvement of Fungal Pectin Methylesterase Activity in the Interaction Between Fusarium graminearum and Wheat.

    Science.gov (United States)

    Sella, Luca; Castiglioni, Carla; Paccanaro, Maria Chiara; Janni, Michela; Schäfer, Wilhelm; D'Ovidio, Renato; Favaron, Francesco

    2016-04-01

    The genome of Fusarium graminearum, the causal agent of Fusarium head blight of wheat, contains two putative pectin methylesterase (PME)-encoding genes. However, when grown in liquid culture containing pectin, F. graminearum produces only a single PME, which was purified and identified. Its encoding gene, expressed during wheat spike infection, was disrupted by targeted homologous recombination. Two Δpme mutant strains lacked PME activity but were still able to grow on highly methyl-esterified pectin even though their polygalacturonase (PG) activity showed a reduced capacity to depolymerize this substrate. The enzymatic assays performed with purified F. graminearum PG and PME demonstrated an increase in PG activity in the presence of PME on highly methyl-esterified pectin. The virulence of the mutant strains was tested on Triticum aestivum and Triticum durum spikes, and a significant reduction in the percentage of symptomatic spikelets was observed between 7 and 12 days postinfection compared with wild type, demonstrating that the F. graminearum PME contributes to fungal virulence on wheat by promoting spike colonization in the initial and middle stages of infection. In contrast, transgenic wheat plants with increased levels of pectin methyl esterification did not show any increase in resistance to the Δpme mutant, indicating that the infectivity of the fungus relies only to a certain degree on pectin degradation.

  13. Cloning and characterization of a novel barley gene,HvORG4,induced by Fusarium graminearum infection

    Institute of Scientific and Technical Information of China (English)

    Theo; Van-Der; Lee

    2007-01-01

    Barley Fusarium head blight(FHB),caused by species of the Fusarium fungus,is a devastating disease that is reemerging worldwide in recent years.In this study,a novel gene,HvORG4,was cloned from barley by using cDNA library and suppression subtractive hybridization(SSH) library strategies.The SSH library and cDNA library were constructed from the Chinese barley cultivar Jing02-461(resistance to FHB) infected by Fusarium graminearum isolate Huanggang-1.For the SSH analysis,more than 120 differentially express...

  14. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Han Jigang

    2012-03-01

    Full Text Available Abstract Background The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Using the tools of plant genetic engineering, a broad-spectrum antimicrobial gene was tested for resistance against head blight caused by Fusarium graminearum Schwabe, a devastating disease of wheat (Triticum aestivum L. and barley (Hordeum vulgare L. that reduces both grain yield and quality. Results A construct containing a bovine lactoferrin cDNA was used to transform wheat using an Agrobacterium-mediated DNA transfer system to express this antimicrobial protein in transgenic wheat. Transformants were analyzed by Northern and Western blots to determine lactoferrin gene expression levels and were inoculated with the head blight disease fungus F. graminearum. Transgenic wheat showed a significant reduction of disease incidence caused by F. graminearum compared to control wheat plants. The level of resistance in the highly susceptible wheat cultivar Bobwhite was significantly higher in transgenic plants compared to control Bobwhite and two untransformed commercial wheat cultivars, susceptible Wheaton and tolerant ND 2710. Quantification of the expressed lactoferrin protein by ELISA in transgenic wheat indicated a positive correlation between the lactoferrin gene expression levels and the levels of disease resistance. Conclusions Introgression of the lactoferrin gene into elite commercial wheat, barley and other susceptible cereals may enhance resistance to F. graminearum.

  15. Transcriptome-Based Discovery of Fusarium graminearum Stress Responses to FgHV1 Infection.

    Science.gov (United States)

    Wang, Shuangchao; Zhang, Jingze; Li, Pengfei; Qiu, Dewen; Guo, Lihua

    2016-11-17

    Fusarium graminearum hypovirus 1 (FgHV1), which is phylogenetically related to Cryphonectria hypovirus 1 (CHV1), is a virus in the family Hypoviridae that infects the plant pathogenic fungus F. graminearum. Although hypovirus FgHV1 infection does not attenuate the virulence of the host (hypovirulence), it results in defects in mycelial growth and spore production. We now report that the vertical transmission rate of FgHV1 through asexual spores reached 100%. Using RNA deep sequencing, we performed genome-wide expression analysis to reveal phenotype-related genes with expression changes in response to FgHV1 infection. A total of 378 genes were differentially expressed, suggesting that hypovirus infection causes a significant alteration of fungal gene expression. Nearly two times as many genes were up-regulated as were down-regulated. A differentially expressed gene enrichment analysis identified a number of important pathways. Metabolic processes, the ubiquitination system, and especially cellular redox regulation were the most affected categories in F. graminearum challenged with FgHV1. The p20, encoded by FgHV1 could induce H₂O₂ accumulation and hypersensitive response in Nicotiana benthamiana leaves. Moreover, hypovirus FgHV1 may regulate transcription factors and trigger the RNA silencing pathway in F. graminearum.

  16. Inhibition of Fusarium graminearum growth in flour gel cultures by hexane-soluble compounds from oat (Avena sativa L.) flour.

    Science.gov (United States)

    Doehlert, Douglas C; Rayas-Duarte, Patricia; McMullen, Michael S

    2011-12-01

    Fusarium head blight, incited by the fungus Fusarium graminearum, primarily affects wheat (Triticum aestivum) and barley (Hordeum vulgarum), while oat (Avena sativa) appears to be more resistant. Although this has generally been attributed to the open panicle of oats, we hypothesized that a chemical component of oats might contribute to this resistance. To test this hypothesis, we created culture media made of wheat, barley, and oat flour gels (6 g of flour in 20 ml of water, gelled by autoclaving) and inoculated these with plugs of F. graminearum from actively growing cultures. Fusarium growth was measured from the diameter of the fungal plaque. Plaque diameter was significantly smaller on oat flour cultures than on wheat or barley cultures after 40 to 80 h of growth. Ergosterol concentration was also significantly lower in oat cultures than in wheat cultures after growth. A hexane extract from oats added to wheat flour also inhibited Fusarium growth, and Fusarium grew better on hexane-defatted oat flour. The growth of Fusarium on oat flour was significantly and negatively affected by the oil concentration in the oat, in a linear relationship. A hexane-soluble chemical in oat flour appears to inhibit Fusarium growth and might contribute to oat's resistance to Fusarium head blight. Oxygenated fatty acids, including hydroxy, dihydroxy, and epoxy fatty acids, were identified in the hexane extracts and are likely candidates for causing the inhibition.

  17. Nucleotide polymorphisms and protein structure changes in the Fg16 gene of Fusarium graminearum sensu stricto

    Directory of Open Access Journals (Sweden)

    Mostafa Abedi-Tizaki

    2016-09-01

    Full Text Available Fusarium graminearum is one of the most important causes of wheat scab in different parts of the world. This fungus is able to produce widespread trichothecene mycotoxins such as nivalenol (NIV and deoxynivalenol (DON which are harmful for both human and animals. The Fg16 target is located in chromosome 1 of the F. graminearum genome coding for a hypothetical protein whose function is not yet known. The Fg16 gene is involved in lipid biosynthesis and leads to sexual development during colonization in wheat stalks. This gene is used to detect F. graminearum and determine the lineage of F. graminearum complex species. In the present study, polymerase chain reaction–single strand conformational polymorphism (PCR–SSCP and DNA sequencing methods were employed in screening for genetic variation in 172 F. graminearum s.s. isolates. The PCR reaction forced the amplification of 410-bp fragments of Fg16. Two single nucleotide polymorphisms (T82C and A352T and one amino acid exchange (C65S with three patterns (TA/TA, CT/CT and TA/CT genotypes were found in the Fg16 gene fragment. Two haplotypes, 1A and 1B, were identified within F. graminearum s.s. populations in northern and western regions of Iran. Two different secondary structures of protein were predicted for CT/CT and TA/CT genotypes of Fg16 gene. The average diversity levels detected were relatively high (He: 0.3238; Heu: 0.334; Ho: 0.2894; mean PIC: 0.514; mean Shannon's information index: 0.4132; mean number of alleles per locus: 1.473. On the basis of the obtained results, it was revealed that the Fg16 gene had a high degree of polymorphism that can be considered for future control programming strategies and thus the associations between the SSCP patterns with different traits of F. graminearum such as wheat colonization, perithecium formation on stalk tissues and lineage discrimination should be investigated.

  18. Semi-selective medium for Fusarium graminearum detection in seed samples

    Directory of Open Access Journals (Sweden)

    Marivane Segalin

    2010-12-01

    Full Text Available Fungi of the genus Fusarium cause a variety of difficult to control diseases in different crops, including winter cereals and maize. Among the species of this genus Fusarium graminearum deserves attention. The aim of this work was to develop a semi-selective medium to study this fungus. In several experiments, substrates for fungal growth were tested, including fungicides and antibiotics such as iprodiona, nystatin and triadimenol, and the antibacterial agents streptomycin and neomycin sulfate. Five seed samples of wheat, barley, oat, black beans and soybeans for F. graminearum detection by using the media Nash and Snyder agar (NSA, Segalin & Reis agar (SRA and one-quarter dextrose agar (1/4PDA; potato 50g; dextrose 5g and agar 20g, either unsupplemented or supplemented with various concentrations of the antimicrobial agents cited above. The selected components and concentrations (g.L-1 of the proposed medium, Segalin & Reis agar (SRA-FG, were: iprodiona 0.05; nystatin 0,025; triadimenol 0.015; neomycin sulfate 0.05; and streptomycin sulfate, 0.3 added of ¼ potato sucrose agar. In the isolation from seeds of cited plant species, the sensitivity of this medium was similar to that of NSA but with de advantage of maintaining the colony morphological aspects similar to those observed in potato-dextrose-agar medium.

  19. New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin.

    Science.gov (United States)

    Varga, Elisabeth; Wiesenberger, Gerlinde; Hametner, Christian; Ward, Todd J; Dong, Yanhong; Schöfbeck, Denise; McCormick, Susan; Broz, Karen; Stückler, Romana; Schuhmacher, Rainer; Krska, Rudolf; Kistler, H Corby; Berthiller, Franz; Adam, Gerhard

    2015-08-01

    The ubiquitous filamentous fungus Fusarium graminearum causes the important disease Fusarium head blight on various species of cereals, leading to contamination of grains with mycotoxins. In a survey of F. graminearum (sensu stricto) on wheat in North America several novel strains were isolated, which produced none of the known trichothecene mycotoxins despite causing normal disease symptoms. In rice cultures, a new trichothecene mycotoxin (named NX-2) was characterized by liquid chromatography-tandem mass spectrometry. Nuclear magnetic resonance measurements identified NX-2 as 3α-acetoxy-7α,15-dihydroxy-12,13-epoxytrichothec-9-ene. Compared with the well-known 3-acetyl-deoxynivalenol (3-ADON), it lacks the keto group at C-8 and hence is a type A trichothecene. Wheat ears inoculated with the isolated strains revealed a 10-fold higher contamination with its deacetylated form, named NX-3, (up to 540 mg kg(-1) ) compared with NX-2. The toxicities of the novel mycotoxins were evaluated utilizing two in vitro translation assays and the alga Chlamydomonas reinhardtii. NX-3 inhibits protein biosynthesis to almost the same extent as the prominent mycotoxin deoxynivalenol, while NX-2 is far less toxic, similar to 3-ADON. Genetic analysis revealed a different TRI1 allele in the N-isolates, which was verified to be responsible for the difference in hydroxylation at C-8.

  20. Development of a PCR-RFLP method based on the transcription elongation factor 1-a gene to differentiate Fusarium graminearum from other species within the Fusarium graminearum species complex

    Science.gov (United States)

    Fusarium head blight (FHB) is a destructive disease of cereals crops worldwide and a major food safety concern due to grain contamination with trichothecenes and other mycotoxins. Fusarium graminearum, a member of the Fusarium graminearum species complex (FGSC) is the dominant FHB pathogen in many p...

  1. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Wild maize (teosinte has been reported to be less susceptible to pests than their modern maize (corn relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER in modern maize and produces the mycotoxin, deoxynivalenol (DON. In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense.

  2. Effects of the deletion and over-expression of Fusarium graminearum gene FgHal2 on host response to mycovirus Fusarium graminearum virus 1.

    Science.gov (United States)

    Yu, Jisuk; Lee, Kyung-Mi; Son, Moonil; Kim, Kook-Hyung

    2015-09-01

    The mycovirus Fusarium graminearum virus 1 (FgV1) is associated with reduced virulence (hypovirulence) of Fusarium graminearum. Transcriptomic and proteomic expression profiling have shown that many F. graminearum genes are differentially expressed as a consequence of FgV1 infection. Several of these genes may be related to the maintenance of the virus life cycle. The host gene, FgHal2, which has a highly conserved 3'-phosphoadenosine 5'-phosphatase (PAP phosphatase-like) domain or inositol monophosphatase (IMPase) superfamily domain, shows reduced expression in response to FgV1 infection. We generated targeted gene deletion and over-expression mutants to clarify the possible function(s) of FgHal2 and its relationship to FgV1. The gene deletion mutant showed retarded growth, reduced aerial mycelia formation and reduced pigmentation, whereas over-expression mutants were morphologically similar to the wild-type (WT). Furthermore, compared with the WT, the gene deletion mutant produced fewer conidia and these showed abnormal morphology. The FgHal2 expression level was decreased by FgV1 infection at 120 h post-inoculation (hpi), whereas the levels were nine-fold greater for both the virus-free and virus-infected over-expression mutant than for the WT. FgV1 RNA accumulation was decreased in the deletion mutant at 48, 72 and 120 hpi. FgV1 RNA accumulation in the over-expression mutant was reduced relative to that of the WT at 48 and 120 hpi, but was similar to that of the WT at 72 hpi. The vertical transmission rate of FgV1 in the gene deletion mutant was low, suggesting that FgHal2 may be required for the maintenance of FgV1 in the host cell. Together, these results indicate that the putative 3'(2'),5'-bisphosphate nucleotidase gene, FgHal2, has diverse biological functions in the host fungus and may affect the viral RNA accumulation and transmission of FgV1.

  3. SOIL FUNGISTASIS AGAINST FUSARIUM GRAMINEARUM UNDER DIFFERENT CROP MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Bruno Brito Lisboa

    2015-02-01

    Full Text Available Soil management, in terms of tillage and cropping systems, strongly influences the biological properties of soil involved in the suppression of plant diseases. Fungistasis mediated by soil microbiota is an important component of disease-suppressive soils. We evaluated the influence of different management systems on fungistasis against Fusarium graminearum, the relationship of fungistasis to the bacterial profile of the soil, and the possible mechanisms involved in this process. Samples were taken from a long-term experiment set up in a Paleudult soil under conventional tillage or no-tillage management and three cropping systems: black oat (Avena strigose L. + vetch (Vicia sativa L./maize (Zea mays L. + cowpea (Vigna sinensis L., black oat/maize, and vetch/maize. Soil fungistasis was evaluated in terms of reduction of radial growth of F. graminearum, and bacterial diversity was assessed using ribosomal intergenic spacer analysis (RISA. A total of 120 bacterial isolates were obtained and evaluated for antibiosis, and production of volatile compounds and siderophores. No-tillage soil samples showed the highest level of F. graminearum fungistasis by sharply reducing the development of this pathogen. Of the cropping systems tested, the vetch + black oat/maize + cowpea system showed the highest fungistasis and the oat/maize system showed the lowest. The management system also affected the genetic profile of the bacteria isolated, with the systems from fungistatic soils showing greater similarity. Although there was no clear relationship between soil management and the characteristics of the bacterial isolates, we may conclude that antibiosis and the production of siderophores were the main mechanisms accounting for fungistasis.

  4. Distribution of disease symptoms and mycotoxins in maize ears infected by Fusarium culmorum and Fusarium graminearum.

    Science.gov (United States)

    Oldenburg, Elisabeth; Ellner, Frank

    2015-08-01

    Red ear rot an important disease of maize cultivated in Europe is caused by toxigenic Fusarium species like Fusarium graminearum and Fusarium culmorum. To get detailed information on the time course of the infection process leading to the accumulation of Fusarium mycotoxins in maize ears, a field study was conducted over 2 years with two maize varieties, which were inoculated with F. culmorum or F. graminearum isolates at the stage of female flowering. Every fortnight after inoculation, infection and contamination progress in the ears was followed by visually evaluating disease signs and analysing Fusarium toxin concentrations in the infected ear tissues. In principle, infection and mycotoxin distribution were similar in respect of pathogens, varieties, and years. External infection symptoms showing some small pale or brown-marbled kernels with dark brown pedicels were mainly seen at the ear tip, whereas internal infection symptoms on the rachis were much more pronounced and spread in the upper half showing greyish brownish or pink discoloration of the pith. Well correlated with disease symptoms, a top-down gradient from high to low toxin levels within the ear with considerably higher concentrations in the rachis compared with the kernels was observed. It is suggested that both Fusarium pathogens primarily infect the rachis from the tip toward the bottom, whereas the kernels are subsequently infected via the rachillae connected to the rachis. A special focus on the pronounced disease symptoms visible in the rachis may be an approach to improve the evaluation of maize-genotype susceptibility against red ear rot pathogens. It has to be underlined that the accumulation of Fusarium mycotoxins in the rachis greatly accelerated 6 weeks after inoculation; therefore, highest contamination risk is indicated for feedstuffs containing large amounts of rachis (e.g., corn cob mix), especially when cut late in growing season.

  5. Metabolomics to Decipher the Chemical Defense of Cereals against Fusarium graminearum and Deoxynivalenol Accumulation

    Science.gov (United States)

    Gauthier, Léa; Atanasova-Penichon, Vessela; Chéreau, Sylvain; Richard-Forget, Florence

    2015-01-01

    Fusarium graminearum is the causal agent of Fusarium head blight (FHB) and Gibberella ear rot (GER), two devastating diseases of wheat, barley, and maize. Furthermore, F. graminearum species can produce type B trichothecene mycotoxins that accumulate in grains. Use of FHB and GER resistant cultivars is one of the most promising strategies to reduce damage induced by F. graminearum. Combined with genetic approaches, metabolomic ones can provide powerful opportunities for plant breeding through the identification of resistant biomarker metabolites which have the advantage of integrating the genetic background and the influence of the environment. In the past decade, several metabolomics attempts have been made to decipher the chemical defense that cereals employ to counteract F. graminearum. By covering the major classes of metabolites that have been highlighted and addressing their potential role, this review demonstrates the complex and integrated network of events that cereals can orchestrate to resist to F. graminearum. PMID:26492237

  6. Transcriptome analysis of maize resistance to Fusarium graminearum.

    Science.gov (United States)

    Liu, Yongjie; Guo, Yanling; Ma, Chuanyu; Zhang, Dongfeng; Wang, Chao; Yang, Qin

    2016-06-28

    Gibberella stalk rot caused by Fusarium graminearum is one of the most destructive soil-borne diseases of maize (Zea mays L.). Chemical means of controlling Gibberella stalk rot are not very effective; development of highly resistant hybrids is the best choice for disease control. Hence, understanding of the molecular basis underlying maize resistance against Gibberella stalk rot would undoubtedly facilitate the resistance breeding for stalk rot. Two quantitative trait loci (QTL), qRfg1 and qRfg2, conferring resistance to Gibberella stalk rot were detected in our previous study. Three near-isogenic lines (NILs) of maize with either qRfg1 (NIL1) or qRfg2 (NIL2), or neither (NIL3) were generated and subjected to RNA sequencing to study the transcriptional changes after F. graminearum inoculation at 0 (control), 6, and 18 h post-inoculation (hpi). In total, 536,184,652 clean reads were generated, and gene expression levels were calculated using FPKM (fragments per kilobase of exon model per million mapped reads). A total of 7252 differentially expressed genes (DEGs) were found in the three NILs after F. graminearum inoculation. As many as 2499 DEGs were detected between NIL1 and NIL3 at 0 hpi, of which 884 DEGs were more abundant in NIL1 and enriched in defense responses. After F. graminearum inoculation, 1070 and 751 genes were exclusively up- and downregulated, respectively, in NIL1 as compared to NIL3. The 1070 upregulated DEGs were enriched in growth/development, photosynthesis/biogenesis, and defense-related responses. Genes encoding putative auxin-induced proteins and GH3 family proteins in auxin signaling pathway were highly induced and lasted longer in NIL3. Genes involved in polar auxin transport (PAT) were more abundant in NIL3 as compared with NIL2. The qRfg1 confers its resistance to Gibberella stalk rot through both constitutive and induced high expression of defense-related genes; while qRfg2 enhances maize resistance to the disease via relatively lower

  7. Caracterização morfológica e identificação molecular de isolados de Fusarium graminearum associados à giberela do trigo e triticale no sul do Brasil Morphological characterization and molecular identification of Fusarium graminearum isolates associated with fusarium head blight in wheat and triticale in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Francislene Angelotti

    2006-06-01

    Full Text Available A giberela ou fusariose da espiga é uma das principais doenças do trigo e triticale no sul do Brasil. A espécie de fungo Fusarium graminearum é citada como agente causal da doença, muito embora, em outros países, outras espécies de Fusarium também estejam associadas à doença. No País, não existem relatos de levantamentos de espécies associadas à doença. O objetivo deste trabalho foi identificar espécies de Fusarium associados à giberela do trigo e triticale procedentes do sul do Brasil, com base na morfologia e no emprego da reação da polimerase em cadeia (PCR baseada em oligonucletídeos específicos para espécies de Fusarium. A patogenicidade dos isolados em trigo foi avaliada em espigas de plantas cultivadas em casa de vegetação. Os 20 isolados monospóricos analisados, obtidos de espigas doentes e sementes, foram identificados como F. graminearum.Fusarium head blight (FHB or scab is an important disease of wheat and triticale in Southern Brazil. The fungus Fusarium graminearum has been reported as the causal agent of this disease in Brazil even though other Fusarium species are also associated to FHB in other regions of the world. The aim of this study was to identify species of Fusarium associated with FHB on wheat and triticale in Southern Brazil. The identification was based on morphological features, and uppon polymerase chain reaction using species specific primers. The pathogenicity of the isolates in wheat was evaluated after inoculation of ears under greenhouse conditions. The twenty single spores isolates obtained from diseased ears and seeds were classified as F. graminearum.

  8. Real-time imaging of hydrogen peroxide dynamics in vegetative and pathogenic hyphae of Fusarium graminearum

    Science.gov (United States)

    Mentges, Michael; Bormann, Jörg

    2015-01-01

    Balanced dynamics of reactive oxygen species in the phytopathogenic fungus Fusarium graminearum play key roles for development and infection. To monitor those dynamics, ratiometric analysis using the novel hydrogen peroxide (H2O2) sensitive fluorescent indicator protein HyPer-2 was established for the first time in phytopathogenic fungi. H2O2 changes the excitation spectrum of HyPer-2 with an excitation maximum at 405 nm for the reduced and 488 nm for the oxidized state, facilitating ratiometric readouts with maximum emission at 516 nm. HyPer-2 analyses were performed using a microtiter fluorometer and confocal laser scanning microscopy (CLSM). Addition of external H2O2 to mycelia caused a steep and transient increase in fluorescence excited at 488 nm. This can be reversed by the addition of the reducing agent dithiothreitol. HyPer-2 in F. graminearum is highly sensitive and specific to H2O2 even in tiny amounts. Hyperosmotic treatment elicited a transient internal H2O2 burst. Hence, HyPer-2 is suitable to monitor the intracellular redox balance. Using CLSM, developmental processes like nuclear division, tip growth, septation, and infection structure development were analyzed. The latter two processes imply marked accumulations of intracellular H2O2. Taken together, HyPer-2 is a valuable and reliable tool for the analysis of environmental conditions, cellular development, and pathogenicity. PMID:26446493

  9. Transcription factor RFX1 is crucial for maintenance of genome integrity in Fusarium graminearum.

    Science.gov (United States)

    Min, Kyunghun; Son, Hokyoung; Lim, Jae Yun; Choi, Gyung Ja; Kim, Jin-Cheol; Harris, Steven D; Lee, Yin-Won

    2014-03-01

    The survival of cellular organisms depends on the faithful replication and transmission of DNA. Regulatory factor X (RFX) transcription factors are well conserved in animals and fungi, but their functions are diverse, ranging from the DNA damage response to ciliary gene regulation. We investigated the role of the sole RFX transcription factor, RFX1, in the plant-pathogenic fungus Fusarium graminearum. Deletion of rfx1 resulted in multiple defects in hyphal growth, conidiation, virulence, and sexual development. Deletion mutants of rfx1 were more sensitive to various types of DNA damage than the wild-type strain. Septum formation was inhibited and micronuclei were produced in the rfx1 deletion mutants. The results of the neutral comet assay demonstrated that disruption of rfx1 function caused spontaneous DNA double-strand breaks (DSBs). The transcript levels of genes involved in DNA DSB repair were upregulated in the rfx1 deletion mutants. DNA DSBs produced micronuclei and delayed septum formation in F. graminearum. Green fluorescent protein (GFP)-tagged RFX1 localized in nuclei and exhibited high expression levels in growing hyphae and conidiophores, where nuclear division was actively occurring. RNA-sequencing-based transcriptomic analysis revealed that RFX1 suppressed the expression of many genes, including those required for the repair of DNA damage. Taken together, these findings indicate that the transcriptional repressor rfx1 performs crucial roles during normal cell growth by maintaining genome integrity.

  10. Two Cdc2 Kinase Genes with Distinct Functions in Vegetative and Infectious Hyphae in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Huiquan Liu

    2015-06-01

    Full Text Available Eukaryotic cell cycle involves a number of protein kinases important for the onset and progression through mitosis, most of which are well characterized in the budding and fission yeasts and conserved in other fungi. However, unlike the model yeast and filamentous fungi that have a single Cdc2 essential for cell cycle progression, the wheat scab fungus Fusarium graminearum contains two CDC2 orthologs. The cdc2A and cdc2B mutants had no obvious defects in growth rate and conidiation but deletion of both of them is lethal, indicating that these two CDC2 orthologs have redundant functions during vegetative growth and asexual reproduction. However, whereas the cdc2B mutant was normal, the cdc2A mutant was significantly reduced in virulence and rarely produced ascospores. Although deletion of CDC2A had no obvious effect on the formation of penetration branches or hyphopodia, the cdc2A mutant was limited in the differentiation and growth of infectious growth in wheat tissues. Therefore, CDC2A plays stage-specific roles in cell cycle regulation during infectious growth and sexual reproduction. Both CDC2A and CDC2B are constitutively expressed but only CDC2A was up-regulated during plant infection and ascosporogenesis. Localization of Cdc2A- GFP to the nucleus but not Cdc2B-GFP was observed in vegetative hyphae, ascospores, and infectious hyphae. Complementation assays with chimeric fusion constructs showed that both the N- and C-terminal regions of Cdc2A are important for its functions in pathogenesis and ascosporogenesis but only the N-terminal region is important for its subcellular localization. Among the Sordariomycetes, only three Fusarium species closely related to F. graminearum have two CDC2 genes. Furthermore, F. graminearum uniquely has two Aurora kinase genes and one additional putative cyclin gene, and its orthologs of CAK1 and other four essential mitotic kinases in the budding yeast are dispensable for viability. Overall, our data

  11. Genetic and phenotypic diversity within the Fusarium graminearum species complex in Norway

    Science.gov (United States)

    As has been observed in several European countries, the frequency of Fusarium head blight (FHB) caused by members of the Fusarium graminearum species complex (FGSC) has increased in Norwegian cereals in recent years, resulting in elevated levels of deoxynivalenol in cereal grains. The objective of t...

  12. Development of a generic PCR detection of deoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum

    NARCIS (Netherlands)

    Li, H.P.; Wu, A.B.; Zhao, C.S.; Scholten, O.E.; Löffler, H.J.M.; Liao, Y.C.

    2005-01-01

    Based on the intergenic sequences of Tri5¿Tri6 genes involved in the mycotoxin pathways of Fusarium species, a generic PCR assay was developed to detect a 300 bp fragment of deoxynivalenol (DON)-chemotypes and a 360 bp sequence of nivalenol (NIV)- chemotypes of Fusarium graminearum. Mycotoxin

  13. Modelling mycotoxin formation by Fusarium graminearum in maize in The Netherlands

    NARCIS (Netherlands)

    Asselt, van E.D.; Booij, C.J.H.; Fels-Klerx, van der H.J.

    2012-01-01

    The predominant species in maize in temperate climates is Fusarium graminearum, which produces the mycotoxins deoxynivalenol and zearalenone. Projected climate change is expected to affect Fusarium incidence and thus the occurrence of these mycotoxins. Predictive models may be helpful in determining

  14. Genetic population structure of Fusarium graminearum species complex in Korean cereals

    Science.gov (United States)

    Small grain cereals are frequently contaminated with toxigenic Fusarium species. Members of the Fusarium graminearum species complex (FGSC) are known as a head blight pathogens and mycotoxin producers. In order to characterize the FGSC populations associated with cereals in Korea, barley, corn, maiz...

  15. Greenhouse studies reveal increased aggressiveness of emergent Canadian Fusarium graminearum chemotypes in wheat

    Science.gov (United States)

    The role of Fusarium graminearum trichothecene-chemotypes in disease outcomes was evaluated in a series of wheat lines with different levels of resistance to Fusarium Head Blight (FHB). Four inocula, each consisting of a composite of four strains with either 15-acetyldeoxynivalenol (ADON) chemotypes...

  16. Comparative population genomics of Fusarium graminearum reveals adaptive divergence among cereal head blight pathogens

    Science.gov (United States)

    In this study we sequenced the genomes of 60 Fusarium graminearum, the major fungal pathogen responsible for Fusarium head blight (FHB) in cereal crops world-wide. To investigate adaptive evolution of FHB pathogens, we performed population-level analyses to characterize genomic structure, signatures...

  17. Use of the polymerase chain reaction for detection of Fusarium graminearum in bulgur wheat

    Directory of Open Access Journals (Sweden)

    Carla Bertechini Faria

    2012-03-01

    Full Text Available The detection of mycotoxigenic fungi in foodstuff is important because their presence may indicate the possible associated mycotoxin contamination. Fusarium graminearum is a wheat pathogen and a producer of micotoxins. The polymerase chain reaction (PCR has been employed for the specific identification of F. graminearum. However, this methodology has not been commonly used for detection of F. graminearum in food. Thus, the objective of the present study was to develop a molecular methodology to detect F. graminearum in commercial samples of bulgur wheat. Two methods were tested. In the first method, a sample of this cereal was contaminated with F. graminearum mycelia. The genomic DNA was extracted from this mixture and used in a F. graminearum specific PCR reaction. The F. graminearum species was detected only in samples that were heavily contaminated. In the second method, samples of bulgur wheat were inoculated on a solid medium, and isolates having F. graminearum culture characteristics were obtained. The DNA extracted from these isolates was tested in F. graminearum specific PCR reactions. An isolate obtained had its trichothecene genotype identified by PCR. The established methodology could be used in surveys of food contamination with F. graminearum.

  18. The white collar complex is involved in sexual development of Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Hun Kim

    Full Text Available Sexual spores (ascospores of Fusarium graminearum, a homothallic ascomycetous fungus, are believed to be the primary inocula for epidemics of the diseases caused by this species in cereal crops. Based on the light requirement for the formation of fruiting bodies (perithecia of F. graminearum under laboratory conditions, we explored whether photoreceptors play an important role in sexual development. Here, we evaluated the roles of three genes encoding putative photoreceptors [a phytochrome gene (FgFph and two white collar genes (FgWc-1 and FgWc-2] during sexual development in F. graminearum. For functional analyses, we generated transgenic strains lacking one or two genes from the self-fertile Z3643 strain. Unlike the wild-type (WT and add-back strains, the single deletion strains (ΔFgWc-1 and ΔFgWc-2 produced fertile perithecia under constant light on complete medium (CM, an unfavorable medium for sexual development as well as on carrot agar (a perithecial induction condition. The expression of mating-type (MAT genes increased significantly in the gene deletion strains compared to the WT under both conditions. Deletion of FgFph had no significant effect on sexual development or MAT gene expression. In contrast, all of the deletion strains examined did not show significant changes in other traits such as hyphal growth, mycotoxin production, and virulence. A split luciferase assay confirmed the in vivo protein-protein interactions among three photoreceptors along with FgLaeA, a global regulator of secondary metabolism and fungal development. Introduction of an intact copy of the A. nidulans LreA and LreB genes, which are homologs of FgWc-1 and FgWc-2, into the ΔFgWc-1 and ΔFgWc-2 strains, respectively, failed to repress perithecia formation on CM in the gene deletion strains. Taken together, these results demonstrate that FgWc-1 and FgWc-2, two central components of the blue-light sensing system, negatively regulate sexual development in F

  19. Antimicrobial constituents from endophytic fungus Fusarium sp.

    Directory of Open Access Journals (Sweden)

    Hidayat Hussain

    2015-03-01

    Full Text Available Objective: To evaluate the antimicrobial potential of fraction of the fungus Fusarium sp. and study the tentative identification of their active constituents. Methods: Six compounds were purified from an fraction of endophytic fungus Fusarium sp. using column chromatography and their structures have been confirmed based on 1H and 13C nuclear magnetic resonance spectra, distortionless enhancement by polarization transfer, 2D COSY, heteronuclear multiple quantum correlation and heteronuclear multiple bond correlation experiments. The six isolated compounds were screened for antimicrobial activity using the agar well diffusion method. Results: Phytochemical investigation of endophytic fungus Fusarium sp. lead to the isolation and identification of the following compounds viz., colletorin B, colletochlorin B, LL-Z1272β (llicicolin B, 4,5-dihydroascochlorin, ascochlorin, and 4,5-dihydrodechloroascochlorin. Colletorin B and colletochlorin B displayed moderate herbicidal, antifungal and antibacterial activities towards Chlorella fusca, Ustilago violacea, Fusarium oxysporum, and Bacillus megaterium. On the other hand LL-Z1272β (llicicolin B showed moderate antifungal activity towards Ustilago violacea and Fusarium oxysporum while 4,5-dihydroascochlorin showed strong antibacterial activity towards Bacillus megaterium. Furthermore, 4,5-dihydrodechloroascochlorin showed very strong antifungal activity towards Eurotium repens. Conclusions: Antimicrobial activities demonstrated by five of the six isolated compounds clearly demonstrate that these fungi extracts and active compounds present a great potential for the food, cosmetic and pharmaceutical industries.

  20. Identification of ABC transporter genes of Fusarium graminearum with roles in azole tolerance and/or virulence.

    Directory of Open Access Journals (Sweden)

    Ghada Abou Ammar

    Full Text Available Fusarium graminearum is a plant pathogen infecting several important cereals, resulting in substantial yield losses and mycotoxin contamination of the grain. Triazole fungicides are used to control diseases caused by this fungus on a worldwide scale. Our previous microarray study indicated that 15 ABC transporter genes were transcriptionally upregulated in response to tebuconazole treatment. Here, we deleted four ABC transporter genes in two genetic backgrounds of F. graminearum representing the DON (deoxynivalenol and the NIV (nivalenol trichothecene chemotypes. Deletion of FgABC3 and FgABC4 belonging to group I of ABC-G and to group V of ABC-C subfamilies of ABC transporters, respectively, considerably increased the sensitivity to the class I sterol biosynthesis inhibitors triazoles and fenarimol. Such effects were specific since they did not occur with any other fungicide class tested. Assessing the contribution of the four ABC transporters to virulence of F. graminearum revealed that, irrespective of their chemotypes, deletion mutants of FgABC1 (ABC-C subfamily group V and FgABC3 were impeded in virulence on wheat, barley and maize. Phylogenetic context and analyses of mycotoxin production suggests that FgABC3 may encode a transporter protecting the fungus from host-derived antifungal molecules. In contrast, FgABC1 may encode a transporter responsible for the secretion of fungal secondary metabolites alleviating defence of the host. Our results show that ABC transporters play important and diverse roles in both fungicide resistance and pathogenesis of F. graminearum.

  1. A European Database of Fusarium graminearum and F-culmorum Trichothecene Genotypes

    DEFF Research Database (Denmark)

    Pasquali, Matias; Beyer, Marco; Logrieco, Antonio;

    2016-01-01

    Fusarium species, particularly Fusarium graminearum and F culmorum, are the main cause of trichothecene type B contamination in cereals. Data on the distribution of Fusarium trichothecene genotypes in cereals in Europe are scattered in time and space. Furthermore, a common core set of related...... and spread at the European level. Here we describe the results of a collaborative integrated work which aims (1) to characterize the trichothecene genotypes of strains from three Fusarium species, collected over the period 2000-2013 and (2) to enhance the standardization of epidemiological data collection...

  2. Population genetic analysis and trichothecene profiling of Fusarium graminearum from wheat in Uruguay.

    Science.gov (United States)

    Pan, D; Mionetto, A; Calero, N; Reynoso, M M; Torres, A; Bettucci, L

    2016-03-11

    Fusarium graminearum sensu stricto (F. graminearum s.s.) is the major causal agent of Fusarium head blight of wheat worldwide, and contaminates grains with trichothecene mycotoxins that cause serious threats to food safety and animal health. An important aspect of managing this pathogen and reducing mycotoxin contamination of wheat is knowledge regarding its population genetics. Therefore, isolates of F. graminearum s.s. from the major wheat-growing region of Uruguay were analyzed by amplified fragment length polymorphism assays, PCR genotyping, and chemical analysis of trichothecene production. Of the 102 isolates identified as having the 15-ADON genotype via PCR genotyping, all were DON producers, but only 41 strains were also 15-ADON producers, as determined by chemical analysis. The populations were genotypically diverse but genetically similar, with significant genetic exchange occurring between them. Analysis of molecular variance indicated that most of the genetic variability resulted from differences between isolates within populations. Multilocus linkage disequilibrium analysis suggested that the isolates had a panmictic population genetic structure and that there is significant recombination occurs in F. graminearum s.s. In conclusion, tour findings provide the first detailed description of the genetic structure and trichothecene production of populations of F. graminearum s.s. from Uruguay, and expands our understanding of the agroecology of F. graminearum and of the correlation between genotypes and trichothecene chemotypes.

  3. Expanding the substrate scope of chitooligosaccharide oxidase from Fusarium graminearum by structure-inspired mutagenesis

    NARCIS (Netherlands)

    Ferrari, Alessandro; Lee, Misun; Fraaije, Marco

    2015-01-01

    Chitooligosaccharide oxidase from Fusarium graminearum (ChitO) oxidizes N-acetyl-D-glucosamine (GlcNAc) and its oligomers with high efficiency at the C1-hydroxyl moiety while it shows poor or no activity with other carbohydrates. By sequence and structural comparison with other known carbohydrate ox

  4. Complete genome sequence of Bacillus subtilis SG6 antagonistic against Fusarium graminearum.

    Science.gov (United States)

    Zhao, Yueju; Sangare, Lancine; Wang, Yao; Folly, Yawa Minnie Elodie; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhou, Lu; Wang, Yan; Liu, Yang

    2015-01-20

    Bacillus subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum and significantly reduced disease incidence, Fusarium head blight (FHB) index and DON in the field. Here, we present the complete genome sequence of B. subtilis SG6, providing insights into the genomic basis of its effects and facilitating its application in FHB control.

  5. Production of novel fusarielins by ectopic activation of the polyketide synthase 9 cluster in Fusarium graminearum

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Hansen, Frederik Teilfeldt; Sondergaard, Teis Esben;

    2012-01-01

    Like many other filamentous fungi, Fusarium graminearum has the genetic potential to produce a vast array of unknown secondary metabolites. A promising approach to determine the nature of these is to activate silent secondary metabolite gene clusters through constitutive expression of cluster...

  6. Comparative population genomics of fusarium graminearum reveals adaptive divergence among cereal head blight pathogens

    Science.gov (United States)

    During the last decade, a combination of molecular surveillance and population genetic analyses have significantly altered our understanding of Fusarium graminearum, the major FHB pathogen in North America. In addition to the native NA1 population (largely 15ADON toxin type) and the invasive NA2 pop...

  7. Identification of two tagged-insertional mutants of Fusarium graminearum impaired in asexual reproduction

    Science.gov (United States)

    Fusarium graminearum is an important fungal pathogen of small grains and maize cultivated throughout the world. This pathogen not only causes extensive crop losses due to the destructive nature of the disease but also has the ability to contaminate grains with mycotoxins. To better understand funga...

  8. Expanding the substrate scope of chitooligosaccharide oxidase from Fusarium graminearum by structure-inspired mutagenesis

    NARCIS (Netherlands)

    Ferrari, Alessandro; Lee, Misun; Fraaije, Marco

    2015-01-01

    Chitooligosaccharide oxidase from Fusarium graminearum (ChitO) oxidizes N-acetyl-D-glucosamine (GlcNAc) and its oligomers with high efficiency at the C1-hydroxyl moiety while it shows poor or no activity with other carbohydrates. By sequence and structural comparison with other known carbohydrate ox

  9. Systematic discovery of regulatory motifs in Fusarium graminearum by comparing four Fusarium genomes

    Directory of Open Access Journals (Sweden)

    Kistler Corby

    2010-03-01

    Full Text Available Abstract Background Fusarium graminearum (Fg, a major fungal pathogen of cultivated cereals, is responsible for billions of dollars in agriculture losses. There is a growing interest in understanding the transcriptional regulation of this organism, especially the regulation of genes underlying its pathogenicity. The generation of whole genome sequence assemblies for Fg and three closely related Fusarium species provides a unique opportunity for such a study. Results Applying comparative genomics approaches, we developed a computational pipeline to systematically discover evolutionarily conserved regulatory motifs in the promoter, downstream and the intronic regions of Fg genes, based on the multiple alignments of sequenced Fusarium genomes. Using this method, we discovered 73 candidate regulatory motifs in the promoter regions. Nearly 30% of these motifs are highly enriched in promoter regions of Fg genes that are associated with a specific functional category. Through comparison to Saccharomyces cerevisiae (Sc and Schizosaccharomyces pombe (Sp, we observed conservation of transcription factors (TFs, their binding sites and the target genes regulated by these TFs related to pathways known to respond to stress conditions or phosphate metabolism. In addition, this study revealed 69 and 39 conserved motifs in the downstream regions and the intronic regions, respectively, of Fg genes. The top intronic motif is the splice donor site. For the downstream regions, we noticed an intriguing absence of the mammalian and Sc poly-adenylation signals among the list of conserved motifs. Conclusion This study provides the first comprehensive list of candidate regulatory motifs in Fg, and underscores the power of comparative genomics in revealing functional elements among related genomes. The conservation of regulatory pathways among the Fusarium genomes and the two yeast species reveals their functional significance, and provides new insights in their

  10. Molecular Keys to the Janthinobacterium and Duganella spp. Interaction with the Plant Pathogen Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Frederike S. Haack

    2016-10-01

    Full Text Available Janthinobacterium and Duganella are well-known for their antifungal effects. Surprisingly, almost nothing is known on molecular aspects involved in the close bacterium-fungus interaction. To better understand this interaction, we established the genomes of eleven Janthinobacterium and Duganella isolates in combination with phylogenetic and functional analyses of all publicly available genomes. Thereby, we identified a core and pan genome of 1,058 and 23,628 genes. All strains encoded secondary metabolite gene clusters and chitinases, both possibly involved in fungal growth suppression. All but one strain carried a single gene cluster involved in the biosynthesis of alpha-hydroxyketone-like autoinducer molecules, designated JAI-1. Genome wide RNA-seq studies employing the background of two isolates and the corresponding JAI-1 deficient strains identified a set of 45 QS-regulated genes in both isolates. Most regulated genes are characterized by a conserved sequence motif within the promoter region. Among the most strongly regulated genes were secondary metabolite and type VI secretion system gene clusters. Most intriguing, co-incubation studies of J. sp. HH102 or its corresponding JAI-1 synthase deletion mutant with the plant pathogen Fusarium graminearum provided first evidence of a QS-dependent interaction with this pathogen.

  11. Cellular Tracking and Gene Profiling of Fusarium graminearum during Maize Stalk Rot Disease Development Elucidates Its Strategies in Confronting Phosphorus Limitation in the Host Apoplast.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2016-03-01

    Full Text Available The ascomycete fungus Fusarium graminearum causes stalk rot in maize. We tracked this pathogen's growth in wound-inoculated maize stalks using a fluorescence-labeled fungal isolate and observed that invasive hyphae grew intercellularly up to 24 h post inoculation, grew intra- and inter-cellularly between 36-48 h, and fully occupied invaded cells after 72 h. Using laser microdissection and microarray analysis, we profiled changes in global gene expression during pathogen growth inside pith tissues of maize stalk from 12 h to six days after inoculation and documented transcriptomic patterns that provide further insights into the infection process. Expression changes in transcripts encoding various plant cell wall degrading enzymes appeared to correlate with inter- and intracellular hyphal growth. Genes associated with 36 secondary metabolite biosynthesis clusters were expressed. Expression of several F. graminearum genes potentially involved in mobilization of the storage lipid triacylglycerol and phosphorus-free lipid biosynthesis were induced during early infection time points, and deletion of these genes caused reduction of virulence in maize stalk. Furthermore, we demonstrated that the F. graminearum betaine lipid synthase 1 (BTA1 gene was necessary and sufficient for production of phosphorus-free membrane lipids, and that deletion of BTA1 interfered with F. graminearum's ability to advance intercellularly. We conclude that F. graminearum produces phosphorus-free membrane lipids to adapt to a phosphate-limited extracellular microenvironment during early stages of its invasion of maize stalk.

  12. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse.

    Science.gov (United States)

    Kheiri, A; Moosawi Jorf, S A; Malihipour, A; Saremi, H; Nikkhah, M

    2016-12-01

    Fusarium head blight (FHB) disease caused by Fusarium graminearum is one of the most important diseases of wheat in humid and warm areas. This disease significantly reduces yield as well as seed quality. The aim of this work was to evaluate the possibility of control of FHB by chitosan (CS) and chitosan nanoparticles (CS/NPs). In vitro, the application of various concentrations of CS and CS/NPs showed significant inhibition of both radial mycelial growth and number of colonies formed against F. graminearum. The application of 1000 and 5000ppm concentration of CS and CS/NPs produced maximum inhibition of radial mycelial growth in comparison to the control, respectively. The microscopic examination, of treated F. graminearum with the CS and CS/NPs, showed dehydration and deformation in mycelial growth and some hyphae were collapsed. The maximum percentage reduction number of colonies was observed in 5000ppm concentration of both CS and CS/NPs. To test the effect of CS and CS/NPs on spore germination, four concentrations were used for 4 and 24h incubation. The 24h incubation of F. graminearum spores with a 5000ppm solution of CS greatly reduced the number of germinating spores. In greenhouse trials, the disease severity percentage was low when CS and CS/NPs were applied before fungus inoculation on the plants and 1000ppm concentration. The spores of F. graminearum germinated on the anther, hyphae penetrated into anther and colonized the palea, lemma and glume after 24 and 72 hpi, respectively. Wherease, the spikelets treated with CS and CS/NPs were infected slowly. Light microscopy and TEM observations indicated that mycelium penetrated into the cells through stoma and transited to other cells by cell wall or plasmodesmata. Mycelial growth caused conidia into cells but CS and CS/NPs prevented of it's growth. Results showed that CS and CS/NPs could be a useful biological pesticide for controlling FHB. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize.

    Science.gov (United States)

    Harris, Linda J; Balcerzak, Margaret; Johnston, Anne; Schneiderman, Danielle; Ouellet, Thérèse

    2016-01-01

    Fusarium graminearum is a broad host pathogen threatening cereal crops in temperate regions around the world. To better understand how F. graminearum adapts to different hosts, we have performed a comparison of the transcriptome of a single strain of F. graminearum during early infection (up to 4 d post-inoculation) of barley, maize, and wheat using custom oligomer microarrays. Our results showed high similarity between F. graminearum transcriptomes in infected wheat and barley spike tissues. Quantitative RT-PCR was used to validate the gene expression profiles of 24 genes. Host-specific expression of genes was observed in each of the three hosts. This included expression of distinct sets of genes associated with transport and secondary metabolism in each of the three crops, as well as host-specific patterns for particular gene categories such as sugar transporters, integral membrane protein PTH11-like proteins, and chitinases. This study identified 69 F. graminearum genes as preferentially expressed in developing maize kernels relative to wheat and barley spikes. These host-specific differences showcase the genomic flexibility of F. graminearum to adapt to a range of hosts. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. Trichothecene genotypes of Fusarium graminearum from wheat in Uruguay.

    Science.gov (United States)

    Pan, Dinorah; Calero, Natalia; Mionetto, Ana; Bettucci, Lina

    2013-03-01

    Gibberella zeae (Schwein.) Petch (anamorph F. graminearum Schwabe) is the primary causal agent of FHB of wheat in Uruguay. In the last decade, F. graminearum has produced destructive epidemics on wheat in Uruguay, causing yield losses and price discounts due to reduced seed quality. Strains of F. graminearum clade usually express one of three strain-specific profiles of trichothecene metabolites: nivalenol and its acetylated derivatives (NIV chemotype), deoxynivalenol and 3-acetyldeoxynivalenol (3-AcDON chemotype), or deoxynivalenol and 15-acetyldeoxynivalenol (15-AcDON chemotype). A multiplex PCR assay of Tri3, Tri5, and Tri7 was used to determine the trichothecene genotype of 111 strains of F. graminearum collected during 2003 and 2009 growing seasons from fields located in the major wheat production area of Uruguay. The result showed that all except one of the isolates were of DON genotype, with the remainder of NIV genotype in years 2003 and 2009. All strains with the DON genotype were also of the 15-AcDON genotype in 2003 and nearly all (45/50) in 2009. No DON/3-AcDON genotypes were found in either growing season. No potential shifts in the populations were found in the trichothecene genotypes between 2003 and the 2009 epidemic FHB harvest seasons. This study provides the first data on trichothecene genotypes of F. graminearum strains isolated from wheat in Uruguay and add to the current regional knowledge of trichothecene genotypes.

  15. Analysis of Quality-Related Parameters in Mature Kernels of Polygalacturonase Inhibiting Protein (PGIP) Transgenic Bread Wheat Infected with Fusarium graminearum.

    Science.gov (United States)

    Masci, Stefania; Laino, Paolo; Janni, Michela; Botticella, Ermelinda; Di Carli, Mariasole; Benvenuto, Eugenio; Danieli, Pier Paolo; Lilley, Kathryn S; Lafiandra, Domenico; D'Ovidio, Renato

    2015-04-22

    Fusarium head blight, caused by the fungus Fusarium graminearum, has a detrimental effect on both productivity and qualitative properties of wheat. To evaluate its impact on wheat flour, we compared its effect on quality-related parameters between a transgenic bread wheat line expressing a bean polygalacturonase inhibiting protein (PGIP) and its control line. We have compared metabolic proteins, the amounts of gluten proteins and their relative ratios, starch content, yield, extent of pathogen contamination, and deoxynivalenol (DON) accumulation. These comparisons showed that Fusarium significantly decreases the amount of starch in infected control plants, but not in infected PGIP plants. The flour of PGIP plants contained also a lower amount of pathogen biomass and DON accumulation. Conversely, both gluten and metabolic proteins were not significantly influenced either by the transgene or by fungal infection. These results indicate that the transgenic PGIP expression reduces the level of infection, without changing significantly the wheat seed proteome and other quality-related parameters.

  16. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum.

    Science.gov (United States)

    Zhao, Yueju; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhou, Lu; Wang, Yan; Song, Huimin; Tan, Xinxin; Sun, Lichao; Sangare, Lancine; Folly, Yawa Minnie Elodie; Liu, Yang

    2014-01-01

    Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI), FHB index and DON (P ≤ 0.05). Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.

  17. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Yueju Zhao

    Full Text Available Fusarium graminearum causes Fusarium head blight (FHB, a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI, FHB index and DON (P ≤ 0.05. Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.

  18. Functional characterization of a soluble NADPH-cytochrome P450 reductase from Fusarium graminearum.

    Science.gov (United States)

    Etzerodt, Thomas; Wetterhorn, Karl; Dionisio, Giuseppe; Rayment, Ivan

    2017-10-01

    Fusarium head blight is a devastating disease in wheat caused by some fungal pathogens of the Fusarium genus mainly F. graminearum, due to accumulation of toxic trichothecenes. Most of the trichothecene biosynthetic pathway has been mapped, although some proteins of the pathway remain uncharacterized, including an NADPH-cytochrome P450 reductase. We subcloned a F. graminearum cytochrome P450 reductase that might be involved in the trichothecene biosynthesis. It was expressed heterologously in E. coli as N-terminal truncated form with an octahistidine tag for purification. The construct yielded a soluble apoprotein and its incubation with flavins yielded the corresponding monomeric holoprotein. It was characterized for activity in the pH range 5.5-9.5, using thiazolyl blue tetrazolium bromide (MTT) or cytochrome c as substrates. Binding of the small molecule MTT was weaker than for cytochrome c, however, the rate of MTT reduction was faster. Contrary to other studies of cytochrome reductase proteins, MTT reduction proceeded in a cooperative manner in our studies. Optimum kinetic activity was found at pH 7.5-8.5 for bothMTT and cytochrome c. This is the first paper presenting characterization of a cytochrome P450 reductase from F. graminearum which most likely is involved in mycotoxin biosynthesis or some primary metabolic pathway such as sterol biosynthesis in F. graminearum. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Trichothecene mycotoxins associated with potato dry rot caused by Fusarium graminearum.

    Science.gov (United States)

    Delgado, Javier A; Schwarz, Paul B; Gillespie, James; Rivera-Varas, Viviana V; Secor, Gary A

    2010-03-01

    Fusarium graminearum, a known producer of trichothecene mycotoxins in cereal hosts, has been recently documented as a cause of dry rot of potato tubers in the United States. Due to the uncertainty of trichothecene production in these tubers, a study was conducted to determine the accumulation and diffusion of trichothecenes in potato tubers affected with dry rot caused by F. graminearum. Potato tubers of cv. Russet Burbank were inoculated with 14 F. graminearum isolates from potato, sugar beet, and wheat and incubated at 10 to 12 degrees C for 5 weeks to determine accumulation of trichothecenes in potato tubers during storage. Twelve of the isolates were classified as deoxynivalenol (DON) genotype and two isolates were as nivalenol (NIV) genotype. Trichothecenes were detected only in rotted tissue. DON was detected in all F. graminearum DON genotype isolates up to 39.68 microg/ml in rotted potato tissue. Similarly, both NIV genotype isolates accumulated NIV in rotted potato tissue up to 18.28 microg/ml. Interestingly, isolates classified as genotype DON accumulated both DON and NIV in the dry rot lesion. Potato tubers were then inoculated with two isolates of F. graminearum chemotype DON and incubated up to 7 weeks at 10 to 12 degrees C and assayed for DON diffusion. F. graminearum was recovered from >53% of the isolations from inoculated tubers at 3 cm distal to the rotted tissue after 7 weeks of incubation but DON was not detected in the surrounding tissue. Based in this data, the accumulation of trichothecenes in the asymptomatic tissue surrounding dry rot lesions caused by F. graminearum is minimal in cv. Russet Burbank potato tubers stored for 7 weeks at customary processing storage temperatures.

  20. PvPGIP2 accumulation in specific floral tissues, but not in the endosperm, limits Fusarium graminearum infection in wheat

    Science.gov (United States)

    Fusarium Head Blight (FHB) caused by Fusarium graminearum is one of the most destructive fungal diseases of wheat worldwide. The pathogen infects the spike at flowering time and causes severe yield losses, deterioration of grain quality, and accumulation of mycotoxins. The understanding of the prec...

  1. Multilocus Genotyping and Molecular Phylogenetics Resolve a Novel Head Blight Pathogen within the Fusarium graminearum Species Complex from Ethiopia

    Science.gov (United States)

    A survey of Fusarium head blight (FHB)-contaminated wheat in Ethiopia recovered 31 isolates resembling members of the Fusarium graminearum species complex. Results of a multilocus genotyping (MLGT) assay for FHB species and trichothecene chemotype determination suggested that 22 of these isolates m...

  2. Climate change impacts on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: a review

    Science.gov (United States)

    Fusarium head blight (FHB) of wheat caused mainly by members of the Fusarium graminearum species complex (FGSC) is a major threat to agricultural grain production, food safety, and animal health. The severity of disease epidemics and accumulation of associated trichothecene mycotoxins in wheat kerne...

  3. Biological control of Fusarium graminearum sensu stricto, causal agent of Fusarium head blight of wheat, using formulated antagonists under field conditions in Argentina

    NARCIS (Netherlands)

    Palazzini, Juan M.; Alberione, Enrique; Torres, Adriana; Donat, Christina; Kohl, Jurgen; Chulze, Sofia

    2016-01-01

    Fusarium head blight (FHB) mainly caused by Fusarium graminearum is a devastating disease that causes extensive yield and quality losses to wheat in humid and semi-humid regions of the world. The biocontrol effect of two bacterial strains on FHB incidence, severity and deoxynivalenol (DON) accumu

  4. A Simple Method for the Assessment of Fusarium Head Blight Resistance in Korean Wheat Seedlings Inoculated with Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Sanghyun Shin

    2014-03-01

    Full Text Available Fusarium head blight (FHB; scab caused mainly by Fusarium graminearum is a devastating disease of wheat and barley around the world. FHB causes yield reductions and contamination of grain with trichothecene mycotoxins such as deoxynivalenol (DON which are a major health concern for humans and animals. The objective of this research was to develop an easy seed or seedling inoculation assay, and to compare these assays with whole plant resistance of twenty-nine Korean winter wheat cultivars to FHB. The clip-dipping assay consists of cutting off the coleoptiles apex, dipping the coleoptiles apex in conidial suspension, covering in plastic bag for 3 days, and measuring the lengths of lesions 7 days after inoculation. There were significant cultivar differences after inoculation with F. graminearum in seedling relative to the controls. Correlation coefficients between the lesion lengths of clip-dipping inoculation and FHB Type II resistance from adult plants were significant (r=0.45; P<0.05. Results from two other seedling inoculation methods, spraying and pin-point inoculation, were not correlated with adult FHB resistance. Single linear correlation was not significant between seed germination assays (soaking and soak-dry and FHB resistance (Type I and Type II, respectively. These results showed that clip-dipping inoculation method using F. graminearum may offer a real possibility of simple, rapid, and reliable for the early screening of FHB resistance in wheat.

  5. Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria.

    Science.gov (United States)

    Pal, K K; Tilak, K V; Saxena, A K; Dey, R; Singh, C S

    2001-01-01

    A plant growth-promoting isolate of a fluorescent Pseudomonas sp. EM85 and two bacilli isolates MR-11(2) and MRF, isolated from maize rhizosphere, were found strongly antagonistic to Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina, causal agents of foot rots and wilting, collar rots/stalk rots and root rots and wilting, and charcoal rots of maize, respectively. Pseudomonas sp. EM85 produced antifungal antibiotics (Afa+), siderophore (Sid+), HCN (HCN+) and fluorescent pigments (Flu+) besides exhibiting plant growth promoting traits like nitrogen fixation, phosphate solubilization, and production of organic acids and IAA. While MR-11(2) produced siderophore (Sid+), antibiotics (Afa+) and antifungal volatiles (Afv+), MRF exhibited the production of antifungal antibiotics (Afa+) and siderophores (Sid+). Bacillus spp. MRF was also found to produce organic acids and IAA, solubilized tri-calcium phosphate and fixed nitrogen from the atmosphere. All three isolates suppressed the diseases caused by Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina in vitro. A Tn5:: lacZ induced isogenic mutant of the fluorescent Pseudomonas EM85, M23, along with the two bacilli were evaluated for in situ disease suppression of maize. Results indicated that combined application of the two bacilli significantly (P = 0.05) reduced the Macrophomina-induced charcoal rots of maize by 56.04%. Treatments with the MRF isolate of Bacillus spp. and Tn5:: lacZ mutant (M23) of fluorescent Pseudomonas sp. EM85 significantly reduced collar rots, root and foot rots, and wilting of maize caused by Fusarium moniliforme and F. graminearum (P = 0.05) compared to all other treatments. All these isolates were found very efficient in colonizing the rhizotic zones of maize after inoculation. Evaluation of the population dynamics of the fluorescent Pseudomonas sp. EM85 using the Tn5:: lacZ marker and of the Bacillus spp. MRF and MR-11(2) using an antibiotic resistance

  6. A European database of Fusarium graminearum and F. culmorum trichothecene genotypes

    Directory of Open Access Journals (Sweden)

    Matias ePasquali

    2016-04-01

    Full Text Available Fusarium species, particularly Fusarium graminearum and F. culmorum, are the main cause of trichothecene type B contamination in cereals. Data on the distribution of Fusarium trichothecene genotypes in cereals in Europe are scattered in time and space. Furthermore, a common core set of related variables (sampling method, host cultivar, previous crop, etc. that would allow more effective analysis of factors influencing the spatial and temporal population distribution, is lacking. Consequently, based on the available data, it is difficult to identify factors influencing chemotype distribution and spread at the European level. Here we describe the results of a collaborative integrated work which aims 1 to characterize the trichothecene genotypes of strains from three Fusarium species, collected over the period 2000-2013, and 2 to enhance the standardization of epidemiological data collection.Information on host plant, country of origin, sampling location, year of sampling and previous crop of 1147 F. graminearum, 479 F. culmorum and 3 F. cortaderiae strains obtained from 17 European countries was compiled and a map of trichothecene type B genotype distribution was plotted for each species. All information on the strains was collected in a freely accessible and updatable database (www.catalogueeu.luxmcc.lu, which will serve as a starting point for epidemiological analysis of potential spatial and temporal trichothecene genotype shifts in Europe.The analysis of the currently available European dataset showed that in F. graminearum, the predominant genotype was 15-acetyldeoxynivalenol (15-ADON (82.9%, followed by 3-acetyldeoxynivalenol (3-ADON (13.6% and nivalenol (NIV (3.5%. In F. culmorum, the prevalent genotype was 3-ADON (59.9%, while the NIV genotype accounted for the remaining 40.1%. Both geographical and temporal patterns of trichothecene genotypes distribution were identified.

  7. Effect of carbendazim resistance on trichothecene production and aggressiveness of Fusarium graminearum.

    Science.gov (United States)

    Zhang, Yan-Jun; Yu, Jun-Jie; Zhang, Yan-Nan; Zhang, Xiao; Cheng, Chang-Jun; Wang, Jan-Xin; Hollomon, Derek W; Fan, Ping-Sheng; Zhou, Ming-Guo

    2009-09-01

    Fusarium graminearum (teleomorph, Gibberella zeae) causes head blight of cereals and contaminates grains with trichothecene mycotoxins that are harmful to humans and domesticated animals. Control of Fusarium head blight relies on carbendazim (MBC) in China, but resistance to MBC in F. graminearum is now widespread. Sixty-seven strains were evaluated for trichothecene production in shake culture or in the field. The strains included 60 wild-type strains (30 MBC-resistant and 30 MBC-sensitive), three MBC-resistant site-directed mutants at codon 167 in beta(2)-tubulin, three MBC-sensitive site-directed mutants at codon 240 in beta(2)-tubulin, and their MBC-sensitive wild-type progenitor strain ZF21. The incidence of infected spikelets and the amount of F. graminearum DNA in field grain (AFgDNA) also were evaluated for all strains. MBC resistance increased trichothecene production in shake culture or in the field. Although MBC resistance did not change the incidence of infected spikelets, it did increase AFgDNA. Tri5 gene expression increased in MBC-resistant strains grown in shake culture. We found a significant exponential relationship between trichothecene production and Tri5 gene expression in shake culture and a linear relationship between the incidence of infected spikelets or AFgDNA and trichothecene production in field grain.

  8. An Acidic pH is a determinant factor for TRI genes expression and trichothecenes B biosynthesis in Fusarium graminearum

    OpenAIRE

    2010-01-01

    Abstract Reducing production of trichothecene B by Fusarium graminearum on cereals is necessary to avoid contamination leading to yields reduction and having harmful impacts on human and animal health. Understanding how trichothecenes biosynthesis is induced is essential. Effect of ambient pH on fungal growth, toxin biosynthesis and TRI genes expression was studied during in vitro liquid culture of F. graminearum on minimal medium. Fungal development stopped at day 3 after a sharp ...

  9. Genetic Diversity in Fusarium graminearum from a Major Wheat-Producing Region of Argentina

    Directory of Open Access Journals (Sweden)

    Giuseppina Mulè

    2011-10-01

    Full Text Available The Fusarium graminearum species complex (FGSC is a group of mycotoxigenic fungi that are the primary cause of Fusarium head blight (FHB of wheat worldwide. The distribution, frequency of occurrence, and genetic diversity of FGSC species in cereal crops in South America is not well understood compared to some regions of Asia, Europe and North America. Therefore, we examined the frequency and genetic diversity of a collection of 183 FGSC isolates recovered from wheat grown during multiple growing seasons and across a large area of eastern Argentina, a major wheat producing region in South America. Sequence analysis of the translation elongation factor 1−α and β-tubulin genes as well as Amplified Fragment Length Polymorphism (AFLP analyses indicated that all isolates were the FGSC species F. graminearum sensu stricto. AFLP analysis resolved at least 11 subgroups, and all the isolates represented different AFLP haplotypes. AFLP profile and geographic origin were not correlated. Previously obtained trichothecene production profiles of the isolates revealed that the 15-acetyldeoxynivalenol chemotype was slightly more frequent than the 3-acetyldeoxynivalenol chemotype among the isolates. These data extend the current understanding of FGSC diversity and provide further evidence that F. graminearum sensu stricto is the predominant cause of FHB in the temperate main wheat-growing area of Argentina. Moreover, two isolates of F. crookwellense and four of F. pseudograminearum were also recovered from wheat samples and sequenced. The results also suggest that, although F. graminearum sensu stricto was the only FGSC species recovered in this study, the high level of genetic diversity within this species should be considered in plant breeding efforts and development of other disease management strategies aimed at reducing FHB.

  10. Toxigenic potential of Fusarium graminearum isolated from maize of northwest Argentina

    Directory of Open Access Journals (Sweden)

    D.A. Sampietro

    2013-01-01

    Full Text Available Twenty six isolates of Fusarium graminearum from grains of maize hybrids harvested in ±west Argentina were grown on autoclaved rice grain to assess their ability to produce type B trichothecenes. Chemical analysis indicated that 38% of isolates were nivalenol (NIV producers only, 31% were major NIV producers with high DON(deoxynivalenol/NIV ratios, 8% were major DON producers with minor NIV production, and 23% were DON producers only. Isolates showed a high variability in their toxigenic potential which was not related to fungal biomass. The distribution of the different chemotypes as well as the high and the low trichothecene-producing Fusarium isolates could not be associated to a geographical origin. Our results confirmed for the first time that isolates of Fusarium graminearum from maize of northwest Argentina are able to produce DON and NIV. A substancial contamination with both NIV and DON is likely in maize from northwest Argentina. Their contents should be quantified in regional surveillances for mycotoxin contamination.

  11. Toxigenic potential of Fusarium graminearum isolated from maize of northwest Argentina

    Science.gov (United States)

    Sampietro, D.A.; Apud, G.R.; Belizán, M.M.E.; Vattuone, M.A.; Catalán, C.A.N.

    2013-01-01

    Twenty six isolates of Fusarium graminearum from grains of maize hybrids harvested in ±west Argentina were grown on autoclaved rice grain to assess their ability to produce type B trichothecenes. Chemical analysis indicated that 38% of isolates were nivalenol (NIV) producers only, 31% were major NIV producers with high DON(deoxynivalenol)/NIV ratios, 8% were major DON producers with minor NIV production, and 23% were DON producers only. Isolates showed a high variability in their toxigenic potential which was not related to fungal biomass. The distribution of the different chemotypes as well as the high and the low trichothecene-producing Fusarium isolates could not be associated to a geographical origin. Our results confirmed for the first time that isolates of Fusarium graminearum from maize of northwest Argentina are able to produce DON and NIV. A substancial contamination with both NIV and DON is likely in maize from northwest Argentina. Their contents should be quantified in regional surveillances for mycotoxin contamination. PMID:24294230

  12. The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum.

    Science.gov (United States)

    Yang, Piao; Chen, Yunyun; Wu, Huiming; Fang, Wenqin; Liang, Qifu; Zheng, Yangling; Olsson, Stefan; Zhang, Dongmei; Zhou, Jie; Wang, Zonghua; Zheng, Wenhui

    2017-09-16

    In eukaryotic organisms, the 5-oxoprolinase is one of the six key enzymes in the γ-glutamyl cycle that is involved in the biosynthetic pathway of glutathione (GSH, an antioxidative tripeptide counteracting the oxidative stress). To date, little is known about the biological functions of the 5-oxoprolinase in filamentous phytopathogenic fungi. In this study, we investigated the 5-oxoprolinase in Fusarium graminearum for the first time. In F. graminearum, two paralogous genes (FgOXP1 and FgOXP2) were identified to encode the 5-oxoprolinase while only one homologous gene encoding the 5-oxoprolinase could be found in other filamentous phytopathogenic fungi or Saccharomyces cerevisiae. Deletion of FgOXP1 or FgOXP2 in F. graminearum led to significant defects in its virulence on wheat. This is likely caused by an observed decreased deoxynivalenol (DON, a mycotoxin) production in the gene deletion mutant strains as DON is one of the best characterized virulence factors of F. graminearum. The FgOXP2 deletion mutant strains were also defective in conidiation and sexual reproduction while the FgOXP1 deletion mutant strains were normal for those phenotypes. Double deletion of FgOXP1 and FgOXP2 led to more severe defects in conidiation, DON production and virulence on plants, suggesting that both FgOXP1 and FgOXP2 play a role in fungal development and plant colonization. Although transformation of MoOXP1into ΔFgoxp1 was able to complement ΔFgoxp1, transformation of MoOXP1 into ΔFgoxp2 failed to restore its defects in sexual development, DON production and pathogenicity. Taken together, these results suggest that FgOXP1 and FgOXP2 are likely to have been functionally diversified and play significant roles in fungal development and full virulence in F. graminearum.

  13. Susceptibility of Maize to Stalk Rot Caused by Fusarium graminearum Deoxynivalenol and Zearalenone Mutants.

    Science.gov (United States)

    Quesada-Ocampo, L M; Al-Haddad, J; Scruggs, A C; Buell, C R; Trail, F

    2016-08-01

    Fusarium graminearum is a destructive pathogen of cereals that can cause stalk rot in maize. Stalk rot results in yield losses due to impaired grain filling, premature senescence, and lodging, which limits production and harvesting of ears. In addition, mycotoxins can make infected tissues unfit for silage. Our objectives were to evaluate the natural variation in stalk rot resistance among maize inbreds, to establish whether deoxynivalenol (DON)- and zearalenone (ZEA)-deficient strains are pathogenic on a panel of diverse inbreds, and to quantify the accumulation of DON in infected stalk tissue. Wild-type F. graminearum and mycotoxin mutants (DON and ZEA) were used to separately inoculate stalks of 9-week-old plants of 20 inbreds in the greenhouse. Plants were evaluated for lesion area at the inoculation point at 0, 2, 14, and 28 days postinoculation and tissues around lesions were sampled to determine the DON content. Regardless of their ability to produce DON or ZEA, all tested F. graminearum strains caused stalk rot; however, significant differences in disease levels were detected. Among the tested inbreds, Mp717 was resistant to all three F. graminearum strains while Mp317 and HP301 were only partially resistant. Accumulation of DON was significantly lower in infected stalks of the resistant and partially resistant inbreds than the susceptible inbreds. Analysis of the 20 inbreds using data from 17 simple-sequence repeats revealed population structure among the individuals; however, there was no association between genetic clustering and stalk rot resistance. These findings are an additional step toward breeding maize inbreds suitable for planting in fields infested with F. graminearum.

  14. Thymol-based submicron emulsions exhibit antifungal activity against Fusarium graminearum and inhibit Fusarium head blight in wheat.

    Science.gov (United States)

    Gill, T A; Li, J; Saenger, M; Scofield, S R

    2016-10-01

    Fusarium graminearum is a very destructive fungal pathogen that leads to Fusarium head blight (FHB) in wheat, a disease which costs growers millions of dollars annually both in crop losses and in remediation efforts. Current countermeasures include the deployment of wheat varieties with some resistance to FHB in conjunction with timed fungicide treatments. In this article, we introduce a fungicide based on thymol, a naturally occurring plant phenolic derived from essential oils. To overcome the hydrophobicity of thymol, the thymol active was incorporated into a low-surfactant submicron emulsion with and without a carrier oil. The minimum fungicidal concentration of F. graminearum was found to be both 0·02% for thymol emulsions with and without an oil component. Time-to-kill experiments showed that thymol emulsions were able to inactivate F. graminearum in as little as 10 s at concentrations above 0·06%. Spraying the thymol emulsions (~0·1% range) on the wheat variety Bobwhite demonstrated significant reductions in FHB infection rate (number of infected spikelets). However, with 0·5% thymol, the wheat heads exhibited premature senescence. Transmission and scanning electron micrographs suggest that the mechanism of antifungal action is membrane mediated, as conidia exposed to thymol showed complete organelle disorganization and evidence of lipid emulsification. The collective experimental data suggest that thymol emulsions may be an effective naturally derived alternative to the current thymol treatments, and chemical fungicides in ameliorating FHB. This is the first thymol-derived nanoemulsion particles resuspended into water and not DMSO, exhibiting the same antibacterial/antifungal activity as previously described thymol and thyme oil treatments. This drastically reduces the environmental footprint thymol will leave if utilized as a fungicide treatment on field crops. © 2016 The Society for Applied Microbiology.

  15. Comparison of Fusarium graminearum transcriptomes on living or dead wheat differentiates substrate-responsive and defense-responsive genes.

    Directory of Open Access Journals (Sweden)

    Stefan Boedi

    2016-07-01

    Full Text Available Fusarium graminearum is an opportunistic pathogen of cereals where it causes severe yield losses and concomitant mycotoxin contamination of the grains. The pathogen has mixed biotrophic and necrotrophic (saprophytic growth phases during infection and the regulatory networks associated with these phases have so far always been analyzed together. In this study we compared the transcriptomes of fungal cells infecting a living, actively defending plant representing the mixed live style (pathogenic growth on living flowering wheat heads to the response of the fungus infecting identical, but dead plant tissues (cold-killed flowering wheat heads representing strictly saprophytic conditions. We found that the living plant actively suppressed fungal growth and promoted much higher toxin production in comparison to the identical plant tissue without metabolism suggesting that molecules signaling secondary metabolite induction are not pre-existing or not stable in the plant in sufficient amounts before infection. Differential gene expression analysis was used to define gene sets responding to the active or the passive plant as main impact factor and driver for gene expression. We correlated our results to the published F. graminearum transcriptomes, proteomes and secretomes and found that only a limited number of in planta- expressed genes require the living plant for induction but the majority uses simply the plant tissue as signal. Many secondary metabolite (SM gene clusters show a heterogeneous expression pattern within the cluster indicating that different genetic or epigenetic signals govern the expression of individual genes within a physically linked cluster. Our bioinformatic approach also identified fungal genes which were actively repressed by signals derived from the active plant and may thus represent direct targets of the plant defense against the invading pathogen.

  16. Comparison of Fusarium graminearum Transcriptomes on Living or Dead Wheat Differentiates Substrate-Responsive and Defense-Responsive Genes

    Science.gov (United States)

    Boedi, Stefan; Berger, Harald; Sieber, Christian; Münsterkötter, Martin; Maloku, Imer; Warth, Benedikt; Sulyok, Michael; Lemmens, Marc; Schuhmacher, Rainer; Güldener, Ulrich; Strauss, Joseph

    2016-01-01

    Fusarium graminearum is an opportunistic pathogen of cereals where it causes severe yield losses and concomitant mycotoxin contamination of the grains. The pathogen has mixed biotrophic and necrotrophic (saprophytic) growth phases during infection and the regulatory networks associated with these phases have so far always been analyzed together. In this study we compared the transcriptomes of fungal cells infecting a living, actively defending plant representing the mixed live style (pathogenic growth on living flowering wheat heads) to the response of the fungus infecting identical, but dead plant tissues (cold-killed flowering wheat heads) representing strictly saprophytic conditions. We found that the living plant actively suppressed fungal growth and promoted much higher toxin production in comparison to the identical plant tissue without metabolism suggesting that molecules signaling secondary metabolite induction are not pre-existing or not stable in the plant in sufficient amounts before infection. Differential gene expression analysis was used to define gene sets responding to the active or the passive plant as main impact factor and driver for gene expression. We correlated our results to the published F. graminearum transcriptomes, proteomes, and secretomes and found that only a limited number of in planta- expressed genes require the living plant for induction but the majority uses simply the plant tissue as signal. Many secondary metabolite (SM) gene clusters show a heterogeneous expression pattern within the cluster indicating that different genetic or epigenetic signals govern the expression of individual genes within a physically linked cluster. Our bioinformatic approach also identified fungal genes which were actively repressed by signals derived from the active plant and may thus represent direct targets of the plant defense against the invading pathogen. PMID:27507961

  17. Detoxification of Deoxynivalenol via Glycosylation Represents Novel Insights on Antagonistic Activities of Trichoderma when Confronted with Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Ye Tian

    2016-11-01

    Full Text Available Deoxynivalenol (DON is a mycotoxin mainly produced by the Fusarium graminearum complex, which are important phytopathogens that can infect crops and lead to a serious disease called Fusarium head blight (FHB. As the most common B type trichothecene mycotoxin, DON has toxic effects on animals and humans, which poses a risk to food security. Thus, efforts have been devoted to control DON contamination in different ways. Management of DON production by Trichoderma strains as a biological control-based strategy has drawn great attention recently. In our study, eight selected Trichoderma strains were evaluated for their antagonistic activities on F. graminearum by dual culture on potato dextrose agar (PDA medium. As potential antagonists, Trichoderma strains showed prominent inhibitory effects on mycelial growth and mycotoxin production of F. graminearum. In addition, the modified mycotoxin deoxynivalenol-3-glucoside (D3G, which was once regarded as a detoxification product of DON in plant defense, was detected when Trichoderma were confronted with F. graminearum. The occurrence of D3G in F. graminearum and Trichoderma interaction was reported for the first time, and these findings provide evidence that Trichoderma strains possess a self-protection mechanism as plants to detoxify DON into D3G when competing with F. graminearum.

  18. Detoxification of Deoxynivalenol via Glycosylation Represents Novel Insights on Antagonistic Activities of Trichoderma when Confronted with Fusarium graminearum

    Science.gov (United States)

    Tian, Ye; Tan, Yanglan; Liu, Na; Yan, Zheng; Liao, Yucai; Chen, Jie; de Saeger, Sarah; Yang, Hua; Zhang, Qiaoyan; Wu, Aibo

    2016-01-01

    Deoxynivalenol (DON) is a mycotoxin mainly produced by the Fusarium graminearum complex, which are important phytopathogens that can infect crops and lead to a serious disease called Fusarium head blight (FHB). As the most common B type trichothecene mycotoxin, DON has toxic effects on animals and humans, which poses a risk to food security. Thus, efforts have been devoted to control DON contamination in different ways. Management of DON production by Trichoderma strains as a biological control-based strategy has drawn great attention recently. In our study, eight selected Trichoderma strains were evaluated for their antagonistic activities on F. graminearum by dual culture on potato dextrose agar (PDA) medium. As potential antagonists, Trichoderma strains showed prominent inhibitory effects on mycelial growth and mycotoxin production of F. graminearum. In addition, the modified mycotoxin deoxynivalenol-3-glucoside (D3G), which was once regarded as a detoxification product of DON in plant defense, was detected when Trichoderma were confronted with F. graminearum. The occurrence of D3G in F. graminearum and Trichoderma interaction was reported for the first time, and these findings provide evidence that Trichoderma strains possess a self-protection mechanism as plants to detoxify DON into D3G when competing with F. graminearum. PMID:27854265

  19. Biocontrol of Fusarium graminearum Growth and Deoxynivalenol Production in Wheat Kernels with Bacterial Antagonists

    Directory of Open Access Journals (Sweden)

    Cuijuan Shi

    2014-01-01

    Full Text Available Fusarium graminearum is the main causal pathogen affecting small-grain cereals, and it produces deoxynivalenol, a kind of mycotoxin, which displays a wide range of toxic effects in human and animals. Bacterial strains isolated from peanut shells were investigated for their activities against F. graminearum by dual-culture plate and tip-culture assays. Among them, twenty strains exhibited potent inhibition to the growth of F. graminearum, and the inhibition rates ranged from 41.41% to 54.55% in dual-culture plate assay and 92.70% to 100% in tip-culture assay. Furthermore, eighteen strains reduced the production of deoxynivalenol by 16.69% to 90.30% in the wheat kernels assay. Finally, the strains with the strongest inhibitory activity were identified by morphological, physiological, biochemical methods and also 16S rDNA and gyrA gene analysis as Bacillus amyloliquefaciens. The current study highlights the potential application of antagonistic microorganisms and their metabolites in the prevention of fungal growth and mycotoxin production in wheat kernels. As a biological strategy, it might avoid safety problems and nutrition loss which always caused by physical and chemical strategies.

  20. Whey permeate fermented with kefir grains shows antifungal effect against Fusarium graminearum.

    Science.gov (United States)

    Gamba, Raúl Ricardo; De Antoni, Graciela; Peláez, Angela León

    2016-05-01

    The objective of the work reported here was to study the antifungal capability of cell-free supernatants obtained from whey permeates after fermentation by the kefir grains CIDCA AGK1 against Fusarium graminearum growth and zearalenone (ZEA) production. The assays were performed in order to study the conidial germination inhibition -in liquid media- and the effect on fungal growth rate and the Latency phase -in solid media. We observed that fermented supernatants of pH 3·5 produced the highest percentages of inhibition of conidial germination. The dilution and, particularly, alkalinisation of them led to the gradual loss of antifungal activity. In the fungal inhibition assays on plates we found that only the highest proportion of supernatant within solid medium had significant antifungal activity, which was determined as fungicidal. There was no ZEA biosynthesis in the medium with the highest proportion of supernatant, whereas at lower concentrations, the mycotoxin production was strain-dependent. From the results obtained we concluded that kefir supernatants had antifungal activity on the F. graminearum strains investigated and inhibited mycotoxin production as well, but in a strain-dependent fashion. The present work constitutes the first report of the effect of the products obtained from the kefir-grain fermentation of whey permeates - a readily available by-product of the dairy industry - on F. graminearum germination, growth, and toxin production.

  1. Monitoring and Predicting the Long Distance Transport of Fusarium graminearum, Causal Agent of Fusarium Head Blight in Wheat and Barley

    Science.gov (United States)

    Prussin, Aaron Justin, II

    Fusarium head blight (FHB), caused by Fusarium graminearum , is a serious disease of wheat and barley that has caused several billion dollars in crop losses over the last decade in the United States. Spores of F. graminearum are released from corn and small grain residues left-over from the previous growing season and are transported long distances in the atmosphere before being deposited. Current risk assessment tools consider environmental conditions favorable for disease development, but do not include spore transport. Long distance transport models have been proposed for a number of plant pathogens, but many of these models have not been experimentally validated. In order to predict the atmospheric transport of F. graminearum, the potential source strength ( Qpot) of inoculum must be known. We conducted a series of laboratory and field experiments to estimate Qpot from a field-scale source of inoculum of F. graminearum. Perithecia were generated on artificial (carrot agar) and natural (corn stalk) substrates. Artificial substrate (carrot agar) produced 15+/-0.4 perithecia cm-2, and natural substrate (corn stalk) produced 44+/-2 perithecia cm-2. Individual perithecia were excised from both substrate types and allowed to release ascospores every 24 hours. Perithecia generated from artificial (carrot agar) and natural (corn stalk) substrates released a mean of 104+/-5 and 276+/-16 ascospores, respectively. A volumetric spore trap was placed inside a 3,716 m2 clonal source of inoculum in 2011 and 2012. Results indicated that ascospores were released under field conditions predominantly (>90%) during the night (1900 to 0700 hours). Estimates of Qpot for our field-scale sources of inoculum were approximately 4 billion ascospores per 3,716 m 2. Release-recapture studies were conducted from a clonal field-scale source of F. graminearum in 2011 and 2012. Microsatellites were used to identify the released clone of F. graminearum at distances up to 1 km from the source

  2. Fusarium graminearum growth inhibition mechanism using phenolic compounds from Spirulina sp

    Directory of Open Access Journals (Sweden)

    Fernanda Arnhold Pagnussatt

    2013-02-01

    Full Text Available The application of natural antifungal substances is motivated by the need for alternatives to existing methods that are not always applicable, efficient, or that do not pose risk to consumers or the environment. Furthermore, studies on the behaviour of toxigenic species in the presence of natural fungicides have enabled their safe application in the food chain In this study, Spirulina LEB-18 phenolic extract was assessed for its antifungal activity on 12 toxigenic strains of Fusarium graminearum isolated from barley and wheat. The susceptible metabolic pathways were assessed through the determination of structural compounds (glucosamine and ergosterol and enzyme activity of the microorganisms' primary metabolism. The results indicate that phenolic extracts reduced the growth rate of the toxigenic species investigated. The IC50 was obtained by applying 3 to 8% (p/p of phenolic compounds in relation to the culture medium. The use of this natural fungicide proved promising for the inhibition of fungal multiplication, especially in terms of the inactivation of enzymatic systems (amylase and protease of Fusarium graminearum.

  3. A novel species within the Fusarium graminearum complex from Ethiopia detected by a multilocus genotyping assay and molecular phylogenetics

    Science.gov (United States)

    Twenty isolates resembling members of the Fusarium graminearum species complex (Fg complex; O’Donnell et al., Fungal Genet. Biol. 41:600-623, 2004) were isolated from ground wheat samples collected in two different geographic areas in Ethiopia. Results of a multilocus genotyping (MLGT) assay (Ward ...

  4. A quantitative method for determining relative colonization rates of maize callus by Fusarium graminearum for resistance gene evaluations

    Science.gov (United States)

    A quantitative PCR method was developed for detecting Fusarium graminearum growing in maize callus. Fungal DNA was found 12 hours after inoculation and was correlated with visual ratings. We demonstrated the efficacy of the method to quantify fungal growth in callus overexpressing a peroxidase gene ...

  5. Unraveling and exploitation of diversity for resistance to Mycosphaerella graminicola and Fusarium graminearum in wheat and its progenitors

    NARCIS (Netherlands)

    Tabib Ghaffary, M.S.; Laurent, V.; Guerreiro, L.; Flodrops, Y.; Lee, van der T.A.J.; Kema, G.H.J.; Demarquet, T.; Cuveliers, S.; Robert, O.

    2009-01-01

    La fusariose et la septoriose sont deux maladies très dommageables (chute de rendement, toxicité) pour le blé. Il est important d'identifier de nouvelles sources de résistance efficaces contre des isolats de septoriose très virulents et contre la fusariose Fusarium graminearum (majoritairement

  6. The geographic distribution and complex evolutionary history of the NX-2 trichothecene chemotype from Fusarium graminearum.

    Science.gov (United States)

    Kelly, Amy; Proctor, Robert H; Belzile, Francois; Chulze, Sofia N; Clear, Randall M; Cowger, Christina; Elmer, Wade; Lee, Theresa; Obanor, Friday; Waalwijk, Cees; Ward, Todd J

    2016-10-01

    Fusarium graminearum and 21 related species comprising the F. sambucinum species complex lineage 1 (FSAMSC-1) are the most important Fusarium Head Blight pathogens of cereal crops world-wide. FSAMSC-1 species typically produce type B trichothecenes. However, some F. graminearum strains were recently found to produce a novel type A trichothecene (NX-2) resulting from functional variation in the trichothecene biosynthetic enzyme Tri1. We used a PCR-RFLP assay targeting the TRI1 gene to identify the NX-2 allele among a global collection of 2515 F. graminearum. NX-2 isolates were only found in southern Canada and the northern U.S., where they were observed at low frequency (1.8%), but over a broader geographic range and set of cereal hosts than previously recognized. Phylogenetic analyses of TRI1 and adjacent genes produced gene trees that were incongruent with the history of species divergence within FSAMSC-1, indicating trans-species evolution of ancestral polymorphism. In addition, placement of NX-2 strains in the TRI1 gene tree was influenced by the accumulation of nonsynonymous substitutions associated with the evolution of the NX-2 chemotype, and a significant (PNX-2 branch (ω=1.16) in comparison to other branches (ω=0.17) in the TRI1 phylogeny. Parameter estimates were consistent with positive selection for specific amino-acid changes during the evolution of NX-2, but direct tests of positive selection were not significant. Phylogenetic analyses of fourfold degenerate sites and intron sequences in TRI1 indicated the NX-2 chemotype had a single evolutionary origin and evolved recently from a type B ancestor. Our results indicate the NX-2 chemotype may be indigenous, and possibly endemic, to southern Canada and the northern U.S. In addition, we demonstrate that the evolution of TRI1 within FSAMSC-1 has been complex, with evidence of trans-species evolution and chemotype-specific shifts in selective constraint. Published by Elsevier Inc.

  7. MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Yongsoo Kim

    Full Text Available We previously characterized members of the Myb protein family, MYT1 and MYT2, in Fusarium graminearum. MYT1 and MYT2 are involved in female fertility and perithecium size, respectively. To expand knowledge of Myb proteins in F. graminearum, in this study, we characterized the functions of the MYT3 gene, which encodes a putative Myb-like transcription factor containing two Myb DNA-binding domains and is conserved in the subphylum Pezizomycotina of Ascomycota. MYT3 proteins were localized in nuclei during most developmental stages, suggesting the role of MYT3 as a transcriptional regulator. Deletion of MYT3 resulted in impairment of conidiation, germination, and vegetative growth compared to the wild type, whereas complementation of MYT3 restored the wild-type phenotype. Additionally, the Δmyt3 strain grew poorly on nitrogen-limited media; however, the mutant grew robustly on minimal media supplemented with ammonium. Moreover, expression level of nitrate reductase gene in the Δmyt3 strain was decreased in comparison to the wild type and complemented strain. On flowering wheat heads, the Δmyt3 strain exhibited reduced pathogenicity, which corresponded with significant reductions in trichothecene production and transcript levels of trichothecene biosynthetic genes. When the mutant was selfed, mated as a female, or mated as a male for sexual development, perithecia were not observed on the cultures, indicating that the Δmyt3 strain lost both male and female fertility. Taken together, these results demonstrate that MYT3 is required for pathogenesis and sexual development in F. graminearum, and will provide a robust foundation to establish the regulatory networks for all Myb-like proteins in F. graminearum.

  8. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum.

    Science.gov (United States)

    Yu, Fangwei; Gu, Qin; Yun, Yingzi; Yin, Yanni; Xu, Jin-Rong; Shim, Won-Bo; Ma, Zhonghua

    2014-07-01

    The target of rapamycin (TOR) signaling pathway plays critical roles in controlling cell growth in a variety of eukaryotes. However, the contribution of this pathway in regulating virulence of plant pathogenic fungi is unknown. We identified and characterized nine genes encoding components of the TOR pathway in Fusarium graminearum. Biological, genetic and biochemical functions of each component were investigated. The FgFkbp12-rapamycin complex binds to the FgTor kinase. The type 2A phosphatases FgPp2A, FgSit4 and FgPpg1 were found to interact with FgTap42, a downstream component of FgTor. Among these, we determined that FgPp2A is likely to be essential for F. graminearum survival, and FgSit4 and FgPpg1 play important roles in cell wall integrity by positively regulating the phosphorylation of FgMgv1, a key MAP kinase in the cell wall integrity pathway. In addition, the FgPpg1 interacting protein, FgTip41, is involved in regulating mycelial growth and virulence. Notably, FgTip41 does not interact with FgTap42 but with FgPpg1, suggesting the existence of FgTap42:FgPpg1:FgTip41 heterotrimer in F. graminearum, a complex not observed in the yeast model. Collectively, we defined a genetic regulatory framework that elucidates how the TOR pathway regulates virulence and vegetative development in F. graminearum.

  9. Identification of Fusarium graminearum infection severity of wheat grains by digitally aided spectroscopy

    Science.gov (United States)

    Makkai, Géza; Erostyák, János; Mesterházy, Ákos

    2013-05-01

    The Fusarium head blight caused mostly by Fusarium graminearum (F.g.) is the most important disease of wheat because it not only leads to yield loss, but the toxin contamination makes the yield harvested. First, visual assessment of the heads was made, then the ratio of Fusarium damaged kernels (FDK) becomes the attention, and since introduction of the toxin limits for wheat, the deoxynivalenol contamination has gained significance. However, the FDK has a greater practical significance, as the identification of Fusarium damaged kernels is the precondition of their separation.For this reason a more exact and more sensitive method was developed by using updated spectroscopy methods. The infection sensitive spectral index (ISSI) function has been developed to characterize spectral features of images of grains with different infection severities. The green and red color ranges could be best used in this analysis. It was also found that the way how different spectra from different grains or samples can be normalized and compared. This histogram analyzing method uses scanned images and it seems to be useful in describing the infection severity of heterogeneous samples better than available before.This might serve as scientific background to develop new instruments for rapid tests.

  10. Correlation of ATP Citrate Lyase and Acetyl CoA Levels with Trichothecene Production in Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Naoko Sakamoto

    2013-11-01

    Full Text Available The correlation of ATP citrate lyase (ACL and acetyl CoA levels with trichothecene production in Fusarium graminearum was investigated using an inhibitor (precocene II and an enhancer (cobalt chloride of trichothecene production by changing carbon sources in liquid medium. When precocene II (30 µM was added to inhibit trichothecene production in a trichothecene high-production medium containing sucrose, ACL expression was reduced and ACL mRNA level as well as acetyl CoA amount in the fungal cells were reduced to the levels observed in a trichothecene trace-production medium containing glucose or fructose. The ACL mRNA level was greatly increased by addition of cobalt chloride in the trichothecene high-production medium, but not in the trichothecene trace-production medium. Levels were reduced to those level in the trichothecene trace-production medium by addition of precocene II (300 µM together with cobalt chloride. These results suggest that ACL expression is activated in the presence of sucrose and that acetyl CoA produced by the increased ALC level may be used for trichothecene production in the fungus. These findings also suggest that sucrose is important for the action of cobalt chloride in activating trichothecene production and that precocene II may affect a step down-stream of the target of cobalt chloride.

  11. Correlation of ATP citrate lyase and acetyl CoA levels with trichothecene production in Fusarium graminearum.

    Science.gov (United States)

    Sakamoto, Naoko; Tsuyuki, Rie; Yoshinari, Tomoya; Usuma, Jermnak; Furukawa, Tomohiro; Nagasawa, Hiromichi; Sakuda, Shohei

    2013-11-21

    The correlation of ATP citrate lyase (ACL) and acetyl CoA levels with trichothecene production in Fusarium graminearum was investigated using an inhibitor (precocene II) and an enhancer (cobalt chloride) of trichothecene production by changing carbon sources in liquid medium. When precocene II (30 µM) was added to inhibit trichothecene production in a trichothecene high-production medium containing sucrose, ACL expression was reduced and ACL mRNA level as well as acetyl CoA amount in the fungal cells were reduced to the levels observed in a trichothecene trace-production medium containing glucose or fructose. The ACL mRNA level was greatly increased by addition of cobalt chloride in the trichothecene high-production medium, but not in the trichothecene trace-production medium. Levels were reduced to those level in the trichothecene trace-production medium by addition of precocene II (300 µM) together with cobalt chloride. These results suggest that ACL expression is activated in the presence of sucrose and that acetyl CoA produced by the increased ALC level may be used for trichothecene production in the fungus. These findings also suggest that sucrose is important for the action of cobalt chloride in activating trichothecene production and that precocene II may affect a step down-stream of the target of cobalt chloride.

  12. Glycosylphosphatidylinositol-anchored proteins in Fusarium graminearum: inventory, variability, and virulence.

    Directory of Open Access Journals (Sweden)

    William R Rittenour

    Full Text Available The contribution of cell surface proteins to plant pathogenicity of fungi is not well understood. As such, the objective of this study was to investigate the functions and importance of glycosylphosphatidylinositol-anchored proteins (GPI-APs in the wheat pathogen F. graminearum. GPI-APs are surface proteins that are attached to either the membrane or cell wall. In order to simultaneously disrupt several GPI-APs, a phosphoethanolamine transferase-encoding gene gpi7 was deleted and the resultant mutant characterized in terms of growth, development, and virulence. The Δgpi7 mutants exhibited slower radial growth rates and aberrantly shaped macroconidia. Furthermore, virulence tests and microscopic analyses indicated that Gpi7 is required for ramification of the fungus throughout the rachis of wheat heads. In parallel, bioinformatics tools were utilized to predict and inventory GPI-APs within the proteome of F. graminearum. Two of the genes identified in this screen (FGSG_01588 and FGSG_08844 displayed isolate-specific length variability as observed for other fungal cell wall adhesion genes. Nevertheless, deletion of these genes failed to reveal obvious defects in growth, development, or virulence. This research demonstrates the global importance of GPI-APs to in planta proliferation in F. graminearum, and also highlights the potential of individual GPI-APs as diagnostic markers.

  13. Whole genome sequencing and comparative genomics of closely related Fusarium Head Blight fungi: Fusarium graminearum, F. meridionale and F. asiaticum.

    Science.gov (United States)

    Walkowiak, Sean; Rowland, Owen; Rodrigue, Nicolas; Subramaniam, Rajagopal

    2016-12-09

    The Fusarium graminearum species complex is composed of many distinct fungal species that cause several diseases in economically important crops, including Fusarium Head Blight of wheat. Despite being closely related, these species and individuals within species have distinct phenotypic differences in toxin production and pathogenicity, with some isolates reported as non-pathogenic on certain hosts. In this report, we compare genomes and gene content of six new isolates from the species complex, including the first available genomes of F. asiaticum and F. meridionale, with four other genomes reported in previous studies. A comparison of genome structure and gene content revealed a 93-99% overlap across all ten genomes. We identified more than 700 k base pairs (kb) of single nucleotide polymorphisms (SNPs), insertions, and deletions (indels) within common regions of the genome, which validated the species and genetic populations reported within species. We constructed a non-redundant pan gene list containing 15,297 genes from the ten genomes and among them 1827 genes or 12% were absent in at least one genome. These genes were co-localized in telomeric regions and select regions within chromosomes with a corresponding increase in SNPs and indels. Many are also predicted to encode for proteins involved in secondary metabolism and other functions associated with disease. Genes that were common between isolates contained high levels of nucleotide variation and may be pseudogenes, allelic, or under diversifying selection. The genomic resources we have contributed will be useful for the identification of genes that contribute to the phenotypic variation and niche specialization that have been reported among members of the F. graminearum species complex.

  14. Survey and competition assay data suggest species-specific difference in host/niche adaptation influence the distribution of Fusarium graminearum species complex pathogens in Brazil

    Science.gov (United States)

    The Fusarium graminearum species complex (FGSC) comprises at least 16 toxigenic species of economic concern to cereal crops. In Brazil, six species of the FGSC have been identified, but their frequencies vary according to the host species. Although F. graminearum (Fgra) is dominant in wheat (>90%) a...

  15. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses

    Directory of Open Access Journals (Sweden)

    Deising Holger B

    2011-01-01

    Full Text Available Abstract Background The toxigenic fungal plant pathogen Fusarium graminearum compromises wheat production worldwide. Azole fungicides play a prominent role in controlling this pathogen. Sequencing of its genome stimulated the development of high-throughput technologies to study mechanisms of coping with fungicide stress and adaptation to fungicides at a previously unprecedented precision. DNA-microarrays have been used to analyze genome-wide gene expression patterns and uncovered complex transcriptional responses. A recently developed one-color multiplex array format allowed flexible, effective, and parallel examinations of eight RNA samples. Results We took advantage of the 8 × 15 k Agilent format to design, evaluate, and apply a novel microarray covering the whole F. graminearum genome to analyze transcriptional responses to azole fungicide treatment. Comparative statistical analysis of expression profiles uncovered 1058 genes that were significantly differentially expressed after azole-treatment. Quantitative RT-PCR analysis for 31 selected genes indicated high conformity to results from the microarray hybridization. Among the 596 genes with significantly increased transcript levels, analyses using GeneOntology and FunCat annotations detected the ergosterol-biosynthesis pathway genes as the category most significantly responding, confirming the mode-of-action of azole fungicides. Cyp51A, which is one of the three F. graminearum paralogs of Cyp51 encoding the target of azoles, was the most consistently differentially expressed gene of the entire study. A molecular phylogeny analyzing the relationships of the three CYP51 proteins in the context of 38 fungal genomes belonging to the Pezizomycotina indicated that CYP51C (FGSG_11024 groups with a new clade of CYP51 proteins. The transcriptional profiles for genes encoding ABC transporters and transcription factors suggested several involved in mechanisms alleviating the impact of the fungicide

  16. Synergistic effect of different plant cell wall degrading enzymes is important for virulence of Fusarium graminearum.

    Science.gov (United States)

    Paccanaro, Maria Chiara; Sella, Luca; Castiglioni, Carla; Giacomello, Francesca; Martinez-Rocha, Ana Lilia; D'Ovidio, Renato; Schäfer, Wilhelm; Favaron, Francesco

    2017-08-11

    Endo-polygalacturonases (PGs) and xylanases have been shown to play an important role during pathogenesis of some fungal pathogens of dicot plants, whilst their role in monocot pathogens is less defined. Pg1 and xyr1 genes of the wheat pathogen Fusarium graminearum encode the main PG and the major regulator of xylanase production, respectively. Single and double disrupted mutants for these genes were obtained to assess their contribution to fungal infection. Compared to wild-type strain, the ∆pg mutant showed a nearly abolished PG activity, slight reduced virulence on soybean seedlings but no significant difference in disease symptoms on wheat spikes; the ∆xyr mutant was strongly reduced in xylanase activity and moderately reduced in cellulase activity but was as virulent as wild-type on both soybean and wheat plants. Consequently, the ΔpgΔxyr double mutant was impaired in xylanase, PG and cellulase activities, but, differently from single mutants, was significantly reduced in virulence on both plants. These findings demonstrate that the concurrent presence of PG, xylanase and cellulase activities is necessary for full virulence. The observation that the uronides released from wheat cell wall after a F. graminearum PG treatment were largely increased by the fungal xylanases suggests that these enzymes act synergistically in deconstructing the plant cell wall.

  17. Structural and Functional Characterization of the TRI101 Trichothecene 3-O-Acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum: KINETIC INSIGHTS TO COMBATING FUSARIUM HEAD BLIGHT

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, Graeme S.; McCormick, Susan P.; Rayment, Ivan (UWASH); (UW); (NCAUR)

    2008-06-30

    Fusarium head blight (FHB) is a plant disease with serious economic and health impacts. It is caused by fungal species belonging to the genus Fusarium and the mycotoxins they produce. Although it has proved difficult to combat this disease, one strategy that has been examined is the introduction of an indigenous fungal protective gene into cereals such as wheat barley and rice. Thus far the gene of choice has been tri101 whose gene product catalyzes the transfer of an acetyl group from acetyl coenzyme A to the C3 hydroxyl moiety of several trichothecene mycotoxins. In vitro this has been shown to reduce the toxicity of the toxins by {approx}100-fold but has demonstrated limited resistance to FHB in transgenic cereal. To understand the molecular basis for the differences between in vitro and in vivo resistance the three-dimensional structures and kinetic properties of two TRI101 orthologs isolated from Fusarium sporotrichioides and Fusarium graminearum have been determined. The kinetic results reveal important differences in activity of these enzymes toward B-type trichothecenes such as deoxynivalenol. These differences in activity can be explained in part by the three-dimensional structures for the ternary complexes for both of these enzymes with coenzyme A and trichothecene mycotoxins. The structural and kinetic results together emphasize that the choice of an enzymatic resistance gene in transgenic crop protection strategies must take into account the kinetic profile of the selected protein.

  18. Hexokinase plays a critical role in deoxynivalenol (DON) production and fungal development in Fusarium graminearum.

    Science.gov (United States)

    Zhang, Leigang; Li, Baicun; Zhang, Yu; Jia, Xiaojing; Zhou, Mingguo

    2016-01-01

    Fusarium graminearum, the causal agent of Fusarium head blight, is a common pathogen on small grain cereals worldwide and produces various trichothecenes [deoxynivalenol (DON) is predominant] during infection. A previous study has revealed that DON production is positively correlated with the occurrence of carbendazim (MBC) resistance. Here, we identified and characterized two putative genes encoding hexokinase in F. graminearum (FgHXK1 and FgHXK2), which is a rate-limiting enzyme in DON biosynthesis. The expression level of hexokinase genes and the production of pyruvate, which is the precursor of DON, were up-regulated in the MBC-resistant strain, indicating that hexokinase genes might be involved in increased DON production. Phylogenetic and comparative analyses indicated that FgHXK1 was the predominant hexokinase gene. Gene disruption showed that ΔFgHXK1 severely affected DON production, indicating that FgHXK1 played a role in the regulation of DON biosynthesis. Morphological characterization showed that ΔFgHXK1 led to inhibited vegetative growth and conidiation. Sensitivity tests to MBC and various stresses indicated that both ΔFgHXK1 and ΔFgHXK2 mutants showed no significant difference from parental strains. Pathogencity assays showed that ΔFgHXK1 mutants lost virulence on wheat head and corn stigma; however, they showed no change in sexual reproduction. The FgHXK1-overexpressing transformants were obtained subsequently. Their pyruvate and DON production was confirmed to be increased, indicating that FgHXK1 positively regulated DON biosynthesis. Although additional defects appeared in overexpression mutants, MBC sensitivity showed no change. All of the results indicated that the transcriptional level of FgHXK1 regulated DON biosynthesis, but showed no direct relationship with MBC resistance.

  19. Involvement of the Fusarium graminearum cerato-platanin proteins in fungal growth and plant infection.

    Science.gov (United States)

    Quarantin, Alessandra; Glasenapp, Anika; Schäfer, Wilhelm; Favaron, Francesco; Sella, Luca

    2016-12-01

    The genome of Fusarium graminearum, a necrotrophic fungal pathogen causing Fusarium head blight (FHB) disease of wheat, barley and other cereal grains, contains five genes putatively encoding for proteins with a cerato-platanin domain. Cerato-platanins are small secreted cysteine-rich proteins possibly localized in the fungal cell walls and also contributing to the virulence. Two of these F. graminearum proteins (FgCPP1 and FgCPP2) belong to the class of SnodProt proteins which exhibit phytotoxic activity in the fungal pathogens Botrytis cinerea and Magnaporthe grisea. In order to verify their contribution during plant infection and fungal growth, single and double gene knock-out mutants were produced and no reduction in symptoms severity was observed compared to the wild type strain on both soybean and wheat spikes. Histological analysis performed by fluorescence microscopy on wheat spikelets infected with mutants constitutively expressing the dsRed confirmed that FgCPPs do not contribute to fungal virulence. In particular, the formation of compound appressoria on wheat paleas was unchanged. Looking for other functions of these proteins, the double mutant was characterized by in vitro experiments. The mutant was inhibited by salt and H2O2 stress similarly to wild type. Though no growth difference was observed on glucose, the mutant grew better than wild type on carboxymethyl cellulose. Additionally, the mutant's mycelium was more affected by treatments with chitinase and β-1,3-glucanase, thus indicating that FgCPPs could protect fungal cell wall polysaccharides from enzymatic degradation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Vegetative compatibility and molecular characterization of Fusarium graminearum isolates from the State of Paraná, Brazil Compatibilidade vegetativa e caracterização molecular de isolados patogênicos de Fusarium graminearum do Estado do Paraná

    Directory of Open Access Journals (Sweden)

    Cleverson Busso

    2007-12-01

    Full Text Available Fusarium graminearum isolates causing Fusarium head blight in wheat were collected in Brazil and analyzed by random amplified polymorphic DNA (RAPD markers and vegetative compatibility grouping (VCG. Nitrate non-utilizing mutants (nit from each isolate were paired to verify heterokaryon formation. Three VCGs were identified among F. graminearum isolates: VCG1 included F-2, F-3 and F-4 isolates; VCG2 included F-1, F-6 and F-9 isolates; VCG3 included F-5, F-7 and F-8 isolates. Based on PCR amplification with eight different primers, the isolates showed great genetic similarity among themselves. Dendrogram analysis demonstrated two RAPD groups: Group A, consisting of isolates F-2 and F-9, and Group B, composed of the remaining isolates. Results suggest the clonal origin of F. graminearum isolates.Isolados de Fusarium graminearum, obtidos de espigas de trigo com sintomas de Giberela, foram analisados pela técnica do Polimorfismo de DNA Amplificado ao Acaso (RAPD e pelos Grupos de Compatibilidade Vegetativa (GCV. Mutantes auxotróficos (nit de cada isolado foram pareados em todas as combinações possíveis, para a formação de heterocários. Três GCVs foram identificados: GCV1, incluindo os isolados F-2, F-3 e F-4; GCV2, incluindo os isolados F-1, F-6 e F-9; e GCV3, formado pelos isolados F-5, F-7 e F-8. Dois grupos foram identificados com base nos marcadores de RAPD: o grupo A, formado pelos isolados F-2 e F-9, e o grupo B, composto pelos demais isolados, os quais apresentaram grande similaridade entre si. Os resultados sugerem a origem clonal dos isolados de F. graminearum analisados.

  1. FgNoxR, a regulatory subunit of NADPH oxidases, is required for female fertility and pathogenicity in Fusarium graminearum.

    Science.gov (United States)

    Zhang, Chengkang; Lin, Yahong; Wang, Jianqiang; Wang, Yang; Chen, Miaoping; Norvienyeku, Justice; Li, Guangpu; Yu, Wenying; Wang, Zonghua

    2016-01-01

    Fusarium graminearum is a filamentous fungal pathogen that causes wheat Fusarium head blight. In this study, we identified FgNoxR, a regulatory subunit of NADPH oxidases (Nox) in F. graminearum, and found that it plays an important role in the pathogenicity of F. graminearum. FgNoxR is localized on punctate structures throughout the cytoplasm in aerial hyphae while these structures tend to accumulate at or near the plasma membrane, septa and hyphal tips in germinated conidia. Deletion of the FgNOXR gene results in reduced conidiation and germination. Importantly, sexual development is totally abolished in the FgNOXR deletion mutant. In addition, the disease lesion of FgNOXR deletion mutant is limited to the inoculated spikelets of wheat heads. Finally, FgNoxR interacts with FgRac1 and FgNoxA, and all three proteins are required for female fertility. Taken together, our data indicate that FgNoxR contributes to conidiation, sexual reproduction and pathogenesis in F. graminearum.

  2. The FgNot3 Subunit of the Ccr4-Not Complex Regulates Vegetative Growth, Sporulation, and Virulence in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Duc-Cuong Bui

    Full Text Available The Ccr4-Not complex is evolutionarily conserved and important for multiple cellular functions in eukaryotic cells. In this study, the biological roles of the FgNot3 subunit of this complex were investigated in the plant pathogenic fungus Fusarium graminearum. Deletion of FgNOT3 resulted in retarded vegetative growth, retarded spore germination, swollen hyphae, and hyper-branching. The ΔFgnot3 mutants also showed impaired sexual and asexual sporulation, decreased virulence, and reduced expression of genes related to conidiogenesis. Fgnot3 deletion mutants were sensitive to thermal stress, whereas NOT3 orthologs in other model eukaryotes are known to be required for cell wall integrity. We found that FgNot3 functions as a negative regulator of the production of secondary metabolites, including trichothecenes and zearalenone. Further functional characterization of other components of the Not module of the Ccr4-Not complex demonstrated that the module is conserved. Each subunit primarily functions within the context of a complex and might have distinct roles outside of the complex in F. graminearum. This is the first study to functionally characterize the Not module in filamentous fungi and provides novel insights into signal transduction pathways in fungal development.

  3. Acetohydroxyacid synthase FgIlv2 and FgIlv6 are involved in BCAA biosynthesis, mycelial and conidial morphogenesis, and full virulence in Fusarium graminearum.

    Science.gov (United States)

    Liu, Xin; Han, Qi; Xu, Jianhong; Wang, Jian; Shi, Jianrong

    2015-11-10

    In this study, we characterized FgIlv2 and FgIlv6, the catalytic and regulatory subunits of acetohydroxyacid synthase (AHAS) from the important wheat head scab fungus Fusarium graminearum. AHAS catalyzes the first common step in the parallel pathways toward branched-chain amino acids (BCAAs: isoleucine, leucine, valine) and is the inhibitory target of several commercialized herbicides. Both FgILV2 and FgILV6 deletion mutants were BCAA-auxotrophic and showed reduced aerial hyphal growth and red pigmentation when cultured on PDA plates. Conidial formation was completely blocked in the FgILV2 deletion mutant ΔFgIlv2-4 and significantly reduced in the FgILV6 deletion mutant ΔFgIlv6-12. The auxotrophs of ΔFgIlv2-4 and ΔFgIlv6-12 could be restored by exogenous addition of BCAAs but relied on the designated nitrogen source the medium contained. Deletion of FgILV2 or FgILV6 also leads to hypersensitivity to various cellular stresses and reduced deoxynivalenol production. ΔFgIlv2-4 lost virulence completely on flowering wheat heads, whereas ΔFgIlv6-12 could cause scab symptoms in the inoculated spikelet but lost its aggressiveness. Taken together, our study implies the potential value of antifungals targeting both FgIlv2 and FgIlv6 in F. graminearum.

  4. Antagonistic and Biocontrol Potential of Trichoderma asperellum ZJSX5003 Against the Maize Stalk Rot Pathogen Fusarium graminearum

    OpenAIRE

    Li, Yaqian; Sun, Ruiyan; Yu, Jia; Saravanakumar, Kandasamy; Chen, Jie

    2016-01-01

    The efficacy of seven strains of Trichodermaasperellum collected from the fields in Southern China was assessed against Fusarium graminearum (FG) the causal agent of corn stalk rot of maize were in vitro for their antagonistic properties followed by statistical model of principal compound analysis to identify the beneficial antagonist T.asperellum strain. The key factors of antagonist activity were attributed to a total of 13 factors including cell wall degrading enzymes (chitnase, protease a...

  5. Diversity of Fusarium species isolated from UK forage maize and the population structure of F. graminearum from maize and wheat.

    Science.gov (United States)

    Basler, Ryan

    2016-01-01

    Pre-harvest contamination of forage maize by mycotoxin producing Fusarium species was investigated in the UK in 2011 and 2012. A total of 15 Fusarium species were identified from a collection of 1,761 Fusarium isolates recovered from maize stalks and kernels. This study characterized the diversity of Fusarium species present in forage maize in the UK. The predominant species detected were F. graminearum (32.9%) and F. culmorum (34.1%). Along with those species; F. avenacem, F. cerealis, F. equiseti, F. langsethiae, F. napiforme, F. oxysporum, F. poae, F. proliferatum, F. scripi, F. solani, F. subglutinans, F. tricinctum and, F. verticillioides were occasionally isolated. The trichothecene genotypes for F. graminearum were determined to be 84.9% deoxynivalenol (DON) and 15.0% nivalenol (NIV) while F. culmorum isolates were determined to have 24.9% DON and 75.1% NIV genotypes. A Bayesian model-based clustering method with nine variable number of tandem repeat markers was used to evaluate the population genetic structure of 277 F. graminearum isolates from the maize and wheat in the UK. There were three genetic clusters detected which were DON in maize, NIV in maize and DON in wheat. There were high admixture probabilities for 14.1% of the isolates in the populations. In conclusion, increased maize production in the UK and the high admixture rates in a significant portion of F. graminearum populations in maize and wheat will contribute to a new pathogen population which will further complicate breeding strategies for tolerance or resistance to this pathogen in both crops.

  6. Analysis of deoxynivalenol and deoxynivalenol-3-glucosides content in Canadian spring wheat cultivars inoculated with Fusarium graminearum.

    Science.gov (United States)

    Amarasinghe, Chami C; Simsek, Senay; Brûlé-Babel, Anita; Fernando, W G Dilantha

    2016-07-01

    Contamination of wheat grains with Fusarium mycotoxins and their modified forms is an important issue in wheat industry. The objective of this study was to analyse the deoxynivalenol (DON) and deoxynivalenol-3-glucosides (D3G) content in Canadian spring wheat cultivars grown in two locations, inoculated with a mixture of 3-acetyldeoxynivalenol (3-ADON)-producing Fusarium graminearum strains and a mixture of 15-acetlyldeoxynivalenol (15-ADON)-producing F. graminearum strains. According to the analysis of variance, significant differences were observed among the cultivars for Fusarium head blight (FHB) disease index, Fusarium-damaged kernel percentage (%FDK), DON content and D3G content. When the effect of chemotype was considered, significant differences were observed for FHB disease index, FDK percentage and DON content. The D3G content and D3G/DON ratio were not significantly different between the chemotypes, except for D3G content at the Winnipeg location. The Pearson correlation coefficient between DON and D3G was 0.84 and 0.77 at Winnipeg and Carman respectively. The highest D3G/DON ratio was observed in cultivars Carberry (44%) in Carman and CDC Kernen (63.8%) in Winnipeg. The susceptible cultivars showed lower D3G/DON ratio compared with the cultivars rated as moderately resistant and intermediate. The current study indicated that Canadian spring cultivars produce D3G upon Fusarium infection.

  7. Identification of the Biosynthetic Gene Clusters for the Lipopeptides Fusaristatin A and W493 B in Fusarium graminearum and F. pseudograminearum

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Sondergaard, Teis Esben; Covarelli, Lorenzo;

    2014-01-01

    The closely related species Fusarium graminearum and Fusarium pseudograminearum differ in that each contains a gene cluster with a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) that is not present in the other species. To identify their products, we deleted PKS6 and NRPS7...

  8. Genome-wide analysis of small secreted cysteine-rich proteins identifies candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions

    Science.gov (United States)

    Pathogen-derived, small secreted cysteine-rich proteins (SSCPs) are known to be a common source of fungal effectors that trigger resistance or susceptibility in specific host plants. This group of proteins has not been well studied in Fusarium graminearum, the primary cause of Fusarium head blight ...

  9. A Comparison of Aggressiveness and Deoxynivalenol Production Between Canadian Fusarium graminearum Isolates with 3-Acetyl and 15-Acetyldeoxynivalenol Chemotypes in Field-Grown Spring Wheat

    Science.gov (United States)

    Twenty four isolates of Fusarium graminearum, half of which were 3- acetyldeoxynivalenol (3-ADON) and half 15-acetyldeoxynivalenol (15-ADON) chemotypes, were tested for their ability to produce deoxynivalenol and to cause Fusarium head blight (FHB), in spring wheat cultivars. The objectives of this...

  10. A Comparison of the Aggressiveness and Deoxynivalenol Content of Canadian 3-acetyl and 15-acetyldeoxynivalenol Producers of Fusarium graminearum in Fieldgrown Spring Wheat

    Science.gov (United States)

    Twenty four isolates of Fusarium graminearum of Canadian origin half of which were 3-acetyldeoxynivalenol (3-ADON) and half 15-acetyldeoxynivalenol (15-ADON) producers, were tested for their ability to cause Fusarium head blight (FHB), as measured by FHB index and production of deoxynivalenol (DON) ...

  11. PvPGIP2 Accumulation in Specific Floral Tissues But Not in the Endosperm Limits Fusarium graminearum Infection in Wheat.

    Science.gov (United States)

    Tundo, Silvio; Janni, Michela; Moscetti, Ilaria; Mandalà, Giulia; Savatin, Daniel; Blechl, Ann; Favaron, Francesco; D'Ovidio, Renato

    2016-10-01

    Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most destructive fungal diseases of wheat worldwide. The pathogen infects the spike at flowering time and causes severe yield losses, deterioration of grain quality, and accumulation of mycotoxins. The understanding of the precise means of pathogen entry and colonization of floral tissue is crucial to providing effective protection against FHB. Polygalacturonase (PG) inhibiting proteins (PGIPs) are cell-wall proteins that inhibit the activity of PGs, a class of pectin-depolymerizing enzymes secreted by microbial pathogens, including Fusarium spp. The constitutive expression of a bean PGIP (PvPGIP2) limits FHB symptoms and reduces mycotoxin accumulation in wheat grain. To better understand which spike tissues play major roles in limiting F. graminearum infection, we explored the use of PvPGIP2 to defend specific spike tissues. We show here that the simultaneous expression of PvPGIP2 in lemma, palea, rachis, and anthers reduced FHB symptoms caused by F. graminearum compared with symptoms in infected nontransgenic plants. However, the expression of PvPGIP2 only in the endosperm did not affect FHB symptom development, indicating that once the pathogen has reached the endosperm, inhibition of the pathogen's PG activity is not effective in preventing its further spread.

  12. Optimization for the Production of Deoxynivalenoland Zearalenone by Fusarium graminearum UsingResponse Surface Methodology

    Directory of Open Access Journals (Sweden)

    Li Wu

    2017-02-01

    Full Text Available Fusarium mycotoxins deoxynivalenol (DON and zearalenone (ZEN are the most common contaminants in cereals worldwide, causing a wide range of adverse health effects on animals and humans. Many environmental factors can affect the production of these mycotoxins. Here, we have used response surface methodology (RSM to optimize the Fusarium graminearum strain 29 culture conditions for maximal toxin production. Three factors, medium pH, incubation temperature and time, were optimized using a Box-Behnken design (BBD. The optimized conditions for DON production were pH 4.91 and an incubation temperature of 23.75 °C for 28 days, while maximal ZEN production required pH 9.00 and an incubation temperature of 15.05 °C for 28 days. The maximum levels of DON and ZEN production were 2811.17 ng/mL and 23789.70 ng/mL, respectively. Considering the total level of DON and ZEN, desirable yields of the mycotoxins were still obtained with medium pH of 6.86, an incubation temperature of 17.76 °C and a time of 28 days. The corresponding experimental values, from the validation experiments, fitted well with these predictions. This suggests that RSM could be used to optimize Fusarium mycotoxin levels, which are further purified for use as potential mycotoxin standards. Furthermore, it shows that acidic pH is a determinant for DON production, while an alkaline environment and lower temperature (approximately 15 °C are favorable for ZEN accumulation. After extraction, separation and purification processes, the isolated mycotoxins were obtained through a simple purification process, with desirable yields, and acceptable purity. The mycotoxins could be used as potential analytical standards or chemical reagents for routine analysis.

  13. Optimization for the Production of Deoxynivalenol and Zearalenone by Fusarium graminearum Using Response Surface Methodology

    Science.gov (United States)

    Wu, Li; Qiu, Lijuan; Zhang, Huijie; Sun, Juan; Hu, Xuexu; Wang, Bujun

    2017-01-01

    Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) are the most common contaminants in cereals worldwide, causing a wide range of adverse health effects on animals and humans. Many environmental factors can affect the production of these mycotoxins. Here, we have used response surface methodology (RSM) to optimize the Fusarium graminearum strain 29 culture conditions for maximal toxin production. Three factors, medium pH, incubation temperature and time, were optimized using a Box-Behnken design (BBD). The optimized conditions for DON production were pH 4.91 and an incubation temperature of 23.75 °C for 28 days, while maximal ZEN production required pH 9.00 and an incubation temperature of 15.05 °C for 28 days. The maximum levels of DON and ZEN production were 2811.17 ng/mL and 23789.70 ng/mL, respectively. Considering the total level of DON and ZEN, desirable yields of the mycotoxins were still obtained with medium pH of 6.86, an incubation temperature of 17.76 °C and a time of 28 days. The corresponding experimental values, from the validation experiments, fitted well with these predictions. This suggests that RSM could be used to optimize Fusarium mycotoxin levels, which are further purified for use as potential mycotoxin standards. Furthermore, it shows that acidic pH is a determinant for DON production, while an alkaline environment and lower temperature (approximately 15 °C) are favorable for ZEN accumulation. After extraction, separation and purification processes, the isolated mycotoxins were obtained through a simple purification process, with desirable yields, and acceptable purity. The mycotoxins could be used as potential analytical standards or chemical reagents for routine analysis. PMID:28208576

  14. Antifungal and Zearalenone Inhibitory Activity of Pediococcus pentosaceus Isolated from Dairy Products on Fusarium graminearum.

    Science.gov (United States)

    Sellamani, Muthulakshmi; Kalagatur, Naveen K; Siddaiah, Chandranayaka; Mudili, Venkataramana; Krishna, Kadirvelu; Natarajan, Gopalan; Rao Putcha, Venkata L

    2016-01-01

    The present study was aimed to evaluate the bio-control efficacy of Pediococcus pentosaceus isolated from traditional fermented dairy products originated from India, against the growth and zearalenone (ZEA) production of Fusarium graminearum. The cell-free supernatants of P. pentosaceus (PPCS) were prepared and chemical profiling was carried out by GC-MS and MALDI-TOF analysis. Chemical profiling of PPCS evidenced that, the presence of phenolic antioxidants, which are responsible for the antifungal activity. Another hand, MALDI-TOF analysis also indicated the presence of antimicrobial peptides. To know the antioxidant potential of PPCS, DPPH free radical scavenging assay was carried out and IC50 value was determined as 32 ± 1.89 μL/mL. The antifungal activity of P. pentosaceus was determined by dual culture overlay technique and zone of inhibition was recorded as 47 ± 2.81%, and antifungal activity of PPCS on F. graminearum was determined by micro-well dilution and scanning electron microscopic techniques. The minimum inhibitory concentration (MIC) of PPCS was determined as 66 ± 2.18 μL/mL in the present study. Also a clear variation in the micromorphology of mycelia treated with MIC value of PPCS compared to untreated control was documented. Further, the mechanism of growth inhibition was revealed by ergosterol analysis and determination of reactive oxygen species (ROS) in PPCS treated samples. The effects of PPCS on mycelial biomass and ZEA production were observed in a dose-dependent manner. The mechanism behind the suppression of ZEA production was studied by reverse transcriptase qPCR analysis of ZEA metabolic pathway genes (PKS4 and PKS13), and results showed that there is a dose dependent down-regulation of target gene expression in PPCS treated samples. The results of the present study were collectively proved that, the antifungal and ZEA inhibitory activity of PPCS against F. graminearum and it may find a potential application in agriculture and food

  15. Antifungal and Zearalenone Inhibitory Activity of Pediococcus pentosaceus Isolated from Dairy Products on Fusarium graminearum

    Science.gov (United States)

    Sellamani, Muthulakshmi; Kalagatur, Naveen K.; Siddaiah, Chandranayaka; Mudili, Venkataramana; Krishna, Kadirvelu; Natarajan, Gopalan; Rao Putcha, Venkata L.

    2016-01-01

    The present study was aimed to evaluate the bio-control efficacy of Pediococcus pentosaceus isolated from traditional fermented dairy products originated from India, against the growth and zearalenone (ZEA) production of Fusarium graminearum. The cell-free supernatants of P. pentosaceus (PPCS) were prepared and chemical profiling was carried out by GC-MS and MALDI-TOF analysis. Chemical profiling of PPCS evidenced that, the presence of phenolic antioxidants, which are responsible for the antifungal activity. Another hand, MALDI-TOF analysis also indicated the presence of antimicrobial peptides. To know the antioxidant potential of PPCS, DPPH free radical scavenging assay was carried out and IC50 value was determined as 32 ± 1.89 μL/mL. The antifungal activity of P. pentosaceus was determined by dual culture overlay technique and zone of inhibition was recorded as 47 ± 2.81%, and antifungal activity of PPCS on F. graminearum was determined by micro-well dilution and scanning electron microscopic techniques. The minimum inhibitory concentration (MIC) of PPCS was determined as 66 ± 2.18 μL/mL in the present study. Also a clear variation in the micromorphology of mycelia treated with MIC value of PPCS compared to untreated control was documented. Further, the mechanism of growth inhibition was revealed by ergosterol analysis and determination of reactive oxygen species (ROS) in PPCS treated samples. The effects of PPCS on mycelial biomass and ZEA production were observed in a dose-dependent manner. The mechanism behind the suppression of ZEA production was studied by reverse transcriptase qPCR analysis of ZEA metabolic pathway genes (PKS4 and PKS13), and results showed that there is a dose dependent down-regulation of target gene expression in PPCS treated samples. The results of the present study were collectively proved that, the antifungal and ZEA inhibitory activity of PPCS against F. graminearum and it may find a potential application in agriculture and food

  16. Conjunctively screening of biocontrol agents (BCAs) against fusarium root rot and fusarium head blight caused by Fusarium graminearum.

    Science.gov (United States)

    Wang, Lu-Yao; Xie, Yue-Shen; Cui, Yuan-Yu; Xu, Jianjun; He, Wei; Chen, Huai-Gu; Guo, Jian-Hua

    2015-08-01

    Fusarium root-rot and fusarium head blight are plant diseases caused by Fusarium sp. in different growth periods of wheat, bring heavy losses to crop production in China. This research is aiming to screen biocontrol agents conjunctively for controlling these two diseases at the same time, as well as evaluate our previous BCAs (Biological Control Agents) screening strategies in more complex situation, considering biocontrol is well concerned as an environmental-friendly plant disease controlling method. Totally 966 bacterial isolates were screened from different parts of wheat tissues, of which potential biocontrol values were detected according to their abilities in antagonism inhibition and secreting extracellular hydrolytic enzyme. Biocontrol tests against fusarium root rot and fusarium head blight were carried out on 37 bacterial isolates with potential biocontrol capacity after pre-selection through ARDRA- and BOX-PCR analysis on strains with high assessment points. We acquired 10 BCAs with obvious biocontrol efficacy (more than 40%) in greenhouse and field tests. Pseudomonas fluorescens LY1-8 performed well in both two tests (biocontrol efficacy: 44.62% and 58.31%), respectively. Overall, correlation coefficient is 0.720 between assessment values of 37 tested BCA strains and their biocontrol efficacy in trails against fusarium root rot; correlation coefficient is 0.806 between their assessment values and biocontrol efficacy in trails against fusarium head blight. We acquired 10 well-performed potential BCAs, especially P. fluorescens LY1-8 displayed good biocontrol capacity against two different diseases on wheat. Biocontrol efficacies results in both greenhouse and field tests showed high positive correlation with assessment values (0.720 and 0.806), suggesting that the BCAs screening and assessing strategy previously developed in our lab is also adaptable for conjunctively screening BCAs for controlling both root and shoot diseases on wheat caused by same

  17. The occurrence of fungi on roots and stem bases of Triticum aestivum ssp. spelta L. Thell. grown under two levels of chemical protection and harmfulness of Fusarium graminearum Schwabe to seedlings of selected genotypes

    Directory of Open Access Journals (Sweden)

    Małgorzata Cegiełko

    2016-09-01

    Full Text Available Investigations were carried out in 2007–2009 on the plots of the Felin Experimental Station belonging to the University of Life Sciences in Lublin, Poland. The studies comprised two breeding lines of spelt wheat (Triticum aestivum ssp. spelta L. Thell. – STH 3 and STH 715. Two levels of chemical protection were applied in the cultivation with minimal and complex protection. Infection of winter spelt wheat roots and stem bases was recorded in each growing season at hard dough stage (87 in Zadok’s scale. After 3 years of the study, the mean values of disease indexes for the analyzed spelt wheat lines in the experimental treatment with minimal protection were 28.53 and 40.30 respectively for STH 3 and STH 715. In the experimental combination with complex protection, after 3 years of the study the mean values of disease indexes ranged from 25.96 (STH 3 to 26.90 (STH 715. The mycological analysis showed that Fusarium spp., especially F. culmorum, caused root rot and necrosis of stem bases of spelt wheat in the experimental combination with minimal and complex protection. Moreover, Fusarium avenaceum and Bipolaris sorokiniana caused root rot and necrosis of stem bases of spelt wheat. Investigation carried out in a growth chamber on susceptibility of seedlings of three lines of spelt wheat (LO 2/09/n/2, LO 5/09/13/3, LO 5/09/5/4 to infection with Fusarium graminearum No. 8 and F. graminearum No. 45 showed that the genotypes did not differ in their susceptibility. All of them were susceptible, as indicated by high values of the disease indexes. No interaction was found between genotypes and strains of the fungus. This indicates the differential pathogenicity of Fusarium graminearum species.

  18. Simultaneous detection of Fusarium culmorum and F. graminearum in plant material by duplex PCR with melting curve analysis

    Directory of Open Access Journals (Sweden)

    Karlovsky Petr

    2006-01-01

    Full Text Available Abstract Background Fusarium head blight (FHB is a disease of cereal crops, which has a severe impact on wheat and barley production worldwide. Apart from reducing the yield and impairing grain quality, FHB leads to contamination of grain with toxic secondary metabolites (mycotoxins, which pose a health risk to humans and livestock. The Fusarium species primarily involved in FHB are F. graminearum and F. culmorum. A key prerequisite for a reduction in the incidence of FHB is an understanding of its epidemiology. Results We describe a duplex-PCR-based method for the simultaneous detection of F. culmorum and F. graminearum in plant material. Species-specific PCR products are identified by melting curve analysis performed in a real-time thermocycler in the presence of the fluorescent dye SYBR Green I. In contrast to multiplex real-time PCR assays, the method does not use doubly labeled hybridization probes. Conclusion PCR with product differentiation by melting curve analysis offers a cost-effective means of qualitative analysis for the presence of F. culmorum and F. graminearum in plant material. This method is particularly suitable for epidemiological studies involving a large number of samples.

  19. Significance of the class II hydrophobin FgHyd5p for the life cycle of Fusarium graminearum.

    Science.gov (United States)

    Minenko, Ekaterina; Vogel, Rudi F; Niessen, Ludwig

    2014-04-01

    Hydrophobins are small secreted proteins ubiquitously found in filamentous fungi. Some hydrophobins were shown to have functions in fungal development, while others lack known function. Class II hydrophobins from Fusarium graminearum and Fusarium culmorum are characterized by formation of low stability aggregates and their solubility in organic solvents. They are economically relevant to the brewing industry because they can induce beer gushing. Since cellular functions of Hyd5p's are still unknown, we analyzed the influence of FgHyd5p on growth and morphology of F. graminearum using FgΔhyd5 knock-out mutants expressing sGFP under the control of the hyd5 promoter and compared them with the performance of the parent wild type strain. Results demonstrate that FgHyd5p does not affect the colony and hyphal morphology. FgHyd5p affects the hydrophobicity of aerial mycelia but had no obvious function in penetration of hyphae through the water air interface. The hydrophobin affects the morphology of conidia, but not their fitness. Different sources of carbon and nitrogen as well as different pH have no effect on the expression of the hyd5 gene, which was demonstrated to be expressed upon growth of F. graminearum on hydrophobic surfaces.

  20. Fusarium graminearum pyruvate dehydrogenase kinase 1 (FgPDK1 Is Critical for Conidiation, Mycelium Growth, and Pathogenicity.

    Directory of Open Access Journals (Sweden)

    Tao Gao

    Full Text Available Pyruvate dehydrogenase kinase (PDK is an important mitochondrial enzyme that blocks the production of acetyl-CoA by selectively inhibiting the activity of pyruvate dehydrogenase (PDH through phosphorylation. PDK is an effectively therapeutic target in cancer cells, but the physiological roles of PDK in phytopathogens are largely unknown. To address these gaps, a PDK gene (FgPDK1 was isolated from Fusarium graminearum that is an economically important pathogen infecting cereals. The deletion of FgPDK1 in F. graminearum resulted in the increase in PDH activity, coinciding with several phenotypic defects, such as growth retardation, failure in perithecia and conidia production, and increase in pigment formation. The ΔFgPDK1 mutants showed enhanced sensitivity to osmotic stress and cell membrane-damaging agent. Physiological detection indicated that reactive oxygen species (ROS accumulation and plasma membrane damage (indicated by PI staining, lipid peroxidation, and electrolyte leakage occurred in ΔFgPDK1 mutants. The deletion of FgPDK1 also prohibited the production of deoxynivalenol (DON and pathogenicity of F. graminearum, which may resulted from the decrease in the expression of Tri6. Taken together, this study firstly identified the vital roles of FgPDK1 in the development of phytopathogen F. graminearum, which may provide a potentially novel clue for target-directed development of agricultural fungicides.

  1. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum

    DEFF Research Database (Denmark)

    Josefsen, Lone; Droce, Aida; Søndergaard, Teis

    2012-01-01

    The role of autophagy in necrotrophic fungal physiology and infection biology is poorly understood. We have studied autophagy in the necrotrophic plant pathogen Fusarium graminearum in relation to development of nonassimilating structures and infection. We identified an ATG8 homolog F. graminearum...... a pivotal role for supplying nutrients to nonassimilating structures necessary for growth and is important for plant colonization. This also indicates that autophagy is a central mechanism for fungal adaptation to nonoptimal C/N ratios....

  2. Intra-strains diversity of expression of polymorphic PKS4 gene in comparison in zearalenone production by Fusarium graminearum during in vitro cultivation.

    Science.gov (United States)

    Misiewicz, Anna; Goncerzewicz, Anna; Jędrzejczak, Renata; Zdziennicki, Filip

    2016-01-01

    Filamentous fungi belonging to the Fusarium genus are responsible for large economic losses due to their high pathogenicity and toxigenicity. Fusarium sp. may produce variety of mycotoxins, one of them is zearalenone (ZEA). The presence of the PKS4 gene shows the possibility of zearalenone biosynthesis by Fusarium sp. In this study, in four Fusarium graminearum and one Fusarium poae strains the presence of PKS4 genes and ZEA concentrations were determined. The presence of the PKS4 gene was confirmed by classical polymerase chain reaction (PCR) in three of four strains of F. graminearum. One strain with no PKS4 gene detected was found while still producing ZEA. In the present study, a real-time PCR assay has been successfully performed for the relative expression of Fusarium strains based on new designed primers targeting the PKS4 gene involved in ZEA biosynthesis. Result shows that P56/4 strain of F. graminearum has the highest mRNA level, in the range of 12, what correlates to the high production of this mycotoxin. In this study, a real-time PCR assay has been successfully developed for the prediction of the production of ZEA by F. graminearum strains by PCR real-time techniques based on primers targeting the gene, PKS4, involved in ZEA biosynthesis. The special significance was pointed to occurring genes polymorphism.

  3. Fusarium graminearum growth inhibition mechanism using phenolic compounds from Spirulina sp Mecanismo de inibição de Fusarium graminearum por compostos fenólicos extraídos de Spirulina sp

    Directory of Open Access Journals (Sweden)

    Fernanda Arnhold Pagnussatt

    2013-02-01

    Full Text Available The application of natural antifungal substances is motivated by the need for alternatives to existing methods that are not always applicable, efficient, or that do not pose risk to consumers or the environment. Furthermore, studies on the behaviour of toxigenic species in the presence of natural fungicides have enabled their safe application in the food chain In this study, Spirulina LEB-18 phenolic extract was assessed for its antifungal activity on 12 toxigenic strains of Fusarium graminearum isolated from barley and wheat. The susceptible metabolic pathways were assessed through the determination of structural compounds (glucosamine and ergosterol and enzyme activity of the microorganisms' primary metabolism. The results indicate that phenolic extracts reduced the growth rate of the toxigenic species investigated. The IC50 was obtained by applying 3 to 8% (p/p of phenolic compounds in relation to the culture medium. The use of this natural fungicide proved promising for the inhibition of fungal multiplication, especially in terms of the inactivation of enzymatic systems (amylase and protease of Fusarium graminearum.A aplicação de substâncias naturais com efeito antifúngico é motivada pela necessidade de alternativas aos métodos existentes que nem sempre são aplicáveis, eficientes ou sem risco de danos ao consumidor ou meio ambiente. Além disso, estudos para elucidar o comportamento de espécies toxigênicas mediante fungicidas naturais tornam-se necessárias, contribuindo dessa forma com a segurança alimentar. Neste trabalho, extrato fenólico de Spirulina foi utilizado para avaliar a atividade antifúngica sobre 12 cepas toxigênicas de Fusarium graminearum, isoladas de cevada e trigo. As rotas metabólicas que poderiam ser afetadas foram avaliadas através da determinação de compostos estruturais (glicosamina e ergosterol e da atividade de enzimas do metabolismo primário dos micro-organismos. Os resultados indicaram que os

  4. The effect of agmatine on trichothecene type B and zearalenone production in Fusarium graminearum, F. culmorum and F. poae

    Directory of Open Access Journals (Sweden)

    Matias Pasquali

    2016-02-01

    Full Text Available Agmatine and other putrescines are known for being strong inducers of deoxynivalenol (DON production in Fusarium graminearum. Other important species produce DON and/or other trichothecene type B toxins (3 acetylated DON, 15 acetylated DON, Fusarenon-X, Nivalenol, such as F. culmorum and F. poae. In order to verify whether the mechanism of the regulation of trichothecene type B induction by agmatine is shared by different species of Fusarium, we tested the hypothesis on 19 strains belonging to 3 Fusarium species (F. graminearum, F. culmorum, F. poae with diverse genetic chemotypes (3ADON, 15ADON, NIV by measuring trichothecene B toxins such as DON, NIV, Fusarenon-X, 3ADON and 15ADON. Moreover, we tested whether other toxins like zearalenone were also boosted by agmatine. The trichothecene type B boosting effect was observed in the majority of strains (13 out of 19 in all the three species. Representative strains from all three genetic chemotypes were able to boost toxin production after agmatine treatment. We identified the non-responding strains to the agmatine stimulus, which may contribute to deciphering the regulatory mechanisms that link toxin production to agmatine (and, more generally, polyamines.

  5. Evaluation of deoxynivalenol production in dsRNA Carrying and Cured Fusarium graminearum isolates by AYT1 expressing transformed tobacco

    Directory of Open Access Journals (Sweden)

    Mohammad Hasan shahhosseiny

    2015-12-01

    Full Text Available Introduction: Fusarium head blight (FHB, is the most destructive disease of wheat, producing the mycotoxin deoxynivalenol, a protein synthesis inhibitor, which is harmful to humans and livestock. dsRNAmycoviruses-infected-isolates of Fusariumgraminearum, showed changes in morphological and pathogenicity phenotypes including reduced virulence towards wheat and decreased production of trichothecene mycotoxin (deoxynivalenol: DON. Materials and methods: Previous studies indicated that over expression of yeast acetyl transferase gene (ScAYT1 encoding a 3-O trichothecene acetyl transferase that converts deoxynivalenol to a less toxic acetylated form, leads to suppression of the deoxynivalenol sensitivity in pdr5 yeast mutants. To identify whether ScAYT1 over-expression in transgenic tobacco plants can deal with mycotoxin (deoxynivalenol in fungal extract and studying the effect of dsRNA contamination on detoxification and resistance level, we have treated T1 AYT1 transgenic tobacco seedlings with complete extraction of normal F. graminearum isolate carrying dsRNA metabolites. First, we introduced AYT1into the model tobacco plants through Agrobacterium-mediated transformation in an attempt to detoxify deoxynivalenol. Results: In vitro tests with extraction of dsRNA carrying and cured isolates of F. graminearum and 10 ppm of deoxynivalenol indicated variable resistance levels in transgenic plants. Discussion and conclusion: The results of this study indicate that the transgene expression AYT1 and Fusarium infection to dsRNA can induce tolerance to deoxynivalenol, followed by increased resistance to Fusarium head blight disease of wheat.

  6. Comparative Analysis of Deoxynivalenol Biosynthesis Related Gene Expression among Different Chemotypes of Fusarium graminearum in Spring Wheat

    Science.gov (United States)

    Amarasinghe, Chami C.; Fernando, W. G. Dilantha

    2016-01-01

    Fusarium mycotoxins, deoxynivalenol (DON) and nivalenol (NIV) act as virulence factors and are essential for symptom development after initial infection in wheat. To date, 16 genes have been identified in the DON biosynthesis pathway. However, a comparative gene expression analysis in different chemotypes of Fusarium graminearum in response to Fusarium head blight infection remains to be explored. Therefore, in this study, nine genes that involved in trichothecene biosynthesis were analyzed among 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON) and nivalenol producing F. graminearum strains in a time course study. Quantitative reverse transcription polymerase chain reaction revealed that the expression of all examined TRI gene transcripts initiated at 2 days post-inoculation (dpi), peaked at three to four dpi and gradually decreased at seven dpi. The early induction of TRI genes indicates that presence of high levels of TRI gene transcripts at early stages is important to initiate the biosynthetic pathway of DON and NIV. Comparison of gene expression among the three chemotypes showed that relative expression of TRI genes was higher in 3-ADON producing strains compared with 15-ADON and NIV strains. Comparatively higher levels of gene expression may contribute to the higher levels of DON produced by 3-ADON strains in infected grains. PMID:27550207

  7. Transcriptomic profiling to identify genes involved in Fusarium mycotoxin Deoxynivalenol and Zearalenone tolerance in the mycoparasitic fungus Clonostachys rosea

    DEFF Research Database (Denmark)

    Kosawang, Chatchai; Karlsson, Magnus; Jensen, Dan Funck

    2014-01-01

    Background: Clonostachys rosea strain IK726 is a mycoparasitic fungus capable of controlling mycotoxin-producing Fusarium species, including F. graminearum and F. culmorum, known to produce Zearalenone (ZEA) and Deoxynivalenol (DON). DON is a type B trichothecene known to interfere with protein...... synthesis in eukaryotes. ZEA is a estrogenic-mimicing mycotoxin that exhibits antifungal growth. C. rosea produces the enzyme zearalenone hydrolase (ZHD101), which degrades ZEA. However, the molecular basis of resistance to DON in C. rosea is not understood. We have exploited a genome-wide transcriptomic...... approach to identify genes induced by DON and ZEA in order to investigate the molecular basis of mycotoxin resistance C. rosea.Results: We generated DON- and ZEA-induced cDNA libraries based on suppression subtractive hybridization. A total of 443 and 446 sequenced clones (corresponding to 58 and 65 genes...

  8. Trichothecene genotypes and chemotypes in Fusarium graminearum complex strains isolated from maize fields of northwest Argentina.

    Science.gov (United States)

    Sampietro, Diego A; Ficoseco, María E Aristimuño; Jimenez, Cristina M; Vattuone, Marta A; Catalán, Cesar A

    2012-02-01

    Members of the Fusarium graminearum species complex (Fg complex) cause Gibberella ear rot in maize from northwest Argentina. The potential of these pathogens to contaminate maize grains with type B trichothecenes is a health risk for both humans and animals. We evaluated the reliability of multiplex PCR assays based on TRI3 and TRI12 genes, and single PCR assays based on TRI7 and TRI13 genes to infer trichothecene chemotypes of 112 strains of Fg complex collected from northwest Argentina, checking trichothecene production by chemical analysis. Single and multiplex PCR assays indicated that strains belonging to F. meridionale (87/112) had a NIV genotype. The remainder strains (25/112), which belonged to F. boothii, had a DON genotype (based on single PCR assays) or 15ADON genotype (based on multiplex PCR assays). No strains tested were incorrectly diagnosed with a DON/NIV genotype. Chemical analysis indicated that the F. meridionale strains were NIV producers only (44/87), major NIV producers with unexpected high DON/NIV ratios (36/87), or unexpected major DON producers with minor NIV production (7/87). Strains with atypical DON/NIV production seem to be new phenotypes under a putative NIV genotype, since PCR assays do not provide evidences of a new trichothecene genotype. DON production and absence of its acetylated forms were shown for strains of F. boothii. The inconsistencies between genetic and chemical data highlight the risk of inferring the trichothecenes potentially contaminating food and feedstuffs based only on PCR assays. This study confirms for the first time that strains of Fg complex from maize of northwest Argentina are DON and NIV producers. In addition, dominance of NIV producers in the Fg complex population isolated from maize is unprecedented in Argentina, and of significant concern to food safety and animal production.

  9. Specific binding of Fusarium graminearum Hex1 protein to untranslated regions of the genomic RNA of Fusarium graminearum virus 1 correlates with increased accumulation of both strands of viral RNA.

    Science.gov (United States)

    Son, Moonil; Choi, Hoseong; Kim, Kook-Hyung

    2016-02-01

    The HEX1 gene of Fusarium graminearum was previously reported to be required for the efficient accumulation of Fusarium graminearum virus 1 (FgV1) RNA in its host. To investigate the molecular mechanism underlying the production of FgHEX1 and the replication of FgV1 viral RNA, we conducted electrophoretic mobility shift assays (EMSA) with recombinant FgHex1 protein and RNA sequences derived from various regions of FgV1 genomic RNA. These analyses demonstrated that FgHex1 and both the 5'- and 3'-untranslated regions of plus-strand FgV1 RNA formed complexes. To determine whether FgHex1 protein affects FgV1 replication, we quantified accumulation viral RNAs in protoplasts and showed that both (+)- and (-)-strands of FgV1 RNAs were increased in the over-expression mutant and decreased in the deletion mutant. These results indicate that the FgHex1 functions in the synthesis of both strands of FgV1 RNA and therefore in FgV1 replication probably by specifically binding to the FgV1 genomic RNA. Copyright © 2016. Published by Elsevier Inc.

  10. The geographic distribution and complex evolutionary history of the NX-2 trichothecene chemotype from Fusarium graminearum

    Science.gov (United States)

    F. graminearum and 21 related species form a species complex (FSAMSC-1) characterized by production of type B trichothecenes. However, some F. graminearum strains were recently found to produce NX-2, a novel type A trichothecene, resulting from variation in the trichothecene biosynthetic enzyme Tri1...

  11. Toxigenic Capacity and Trichothecene Production by Fusarium graminearum Isolates from Argentina and Their Relationship with Aggressiveness and Fungal Expansion in the Wheat Spike

    OpenAIRE

    Malbrán, Ismael; Mourelos, Cecilia; Girotti, Juan R; Balatti, Pedro Alberto; Lori, Gladys Albina

    2014-01-01

    At least 20 epidemics of Fusarium head blight (FHB) of wheat have been registered in the last 50 years in Argentina, with variable intensity. Damage induced by the disease is further aggravated by the presence of mycotoxins in affected grains that may cause health problems to humans and animals. The trichothecene chemotype was analyzed for 112 isolates of Fusarium graminearum from Argentina by polymerase chain reaction and two field trials were conducted to study the aggressiveness ...

  12. FgRIC8 is involved in regulating vegetative growth, conidiation, deoxynivalenol production and virulence in Fusarium graminearum.

    Science.gov (United States)

    Wu, Jinjin; Liu, Yuting; Lv, Wuyun; Yue, Xiaofeng; Que, Yawei; Yang, Nan; Zhang, Zhengguang; Ma, Zhonghua; Talbot, Nicholas J; Wang, Zhengyi

    2015-10-01

    Proteins of the resistance to inhibitors of cholinesterase 8 (Ric8) group act as guanine nucleotide exchange factors (GEFs) and play important roles in regulating G-protein signaling in animals. In filamentous fungi, putative Ric8 orthologs have so far been identified in Magnaporthe oryzae, Neurospora crassa, Aspergillus nidulans and Aspergillus fumigatus. Here, we report the functional investigation of a potential RIC8 ortholog (FgRIC8) in the wheat head blight pathogen Fusarium graminearum. Targeted gene deletion mutants of FgRIC8 exhibited a significant reduction in vegetative growth, conidiation, pigment production as well as deoxynivalenol (DON) biosynthesis. Pathogenicity assays using a point-inoculated spikelet approach showed that the mutants were severely impaired in virulence on flowering wheat heads. Quantitative RT-PCR analysis revealed that genes encoding F. graminearum Gα (FgGpa1 and FgGpa3), Gβ (FgGpb1) and Gγ (FgGpg1) subunits were significantly down-regulated in Fgric8 mutants. Moreover, we showed that FgRic8 physically interacts with both FgGpa1 and FgGpa3, but not FgGpa2, in yeast two-hybrid assays. The intracellular cAMP levels in Fgric8 mutants were significantly decreased compared to the isogenic wild-type strain. Taken together, our results indicate that FgRic8 plays critical roles in fungal development, secondary metabolism and virulence in F. graminearum and may act as a regulator of G protein alpha subunits.

  13. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum.

    Science.gov (United States)

    Díaz Herrera, Silvana; Grossi, Cecilia; Zawoznik, Myriam; Groppa, María Daniela

    2016-01-01

    The role of endophytic communities of seeds is still poorly characterised. The purpose of this work was to survey the presence of bacterial endophytes in the seeds of a commercial wheat cultivar widely sown in Argentina and to look for plant growth promotion features and biocontrol abilities against Fusarium graminearum among them. Six isolates were obtained from wheat seeds following a culture-dependent protocol. Four isolates were assignated to Paenibacillus genus according to their 16S rRNA sequencing. The only gammaproteobacteria isolated, presumably an Enterobactereaceae of Pantoea genus, was particularly active as IAA and siderophore producer, and also solubilised phosphate and was the only one that grew on N-free medium. Several of these isolates demonstrated ability to restrain F. graminearum growth on dual culture and in a bioassay using barley and wheat kernels. An outstanding ability to form biofilm on an inert surface was corroborated for those Paenibacillus which displayed greater biocontrol of F. graminearum, and the inoculation with one of these isolates in combination with the Pantoea isolate resulted in greater chlorophyll content in barley seedlings. Our results show a significant ecological potential of some components of the wheat seed endophytic community. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Chemical Composition and Antifungal Effect of Echinophora platyloba Essential Oil against Aspergillus flavus, Penicillium expansum and Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Mohammad Hashemi

    2016-03-01

    Full Text Available Molds are one of the most important causes of food spoilage that produce toxic substances called mycotoxins, which endanger the consumer health. The adverse effects of synthetic food preservatives consumption made researches to focus on application of natural preservatives in order to increase shelf life of food as well as prevention of harmful effects of chemical preservatives. The present study was conducted to investigate the effects of Echinophora platyloba essential oil on spore growth of Aspergillus flavus, Penicillium expansum and Fusarium graminearum. The essential oil composition of E. platyloba was analyzed by gas chromatography–mass spectrometry (GC-MS and its antifungal effect was evaluated by disk diffusion and micro dilution methods. Results revealed that the MIC values of essential oil for A. flavus, P. expansum and F. graminearum were 0.625 mg.mL-1, 0.625 mg.mL-1 and 0.3125 mg.mL-1 and the MFC values were 0.625 mg.mL-1, 1.250 mg.mL-1 and 0.625 mg.mL-1. The essential oil had the highest and the lowest anti-fungal effect on F. graminearum and A. flavus respectively. In conclusion, due to notable antifungal effects of E. platyloba essential oil, it can be practically applied as a natural alternative to chemical preservatives in food industry.

  15. Functional roles of FgLaeA in controlling secondary metabolism, sexual development, and virulence in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Hee-Kyoung Kim

    Full Text Available Fusarium graminearum, the causal agent of Fusarium head blight in cereal crops, produces mycotoxins such as trichothecenes and zearalenone in infected plants. Here, we focused on the function of FgLaeA in F. graminearum, a homolog of Aspergillus nidulans LaeA encoding the global regulator for both secondary metabolism and sexual development. Prior to gene analysis, we constructed a novel luciferase reporter system consisting of a transgenic F. graminearum strain expressing a firefly luciferase gene under control of the promoter for either TRI6 or ZEB2 controlling the biosynthesis of these mycotoxins. Targeted deletion of FgLaeA led to a dramatic reduction of luminescence in reporter strains, indicating that FgLaeA controls the expression of these transcription factors in F. graminearum; reduced toxin accumulation was further confirmed by GC-MS analysis. Overexpression of FgLaeA caused the increased production of trichothecenes and additional metabolites. RNA seq-analysis revealed that gene member(s belonging to ~70% of total tentative gene clusters, which were previously proposed, were differentially expressed in the ΔFgLaeA strain. In addition, ΔFgLaeA strains exhibited an earlier induction of sexual fruiting body (perithecia formation and drastically reduced disease symptoms in wheat, indicating that FgLaeA seems to negatively control perithecial induction, but positively control virulence toward the host plant. FgLaeA was constitutively expressed under both mycotoxin production and sexual development conditions. Overexpression of a GFP-FgLaeA fusion construct in the ΔFgLaeA strain restored all phenotypic changes to wild-type levels and led to constitutive expression of GFP in both nuclei and cytoplasm at different developmental stages. A split luciferase assay demonstrated that FgLaeA was able to interact with FgVeA, a homolog of A. nidulans veA. Taken together, these results demonstrate that FgLaeA, a member of putative FgVeA complex

  16. A Gin4-Like Protein Kinase GIL1 Involvement in Hyphal Growth, Asexual Development, and Pathogenesis in Fusarium graminearum

    Science.gov (United States)

    Yu, Dan; Zhang, Shijie; Li, Xiaoping; Xu, Jin-Rong; Schultzhaus, Zachary; Jin, Qiaojun

    2017-01-01

    Fusarium graminearum is the main causal agent of Fusarium head blight (FHB) on wheat and barley. In a previous study, a GIN4-like protein kinase gene, GIL1, was found to be important for plant infection and sexual reproduction. In this study we further characterized the functions of GIL1 kinase in different developmental processes. The Δgil1 mutants were reduced in growth, conidiation, and virulence, and formed whitish and compact colonies. Although phialide formation was rarely observed in the mutants, deletion of GIL1 resulted in increased hyphal branching and increased tolerance to cell wall and cell membrane stresses. The Δgil1 mutants produced straight, elongated conidia lacking of distinct foot cells and being delayed in germination. Compared with the wild type, some compartments in the vegetative hyphae of Δgil1 mutants had longer septal distances and increased number of nuclei, suggesting GIL1 is related to cytokinesis and septation. Localization of the GIL1-GFP fusion proteins to the septum and hyphal branching and fusion sites further supported its roles in septation and branching. Overall, our results indicate that GIL1 plays a role in vegetative growth and plant infection in F. graminearum, and is involved in septation and hyphal branching. PMID:28212314

  17. The MADS-box transcription factor FgMcm1 regulates cell identity and fungal development in Fusarium graminearum.

    Science.gov (United States)

    Yang, Cui; Liu, Huiquan; Li, Guotian; Liu, Meigang; Yun, Yingzi; Wang, Chenfang; Ma, Zhonghua; Xu, Jin-Rong

    2015-08-01

    In eukaryotic cells, MADS-box genes are known to play major regulatory roles in various biological processes by combinatorial interactions with other transcription factors. In this study, we functionally characterized the FgMCM1 MADS-box gene in Fusarium graminearum, the causal agent of wheat and barley head blight. Deletion of FgMCM1 resulted in the loss of perithecium production and phialide formation. The Fgmcm1 mutant was significantly reduced in virulence, deoxynivalenol biosynthesis and conidiation. In yeast two-hybrid assays, FgMcm1 interacted with Mat1-1-1 and Fst12, two transcription factors important for sexual reproduction. Whereas Fgmcm1 mutants were unstable and produced stunted subcultures, Fgmcm1 mat1-1-1 but not Fgmcm1 fst12 double mutants were stable. Furthermore, spontaneous suppressor mutations occurred frequently in stunted subcultures to recover growth rate. Ribonucleic acid sequencing analysis indicated that a number of sexual reproduction-related genes were upregulated in stunted subcultures compared with the Fgmcm1 mutant, which was downregulated in the expression of genes involved in pathogenesis, secondary metabolism and conidiation. We also showed that culture instability was not observed in the Fvmcm1 mutants of the heterothallic Fusarium verticillioides. Overall, our data indicate that FgMcm1 plays a critical role in the regulation of cell identity, sexual and asexual reproduction, secondary metabolism and pathogenesis in F. graminearum.

  18. Genetic Relationships, Carbendazim Sensitivity and Mycotoxin Production of the Fusarium Graminearum Populations from Maize, Wheat and Rice in Eastern China

    Directory of Open Access Journals (Sweden)

    Jianbo Qiu

    2014-08-01

    Full Text Available Members of the Fusarium graminearum species complex (FGSC are important pathogens on wheat, maize, barley, and rice in China. Harvested grains are often contaminated by mycotoxins, such as the trichothecene nivalenol (NIV and deoxynivalenol (DON and the estrogenic mycotoxin zearalenone (ZEN, which is a big threat to humans and animals. In this study, 97 isolates were collected from maize, wheat, and rice in Jiangsu and Anhui provinces in 2013 and characterized by species- and chemotype-specific PCR. F. graminearum sensu stricto (s. str. was predominant on maize, while most of the isolates collected from rice and wheat were identified as F. asiaticum. Fusarium isolates from three hosts varied in trichothecene chemotypes. The 3-acetyldeoxynivalenol (3ADON chemotype predominated on wheat and rice population, while 15ADON was prevailing in the remaining isolates. Sequence analysis of the translation elongation factor 1α and trichodiene synthase indicated the accuracy of the above conclusion. Additionally, phylogenetic analysis suggested four groups with strong correlation with species, chemotype, and host. These isolates were also evaluated for their sensitivity to carbendazim and mycotoxins production. The maize population was less sensitive than the other two. The DON levels were similar in three populations, while those isolates on maize produced more ZEN. More DON was produced in carbendazim resistant strains than sensitive ones, but it seemed that carbendazim resistance had no effect on ZEN production in wheat culture.

  19. Contrasting Roles of Deoxynivalenol and Nivalenol in Host-Mediated Interactions between Fusarium graminearum and Sitobion avenae

    Directory of Open Access Journals (Sweden)

    Jassy Drakulic

    2016-11-01

    Full Text Available Fusarium graminearum is the predominant causal species of Fusarium head blight in Europe and North America. Different chemotypes of the species exist, each producing a plethora of mycotoxins. Isolates of differing chemotypes produce nivalenol (NIV and deoxynivalenol (DON, which differ in toxicity to mammals and plants. However, the effect of each mycotoxin on volatile emissions of plant hosts is not known. Host volatiles are interpreted by insect herbivores such as Sitobion avenae, the English grain aphid, during host selection. Previous work has shown that grain aphids are repelled by wheat infected with DON-producing F. graminearum, and this study seeks to determine the influence of pathogen mycotoxins to host volatile chemistry. Volatile collections from infected hosts and olfactometer bioassays with alate aphids were performed. Infections with isolates that produced DON and NIV were compared, as well as a trichothecene deficient transformant derived from the NIV-producing isolate. This work confirmed the repellent nature of infected hosts with DON accumulation. NIV accumulation produced volatiles that were attractive to aphids. Attraction did not occur when NIV was absent and was, therefore, a direct consequence of NIV production.

  20. Contrasting Roles of Deoxynivalenol and Nivalenol in Host-Mediated Interactions between Fusarium graminearum and Sitobion avenae.

    Science.gov (United States)

    Drakulic, Jassy; Kahar, Mohd Haziq; Ajigboye, Olubukola; Bruce, Toby; Ray, Rumiana V

    2016-11-30

    Fusarium graminearum is the predominant causal species of Fusarium head blight in Europe and North America. Different chemotypes of the species exist, each producing a plethora of mycotoxins. Isolates of differing chemotypes produce nivalenol (NIV) and deoxynivalenol (DON), which differ in toxicity to mammals and plants. However, the effect of each mycotoxin on volatile emissions of plant hosts is not known. Host volatiles are interpreted by insect herbivores such as Sitobion avenae, the English grain aphid, during host selection. Previous work has shown that grain aphids are repelled by wheat infected with DON-producing F. graminearum, and this study seeks to determine the influence of pathogen mycotoxins to host volatile chemistry. Volatile collections from infected hosts and olfactometer bioassays with alate aphids were performed. Infections with isolates that produced DON and NIV were compared, as well as a trichothecene deficient transformant derived from the NIV-producing isolate. This work confirmed the repellent nature of infected hosts with DON accumulation. NIV accumulation produced volatiles that were attractive to aphids. Attraction did not occur when NIV was absent and was, therefore, a direct consequence of NIV production.

  1. Genetic Relationships, Carbendazim Sensitivity and Mycotoxin Production of the Fusarium Graminearum Populations from Maize, Wheat and Rice in Eastern China

    Science.gov (United States)

    Qiu, Jianbo; Shi, Jianrong

    2014-01-01

    Members of the Fusarium graminearum species complex (FGSC) are important pathogens on wheat, maize, barley, and rice in China. Harvested grains are often contaminated by mycotoxins, such as the trichothecene nivalenol (NIV) and deoxynivalenol (DON) and the estrogenic mycotoxin zearalenone (ZEN), which is a big threat to humans and animals. In this study, 97 isolates were collected from maize, wheat, and rice in Jiangsu and Anhui provinces in 2013 and characterized by species- and chemotype-specific PCR. F. graminearum sensu stricto (s. str.) was predominant on maize, while most of the isolates collected from rice and wheat were identified as F. asiaticum. Fusarium isolates from three hosts varied in trichothecene chemotypes. The 3-acetyldeoxynivalenol (3ADON) chemotype predominated on wheat and rice population, while 15ADON was prevailing in the remaining isolates. Sequence analysis of the translation elongation factor 1α and trichodiene synthase indicated the accuracy of the above conclusion. Additionally, phylogenetic analysis suggested four groups with strong correlation with species, chemotype, and host. These isolates were also evaluated for their sensitivity to carbendazim and mycotoxins production. The maize population was less sensitive than the other two. The DON levels were similar in three populations, while those isolates on maize produced more ZEN. More DON was produced in carbendazim resistant strains than sensitive ones, but it seemed that carbendazim resistance had no effect on ZEN production in wheat culture. PMID:25093387

  2. FgLPMO9A from Fusarium graminearum cleaves xyloglucan independently of the backbone substitution pattern

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Petrović, Dejan M.; Westereng, Bjørge

    2016-01-01

    Lytic polysaccharide monooxygenases (LPMOs) are important for the enzymatic conversion of biomass and seem to play a key role in degradation of the plant cell wall. In this study, we characterize an LPMO from the fungal plant pathogen Fusarium graminearum (FgLPMO9A) that catalyzes the mixed C1/C4...

  3. 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) inhibits trichothecene production by Fusarium graminearum through suppression of Tri6 expression.

    Science.gov (United States)

    Etzerodt, Thomas; Maeda, Kazuyuki; Nakajima, Yuichi; Laursen, Bente; Fomsgaard, Inge S; Kimura, Makoto

    2015-12-02

    Fusarium head blight (FHB) is a devastating disease of wheat (Triticum aestivum L.) caused by a mycotoxigenic fungus Fusarium graminearum resulting in significantly decreased yields and accumulation of toxic trichothecenes in grains. We tested 7 major secondary metabolites from wheat for their effect on trichothecene production in liquid cultures of F. graminearum producing trichothecene 15-acetyldeoxynivalenol (15-ADON). 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) benzoxazinoid completely abolished toxin production without any apparent effect on fungal growth. DIMBOA strongly affected the expression of Tri6, encoding a major transcriptional regulator of several genes of the trichothecene biosynthesis pathway. DIMBOA also repressed expression of Tri5, encoding trichodiene synthase, the first enzyme in the trichothecene biosynthesis pathway. Thus, DIMBOA could play an important role against the accumulation of trichothecenes in wheat grain. Breeding or engineering of wheat with increased levels of benzoxazinoids could provide varieties with increased resistance against trichothecene contamination of grain and lower susceptibility to FHB.

  4. Genetic diversity of Fusarium graminearum sensu lato isolates from wheat associated with Fusarium Head Blight in diverse geographic locations of Argentina.

    Science.gov (United States)

    Consolo, Verónica F; Ortega, Leonel M; Salerno, Graciela; Astoreca, Andrea L; Alconada, Teresa M

    2015-01-01

    Fusarium Head Blight is an important wheat disease in the Argentine Pampas region, being Fusarium graminearum the predominant pathogen. DNA polymorphism of the isolates was analyzed by IGS-RFLP and ISSR. IGS-RFLP and ISSR profiling were carried out using six endonucleases and eight primers, respectively. IGS-RFLP yielded 41 bands, 30 of which were polymorphic while ISSR produced 87 bands with 47 polymorphic bands. Both markers showed genetic variability among the analyzed isolates; however, IGS-RFLP was more efficient than ISSR, showing a higher polymorphic average (59.91%) than the latter (44.11%). The averages of polymorphic information content (PIC) were 0.211 and 0.129, respectively. Twenty haplotypes were identified by IGS-RFLP and 15 haplotypes by ISSR. Genotype clustering within dendrograms was different for both types of markers. The genetic groups obtained by IGS-RFLP showed a partial association to geographic origin. This is the first report on genetic variability of F. graminearum isolates from wheat in Argentina using IGS-RFLP and ISSR markers.

  5. Trichothecene mycotoxins associated with potato dry rot caused by Fusarium graminearum

    National Research Council Canada - National Science Library

    Delgado, Javier A; Schwarz, Paul B; Gillespie, James; Rivera-Varas, Viviana V; Secor, Gary A

    2010-01-01

    .... Due to the uncertainty of trichothecene production in these tubers, a study was conducted to determine the accumulation and diffusion of trichothecenes in potato tubers affected with dry rot caused by F. graminearum...

  6. Data independent acquisition-digital archiving mass spectrometry: application to single kernel mycotoxin analysis of Fusarium graminearum infected maize.

    Science.gov (United States)

    Renaud, Justin B; Sumarah, Mark W

    2016-05-01

    New and conjugated mycotoxins of concern to regulators are frequently being identified, necessitating the costly need for new method development and sample reanalysis. In response, we developed an LC-data independent acquisition (LC-DIA) method on a Q-Exactive Orbitrap mass spectrometer tailored for mycotoxins analysis. This method combines absolute quantification of targeted fungal metabolites with non-targeted digital archiving (DA) of data on all ionizable compounds for retrospective analysis. The quantitative power of this approach was assessed by spiking 23 mycotoxins at a range of concentrations into clean maize extracts. The linearity and limits of detection achieved were comparable to conventional LC-MS/MS and significantly better than 'all-ion-fragmentation' scanning mode. This method was applied to single kernel analysis of Fusarium infected maize, where we quantified nine Fusarium metabolites and three metabolites from unexpected contaminations by Alternaria and Penicillium species. Retrospective analysis of this data set allowed us to detect the recently reported 15-acetyldeoxynivalenol-3-O-β-D-glucoside without requiring re-analysis of the samples. To our knowledge, this is the first reported occurrence of this conjugated mycotoxin in naturally contaminated maize, and led us to further study maize artificially inoculated with the 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol chemotypes of Fusarium graminearum. Analysis of these samples showed that the maize genotype tested glycosylates 15-acetyldeoxynivalenol but not 3-acetyldeoxynivalenol likely because the glycosylation site was blocked. In addition to confirming that these two F. graminearum chemotypes behave differently when infecting the host plant, it demonstrates the utility of using a single screening method to quantify known mycotoxins and archive a completely non-targeted dataset for future analysis.

  7. The AMT1 arginine methyltransferase gene is important for plant infection and normal hyphal growth in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Guanghui Wang

    Full Text Available Arginine methylation of non-histone proteins by protein arginine methyltransferase (PRMT has been shown to be important for various biological processes from yeast to human. Although PRMT genes are well conserved in fungi, none of them have been functionally characterized in plant pathogenic ascomycetes. In this study, we identified and characterized all of the four predicted PRMT genes in Fusarium graminearum, the causal agent of Fusarium head blight of wheat and barley. Whereas deletion of the other three PRMT genes had no obvious phenotypes, the Δamt1 mutant had pleiotropic defects. AMT1 is a predicted type I PRMT gene that is orthologous to HMT1 in Saccharomyces cerevisiae. The Δamt1 mutant was slightly reduced in vegetative growth but normal in asexual and sexual reproduction. It had increased sensitivities to oxidative and membrane stresses. DON mycotoxin production and virulence on flowering wheat heads also were reduced in the Δamt1 mutant. The introduction of the wild-type AMT1 allele fully complemented the defects of the Δamt1 mutant and Amt1-GFP fusion proteins mainly localized to the nucleus. Hrp1 and Nab2 are two hnRNPs in yeast that are methylated by Hmt1 for nuclear export. In F. graminearum, AMT1 is required for the nuclear export of FgHrp1 but not FgNab2, indicating that yeast and F. graminearum differ in the methylation and nucleo-cytoplasmic transport of hnRNP components. Because AMT2 also is a predicted type I PRMT with limited homology to yeast HMT1, we generated the Δamt1 Δamt2 double mutants. The Δamt1 single and Δamt1 Δamt2 double mutants had similar defects in all the phenotypes assayed, including reduced vegetative growth and virulence. Overall, data from this systematic analysis of PRMT genes suggest that AMT1, like its ortholog in yeast, is the predominant PRMT gene in F. graminearum and plays a role in hyphal growth, stress responses, and plant infection.

  8. Association of single nucleotide polymorphic sites in candidate genes with aggressiveness and deoxynivalenol production in Fusarium graminearum causing wheat head blight

    Directory of Open Access Journals (Sweden)

    Talas Firas

    2012-03-01

    Full Text Available Abstract Background Fusarium graminearum sensu stricto (s.s. is an ubiquitous pathogen of cereals. The economic impact of Fusarium head blight (FHB is characterized by crop losses and mycotoxin contamination. Our objective was to associate SNP diversity within candidate genes with phenotypic traits. A total of 77 F. graminearum s.s. isolates was tested for severity of fungal infection (= aggressiveness and deoxynivalenol (DON production in an inoculated field experiment at two locations in each of two years. For seven genes known to control fungal growth (MetAP1, Erf2 or DON production (TRI1, TRI5, TRI6 TRI10 and TRI14 single nucleotides polymorphic sites (SNPs were determined and evaluated for the extent of linkage disequilibrium (LD. Associations of SNPs with both phenotypic traits were tested using linear mixed models. Results Decay of LD was in most instances fast. Two neighboring SNPs in MetAP1 and one SNP in Erf2 were significantly (P pG of 25.6%, 0.5%, and 13.1%, respectively. One SNP in TRI1 was significantly associated with DON production (pG = 4.4. Conclusions We argue that using the published sequence information of Fusarium graminearum as a template to amplify comparative sequence parts of candidate genes is an effective method to detect quantitative trait loci. Our findings underline the potential of candidate gene association mapping approaches to identify functional SNPs underlying aggressiveness and DON production for F. graminearum s.s populations.

  9. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals.

    Science.gov (United States)

    Gauthier, Léa; Bonnin-Verdal, Marie-Noelle; Marchegay, Gisèle; Pinson-Gadais, Laetitia; Ducos, Christine; Richard-Forget, Florence; Atanasova-Penichon, Vessela

    2016-03-16

    Fusarium Head Blight and Gibberella Ear Rot, mainly caused by the fungi Fusarium graminearum and Fusarium culmorum, are two of the most devastating diseases of small-grain cereals and maize. In addition to yield loss, these diseases frequently result in contamination of kernels with toxic type B trichothecenes. The potential involvement of chlorogenic acid in cereal resistance to Fusarium Head Blight and Gibberella Ear Rot and to trichothecene accumulation was the focus of this study. The effects of chlorogenic acid and one of its hydrolyzed products, caffeic acid, on fungal growth and type B trichothecenes biosynthesis were studied using concentrations close to physiological amounts quantified in kernels and a set of F. graminearum and F. culmorum strains. Both chlorogenic and caffeic acids negatively impact fungal growth and mycotoxin production, with caffeic acid being significantly more toxic. Inhibitory efficiencies of both phenolic acids were strain-dependent. To further investigate the antifungal and anti "mycotoxin" effect of chlorogenic and caffeic acids, the metabolic fate of these two phenolic acids was characterized in supplemented F. graminearum broths. For the first time, our results demonstrated the ability of F. graminearum to degrade chlorogenic acid into caffeic, hydroxychlorogenic and protocatechuic acids and caffeic acid into protocatechuic and hydroxycaffeic acids. Some of these metabolic products can contribute to the inhibitory efficiency of chlorogenic acid that, therefore, can be compared as a "pro-drug". As a whole, our data corroborate the contribution of chlorogenic acid to the chemical defense that cereals employ to counteract F. graminearum and its production of mycotoxins.

  10. Antagonistic activity of Ocimum sanctum L. essential oil on growth and zearalenone production by Fusarium graminearum in maize grains

    Directory of Open Access Journals (Sweden)

    Naveen Kumar eKalagatur

    2015-09-01

    Full Text Available The present study was aimed to establish the antagonistic effects of Ocimum sanctum L. essential oil (OSEO on growth and zearalenone (ZEA production of Fusarium graminearum. GC-MS chemical profiling of OSEO revealed the existence of 43 compounds and the major compound was found to be eugenol (34.7%. DPPH free radical scavenging activity (IC50 of OSEO was determined to be 8.5µg/mL. Minimum inhibitory concentration (MIC and minimum fungicidal concentration (MFC of OSEO on F. graminearum were recorded as 1250 µg/mL and 1800 µg/mL, respectively. Scanning electron microscope observations showed significant micro morphological damage in OSEO exposed mycelia and spores compared to untreated control culture. Quantitative UHPLC studies revealed that OSEO negatively effected the production of ZEA; the concentration of toxin production was observed to be insignificant at 1500 µg/mL concentration of OSEO. On other hand ZEA concentration was quantified as 3.23 µg/mL in OSEO untreated control culture. Reverse transcriptase qPCR analysis of ZEA metabolic pathway genes (PKS4 and PKS13 revealed that increase in OSEO concentration (250 µg/mL to 1500 µg/mL significantly downregulated the expression of PKS4 and PKS13. These results were in agreement with the artificially contaminated maize grains as well. In conlusion, the antifungal and antimycotoxic effects of OSEO on F. graminearum in the present study reiterated that, the essential oil of O. sanctum could be a promising herbal fungicide in food processing industries as well as grain storage centers.

  11. Antagonistic activity of Ocimum sanctum L. essential oil on growth and zearalenone production by Fusarium graminearum in maize grains.

    Science.gov (United States)

    Kalagatur, Naveen K; Mudili, Venkataramana; Siddaiah, Chandranayaka; Gupta, Vijai K; Natarajan, Gopalan; Sreepathi, Murali H; Vardhan, Batra H; Putcha, Venkata L R

    2015-01-01

    The present study was aimed to establish the antagonistic effects of Ocimum sanctum L. essential oil (OSEO) on growth and zearalenone (ZEA) production of Fusarium graminearum. GC-MS chemical profiling of OSEO revealed the existence of 43 compounds and the major compound was found to be eugenol (34.7%). DPPH free radical scavenging activity (IC50) of OSEO was determined to be 8.5 μg/mL. Minimum inhibitory concentration and minimum fungicidal concentration of OSEO on F. graminearum were recorded as 1250 and 1800 μg/mL, respectively. Scanning electron microscope observations showed significant micro morphological damage in OSEO exposed mycelia and spores compared to untreated control culture. Quantitative UHPLC studies revealed that OSEO negatively effected the production of ZEA; the concentration of toxin production was observed to be insignificant at 1500 μg/mL concentration of OSEO. On other hand ZEA concentration was quantified as 3.23 μg/mL in OSEO untreated control culture. Reverse transcriptase qPCR analysis of ZEA metabolic pathway genes (PKS4 and PKS13) revealed that increase in OSEO concentration (250-1500 μg/mL) significantly downregulated the expression of PKS4 and PKS13. These results were in agreement with the artificially contaminated maize grains as well. In conlusion, the antifungal and antimycotoxic effects of OSEO on F. graminearum in the present study reiterated that, the essential oil of O. sanctum could be a promising herbal fungicide in food processing industries as well as grain storage centers.

  12. Extracellular β-fructofuranosidase from Fusarium graminearum: stability of the spray-dried enzyme in the presence of different carbohydrates.

    Science.gov (United States)

    Gonçalves, Heloísa Bressan; Jorge, João Atílio; Oliveira, Wanderley Pereira; Souza, Claudia Regina Fernandes; Guimarães, Luis Henrique Souza

    2013-01-01

    Microbial enzymes have been used for various biotechnological applications; however, enzyme stabilization remains a challenge for industries and needs to be considered. This study describes the effects of spray-drying conditions on the activity and stability of β-fructofuranosidase from Fusarium graminearum. The extracellular enzyme β-fructofuranosidase was spray dried in the presence of stabilizers, including starch (Capsul) (SC), microcrystalline cellulose (MC), trehalose (TR), lactose (LC) and β-cyclodextrin (CD). In the presence of TR (2% w/v), the enzymatic activity was fully retained. After 1 year of storage, 74% of the enzymatic activity was maintained with the CD stabilizer (10% w/v). The residual activity was maintained as high as 80% for 1 h at 70°C when MC, SC and CD (5% w/v) stabilizers were used. Spray drying with carbohydrates was effective in stabilizing the F. graminearum β-fructofuranosidase, improved enzymatic properties compared to the soluble enzyme and demonstrated a potential use in future biotechnology applications.

  13. Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates.

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    Full Text Available A large number of Fusarium isolates was collected from blighted wheat spikes originating from 175 sampling sites, covering 15 provinces in China. Species and trichothecene chemotype determination by multilocus genotyping (MLGT indicated that F. graminearum s. str. with the 15-acetyl deoxynivalenol (15ADON chemotype and F. asiaticum with either the nivalenol (NIV or the 3-acetyl deoxynivalenol (3ADON chemotype were the dominant causal agents. Bayesian model-based clustering with allele data obtained with 12 variable number of tandem repeats (VNTR markers, detected three genetic clusters that also show distinct chemotypes. High levels of population genetic differentiation and low levels of effective number of migrants were observed between these three clusters. Additional genotypic analyses revealed that F. graminearum s. str. and F. asiaticum are sympatric. In addition, composition analysis of these clusters indicated a biased gene flow from 3ADON to NIV producers in F. asiaticum. In phenotypic analyses, F. asiaticum that produce 3ADON revealed significant advantages over F. asiaticum that produce NIV in pathogenicity, growth rate, fecundity, conidial length, trichothecene accumulation and resistance to benzimidazole. These results suggest that natural selection drives the spread of a more vigorous, more toxigenic pathogen population which also shows higher levels of fungicide resistance.

  14. Antagonistic and Biocontrol Potential of Trichoderma asperellum ZJSX5003 Against the Maize Stalk Rot Pathogen Fusarium graminearum.

    Science.gov (United States)

    Li, Yaqian; Sun, Ruiyan; Yu, Jia; Saravanakumar, Kandasamy; Chen, Jie

    2016-09-01

    The efficacy of seven strains of Trichoderma asperellum collected from the fields in Southern China was assessed against Fusarium graminearum (FG) the causal agent of corn stalk rot of maize were in vitro for their antagonistic properties followed by statistical model of principal compound analysis to identify the beneficial antagonist T. asperellum strain. The key factors of antagonist activity were attributed to a total of 13 factors including cell wall degrading enzymes (chitnase, protease and β-glucanases), secondary metabolites and peptaibols and these were analyzed from eight strains of Trichoderma. A linear regression model demonstrated that interaction of enzymes and secondary metabolites of T. asperellum strain ZJSX5003 enhanced the antagonist activity against FG. Further, this strain displayed a disease reduction of 71 % in maize plants inoculated with FG compared to negative control. Pointing out that the T. asperellum strain ZJSX5003 is a potential source for the development of a biocontrol agent against corn stalk rot.

  15. Hydroxylation of Longiborneol by a Clm2-Encoded CYP450 Monooxygenase to Produce Culmorin in Fusarium graminearum.

    Science.gov (United States)

    Bahadoor, Adilah; Schneiderman, Danielle; Gemmill, Larissa; Bosnich, Whynn; Blackwell, Barbara; Melanson, Jeremy E; McRae, Garnet; Harris, Linda J

    2016-01-22

    A second structural gene required for culmorin biosynthesis in the plant pathogen Fusarium graminearum is described. Clm2 encodes a regio- and stereoselective cytochrome P450 monooxygenase for C-11 of longiborneol (1). Clm2 gene disruptants were grown in liquid culture and assessed for culmorin production via HPLC-evaporative light scattering detection. The analysis indicated a complete loss of culmorin (2) from the liquid culture of the ΔClm2 mutants. Culmorin production resumed in a ΔClm2 complementation experiment. A detailed analysis of the secondary metabolites extracted from the large-scale liquid culture of disruptant ΔClm2D20 revealed five new natural products: 3-hydroxylongiborneol (3), 5-hydroxylongiborneol (4), 12-hydroxylongiborneol (5), 15-hydroxylongiborneol (6), and 11-epi-acetylculmorin (7). The structures of the new compounds were elucidated by a combination of HRMS, 1D and 2D NMR, and X-ray crystallography.

  16. A Fusarium graminearum xylanase expressed during wheat infection is a necrotizing factor but is not essential for virulence.

    Science.gov (United States)

    Sella, Luca; Gazzetti, Katia; Faoro, Franco; Odorizzi, Silvana; D'Ovidio, Renato; Schäfer, Wilhelm; Favaron, Francesco

    2013-03-01

    Fusarium graminearum is the fungal pathogen mainly responsible for Fusarium head blight (FHB) of cereal crops, which attacks wheat spikes, reducing crop production and quality of grain by producing trichothecene mycotoxins. Several cytohistological studies showed that spike infection is associated with the production of cell wall degrading enzymes. Wheat tissue, as in other commelinoid monocot plants, is particularly rich in xylan which can be hydrolyzed by fungal endo-1,4-β-xylanase. The FG_03624 is one of the most expressed xylanase genes in wheat spikes 3 days after inoculation and was heterologously expressed in the yeast Pichia pastoris. The recombinant protein (22.7 kDa) possessed xylanase activity and induced cell death and hydrogen peroxide accumulation in wheat leaves infiltrated with 10 ng/μl or in wheat lemma surface treated with 20 ng/μl. This effect reflects that observed with other described fungal xylanases (from Trichoderma reesei, Trichoderma viride and Botrytis cinerea) with which the FG_03624 protein shares a stretch of amino acids reported as essential for elicitation of necrotic responses. Several F. graminearum mutants with the FG_03624 gene disrupted were obtained, and showed about 40% reduction of xylanase activity in comparison to the wild type when grown in culture with xylan as carbon source. However, they were fully virulent when assayed by single floret inoculation on wheat cvs. Bobwhite and Nandu. This is the first report of a xylanase able to induce hypersensitive-like symptoms on a monocot plant.

  17. A novel thermophilic endoglucanase from a mesophilic fungus Fusarium oxysporum

    Institute of Scientific and Technical Information of China (English)

    LIU Shuyan; DUAN Xinyuan; LU Xuemei; GAO Peiji

    2006-01-01

    A novel thermophilic endoglucanase (EGt) was extracted from a mesophilic fungus (Fusarium oxysporum L19). We invoked conventional kinetic enzyme reactions using the sodium salt of carboxymethyl cellulose (CMC-Na) as substrate. EGt displayed optimal activity at 75℃ when kept running 30 min in the temperature range of 30―85℃. Thermal stability curve measured at 70℃ suggested that its half-life time is 15.1 min. The activity was enhanced in the presence of Co2+ or Mg2+ but inhibited by Pb2+ and Fe3+. Moreover, N-bromosuccinimide (NBS) modification resulted in a complete loss of EGt activity, suggesting that tryptophan residues 5 be involved in the enzyme active site. Amino acid composition analysis demonstrated that EGt contains more proline residues. EGt lacks activity towards p-nitrophenyl cellobiose (pNPC). The N-terminal amino acid sequence of EGt is SYRVPAANGFPNP- DASQEKQ, and the gene of EGt was sequenced and analyzed. Extensive sequence alignments failed to show any homology between EGt and any known endoglucanases. This is the first report addressing the thermal adaptation of a cellulolytic enzyme from the mesophilic fungus F. oxysporum. 5be the expression of multiple isoenzyme in an organism helps it adapt to complex living environments.

  18. Imidazolium salts with antifungal potential for the control of head blight of wheat caused by Fusarium graminearum.

    Science.gov (United States)

    Ribas, A D; Del Ponte, E M; Dalbem, A M; Dalla-Lana, D; Bündchen, C; Donato, R K; Schrekker, H S; Fuentefria, A M

    2016-08-01

    Evaluate the in vitro effect of imidazolium salts (IMS) on the conidia germination and mycelial growth of Fusarium graminearum and their in vivo efficacy for suppressing the symptoms of the disease and infection of kernels in wheat plants. The minimum inhibitory concentrations (MIC) of three IMS (C16 MImCl, C16 MImMeS and C16 MImNTf2 ) were determined for four F. graminearum isolates using serial broth dilution method. The MICs found for all IMS were either 3·12 or 6·25 μg ml(-1) across the isolates, with the former as the most frequent. In the mycelial growth assay on potato dextrose agar media, only the C16 MImCl among the IMS reduced 50% of mycelial growth of one isolate at an estimated concentration of 0·32 mg ml(-1) . The time-kill curves showed a strong fungicidal effect starting 1 h after incubation at a concentration of 12·5 μg ml(-1) , representing a fourfold increase in the most frequent MIC. The C16 MImCl sprayed onto the spikes of potted wheat plants during the flowering stage reduced disease intensity at levels comparable to the commercial fungicide when applied preventatively (1 h prior to fungal inoculation), rather than curatively, and at the higher dosage (2 mg ml(-1) ) rather than lower dosage (0·5 mg ml(-1) ). C16 MImCl proved to be a potent inhibitor of F. graminearum growth and provided good levels of control of the disease at levels comparable to a commercial fungicide, in wheat plants treated prior to fungal infection during flowering stages. This study suggests the potential of using IMS as alternative to the hazardous standard fungicides in the management of Fusarium head blight of wheat. © 2016 The Society for Applied Microbiology.

  19. Two novel classes of enzymes are required for the biosynthesis of aurofusarin in Fusarium graminearum

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Schütt, Claes; Lund, Birgitte W.;

    2011-01-01

    genes, aurZ and aurS. Targeted gene replacement of aurZ resulted in the discovery that the compound YWA1, rather than nor-rubrofusarin, is the primary product of F. graminearum polyketide synthase 12 (FgPKS12). AurZ is the first representative of a novel class of dehydratases that act on hydroxylated γ...

  20. Gibberella stalk rot (Fusarium graminearum) resistance of maize inbreds and their F1 hybrids and their potential for use in resistance breeding programs

    OpenAIRE

    Santiago Carabelos, Rogelio; Reid, Lana M.; Zhu, X.(Central China Normal University, Wuhan, China); Butrón Gómez, Ana María; Malvar Pintos, Rosa Ana

    2010-01-01

    Fusarium graminearum Schwabe is one of the predominant fungal species responsible for stalk rot of maize in Canada and many other countries. Adapted sources of resistance to this disease are scarce but recently a few have been identified. To evaluate the usefulness of these sources in a breeding programme to improve stalk rot resistance, a complete diallel cross of five inbreds of varying susceptibility to stalk rot was conducted. Artificial inoculations of stalks were accomplished by injecti...

  1. Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, J.D.; Svensson, Birte;

    2010-01-01

    after inoculation. This coincided with the appearance of discrete F. graminearum-induced proteolytic fragments of beta-amylase. Based on these results, analysis of grain proteome changes prior to extensive proteolysis enabled identification of barley proteins responding early to infection by the fungus...... function was identified. Quantitative real-time RT-PCR analysis of selected genes showed a correlation between high gene expression and detection of the corresponding proteins. Fungal genes encoding alkaline protease and endothiapepsin were expressed during 1-3 days after inoculation, making them...... candidates for generation of the observed beta-amylase fragments. These fragments have potential to be developed as proteome-level markers for fungal infection that are also informative about grain protein quality....

  2. The PKS4 gene in Fusarium graminearum is essential for zearalenone production

    DEFF Research Database (Denmark)

    Lysøe, E.; Klemsdal, S. S.; Bone, K.R.

    2006-01-01

    protocol was used to replace the central part of the PKS4 gene with a hygB resistance gene through double homologous recombination in an F. graminearum strain producing a high level of ZON. PCR and Southern analysis of transformants were used to identify isolates with single insertional replacements of PKS......4. High-performance liquid chromatography analysis showed that the PKS4 replacement mutant did not produce ZON. Thus, PKS4 encodes an enzyme required for the production of ZON in F. graminearum. Barley root infection studies revealed no alteration in the pathogenicity of the PKS4 mutant compared......-encoded protein or its product stimulates expression of PKS13. Furthermore, both the lack of aurofusarin and ZON influenced the expression of other polyketide synthases, demonstrating that one polyketide can influence the expression of others....

  3. Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, Jens D.; Svensson, Birte;

    2012-01-01

    of cell walls, starch and proteins. Of these proteins, 35% had not been identified in previous in planta or in vitro studies, 70% were predicted to contain signal peptides and a further 16% may be secreted in a nonclassical manner. Proteins identified in the 72 spots showing differential appearance...... between wheat and barley flour medium were mainly involved in fungal cell wall remodelling and the degradation of plant cell walls, starch and proteins. The in planta expression of corresponding F. graminearum genes was confirmed by quantitative reverse transcriptase‐polymerase chain reaction in barley...... and wheat spikelets harvested at 2−6 days after inoculation. In addition, a clear difference in the accumulation of fungal biomass and the extent of fungal‐induced proteolysis of plant β‐amylase was observed in barley and wheat. The present study considerably expands the current database of F. graminearum...

  4. Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Charles G Nasmith

    2011-09-01

    Full Text Available In F. graminearum, the transcriptional regulator Tri6 is encoded within the trichothecene gene cluster and regulates genes involved in the biosynthesis of the secondary metabolite deoxynivalenol (DON. The Tri6 protein with its Cys₂His₂ zinc-finger may also conform to the class of global transcription regulators. This class of global transcriptional regulators mediate various environmental cues and generally responds to the demands of cellular metabolism. To address this issue directly, we sought to find gene targets of Tri6 in F. graminearum grown in optimal nutrient conditions. Chromatin immunoprecipitation followed by Illumina sequencing (ChIP-Seq revealed that in addition to identifying six genes within the trichothecene gene cluster, Tri1, Tri3, Tri6, Tri7, Tri12 and Tri14, the ChIP-Seq also identified 192 additional targets potentially regulated by Tri6. Functional classification revealed that, among the annotated genes, ∼40% are associated with cellular metabolism and transport and the rest of the target genes fall into the category of signal transduction and gene expression regulation. ChIP-Seq data also revealed Tri6 has the highest affinity toward its own promoter, suggesting that this gene could be subject to self-regulation. Electro mobility shift assays (EMSA performed on the promoter of Tri6 with purified Tri6 protein identified a minimum binding motif of GTGA repeats as a consensus sequence. Finally, expression profiling of F. graminearum grown under nitrogen-limiting conditions revealed that 49 out of 198 target genes are differentially regulated by Tri6. The identification of potential new targets together with deciphering novel binding sites for Tri6, casts new light into the role of this transcriptional regulator in the overall growth and development of F. graminearum.

  5. Inhibition of Fusarium graminiarum growth in flour gel cultures by hexane soluble compounds from oat (Avena sativa L.) flour

    Science.gov (United States)

    Fusarium head blight, caused by the fungus Fusarium graminearum, primarily affects wheat (Triticum aestivum) and barley (Hordeum vulgarum) while oat (Avena sativa) appears to be more resistant. Although this has generally been attributed to the open panicle of oats, we hypothesized that a chemical c...

  6. SNARE protein FgVam7 controls growth, asexual and sexual development, and plant infection in Fusarium graminearum.

    Science.gov (United States)

    Zhang, Haifeng; Li, Bing; Fang, Qin; Li, Ying; Zheng, Xiaobo; Zhang, Zhengguang

    2016-01-01

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play critical and conserved roles in membrane fusion and vesicle transport of eukaryotic cells. Previous studies have shown that various homologues of SNARE proteins are also important in the infection of host plants by pathogenic fungi. Here, we report the characterization of a SNARE homologue, FgVam7, from Fusarium graminearum that causes head blight in wheat and barley worldwide. Phylogenetic analysis and domain comparison reveal that FgVam7 is homologous to Vam7 proteins of Saccharomyces cerevisiae (ScVam7), Magnaporthe oryzae (MoVam7) and several additional fungi by containing a PhoX homology (PX) domain and a SNARE domain. We show that FgVam7 plays a regulatory role in cellular differentiation and virulence in F. graminearum. Deletion of FgVAM7 significantly reduces vegetative growth, conidiation and conidial germination, sexual reproduction and virulence. The ΔFgvam7 mutant also exhibits a defect in vacuolar maintenance and delayed endocytosis. Moreover, the ΔFgvam7 mutant is insensitive to salt and osmotic stresses, and hypersensitive to cell wall stressors. Further characterization of FgVam7 domains indicate that the PX and SNARE domains are conserved in controlling Vam7 protein localization and function, respectively. Finally, FgVam7 has been shown to positively regulate the expression of several deoxynivalenol (DON) biosynthesis genes TRI5, TRI6 and TRI101, and DON production. Our studies provide evidence for SNARE proteins as an additional means of regulatory mechanisms that govern growth, differentiation and virulence of pathogenic fungi.

  7. Sharing a Host Plant (Wheat [Triticum aestivum]) Increases the Fitness of Fusarium graminearum and the Severity of Fusarium Head Blight but Reduces the Fitness of Grain Aphids (Sitobion avenae).

    Science.gov (United States)

    Drakulic, Jassy; Caulfield, John; Woodcock, Christine; Jones, Stephen P T; Linforth, Robert; Bruce, Toby J A; Ray, Rumiana V

    2015-05-15

    We hypothesized that interactions between fusarium head blight-causing pathogens and herbivores are likely to occur because they share wheat as a host plant. Our aim was to investigate the interactions between the grain aphid, Sitobion avenae, and Fusarium graminearum on wheat ears and the role that host volatile chemicals play in mediating interactions. Wheat ears were treated with aphids and F. graminearum inoculum, together or separately, and disease progress was monitored by visual assessment and by quantification of pathogen DNA and mycotoxins. Plants exposed to both aphids and F. graminearum inoculum showed accelerated disease progression, with a 2-fold increase in disease severity and 5-fold increase in mycotoxin accumulation over those of plants treated only with F. graminearum. Furthermore, the longer the period of aphid colonization of the host prior to inoculation with F. graminearum, the greater the amount of pathogen DNA that accumulated. Headspace samples of plant volatiles were collected for use in aphid olfactometer assays and were analyzed by gas chromatography-mass spectrometry (GC-MS) and GC-coupled electroantennography. Disease-induced plant volatiles were repellent to aphids, and 2-pentadecanone was the key semiochemical underpinning the repellent effect. We measured aphid survival and fecundity on infected wheat ears and found that both were markedly reduced on infected ears. Thus, interactions between F. graminearum and grain aphids on wheat ears benefit the pathogen at the expense of the pest. Our findings have important consequences for disease epidemiology, because we show increased spread and development of host disease, together with greater disease severity and greater accumulation of pathogen DNA and mycotoxin, when aphids are present.

  8. Characterization of Fusarium graminearum isolates recovered from wheat samples from Argentina by Fourier transform infrared spectroscopy: Phenotypic diversity and detection of specific markers of aggressiveness.

    Science.gov (United States)

    Fígoli, Cecilia B; Rojo, Rodrigo; Gasoni, Laura A; Kikot, Gisele; Leguizamón, Mariana; Gamba, Raúl R; Bosch, Alejandra; Alconada, Teresa M

    2017-03-06

    Fusarium graminearum is the primary causal agent of Fusarium head blight of wheat in Argentina. This disease affects crop yields and grain quality also reducing the wheat end-use, and causing mycotoxin contamination. The aim of this work was to analyze the phenotypic characteristics associated with phenotypic diversity and aggressiveness of 34 F. graminearum sensu stricto isolates recovered from Argentinean fields in the 2008 growing season using the Fourier Transform Infrared (FTIR) dried film technology. We applied this technique also to search for spectral specific markers associated with aggressiveness. The combination of FTIR technology with hierarchical cluster analysis allowed us to determine that this population constitutes a highly diverse and heterogeneous group of fungi with significant phenotypic variance. Still, when the spectral features of a set of these isolates were compared against their aggressiveness, as measured by disease severity, thousand grains weight, and relative yield reduction, we found that the more aggressive isolates were richer in lipid content. Therefore, we could define several spectroscopic markers (>CH stretching modes in the 3000-2800 window, >CO and CO vibrational modes of esters at 1765-1707cm(-1) and 1474-900cm(-1), respectively), mostly assigned to lipid content that could be associated with F. graminearum aggressiveness. All together, by the application of FTIR techniques and simple multivariate analyses, it was possible to gain significant insights into the phenotypic characterization of F. graminearum local isolates, and to establish the existence of a direct relationship between lipid content and fungal aggressiveness. Considering that lipids have a major role as mediators in the interaction between plants and fungi our results could represent an attractive outcome in the study of Fusarium pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Production of Dragon's Blood in Dracaena cambodiana Plants by Inoculation of Fusarium graminearum%真菌诱导海南龙血树生产血竭

    Institute of Scientific and Technical Information of China (English)

    许小凤; 李尚真; 宋启示

    2013-01-01

    Dragon's blood is a precious traditional medicine. Physical damage and fungi induction are two main factors affecting the production of dragon's blood. In this study,fungi induction was used to produce dragon's blood. Loureirin A and loureirin B.the major compounds of the dragon's bloods induced, were analyzed by HPLC to evaluate the results of each treatment. The results showed that the contents of loureirin A of the dragon's bloods induced by different treatments were similar, while the contents of loureirin B of the dragon's bloods induced by inoculating fungus Fusarium graminearum and exposing wound was the highest. The treatment of inoculating fungus and exposing wound was the most efficient way to induce dragon's blood. The HPLC fingerprints showed that the dragon's bloods induced were similar to the dragon's blood drug. This may add weight to the feasibility of artificial production of dragon's blood.%血竭是一种名贵的传统中药.影响血竭产生的主要原因是物理损伤和真菌诱导.本研究是以打孔接菌方法诱导生产血竭,并运用高效液相色谱方法检测诱导产生的血竭中主要成分龙血素A和龙血素B的含量,探讨不同处理方法对这两种成分含量的影响,以确定最佳的人工接菌方法.研究结果显示不同的处理方法得到的血竭中龙血素A的含量变化不大,而树体接人镰刀菌属真菌并将伤口暴露于空气得到的血竭中龙血素B的含量最高,诱导效果最好.指纹图谱比对结果显示诱导产生的血竭成分与血竭药品成分相似,进一步说明人工接菌诱导血竭生产具有可行性.

  10. GPCRs from fusarium graminearum detection, modeling and virtual screening - the search for new routes to control head blight disease.

    Science.gov (United States)

    Bresso, Emmanuel; Togawa, Roberto; Hammond-Kosack, Kim; Urban, Martin; Maigret, Bernard; Martins, Natalia Florencio

    2016-12-15

    Fusarium graminearum (FG) is one of the major cereal infecting pathogens causing high economic losses worldwide and resulting in adverse effects on human and animal health. Therefore, the development of new fungicides against FG is an important issue to reduce cereal infection and economic impact. In the strategy for developing new fungicides, a critical step is the identification of new targets against which innovative chemicals weapons can be designed. As several G-protein coupled receptors (GPCRs) are implicated in signaling pathways critical for the fungi development and survival, such proteins could be valuable efficient targets to reduce Fusarium growth and therefore to prevent food contamination. In this study, GPCRs were predicted in the FG proteome using a manually curated pipeline dedicated to the identification of GPCRs. Based on several successive filters, the most appropriate GPCR candidate target for developing new fungicides was selected. Searching for new compounds blocking this particular target requires the knowledge of its 3D-structure. As no experimental X-Ray structure of the selected protein was available, a 3D model was built by homology modeling. The model quality and stability was checked by 100 ns of molecular dynamics simulations. Two stable conformations representative of the conformational families of the protein were extracted from the 100 ns simulation and were used for an ensemble docking campaign. The model quality and stability was checked by 100 ns of molecular dynamics simulations previously to the virtual screening step. The virtual screening step comprised the exploration of a chemical library with 11,000 compounds that were docked to the GPCR model. Among these compounds, we selected the ten top-ranked nontoxic molecules proposed to be experimentally tested to validate the in silico simulation. This study provides an integrated process merging genomics, structural bioinformatics and drug design for proposing innovative

  11. Fusarium graminearum produces different xylanases causing host cell death that is prevented by the xylanase inhibitors XIP-I and TAXI-III in wheat.

    Science.gov (United States)

    Tundo, Silvio; Moscetti, Ilaria; Faoro, Franco; Lafond, Mickaël; Giardina, Thierry; Favaron, Francesco; Sella, Luca; D'Ovidio, Renato

    2015-11-01

    To shed light on the role of Xylanase Inhibitors (XIs) during Fusarium graminearum infection, we first demonstrated that three out of four F. graminearum xylanases, in addition to their xylan degrading activity, have also the capacity to cause host cell death both in cell suspensions and wheat spike tissue. Subsequently, we demonstrated that TAXI-III and XIP-I prevented both the enzyme and host cell death activities of F. graminearum xylanases. In particular, we showed that the enzymatic inhibition by TAXI-III and XIP-I was competitive and only FGSG_11487 escaped inhibition. The finding that TAXI-III and XIP-I prevented cell death activity of heat inactivated xylanases and that XIP-I precluded the cell death activity of FGSG_11487 - even if XIP-I does not inhibit its enzyme activity - suggests that the catalytic and the cell death activities are separated features of these xylanases. Finally, the efficacy of TAXI-III or XIP-I to prevent host cell death caused by xylanases was confirmed in transgenic plants expressing separately these inhibitors, suggesting that the XIs could limit F. graminearum infection via direct inhibition of xylanase activity and/or by preventing host cell death. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes.

    Science.gov (United States)

    Chetouhi, Cherif; Bonhomme, Ludovic; Lasserre-Zuber, Pauline; Cambon, Florence; Pelletier, Sandra; Renou, Jean-Pierre; Langin, Thierry

    2016-03-01

    In many plant/pathogen interactions, host susceptibility factors are key determinants of disease development promoting pathogen growth and spreading in plant tissues. In the Fusarium head blight (FHB) disease, the molecular basis of wheat susceptibility is still poorly understood while it could provide new insights into the understanding of the wheat/Fusarium graminearum (Fg) interaction and guide future breeding programs to produce cultivars with sustainable resistance. To identify the wheat grain candidate genes, a genome-wide gene expression profiling was performed in the French susceptible wheat cultivar, Recital. Gene-specific two-way ANOVA of about 40 K transcripts at five grain developmental stages identified 1309 differentially expressed genes. Out of these, 536 were impacted by the Fg effect alone. Most of these Fg-responsive genes belonged to biological and molecular functions related to biotic and abiotic stresses indicating the activation of common stress pathways during susceptibility response of wheat grain to FHB. This analysis revealed also 773 other genes displaying either specific Fg-responsive profiles along with grain development stages or synergistic adjustments with the grain development effect. These genes were involved in various molecular pathways including primary metabolism, cell death, and gene expression reprogramming. An increasingly complex host response was revealed, as was the impact of both Fg infection and grain ontogeny on the transcription of wheat genes. This analysis provides a wealth of candidate genes and pathways involved in susceptibility responses to FHB and depicts new clues to the understanding of the susceptibility determinism in plant/pathogen interactions.

  13. Effects of elevated [CO2] on the defense response of wheat against Fusarium graminearum infection

    Science.gov (United States)

    Fusarium head blight (FHB) is one of the world’s most devastating wheat diseases, and results in significant yield loss and contamination of grain with harmful mycotoxins called trichothecenes. Despite emerging risks of increased mycotoxin contamination in food and feed associated with climate chang...

  14. The Combined Action of ENHANCED DISEASE SUSCEPTIBILITY1, PHYTOALEXIN DEFICIENT4, and SENESCENCE-ASSOCIATED101 Promotes Salicylic Acid-Mediated Defenses to Limit Fusarium graminearum Infection in Arabidopsis thaliana.

    Science.gov (United States)

    Makandar, Ragiba; Nalam, Vamsi J; Chowdhury, Zulkarnain; Sarowar, Sujon; Klossner, Guy; Lee, Hyeonju; Burdan, Dehlia; Trick, Harold N; Gobbato, Enrico; Parker, Jane E; Shah, Jyoti

    2015-08-01

    Fusarium graminearum causes Fusarium head blight (FHB) disease in wheat and other cereals. F. graminearum also causes disease in Arabidopsis thaliana. In both Arabidopsis and wheat, F. graminearum infection is limited by salicylic acid (SA) signaling. Here, we show that, in Arabidopsis, the defense regulator EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1) and its interacting partners, PAD4 (PHYTOALEXIN-DEFICIENT4) and SAG101 (SENESCENCE-ASSOCIATED GENE101), promote SA accumulation to curtail F. graminearum infection. Characterization of plants expressing the PAD4 noninteracting eds1(L262P) indicated that interaction between EDS1 and PAD4 is critical for limiting F. graminearum infection. A conserved serine in the predicted acyl hydrolase catalytic triad of PAD4, which is not required for defense against bacterial and oomycete pathogens, is necessary for limiting F. graminearum infection. These results suggest a molecular configuration of PAD4 in Arabidopsis defense against F. graminearum that is different from its defense contribution against other pathogens. We further show that constitutive expression of Arabidopsis PAD4 can enhance FHB resistance in Arabidopsis and wheat. Taken together with previous studies of wheat and Arabidopsis expressing salicylate hydroxylase or the SA-response regulator NPR1 (NON-EXPRESSER OF PR GENES1), our results show that exploring fundamental processes in a model plant provides important leads to manipulating crops for improved disease resistance.

  15. The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production

    DEFF Research Database (Denmark)

    Giese, Nanna Henriette; Sondergaard, Teis Esben; Sorensen, Jens Laurids

    2013-01-01

    Growth conditions are known to affect the production of secondary metabolites in filamentous fungi. The influence of different nitrogen sources and the transcription factor AreA on the production of mycotoxins in Fusarium graminearum was examined. Growth on glutamine or NH4-sources was poor...... and asparagine was found to be a preferential nitrogen source for F. graminearum. Deletion of areA led to poor growth on NaNO3 suggesting its involvement in regulation of the nitrate reduction process. In addition utilization of aspartic acid, histidine, isoleucine, leucine, threonine, tyrosine, and valine...... as nitrogen sources was shown to depend of a functional AreA. AreA was shown to be required for the production of the mycotoxins deoxynivalenol (DON), zearalenone, and fusarielin H regardless of the nutrient medium. Deletion of nmr, the repressor of AreA under nitrogen sufficient conditions, had little effect...

  16. Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum).

    Science.gov (United States)

    Zalila-Kolsi, Imen; Ben Mahmoud, Afif; Ali, Hacina; Sellami, Sameh; Nasfi, Zina; Tounsi, Slim; Jamoussi, Kaïs

    2016-11-01

    Bacillus species are attractive due to their potential use in the biological control of fungal diseases. Bacillus amyloliquefaciens strain BLB369, Bacillus subtilis strain BLB277, and Paenibacillus polymyxa strain BLB267 were isolated and identified using biochemical and molecular (16S rDNA, gyrA, and rpoB) approaches. They could produce, respectively, (iturin and surfactin), (surfactin and fengycin), and (fusaricidin and polymyxin) exhibiting broad spectrum against several phytopathogenic fungi. In vivo examination of wheat seed germination, plant height, phenolic compounds, chlorophyll, and carotenoid contents proved the efficiency of the bacterial cells and the secreted antagonist activities to protect Tunisian durum wheat (Triticum turgidum L. subsp. durum) cultivar Om Rabiia against F. graminearum fungus. Application of single bacterial culture medium, particularly that of B. amyloliquefaciens, showed better protection than combinations of various culture media. The tertiary combination of B. amyloliquefaciens, B. subtilis, and P. polymyxa bacterial cells led to the highest protection rate which could be due to strains synergistic or complementary effects. Hence, combination of compatible biocontrol agents could be a strategic approach to control plant diseases.

  17. Agresividad, producción de micotoxinas y diversidad en las poblaciones de Fusarium graminearum de la región triguera argentina

    OpenAIRE

    2013-01-01

    La fusariosis de la espiga de trigo (FET)o golpe blanco, ocasionada por Fusarium graminearum Schwabe, es una enfermedad que afecta al cultivo de trigo (Triticum aestivum L. en todo el mundo, incluyendo la Argentina. La enfermedad ocasiona disminuciones del rendimiento, perjuicios sobre la calidad del trigo y la contaminación del grano con micotoxinas, que constituyen un riesgo para la salud y comprometen su utilización en la alimentación. Estos metabolitos, principalmente el deoxinivalenol (D...

  18. BIOTRANSFORMATION OF 2,4,6-TRINITROTOLUENE (TNT) BY A PLANT-ASSOCIATED FUNGUS FUSARIUM OXYSPORUM

    Science.gov (United States)

    The capability of a plant-associated fungus, Fusarium oxyvorum, to transform TNT in liquid cultures was investigated. TNT was transformed into 2-amino-4, 6-dinitrotoluene (2-A-DNT), 4-amino-2, 6-dinitrotoluene (4-A- DNT), and 2, 4-diamino-6-nitrotoluene (2, 4-DAT) via 2- and 4-hy...

  19. BIOTRANSFORMATION OF 2,4,6-TRINITROTOLUENE (TNT) BY A PLANT-ASSOCIATED FUNGUS FUSARIUM OXYSPORUM

    Science.gov (United States)

    The capability of a plant-associated fungus, Fusarium oxyvorum, to transform TNT in liquid cultures was investigated. TNT was transformed into 2-amino-4, 6-dinitrotoluene (2-A-DNT), 4-amino-2, 6-dinitrotoluene (4-A- DNT), and 2, 4-diamino-6-nitrotoluene (2, 4-DAT) via 2- and 4-hy...

  20. Comparative genomic analysis in the fungus Fusarium for production of toxins of concern to food safety

    Science.gov (United States)

    SUMMARY Comparative analysis of 207 genomes representing 159 species of the fungus Fusarium detected 9403 known and putative secondary metabolite (SM) biosynthetic gene clusters. The clusters included those responsible for synthesis of mycotoxins, plant hormones and pigments, and varied in distribut...

  1. Optimization for the Production of Deoxynivalenoland Zearalenone by Fusarium graminearum UsingResponse Surface Methodology.

    Science.gov (United States)

    Wu, Li; Qiu, Lijuan; Zhang, Huijie; Sun, Juan; Hu, Xuexu; Wang, Bujun

    2017-02-10

    Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) are the mostcommon contaminants in cereals worldwide, causing a wide range of adverse health effects onanimals and humans. Many environmental factors can affect the production of these mycotoxins.Here, we have used response surface methodology (RSM) to optimize the Fusarium graminearumstrain 29 culture conditions for maximal toxin production. Three factors, medium pH, incubationtemperature and time, were optimized using a Box-Behnken design (BBD). The optimizedconditions for DON production were pH 4.91 and an incubation temperature of 23.75 °C for 28 days,while maximal ZEN production required pH 9.00 and an incubation temperature of 15.05 °C for 28days. The maximum levels of DON and ZEN production were 2811.17 ng/mL and 23789.70 ng/mL,respectively. Considering the total level of DON and ZEN, desirable yields of the mycotoxins werestill obtained with medium pH of 6.86, an incubation temperature of 17.76 °C and a time of 28 days.The corresponding experimental values, from the validation experiments, fitted well with thesepredictions. This suggests that RSM could be used to optimize Fusarium mycotoxin levels, whichare further purified for use as potential mycotoxin standards. Furthermore, it shows that acidic pHis a determinant for DON production, while an alkaline environment and lower temperature(approximately 15 °C) are favorable for ZEN accumulation. After extraction, separation andpurification processes, the isolated mycotoxins were obtained through a simple purification process,with desirable yields, and acceptable purity. The mycotoxins could be used as potential analyticalstandards or chemical reagents for routine analysis.

  2. Transcription factor ART1 mediates starch hydrolysis and mycotoxin production in Fusarium graminearum and F. verticillioides.

    Science.gov (United States)

    Oh, Mira; Son, Hokyoung; Choi, Gyung Ja; Lee, Chanhui; Kim, Jin-Cheol; Kim, Hun; Lee, Yin-Won

    2016-06-01

    Molecular mechanisms underlying the responses to environmental factors, such as nitrogen, carbon and pH, involve components that regulate the production of secondary metabolites, including mycotoxins. In this study, we identified and characterized a gene in the FGSG_02083 locus, designated as FgArt1, which was predicted to encode a Zn(II)2 Cys6 zinc finger transcription factor. An FgArt1 deletion mutant of Fusarium graminearum exhibited impaired starch hydrolysis as a result of significantly reduced α-amylase gene expression. The deletion strain was unable to produce trichothecenes and exhibited low Tri5 and Tri6 expression levels, whereas the complemented strain showed a similar ability to produce trichothecenes as the wild-type strain. In addition, FgArt1 deletion resulted in impairment of germination in starch liquid medium and reduced pathogenicity on flowering wheat heads. To investigate the roles of the FgArt1 homologue in F. verticillioides, we deleted the FVEG_02083 gene, and the resulting strain showed defects in starch hydrolysis, similar to the FgArt1 deletion strain, and produced no detectable level of fumonisin B1 . Fum1 and Fum12 expression levels were undetectable in the deletion strain. However, when the FvArt1-deleted F. verticillioides strain was complemented with FgArt1, the resulting strain was unable to recover the production of fumonisin B1 , although FgArt1 expression and starch hydrolysis were induced. Thus, our results suggest that there are different regulatory pathways governed by each ART1 transcription factor in trichothecene and fumonisin biosynthesis. Taken together, we suggest that ART1 plays an important role in both trichothecene and fumonisin biosynthesis by the regulation of genes involved in starch hydrolysis.

  3. Analysis of Deoxynivalenol and Deoxynivalenol-3-glucoside in Hard Red Spring Wheat Inoculated with Fusarium Graminearum

    Directory of Open Access Journals (Sweden)

    Maribel Ovando-Martínez

    2013-12-01

    Full Text Available Deoxynivalenol (DON is a mycotoxin affecting wheat quality. The formation of the “masked” mycotoxin deoxinyvalenol-3-glucoside (D3G results from a defense mechanism the plant uses for detoxification. Both mycotoxins are important from a food safety point of view. The aim of this work was to analyze DON and D3G content in inoculated near-isogenic wheat lines grown at two locations in Minnesota, USA during three different years. Regression analysis showed positive correlation between DON content measured with LC and GC among wheat lines, locality and year. The relationship between DON and D3G showed a linear increase until a certain point, after which the DON content and the D3G increased. Wheat lines having higher susceptibility to Fusarium showed the opposite trend. ANOVA demonstrated that the line and location have a greater effect on variation of DON and D3G than do their interaction among years. The most important factor affecting DON and D3G was the growing location. In conclusion, the year, environmental conditions and location have an effect on the D3G/DON ratio in response to Fusarium infection.

  4. Development of species-specific SCAR markers identifying Fusarium graminearum and Fusarium asiaticum%禾谷镰刀菌与亚细亚镰刀菌种型特异性的SCAR标记

    Institute of Scientific and Technical Information of China (English)

    周永进; 马鸿翔; 余桂红; 孙晓波; 张旭; 李杨瑞

    2012-01-01

    为发掘区分Fusarium asiaticum与Fusarium graminearum这两种赤霉病菌的特异性分子标记,从江淮麦区赤霉病穗上分离获得72个赤霉病菌株,进行种型与化学型鉴定,并利用SRAP引物对F.asiaticum-NIV、F.asiaticum-3ADON及F.graminearum-15 ADON 3种类型的致病菌进行种型及化学型特异性标记筛选.通过对特异性标记进行回收、转化与测序,根据序列设计出3个镰刀菌种型特异性SCAR引物,并用上述72个菌株进行验证.结果显示SCAR标记me1/em2-172仅在F.asiaticum中扩增出172 bp的特异性条带,标记me1/em6-311和me9/em4-639分别只在F.graminearum中扩增出311 bp和639 bp的特异性条带.表明,本研究获得的3个SCAR标记是F.asiaticum和F.graminearum种型特异性标记,可用于区分这两种镰刀菌,为深入研究其致病机理及防治赤霉病的发生及危害提供了研究基础.%To develop specific markers for identifying the species and chemotypes of Fusarium asiaticum and Fusarium graminearum, infected spikes were collected from several wheat-growing regions between Yangtze River and Huaihe River, and seventy-two isolates collected from the diseased spikes were identified the genotype by primer pair Fgl6F/Fgl6R and chemotype by primer pair TOXP1/P2 and multiplex PCR. Sequence related amplified polymorphism (SRAP) markers were screened on representative isolates of F. asiaticum-NIV, F. asiaticum- 3ADON and F. graminearum-15ADON to find species-specific and chemotype-specific products. Three species-specific SRAP markers were obtained by cloning and sequencing the specific products. Sequence-characterized amplified region ( SCAR ) primers specific for F. asiaticum and F. graminearum were designed based on the sequences of these species-specific products. The SCAR primers were tested with 72 isolates. The results showed that the primer pair mel/em2-172 could amplify a 172 bp PCR product only in F. asiaticum isolates, while the primer pairs of mel/em6-311 and

  5. Toxigenic capacity and trichothecene production by Fusarium graminearum isolates from Argentina and their relationship with aggressiveness and fungal expansion in the wheat spike.

    Science.gov (United States)

    Malbrán, I; Mourelos, C A; Girotti, J R; Balatti, P A; Lori, G A

    2014-04-01

    At least 20 epidemics of Fusarium head blight (FHB) of wheat have been registered in the last 50 years in Argentina, with variable intensity. Damage induced by the disease is further aggravated by the presence of mycotoxins in affected grains that may cause health problems to humans and animals. The trichothecene chemotype was analyzed for 112 isolates of Fusarium graminearum from Argentina by polymerase chain reaction and two field trials were conducted to study the aggressiveness of a subsample of 14 representative isolates and to analyze deoxynivalenol (DON) production in planta and in vitro. All isolates belonged to the 15-acetyl-DON chemotype. Significant differences were observed in both the symptom severity induced in wheat spikes and the in vivo DON production, and a close correlation was found between these two variables. However, in vitro toxigenic potential was not correlated with the capacity of F. graminearum isolates to produce DON under natural conditions. The progress of infection in the rachis of inoculated wheat spikes was analyzed and the pathogen presence verified in both symptomatic and symptomless spikes. Even isolates with a limited capacity to induce symptoms were able to colonize the vascular tissue and to produce considerable amounts of DON in planta.

  6. Genome-wide characterization of pectin methyl esterase genes reveals members differentially expressed in tolerant and susceptible wheats in response to Fusarium graminearum.

    Science.gov (United States)

    Zega, Alessandra; D'Ovidio, Renato

    2016-11-01

    Pectin methyl esterase (PME) genes code for enzymes that are involved in structural modifications of the plant cell wall during plant growth and development. They are also involved in plant-pathogen interaction. PME genes belong to a multigene family and in this study we report the first comprehensive analysis of the PME gene family in bread wheat (Triticum aestivum L.). Like in other species, the members of the TaPME family are dispersed throughout the genome and their encoded products retain the typical structural features of PMEs. qRT-PCR analysis showed variation in the expression pattern of TaPME genes in different tissues and revealed that these genes are mainly expressed in flowering spikes. In our attempt to identify putative TaPME genes involved in wheat defense, we revealed a strong variation in the expression of the TaPME following Fusarium graminearum infection, the causal agent of Fusarium head blight (FHB). Particularly interesting was the finding that the expression profile of some PME genes was markedly different between the FHB-resistant wheat cultivar Sumai3 and the FHB-susceptible cultivar Bobwhite, suggesting a possible involvement of these PME genes in FHB resistance. Moreover, the expression analysis of the TaPME genes during F. graminearum progression within the spike revealed those genes that responded more promptly to pathogen invasion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Upscaled CTAB-based DNA extraction and real-time PCR assays for Fusarium culmorum and F. graminearum DNA in plant material with reduced sampling error.

    Science.gov (United States)

    Brandfass, Christoph; Karlovsky, Petr

    2008-11-01

    Fusarium graminearum Schwabe (Gibberella zeae Schwein. Petch.) and F. culmorum W.G. Smith are major mycotoxin producers in small-grain cereals afflicted with Fusarium head blight (FHB). Real-time PCR (qPCR) is the method of choice for species-specific, quantitative estimation of fungal biomass in plant tissue. We demonstrated that increasing the amount of plant material used for DNA extraction to 0.5-1.0 g considerably reduced sampling error and improved the reproducibility of DNA yield. The costs of DNA extraction at different scales and with different methods (commercial kits versus cetyltrimethylammonium bromide-based protocol) and qPCR systems (doubly labeled hybridization probes versus SYBR Green) were compared. A cost-effective protocol for the quantification of F. graminearum and F. culmorum DNA in wheat grain and maize stalk debris based on DNA extraction from 0.5-1.0 g material and real-time PCR with SYBR Green fluorescence detection was developed.

  8. The secreted antifungal protein thionin 2.4 in Arabidopsis thaliana suppresses the toxicity of a fungal fruit body lectin from Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Tomoya Asano

    Full Text Available Plants possess active defense systems and can protect themselves from pathogenic invasion by secretion of a variety of small antimicrobial or antifungal proteins such as thionins. The antibacterial and antifungal properties of thionins are derived from their ability to induce open pore formation on cell membranes of phytopathogens, resulting in release of potassium and calcium ions from the cell. Wheat thionin also accumulates in the cell walls of Fusarium-inoculated plants, suggesting that it may have a role in blocking pathogen infection at the plant cell walls. Here we developed an anti-thionin 2.4 (Thi2.4 antibody and used it to show that Thi2.4 is localized in the cell walls of Arabidopsis and cell membranes of F. graminearum, when flowers are inoculated with F. graminearum. The Thi2.4 protein had an antifungal effect on F. graminearum. Next, we purified the Thi2.4 protein, conjugated it with glutathione-S-transferase (GST and coupled the proteins to an NHS-activated column. Total protein from F. graminearum was applied to GST-Thi2.4 or Thi2.4-binding columns, and the fungal fruit body lectin (FFBL of F. graminearum was identified as a Thi2.4-interacting protein. This interaction was confirmed by a yeast two-hybrid analysis. To investigate the biological function of FFBL, we infiltrated the lectin into Arabidopsis leaves and observed that it induced cell death in the leaves. Application of FFBL at the same time as inoculation with F. graminearum significantly enhanced the virulence of the pathogen. By contrast, FFBL-induced host cell death was effectively suppressed in transgenic plants that overexpressed Thi2.4. We found that a 15 kD Thi2.4 protein was specifically expressed in flowers and flower buds and suggest that it acts not only as an antifungal peptide, but also as a suppressor of the FFBL toxicity. Secreted thionin proteins are involved in this dual defense mechanism against pathogen invasion at the plant-pathogen interface.

  9. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    NARCIS (Netherlands)

    Ma, L.-J.; van der Does, H.C.; Borkovich, K.A.; Coleman, J.J.; Daboussi, M.J.; Di Pietro, A.; Dufresne, M.; Freitag, M.; Grabherr, M.; Henrissat, B.; Houterman, P.M.; Kang, S.; Shim, W.B.; Woloshuk, C.; Xie, X.; Xu, J.-R; Antoniw, J.; Baker, S.E.; Bluhm, B.H.; Breakspear, A.; Brown, D.W.; Butchko, R.A.E.; Chapman, S.; Coulson, R.; Coutinho, P.M.; Danchin, E.G.J.; Diener, A.; Gale, L.R.; Gardiner, D.M.; Goff, S.; Hammond-Kosack, K.E.; Hilburn, K.; Hua-Van, A.; Jonkers, W.; Kazan, K.; Kodira, C.D.; Koehrsen, M.; Kumar, L.; Lee, Y.H.; Li, L.; Manners, J.M.; Miranda-Saavedra, D.; Mukherjee, M.; Park, G.; Park, J.; Park, S.Y.; Proctor, R.H.; Regev, A.; Ruiz-Roldan, M.C.; Sain, D.; Sakthikumar, S.; Sykes, S.; Schwartz, D.C.; Gillian Turgeon, B.; Wapinski, I.; Yoder, O.; Young, S.; Zeng, Q.; Zhou, S.; Galagan, J.; Cuomo, C.A.; Kistler, H.C.; Rep, M.

    2010-01-01

    Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum

  10. 禾谷镰孢菌对杀菌剂戊唑醇敏感基线的建立%Sensitive Baseline of Fusarium graminearum to Tebuconazole

    Institute of Scientific and Technical Information of China (English)

    叶滔; 马志强; 韩秀英; 张小风; 王文桥

    2011-01-01

    [目的]研究禾谷镰孢菌(Fusarium graminearum)对三唑类杀菌剂戊唑醇的敏感性,以期为该病的综合治理提供科学依据.[方法]采用菌丝生长速率法测定菌株对戊唑醇的敏感性.[结果]从河北、河南、山东省等主要地区采集和分离获得130个菌株,对戊唑醇的EC50值分布范围为0.0072~0.2880 mg/L,平均值为(0.1130±0.0570)mg/L,菌株对戊唑醇的敏感性频率分布呈单峰曲线,平均EC50值可作为菌株对戊唑醇的敏感性基线.[结论]该敏感基线可以作为田间禾谷镰孢菌对戊唑醇抗药性监测敏感性变化的参考.%[Aims] The sensitivities of Fusarium graminearum to triazole fungicides tebuconazole were determined in order to give the basic information for integrated disease management. [Methods] The sensitivities of bacterial strain to tebuconazole were tested by mycelial growth diameter method. [Results] One hundred and thirty isolates were collected from Hebei, Henan, Shandong, et a/. The testing results showed that EC50 values of isolates to tebuconazole ranged from 0.0072 to 0.2880 mg/L, and the mean EC50 value was (0.1130±0.0570) mg/L, and the sensitivity frequency of the pathogen displaied an uninodel curve. Hence their mean EC50 value could be used as the sensitivity baseline for isolates to tebuconazole. [Conclusions] It could be used as the sensitivity baseline of Fusarium graminearum to tebuconazole for monitoring the situation of field resistance dynamic development.

  11. Paenibacillus polymyxa A26 sfp-type phosphopantetheinyl transferase inactivation limits bacterial antagonism against Fusarium graminearum but not of F. culmorum

    Directory of Open Access Journals (Sweden)

    Islam A eAbd El Daim

    2015-05-01

    Full Text Available Fusarium graminearum and F. culmorum are the causing agents of a destructive disease known as Fusarium head blight (FHB. FHB is a re-emerging disease in small grain cereals which impairs both the grain yield and the quality. Most serious consequence is the contamination of grain with Fusarium mycotoxins that are severe threat to humans and animals. Biological control has been suggested as one of the integrated management strategies to control FHB. Paenibacillus polymyxa is considered as a promising biocontrol agent due to its unique antibiotic spectrum. In order to optimize strain A26 production, formulation and application strategies traits important for its compatibility need to be revealed. Here we developed a toolbox comprising of dual culture plate assays and wheat kernel assays including simultaneous monitoring of FHB causing pathogens A26 and mycotoxins produced. Using this system we show that, besides generally known lipopeptide antibiotic production by P. polymyxa, biofilm formation ability may play a crucial role in the case of stain A26 F. culmorum antagonism.

  12. Characterization and host range of the symbiotic fungus Fusarium euwallaceae sp. nov., vectored by the invasive ambrosia beetle Euwallacea sp.

    Science.gov (United States)

    A novel symbiotic Fusarium euwallaceae fungus that serves as a specific nutritional source for the invasive Asian ambrosia beetle Euwallacea sp. (Coleoptera, Scolytinae, Xyleborini) is farmed in the galleries of host plants. This beetle-fungus complex, which has invaded Israel and California, is clo...

  13. Agressividade diferencial de espécies do complexo Fusarium graminearum em interação com o fungicida tebuconazole na redução do rendimento de trigo

    OpenAIRE

    Pierri Spolti; Emerson Medeiros Del Ponte

    2013-01-01

    No Brasil, a giberela em trigo é causada por espécies do complexo Fusarium graminearum, especialmente F. graminearum sensu stricto (Fgss) e F. meridionale (Fmer), as quais variam quanto ao potencial toxigênico. O objetivo deste trabalho foi avaliar a relação entre características fenotípicas e agressividade dessas duas espécies associadas ao uso do fungicida tebuconazole, da classe dos triazóis, com a redução de rendimento do trigo. Em dez isolados Fgss e nove Fmer, foram avaliados: esporulaç...

  14. Agressividade diferencial de espécies do complexo Fusarium graminearum em interação com o fungicida tebuconazole na redução do rendimento de trigo

    OpenAIRE

    Spolti, Piérri; Del Ponte, Emerson Medeiros

    2013-01-01

    No Brasil, a giberela em trigo é causada por espécies do complexo Fusarium graminearum, especialmente F. graminearum sensu stricto (Fgss) e F. meridionale (Fmer), as quais variam quanto ao potencial toxigênico. O objeti vo deste trabalho foi avaliar a relação entre características fenotípicas e agressividade dessas duas espécies associadas ao uso do fungicida tebuconazole, da classe dos triazóis, com a redução de rendimento do trigo. Em dez isolados Fgss e nove Fmer, foram avaliados: esporula...

  15. The bZIP transcription factor Fgap1 mediates oxidative stress response and trichothecene biosynthesis but not virulence in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Mathilde Montibus

    Full Text Available Redox sensing is of primary importance for fungi to cope with oxidant compounds found in their environment. Plant pathogens are particularly subject to the oxidative burst during the primary steps of infection. In the budding yeast Saccharomyces cerevisiae, it is the transcription factor Yap1 that mediates the response to oxidative stress via activation of genes coding for detoxification enzymes. In the cereal pathogen Fusarium graminearum, Fgap1 a homologue of Yap1 was identified and its role was investigated. During infection, this pathogen produces mycotoxins belonging to the trichothecenes family that accumulate in the grains. The global regulation of toxin biosynthesis is not completely understood. However, it is now clearly established that an oxidative stress activates the production of toxins by F. graminearum. The involvement of Fgap1 in this activation was investigated. A deleted mutant and a strain expressing a truncated constitutive form of Fgap1 were constructed. None of the mutants was affected in pathogenicity. The deleted mutant showed higher level of trichothecenes production associated with overexpression of Tri genes. Moreover activation of toxin accumulation in response to oxidative stress was no longer observed. Regarding the mutant with the truncated constitutive form of Fgap1, toxin production was strongly reduced. Expression of oxidative stress response genes was not activated in the deleted mutant and expression of the gene encoding the mitochondrial superoxide dismutase MnSOD1 was up-regulated in the mutant with the truncated constitutive form of Fgap1. Our results demonstrate that Fgap1 plays a key role in the link between oxidative stress response and F. graminearum secondary metabolism.

  16. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia

    Science.gov (United States)

    Molina, Agustin B.; Daniells, Jeff; Fourie, Gerda; Hermanto, Catur; Chao, Chih-Ping; Fabregar, Emily; Sinohin, Vida G.; Masdek, Nik; Thangavelu, Raman; Li, Chunyu; Yi, Ganyun; Mostert, Lizel; Viljoen, Altus

    2017-01-01

    Fusarium oxysporum formae specialis cubense (Foc) is a soil-borne fungus that causes Fusarium wilt, which is considered to be the most destructive disease of bananas. The fungus is believed to have evolved with its host in the Indo-Malayan region, and from there it was spread to other banana-growing areas with infected planting material. The diversity and distribution of Foc in Asia was investigated. A total of 594 F. oxysporum isolates collected in ten Asian countries were identified by vegetative compatibility groups (VCGs) analysis. To simplify the identification process, the isolates were first divided into DNA lineages using PCR-RFLP analysis. Six lineages and 14 VCGs, representing three Foc races, were identified in this study. The VCG complex 0124/5 was most common in the Indian subcontinent, Vietnam and Cambodia; whereas the VCG complex 01213/16 dominated in the rest of Asia. Sixty-nine F. oxysporum isolates in this study did not match any of the known VCG tester strains. In this study, Foc VCG diversity in Bangladesh, Cambodia and Sri Lanka was determined for the first time and VCGs 01221 and 01222 were first reported from Cambodia and Vietnam. New associations of Foc VCGs and banana cultivars were recorded in all the countries where the fungus was collected. Information obtained in this study could help Asian countries to develop and implement regulatory measures to prevent the incursion of Foc into areas where it does not yet occur. It could also facilitate the deployment of disease resistant banana varieties in infested areas. PMID:28719631

  17. Involvement of a velvet protein FgVeA in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Jinhua Jiang

    Full Text Available The velvet protein, VeA, is involved in the regulation of diverse cellular processes. In this study, we explored functions of FgVeA in the wheat head blight pathogen, Fusarium graminearum,using a gene replacement strategy. The FgVEA deletion mutant exhibited a reduction in aerial hyphae formation, hydrophobicity, and deoxynivalenol (DON biosynthesis. Deletion of FgVEA gene led to an increase in conidial production, but a delay in conidial germination. Pathogencity assays showed that the mutant was impaired in virulence on flowering wheat head. Sensitivity tests to various stresses exhibited that the FgVEA deletion mutant showed increased resistance to osmotic stress and cell wall-damaging agents, but increased sensitivity to iprodione and fludioxonil fungicides. Ultrastructural and histochemical analyses revealed that conidia of FgVeA deletion mutant contained an unusually high number of large lipid droplets, which is in agreement with the observation that the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Serial analysis of gene expression (SAGE in the FgVEA mutant confirmed that FgVeA was involved in various cellular processes. Additionally, six proteins interacting with FgVeA were identified by yeast two hybrid assays in current study. These results indicate that FgVeA plays a critical role in a variety of cellular processes in F. graminearum.

  18. Efeito de fungicidas no controle de Fusarium graminearum, germinação, emergência e altura de plântulas em sementes de trigo

    OpenAIRE

    2008-01-01

    Visando avaliar o efeito do tratamento químico na incidência de Fusarium graminearum, bem como na germinação, emergência e altura de plântulas, sementes de trigo da cultivar BR 18 Terena foram tratadas com os seguintes fungicidas nas respectivas doses de i.a./ 100 kg de sementes: captana (150,0 g), tiofanato metílico (75,0 mL), triflumizole (45,0 g), triticonazole (45,0 mL), triadimenol (13,5 mL), tolyfluanida (75,0 g), tebuconazole (5,0 mL), fludioxonil (5,0 mL), difeconazole (30,0 mL) e thi...

  19. Population parameters for resistance to Fusarium graminearum and Fusarium verticillioides ear rot among large sets of early, mid-late and late maturing European maize (Zea mays L.) inbred lines.

    Science.gov (United States)

    Löffler, Martin; Kessel, Bettina; Ouzunova, Milena; Miedaner, Thomas

    2010-03-01

    Infection of maize ears with Fusarium graminearum (FG) and Fusarium verticillioides (FV) reduces yield and quality by mycotoxin contamination. Breeding and growing varieties resistant to both Fusarium spp. is the best alternative to minimize problems. The objectives of our study were to draw conclusions on breeding for ear rot resistance by estimating variance components, heritabilities and correlations between resistances to FV and FG severity and to investigate different inoculation methods. In 2007 and 2008, three maturity groups (early, mid-late, late) each comprising about 150 inbred lines were tested in Germany, France, Italy, and Hungary according to their maturity group. They were silk channel inoculated by FG (early) and FV (all groups). In the late maturity group, additionally kernel inoculation was applied in a separate trial. The percentage of mycelium coverage on the ear was rated at harvest (0-100%). Significant (P Inoculation was superior to natural infection because of higher disease severities and heritabilities. In early maturing flints and dents, FG caused significantly (P inoculation in Southern Europe (mid-late, late) resulted in similar means between 10.3 and 14.0%. Selection is complicated by significant (P maize material within the existing germplasms is promising by multi-environmental inoculation trials.

  20. Efficacy of female Culex quinquefasciatus with entomopathogenic fungus Fusarium pallidoroseum.

    Science.gov (United States)

    Mohanty, Suman Sundar; Raghavendra, Kamaraju; Rai, Usha; Dash, Aditya Prasad

    2008-06-01

    This study was conducted to isolate and identify natural entomopathogenic fungi from female Culex quinquefasciatus and to test their adulticidal activity. Field-collected female C. quinquefasciatus died early and were placed on a Saboraud's dextrose agar plates for growth and isolation of natural entomopathogenic fungi. The plates were maintained in an incubator at 24+/-2 degrees C for 3 days. Four fungal species were isolated in two genera namely, Aspergillus and Fusarium. The identified fungal species were A. niger, A. flavus, A. nidulans var acristatus (ITCC-6327.04), and F. pallidoroseum (ITCC-6324.06). Adult bioassays were carried out using spore-impregnated paper in WHO-holding tubes. F. pallidoroseum was found to be more effective than the others. Exposure of C. quinquefasciatus to spores of A. flavus and A. niger for 4 h caused 5.53% and 5.51% mortality in the mosquitoes within a week, respectively. All the female C. quinquefasciatus were killed within 4 days of exposure to F. pallidoroseum at a concentration of 1.11 x 10(10) conidia per m2. Significant difference of longevity was observed between the F. pallidoroseum-treated C. quinquefasciatus and control mosquitoes. The LT50 of F. pallidoroseum was 2.08 days for 4 h exposure to C. quinquefasciatus. Results of the present study confirm that F. pallidoroseum is one of the alternative biological control agents of adult mosquitoes.

  1. A single-nucleotide-polymorphism-based genotyping assay for simultaneous detection of different carbendazim-resistant genotypes in the Fusarium graminearum species complex

    Science.gov (United States)

    Zhang, Hao; Brankovics, Balázs; van der Lee, Theo A.J.; Waalwijk, Cees; van Diepeningen, Anne A.D.; Xu, Jin; Xu, Jingsheng

    2016-01-01

    The occurrence resistance to methyl benzimidazole carbamates (MBC)-fungicides in the Fusarium graminearum species complex (FGSC) is becoming a serious problem in the control of Fusarium head blight in China. The resistance is caused by point mutations in the β2-tubulingene. So far, five resistant genotypes (F167Y, E198Q, E198L, E198K and F200Y) have been reported in the field. To establish a high-throughput method for rapid detection of all the five mutations simultaneously, an efficient single-nucleotide-polymorphism-based genotyping method was developed based on the Luminex xMAP system. One pair of amplification primers and five allele specific primer extension probes were designed and optimized to specially distinguish the different genotypes within one single reaction. This method has good extensibility and can be combined with previous reported probes to form a highly integrated tool for species, trichothecene chemotype and MBC resistance detection. Using this method, carbendazim resistant FGSC isolates from Jiangsu, Anhui and Sichuan Province in China were identified. High and moderate frequencies of resistance were observed in Jiangsu and Anhui Province, respectively. Carbendazim resistance in F. asiaticum is only observed in the 3ADON genotype. Overall, our method proved to be useful for early detection of MBC resistance in the field and the result aids in the choice of fungicide type. PMID:27812414

  2. The xylanase inhibitor TAXI-III counteracts the necrotic activity of a Fusarium graminearum xylanase in vitro and in durum wheat transgenic plants.

    Science.gov (United States)

    Moscetti, Ilaria; Faoro, Franco; Moro, Stefano; Sabbadin, Davide; Sella, Luca; Favaron, Francesco; D'Ovidio, Renato

    2015-08-01

    The xylanase inhibitor TAXI-III has been proven to delay Fusarium head blight (FHB) symptoms caused by Fusarium graminearum in transgenic durum wheat plants. To elucidate the molecular mechanism underlying the capacity of the TAXI-III transgenic plants to limit FHB symptoms, we treated wheat tissues with the xylanase FGSG_03624, hitherto shown to induce cell death and hydrogen peroxide accumulation. Experiments performed on lemmas of flowering wheat spikes and wheat cell suspension cultures demonstrated that pre-incubation of xylanase FGSG_03624 with TAXI-III significantly decreased cell death. Most interestingly, a reduced cell death relative to control non-transgenic plants was also obtained by treating, with the same xylanase, lemmas of TAXI-III transgenic plants. Molecular modelling studies predicted an interaction between the TAXI-III residue H395 and residues E122 and E214 belonging to the active site of xylanase FGSG_03624. These results provide, for the first time, clear indications in vitro and in planta that a xylanase inhibitor can prevent the necrotic activity of a xylanase, and suggest that the reduced FHB symptoms on transgenic TAXI-III plants may be a result not only of the direct inhibition of xylanase activity secreted by the pathogen, but also of the capacity of TAXI-III to avoid host cell death. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  3. Antifungal Activities ofPenicillium minioluteum ZF1 and Its Metabolites toFusarium graminearum%微黄青霉ZF1及其代谢产物对禾谷镰孢的抑菌活性

    Institute of Scientific and Technical Information of China (English)

    苏前富; 贾娇; 孟玲敏; 李红; 张伟; 晋齐鸣; 丛斌

    2015-01-01

    . The effect of fludioxonil inhibition was lost after 4 days. The inhibition effect of the mixture of 0.5μg·mL-1 fludioxonil and 10% culture filtrate ofP. minioluteum prolonged for 10 days compared with only 0.5μg·mL-1 fludioxonil. Slight mold appeared in injured maize kernels and seedling leaves whenP. minioluteum was inoculated on them.[Conclusion] The inhibition effect ofP. minioluteumZF1 and its culture filtrate onF. graminearum was obvious. The mixture of fludioxonil and culture filtrate of P. minioluteum could prolong the inhibition time to the mycelial growth ofF. graminearum. A novel method thatP. minioluteumacts as a biocontrol fungus for controlling maize stalk rot and ear rot can be used in the future.%【目的】对前期从土壤中筛选获得的1株具有生防效果的微黄青霉(Penicillium minioluteum)ZF1,进一步分析其对禾谷镰孢(Fusarium graminearum)的抑菌效果,以及其培养滤液与化学药剂混配的抑菌能力和对玉米叶片、籽粒的侵染能力,明确该生防菌的开发利用价值,为防治禾谷镰孢引起的玉米茎腐病和穗腐病提供依据。【方法】采用菌丝生长速率法测定微黄青霉ZF1对禾谷镰孢的抑菌能力,微黄青霉ZF1培养滤液对禾谷镰孢的抑菌作用;通过玻璃纸法测定微黄青霉ZF1次生代谢产物对禾谷镰孢菌落生长的影响;比较咯菌腈、微黄青霉ZF1菌株培养滤液及咯菌腈和培养滤液混配3个处理对禾谷镰孢菌丝生长的抑制作用;分别在5叶期和乳熟期检测微黄青霉ZF1对玉米叶片和籽粒的侵染能力。【结果】微黄青霉ZF1能够明显抑制禾谷镰孢生长,抑制作用达到81.33%,抑菌面积为16.21 cm2;去玻璃纸PDA培养基上,ZF1菌株次生代谢产物对禾谷镰孢生长的抑制作用达到55.46%;菌株培养滤液稀释10、20、50和100倍后对禾谷镰孢菌抑制作用分别为81.04%、64.46%、22.67%和1.12%,但微黄青霉培养滤液对禾谷

  4. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-12-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  5. In vitro competition between Fusarium graminearum and Epicoccum nigrum on media and wheat grains

    DEFF Research Database (Denmark)

    Jensen, Brita Dahl; Knorr, Kamilla; Nicolaisen, Mogens

    2016-01-01

    showed hyphae of F. graminearum and E. nigrum with many side branches when in close proximity, in contrast to pronounced apical hyphal growth when growing alone. Combinations of F. graminearum and E. nigrum on sterilised wheat grains were studied over time by qPCR. F. graminearum biomass...

  6. The role of a dark septate endophytic fungus, Veronaeopsis simplex Y34, in Fusarium disease suppression in Chinese cabbage.

    Science.gov (United States)

    Khastini, Rida O; Ohta, Hiroyuki; Narisawa, Kazuhiko

    2012-08-01

    The soil-inhabiting fungal pathogen Fusarium oxysporum has been an increasing threat to Chinese cabbage (Brassica campestris L.). A dark septate endophytic fungus, Veronaeopsis simplex Y34, isolated from Yaku Island, Japan, was evaluated in vitro for the ability to suppress Fusarium disease. Seedlings grown in the presence of the endophyte showed a 71% reduction in Fusarium wilt disease and still had good growth. The disease control was achieved through a synergetic effect involving a mechanical resistance created by a dense network of V. simplex Y34 hyphae, which colonized the host root, and siderophore production acting indirectly to induce a resistance mechanism in the plant. Changes in the relative abundance of the fungal communities in the soil as determined by fluorescently labelled T-RFs (terminal restriction fragments), appeared 3 weeks after application of the fungus. Results showed the dominance of V. simplex Y34, which became established in the rhizosphere and out-competed F. oxysporum.

  7. 玉米植株体内禾谷镰孢菌的PCR检测与症状对应表现分析%Analysis of Symptoms Associated with Fusarium graminearum Infections Detected by PCR in Maize

    Institute of Scientific and Technical Information of China (English)

    苏前富; 贾娇; 孟玲敏; 李红; 张伟; 晋齐鸣; 丛斌

    2015-01-01

    Maize inbred line Ye478, high-sensitive to stalk rot, was inoculated with Fusarium graminearum. F. graminearum was cultivated using tooth picks and 4-leaf plants as the inoculation. Withered or normal plants were divided after 7 days later. The results showed that F. graminearum were detected only in withered plants but not in normal, and there was no F. graminearum in withered plants stalk when they had the inoculation in seedling, they can continue to grow normally.%以高感玉米茎腐病自交系掖478为材料,用带禾谷镰孢菌牙签接种4叶期的玉米幼苗,7 d后调查接种植株,发现植株有枯萎症状和正常生长2种类型。通过特异引物对不同症状表现的植株进行PCR检测,结果表明,只有表现枯萎症状的植株体内能够检测到禾谷镰孢菌,苗期接种后仍正常生长的植株茎秆内无禾谷镰孢菌的存在。

  8. Toxicity of abiotic stressors to Fusarium species: differences in hydrogen peroxide and fungicide tolerance.

    Science.gov (United States)

    Nagygyörgy, Emese D; Kovács, Barbara; Leiter, Eva; Miskei, Márton; Pócsi, István; Hornok, László; Adám, Attila L

    2014-06-01

    Stress sensitivity of three related phytopathogenic Fusarium species (Fusarium graminearum, Fusarium oxysporum and Fusarium verticillioides) to different oxidative, osmotic, cell wall, membrane, fungicide stressors and an antifungal protein (PAF) were studied in vitro. The most prominent and significant differences were found in oxidative stress tolerance: all the three F. graminearum strains showed much higher sensitivity to hydrogen peroxide and, to a lesser extent, to menadione than the other two species. High sensitivity of F. verticillioides strains was also detectable to an azole drug, Ketoconazole. Surprisingly, no or limited differences were observed in response to other oxidative, osmotic and cell wall stressors. These results indicate that fungal oxidative stress response and especially the response to hydrogen peroxide (this compound is involved in a wide range of plant-fungus interactions) might be modified on niche-specific manner in these phylogenetically related Fusarium species depending on their pathogenic strategy. Supporting the increased hydrogen peroxide sensitivity of F. graminearum, genome-wide analysis of stress signal transduction pathways revealed the absence one CatC-type catalase gene in F. graminearum in comparison to the other two species.

  9. TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike

    Science.gov (United States)

    Kage, Udaykumar; Yogendra, Kalenahalli N.; Kushalappa, Ajjamada C.

    2017-01-01

    A semi-comprehensive metabolomics was used to identify the candidate metabolites and genes to decipher mechanisms of resistance in wheat near-isogenic lines (NILs) containing QTL-2DL against Fusarium graminearum (Fg). Metabolites, with high fold-change in abundance, belonging to hydroxycinnamic acid amides (HCAAs): such as coumaroylagmatine, coumaroylputrescine and Fatty acids: phosphatidic acids (PAs) were identified as resistance related induced (RRI) metabolites in rachis of resistant NIL (NIL-R), inoculated with Fg. A WRKY like transcription factor (TF) was identified within the QTL-2DL region, along with three resistance genes that biosynthesized RRI metabolites. Sequencing and in-silico analysis of WRKY confirmed it to be wheat TaWRKY70. Quantitative real time-PCR studies showed a higher expression of TaWRKY70 in NIL-R as compared to NIL-S after Fg inoculation. Further, the functional validation of TaWRKY70 based on virus induced gene silencing (VIGS) in NIL-R, not only confirmed an increased fungal biomass but also decreased expressions of downstream resistance genes: TaACT, TaDGK and TaGLI1, along with decreased abundances of RRI metabolites biosynthesized by them. Among more than 200 FHB resistance QTL identified in wheat, this is the first QTL from which a TF was identified, and its downstream target genes as well as the FHB resistance functions were deciphered. PMID:28198421

  10. Evaluation of deoxynivalenol production in dsRNA Carrying and Cured Fusarium graminearum isolates by AYT1 expressing transformed tobacco

    OpenAIRE

    Samira Shahbazi; Naser Safaeie; Amir Mousavi; Forough Sanjarian; Mahsa Karimi

    2015-01-01

    Introduction: Fusarium head blight (FHB), is the most destructive disease of wheat, producing the mycotoxin deoxynivalenol, a protein synthesis inhibitor, which is harmful to humans and livestock. dsRNAmycoviruses-infected-isolates of Fusariumgraminearum, showed changes in morphological and pathogenicity phenotypes including reduced virulence towards wheat and decreased production of trichothecene mycotoxin (deoxynivalenol: DON). Materials and methods: Previous studies indicated that over...

  11. Natural occurrence of nivalenol and mycotoxigenic potential of Fusarium graminearum strains in wheat affected by head blight in Argentina Ocorrência natural de nivalenol e potencial micotoxigênico de cepas de Fusarium graminearum em trigo afetado por giberela na Argentina

    Directory of Open Access Journals (Sweden)

    V.E. Fernandez Pinto

    2008-03-01

    Full Text Available The principal agents of Fusarium head blight in the main cropping area of Argentina were investigated in heavily infected samples. The ability of the isolates to produce trichothecenes was determined by GC and HPLC. Fusarium graminearum was the predominant species and of 33 isolates, 10 produced deoxinivalenol (DON (0.1- 29 mg kg-1, 13 produced both deoxinivalenol (1.0- 708 mg kg-1 and nivalenol (0.1- 6.2mg kg-1, 12 produced 3-acetyldeoxinivalenol (0.1- 14 mg kg-1, 13 produced 15-acetyldeoxinivalenol (0.1- 1.9 mg kg-1, 10 produced Fusarenone X (0.1- 2.4 mg kg-1 and 7 produced zearalenone (0.1- 0.6 mg kg-1. These results suggest that F. graminearum strains isolated from the wheat growing regions in Argentina belong to DON chemotype. Although some strains produced both deoxinivalenol and nivalenol, nivalenol was produced in lower levels. The natural occurrence of nivalenol in wheat affected by head-blight collected in the main production area during two years (2001-2002 was also determined. From 19 samples 13 were contaminated with deoxinivalenol in a range of 0.3 to 70 mg kg-1and 2 samples with both deoxinivalenol (7.5 and 6.7 mg kg-1 and nivalenol (0.05 and 0.1 mg kg-1, respectively. This is the first report of natural occurrence of nivalenol in wheat cultivate in Argentina.O principal causador de giberela no trigo na Argentina e sua capacidade de produzir tricotecenos foram estudados por GC e HPLC em amostras altamente infectadas. A espécie predominante foi Fusarium graminearum, sendo que de um total de 33 isolados, 10 produziram deoxinivalenol (0,1-29 mg kg -1, 13 produziram deoxinivalenol (1,0-708 mg kg-1 e nivalenol (0,1-6,2 mg kg-1, 12 produziram 3-acetildeoxinivalenol (0,1-14 mg kg-1, 13 produziram 15-acetildeoxinivalenol (0,1-1,9 mg kg-1, 10 produziram fusarenona X (0,1- 2,4 mg kg-1 e 7 produziram zearalenona (0,1- 0,6 mg kg-1. Esses resultados sugerem que as cepas de F. graminearum isoladas de trigo cultivado na Argentina pertencem ao

  12. Metabolo-transcriptome profiling of barley reveals induction of chitin elicitor receptor kinase gene (HvCERK1) conferring resistance against Fusarium graminearum.

    Science.gov (United States)

    Karre, Shailesh; Kumar, Arun; Dhokane, Dhananjay; Kushalappa, Ajjamada C

    2017-02-01

    We report plausible disease resistance mechanisms induced by barley resistant genotype CI89831 against Fusarium head blight (FHB) based on metabolo-transcriptomics approach. We identified HvCERK1 as a candidate gene for FHB resistance, which is functional in resistant genotype CI9831 but non-functional in susceptible cultivars H106-371 and Zhedar-2. For the first time, we were able to show a hierarchy of regulatory genes that regulated downstream biosynthetic genes that eventually produced resistance related metabolites that reinforce the cell walls to contain the pathogen progress in plant. The HvCERK1 can be used for replacing in susceptible commercial cultivars, if non-functional, based on genome editing. Fusarium head blight (FHB) management is a great challenge in barley and wheat production worldwide. Though barley genome sequence and advanced omics technologies are available, till date none of the resistance mechanisms has been clearly deciphered. Hence, this study was aimed at identifying candidate gene(s) and elucidating resistance mechanisms induced by barley resistant genotype CI9831 based on integrated metabolomics and transcriptomics approach. Following Fusarium graminearum infection, we identified accumulation of specific set of induced secondary metabolites, belonging to phenylpropanoid, hydroxycinnamic acid (HCAA) and jasmonic acid pathways, and their biosynthetic genes. In association with these, receptor kinases such as chitin elicitor receptor kinase (HvCERK1) and protein kinases such as MAP kinase 3 (HvMPK3) and MAPK substrate 1 (HvMKS1), and transcription factors such as HvERF1/5, HvNAC42, HvWRKY23 and HvWRKY70 were also found upregulated with high fold change. Polymorphism studies across three barley genotypes confirmed the presence of mutations in HvCERK1 gene in two susceptible genotypes, isolating this gene as a potential candidate for FHB resistance. Further, the silencing of functional HvCERK1 gene in the resistant genotype CI9831

  13. Transcriptional Analysis of Maize Resistance against Fusarium graminearum%玉米抗禾谷镰刀菌的转录组分析

    Institute of Scientific and Technical Information of China (English)

    刘永杰; 马传禹; 马雪娜; 徐明良

    2016-01-01

    赤霉菌茎腐病是由禾谷镰刀菌(Fusarium graminearum,有性态,Gibberella zeae)引起的一类土传性病害,严重危害玉米的产量和品质。本研究依据玉米第10和第1染色体上的2个抗茎腐病QTL, qRfg1和qRfg2、培育近等基因系NIL-R (2个QTL位点均为抗病等位基因)和NIL-S (2个QTL位点均为感病等位基因)。在成株期和幼苗期接种禾谷镰刀菌,两近等基因系的抗性差异均显著。用2个近等基因系的幼根接种禾谷镰刀菌,进行转录组分析研究。结果表明,与NIL-S相比, NIL-R在接种禾谷镰刀菌后,乙烯(ethylene, ET)合成、信号途径基因,病程相关蛋白、脱氧雪腐镰刀菌烯醇毒素(deoxynivalenol, DON)解毒基因等呈现特异上调表达。与NIL-S相比,有1170个基因在NIL-R对照组中表达量较高,其中水杨酸(salicylic acid, SA)、茉莉酸(jasmonic acid, JA)和乙烯合成和信号介导途径以及苯丙烷合成途径中的基因显著富集;接种禾谷镰刀菌6 h或18 h后,病程相关蛋白、激素JA和ET合成基因、DON解毒基因在NIL-R中表达量较高。%Gibberella stalk rot, caused byFusarium graminearum (teleomorph,Gibberella zeae), is one of the most devastating soil-borne diseases in maize. It seriously decreases maize yield and quality. Molecular mapping led to the identification of two QTLs,qRfg1 and qRfg2, on chromosomes 10 and 1 respectively, conferring resistance toGibberella stalk rot. In order to charac-terize the defense mechanism of maize againstF. graminearum, NIL-R with resistant alleles at both QTLs and NIL-S with the susceptible alleles at both QTLs were generated and used in transcriptome analysis. After inoculation of young seedling roots of both NILs with theF. graminearumspores, the inoculated roots were sampled at 0, 6, and 18 hours after inoculation (hai) for transcriptome analysis using RNAseq. The basal difference was achieved by the comparison between control samples. In total, 2958 genes were

  14. Two new polyhydroxysterols produced by Fusarium solani, an endophytic fungus from Chloranthus multistachys.

    Science.gov (United States)

    Shen, W Y; Bai, R; Wang, A R; He, J Y; Wang, H; Zhang, Y; Zhao, X F; Dong, J Y

    2016-10-01

    A highly antagonistic endophytic fungus, designated strain CL39, was originated from the leaves of Chloranthus multistachys collected in Wulong of Chongqing municipality of China in November 2015. The strain was identified as Fusarium solani based on morphological characteristics, 5.8S gene and internal transcribed spacer sequence analysis. Two new compounds, 2β, 9α-dihydroxy-5α-methoxyergosta-7, 22-diene (1), 2β, 6β-dihydroxy-5α-methoxyergosta-7, 22-diene (2) have been isolated from the culture broth of the strain. Structures of the new compounds were elucidated by detailed analysis of their spectroscopic data aided by the comparison with reported data of related derivatives, and found to belong to the polyhydroxylated steroids with a hydroxyl at C-2 instead of C-3, a rare structure among the steroids. The extract of this strain and all isolated compounds were evaluated for their antagonistic activities.

  15. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum.

    Science.gov (United States)

    Yin, Tao; Zhang, Qiang; Wang, Jianhua; Liu, Huiquan; Wang, Chenfang; Xu, Jin-Rong; Jiang, Cong

    2017-01-31

    Fusarium graminearum is a causal agent of wheat scab and a producer of the trichothecene mycotoxin deoxynivalenol (DON). The expression of trichothecene biosynthesis (TRI) genes and DON production are mainly regulated by the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway and two pathway-specific transcription factors (TRI6 and TRI10). Interestingly, deletion mutants of TRI6 show reduced expression of several components of cAMP signalling, including the FgCAP1 adenylate-binding protein gene that has not been functionally characterized in F. graminearum. In this study, we show that FgCap1 interacts with Fac1 adenylate cyclase and that deletion of FgCAP1 reduces the intracellular cAMP level and PKA activity. The Fgcap1 deletion mutant is defective in vegetative growth, conidiogenesis and plant infection. It also shows significantly reduced DON production and TRI gene expression, which can be suppressed by exogenous cAMP, indicating a PKA-dependent regulation of DON biosynthesis by FgCap1. The wild-type, but not tri6 mutant, shows increased levels of intracellular cAMP and FgCAP1 expression under DON-producing conditions. Furthermore, the promoter of FgCAP1 contains one putative Tri6-binding site that is important for its function during DON biosynthesis, but is dispensable for hyphal growth, conidiogenesis and pathogenesis. In addition, FgCap1 shows an actin-like localization to the cortical patches at the apical region of hyphal tips. Phosphorylation of FgCap1 at S353 was identified by phosphoproteomics analysis. The S353A mutation in FgCAP1 has no effect on its functions during vegetative growth, conidiation and DON production. However, expression of the FgCAP1(S353A) allele fails to complement the defects of the Fgcap1 mutant in plant infection, indicating the importance of the phosphorylation of FgCap1 at S353 during pathogenesis. Taken together, our results suggest that FgCAP1 is involved in the regulation of DON production via cAMP signalling

  16. A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Jinhua Jiang

    Full Text Available Type 2C protein phosphatases (PP2Cs play important roles in regulating many biological processes in eukaryotes. Currently, little is known about functions of PP2Cs in filamentous fungi. The causal agent of wheat head blight, Fusarium graminearum, contains seven putative PP2C genes, FgPTC1, -3, -5, -5R, -6, -7 and -7R. In order to investigate roles of these PP2Cs, we constructed deletion mutants for all seven PP2C genes in this study. The FgPTC3 deletion mutant (ΔFgPtc3-8 exhibited reduced aerial hyphae formation and deoxynivalenol (DON production, but increased production of conidia. The mutant showed increased resistance to osmotic stress and cell wall-damaging agents on potato dextrose agar plates. Pathogencity assays showed that ΔFgPtc3-8 is unable to infect flowering wheat head. All of the defects were restored when ΔFgPtc3-8 was complemented with the wild-type FgPTC3 gene. Additionally, the FgPTC3 partially rescued growth defect of a yeast PTC1 deletion mutant under various stress conditions. Ultrastructural and histochemical analyses showed that conidia of ΔFgPtc3-8 contained an unusually high number of large lipid droplets. Furthermore, the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Quantitative real-time PCR assays showed that basal expression of FgOS2, FgSLT2 and FgMKK1 in the mutant was significantly higher than that in the wild-type strain. Serial analysis of gene expression in ΔFgPtc3-8 revealed that FgPTC3 is associated with various metabolic pathways. In contrast to the FgPTC3 mutant, the deletion mutants of FgPTC1, FgPTC5, FgPTC5R, FgPTC6, FgPTC7 or FgPTC7R did not show aberrant phenotypic features when grown on PDA medium or inoculated on wheat head. These results indicate FgPtc3 is the key PP2C that plays a critical role in a variety of cellular and biological functions, including cell wall integrity, lipid and secondary metabolisms, and virulence in F. graminearum.

  17. NEW PYRAN OF AN ENDOPHYTIC FUNGUS Fusarium sp. ISOLATED FROM THE LEAVES OF BROTOWALI (Tinaspora crispa

    Directory of Open Access Journals (Sweden)

    Elfita Elfita

    2013-12-01

    Full Text Available Endophytes are microorganisms that reside asymptomatically in the tissues of higher plants and are relatively unstudied and a promising source of novel organic natural metabolites exhibiting a variety of biological activities. As a part of our systematic search for new bioactive lead structures from endophytic, the endophytic fungus Fusarium sp. isolated from the leaves of Brotowali (Tinaspora crispa, was cultured for isolation of metabolite. The endophytic fungus was cultivated on 6 L of Potatos Dextose Broth (PDB medium at room temperature (no shaking for 8 weeks. The cultures were then extracted with ethyl acetate to afford 9.4 g of residue after removal of the solvent under reduced pressure. The extract was separated into the fractions by column chromatography (CC on silica gel. The fractions were further separated by silica gel column chromatography to give one compound. The molecular structure was established on the basis of spectroscopic analysis including UV, IR, 1H-NMR, 13C-NMR, HMQC, HMBC, COSY, and MS. The compound was determined as a new pyran.

  18. Influência do fotoperíodo e da temperatura na intensidade de doença causada por Fusarium graminearum em Egeria densa e E. najas Influence of the photoperiod and temperature on the intensity of disease caused by Fusarium graminearum in Egeria densa and E. najas

    Directory of Open Access Journals (Sweden)

    C.R. Borges Neto

    2005-09-01

    Full Text Available Um isolado de Fusarium graminearum vem sendo estudado na UNESP, campus de Jaboticabal, como agente de controle biológico de Egeria densa e de E. najas, plantas aquáticas submersas que causam problemas em reservatórios de hidrelétricas. O presente trabalho teve por objetivo estudar os efeitos do fotoperíodo e da temperatura no controle dessas plantas em condições de laboratório. A cada dois dias foram avaliados os sintomas nas plantas inoculadas com F. graminearum, atribuindo-se notas de severidade da doença, por um período de oito dias após a inoculação. Também foi avaliado o crescimento das plantas por meio do ganho de massa fresca, expresso em porcentagem. A maior severidade da doença foi observada quando ambas as espécies foram mantidas no escuro, e a menor, em fotoperíodo de 12 horas. A temperatura de 30 ºC proporcionou maior severidade de doença em ambas as espécies. A espécie E. densa apresentou maior produção de massa fresca no regime de 12 horas de luz e de temperaturas abaixo de 25 ºC e menor produção no regime de escuro total e nas temperaturas de 30 e 35 ºC. Por sua vez, E. najas apresentou menor produção de massa fresca no regime de escuro e nas temperaturas de 25 a 35 ºC.A promising Fusarium graminearum isolate has been evaluated as a potential biocontrol agent of two important aquatic weeds, Egeria densa and E. najas. This work aimed to study the effects of photoperiod and temperature on the control of these plants under laboratory conditions. The symptons in the plants inoculated with F. graminearum were evaluated every two days, with disease severity being evaluated through a grade scale and plant growth by fresh weight gain, expressed in percentage. The highest severity grades were observed whin both species were kept in the dark and the lowest under 12 hours photoperiod. The temperature of 30 ºC provided the higest disease severity for both species. The species E. densa presented the highest fresh

  19. Efeito de fungicidas no controle de Fusarium graminearum, germinação, emergência e altura de plântulas em sementes de trigo Effects of fungicides on Fusarium graminearum control, germination, emergency and e height of seedlings in wheat seeds

    Directory of Open Access Journals (Sweden)

    Daniel Garcia Júnior

    2008-09-01

    Full Text Available Visando avaliar o efeito do tratamento químico na incidência de Fusarium graminearum, bem como na germinação, emergência e altura de plântulas, sementes de trigo da cultivar BR 18 Terena foram tratadas com os seguintes fungicidas nas respectivas doses de i.a./ 100 kg de sementes: captana (150,0 g, tiofanato metílico (75,0 mL, triflumizole (45,0 g, triticonazole (45,0 mL, triadimenol (13,5 mL, tolyfluanida (75,0 g, tebuconazole (5,0 mL, fludioxonil (5,0 mL, difeconazole (30,0 mL e thiabendazole (30,0 mL. Em laboratório os fungicidas triflumizol, triadimenol, triticonazole, thiabendazole e tiofanato metílico reduziram significativamente a incidência de F. graminearum nas sementes em relação à testemunha. Thiabendazole e tiofanato metílico foram superiores ao triflumizol e triadimenol; os demais fungicidas comportaram-se de maneira semelhantes à testemunha. Não houve influência dos fungicidas na germinação das sementes. Em casa de vegetação a emergência e velocidade de emergência de plântulas, também não foram afetadas. Por outro lado, triadimenol interferiu negativamente na altura de plântulas aos sete DAS e captana, trticonazole, tebuconazole e triadimenol aos 14 DAS.The effect of chemical treatment of wheat seeds (cv. "BR 18 Terena" was studied under laboratory and greenhouse conditions using the following fungicides with the respective doses of i.a./100 kg of seeds: captan (150 g, methilic tioafanate (75 mL, triflumizole (45 g, triticonazole (45 mL triadimenol (13.5 mL, tolyfluanid (75 g, tebuconazole (5 mL, fludioxonil (5 mL, difeconazole (30 mL and thiabendazole (30 mL. In laboratory, seeds health and germination were evaluated while under greenhouse conditions were evaluated emergency, velocity of emergency and the height of seedlings. The fungicides triflumizole, triadimenol, triticonazole, thiabendazole and methilic tioafanate reduced significantly the incidence of F. graminearum in the seeds with thiabendazole

  20. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum.

    Science.gov (United States)

    Hou, Rui; Jiang, Cong; Zheng, Qian; Wang, Chenfang; Xu, Jin-Rong

    2015-12-01

    Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium graminearum, is harmful to humans and animals. Because different nitrogen sources are known to have opposite effects on DON production, in this study, we characterized the regulatory mechanisms of the AREA transcription factor in trichothecene biosynthesis. The ΔareA mutant showed significantly reduced vegetative growth and DON production in cultures inoculated with hyphae. Suppression of TRI gene expression and DON production by ammonium were diminished in the ΔareA mutant. The deletion of AREA also affected the stimulatory effects of arginine on DON biosynthesis. The AreA-green fluorescent protein (GFP) fusion complemented the ΔareA mutant, and its localization to the nucleus was enhanced under nitrogen starvation conditions. Site-directed mutagenesis showed that the conserved predicted protein kinase A (PKA) phosphorylation site S874 was important for AreA function, indicating that AreA may be a downstream target of the cyclic adenosine monophosphate (cAMP)-PKA pathway, which is known to regulate DON production. We also showed that AreA interacted with Tri10 in co-immunoprecipitation assays. The interaction of AreA with Tri10 is probably related to its role in the regulation of TRI gene expression. Interestingly, the ΔareA mutant showed significantly reduced PKA activity and expression of all three predicted ammonium permease (MEP) genes, in particular MEP1, under low ammonium conditions. Taken together, our results show that AREA is involved in the regulation of DON production by ammonium suppression and the cAMP-PKA pathway. The AreA transcription factor may interact with Tri10 and control the expression and up-regulation of MEP genes.

  1. 玉米穗腐病药剂防治研究∗%Study on Chemical Control of Maize Ear Rot Caused by Fusarium gra-minearum

    Institute of Scientific and Technical Information of China (English)

    卢宝慧; 吴庠玉; 刘燕妮; 南楠; 夏纬跃; 马贵龙; 高洁

    2014-01-01

    Indoor toxicity of thirteen fungicides against Fusarium graminearum was tested by myceli⁃um growth rate method. The results showed that the toxicity of carbendazim, flusilazole, triflumizole, propiconazole, mancozeb and diniconazole to the pathogen was stronger than that of others,and EC50 value was 0.11, 0.22, 0.26, 0.88, 1.09 and 2.99μg/mL, respectively. Field efficiency trials of four fungicides, carbendazim, flusilazole, propiconazole and mancozeb, indicated that propiconazole and flusilazole had relatively high control efficiency on maize ear rot, 66.14% and 66.04% respec⁃tively in field at active ingredient dosage of 150.00 g/hm2 and 51.00 g/hm2 . The results of yield de⁃termination showed that the plot treated by propiconazole at active ingredient dosage of 150.00 g/hm2 had the highest yield,followed by flusilazole at dosage of 51.00 g/hm2%采用菌丝生长速率法测定了13种杀菌剂对玉米穗腐病菌( Fusarium graminearum)的室内毒力。试验结果表明:多菌灵、氟硅唑、氟菌唑、丙环唑、代森锰锌和烯唑醇6种杀菌剂对穗腐病菌抑菌效果较好,其EC50值分别为0�11,0�22,0�26,0�88,1�09,2�99μg/mL。对多菌灵、氟硅唑、丙环唑和代森锰锌4种药剂进一步进行了田间药效试验,有效成分用量丙环唑150�00 g/hm2、氟硅唑51�00 g/hm2在发病初期穗部喷施对玉米穗腐病的田间防治效果分别达66�14%和66�04%。产量测定结果表明:丙环唑用量为150�00 g/hm2处理的小区产量最高,增产效果显著,其次是氟硅唑用量为51�00 g/hm2。

  2. A microsatellite based method for quantification of fungi in decomposing plant material elucidates the role of Fusarium graminearum DON production in the saprophytic competition with Trichoderma atroviride in maize tissue microcosms.

    Science.gov (United States)

    Naef, Andreas; Senatore, Mauro; Défago, Geneviève

    2006-02-01

    Common PCR assays for quantification of fungi in living plants cannot be used to study saprophytic colonization of fungi because plant decomposition releases PCR-inhibiting substances and saprophytes degrade the plant DNA which could serve as internal standard. The microsatellite PCR assays presented here overcome these problems by spiking samples prior to DNA extraction with mycelium of a reference strain. PCR with fluorescent primers co-amplifies microsatellite fragments of different length from target and reference strains. These fragments were separated in a capillary sequencer with fluorescence detection. The target/reference ratio of fluorescence signal was used to calculate target biomass in the sample. Such PCR assays were developed for the mycotoxin deoxynivalenol (DON)-producing wheat and maize pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride, using new microsatellite markers. In contrast to real-time PCR assays, the novel PCR assays showed reliable fungal biomass quantification in samples with differentially decomposed plant tissue. The PCR assays were used to quantify the two fungi after competitive colonization of autoclaved maize leaf tissue in microcosms. Using a DON-producing F. graminearum wild-type strain and its nontoxigenic mutant we found no evidence for a role of DON production in F. graminearum defense against T. atroviride. The presence of T. atroviride resulted in a 36% lower wild-type DON production per biomass.

  3. Antibacterial secondary metabolites from an endophytic fungus, Fusarium solani JK10.

    Science.gov (United States)

    Kyekyeku, James Oppong; Kusari, Souvik; Adosraku, Reimmel Kwame; Bullach, Anke; Golz, Christopher; Strohmann, Carsten; Spiteller, Michael

    2017-06-01

    Extensive chemical investigation of the endophytic fungus, Fusarium solani JK10, harbored in the root of the Ghanaian medicinal plant Chlorophora regia, using the OSMAC (One Strain Many Compounds) approach resulted in the isolation of seven new 7-desmethyl fusarin C derivatives (1-7), together with five known compounds (8-12). The structures of the new compounds were elucidated by analysis of their spectroscopic data including 1D, 2D NMR, HRESI-MS(n) and IR data. The relative configuration of compounds 1/2 was deduced by comparison of their experimental electronic circular dichroism (ECD) and optical rotation data with those reported in literature. The absolute configuration of solaniol (10), a known compound with undefined absolute stereochemistry, was established for the first time by X-ray diffraction analysis of a single-crystal structure using Cu-Kα radiation. The antibacterial activities of the crude fungal extract and the compounds isolated from the fungus were evaluated against some clinically important bacterial strains such as Staphylococcus aureus and Bacillus subtilis, as well as an environmental strain of Escherichia coli and the soil bacterium Acinetobacter sp. BD4. Compounds 3/4 and 6 exhibited antibacterial efficacies against the soil bacterium Acinetobacter sp., comparable to the reference standard streptomycin. All the tested compounds (1-9) demonstrated antibacterial activity against the environmental strain of E. coli, whereas no antibacterial activity was observed against S. aureus and B. subtilis. The antibacterial activity of the isolated compounds typically against E. coli and Acinetobacter sp. provides further insight into the possible involvement of root-borne endophytes in chemical defense of their host plants in selected ecological niches. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew.

    Science.gov (United States)

    Garyali, Sanjog; Kumar, Anil; Reddy, M Sudhakara

    2013-10-28

    Different endophytic fungi isolated from Himalayan Yew plants were tested for their ability to produce taxol. The BAPT gene (C-13 phenylpropanoid side chain-CoA acetyl transferase) involved in the taxol biosynthetic pathway was used as a molecular marker to screen taxol-producing endophytic fungi. Taxol extracted from fungal strain TBPJ-B was identified by HPLC and MS analysis. Strain TBPJ-B was identified as Fusarium redolens based on the morphology and internal transcribed spacer region of nrDNA analysis. HPLC quantification of fungal taxol showed that F. redolens was capable of producing 66 μg/l of taxol in fermentation broth. The antitumour activity of the fungal taxol was tested by potato disc tumor induction assay using Agrobacterium tumefaciens as the tumor induction agent. The present study results showed that PCR amplification of genes involved in taxol biosynthesis is an efficient and reliable method for prescreening taxol-producing fungi. We are reporting for the first time the production of taxol by F. redolens from Taxus baccata L. subsp. wallichiana (Zucc.) Pilger. This study offers important information and a new source for the production of the important anticancer drug taxol by endophytic fungus fermentation.

  5. First Record of Fusarium verticillioides as an Entomopathogenic Fungus of Grasshoppers

    Science.gov (United States)

    Pelizza, SA; Stenglein, SA; Cabello, MN; Dinolfo, MI; Lange, CE

    2011-01-01

    Fusarium verticillioides (Saccardo) Nirenberg (Ascomycota: Hypocreales) is the most common fungus reported on infected corn kernels and vegetative tissues, but has not yet been documented as being entomopathogenic for grasshoppers. Grasshoppers and locusts represent a large group of insects that cause economic damage to forage and crops. Tropidacris collaris (Stoll) (Orthoptera: Acridoidea: Romaleidae) is a large and voracious grasshopper that in recent years has become an increasingly recurrent and widespread pest in progressively more greatly extended areas of some of in Argentina's northern provinces, with chemical insecticides being currently the only means of control. During February and March of 2008–09, nymphs and adults of T. collaris were collected with sweep nets in dense woodland vegetation at a site near Tres Estacas in western Chaco Province, Argentina, and kept in screened cages. F. verticillioides was isolated from insects that died within 10 days and was cultured in PGA medium. Pathogenicity tests were conducted and positive results recorded. Using traditional and molecular-biological methods, an isolate of F. verticillioides was obtained from T. collaris, and its pathogenecity in the laboratory was shown against another harmful grasshopper, Ronderosia bergi (Stål) (Acridoidea: Acrididae: Melanoplinae). The mortality caused by F. verticillioides on R. bergi reached 58 ± 6.53% by 10 days after inoculation. This is the first record of natural infection caused by F. verticillioides in grasshoppers. PMID:21867437

  6. Fusarium

    DEFF Research Database (Denmark)

    Thrane, Ulf

    2014-01-01

    The genus Fusarium is one of the most important mycotoxigenic fungal genera in food and feed. Nearly all species are able to produce mycotoxins of which many are under international regulation. Well-known Fusarium mycotoxins are fumonisins, zearalenone, deoxynivalenol, and additional trichothecenes...

  7. 小麦内生细菌鉴定及其对小麦赤霉病菌的拮抗作用%Antagonism of Wheat Endophytic Bacteria Identification on Fusarium graminearum Schw.in Wheat

    Institute of Scientific and Technical Information of China (English)

    温辉芹; 裴自友; 张立生; 程天灵; 李雪

    2012-01-01

    为筛选小麦赤霉病的强拮抗菌,探索生物防治的可行性,对来自福建的小麦内生拮抗菌进行了鉴定和分析研究.结果表明,5个菌株均为芽孢杆菌,对小麦赤霉病都有拮抗作用,其中,菌株JY1-9,JY 1-3的抑制作用明显高于其他3个菌株.JY 1-9,JY 1-3菌株作为小麦赤霉病的生防材料,具有潜在的生防应用前景.%To screen a germ which has significant antagonism against wheat Fusarium head blight and to find an effective biological method to control it, endogenous antagonistic bacteria from Fujian province were analyzed. The results showed that five strains were Bacillus spp. and they had antagonistic effects on Fusarium graminearum, of which strains of JY1 -9, JY1 -3 inhibition wa9 significantly higher than the other three strains. It was suggested that strains JY1-9 and JY1-3 had the potentiality in biological control of wheat Fusarium head blight.

  8. Molecular Detection of Mycotoxin Chemotypes of Seeds Borned Fusarium graminearum Clade on Maize%我国北方玉米子粒禾谷镰孢菌群产毒素化学型检测分析

    Institute of Scientific and Technical Information of China (English)

    董怀玉; 徐婧; 王丽娟; 刘可杰; 姜钰; 胡兰; 张明会; 徐秀德

    2014-01-01

    利用镰孢菌产毒素基因特异性引物,对分离自我国北方春玉米区玉米子粒的禾谷镰孢菌复合种群(Fusarium graminearum clade)的43株镰孢菌菌株进行产毒素化学型检测.结果表明,我国北方玉米子粒中携带的禾谷镰孢菌(包括F.graminearum和F.asiaticum)检测到2种产毒素化学型,F.graminearum只产生脱氧雪腐镰孢烯醇(Deoxynivalenol,DON),F.asiaticum可以产生脱氧雪腐镰孢烯醇(Deoxynivalenol,DON)和雪腐镰孢烯醇(Nivalenol,NIV).

  9. The arbuscular mycorrhizal fungus, Glomus irregulare, controls the mycotoxin production of Fusarium sambucinum in the pathogenesis of potato.

    Science.gov (United States)

    Ismail, Youssef; McCormick, Susan; Hijri, Mohamed

    2013-11-01

    Trichothecenes are an important family of mycotoxins produced by several species of the genus Fusarium. These fungi cause serious disease on infected plants and postharvest storage of crops, and the toxins can cause health problems for humans and animals. Unfortunately, there are few methods for controlling mycotoxin production by fungal pathogens, and most rely on chemicals, creating therefore subsequent problems of chemical resistance. We tested the impact of the symbiotic arbuscular mycorrhizal fungus Glomus irregulare on a trichothecene-producing strain of Fusarium sambucinum isolated from naturally infected potato plants. Using dual in vitro cultures, we showed that G. irregulare inhibited the growth of F. sambucinum and significantly reduced the production of the trichothecene 4, 15-diacetoxyscirpenol (DAS). Furthermore, using G. irregulare-colonized potato plants infected with F. sambucinum, we found that the G. irregulare treatment inhibited the production of DAS in roots and tubers. Thus, in addition to the known beneficial effect of mycorrhizal symbiosis on plant growth, we found that G. irregulare controlled the growth of a virulent fungal pathogen and reduced production of a mycotoxin. This previously undescribed, biological control of Fusarium mycotoxin production by G. irregulare has potential implications for improved potato crop production and food safety.

  10. Systemic Growth of F. graminearum in Wheat Plants and Related Accumulation of Deoxynivalenol

    Directory of Open Access Journals (Sweden)

    Antonio Moretti

    2014-04-01

    Full Text Available Fusarium head blight (FHB is an important disease of wheat worldwide caused mainly by Fusarium graminearum (syn. Gibberella zeae. This fungus can be highly aggressive and can produce several mycotoxins such as deoxynivalenol (DON, a well known harmful metabolite for humans, animals, and plants. The fungus can survive overwinter on wheat residues and on the soil, and can usually attack the wheat plant at their point of flowering, being able to infect the heads and to contaminate the kernels at the maturity. Contaminated kernels can be sometimes used as seeds for the cultivation of the following year. Poor knowledge on the ability of the strains of F. graminearum occurring on wheat seeds to be transmitted to the plant and to contribute to the final DON contamination of kernels is available. Therefore, this study had the goals of evaluating: (a the capability of F. graminearum causing FHB of wheat to be transmitted from the seeds or soil to the kernels at maturity and the progress of the fungus within the plant at different growth stages; (b the levels of DON contamination in both plant tissues and kernels. The study has been carried out for two years in a climatic chamber. The F. gramineraum strain selected for the inoculation was followed within the plant by using Vegetative Compatibility technique, and quantified by Real-Time PCR. Chemical analyses of DON were carried out by using immunoaffinity cleanup and HPLC/UV/DAD. The study showed that F. graminearum originated from seeds or soil can grow systemically in the plant tissues, with the exception of kernels and heads. There seems to be a barrier that inhibits the colonization of the heads by the fungus. High levels of DON and F. graminearum were found in crowns, stems, and straw, whereas low levels of DON and no detectable levels of F. graminearum were found in both heads and kernels. Finally, in all parts of the plant (heads, crowns, and stems at milk and vitreous ripening stages, and straw at

  11. Dipeptide transporters in Fusarium graminearum

    DEFF Research Database (Denmark)

    Droce, Aida; Giese, Henriette; Søndergaard, Teis;

    Fungi have evolved different transport mechanisms in order to utilize both inorganic and organic nitrogen sources because nitrogen availability often is one of the limiting factors in pathogenic processes. In this study we have characterized four di/tripeptide transporters in the necrotrophic plant...

  12. Biological control of Cucurbita pepo var texana (Texas gourd) in cotton (Gossypium hirsutum) with the fungus Fusarium solani f sp Cucurbitae

    Science.gov (United States)

    Experiments were conducted to evaluate various formulations and application methods of the fungus Fusarium solani f. sp. cucurbitae (FSC) for controlling Texas gourd (Cucurbita pepo var. texana) in cotton (Gosssypium hirsutum). In greenhouse tests, Texas gourd was controlled 93% and 96%, respective...

  13. Utilization of high performance liquid chromatography coupled to tandem mass spectrometry for characterization of 8-O-methylbostrycoidin production by species of the fungus Fusarium

    Science.gov (United States)

    The pigment, 8-O-methylbostrycoidin is a polyketide metabolite produced by multiple species of the fungus Fusarium that infects plant crops, including maize. A technique was developed for the analysis of 8-O-methylbostrycoidin by high performance liquid chromatography coupled to electrospray ionizat...

  14. 禾谷镰孢菌侵染小麦胚芽鞘的分子策略研究%In Planta Stage-Specific Fungal Gene Profiling Elucidates the Molecular Strategies of Fusarium graminearum Growing inside Wheat Coleoptiles

    Institute of Scientific and Technical Information of China (English)

    袁婷露; 张晓伟; 贾雷杰; 江刚; 张栋

    2016-01-01

    The ascomycete Fusarium graminearum is a destructive fungal pathogen of wheat. To better understand how this pathogen proliferates within the host plant, we tracked pathogen growth inside wheat coleoptiles, and then examined pathogen gene expression inside wheat coleoptiles at 16, 40 and 64 hours post-inoculation (hpi) using laser capture microdissection and microarray analysis. A total of 344 genes were identified to be preferentially expressed during hyphal growth in planta. Evaluation of 134 putative plant cell wall degrading enzyme genes suggests limited cell wall degradation at 16 hpi and extensive degradation at 64 hpi. Evaluation of reactive oxygen species (ROS)-related enzymes indicates that F. graminearum primarily scavenges extracellular ROS in advance of a later burst of pathogen-produced extracellular ROS-generating enzymes. The expression patterns of genes involved in primary metabolic pathways suggest that F. graminearum might rely on the glyoxylate cycle at an early stage of plant infection. A novel secondary metabolite biosynthesis gene cluster was specifically induced at 64 hpi and was required for virulence. Our results indicate that F. graminearum initiates infection of coleoptiles using covert growth strategies, and switches to overt cellular destruction of tissues at an advanced stage of infection.%禾谷镰孢(Fusarium graminearum)是一种丝状真菌,广泛侵染多种农作物,禾谷镰孢的基因组编码约14000个基因,已有上百个基因被证明与其致病性相关,但禾谷镰孢致病机制的全貌仍不清楚。该研究组运用激光显微切割技术和芯片杂交,以小麦赤霉病的病原真菌-禾谷镰孢为对象,直接从感染的小麦组织中分离出不同侵染阶段的禾谷镰孢,获得阶段特异性的体内生长真菌全基因表达谱;通过发展细胞类型特异性芯片数据分析相关生物信息学方法,系统分析禾谷镰孢在宿主体内的表达谱动态,观察到

  15. 小麦赤霉病菌拮抗菌AF0907的分离鉴定及其拮抗特性%Isolation, identification of antagonistic bacteria AF0907 against Fusarium graminearum and its characteristics

    Institute of Scientific and Technical Information of China (English)

    徐剑宏; 王建伟; 胡晓丹; 祭芳; 史建荣

    2013-01-01

    To isolate and screen antifungal bacteria against Fusarium graminearum,and to study the antagonistic characteristics of the bacteria,serial dilution and confrontation culture were conducted on wheat rhizospheric soil.Antifungal strain was then identified according to the morphological,physiological,biochemical characteristics and 16S rDNA gene sequencing,and the phylogenetic tree of the antifungal bacteria was constructed by MEGA5.0.The antagonistic activities of the bacteria against other plant pathogens were detected by confrontation culture,and the field effect of antagonistic bacteria against wheat scab was investigated by spraying the antagonistic bacteria on wheat during heading stage.Strain AF0907 with strong inhibitory activity against F.graminearum was isolated from soil,and was identified as Bacillus subtilis.AF0907 showed antagonistic activities against other ten plant pathogens besides F.graminearum,and could inhibit the hyphal growth and spore germination of F.graminearum.Field experiments revealed that AF0907 effectively reduced the incidence of wheat scab,and the disease control efficiency could reach up to 40.37% under the condition of spraying solution of antifungal bacteria followed by spores of F.graminearum.%为了分离筛选对小麦赤霉病菌有拮抗作用的细菌,并研究其拮抗特性.采用系列稀释法和平板对峙法从土壤中分离筛选小麦赤霉病菌拮抗菌;采用16 SrDNA序列分析和生理生化特性进行拮抗菌的鉴定;采用平板对峙法研究拮抗菌的拮抗谱;通过田间喷施试验研究拮抗菌对小麦赤霉病的防治效果.结果显示:从土壤中分离筛选到小麦赤霉病菌拮抗菌AF0907,根据其形态、生理生化特性以及16 SrDNA序列分析,菌株AF0907被鉴定为枯草芽孢杆菌(Bacillus subtilis).AF0907对10种常见的植物病原菌都具有拮抗效果;菌株AF0907可以抑制禾谷镰刀菌菌丝的生长,也能抑制病原菌孢子的萌发.田间试

  16. Genome sequence of Fusarium oxysporum f. sp. melonis, a fungus causing wilt disease on melon

    Science.gov (United States)

    This manuscript reports the genome sequence of F. oxysporum f. sp. melonis, a fungal pathogen that causes Fusarium wilt disease on melon (Cucumis melo). The project is part of a large comparative study designed to explore the genetic composition and evolutionary origin of this group of horizontally ...

  17. Cloning and expression of a beta-xylosidase from the fungus Fusarium verticillioides

    Science.gov (United States)

    In silico analysis of the genome of Fusarium verticillioides, an endophyte and pathogen of maize, revealed several genes with potential use in the hydrolysis of hemicelluloses. We have cloned a gene, FVEG_05677.3, with putative xylosidase and arabinofuranosidase activities. The gene was expressed ...

  18. Draft Genome Sequence of Phytopathogenic Fungus Fusarium fujikuroi CF-295141, Isolated from Pinus sylvestris

    Science.gov (United States)

    Bertoni-Mann, Michele; Sánchez-Hidalgo, Marina; González-Menéndez, Victor

    2016-01-01

    Here, we report the draft genome sequence of a new strain of Fusarium fujikuroi, isolated from Pinus sylvestris, which was also found to produce the mycotoxin beauvericin. The Illumina-based sequence analysis revealed an approximate genome size of 44.2 Mbp, containing 164 secondary metabolite biosynthetic clusters. PMID:27795279

  19. A Copper Coordination Compound Produced by a Marine Fungus Fusarium sp. ZZF51 with Biosorption of Cu(Ⅱ) Ions

    Institute of Scientific and Technical Information of China (English)

    TAN Ni; PAN Jia-Hui; PENG Guang-Tian; MOU Cheng-Bo; TAO Yi-Wen; SHE Zhi-Gang; YANG Ze-Liang; ZHOU Shi-Ning; LIN Yong-Cheng

    2008-01-01

    A copper coordination compound ZZF51 (A) named bis(5-butyl-2-pyridinecarboxylato-N1,O2)-copper, the first time found in the nature, was isolated from a marine endophytic fungus Fusarium sp. ZZF51 from the South China Sea coast. Its structure was elucidated using spectroscopic methods and single crystal X-ray diffraction analysis.The antimicrobial cytotoxicity experiments exhibited that ZZF51(A) had mutagenicity activities against four aerobic reference strains Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Salmonella enteritidis with respective MIC values of 12.5, 25, 12.5, and 50 μg/mL. The anti-cancer tests showed that the compound had strong inhibitory activities against three human cancer lines KB, KBv200, and HepG2 with IC50 values of 3.54, 3.68 and 25.12 μg/mL respectively. In the course of investigating the source of ZZF51(A) in biomass, it was found that the output of ZZF51(A) was largely influenced by the amount of CuCl2 in the liquid medium, and the fungus (No.ZZF51) had two notable characteristics: endurance of high concentration Cu(Ⅱ) ions and biosorption of Cu(Ⅱ) ions.

  20. The role of strigolactones during plant interactions with the pathogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Foo, Eloise; Blake, Sara N; Fisher, Brendan J; Smith, Jason A; Reid, James B

    2016-06-01

    Strigolactones (SLs) do not influence spore germination or hyphal growth of Fusarium oxysporum. Mutant studies revealed no role for SLs but a role for ethylene signalling in defence against this pathogen in pea. Strigolactones (SLs) play important roles both inside the plant as a hormone and outside the plant as a rhizosphere signal in interactions with mycorrhizal fungi and parasitic weeds. What is less well understood is any potential role SLs may play in interactions with disease causing microbes such as pathogenic fungi. In this paper we investigate the influence of SLs on the hemibiotrophic pathogen Fusarium oxysporum f.sp. pisi both directly via their effects on fungal growth and inside the plant through the use of a mutant deficient in SL. Given that various stereoisomers of synthetic and naturally occuring SLs can display different biological activities, we used (+)-GR24, (-)-GR24 and the naturally occurring SL, (+)-strigol, as well as a racemic mixture of 5-deoxystrigol. As a positive control, we examined the influence of a plant mutant with altered ethylene signalling, ein2, on disease development. We found no evidence that SLs influence spore germination or hyphal growth of Fusarium oxysporum and that, while ethylene signalling influences pea susceptibility to this pathogen, SLs do not.

  1. Use of Trichoderma spp.for biological control of the livestock feed contaminant fungus Fusarium proliferatum

    Institute of Scientific and Technical Information of China (English)

    Ruocco M; Ferraioli S; Scala F; Lorito M; Pane F; Ritieni A; Lanzuise S; Ambrosino P; Marra R; Woo S L; Ciliento R; Soriente I

    2004-01-01

    @@ Fusarium spp. are pathogens of many important agricultural crops, and are often strong mycotoxin producers. Fusarium proliferatum, in particular, causes disease in cereals and secretes the toxin Beauvaricin that contaminates livestock feed and cereals, producing a variety of toxicity symptoms ranging from poor weight gain to mortality. Beauvaricin is a cyclodepsipeptide and acts as a potent mycotoxin known to have insecticidal properties. This compound is highly toxic to human cell lines,where it induces apoptosis and specifically inhibits cholesterol acetyltransferase. Nothing is known about the role of this mycotoxin during the interaction of F. proliferatum with other microorganisms, including the fungal antagonists Trichoderma spp. In vitro tests have demonstrated that the antagonistic and mycoparasitic activity of Trichoderma is not inhibited by the presence of Beauvaricin at concentrations up to 10 mg/kg in the substrate. In vivo biocontrol assays on barley and wheat with Trichoderma against F. proliferatum isolates, producing and non-producing Beauvaricin, confirmed the ability of the antagonist to control this pathogen in all cases. Also Trichoderma culture filtrates obtained in conditions that promote _Cell Wall _Degrading Enzyme (CWDE) secretion, were able to inhibit spore germination of different F. proliferatum isolates.These results suggest the possibility of using Trichoderma and/or its metabolites to control contaminants of livestock feed by mycotoxin-producing Fusarium.

  2. Screening of toxin production influence factors of Fusarium graminearum with predictive microbiology method%禾谷镰刀菌产毒影响因子预测微生物学筛选

    Institute of Scientific and Technical Information of China (English)

    徐得月; 王伟; 陈西平; 林肖惠; 李玉伟; 李凤琴

    2013-01-01

    Objective To screen key factors affecting toxin production of Fusarium graminearum ( F. graminea-rum) with predictive microbiology for prediction of toxin production under different natural conditions. Methods The L18-Hunter and Plackett-Burman(PB) models were developed based on wheat kernals,corn flakes,and rice inoculated with F. graminearum to screen the important factors(temperature,ventilatory capacity,water content,pH value,illumination , the amount and ingredients of the medium, and incubation time) which may affect the toxin production of F. graminearum. Results The results of L18-Hunter model showed that only 3-acetyl-deoxynivalenol(3-A-DON) ,15-aetyl-deoxynivalenol (15-A-DON) and total toxins produced by strain 3. 4522 were statistically significant. The coefficients of the regression equations indicated that water content and incubation time were the key factors affecting the production of 3-A-DON,15-A-DON and total toxins by F. graminearum strain 3. 4522. While the results of Plackett-Burman model designed on the basis of L18-Hunter results showed that the absolute concentration of doxynivalenol (DON) and the total toxins,logarithm concentration of DON,zearalenone(ZEN) ,DON and its derivatives, type B trichothecenes,and the total toxins were statistically significant P = 0. 0345 ,0. 0148,0. 0022,0. 0029,0. 0068,0. 0067, and 0. 0006) , respectively. The R2 of the models were 0. 8124,0. 8616,0. 9287,0. 9216,0. 8945,0. 8951,and 0. 9543 ,respectively. The coefficients of the regression equations showed that incubation time, temperature, and initial pH value of the matrix were the key factors for toxin production of F. graminearum strain 3. 4522. Conclusion Incubation time,water content within a certain range(20 -50% ),temperature,and initial pH value of culture base are the key factors affecting toxins production of F. graminearum.%目的 对可能影响禾谷镰刀菌产毒的关键因子进行筛选,为不同自然条件下预测禾谷镰刀菌的产毒

  3. Polyketide synthase from Fusarium

    DEFF Research Database (Denmark)

    Kvesel, Kasper; Wimmer, Reinhard; Sørensen, Jens Laurids;

    described, even fewer from fungi and none from Fusarium species. Multidomain proteins can be quite challenging to work with, which is why the project intends to solve the 3D-structures of single domains of PKS’s. In this project, the plan is to clone, express and purify the Acyl-carrier protein (ACP) domain...... from PKS6 in Fusarium graminearum for structural analysis....

  4. Enhancement of Diosgenin Production in Dioscorea zingiberensis Cell Cultures by Oligosaccharides from Its Endophytic Fungus Fusarium oxysporum Dzf17

    Directory of Open Access Journals (Sweden)

    Ligang Zhou

    2011-12-01

    Full Text Available The effects of the oligosaccharides from the endophytic fungus Fusarium oxysporum Dzf17 as elicitors on diosgenin production in cell suspension cultures of its host Dioscorea zingiberensis were investigated. Three oligosaccharides, DP4, DP7 and DP10, were purified from the oligosaccharide fractions DP2-5, DP5-8 and DP8-12, respectively, which were prepared from the water-extracted mycelial polysaccharide of the endophytic fungus F. oxysporum Dzf17. When the cell cultures were treated with fraction DP5-8 at 20 mg/L on day 26 and harvested on day 32, the maximum diosgenin yield (2.187 mg/L was achieved, which was 5.65-fold of control (0.387 mg/L. When oligosaccharides DP4, DP7 and DP10 were individually added to 26-day-old D. zingiberensis cell cultures at concentrations of 2, 4, 6, 8 and 10 mg/L in medium, DP7 at 6 mg/L was found to significantly enhance diosgenin production, with a yield of 3.202 mg/L, which was 8.27-fold of control. When the cell cultures were treated with DP7 twice on days 24 and 26, and harvested on day 30, both diosgenin content and yield were significantly increased and reached the maximums of 1.159 mg/g dw and 4.843 mg/L, both of which were higher than those of single elicitation, and were 9.19- and 12.38-fold of control, respectively.

  5. Hexacyclopeptides secreted by an endophytic fungus Fusarium solani N06 act as crosstalk molecules in Narcissus tazetta.

    Science.gov (United States)

    Wang, Wen-Xuan; Kusari, Souvik; Sezgin, Selahaddin; Lamshöft, Marc; Kusari, Parijat; Kayser, Oliver; Spiteller, Michael

    2015-09-01

    The basis of chemical crosstalk in plants and associated endophytes lies in certain so-called communication molecules that are responsible for plant-microbe and microbe-microbe interactions. Consequently, elucidating the factors that affect the nature, distribution, and amount of these molecules and how they impact the interaction among endophytes and associated organisms is essential to understand the true potential of endophytes. In the present study, we report the discovery of nine hexacyclopeptides from an endophytic fungus, Fusarium solani, isolated from the bulb of Narcissus tazetta, and their selective accumulation by an endophytic bacterium, Achromobacter xylosoxidans isolated from the same tissue. We used matrix-assisted laser desorption ionization imaging high-resolution mass spectrometry (MALDI-imaging-HRMS) to firstly identify and visualize the spatial distribution of the hexacyclopeptides produced by endophytic F. solani. After culture condition optimization, their sequence was identified to be cyclo((Hyp or Dhp)-Xle-Xle-(Ala or Val)-Thr-Xle) (Dhp: dehydroproline) by the characteristic a, b, or y ions using liquid chromatography tandem mass spectrometry (LC-HRMS(n)). These hexacyclopeptides were confirmed to be fungal biosynthetic products by deuterium labeling experiments. Finally, in order to understand the plausible ecological relevance of one or more of the discovered hexacyclopeptides within the contexts of microbial "neighbor communication," we devised a dual-culture setup to visualize using MALDI-imaging-HRMS how the hexacyclopeptides released by the endophytic fungus are accumulated by another endophytic bacterium, A. xylosoxidans, isolated from the same bulb tissue. This work exemplifies the relevance of cyclopeptides in endophyte-endophyte interspecies neighbor communication occurring in nature. Such communication strategies are evolved by coexisting endophytes to survive and function in their distinct ecological niches.

  6. Sensitivity ofFusarium graminearum from Hubei province to carbendazim, tebuconazole and prochloraz%湖北省小麦赤霉病菌对多菌灵、戊唑醇和咪鲜胺的敏感性

    Institute of Scientific and Technical Information of China (English)

    宋阳阳; 林杨; 罗汉钢; 罗朝喜

    2016-01-01

    In 2014, 206 single-spore isolates ofFusarium graminearum collected from seven districts in Hubei province were identified by morphology. Sensitivity of 100 randomly selected isolates to carbendazim, tebuconazole and prochloraz was assayed by using mycelium growth inhibition method, and the sensitivity baseline was established. The results showed that the EC50 values of carbendazim, tebuconazole and prochloraz toF. graminearum isolates were in the ranges of 0.115-0.705, 0.006-1.356 and 0.002-0.370 μg/mL, and mean values of 0.248, 0.181 and 0.040 μg/mL, respectively. The sensitivity distributions of the 100 isolates to these three fungicides all followed unimodal quasi-normal distribution , which indicated that the EC50 mean values could be used as the sensitivity baseline ofF. graminearum in Hubei province to these three fungicides. Using 10 times of the mean EC50 value of each fungicide as the discriminatory dose, the sensitivity ofF. graminearum in Hubei province was monitored from 2015–2016. The study showed that the average inhibition rates of carbendazim, tebuconazole and prochloraz toF. graminearum isolates were 100%, 85.14%, 82.35%, respectively, in 2015, and 100%, 76.67%, 73.62%, respectively, in 2016. In summary,F. graminearum isolates in Hubei province still wxhibit high sensitivity to carbendazim, tebuconazole and prochloraz, although the inhibition rates of tebuconazole and prochloraz were slightly decreased in 2016.%对2014年采自中国湖北省7个县、市的206株小麦赤霉病菌样品进行单孢分离与鉴定,并采用菌丝生长速率法随机测定了其中100株菌株对多菌灵、戊唑醇和咪鲜胺的敏感性,建立了其敏感基线。结果表明:多菌灵、戊唑醇和咪鲜胺对湖北省小麦赤霉病菌的 EC50值范围分别为0.115~0.705、0.006~1.356和0.002~0.370μg/mL,平均值分别为0.248、0.181和0.040μg/mL;供试100株小麦赤霉病菌对3种药剂的敏感性频率均呈单峰拟正态

  7. 我国玉米穗腐病致病镰孢种群及禾谷镰孢复合种的鉴定%Identification of Fusarium species and F. graminearum species complex causing maize ear rot in China

    Institute of Scientific and Technical Information of China (English)

    秦子惠; 任旭; 江凯; 武小菲; 杨知还; 王晓鸣

    2014-01-01

    为阐明中国玉米镰孢穗腐病的主要致病镰孢菌种类及其分布特征,采用形态学、培养特征及特异性分子鉴定方法,对采集自我国18省100个县的玉米籽粒样品进行分离鉴定,并通过TEF-1α基因序列测定解析禾谷镰孢复合种的构成.结果表明,在我国引起玉米穗腐病的主要致病菌为镰孢菌,分离频率为56.0%,其次还有青霉菌、曲霉菌、木霉菌等.138个镰孢菌分离物中鉴别出7个种及复合种,其中拟轮枝镰孢菌Fusarium verticillioides(56.5%)和禾谷镰孢复合种F.graminearum species complex(37.7%)为广泛分布的优势致病种类,其余为黄色镰孢菌F.culmorum(2.2%)、层出镰孢菌F.proliferatum(1.5%)、尖镰孢复合种F.oxysporum species complex(0.7%)、茄镰孢复合种F.solani species complex(0.7%)和亚粘团镰孢菌F.subglutinans(0.7%).在禾谷镰孢复合种中鉴定出3个独立种:广泛分布的禾谷镰孢菌F.graminearum sensu stricto(59.6%)、分布在云南、贵州及陕西商洛等南方生态区的南方镰孢菌F.meridionale(25.0%)和分布在内蒙古、吉林、山西、河北及北京等北方生态区的布氏镰孢菌F.boothii(11.5%).

  8. Fungus mediated biosynthesis of WO3 nanoparticles using Fusarium solani extract

    Science.gov (United States)

    Kavitha, N. S.; Venkatesh, K. S.; Palani, N. S.; Ilangovan, R.

    2017-05-01

    Currently nanoparticles were synthesized by emphasis bioremediation process due to less hazardous, eco-friendly and imperative applications on biogenic process. Fungus mediated biosynthesis strategy has been developed to prepare tungsten oxide nanoflakes (WO3, NFs) using the plant pathogenic fungus F.solani. The powder XRD pattern revealed the monoclinic crystal structure with improved crystalline nature of the synthesized WO3 nanoparticles. FESEM images showed the flake-like morphology of WO3, with average thickness and length around 40 nm and 300 nm respectively. The Raman spectrum of WO3 NFs showed their characteristic vibration modes that revealed the defect free nature of the WO3 NFs. Further, the elemental analysis indicated the stoichiometric composition of WO3 phase.

  9. Poly-γ-glutamic acid productivity of Bacillus subtilis BsE1 has positive function in motility and biocontrol against Fusarium graminearum.

    Science.gov (United States)

    Wang, Luyao; Wang, Ning; Mi, Dandan; Luo, Yuming; Guo, Jianhua

    2017-07-01

    In this study, we investigate the relationship between γ-PGA productivity and biocontrol capacity of Bacillus subtilis BsE1; one bacterial isolate displayed 62.14% biocontrol efficacy against Fusarium root rot. The γ-PGA yield assay, motility assay, wheat root colonization assay, and biological control assay were analysed in different γ-PGA yield mutants of BsE1. The pgsB (PGA-synthase-CapB gene) deleted mutant of BsE1 reduced γ-PGA yield and exhibited apparent decline of in vitro motile ability. Deletion of pgsB impaired colonizing capacity of BsE1 on wheat root in 30 days, also lowered biocontrol efficacies from 62.08% (wild type BsE1) to 14.22% in greenhouse experiment against Fusarium root rot. The knockout of pgdS and ggt (genes relate to two γ-PGA degrading enzymes) on BsE1, leads to a considerable improvement in polymer yield and biocontrol efficacy, which attains higher level compared with wild type BsE1. Compared with ΔpgsB mutant, defense genes related to reactive oxygen species (ROS) and phytoalexin expressed changes by notable levels on wheat roots treated with BsE1, demonstrating the functional role γ-PGA plays in biocontrol against Fusarium root rot. γ-PGA is not only important to the motile and plant root colonization ability of BsE1, but also essential to the biological control performed by BsE1 against Fusarium root rot. Our goal in this study is to reveals a new perspective of BCAs screening on bacterial isolates, without good performance during pre-assays of antagonism ability.

  10. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity

    Science.gov (United States)

    Syed, Asad; Ahmad, Absar

    2013-04-01

    The growing demand for semiconductor [quantum dots (Q-dots)] nanoparticles has fuelled significant research in developing strategies for their synthesis and characterization. They are extensively investigated by the chemical route; on the other hand, use of microbial sources for biosynthesis witnessed the highly stable, water dispersible nanoparticles formation. Here we report, for the first time, an efficient fungal-mediated synthesis of highly fluorescent CdTe quantum dots at ambient conditions by the fungus Fusarium oxysporum when reacted with a mixture of CdCl2 and TeCl4. Characterization of these biosynthesized nanoparticles was carried out by different techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Photoluminescence (PL), X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. CdTe nanoparticles shows antibacterial activity against Gram positive and Gram negative bacteria. The fungal based fabrication provides an economical, green chemistry approach for production of highly fluorescent CdTe quantum dots.

  11. Direct MALDI-TOF/TOF analyses of unnatural beauvericins produced by the endophytic fungus Fusarium oxysporum SS46

    Directory of Open Access Journals (Sweden)

    Mayra Vendramini Tuiche

    2014-08-01

    Full Text Available The best time of production of the cyclohexadepsipeptide beauvericin by the endophytic fungus Fusarium oxysporum SS46 in Czapek medium was evaluated. The highest level of beauvericin production was found on day 21 of fermentative culture, as assessed by quantitative analysis by high performance liquid chromatography coupled with a photodiode array detector. Precursor-directed biosynthesis experiments were carried out to produce new analogues of beauvericin by feeding F. oxysporum with ten analogues of L-phenylalanine. In order to evaluate which precursor analogues were incorporated by the microorganism, the obtained extracts were analyzed using matrix-assisted laser desorption ionization - time-of-flight mass spectrometry (MALDI-TOF/TOF. The precursor-directed biosynthesis studies led to the biosynthesis of novel beauvericin derivatives by replacement of one, two, or all three L-phenylalanine residues in beauvericin with DL-3-fluorophenylalanine, L-3-fluorophenylalanine, L-4-fluorophenylalanine, or L-tyrosine. Beyond these precursor analogues, one unit of L-4-aminophenylalanine, L-4-chlorophenylalanine, DL-4-bromophenylalanine, or L-4-bromophenylalanine was also incorporated by the endophyte F. oxysporum SS46. Units of L-4-nitrophenylalanine and L-histidine were not incorporated by the microorganism to produce unnatural beauvericins.

  12. Extraction optimization of water-extracted mycelial polysaccharide from endophytic fungus Fusarium oxysporum Dzf17 by response surface methodology.

    Science.gov (United States)

    Li, Peiqin; Lu, Shiqiong; Shan, Tijiang; Mou, Yan; Li, Yan; Sun, Weibo; Zhou, Ligang

    2012-01-01

    Water-extracted mycelial polysaccharide (WPS) from the endophytic fungus Fusarium oxysporum Dzf17 isolated from Dioscorea zingiberensis was found to be an efficient elicitor to enhance diosgenin accumulation in D. zingigerensis cultures, and also demonstrated antioxidant activity. In this study, response surface methodology (RSM) was employed to optimize the extraction process of WPS from F. oxysporum Dzf17 using Box-Behnken design (BBD). The ranges of the factors investigated were 1-3 h for extraction time (X(1)), 80-100 °C for extraction temperature (X(2)), and 20-40 (v/w) for ratio of water volume (mL) to raw material weight (g) (X(3)). The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis. Statistical analysis showed that the polynomial regression model was in good agreement with the experimental results with the determination coefficient (R(2)) of 0.9978. By solving the regression equation and analyzing the response surface contour plots, the extraction parameters were optimized as 1.7 h for extraction time, 95 °C for extraction temperature, 39 (v/w) for ratio of water volume (mL) to raw material weight (g), and with 2 extractions. The maximum value (10.862%) of WPS yield was obtained when the WPS extraction process was conducted under the optimal conditions.

  13. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts

    Directory of Open Access Journals (Sweden)

    Kelly Ishida

    2014-04-01

    Full Text Available The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus .

  14. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts

    Science.gov (United States)

    Ishida, Kelly; Cipriano, Talita Ferreira; Rocha, Gustavo Miranda; Weissmüller, Gilberto; Gomes, Fabio; Miranda, Kildare; Rozental, Sonia

    2013-01-01

    The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus . PMID:24714966

  15. Jellyifsh Green Fluorescent Protein (GFP) as a Reporter for Fusarium gramminearum Development on Wheat

    Institute of Scientific and Technical Information of China (English)

    QI Jun-xian; LIU Tai-guo; XU Ying; CHEN Huai-gu; GAO Li; LIU Bo; CHEN Wan-quan

    2014-01-01

    The plasmid pGPDGFP under the control of pgpdA promotor was used together with vector pAN7-1 containing the hygromycin resistance cassette to co-transform protoplasts of HG1, Fusarium graminearum from Hubei Province, China. Twelve out of 14 hygromycin-resistant transformants showed green signal under the UV light and contained one or several copies of gfp, as indicated by Southern analysis of genomic DNA digested with different restriction enzymes and hybridized to the gfp probe. A single gfp copy transformant (HG1C5) was selected for further evaluation of 80 Chinese wheat cultivars or advanced lines. The results showed different resistance type to F. graminearum were observed. GFP signals observed in the rachis and adjacent spikes of 70 Chinese wheat lines such as Chuanchongzu 104 indicated both type I (host resistance to the initial infection by the fungus) and type II (resistance to the spread of FHB symptoms within an infected spike) were not observed. While other 10 lines showed type II resistance to F. graminearum with GFP signals only in inoculated spikelets. Development of the mycelium can be intuitively observed and the resistance of wheat to F. graminearum can be identiifed at 7 days post inoculation (dpi) in this way. The results showed no differences were evaluated between the transformed HG1C5 and the non-transgene artiifcial inoculation by SAS paired chi-square test and McNemar’s test (P=0.0625).

  16. RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini

    Science.gov (United States)

    Galindo-González, Leonardo; Deyholos, Michael K.

    2016-01-01

    Fusarium oxysporum f. sp. lini is a hemibiotrophic fungus that causes wilt in flax. Along with rust, fusarium wilt has become an important factor in flax production worldwide. Resistant flax cultivars have been used to manage the disease, but the resistance varies, depending on the interactions between specific cultivars and isolates of the pathogen. This interaction has a strong molecular basis, but no genomic information is available on how the plant responds to attempted infection, to inform breeding programs on potential candidate genes to evaluate or improve resistance across cultivars. In the current study, disease progression in two flax cultivars [Crop Development Center (CDC) Bethune and Lutea], showed earlier disease symptoms and higher susceptibility in the later cultivar. Chitinase gene expression was also divergent and demonstrated and earlier molecular response in Lutea. The most resistant cultivar (CDC Bethune) was used for a full RNA-seq transcriptome study through a time course at 2, 4, 8, and 18 days post-inoculation (DPI). While over 100 genes were significantly differentially expressed at both 4 and 8 DPI, the broadest deployment of plant defense responses was evident at 18 DPI with transcripts of more than 1,000 genes responding to the treatment. These genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signaling, activation of pathogenesis-related genes, and changes in secondary metabolism. Among these, several key genes that consistently appear in studies of plant-pathogen interactions, had increased transcript abundance in our study, and constitute suitable candidates for resistance breeding programs. These included: an induced RPMI-induced protein kinase; transcription factors WRKY3, WRKY70, WRKY75, MYB113, and MYB108; the ethylene response factors ERF1 and ERF14; two genes involved in auxin/glucosinolate precursor synthesis (CYP79B2 and CYP79B3); the flavonoid

  17. How phytohormones shape interactions between plants and the soil-borne fungus Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Xiaotang eDi

    2016-02-01

    Full Text Available Plants interact with a huge variety of soil microbes, ranging from pathogenic to mutualistic. The Fusarium oxysporum (Fo species complex consists of ubiquitous soil inhabiting fungi that can infect and cause disease in over 120 different plant species including tomato, banana, cotton and Arabidopsis. However, in many cases Fo colonization remains symptomless or even has beneficial effects on plant growth and/or stress tolerance. Also in pathogenic interactions a lengthy asymptomatic phase usually precedes disease development. All this indicates a sophisticated and fine-tuned interaction between Fo and its host. The molecular mechanisms underlying this balance are poorly understood. Plant hormone signaling networks emerge as key regulators of plant-microbe interactions in general. In this review we summarize the effects of the major phytohormones on the interaction between Fo and its diverse hosts. Generally, Salicylic Acid (SA signaling reduces plant susceptibility, whereas Jasmonic Acid (JA, Ethylene (ET, Abscisic Acid (ABA and auxin have complex effects, and are potentially hijacked by Fo for host manipulation. Finally, we discuss how plant hormones and Fo effectors balance the interaction from beneficial to pathogenic and vice versa.

  18. Insights from the Fungus Fusarium oxysporum Point to High Affinity Glucose Transporters as Targets for Enhancing Ethanol Production from Lignocellulose

    Science.gov (United States)

    Ali, Shahin S.; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M.

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing. PMID:23382943

  19. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.

    Directory of Open Access Journals (Sweden)

    Shahin S Ali

    Full Text Available Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km((glucose was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.

  20. Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum

    Directory of Open Access Journals (Sweden)

    Balaji Dasaratrao Sawle, Basavaraja Salimath, Raghunandan Deshpande, Mahesh Dhondojirao Bedre, Belawadi Krishnamurthy Prabhakar and Abbaraju Venkataraman

    2008-01-01

    Full Text Available Crystallized and spherical-shaped Au and Au–Ag alloy nanoparticles have been synthesized and stabilized using a fungus, F . semitectum in an aqueous system. Aqueous solutions of chloroaurate ions for Au and chloroaurate and Ag+ ions (1 : 1 ratio for Au–Ag alloy were treated with an extracellular filtrate of F . semitectum biomass for the formation of Au nanoparticles (AuNP and Au–Ag alloy nanoparticles (Au–AgNP. Analysis of the feasibility of the biosynthesized nanoparticles and core–shell alloy nanoparticles from fungal strains is particularly significant. The resultant colloidal suspensions are highly stable for many weeks. The obtained Au and Au–Ag alloy nanoparticles were characterized by the surface plasmon resonance (SPR peaks using a UV-vis spectrophotometer, and the structure, morphology and size were determined by Fourier transform infrared spectroscopy (FTIR, x-ray diffraction (XRD, and transmission electron microscopy (TEM. Possible optoelectronics and medical applications of these nanoparticles are envisaged.

  1. Studies on the management of root-knot nematode, Meloidogyne incognita-wilt fungus, Fusarium oxysporum disease complex of green gram, Vigna radiata cv ML-1108

    Institute of Scientific and Technical Information of China (English)

    HASEEB Akhtar; SHARMA Anita; SHUKLA Prabhat Kumar

    2005-01-01

    Studies were conducted under pot conditions to determine the comparative efficacy of carbofuran at 1 mg a.i./kg soil,bavistin at 1 mg a.i./kg soil, neem (Azadirachta indica) seed powder at 50 mg/kg soil, green mould (Trichoderma harzianum) at 50.0 ml/kg soil, rhizobacteria (Pseudomonas fluorescens) at 50.0 ml/kg soil against root-knot nematode, Meloidogyne incognita-wilt fungus, Fusarium oxysporum disease complex on green gram, Vigna radiata cv ML-1108. All the treatments significantly improved the growth of the plants as compared to untreated inoculated plants. Analysis of data showed that carbofuran and A. indica seed powder increased plant growth and yield significantly more in comparison to bavistin and P.fluorescens. Carbofuran was highly effective against nematode, bavistin against fungus, A. indica seed powder against both the pathogens and both the bioagents were moderately effective against both the pathogens.

  2. Pyramiding PvPGIP2 and TAXI-III But Not PvPGIP2 and PMEI Enhances Resistance Against Fusarium graminearum.

    Science.gov (United States)

    Tundo, Silvio; Kalunke, Raviraj; Janni, Michela; Volpi, Chiara; Lionetti, Vincenzo; Bellincampi, Daniela; Favaron, Francesco; D'Ovidio, Renato

    2016-08-01

    Plant protein inhibitors counteract the activity of cell wall-degrading enzymes (CWDEs) secreted by pathogens to breach the plant cell-wall barrier. Transgenic plants expressing a single protein inhibitor restrict pathogen infections. However, since pathogens secrete a number of CWDEs at the onset of infection, we combined more inhibitors in a single wheat genotype to reinforce further the cell-wall barrier. We combined polygalacturonase (PG) inhibiting protein (PGIP) and pectin methyl esterase inhibitor (PMEI), both controlling the activity of PG, one of the first CWDEs secreted during infection. We also pyramided PGIP and TAXI-III, a xylanase inhibitor that controls the activity of xylanases, key factors for the degradation of xylan, a main component of cereal cell wall. We demonstrated that the pyramiding of PGIP and PMEI did not contribute to any further improvement of disease resistance. However, the presence of both pectinase inhibitors ensured a broader spectrum of disease resistance. Conversely, the PGIP and TAXI-III combination contributed to further improvement of Fusarium head blight (FHB) resistance, probably because these inhibitors target the activity of different types of CWDEs, i.e., PGs and xylanases. Worth mentioning, the reduction of FHB symptoms is accompanied by a reduction of deoxynivalenol accumulation with a foreseen great benefit to human and animal health.

  3. The complete mitogenome of Fusarium gerlachii

    NARCIS (Netherlands)

    Kulik, Tomasz; Brankovics, Balazs; Sawicki, Jakub; van Diepeningen, Anne D

    2014-01-01

    Abstract The structure of the Fusarium gerlachii mitogenome is similar to that of closely related Fusarium graminearum; it has a total length of 93,428 bp, the base composition of the genome is: A (35.3%), T (32.8%), C (14.7%) and G (17.2%). The mitogenome contains 13 protein-coding genes, 2 ribosom

  4. Action and reaction of host and pathogen during Fusarium head blight disease

    DEFF Research Database (Denmark)

    Walter, Stephanie; Nicholson, Paul; Doohan, Fiona M

    2010-01-01

    The Fusarium species Fusarium graminearum and Fusarium culmorum, Which are responsible for Fusarium head blight (FHB) disease, reduced world-wide cereal crop yield and, as a consequence of their mycotoxin production in cereal grain, impact on both human and animal health. Their study is greatly p...

  5. One Fungus, One Name: Defining the Genus Fusarium in a Scientifically Robust Way That Preserves Longstanding Use

    DEFF Research Database (Denmark)

    Geiser, David M.; Aoki, Takayuki; Bacon, Charles W.;

    2013-01-01

    In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligatio...

  6. One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use

    NARCIS (Netherlands)

    Geiser, D.M.; et al., [Unknown; de Hoog, G.S.

    2013-01-01

    In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation

  7. One Fungus, One Name: Defining the Genus Fusarium in a Scientifically Robust Way That Preserves Longstanding Use

    DEFF Research Database (Denmark)

    Geiser, David M.; Aoki, Takayuki; Bacon, Charles W.

    2013-01-01

    In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation...... that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals...

  8. Widespread Occurrence of Diverse Human Pathogenic Types of the Fungus Fusarium Detected in Plumbing Drains ▿ †

    Science.gov (United States)

    Short, Dylan P. G.; O'Donnell, Kerry; Zhang, Ning; Juba, Jean H.; Geiser, David M.

    2011-01-01

    It has been proposed that plumbing systems might serve as a significant environmental reservoir of human-pathogenic isolates of Fusarium. We tested this hypothesis by performing the first extensive multilocus sequence typing (MLST) survey of plumbing drain-associated Fusarium isolates and comparing the diversity observed to the known diversity of clinical Fusarium isolates. We sampled 471 drains, mostly in bathroom sinks, from 131 buildings in the United States using a swabbing method. We found that 66% of sinks and 80% of buildings surveyed yielded at least one Fusarium culture. A total of 297 isolates of Fusarium collected were subjected to MLST to identify the phylogenetic species and sequence types (STs) of these isolates. Our survey revealed that the six most common STs in sinks were identical to the six most frequently associated with human infections. We speculate that the most prevalent STs, by virtue of their ability to form and grow in biofilms, are well adapted to plumbing systems. Six major Fusarium STs were frequently isolated from plumbing drains within a broad geographic area and were identical to STs frequently associated with human infections. PMID:21976755

  9. Energy-dependent uptake of benzo[a]pyrene and its cytoskeleton-dependent intracellular transport by the telluric fungus Fusarium solani.

    Science.gov (United States)

    Fayeulle, Antoine; Veignie, Etienne; Slomianny, Christian; Dewailly, Etienne; Munch, Jean-Charles; Rafin, Catherine

    2014-03-01

    In screening indigenous soil filamentous fungi for polycyclic aromatic hydrocarbons (PAHs) degradation, an isolate of the Fusarium solani was found to incorporate benzo[a]pyrene (BaP) into fungal hyphae before degradation and mineralization. The mechanisms involved in BaP uptake and intracellular transport remain unresolved. To address this, the incorporation of two PAHs, BaP, and phenanthrene (PHE) were studied in this fungus. The fungus incorporated more BaP into cells than PHE, despite the 400-fold higher aqueous solubility of PHE compared with BaP, indicating that PAH incorporation is not based on a simple diffusion mechanism. To identify the mechanism of BaP incorporation and transport, microscopic studies were undertaken with the fluorescence probes Congo Red, BODIPY®493/503, and FM®4-64, targeting different cell compartments respectively fungal cell walls, lipids, and endocytosis. The metabolic inhibitor sodium azide at 100 mM totally blocked BaP incorporation into fungal cells indicating an energy-requirement for PAH uptake into the mycelium. Cytochalasins also inhibited BaP uptake by the fungus and probably its intracellular transport into fungal hyphae. The perfect co-localization of BaP and BODIPY reveals that lipid bodies constitute the intracellular storage sites of BaP in F. solani. Our results demonstrate an energy-dependent uptake of BaP and its cytoskeleton-dependent intracellular transport by F. solani.

  10. Different Culture Metabolites of the Red Sea Fungus Fusarium equiseti Optimize the Inhibition of Hepatitis C Virus NS3/4A Protease (HCV PR)

    Science.gov (United States)

    Hawas, Usama W.; Al-Farawati, Radwan; Abou El-Kassem, Lamia T.; Turki, Adnan J.

    2016-01-01

    The endophytic fungus Fusarium equiseti was isolated from the brown alga Padina pavonica, collected from the Red Sea. The fungus was identified by its morphology and 18S rDNA. Cultivation of this fungal strain in biomalt-peptone medium led to isolation of 12 known metabolites of diketopeprazines and anthraquinones. The organic extract and isolated compounds were screened for their inhibition of hepatitis C virus NS3/4A protease (HCV PR). As a result, the fungal metabolites showed inhibition of HCV protease (IC50 from 19 to 77 μM), and the fungus was subjected to culture on Czapek’s (Cz) media, with a yield of nine metabolites with potent HCV protease inhibition ranging from IC50 10 to 37 μM. The Cz culture extract exhibited high-level inhibition of HCV protease (IC50 27.6 μg/mL) compared to the biomalt culture extract (IC50 56 μg/mL), and the most potent HCV PR isolated compound (Griseoxanthone C, IC50 19.8 μM) from the bio-malt culture extract showed less of an inhibitory effect compared to isolated ω-hydroxyemodin (IC50 10.7 μM) from the optimized Cz culture extract. Both HCV PR active inhibitors ω-hydroxyemodin and griseoxanthone C were considered as the lowest selective safe constituents against Trypsin inhibitory effect with IC50 48.5 and 51.3 μM, respectively. PMID:27775589

  11. Effect of environmental factors on Fusarium population and associated trichothecenes in wheat grain grown in Jiangsu province, China.

    Science.gov (United States)

    Dong, Fei; Qiu, Jianbo; Xu, Jianhong; Yu, Mingzheng; Wang, Shufang; Sun, Yue; Zhang, Gufeng; Shi, Jianrong

    2016-08-02

    The present study was performed to identify prevailing Fusarium species and the environmental factors affecting their frequencies and the contamination of grain with major mycotoxins in Jiangsu province. The precipitation levels were 184.2mm, 156.4mm, and 245.8mm in the years 2013-2015, respectively, and the temperature fluctuated by an average of 10.6±7.2°C in 2013, 10.9±7.2°C in 2014, and 10.6±6.3°C in 2015. Co-occurrence of deoxynivalenol (DON), 3-acetyldeoxynivalenol (3ADON), and 15-acetyldeoxynivalenol (15ADON) were observed in wheat. The average concentrations of DON were 879.3±1127.8, 627.8±640.5, and 1628.6±2,168.0μg/kg in 2013-2015, respectively. The average concentrations of 3ADON were 43.5±59.0, 71.2±102.5, and 33.5±111.9μg/kg in 2013-2015, respectively. We found that the average concentration of DON in wheat was positively correlated with precipitation (r=0.998, pFusarium asiaticum is the primary pathogenic fungus prevalent in the Fusarium head blight disease nursery. The trichothecene chemotype composition differed between Fusarium graminearum sensu stricto (s. str.) and F. asiaticum isolates. The 3ADON chemotype was found only among strains of F. asiaticum. The NIV chemotype was not observed among strains of F. graminearum, while the 15ADON chemotype represented 100% of the F. graminearum strains collected. The results of this study indicated no correlations between environmental conditions and the species or genetic chemotype composition of pathogens in Jiangsu province in 2013-2015. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The cold-induced defensin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat.

    Science.gov (United States)

    Sasaki, Kentaro; Kuwabara, Chikako; Umeki, Natsuki; Fujioka, Mari; Saburi, Wataru; Matsui, Hirokazu; Abe, Fumitaka; Imai, Ryozo

    2016-06-20

    TAD1 (Triticum aestivum defensin 1) is induced during cold acclimation in winter wheat and encodes a plant defensin with antimicrobial activity. In this study, we demonstrated that recombinant TAD1 protein inhibits hyphal growth of the snow mold fungus, Typhula ishikariensis in vitro. Transgenic wheat plants overexpressing TAD1 were created and tested for resistance against T. ishikariensis. Leaf inoculation assays revealed that overexpression of TAD1 confers resistance against the snow mold. In addition, the TAD1-overexpressors showed resistance against Fusarium graminearum, which causes Fusarium head blight, a devastating disease in wheat and barley. These results indicate that TAD1 is a candidate gene to improve resistance against multiple fungal diseases in cereal crops.

  13. Preliminary evidence of the role of hydrogen peroxide in the degradation of benzo[a]pyrene by a non-white rot fungus Fusarium solani

    Energy Technology Data Exchange (ETDEWEB)

    Veignie, Etienne; Rafin, Catherine; Woisel, Patrice; Cazier, Fabrice

    2004-05-01

    In order to study the enzymatic mechanisms involved in the successive steps of BaP degradation by a Deuteromycete fungus Fusarium solani, we developed an indirect approach by using inhibitors of enzymes. We used either specific inhibitors of peroxidases (i.e. salicylhydroxamic acid) and of cytochrome P-450 (i.e. piperonyl butoxyde) or inhibitors of both enzymes (i.e. potassium cyanide). Surprisingly, no expected decrease of BaP degradation was observed with most inhibitors tested. On the contrary, more BaP was degraded. Only butylated hydroxytoluene, which acts as a free radical scavenger, inhibited BaP degradation. The inhibition of these enzymes, which use H{sub 2}O{sub 2} as a cosubstrat, might have resulted in an increase of hydrogen peroxide availability in the fungal cultures. This enhancement could induce formation of reactive oxygen species (ROS) which might be the agents that initiate benzo[a]pyrene oxidation. This study proposed a hypothetic alternative metabolic pathway involved in PAH metabolism by Fusarium solani. - An alternative metabolic pathway was demonstrated.

  14. Fusarium euwallaceae sp. nov.—a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California

    Science.gov (United States)

    The invasive Asian ambrosia beetle Euwallacea sp. (Coleoptera, Scolytinae, Xyleborini) and a novel Fusarium sp. that it farms in its galleries as a source of nutrition seriously damage over 20 species of live trees and pose a serious threat to avocado production (Persea americana) in Israel and Cali...

  15. Evidence that a Secondary Metabolic Biosynthetic Gene Cluster has Grown by Gene Relocation During Evolution of the Filamentous Fungus Fusarium

    Science.gov (United States)

    Trichothecenes are terpene-derived secondary metabolites produced by multiple genera of filamentous fungi, including many plant pathogenic species of Fusarium. These metabolites are of medical and agricultural interest because they are toxic to animals and plants and can contribute to pathogenesis ...

  16. The ABC transporter ABCG29 is involved in H2O2 tolerance and biocontrol traits in the fungus Clonostachys rosea.

    Science.gov (United States)

    Dubey, Mukesh; Jensen, Dan Funck; Karlsson, Magnus

    2016-04-01

    For successful biocontrol interactions, biological control organisms must tolerate toxic metabolites produced by themselves or plant pathogens during mycoparasitic/antagonistic interactions, by host plant during colonization of the plant, and xenobiotics present in the environment. ATP-binding cassette (ABC) transporters can play a significant role in tolerance of toxic compounds by mediating active transport across the cellular membrane. This paper reports on functional characterization of an ABC transporter ABCG29 in the biocontrol fungus Clonostachys rosea strain IK726. Gene expression analysis showed induced expression of abcG29 during exposure to the Fusarium spp. mycotoxin zearalenone (ZEA) and the fungicides Cantus, Chipco Green and Apron. Expression of abcG29 in C. rosea was significantly higher during C. rosea-C. rosea (Cr-Cr) interaction or in exposure to C. rosea culture filtrate for 2 h, compared to interaction with Fusarium graminearum or 2 h exposure to F. graminearum culture filtrate. In contrast with gene expression data, ΔabcG29 strains did not display reduced tolerance towards ZEA, fungicides or chemical agents known for inducing oxidative, cell wall or osmotic stress, compared to C. rosea WT. The exception was a significant reduction in tolerance to H2O2 (10 mM) in ΔabcG29 strains when conidia were used as an inoculum. The antagonistic ability of ΔabcG29 strains towards F. graminearum, Fusarium oxysporum or Botrytis cinerea in dual plate assays were not different compared with WT. However, in biocontrol assays ΔabcG29 strains displayed reduced ability to protect Arabidopsis thaliana leaves from B. cinerea, and barley seedling from F. graminearum as measured by an A. thaliana detached leaf assay and a barley foot rot disease assay, respectively. These data show that the ABCG29 is dispensable for ZEA and fungicides tolerance, and antagonism but not H2O2 tolerance and biocontrol effects in C. rosea.

  17. Effect of soil biochar amendment on grain crop resistance to Fusarium mycotoxin contamination

    Science.gov (United States)

    Mycotoxin contamination of food and feed is among the top food safety concerns. Fusarium spp. cause serious diseases in cereal crops reducing yield and contaminating grain with mycotoxins that can be deleterious to human and animal health. Fusarium graminearum and Fusarium verticillioides infect whe...

  18. Fusarium euwallaceae sp. nov.--a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California.

    Science.gov (United States)

    Freeman, S; Sharon, M; Maymon, M; Mendel, Z; Protasov, A; Aoki, T; Eskalen, A; O'Donnell, K

    2013-01-01

    The invasive Asian ambrosia beetle Euwallacea sp. (Coleoptera, Scolytinae, Xyleborini) and a novel Fusarium sp. that it farms in its galleries as a source of nutrition causes serious damage to more than 20 species of live trees and pose a serious threat to avocado production (Persea americana) in Israel and California. Adult female beetles are equipped with mandibular mycangia in which its fungal symbiont is transported within and from the natal galleries. Damage caused to the xylem is associated with disease symptoms that include sugar or gum exudates, dieback, wilt and ultimately host tree mortality. In 2012 the beetle was recorded on more than 200 and 20 different urban landscape species in southern California and Israel respectively. Euwallacea sp. and its symbiont are closely related to the tea shot-hole borer (E. fornicatus) and its obligate symbiont, F. ambrosium occurring in Sri Lanka and India. To distinguish these beetles, hereafter the unnamed xyleborine in Israel and California will be referred to as Euwallacea sp. IS/CA. Both fusaria exhibit distinctive ecologies and produce clavate macroconidia, which we think might represent an adaption to the species-specific beetle partner. Both fusaria comprise a genealogically exclusive lineage within Clade 3 of the Fusarium solani species complex (FSSC) that can be differentiated with arbitrarily primed PCR. Currently these fusaria can be distinguished only phenotypically by the abundant production of blue to brownish macroconidia in the symbiont of Euwallacea sp. IS/CA and their rarity or absence in F. ambrosium. We speculate that obligate symbiosis of Euwallacea and Fusarium, might have driven ecological speciation in these mutualists. Thus, the purpose of this paper is to describe and illustrate the novel, economically destructive avocado pathogen as Fusarium euwallaceae sp. nov. S. Freeman et al.

  19. Exploring Fusarium head blight disease control by RNA interference

    Science.gov (United States)

    RNA interference (RNAi) technology provides a novel tool to study gene function and plant protection strategies. Fusarium graminearum is the causal agent of Fusarium head blight (FHB), which reduces crop yield and quality by producing trichothecene mycotoxins including 3-acetyl deoxynivalenol (3-ADO...

  20. The fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death.

    Directory of Open Access Journals (Sweden)

    Mark Diamond

    Full Text Available The Fusarium genus of fungi is responsible for commercially devastating crop diseases and the contamination of cereals with harmful mycotoxins. Fusarium mycotoxins aid infection, establishment, and spread of the fungus within the host plant. We investigated the effects of the Fusarium mycotoxin deoxynivalenol (DON on the viability of Arabidopsis cells. Although it is known to trigger apoptosis in animal cells, DON treatment at low concentrations surprisingly did not kill these cells. On the contrary, we found that DON inhibited apoptosis-like programmed cell death (PCD in Arabidopsis cells subjected to abiotic stress treatment in a manner independent of mitochondrial cytochrome c release. This suggested that Fusarium may utilise mycotoxins to suppress plant apoptosis-like PCD. To test this, we infected Arabidopsis cells with a wild type and a DON-minus mutant strain of F. graminearum and found that only the DON producing strain could inhibit death induced by heat treatment. These results indicate that mycotoxins may be capable of disarming plant apoptosis-like PCD and thereby suggest a novel way that some fungi can influence plant cell fate.

  1. Anthesis, the infectious process and disease progress curves for fusarium head blight in wheat

    Directory of Open Access Journals (Sweden)

    Erlei Melo Reis

    2016-06-01

    Full Text Available ABSTRACT Fusarium head blight of wheat (Triticum aestivum, caused by the fungus Gibberella zeae, is a floral infecting disease that causes quantitative and qualitative losses to winter cereals. In Brazil, the sanitary situation of wheat has led to research in order to develop strategies for sustainable production, even under adverse weather conditions. To increase the knowledge of the relationship among the presence of anthesis, the infectious process, the disease progress and the saprophytic fungi present in wheat anthers, studies were conducted in the experimental field of University of Passo Fundo (UPF, using the cultivar Marfim, in the 2011 growing season. The disease incidence in spikes and spikelets was evaluated. The presence of exserted anthers increased the spike exposure time to the inoculum. The final incidence of fusarium head blight, in the field, was dependent on the presence of exserted anthers. The disease followed an aggregation pattern and its evolution increased with time, apparently showing growth according to secondary cycles. The fungi isolated from exserted anthers (Alternaria sp., Fusarium sp., Drechslera spp. and Epicoccum sp. did not compete for the infection site of fusarium head blight in wheat, not interfering with the incidence of F. graminearum.

  2. Multiple garlic (Allium sativum L.) microRNAs regulate the immunity against the basal rot fungus Fusarium oxysporum f. sp. Cepae.

    Science.gov (United States)

    Chand, Subodh Kumar; Nanda, Satyabrata; Mishra, Rukmini; Joshi, Raj Kumar

    2017-04-01

    The basal plate rot fungus, Fusarium oxysporum f. sp. cepae (FOC), is the most devastating pathogen posing a serious threat to garlic (Allium sativum L.) production worldwide. MicroRNAs (miRNAs) are key modulators of gene expression related to development and defense responses in eukaryotes. However, the miRNA species associated with garlic immunity against FOC are yet to be explored. In the present study, a small RNA library developed from FOC infected resistant garlic line was sequenced to identify immune responsive miRNAs. Forty-five miRNAs representing 39 conserved and six novel sequences responsive to FOC were detected. qRT-PCR analyses further classified them into three classes based on their expression patterns in susceptible line CBT-As11 and in the resistant line CBT-As153. North-blot analyses of six selective miRNAs confirmed the qRT-PCR results. Expression studies on a selective set of target genes revealed a negative correlation with the complementary miRNAs. Furthermore, transgenic garlic plant overexpresing miR164a, miR168a and miR393 showed enhanced resistance to FOC, as revealed by decreased fungal growth and up-regulated expression of defense-responsive genes. These results indicate that multiple miRNAs are involved in garlic immunity against FOC and that the overexpression of miR164a, miR168a and miR393 can augment garlic resistance to Fusarium basal rot infection.

  3. In-vitro antifungal susceptibility of clinical and environmental Fusarium spp. strains.

    Science.gov (United States)

    Pujol, I; Guarro, J; Gené, J; Sala, J

    1997-02-01

    The MICs of amphotericin B, miconazole, ketoconazole, flucytosine, itraconazole and fluconazole for 19 isolates of Fusarium oxysporum, 16 Fusarium solani, seven Fusarium verticilliodes, four Fusarium proliferatum, four Fusarium dimerum, three Fusarium equiseti, and one each of the following species: Fusarium graminearum, Fusarium chlamydosporum, Fusarium semitectum, Fusarium avenaceum and Fusarium subglutinans were determined by a broth microdilution method. Thirty-eight of these isolates were of clinical origin and 20 from environmental sources. In general, Fusarium spp. strains showed resistance to all the antifungals tested. However, the most active agent was amphotericin B. Fluconazole and flucytosine were not active against any of the isolates tested. A correlation study of in-vitro testing with in-vivo outcome of amphotericin B of the cases of disseminated fusarium infections published is reported.

  4. Banana infecting fungus, Fusarium musae, is also an opportunistic human pathogen: are bananas potential carriers and source of fusariosis?

    Science.gov (United States)

    Triest, David; Stubbe, Dirk; De Cremer, Koen; Piérard, Denis; Detandt, Monique; Hendrickx, Marijke

    2015-01-01

    During re-identification of Fusarium strains in the BCCM™/IHEM fungal collection by multilocus sequence-analysis we observed that five strains, previously identified as Fusarium verticillioides, were Fusarium musae, a species described in 2011 from banana fruits. Four strains were isolated from blood samples or biopsies of immune-suppressed patients and one was isolated from the clinical environment, all originating from different hospitals in Belgium or France, 2001-2008. The F. musae identity of our isolates was confirmed by phylogenetic analysis using reference sequences of type material. Absence of the gene cluster necessary for fumonisin biosynthesis, characteristic to F. musae, was also the case for our isolates. In vitro antifungal susceptibility testing revealed no important differences in their susceptibility compared to clinical F. verticillioides strains and terbinafine was the most effective drug. Additional clinical F. musae strains were searched by performing BLAST queries in GenBank. Eight strains were found, of which six were keratitis cases from the U.S. multistate contact lens-associated outbreak in 2005 and 2006. The two other strains were also from the U.S., causing either a skin infection or sinusitis. This report is the first to describe F. musae as causative agent of superficial and opportunistic, disseminated infections in humans. Imported bananas might act as carriers of F. musae spores and be a potential source of infection with F. musae in humans. An alternative hypothesis is that the natural distribution of F. musae is geographically a lot broader than originally suspected and F. musae is present on different plant hosts. © 2015 by The Mycological Society of America.

  5. Action and reaction of host and pathogen during Fusarium head blight disease.

    Science.gov (United States)

    Walter, Stephanie; Nicholson, Paul; Doohan, Fiona M

    2010-01-01

    The Fusarium species Fusarium graminearum and Fusarium culmorum, which are responsible for Fusarium head blight (FHB) disease, reduce world-wide cereal crop yield and, as a consequence of their mycotoxin production in cereal grain, impact on both human and animal health. Their study is greatly promoted by the availability of the genomic sequence of F. graminearum and transcriptomic resources for both F. graminearum and its cereal hosts. Functional genomic, proteomic and metabolomic studies, in combination with targeted mutagenesis or transgenic studies, are unravelling the complex mechanisms involved in Fusarium infection, penetration and colonization of host tissues, and host avoidance thereof. This review illuminates and integrates emerging knowledge regarding the molecular crosstalk between Fusarium and its small-grain cereal hosts. An understanding of the complexity of the host-pathogen interactions will be instrumental in designing new efficient strategies for the control of FHB disease.

  6. Production of extracellular lipase by the phytopathogenic fungus Fusarium solani FS1 Produção de lipase extracelular pelo fungo fitopatogênico Fusarium solani FS1

    Directory of Open Access Journals (Sweden)

    Maria de Mascena Diniz Maia

    1999-12-01

    Full Text Available A Brazilian strain of Fusarium solani was tested for extracellular lipase production in peptone-olive oil medium. The fungus produced 10,500 U.l-1 of lipase after 72 hours of cultivation at 25oC in shake-flask at 120 rpm in a medium containing 3% (w/v peptone plus 0.5% (v/v olive oil. Glucose (1% w/v was found to inhibit the inductive effect of olive oil. Peptone concentrations below 3% (w/v resulted in a reduced lipase production while increased olive oil concentration (above 0.5% did not further stimulate lipase production. The optimum lipase activity was achieved at pH 8.6 and 30oC and a good enzyme stability (80% activity retention was observed at pH ranging from 7.6 to 8.6, and the activity rapidly dropped at temperatures above 50oC. Lipase activity was stimulated by the addition of n-hexane to the culture medium supernatants, in contrast to incubation with water-soluble solvents.

  7. Colonization of a Central Venous Catheter by the Hyaline Fungus Fusarium solani Species Complex: A Case Report and SEM Imaging

    Directory of Open Access Journals (Sweden)

    Alberto Colombo

    2013-01-01

    Full Text Available The incidence of opportunistic infections by filamentous fungi is increasing partly due to the widespread use of central venous catheters (CVC, indwelling medical devices, and antineoplastic/immunosuppressive drugs. The case of a 13-year-old boy under treatment for acute lymphoblastic leukemia is presented. The boy was readmitted to the Pediatric Ward for intermittent fever of unknown origin. Results of blood cultures drawn from peripheral venous sites or through the CVC were compared. CVC-derived bottles (but not those from peripheral veins yielded hyaline fungi that, based on morphology, were identified as belonging to the Fusarium solani species complex. Gene amplification and direct sequencing of the fungal ITS1 rRNA region and the EF-1alpha gene confirmed the isolate as belonging to the Fusarium solani species complex. Portions of the CVC were analyzed by scanning electron microscopy. Fungi mycelia with long protruding hyphae were seen into the lumen. The firm adhesion of the fungal formation to the inner surface of the catheter was evident. In the absence of systemic infection, catheter removal and prophylactic voriconazole therapy were followed by disappearance of febrile events and recovery. Thus, indwelling catheters are prone to contamination by environmental fungi.

  8. Thorium(IV) removal from aqueous medium by citric acid treated mangrove endophytic fungus Fusarium sp. #ZZF51.

    Science.gov (United States)

    Yang, S K; Tan, N; Yan, X M; Chen, F; Long, W; Lin, Y C

    2013-09-15

    Thorium(IV) biosorption is investigated by citric acid treated mangrove endophytic fungus Fussarium sp. #ZZF51 (CA-ZZF51) from South China Sea. The biosorption process was optimized at pH 4.5, equilibrium time 90 min, initial thorium(IV) concentration 50 mg L(-1) and adsorbent dose 0.6 g L(-1) with 90.87% of removal efficiency and 75.47 mg g(-1) of adsorption capacity, which is obviously greater than that (11.35 mg g(-1)) of the untreated fungus Fussarium sp. #ZZF51 for thorium(IV) biosorption under the condition of optimization. The experimental data are analyzed by using isotherm and kinetic models. Kinetic data follow the pseudo-second-order model and equilibrium data agree very well with the Langmuir model. In addition, FTIR analysis indicates that hydroxyl, amino, and carbonyl groups act as the important roles in the adsorption process.

  9. Metabolic profiling of early F. graminearum infection in barley seed spike tissues

    Science.gov (United States)

    Several studies have utilized microarray analysis to characterize gene expression occurring during infection of barley and wheat by the fungal pathogen Fusarium graminearum (F.g.). We have analyzed this plant-microbe interaction from the other extreme - the changes in the metabolome arising from th...

  10. The Tomato Wilt Fungus Fusarium oxysporum f. sp. lycopersici shares Common Ancestors with Nonpathogenic F. oxysporum isolated from Wild Tomatoes in the Peruvian Andes

    Science.gov (United States)

    Inami, Keigo; Kashiwa, Takeshi; Kawabe, Masato; Onokubo-Okabe, Akiko; Ishikawa, Nobuko; Pérez, Enrique Rodríguez; Hozumi, Takuo; Caballero, Liliana Aragón; de Baldarrago, Fatima Cáceres; Roco, Mauricio Jiménez; Madadi, Khalid A.; Peever, Tobin L.; Teraoka, Tohru; Kodama, Motoichiro; Arie, Tsutomu

    2014-01-01

    Fusarium oxysporum is an ascomycetous fungus that is well-known as a soilborne plant pathogen. In addition, a large population of nonpathogenic F. oxysporum (NPF) inhabits various environmental niches, including the phytosphere. To obtain an insight into the origin of plant pathogenic F. oxysporum, we focused on the tomato (Solanum lycopersicum) and its pathogenic F. oxysporum f. sp. lycopersici (FOL). We collected F. oxysporum from wild and transition Solanum spp. and modern cultivars of tomato in Chile, Ecuador, Peru, Mexico, Afghanistan, Italy, and Japan, evaluated the fungal isolates for pathogenicity, VCG, mating type, and distribution of SIX genes related to the pathogenicity of FOL, and constructed phylogenies based on ribosomal DNA intergenic spacer sequences. All F. oxysporum isolates sampled were genetically more diverse than FOL. They were not pathogenic to the tomato and did not carry SIX genes. Certain NPF isolates including those from wild Solanum spp. in Peru were grouped in FOL clades, whereas most of the NPF isolates were not. Our results suggested that the population of NPF isolates in FOL clades gave rise to FOL by gaining pathogenicity. PMID:24909710

  11. Tomato I2 Immune Receptor Can Be Engineered to Confer Partial Resistance to the Oomycete Phytophthora infestans in Addition to the Fungus Fusarium oxysporum.

    Science.gov (United States)

    Giannakopoulou, Artemis; Steele, John F C; Segretin, Maria Eugenia; Bozkurt, Tolga O; Zhou, Ji; Robatzek, Silke; Banfield, Mark J; Pais, Marina; Kamoun, Sophien

    2015-12-01

    Plants and animals rely on immune receptors, known as nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins, to defend against invading pathogens and activate immune responses. How NLR receptors respond to pathogens is inadequately understood. We previously reported single-residue mutations that expand the response of the potato immune receptor R3a to AVR3a(EM), a stealthy effector from the late blight oomycete pathogen Phytophthora infestans. I2, another NLR that mediates resistance to the will-causing fungus Fusarium oxysporum f. sp. lycopersici, is the tomato ortholog of R3a. We transferred previously identified R3a mutations to I2 to assess the degree to which the resulting I2 mutants have an altered response. We discovered that wild-type I2 protein responds weakly to AVR3a. One mutant in the N-terminal coiled-coil domain, I2(I141N), appeared sensitized and displayed markedly increased response to AVR3a. Remarkably, I2(I141N) conferred partial resistance to P. infestans. Further, I2(I141N) has an expanded response spectrum to F. oxysporum f. sp. lycopersici effectors compared with the wild-type I2 protein. Our results suggest that synthetic immune receptors can be engineered to confer resistance to phylogenetically divergent pathogens and indicate that knowledge gathered for one NLR could be exploited to improve NLR from other plant species.

  12. Secretome analysis of the mycoparasitic fungus Trichoderma harzianum ALL 42 cultivated in different media supplemented with Fusarium solani cell wall or glucose.

    Science.gov (United States)

    Ramada, Marcelo Henrique Soller; Steindorff, Andrei Stecca; Bloch, Carlos; Ulhoa, Cirano José

    2016-02-01

    Trichoderma harzianum is a fungus well known for its potential as a biocontrol agent against many fungal phytopathogens. The aim of this study was to characterize the proteins secreted by T. harzianum ALL42 when its spores were inoculated and incubated for 48 h in culture media supplemented with glucose (GLU) or with cell walls from Fusarium solani (FSCW), a phytopathogen that causes severe losses in common bean and soy crops in Brazil, as well as other crop diseases around the world. Trichoderma harzianum was able to grow in Trichoderma Liquid Enzyme Production medium (TLE) and Minimal medium (MM) supplemented with FSCW and in TLE+GLU, but was unable to grow in MM+GLU medium. Protein quantification showed that TLE+FSCW and MM+FSCW had 45- and 30- fold, respectively, higher protein concentration on supernatant when compared to TLE+GLU, and this difference was observable on 2D gel electrophoresis (2DE). A total of 94 out of 105 proteins excised from 2DE maps were identified. The only protein observed in all three conditions was epl1. In the media supplemented with FSCW, different hydrolases such as chitinases, β-1,3-glucanases, glucoamylases, α-1,3-glucanases and proteases were identified, along with other proteins with no known functions in mycoparasitism, such as npp1 and cys. Trichoderma harzianum showed a complex and diverse arsenal of proteins that are secreted in response to the presence of FSCW, with novel proteins not previously described in mycoparasitic-related studies.

  13. The tomato wilt fungus Fusarium oxysporum f. sp. lycopersici shares common ancestors with nonpathogenic F. oxysporum isolated from wild tomatoes in the Peruvian Andes.

    Science.gov (United States)

    Inami, Keigo; Kashiwa, Takeshi; Kawabe, Masato; Onokubo-Okabe, Akiko; Ishikawa, Nobuko; Pérez, Enrique Rodríguez; Hozumi, Takuo; Caballero, Liliana Aragón; de Baldarrago, Fatima Cáceres; Roco, Mauricio Jiménez; Madadi, Khalid A; Peever, Tobin L; Teraoka, Tohru; Kodama, Motoichiro; Arie, Tsutomu

    2014-01-01

    Fusarium oxysporum is an ascomycetous fungus that is well-known as a soilborne plant pathogen. In addition, a large population of nonpathogenic F. oxysporum (NPF) inhabits various environmental niches, including the phytosphere. To obtain an insight into the origin of plant pathogenic F. oxysporum, we focused on the tomato (Solanum lycopersicum) and its pathogenic F. oxysporum f. sp. lycopersici (FOL). We collected F. oxysporum from wild and transition Solanum spp. and modern cultivars of tomato in Chile, Ecuador, Peru, Mexico, Afghanistan, Italy, and Japan, evaluated the fungal isolates for pathogenicity, VCG, mating type, and distribution of SIX genes related to the pathogenicity of FOL, and constructed phylogenies based on ribosomal DNA intergenic spacer sequences. All F. oxysporum isolates sampled were genetically more diverse than FOL. They were not pathogenic to the tomato and did not carry SIX genes. Certain NPF isolates including those from wild Solanum spp. in Peru were grouped in FOL clades, whereas most of the NPF isolates were not. Our results suggested that the population of NPF isolates in FOL clades gave rise to FOL by gaining pathogenicity.

  14. 抗戊唑醇禾谷镰孢菌对渗透压敏感性及电导率变化研究%Study on the Changes of Relative Conductivity and Osmolarity Sensitivity to Tebuconazole-resistant Isolates of Fusarium graminearum

    Institute of Scientific and Technical Information of China (English)

    叶滔; 马志强; 张小风; 王文桥; 韩秀英; 王志伟

    2011-01-01

    The aim of the study is to obtain the resistant isolates of Fusarium graminearum Schw by ultraviolet induction or fungicide-treated myceliums. With the physiology characteristics compared between the sensitive and resistant isolates, we can study on resistance mechanism of Fusarium graminearum to tebuconazole. The resistant I solates were obtained through ultraviolet-induction and tebuconazole-treated myceliums, some isolates could keep stablely resistant level during the period of 17 subcultures. By studying on osmolarity and conductivity, the physiolo gy characteristics of the resistant and sensitive isolates were compared. The results showed that nine resistant mu tants were obtained,the most resistance ratio reached to 180. 06,the lowest resistance ratio showed 34. 26,and five resistant isolates could be keeping high resistance level. In the concentrations of 2. 0% and 4. 0% dextrose,the col ony growth diameter of resistant isolates was bigger than that of their parental isolates. But the colony growth diame ter of resistant isolates and their parental isolates showed no regular in the same concentrations of KC1. In different times,the changes of conductivity to resistant isolates and parental isolates at different concentrations of tebucon azole were obvious,and the changes of conductivity to tebuconazole-treated resistant isolates was bigger than paren tal isolates,and the relative leakage of resistant isolates which were obtained by tebuconazole-treated was common higher than that of resistant isolates by ultraviolet-induction after 200 min. Resistance mechanism of F. Graminearum to tebuconazole might be concern with the change of cell membrane permeability and excrete quickly fungicide in short time.%通过紫外诱导和药剂驯化获取禾谷镰孢菌的抗戊唑醇菌株,探索了抗戊唑醇禾谷镰孢菌的抗药性机制.抗药菌株经转接培养17代后筛选遗传稳定性抗性菌株,利用渗透压法和电导率法测定抗药菌株与亲本

  15. Visualization of wound periderm and hyphal profiles in pine stems inoculated with the pitch canker fungus Fusarium circinatum.

    Science.gov (United States)

    Kim, Ki Woo; Lee, In Jung; Thoungchaleun, Vilakon; Kim, Chang Soo; Lee, Don Koo; Park, Eun Woo

    2009-12-01

    Postpenetration behavior of Fusarium circinatum in stems of pine species was investigated with light and transmission electron microscopy. Two-year-old stems of Pinus rigida and P. densiflora were wound-inoculated with the fungal conidial suspension and subjected to 25 degrees C for up to 30 days. It was common to observe the formation of wound periderm on each pine species, recovering wounded sites with newly formed tissues. The outermost thick layer of wound periderm was pink to red colored with the phloroglucinol-EtOH staining, indicating heavy deposition of lignin in wound periderm. The cork layers in the wound periderm of the two pine species consisted of cells that were mostly devoid of cellular contents in cytoplasm. The cork cells showed convoluted cell walls with different electron density (lamellations), which was seemingly more prevalent in P. densiflora than P. rigida. Hyphae of F. circinatum appeared normal with typical eucaryotic cytoplasm in P. rigida on ultrathin sections. Meanwhile, hyphae in P. densiflora were found to possess highly vacuolated cytoplasm, implying hyphal weakening and disintegration. Hyphal cytoplasm appeared to be a thin layer between the vacuole and the plasma membrane surrounded by cell wall. In addition, intrahyphal hyphae and concentric bodies were observed in hyphal cytoplasm. These results suggest that the architecture of wound periderm may be responsible for different responses of pine species to the invasion of F. circinatum.

  16. Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani.

    Science.gov (United States)

    Mnif, Ines; Hammami, Ines; Triki, Mohamed Ali; Azabou, Manel Cheffi; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2015-11-01

    Bacillus subtilis SPB1 lipopeptides were evaluated as a natural antifungal agent against Fusarium solani infestation. In vitro antifungal assay showed a minimal inhibitory concentration of about 3 mg/ml with a fungicidal mode of action. In fact, treatment of F. solani by SPB1 lipopeptides generated excessive lyses of the mycelium and caused polynucleation and destruction of the related spores together with a total inhibition of spore production. Furthermore, an inhibition of germination potency accompanied with a high spore blowing was observed. Moreover, in order to be applied in agricultural field, in vivo antifungal activity was proved against the dry rot potato tubers caused by F. solani. Preventive treatment appeared as the most promising as after 20 days of fungi inoculation, rot invasion was reduced by almost 78%, in comparison to that of non-treated one. When treating infected tomato plants, disease symptoms were reduced by almost 100% when applying the curative method. Results of this study are very promising as it enables the use of the crude lipopeptide preparation of B. subtilis SPB1 as a potent natural fungicide that could effectively control the infection of F. solani in tomato and potato tubers at a concentration similar to the commercial fungicide hymexazol and therefore prevent the damage of olive tree.

  17. Deoxynivalenol in wheat and wheat products from a harvest affected by fusarium head blight

    Directory of Open Access Journals (Sweden)

    Lidiane Viera MACHADO

    Full Text Available Abstract Fusarium head blight is an important disease occurring in wheat, caused mainly by the fungus Fusarium graminearum. In addition to direct damage to crops, reduced quality and yield losses, the infected grains can accumulate mycotoxins (toxic metabolites originating from prior fungal growth, especially deoxynivalenol (DON. Wheat crops harvested in 2014/2015 in southern Brazil were affected by high levels of Fusarium head blight. In this context, the aim of this study was evaluate the mycotoxicological quality of Brazilian wheat grains and wheat products (wheat flour and wheat bran for DON. DON contamination was evaluated in 1,504 wheat and wheat product samples produced in Brazil during 2014. It was determined by high performance liquid chromatograph fitted to a mass spectrometer (LC-MS / MS. The results showed that 1,000 (66.5% out of the total samples tested were positive for DON. The mean level of sample contamination was 1047 µg.kg-1, but only 242 samples (16.1% had contamination levels above the maximum permissible levels (MPL - the maximum content allowed by current Brazilian regulation. As of 2017, MPL will be stricter. Thus, research should be conducted on DON contamination of wheat and wheat products, since wheat is a raw material widely used in the food industry, and DON can cause serious harm to public health.

  18. 利用ISSR技术分析禾谷镰孢菌群体遗传多样性的研究%Study on Genetic Diversity of Fusarium graminearum Populations Causing Maize Stalk Rot by ISSR Analysis

    Institute of Scientific and Technical Information of China (English)

    何婧; 郭庆元; 王晓鸣; 宋利宁; 张维娜; 武小菲

    2011-01-01

    采用ISSR标记对采自我国11个省的玉米茎腐病相关禾谷镰孢的遗传多样性进行分析.利用筛选出的14个ISSR引物对供试的115株禾谷镰孢菌株进行扩增,共获得63条扩增清晰、重复性高的条带.其中多态性条带为60条,占95.2%.扩增条带分子量为150~2 000 bp,平均每个引物扩增出4.5条带.遗传多样性分析表明,在地理种群水平上,基因多样性指数在0~0.291 9之间,平均为0.159 1;Shannon‘s多样性指数在0~0.425 2之间,平均为0.236 0,表明不同地理种群间存在一定的遗传变异.多样性指数、等位基因数的增大与各种群内样本数量增加有关.遗传相似性分析证明,山东省种群与河南省种群间的遗传相似性最高,内蒙古种群与河北省种群间遗传相似性最低.在相似性系数为0.682时.可将115个菌株区分为2个聚类组,各组下又可分为3个亚组,分组结果与菌株的地理来源有一定相关性,表明禾谷镰孢的遗传分化与生态地理有关.%The genetic diversity of F. graminearum population collected from eleven provinces was determined using technique of inter-simple sequence repeat (ISSR). A total of 63 reproducible ISSR fragments were scored among 115 individuals, of which 60 (95.2%) were polymorphic. The size of the amplified fragments ranged from 150 bp to 2 000 bp and average number of bands per primer was 4.5. At geographic population level, Nei's gene diversity and Shannon's information index were 0.159 1 and 0.236 0, respectively, that meant there was genetic variation between geographic population of F. graminearum. By analysis of genetic similarity coefficient the F.graminearum populations of Shandong and Henan were closest and populations of Inner Mongolia and Hebei were the farthest. Based on genetic distances all isolates were clustered into two groups at the similarity of 0.682 and three subgroups in each group. The grouping results indicated that genetic variation of F.graminearum

  19. Extraction Optimization of Water-Extracted Mycelial Polysaccharide from Endophytic Fungus Fusarium oxysporum Dzf17 by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ligang Zhou

    2012-05-01

    Full Text Available Water-extracted mycelial polysaccharide (WPS from the endophytic fungus Fusarium oxysporum Dzf17 isolated from Dioscorea zingiberensis was found to be an efficient elicitor to enhance diosgenin accumulation in D. zingigerensis cultures, and also demonstrated antioxidant activity. In this study, response surface methodology (RSM was employed to optimize the extraction process of WPS from F. oxysporum Dzf17 using Box-Behnken design (BBD. The ranges of the factors investigated were 1–3 h for extraction time (X1, 80–100 °C for extraction temperature (X2, and 20–40 (v/w for ratio of water volume (mL to raw material weight (g (X3. The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis. Statistical analysis showed that the polynomial regression model was in good agreement with the experimental results with the determination coefficient (R2 of 0.9978. By solving the regression equation and analyzing the response surface contour plots, the extraction parameters were optimized as 1.7 h for extraction time, 95 °C for extraction temperature, 39 (v/w for ratio of water volume (mL to raw material weight (g, and with 2 extractions. The maximum value (10.862% of WPS yield was obtained when the WPS extraction process was conducted under the optimal conditions.

  20. Deoxynivalenol and other selected Fusarium toxins in Swedish oats--occurrence and correlation to specific Fusarium species.

    Science.gov (United States)

    Fredlund, Elisabeth; Gidlund, Ann; Sulyok, Michael; Börjesson, Thomas; Krska, Rudolf; Olsen, Monica; Lindblad, Mats

    2013-10-15

    Fusarium moulds frequently contaminate oats and other cereals world-wide, including those grown in Northern Europe. To investigate the presence of toxigenic Fusarium species and their toxins in oats, samples were taken during 2010 and 2011 in three geographical regions of Sweden (east, west, south). The samples were analysed by real-time PCR for the specific infection level of seven Fusarium species associated with oats and other cereals (Fusarium poae, Fusarium graminearum, Fusarium langsethiae, Fusarium culmorum, Fusarium tricinctum, Fusarium sporotrichioides and Fusarium avenaceum) and with a multi-mycotoxin method based on liquid chromatography/electrospray ionisation-tandem mass spectrometry (HPLC/ESI-MS/MS) for the detection of many fungal metabolites, including deoxynivalenol (DON), zearalenone (ZEA), nivalenol (NIV), T-2 toxin, HT-2 toxins, moniliformin (MON), beauvericin (BEA) and enniatins (ENNs). Most samples contained at least four of the seven Fusarium species analysed and F. poae, F. langsethiae and F. avenaceum were present in approximately 90-100% of all samples. The most common toxins detected were DON, NIV, BEA and ENNs, which were present in more than 90% of samples. Most Fusarium species and their toxins occurred in higher concentrations in 2010 than in 2011, with the exception of DON and its main producer F. graminearum. Significant regional differences were detected for some moulds and mycotoxins, with higher levels of F. graminearum, DON and ZEA in western Sweden than in the east (Poats and revealed significant annual and regional differences. This is the first study of the so-called emerging mycotoxins (e.g., ENNs, MON and BEA) in oats grown in Sweden. © 2013 Elsevier B.V. All rights reserved.

  1. Transcript profiling of the phytotoxic response of wheat to the Fusarium mycotoxin deoxynivalenol

    DEFF Research Database (Denmark)

    Walter, Stephanie; Doohan, Fiona

    2011-01-01

    Deoxynivalenol (DON) is a trichothecene mycotoxin commonly produced by Fusarium graminearum and F. culmorum during infection of cereal plants, such as wheat and barley. This toxin is a fungal virulence factor that facilitates the development of Fusarium head blight (FHB) disease. Wheat cultivar (cv...

  2. Multiple minor QTLs are responsible for Fusarium head blight resistance in Chinese wheat landrace Haiyanzhong

    Science.gov (United States)

    Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe, is a devastatingve disease in wheat (Triticum aestivum L.). Use of host resistance is one of the most effective strategies to minimize the disease damage. Haiyanzhong (HYZ) is a Chinese wheat landrace that shows a high level of resi...

  3. Fusarium species and mycotoxin profiles on commercial maize hybrids in Germany

    NARCIS (Netherlands)

    Görtz, A.; Zühlke, S.; Spiteller, M.; Steiner, U.; Dehne, H.W.; Waalwijk, C.; Vries, de P.M.; Oerke, E.C.

    2010-01-01

    Abstract High year-to-year variability in the incidence of Fusarium spp. and mycotoxin contamination was observed in a two-year survey investigating the impact of maize ear rot in 84 field samples from Germany. Fusarium verticillioides, F. graminearum, and F. proliferatum were the predominant

  4. Investigation of the effect of nitrogen on severity of Fusarium Head Blight in barley

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, J.D.; Spliid, N.H.;

    2010-01-01

    The effect of nitrogen on Fusarium Head Blight (FHB) in a susceptible barley cultivar was investigated using gel-based proteomics. Barley grown with either 15 or 100 kg ha(-1)N fertilizer was inoculated with Fusarium graminearum (Fg). The storage protein fraction did not change significantly...

  5. A barley UDP-glucosyltransferase inactivates nivalenol and provides Fusarium head blight resistance in transgenic wheat

    Science.gov (United States)

    Fusarium Head Blight is a disease of cereal crops that causes severe yield losses and mycotoxin contamination of grain. The main causal pathogen, Fusarium graminearum, produces the trichothecene toxins deoxynivalenol or nivalenol as virulence factors. Nivalenol-producing isolates are most prevalent ...

  6. Validation of Fusarium Head Blight Resistance QTL in US Winter Wheat

    Science.gov (United States)

    Fusarium head blight (FHB), primarily caused by Fusarium graminearum Schwabe [telemorph: Gibberella zeae Schw. (Petch)], can significantly reduce the grain quality of wheat (Triticum aestivum L.) due to mycotoxin contamination. Two US soft red winter wheat cultivars, Bess and NC-Neuse, have moderate...

  7. TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotype of F. graminearum and F. culmorum isolates in Danish small grain cereals

    DEFF Research Database (Denmark)

    Nielsen, L. K.; Jensen, J. D.; Rodríguez, A.;

    2012-01-01

    species complex, Fusarium culmorum, Fusarium cerealis and Fusarium pseudograminearum. These assays were applied on a total of 378 field samples of cereal grain of wheat, barley, triticale, rye and oats collected from 2003 to 2007 to study the trichothecene genotype composition in Danish cereals. The three...... in wheat. The NIV genotype was found at low levels in most samples. Study of genotype composition within the Danish F. graminearum and F. culmorum population was based on principal component analysis (PCA). PCA revealed that the dominating genotype of F. graminearum in wheat is 15ADON. For barley, the PCA...... analysis indicated that the F. graminearum population consisted of all three genotypes, and in triticale, the F. graminearum population consisted mainly of 15ADON genotype. F. culmorum/F. cerealis showed correlation to the NIV genotype in wheat and triticale but not in barley. F. culmorum/F. cerealis also...

  8. Sensitivity of Fusarium strains to Chelidonium majus L. extracts.

    Science.gov (United States)

    Matos, O C; Baeta, J; Silva, M J; Pinto Ricardo, C

    1999-08-01

    Ten Fusarium strains were tested for their sensitivity to extracts of Chelidonium majus L. Growth inhibition was measured either in solid or in liquid media. Aqueous extracts had considerable inhibitory action but methanolic extracts showed the best results. Root extracts were more inhibitory than shoot extracts. On the basis of growth inhibition the Fusarium strains were aggregated into five classes, the extremes being Fusarium culmorum plus Fusarium graminearum (quite resistant) and Fusarium oxysporum f. sp. cubense (very sensitive), with the other seven strains occupying the three intermediate classes. The high resistance of most Fusarium strains to conventional fungicides led us to propose C. majus as a good source of substances useful for the treatment of fungal infections, with special importance for those caused by Fusarium.

  9. Fusarium Infection

    Science.gov (United States)

    Muhammed, Maged; Anagnostou, Theodora; Desalermos, Athanasios; Kourkoumpetis, Themistoklis K.; Carneiro, Herman A.; Glavis-Bloom, Justin; Coleman, Jeffrey J.

    2013-01-01

    Abstract Fusarium species is a ubiquitous fungus that causes opportunistic infections. We present 26 cases of invasive fusariosis categorized according to the European Organization for Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG) criteria of fungal infections. All cases (20 proven and 6 probable) were treated from January 2000 until January 2010. We also review 97 cases reported since 2000. The most important risk factors for invasive fusariosis in our patients were compromised immune system, specifically lung transplantation (n = 6) and hematologic malignancies (n = 5), and burns (n = 7 patients with skin fusariosis), while the most commonly infected site was the skin in 11 of 26 patients. The mortality rates among our patients with disseminated, skin, and pulmonary fusariosis were 50%, 40%, and 37.5%, respectively. Fusarium solani was the most frequent species, isolated from 49% of literature cases. Blood cultures were positive in 82% of both current study and literature patients with disseminated fusariosis, while the remaining 16% had 2 noncontiguous sites of infection but negative blood cultures. Surgical removal of focal lesions was effective in both current study and literature cases. Skin lesions in immunocompromised patients should raise the suspicion for skin or disseminated fusariosis. The combination of medical monotherapy with voriconazole or amphotericin B and surgery in such cases is highly suggested. PMID:24145697

  10. GROWTH INHIBITION OF FUSARIUM SP. IN LIVESTOCK FEED

    Directory of Open Access Journals (Sweden)

    Gabriella Kanižai Šarić

    2011-12-01

    Full Text Available Contamination with phytopathogenic forms of Fusarium, besides field crops, may also occur in stored products. Addition of antifungal substances to stored livestock feed is therefore common. This paper examined the effectiveness of a mixture of synthetic and natural antioxidants against the growth of Fusarium graminearum and F. verticillioides in a concentrate mixture. The most effective inhibition of growth was achieved with a mixture of butylated hydroxyanisole, propyl paraben and thymol.

  11. Tissue-specific and pathogen-inducible expression of a fusion protein containing a Fusarium-specific antibody and a fungal chitinase protects wheat against Fusarium pathogens and mycotoxins.

    Science.gov (United States)

    Cheng, Wei; Li, He-Ping; Zhang, Jing-Bo; Du, Hong-Jie; Wei, Qi-Yong; Huang, Tao; Yang, Peng; Kong, Xian-Wei; Liao, Yu-Cai

    2015-06-01

    Fusarium head blight (FHB) in wheat and other small grain cereals is a globally devastating disease caused by toxigenic Fusarium pathogens. Controlling FHB is a challenge because germplasm that is naturally resistant against these pathogens is inadequate. Current control measures rely on fungicides. Here, an antibody fusion comprised of the Fusarium spp.-specific recombinant antibody gene CWP2 derived from chicken, and the endochitinase gene Ech42 from the biocontrol fungus Trichoderma atroviride was introduced into the elite wheat cultivar Zhengmai9023 by particle bombardment. Expression of this fusion gene was regulated by the lemma/palea-specific promoter Lem2 derived from barley; its expression was confirmed as lemma/palea-specific in transgenic wheat. Single-floret inoculation of independent transgenic wheat lines of the T3 to T6 generations revealed significant resistance (type II) to fungal spreading, and natural infection assays in the field showed significant resistance (type I) to initial infection. Gas chromatography-mass spectrometry analysis revealed marked reduction of mycotoxins in the grains of the transgenic wheat lines. Progenies of crosses between the transgenic lines and the FHB-susceptible cultivar Huamai13 also showed significantly enhanced FHB resistance. Quantitative real-time PCR analysis revealed that the tissue-specific expression of the antibody fusion was induced by salicylic acid drenching and induced to a greater extent by F. graminearum infection. Histochemical analysis showed substantial restriction of mycelial growth in the lemma tissues of the transgenic plants. Thus, the combined tissue-specific and pathogen-inducible expression of this Fusarium-specific antibody fusion can effectively protect wheat against Fusarium pathogens and reduce mycotoxin content in grain. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Genetic basis of carotenoid overproduction in Fusarium oxysporum.

    NARCIS (Netherlands)

    Rodríguez-Ortiz, R.; Michielse, C.; Rep, M.; Limón, M.C.; Avalos, J.

    2012-01-01

    The phytopathogenic fungus Fusarium oxysporum is a model organism in the study of plant-fungus interactions. As other Fusarium species, illuminated cultures of F. oxysporum exhibit an orange pigmentation because of the synthesis of carotenoids, and its genome contains orthologous light-regulated car

  13. Deoxynivalenol and other selected Fusarium toxins in Swedish wheat--occurrence and correlation to specific Fusarium species.

    Science.gov (United States)

    Lindblad, Mats; Gidlund, Ann; Sulyok, Michael; Börjesson, Thomas; Krska, Rudolf; Olsen, Monica; Fredlund, Elisabeth

    2013-10-15

    Wheat is often infected by Fusarium species producing mycotoxins, which may pose health risks to humans and animals. Deoxynivalenol (DON) is the most important Fusarium toxin in Swedish wheat and has previously been shown to be produced mainly by Fusarium graminearum. However, less is known about the co-occurrence of DON and F. graminearum with other toxins and Fusarium species in Sweden. This study examined the distribution of the most important toxigenic Fusarium species and their toxins in winter wheat (2009 and 2011) and spring wheat (2010 and 2011). DNA from seven species was quantified with qPCR and the toxin levels were quantified with a multitoxin analysis method based on liquid chromatography/electrospray ionisation-tandem mass spectrometry (HPLC/ESI-MS/MS). The method enabled detection of many fungal metabolites, including DON, zearalenone (ZEA), nivalenol (NIV), T-2 toxin, HT-2 toxins, moniliformin (MON), beauvericin (BEA), and enniatins (ENNs). It was found that Fusarium poae and Fusarium avenaceum were present in almost all samples. Other common Fusarium species were F. graminearum and F. culmorum, present in more than 70% of samples. Several species occurred at lower DNA levels in 2011 than in other years, but the reverse was true for F. graminearum and Fusarium langsethiae. The most prevalent toxins were ENNs, present in 100% of samples. DON was also common, especially in spring wheat, whereas ZEA and NIV were common in 2009 and in winter wheat, but less common in 2011 and in spring wheat. Only three samples of spring wheat contained T-2 or HT-2 above LOQ. Annual mean levels of several mycotoxins were significantly lower in 2011 than in other years, but the reverse applied for DON. The strongest correlations between mycotoxin and Fusarium DNA levels were found between F. avenaceum and ENNs (r(2) = 0.67) and MON (r(2) = 0.62), and F. graminearum and DON (r(2) = 0.74). These results show that several Fusarium species and toxins co-occur in wheat. The

  14. Virulence of Fusarium species to alfalfa seedlings

    Directory of Open Access Journals (Sweden)

    Krnjaja Vesna

    2005-01-01

    Full Text Available In in vitro conditions, virulence of 91 isolates of species Fusarium genus (F. oxysporum, F. solani, F. acuminatum, F. equiseti, F. arthrosporioides, F. prolifera- tum, F. avenaceum, F. semitectum, F. tricinctum, F. sporotrichioides and F. graminearum towards alfalfa seedlings was investigated. Isolates of investigated species originated from diseased alfalfa plants collected at four locations in Serbia based on symptoms of wilting caused by Fusarium and root rotting. Pathogenicity and virulence of investigated isolates of Fusarium spp. were determined by visual evaluation of inoculated seedlings of cultivar K28 in laboratory conditions. All isolated of investigated species had pathogenic effect on alfalfa seedlings which expressed symptoms such as necrosis of root, moist rotting and "melting of seedlings". Colour of necrotic root tissue varied from light brown, brown lipstick red to explicit black, depending on the Fusarium species. Strong virulence was established in 48 isolates, medium virulence in 31 and weak virulence in 12 isolates.

  15. Virulence of Fusarium species to alfalfa seedlings

    Directory of Open Access Journals (Sweden)

    Krnjaja Vesna

    2005-01-01

    Full Text Available In in vitro conditions, virulence of 91 isolates of species Fusarium genus (F. oxysporum, F. solani, F. acuminatum, F. equiseti, F. arthrosporioides, F. proliferatum, F. avenaceum, F. semitectum, F. tricinctum, F. sporotrichioides and F. graminearum towards alfalfa seedlings was investigated. Isolates of investigated species originated from diseased alfalfa plants collected on four locations in Serbia based on symptoms of wilting caused by fusarium and root rotting. Pathogenicity and virulence of investigated isolates of Fusarium spp. were determined by visual evaluation of inoculated seedlings of cultivars K28 in laboratory conditions. All isolated of investigated species had pathogenic effect on alfalfa seedlings, which expressed symptoms such as necrosis of root, moist rotting and "melting of seedlings". Colour of necrotic root tissue varied from light brown, brown, lipstick red to explicit black, depending on the Fusarium species. Strong virulence was established in 48 isolates, medium virulence in 31 and weak virulence in 12 isolates.

  16. NMR metabolomics analysis of the effect of elevated CO2 on wheat resistance to Fusarium head blight

    Science.gov (United States)

    Fusarium head blight (FHB), primarily induced by the filamentous ascomycete Fusarium graminearum (Fg), is one of the most damaging diseases in wheat and other small grain cereals worldwide. Current methods for disease control include utilization of less susceptible cultivars and treatment with fungi...

  17. Genetic variation and associations involving Fusarium head blight and deoxynivalenol accumulation in cultivated oat (Avena sativa L.)

    Science.gov (United States)

    Resistance in oats (Avena sativa L.) to infection by Fusarium graminearum was assessed in field trials in 2011-12 including 424 spring oat lines from North America and Scandinavia. Traits measured were Fusarium Head Blight (FHB), deoxynivalenol (DON) content, days to flowering (DTF) and days to matu...

  18. Rainfastness of Prothioconazole+Tebuconazole for Fusarium head blight and Deoxynivalenol management in soft red winter wheat

    Science.gov (United States)

    Fungicides are most warranted for control of Fusarium head blight (FHB), a disease of wheat caused by the fungal pathogen Fusarium graminearum, when wet, rainy conditions occurs during anthesis. However, it is unclear whether rainfall directly following application affects fungicide efficacy against...

  19. Fusarium ear rot and how to screen for resistance in open pollinated maize in the Andean regions

    NARCIS (Netherlands)

    Silva, E.; Mora, E.A.; Medina, A.; Vasquez, J.; Valdez, D.; Danial, D.L.; Parlevliet, J.E.

    2007-01-01

    Ears infected with ear rot were collected from five provinces in Ecuador. Of the 44 samples analysed 26 carried Fusarium verticillioides, 11 F. subglutinans, two F. graminearum and five carried fungi different from Fusarium. The pathogenicity of ten isolates, seven of F. verticillioides and three of

  20. Alternaria and Fusarium in Norwegian grains of reduced quality - a matched pair sample study

    DEFF Research Database (Denmark)

    Kosiak, B.; Torp, M.; Skjerve, E.;

    2004-01-01

    The occurrence and geographic distribution of species belonging to the genera Alternaria and Fusarium in grains of reduced and of acceptable quality were studied post-harvest in 1997 and 1998. A total of 260 grain samples of wheat, barley and oats was analysed. The distribution of Alternaria...... and Fusarium spp. varied significantly in samples of reduced quality compared with acceptable samples. Alternaria spp. dominated in the acceptable samples with A. infectoria group as the most frequently isolated and most abundant species group of this genus while Fusarium spp. dominated in samples of reduced...... quality. The most frequently isolated Fusarium spp. from all samples were F avenaceum, E poae, F culmorum and E tricinctum. Other important toxigenic Fusarium spp. isolated were F graminearum and E equiseti. The infection levels of F graminearum and F culmorunt were significantly higher in the samples...

  1. Draft Genome Sequence of Rhizobium sp. Strain TBD182, an Antagonist of the Plant-Pathogenic Fungus Fusarium oxysporum, Isolated from a Novel Hydroponics System Using Organic Fertilizer.

    Science.gov (United States)

    Iida, Yuichiro; Fujiwara, Kazuki; Someya, Nobutaka; Shinohara, Makoto

    2017-03-16

    Rhizobium sp. strain TBD182, isolated from a novel hydroponics system, is an antagonistic bacterium that inhibits the mycelial growth of Fusarium oxysporum but does not eliminate the pathogen. We report the draft genome sequence of TBD182, which may contribute to elucidation of the molecular mechanisms of its fungistatic activity. Copyright © 2017 Iida et al.

  2. Draft Genome Sequence of Rhizobium sp. Strain TBD182, an Antagonist of the Plant-Pathogenic Fungus Fusarium oxysporum, Isolated from a Novel Hydroponics System Using Organic Fertilizer

    Science.gov (United States)

    Fujiwara, Kazuki; Someya, Nobutaka; Shinohara, Makoto

    2017-01-01

    ABSTRACT Rhizobium sp. strain TBD182, isolated from a novel hydroponics system, is an antagonistic bacterium that inhibits the mycelial growth of Fusarium oxysporum but does not eliminate the pathogen. We report the draft genome sequence of TBD182, which may contribute to elucidation of the molecular mechanisms of its fungistatic activity. PMID:28302768

  3. An Asian ambrosia beetle Euwallacea fornicatus and its novel symbiotic fungus Fusarium sp. pose a serious threat to the Israeli avocado industry

    Science.gov (United States)

    The ambrosia beetle Euwallacea fornicatus Einchoff was first recorded in Israel in 2009. A novel unnamed symbiotic species within Clade 3 of the Fusarium solani species complex, carried in the mandibular mycangia of the beetle, is responsible for the typical wilt symptoms inflicted on avocado (Perse...

  4. Studies on the chemical constituents of Fusarium sp.from seagrass endophytic fungus%海草内生真菌Fusarium sp.F-1化学成分研究

    Institute of Scientific and Technical Information of China (English)

    肖义平; 陈晶晶; 张云海; 邵志宇; 徐德强

    2004-01-01

    从海草互花米草(Spartina alterni flora)中分离到真菌Fusarium sp.,从该菌株的培养物中首次分离到5个化合物,经TLC对照,MS,NMR等光谱技术鉴定,确定其结构分别为麦角甾醇(Ⅰ)、过氧化麦角甾醇(Ⅱ)、肉桂酸(Ⅲ)、对羟基苯丙酸(Ⅳ)和白僵菌素(Ⅴ).

  5. Updated survey of Fusarium species and toxins in Finnish cereal grains.

    Science.gov (United States)

    Hietaniemi, Veli; Rämö, Sari; Yli-Mattila, Tapani; Jestoi, Marika; Peltonen, Sari; Kartio, Mirja; Sieviläinen, Elina; Koivisto, Tauno; Parikka, Päivi

    2016-05-01

    The aim of the project was to produce updated information during 2005-14 on the Fusarium species found in Finnish cereal grains, and the toxins produced by them, as the last comprehensive survey study of Fusarium species and their toxins in Finland was carried out at the turn of the 1960s and the 1970s. Another aim was to use the latest molecular and chemical methods to investigate the occurrence and correlation of Fusarium species and their mycotoxins in Finland. The most common Fusarium species found in Finland in the FinMyco project 2005 and 2006 were F. avenaceum, F. culmorum, F. graminearum, F. poae, F. sporotrichioides and F. langsethiae. F. avenaceum was the most dominant species in barley, spring wheat and oat samples. The occurrence of F. culmorum and F. graminearum was high in oats and barley. Infection by Fusarium fungi was the lowest in winter cereal grains. The incidence of Fusarium species in 2005 was much higher than in 2006 due to weather conditions. F. langsethiae has become much more common in Finland since 2001. F. graminearum has also risen in the order of importance. A highly significant correlation was found between Fusarium graminearum DNA and deoxynivalenol (DON) levels in Finnish oats, barley and wheat. When comparing the FinMyco data in 2005-06 with the results of the Finnish safety monitoring programme for 2005-14, spring cereals were noted as being more susceptible to infection by Fusarium fungi and the formation of toxins. The contents of T-2 and HT-2 toxins and the frequency of exceptionally high DON concentrations all increased in Finland during 2005-14. Beauvericin (BEA), enniatins (ENNs) and moniliformin (MON) were also very common contaminants of Finnish grains in 2005-06. Climate change is leading to warmer weather, and this may indicate more changes in Finnish Fusarium mycobiota and toxin contents and profiles in the near future.

  6. Determining the order of resistance genes against Stagonospora nodorum blotch, Fusarium head blight and stem rust on wheat chromosome 3BS

    Science.gov (United States)

    Fungal diseases of wheat occur every year in the U.S., leading to significant grain yield losses. Stagonospora nodorum blotch (SNB), Fusarium head blight (FHB) and stem rust (SR) are caused by the fungi Stagonospora nodorum, Fusarium graminearum and Puccinia graminis, respectively. These leaf and he...

  7. Regional differences in species composition and toxigenic potential among Fusarium head blight isolates from Uruguay indicate a risk of nivalenol contamination in new wheat production areas.

    Science.gov (United States)

    Umpiérrez-Failache, M; Garmendia, G; Pereyra, S; Rodríguez-Haralambides, A; Ward, T J; Vero, S

    2013-08-16

    Members of the Fusarium graminearum species complex (FGSC) are the primary cause of Fusarium head blight (FHB) of wheat, and frequently contaminate grain with trichothecene mycotoxins that pose a serious threat to food safety and animal health. The species identity and trichothecene toxin potential of 151 FGSC isolates collected from wheat in Uruguay were determined via multilocus genotyping. Although F. graminearum with the 15ADON trichothecene type accounted for 86% of the isolates examined, five different FGSC species and all three trichothecene types were identified in this collection. This is the first report of Fusarium asiaticum, Fusarium brasilicum, Fusarium cortaderiae, and Fusarium austroamericanum from Uruguay. In addition, we observed significant (Pcomposition of FGSC species and trichothecene types within Uruguay. Isolates of F. graminearum with the 15ADON type were the most prevalent in western provinces (95%), while F. asiaticum (43%) and the NIV type (61%) predominated in the new wheat production zone in Cerro Largo along Uruguay's eastern border with Brazil. F. graminearum isolates (15ADON type) were significantly (Pwheat than were isolates from the other species examined (NIV or 3ADON types). However, F. graminearum isolates (15ADON type) were significantly (P<0.05) more sensitive to tebuconazole than isolates from other species (NIV type). These results document substantial heterogeneity among the pathogens responsible for FHB in Uruguay. In addition, the regional predominance of the NIV trichothecene type is of significant concern to food safety and indicates that additional monitoring of nivalenol levels in grain may be required.

  8. [Features of interaction bacterial strains Micrococcus luteus LBK1 from plants varieties/hybrids cucumber and sweet pepper and with fungus Fusarium oxysporum Scelecht].

    Science.gov (United States)

    Parfeniuk, A; Sterlikova, O; Beznosko, I; Krut', V

    2014-01-01

    The article presents the results of studying the impact of bacterial strain M. luteus LBK1, stimulating the growth and development of plant varieties/hybrids of cucumber and sweet pepper on the intensity of sporulation of the fungus F. oxysporum Scelecht--fusariose rot pathogen.

  9. 南海海洋真菌Fusarium sp.(# 2489)的代谢产物%STUDIES ON THE SECONDARY METABOLITES OF MARINE FUNGUS Fusarium sp. (# 2489) FROM THE SOUTH CHINA SEA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    首次对南海海洋真菌Fusarium sp.(#2489)的代谢产物进行研究,从菌体和培养液中共分离纯化得10个化合物.它们的结构通过IR,MS,NMR谱以及元素分析推导确定.其中(3′E,4E)-1-β-D-吡喃葡萄糖基-3-羟基-2-(2′-羟基十八碳酰基)氨基-10-甲基-3′,4,9-十八碳三烯(A)是鞘胺醇甙,为首次从海洋真菌中分离得到.

  10. Fungicidal activity of Eucalyptus tereticornis essential oil on the pathogenic fungus Fusarium oxysporum Actividad antimicótica del aceite esencial a partir de Eucalyptus tereticornis sobre el hongo patógeno Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Walter Murillo Arango

    2011-06-01

    Full Text Available The objective of present paper was to determine the antifungal activity of the Eucalyptus tereticornis (Myrtaceae essential oil and two fractions on the Fusarium oxysporum mushroom, a pathogen with clinical and agricultural significance. The total citronelal (44.8 % and geraniol (9.78 % essential oil had a fungicidal effect at a 3 g/L concentration and a fungicidal activity at small concentrations. The A and B fractions composed most of p-mentane-3,8-diol (18.95 % and geraniol acetate (24.34 %, respectively were more active than the total extract. The observations at microscopic level showed damages and changes in hyphae and chlamydospores, as well as a decrease in the number of conidia. The observed fungicidal activity and the morphologic damages were dependent on the concentration.El objetivo de este trabajo fue determinar la actividad antifúngica del aceite esencial de Eucalyptus tereticornis (Myrtaceae y 2 fracciones sobre el hongo Fusarium oxysporum, patógeno de importancia tanto clínica como agrícola. El aceite esencial total, compuesto principalmente por citronelal (44,8 %, citronelol (9,78 % presentó un efecto fungicida a una concentración de 3 g/L y actividad fungistática a concentraciones menores. La fracciones A y B compuestas en su mayoría por p-mentano-3,8-diol (18,95 % y acetato de citronelol (24,34 % respectivamente fueron más activas que el extracto total. Las observaciones a nivel microscópico mostraron daños y cambios en hifas y clamidosporas, así como disminución en el número de conidias. La actividad fungistática observada y los daños morfológicos fueron dependientes de la concentración.

  11. Fusion: a tale of recombination in an asexual fungus: The role of nuclear dynamics and hyphal fusion in horizontal chromosome transfer in Fusarium oxysporum

    OpenAIRE

    Shahi, S.

    2016-01-01

    Recent studies have shown that not only meiotic recombination is responsible for the fast evolution of fungal pathogens. In the asexual fungus F. oxysporum (Fo) the "fast" evolving part of the genome is organized into small chromosomes and one such chromosome houses all effector genes and is referred to as the "pathogenicity" chromosome. This pathogenicity chromosome can be horizontally transferred to a non-pathogenic strain, conferring pathogenicity. Here we use Fo as a model organism to add...

  12. Genetic structure of soil population of fungus Fusarium oxysporum Schlechtend.: Fr.: Molecular reidentification of the species and genetic differentiation of isolates using polymerase chain reaction technique with universal primers (UP-PCR)

    Energy Technology Data Exchange (ETDEWEB)

    Bulat, S.A. [St. Petersburg Institute of Nuclear Physics, Gatchina (Russian Federation); Mironenko, N.V. [All-Russian Institute of Plant Protection, Pushkin (Russian Federation); Zholkevich, Yu.G. [Institute of Microbiology and Virology, Kiev (Ukraine)

    1995-07-01

    The genetic structure of three soil populations of fungus Fusarium oxysporum was analyzed using polymerase chain reaction with universal primers (UP-PCR). Distinct UP-PCR variants revealed by means of cross-dot hybridization of amplified DNA and restriction analysis of nuclear ribosomal DNA represent subspecies or sibling species of F. oxysporum. The remaining isolates of F. oxysporum showed moderate UP-PCR polymorphism characterized by numerous types, whose relatedness was analyzed by computer treatment of the UP-PCR patterns. The genetic distance trees based on the UP-PCR patterns, which were obtained with different universal primers, demonstrated similar topology. This suggests that evolutionarily important genome rearrangements correlatively occur within the entire genome. Isolates representing different UP-PCR polymorphisms were encountered in all populations, being distributed asymmetrically in two of these. In general, soil populations of F. oxysporum were represented by numerous genetically isolated groups with a similar genome structure. The genetic heterogeneity of the isolates within these groups is likely to be caused by the parasexual process. The usefulness of the UP-PCR technique for population studies of F. oxysporum was demonstrated. 39 refs., 7 figs., 2 tabs.

  13. Immobilization of Fusarium verticillioides fungus on nano-silica (NSi-Fus): a novel and efficient biosorbent for water treatment and solid phase extraction of Mg(II) and Ca(II).

    Science.gov (United States)

    Mahmoud, Mohamed E; Yakout, Amr A; Abdel-Aal, Hany; Osman, Maher M

    2013-04-01

    Biosorption and water treatment of Mg(II) and Ca(II) hardness was designed via surface loading of heat inactivated Fusarium verticillioides fungus (Fus) on nano-silica (NSi) for developing the (NSi-Fus) as a novel biosorbent. Surface characterization was confirmed by FT-IR and SEM analysis. The (NSi), (Fus) and (NSi-Fus) sorbents were investigated for removal of Mg(II) and Ca(II) by using the batch equilibrium technique under the influence of solution pH, contact time, sorbent dosage, initial metal concentration and interfering ion. The maximum magnesium capacity values were identified as 600.0, 933.3 and 1000.0 μmole g(-1) while, the maximum calcium values were 1066.7, 1800.0 and 1333.3 μmole g(-1) for (NSi), (Fus) and (NSi-Fus), respectively. Sorption equilibria were established in ∼20 min and the data were well described by both Langmuir and Freundlich models. The potential applications of these biosorbents for water-softening and extraction of magnesium and calcium from sea water samples were successfully accomplished.

  14. Influence of volatile organic compounds on Fusarium graminearum mycotoxin production

    Science.gov (United States)

    Volatile organic compounds (VOCs) are involved in a diverse range of ecological interactions. Due to their low molecular weight, lipophilic nature, and high vapor pressure at ambient temperatures, they can serve as airborne signaling molecules that are capable of mediating inter and intraspecies com...

  15. Reorganization of the ER during mycotoxin production in Fusarium graminearum

    Science.gov (United States)

    Subcellular compartmentalization of metabolic pathways to particular organelles is a hallmark of eukaryotic cells, critical for their function. Understanding the developmental dynamics of organelles and attendant pathways under different metabolic states has been advanced by live cell imaging and or...

  16. Fusarium head blight (FHB and Fusarium spp. on grain of spring wheat cultivars grown in Poland

    Directory of Open Access Journals (Sweden)

    Lenc Leszek

    2015-07-01

    Full Text Available Eighteen spring wheat cultivars, recommended for commercial production in northern Poland, were assessed for Fusarium head blight (FHB in natural non-epidemic conditions, from 2011 to 2013. Assessment was based on FHB incidence (proportion of heads with symptoms, disease severity (DS; proportion of bleached spikelets per head, proportion of Fusarium damaged kernels (FDK, and spectrum of Fusarium spp. colonising the kernels. Fusarium head blight incidence and DS often differed significantly among cultivars and years. There was a strong positive correlation between FHB incidence and DS. Fusarium head blight incidence and DS were not correlated with the June–July temperatures, and were only occasionally correlated with the total June–July rainfall. There was a weak positive correlation between FHB incidence and proportion of FDK. There was a strong positive correlation between DS and proportion of FDK. The cultivar affected colonisation of kernels by Fusarium spp. Fusarium poae was the FHB pathogen isolated most often. Fusarium poae colonised 6.0% of the kernels, on average, but up to 12.0% on individual cultivars. Other Fusarium species were less frequent: F. avenaceum in 5.6% of kernels, F. culmorum in 5.3%, F. tricinctum in 2.8%, F. graminearum in 1.5%, and F. sporotrichioides in 1.2%. Fusarium equiseti occurred sporadically. The importance of F. poae in the FHB complex is emphasised. All cultivars expressed ‘moderate FHB resistance’ if evaluated according to FHB incidence. Cultivars Arabella, Izera, Kandela, Monsun, Ostka Smolicka, and Struna expressed ‘moderate susceptibility’, and Bombona, Hewilla, Katoda, KWS Torridon, Łagwa, Nawra, Parabola, Radocha, SMH 87, Trappe, Tybalt, and Waluta expressed ‘susceptibility’ if evaluated by the proportion of FDK. Cultivars differed within the ‘moderately resistant’, ‘moderately susceptible’, and ‘susceptible’ categories. Cultivars Arabella, Izera, Kandela, Monsun, Ostka

  17. TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotype of F. graminearum and F. culmorum isolates in Danish small grain cereals

    DEFF Research Database (Denmark)

    Nielsen, L. K.; Jensen, J. D.; Rodríguez, A.

    2012-01-01

    Quantitative real-time PCR assays, based on polymorphisms in the TRI12 gene of the trichothecene pathway, were developed to identify and quantify the trichothecene genotypes producing 3-acetyl-deoxynivalenol (3ADON), 15-acetyl-deoxynivalenol (15ADON) or nivalenol (NIV) in the Fusarium graminearum...... in the sample representing the years from 1997 to 2000. Detection of low amounts of the 15ADON genotype in these historical samples and the relatively high amounts of 15ADON genotype in 2003 and following years correspond well with the occurrence of F. graminearum and indicates that the 15ADON genotype...

  18. Rapid detection method for fusaric acid-producing species of Fusarium by PCR

    Science.gov (United States)

    Fusaric acid is a mycotoxin produced by species of the fungus Fusarium and can act synergistically with other Fusarium toxins. In order to develop a specific detection method for fusaric acid-producing fungus, PCR prim¬ers were designed to amplify FUB10, a transcription factor gene in fusaric acid ...

  19. Root rot symptoms in sugar beet lines caused by Fusarium oxysporum f. sp. betae

    Science.gov (United States)

    The soil-borne fungus Fusarium oxysporum may cause both Fusarium yellows and Fusarium root rot diseases with severe yield losses in cultivated sugar beet worldwide. These two diseases cause similar foliar symptoms but different root response and have been proposed to be due to two distinct F. oxyspo...

  20. Restoring (E)-β-Caryophyllene Production in a Non-producing Maize Line Compromises its Resistance against the Fungus Colletotrichum graminicola.

    Science.gov (United States)

    Fantaye, Chalie Assefa; Köpke, Diana; Gershenzon, Jonathan; Degenhardt, Jörg

    2015-03-01

    The sesquiterpene (E)-β-caryophyllene is emitted from maize (Zea mays) leaves and roots in response to herbivore attack. This compound serves as a signal for the attraction of herbivore enemies and is present in most European maize varieties. However, most North American maize lines have lost the ability to produce (E)-β-caryophyllene. Previously, we showed that restoring the ability to synthesize (E)-β-caryophyllene in a non-producing maize line improved its resistance against the root herbivore Diabrotica virgifera virgifera. However, it is largely unknown whether this modification affects the resistance to other pests. In this study, we investigated the response of constitutively (E)-β-caryophyllene-producing transgenic lines to infection by a hemibiotrophic fungus Colletotrichum graminicola. Our results showed that restoring (E)-β-caryophyllene synthesis in a Hi-II genetic background enhanced the susceptibility of the plant to C. graminicola infection rather than increasing its resistance. This modification did not alter the baseline levels of plant defense hormones and metabolites. Nor did (E)-β-caryophyllene production modify the expression of anti-fungal defense genes. Instead, the addition of (E)-β-caryophyllene seemed to directly stimulate fungal growth. In an in vitro antifungal assay, we found that (E)-β-caryophyllene stimulated hyphal growth of C. graminicola and Fusarium graminearum. Thus, although restoring (E)-β-caryophyllene production in a non-producing maize line may improve the resistance of the plant against herbivores, it may compromise its resistance to major fungal pathogens. This might explain the loss of (E)-β-caryophyllene during maize breeding in environments where C. graminicola and Fusarium graminearum are prevalent.

  1. Studies on the Fusarium-lily interaction: a breeding approach.

    NARCIS (Netherlands)

    Straathof, Th.P.

    1994-01-01

    The soil-borne fungus Fusarium oxysporum f.sp . lilii Imle causes bulb and scale rot of lilies ( Lilium L.) , annually resulting in a considerable economical damage in bulb and flower cultivation. Presently, the prevention of Fusarium damage depends on the application of a combination of fungicides

  2. Diversity of fusarium species from highland areas in malaysia.

    Science.gov (United States)

    Manshor, Nurhazrati; Rosli, Hafizi; Ismail, Nor Azliza; Salleh, Baharuddin; Zakaria, Latiffah

    2012-12-01

    Fusarium is a cosmopolitan and highly diversified genus of saprophytic, phytopathogenic and toxigenic fungi. However, the existence and diversity of a few species of Fusarium are restricted to a certain area or climatic condition. The present study was conducted to determine the occurrence and diversity of Fusarium species in tropical highland areas in Malaysia and to compare with those in temperate and subtropical regions. A series of sampling was carried out in 2005 to 2009 at several tropical highland areas in Malaysia that is: Cameron Highlands, Fraser Hills and Genting Highlands in Pahang; Penang Hill in Penang; Gunung Jerai in Kedah; Kundasang and Kinabalu Park in Sabah; Kubah National Park and Begunan Hill in Sarawak. Sampling was done randomly from various hosts and substrates. Isolation of Fusarium isolates was done by using pentachloronitrobenzene (PCNB) agar and 1449 isolates of Fusarium were successfully recovered. Based on morphological characteristics, 20 species of Fusarium were identified. The most prevalent species occurring on the highlands areas was F. solani (66.1%) followed by F. graminearum (8.5%), F. oxysporum (7.8%), F. semitectum (5.7%), F. subglutinans (3.5%) and F. proliferatum (3.4%). Other Fusarium species, namely F. avenaceum, F. camptoceras, F. chlamydosporum, F. compactum, F. crookwellense, F. culmorum, F. decemcellulare, F. equiseti, F. nygamai, F. poae, F. proliferatum, F. sacchari, F. sporotrichioides, F. sterilihyphosum and F. verticillioides accounted for 1% recoveries. The present study was the first report on the occurrences of Fusarium species on highland areas in Malaysia.

  3. Involvement of the salicylic acid signaling pathway in the systemic resistance induced in Arabidopsis by plant growth-promoting fungus Fusarium equiseti GF19-1.

    Science.gov (United States)

    Kojima, Hanae; Hossain, Md Motaher; Kubota, Mayumi; Hyakumachi, Mitsuro

    2013-01-01

    Plant growth-promoting fungi (PGPF) are effective biocontrol agents for a number of soil-borne diseases and are known for their ability to trigger induced systemic resistance (ISR). In this study, we investigated the mechanisms triggered by PGPF Fusarium equiseti GF19-1, which is known to increase pathogen resistance in plants, by using GF19-1 spores and the culture filtrate (CF) to treat the roots of Arabidopsis thaliana. Subsequently, the leaves were challenged with Pseudomonas syringae pv tomato DC3000 (Pst) bacteria. Arabidopsis plants treated with GF19-1 spores or the CF elicited ISR against the Pst pathogen, resulting in a restriction of disease severity and suppression of pathogen proliferation. Examination of ISR in various signaling mutants and transgenic plants showed that GF19-1-induced protection was observed in the jasmonate response mutant jar1 and the ethylene response mutant etr1, whereas it was blocked in Arabidopsis plants expressing the NahG transgene or demonstrating a disruption of the NPR1 gene (npr1). Analysis of systemic gene expression revealed that GF19-1 modulates the expression of salicylic acid (SA)-responsive PR-1, PR-2, and PR-5 genes. Moreover, transient accumulation of SA was observed in GF19-1-treated plant, whereas the level was further enhanced after Pst infection of GF19-1-pretreated plants, indicating that accumulation of SA was potentiated when Arabidopsis plants were primed for disease resistance by GF19-1. In conclusion, these findings imply that the induced protective effect conferred by F. equiseti GF19-1 against the leaf pathogen Pst requires responsiveness to an SA-dependent pathway.

  4. Real-time imaging of the growth-inhibitory effect of JS399-19 on Fusarium.

    Science.gov (United States)

    Wollenberg, Rasmus D; Donau, Søren S; Nielsen, Thorbjørn T; Sørensen, Jens L; Giese, Henriette; Wimmer, Reinhard; Søndergaard, Teis E

    2016-11-01

    Real-time imaging was used to study the effects of a novel Fusarium-specific cyanoacrylate fungicide (JS399-19) on growth and morphology of four Fusarium sp. This fungicide targets the motor domain of type I myosin. Fusarium graminearum PH-1, Fusarium solani f. sp. pisi 77-13-4, Fusarium avenaceum IBT8464, and Fusarium avenaceum 05001, which has a K216Q amino-acid substitution at the resistance-implicated site in its myosin type I motor domain, were analyzed. Real-time imaging shows that JS399-19 inhibits fungal growth but not to the extent previously reported. The fungicide causes the hypha to become entangled and unable to extend vertically. This implies that type I myosin in Fusarium is essential for hyphal and mycelia propagation. The K216Q substitution correlates with reduced susceptibility in F. avenaceum. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Level of seed infection of cultivated sorghum with fungi from genus Fusarium

    Directory of Open Access Journals (Sweden)

    Bodoči Karolina S.

    2013-01-01

    Full Text Available During the year of 2011, the level of fungi infection with the genus Fusarium was examined in seven genotypes of grain sorghum (Gold F1, A 28, B 28, Alba F1, A 73, B 73, Re 236 grown in six localities: Srbobran, Futog and four localities nearby Bački Petrovac (Bački Petrovac 1, 2, 3 and 4. The rate of seed infection with fungus Fusarium in the investigated period ranged from 0 to 8.5%. The infection did not occur in the genotype B73 (Bački Petrovac 1, while a low rate of infection of 0-3% was detected in the genotype B 28 (Srbobran. Medium rate of infection was recorded for the genotype A 28 (Srbobran and A 28 (Futog with 4.25% and for Gold F1 (Bački Petrovac 2 with 5.5%. High rate of infection was recorded for the genotype A 73 (Futog, A 73 (Bački Petrovac 2 (6.25%, Alba F1 (Bački Petrovac 2 (8% and Re 236 (Futog (8.5%. One isolate from each F. solani, F. graminearum, F. subglutinans and F. verticilliodes was selected for the pathogenicity investigation. Thirty plants were inoculated from each genotype of grain sorghum (varieties Alba F1 and Gold F1 and broomcorn (var. Reform and Prima. The spraying inoculation with the suspension of mycelium and conidia was performed when sorghum was at the end of blooming on June 19, 2012. The intensity of the infection on the sorghum panicles was reached in the phenophase of milky-wax maturity on July 8, 2012 and the scale of S h a r m a et al., (2010 was used. The symptoms of the artificial inoculation appeared only in the broomcorn. Among all isolates, the isolate of the species F. graminearum manifested the highest pathogenicity on the variety Reform with average score of 4.43 and on variety Prima with 4.17. [Projekat Ministarstva nauke Republike Srbije, br. III 46005: Genetical divergence, technological quality and storage of cereals and pseudocereals from organic production

  6. Reduced susceptibility to Fusarium head blight in Brachypodium distachyon through priming with the Fusarium mycotoxin deoxynivalenol.

    Science.gov (United States)

    Blümke, Antje; Sode, Björn; Ellinger, Dorothea; Voigt, Christian A

    2015-06-01

    The fungal cereal pathogen Fusarium graminearum produces deoxynivalenol (DON) during infection. The mycotoxin DON is associated with Fusarium head blight (FHB), a disease that can cause vast grain losses. Whilst investigating the suitability of Brachypodium distachyon as a model for spreading resistance to F. graminearum, we unexpectedly discovered that DON pretreatment of spikelets could reduce susceptibility to FHB in this model grass. We started to analyse the cell wall changes in spikelets after infection with F. graminearum wild-type and defined mutants: the DON-deficient Δtri5 mutant and the DON-producing lipase disruption mutant Δfgl1, both infecting only directly inoculated florets, and the mitogen-activated protein (MAP) kinase disruption mutant Δgpmk1, with strongly decreased virulence but intact DON production. At 14 days post-inoculation, the glucose amounts in the non-cellulosic cell wall fraction were only increased in spikelets infected with the DON-producing strains wild-type, Δfgl1 and Δgpmk1. Hence, we tested for DON-induced cell wall changes in B. distachyon, which were most prominent at DON concentrations ranging from 1 to 100 ppb. To test the involvement of DON in defence priming, we pretreated spikelets with DON at a concentration of 1 ppm prior to F. graminearum wild-type infection, which significantly reduced FHB disease symptoms. The analysis of cell wall composition and plant defence-related gene expression after DON pretreatment and fungal infection suggested that DON-induced priming of the spikelet tissue contributed to the reduced susceptibility to FHB.

  7. Effect of 5-n-alkylresorcinol extracts from durum wheat whole grain on the growth of fusarium head blight (FHB) causal agents.

    Science.gov (United States)

    Ciccoritti, Roberto; Pasquini, Marina; Sgrulletta, Daniela; Nocente, Francesca

    2015-01-14

    In an approach toward the identification of ecofriendly compounds for fusarium head blight biocontrol, the in vitro antifungal activity of 5-n-alkylresorcinol (AR) extracts, obtained from durum wheat intact kernels, was tested. In comparison with ethyl acetate and acetone extracts containing AR, total inhibition of Fusarium graminearum spore germination was observed with cyclohexane extract, which also exhibited a significant fungistatic activity against F. graminearum, Fusarium culmorum, Fusarium avenaceum, and Fusarium poae. Additionally, the study of the influence of such variables as predrying of seeds and durum wheat genotype on AR cyclohexane extract properties allowed the association of its highest antifungal activity with the AR homologue composition and, in particular, with the presence of a higher C21:0/C23:0 ratio. The interesting finding of this study suggests a potential application of the AR homologues in crop protection systems and could be an important step toward the development of commercial formulations suitable to the prevention of fungal diseases.

  8. Quick guide to polyketide synthase and nonribosomal synthetase genes in Fusarium

    DEFF Research Database (Denmark)

    Hansen, Jørgen T.; Sørensen, Jens L.; Giese, Henriette;

    2012-01-01

    Fusarium species produce a plethora of bioactive polyketides and nonribosomal peptides that give rise to health problems in animals and may have drug development potential. Using the genome sequences for Fusarium graminearum, F. oxysporum, F. solani and F. verticillioides we developed a framework...... and NRPS genes in sequenced Fusarium species and their known products. With the rapid increase in the number of sequenced fungal genomes a systematic classification will greatly aid the scientific community in obtaining an overview of the number of different NRPS and PKS genes and their potential...

  9. Determination of Mycotoxin Production of Fusarium Species in Genetically Modified Maize Varieties by Quantitative Flow Immunocytometry

    Science.gov (United States)

    Bánáti, Hajnalka; Darvas, Béla; Fehér-Tóth, Szilvia; Czéh, Árpád; Székács, András

    2017-01-01

    Levels of mycotoxins produced by Fusarium species in genetically modified (GM) and near-isogenic maize, were determined using multi-analyte, microbead-based flow immunocytometry with fluorescence detection, for the parallel quantitative determination of fumonisin B1, deoxynivalenol, zearalenone, T-2, ochratoxin A, and aflatoxin B1. Maize varieties included the genetic events MON 810 and DAS-59122-7, and their isogenic counterparts. Cobs were artificially infested by F. verticillioides and F. proliferatum conidia, and contained F. graminearum and F. sporotrichoides natural infestation. The production of fumonisin B1 and deoxynivalenol was substantially affected in GM maize lines: F. verticillioides, with the addition of F. graminearum and F. sporotrichoides, produced significantly lower levels of fumonisin B1 (~300 mg·kg−1) in DAS-59122-7 than in its isogenic line (~580 mg·kg−1), while F. proliferatum, in addition to F. graminearum and F. sporotrichoides, produced significantly higher levels of deoxynivalenol (~18 mg·kg−1) in MON 810 than in its isogenic line (~5 mg·kg−1). Fusarium verticillioides, with F. graminearum and F. sporotrichoides, produced lower amounts of deoxynivalenol and zearalenone than F. proliferatum, with F. graminearum and F. sporotrichoides. T-2 toxin production remained unchanged when considering the maize variety. The results demonstrate the utility of the Fungi-Plex™ quantitative flow immunocytometry method, applied for the high throughput parallel determination of the target mycotoxins. PMID:28241411

  10. Production of paclitaxel by Fusarium solani isolated from Taxus celebica

    Indian Academy of Sciences (India)

    B V S K Chakravarthi; Prasanta Das; Kalpana Surendranath; Anjali A Karande; Chelliah Jayabaskaran

    2008-06-01

    A fungus was isolated from the stem cuttings of Taxus celebica, which produced paclitaxel in liquid-grown cultures. The fungus was identified as Fusarium solani based on colony characteristics, morphology of conidia and the 26S rDNA sequence. Paclitaxel was identified by chromatographic and spectroscopic comparison with authentic paclitaxel and its cytotoxic activity towards Jurkat cells in vitro.

  11. Fusarium Pathogenomics

    Science.gov (United States)

    Fusarium is a genus of filamentous fungi that contains many agronomically important plant pathogens, mycotoxin producers, and opportunistic human pathogens. Comparative analyses have revealed compartmentalization of genomes into regions responsible for metabolism and reproduction (core genome) and p...

  12. A molecular based strategy for rapid diagnosis of toxigenic Fusarium species associated to cereal grains from Argentina.

    Science.gov (United States)

    Sampietro, D A; Marín, P; Iglesias, J; Presello, D A; Vattuone, M A; Catalan, C A N; Gonzalez Jaen, M T

    2010-01-01

    Fusarium species are worldwide causal agents of ear rot in cereals. Their toxigenic potential is a health risk for both humans and animals. In Argentina, most identification of these fungi has been based on morphological and cross-fertility criteria which are time consuming and require considerable expertise in Fusarium taxonomy and physiology. DNA based approaches have been reported as rapid, sensitive and specific alternatives to identify the main fumonisin and trichothecene-producing Fusarium species. In this work, we used PCR assays and the partial sequence of TEF1-alpha gene (Translation Elongation Factor-1 alpha) to identify the fumonisin and trichothecene-producing species in Fusarium isolates from diverse regions of Argentina. The relative efficiency and reliability of those methods to improve mycotoxin risk prediction in this country were also assessed. Species-specific PCR assays were targeted toward multicopy IGS (Intergenic Spacer of rDNA units) and on the toxin biosynthetic genes FUM1 (fumonisins) and TRI13 and TRI7 genes (trichothecenes). PCR assays based on FUM1 gene and IGS sequences allowed detection and discrimination of the fumonisin producers Fusarium proliferatum and Fusarium verticillioides. Molecular identification of nonfumonisin producers from Gibberella fujikuroi species complex was possible after determination of TEF1-alplha gene sequences, which indicated the presence of Fusarium subglutinans, Fusarium andiyazi and Fusarium thapsinum. TEF-1 alpha gene sequences also allowed discrimination of the different species of the Fusarium graminearum complex (F. graminearum sensu lato) as F. graminearum sensu stricto, Fusarium meridionale and Fusarium boothii. The last two species belonged to NIV chemotype and were detected for the first time in the subtropical region of Argentina while F. graminearum sensu stricto was DON producer only, which was also confirmed by specific PCR assays based on TRI137/TRI7 genes. Our results indicated that the PCR

  13. Keratitis by Fusarium temperatum, a novel opportunist.

    Science.gov (United States)

    Al-Hatmi, Abdullah M S; Bonifaz, Alexandro; de Hoog, G Sybren; Vazquez-Maya, Leticia; Garcia-Carmona, Karla; Meis, Jacques F; van Diepeningen, Anne D

    2014-11-12

    Fusarium species are among the most common fungi present in the environment and some species have emerged as major opportunistic fungal infection in human. However, in immunocompromised hosts they can be virulent pathogens and can cause death. The pathogenesis of this infection relies on three factors: colonization, tissue damage, and immunosuppression. A novel Fusarium species is reported for the first time from keratitis in an agriculture worker who acquired the infection from plant material of maize. Maize plants are the natural host of this fungus where it causes stalk rot and seeding malformation under temperate and humid climatic conditions. The clinical manifestation, microbiological morphology, physiological features and molecular data are described. Diagnosis was established by using polymerase chain reaction of fungal DNA followed by sequencing portions of translation elongation factor 1 alpha (TEF1 α) and beta-tubulin (BT2) genes. Susceptibility profiles of this fungus were evaluated using CLSI broth microdilution method. The analyses of these two genes sequences support a novel opportunist with the designation Fusarium temperatum. Phylogenetic analyses showed that the reported clinical isolate was nested within the Fusarium fujikuroi species complex. Antifungal susceptibility testing demonstrated that the fungus had low MICs of micafungin (0.031 μg/ml), posaconazole (0.25 μg/ml) and amphotericin B (0.5 μg/ml). The present case extends the significance of the genus Fusarium as agents of keratitis and underscores the utility of molecular verification of these emerging fungi in the human host.

  14. Influence of Agronomic and Climatic Factors on Fusarium Infestation and Mycotoxin Contamination of Cereals in Norway

    Science.gov (United States)

    Bernhoft, A.; Torp, M.; Clasen, P.-E.; Løes, A.-K.; Kristoffersen, A.B.

    2012-01-01

    A total of 602 samples of organically and conventionally grown barley, oats and wheat was collected at grain harvest during 2002–2004 in Norway. Organic and conventional samples were comparable pairs regarding cereal species, growing site and harvest time, and were analysed for Fusarium mould and mycotoxins. Agronomic and climatic factors explained 10–30% of the variation in Fusarium species and mycotoxins. Significantly lower Fusarium infestation and concentrations of important mycotoxins were found in the organic cereals. The mycotoxins deoxynivalenol (DON) and HT-2 toxin (HT-2) constitute the main risk for human and animal health in Norwegian cereals. The impacts of various agronomic and climatic factors on DON and HT-2 as well as on their main producers F. graminearum and F. langsethiae and on total Fusarium were tested by multivariate statistics. Crop rotation with non-cereals was found to reduce all investigated characteristics significantly – mycotoxin concentrations as well as various Fusarium infestations. No use of mineral fertilisers and herbicides was also found to decrease F. graminearum, whereas lodged fields increased the occurrence of this species. No use of herbicides was also found to decrease F. langsethiae, but for this species the occurrence was lower in lodged fields. Total Fusarium infestation was decreased with no use of fungicides or mineral fertilisers, and with crop rotation, as well as by using herbicides and increased by lodged fields. Clay and to some extent silty soils seemed to reduce F. graminearum in comparison with sandy soils. Concerning climate factors, low temperature before grain harvest was found to increase DON; and high air humidity before harvest to increase HT-2. F. graminearum was negatively correlated with precipitation in July but correlated with air humidity before harvest. F. langsethiae was correlated with temperature in July. Total Fusarium increased with increasing precipitation in July. Organic cereal

  15. The sensitive baseline of Fusarium graminearum to tebuconazole and cross resistance against diverse fungicides%禾谷镰孢菌对戊唑醇敏感基线的建立和不同杀菌剂的交互抗性

    Institute of Scientific and Technical Information of China (English)

    叶滔; 王志伟; 牛芳胜; 王文桥; 韩秀英; 张小风; 马志强

    2012-01-01

    120 strains of Fusariu a difference of 27. 875 times between the highest and the lowest ranging from 0. 007 2 to 0. 200 7 μg/mL, which could be regarded as the baseline sensitivity of F. graminearum to tebuconazole because frequency distribution of the 120 strains was similar to Gaussian distribution pattern. Linear regression result showed no positive-correlated cross resistance between tebuconazole and other diverse active mechanism fungicides. m graminearum collected from different regions of Henan, Shandong and Hebei provinces were determined by mycelia growth inhibition method in order to confirm the sensitivity of F. graminearum to the triazole fungicides tebuconazole. Sensitivity of ten sensitive strains to iprodione, thiram, chlorothalonil, difenoconazole and carbendazim were tested by the same method to make sure that cross resistance was existed or not between tebuconazole and other diverse active mechanism fungicides. The results showed that mycelial growth of F. graminearum was affected by tebuconazole, with a mean EQo of (0.102 6 + 0. 045 4) μg/mL,%为了明确禾谷镰孢菌对三唑类杀菌剂戊唑醇的敏感性及该药剂与其他杀菌剂的交互抗性,采用菌丝生长速率法测定了河南、山东和河北等不同地区的120个禾谷镰孢菌单孢菌株对戊唑醇的敏感性,同时测定了10株敏感菌株对异菌脲、福美双、百菌清、苯醚甲环唑和多菌灵的交互抗药性.结果表明:戊唑醇对禾谷镰孢菌的菌丝生长具有明显的抑制作用,EC50范围为0.0072~0.2007 μg/mL,最大值与最小值相差27.875倍,平均值为(0.1026±0.0454)μg/mL,其敏感性频率呈近似正态分布,可作为禾谷镰孢菌对戊唑醇的相对敏感性基线.戊唑醇与上述不同作用机制杀菌剂之间相关系数低,均无交互抗性.

  16. Investigations on Fusarium spp. and their mycotoxins causing Fusarium ear rot of maize in Kosovo.

    Science.gov (United States)

    Shala-Mayrhofer, Vitore; Varga, Elisabeth; Marjakaj, Robert; Berthiller, Franz; Musolli, Agim; Berisha, Defrime; Kelmendi, Bakir; Lemmens, Marc

    2013-01-01

    After wheat, maize (Zea mays L.) is the second most important cereal crop in Kosovo and a major component of animal feed. The purpose of this study was to analyse the incidence and identity of the Fusarium species isolated from naturally infected maize kernels in Kosovo in 2009 and 2010, as well as the mycotoxin contamination. The disease incidence of Fusarium ear rot (from 0.7% to 40% diseased ears) on maize in Kosovo is high. The most frequently Fusarium spp. identified on maize kernels were Fusarium subglutinans, F. verticillioides/F. proliferatum and F. graminearum. Maize kernel samples were analysed by LC-MS/MS and found to be contaminated with deoxynivalenol (DON), DON-3-glucoside, 3-acetyl-DON, 15-acetyl-DON, zearalenone, zearalenone-14-sulphate, moniliformin, fumonisin B1 and fumonisin B2. This is the first report on the incidence and identification of Fusarium species isolated from naturally infected maize as well as the mycotoxin contamination in Kosovo.

  17. Benzoxazinoid concentrations show correlation with Fusarium Head Blight resistance in Danish wheat varieties

    DEFF Research Database (Denmark)

    Søltoft, Malene; Jørgensen, Lise N.; Svensmark, Bo;

    2008-01-01

    Fusarium Head Blight (FHB) is a destructive disease that affects the grain yield and quality of cereals. The relationship between the natural defense chemicals benzoxazinoids and the FHB resistance of field grown winter wheat varieties was investigated. FHB resistance was assessed by the inoculat......Fusarium Head Blight (FHB) is a destructive disease that affects the grain yield and quality of cereals. The relationship between the natural defense chemicals benzoxazinoids and the FHB resistance of field grown winter wheat varieties was investigated. FHB resistance was assessed...... by the inoculation of wheat ears with mixtures of Fusarium avenaceum, Fusarium culmorum, Fusarium graminearum, and Microdochium nivale. The benzoxazinoids detected in the highest concentration were 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (3.7-9.4 mu mol/kg DW) and 2-hydroxy-7-nnethoxy-(2H)-1...

  18. Fusarium soloni mycetoma

    Directory of Open Access Journals (Sweden)

    V J Katkar

    2011-01-01

    Full Text Available A young apparently healthy, non-diabetic, HIV non-reactive woman presented with a mycetoma-like lesion on right buttock. Discharge was scanty, and mycotic grains were not seen. Biopsy of sinus track was obtained for microscopy and culture. Microscopic examination revealed plenty of fungal hyphae in direct microscopic examination of grounded tissues in saline; KOH, Gram′s, and H and E-stained smears. All the three inoculated slants of Sabouraud′s media yielded heavy growth of Fusarium solani. Presence of numerous hyphal fragments in direct microscopy and heavy growth of F. solani in all three slants indicative of etiological role of fungus in the present case. It is probably a first report of F. soloni mycetoma from India.

  19. FocVel1 influences asexual production, filamentous growth, biofilm formation, and virulence in Fusarium oxysporum f. sp. cucumerinum

    Directory of Open Access Journals (Sweden)

    Li ePeiqian

    2015-05-01

    Full Text Available Velvet genes play critical roles in the regulation of diverse cellular processes. In current study, we identified the gene FocVel1, a homolog of Fusarium graminearum VelA, in the plant pathogenic fungus F. oxysporum f. sp. cucumerinum. This pathogen causes the destructive disease called cucumber Fusarium wilt, which severely affects the production and marketing of this vegetable worldwide. Transcript analyses revealed high expression of FocVel1 during conidiophore development. Disruption of the FocVel1 gene led to several phenotypic defects, including reduction in aerial hyphal formation and conidial production. The deletion mutant ⊿FocVel1 showed increased resistance to both osmotic stress and cell wall-damaging agents, but increased sensitivity to iprodione and prochloraz fungicides, which may be related to changes in cell wall components. In the process of biofilm formation in vitro, the mutant strain ⊿FocVel1 displayed not only a reduction in spore aggregation but also a delay in conidial germination on the polystyrene surface, which may result in defects in biofilm formation. Moreover, pathogenicity assays showed that the mutant ⊿FocVel1 exhibited impaired virulence in cucumber seedlings. And the genetic complementation of the mutant with the wild-type FocVel1 gene restored all the defects of the ⊿FocVel1. Taken together, the results of this study indicated that FocVel1 played a critical role in the regulation of various cellular processes and pathogenicity in F. oxysporum f. sp. cucumerinum.

  20. Infection of corn ears by Fusarium spp. induces the emission of volatile sesquiterpenes.

    Science.gov (United States)

    Becker, Eva-Maria; Herrfurth, Cornelia; Irmisch, Sandra; Köllner, Tobias G; Feussner, Ivo; Karlovsky, Petr; Splivallo, Richard

    2014-06-01

    Infection of corn (Zea mays L.) ears with fungal pathogens of the Fusarium genus might result in yield losses and in the accumulation of mycotoxins. The aim of this study was to investigate whether volatile profiles could be used to identify Fusarium-infected corn ears. The volatiles released by corn ears infected by Fusarium graminearum, Fusarium verticillioides, and Fusarium subglutinans were studied. Volatile emission was recorded at 24 days postinoculation (dpi) and in a time series (from 4 to 24 dpi). Twenty-two volatiles were differentially emitted from Fusarium-infected versus healthy corn ears. These included C6-C8 compounds and sesquiterpenoids. All volatiles indicative of Fusarium infection were detectable as early as 4-8 dpi and continued to be produced to the final sampling time (early milk maturity stage). The induced emission of β-macrocarpene and β-bisabolene correlated with an increased transcript accumulation of corn terpene synthase 6/11 (tps6/11). Additionally, the modification of volatile profiles after Fusarium infection was accompanied by the induction of plant defense compounds such as zealexins and oxylipins. Together, these results reveal a broad metabolic response of the plant to pathogen attack. Volatile biomarkers of Fusarium infection are promising indicators for the early detection of fungal infection before disease symptoms become visible.

  1. Morphological and molecular characterization of Fusarium spp pathogenic to pecan tree in Brazil.

    Science.gov (United States)

    Lazarotto, M; Milanesi, P M; Muniz, M F B; Reiniger, L R S; Beltrame, R; Harakava, R; Blume, E

    2014-11-11

    The occurrence of Fusarium spp associated with pecan tree (Carya illinoinensis) diseases in Brazil has been observed in recent laboratory analyses in Rio Grande do Sul State. Thus, in this study, we i) obtained Fusarium isolates from plants with disease symptoms; ii) tested the pathogenicity of these Fusarium isolates to pecan; iii) characterized and grouped Fusarium isolates that were pathogenic to the pecan tree based on morphological characteristics; iv) identified Fusarium spp to the species complex level through TEF-1α sequencing; and v) compared the identification methods used in the study. Fifteen isolates collected from the inflorescences, roots, and seeds of symptomatic plants (leaf necrosis or root rot) were used for pathogenicity tests. Morphological characterization was conducted using only pathogenic isolates, for a total of 11 isolates, based on the mycelial growth rate, sporulation, colony pigmentation, and conidial length and width variables. Pathogenic isolates were grouped based on morphological characteristics, and molecular characterization was performed by sequencing TEF-1α genes. Pathogenic isolates belonging to the Fusarium chlamydosporum species complex, Fusarium graminearum species complex, Fusarium proliferatum, and Fusarium oxysporum were identified based on the TEF-1α region. Morphological characteristics were used to effectively differentiate isolates and group the isolates according to genetic similarity, particularly conidial width, which emerged as a key morphological descriptor in this study.

  2. Nail Fungus

    Science.gov (United States)

    ... problems, a weakened immune system or, in children, Down syndrome A severe case of nail fungus can be ... possibly effective in treating nail fungus, but more study is needed. ... and file down thickened areas. Wear socks that absorb sweat. Fabrics ...

  3. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Poten tial Mycotoxin Production in China

    Directory of Open Access Journals (Sweden)

    Canxing Duan

    2016-06-01

    Full Text Available Ear rot is a serious disease that affects maize yield and grain quality worldwide. The mycotoxins are often hazardous to humans and livestock. In samples collected in China between 2009 and 2014, Fusarium verticillioides and F. graminearum species complex were the dominant fungi causing ear rot. According to the TEF-1α gene sequence, F. graminearum species complex in China included three independent species: F. graminearum, F. meridionale, and F. boothii. The key gene FUM1 responsible for the biosynthesis of fumonisin was detected in all 82 F. verticillioides isolates. Among these, 57 isolates mainly produced fumonisin B1, ranging from 2.52 to 18,416.44 µg/g for each gram of dry hyphal weight, in vitro. Three different toxigenic chemotypes were detected among 78 F. graminearum species complex: 15-ADON, NIV and 15-ADON+NIV. Sixty and 16 isolates represented the 15-ADON and NIV chemotypes, respectively; two isolates carried both 15-ADON and NIV-producing segments. All the isolates carrying NIV-specific segment were F. meridionale. The in vitro production of 15-ADON, 3-ADON, DON, and ZEN varied from 5.43 to 81,539.49; 6.04 to 19,590.61; 13.35 to 19,795.33; and 1.77 to 430.24 µg/g of dry hyphal weight, respectively. Altogether, our present data demonstrate potential main mycotoxin production of dominant pathogenic Fusarium in China.

  4. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Potential Mycotoxin Production in China.

    Science.gov (United States)

    Duan, Canxing; Qin, Zihui; Yang, Zhihuan; Li, Weixi; Sun, Suli; Zhu, Zhendong; Wang, Xiaoming

    2016-06-21

    Ear rot is a serious disease that affects maize yield and grain quality worldwide. The mycotoxins are often hazardous to humans and livestock. In samples collected in China between 2009 and 2014, Fusarium verticillioides and F. graminearum species complex were the dominant fungi causing ear rot. According to the TEF-1α gene sequence, F. graminearum species complex in China included three independent species: F. graminearum, F. meridionale, and F. boothii. The key gene FUM1 responsible for the biosynthesis of fumonisin was detected in all 82 F. verticillioides isolates. Among these, 57 isolates mainly produced fumonisin B₁, ranging from 2.52 to 18,416.44 µg/g for each gram of dry hyphal weight, in vitro. Three different toxigenic chemotypes were detected among 78 F. graminearum species complex: 15-ADON, NIV and 15-ADON+NIV. Sixty and 16 isolates represented the 15-ADON and NIV chemotypes, respectively; two isolates carried both 15-ADON and NIV-producing segments. All the isolates carrying NIV-specific segment were F. meridionale. The in vitro production of 15-ADON, 3-ADON, DON, and ZEN varied from 5.43 to 81,539.49; 6.04 to 19,590.61; 13.35 to 19,795.33; and 1.77 to 430.24 µg/g of dry hyphal weight, respectively. Altogether, our present data demonstrate potential main mycotoxin production of dominant pathogenic Fusarium in China.

  5. The prevalence and distribution of Fusarium species in Norwegian cereals: a survey

    DEFF Research Database (Denmark)

    Kosiak, B.; Torp, M.; Skjerve, E.

    2003-01-01

    and F. culmorum demonstrated in this study , corresponded to previously reported DON-distribution, although DON seems to be produced by different species in different regions. Distribution of the isolated Fusarium species and comparison between cereals and locations are discussed.......In the period 1994-1996 a post-harvest survey was conducted in wheat, barley and oats to assess the occurrence and geographic distribution of Fusarium species in Norwegian cereals. The number of samples investigated was adjusted proportionally to the production of each cereal species within....... graminearum, "powdery F. poae ", F. equiseti and F. sporotrichioides . A north-south gradient was valid for F. tricinctum, F. poae and in 1994 for "powdery F. poae ". In 1994 "powdery F. poae " was the most abundant potential producer of HT-2 and T-2 toxins in Norwegian cereals. Distribution of F. graminearum...

  6. Deactivating fusarium spores throughout anaerobic fermentation in biogas plants. A prospect; Abtoetung von Fusariensporen waehrend des Gaerprozesses in Biogasanlagen. Ein Ausblick

    Energy Technology Data Exchange (ETDEWEB)

    Frauz, B.; Oechsner, H. [Hohenheim Univ., Stuttgart (Germany). Landesanstalt fuer Landwirtschaftliches Maschinen- und Bauwesens; Weinmann, U. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Tierernaehrung

    2006-07-01

    Fusarium (the most harmful grain fungus in the field, known as fusarium head blight) and its poisonous product, catabolic mycotoxin DON (Deoxynivalenol) are known for their damaging effects. Due to this, the most feasible, environmentally compatible and economical disposal option are being researched in a cooperative project, where deactivating the fungus and reducing its mycotoxin are in the foreground. (orig.)

  7. Onychomycosis by Fusarium oxysporum probably acquired in utero

    Directory of Open Access Journals (Sweden)

    Vania O. Carvalho

    2014-10-01

    Full Text Available Fusarium oxysporum has been described as a pathogen causing onychomycosis, its incidence has been increasing in immunocompetent and disseminated infection can occur in immunosuppressed individuals. We describe the first case of congenital onychomycosis in a child caused by Fusarium oxysporum. The infection being acquired in utero was proven by molecular methods with the identification of the fungus both in the nail and placenta, most probably as an ascending contamination/infection in a HIV-positive, immunosuppressed mother.

  8. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways.

    Directory of Open Access Journals (Sweden)

    Lina Ding

    Full Text Available Fusarium species cause serious diseases in cereal staple food crops such as wheat and maize. Currently, the mechanisms underlying resistance to Fusarium-caused diseases are still largely unknown. In the present study, we employed a combined proteomic and transcriptomic approach to investigate wheat genes responding to F. graminearum infection that causes Fusarium head blight (FHB. We found a total of 163 genes and 37 proteins that were induced by infection. These genes and proteins were associated with signaling pathways mediated by salicylic acid (SA, jasmonic acid (JA, ethylene (ET, calcium ions, phosphatidic acid (PA, as well as with reactive oxygen species (ROS production and scavenging, antimicrobial compound synthesis, detoxification, and cell wall fortification. We compared the time-course expression profiles between FHB-resistant Wangshuibai plants and susceptible Meh0106 mutant plants of a selected set of genes that are critical to the plants' resistance and defense reactions. A biphasic phenomenon was observed during the first 24 h after inoculation (hai in the resistant plants. The SA and Ca(2+ signaling pathways were activated within 6 hai followed by the JA mediated defense signaling activated around 12 hai. ET signaling was activated between these two phases. Genes for PA and ROS synthesis were induced during the SA and JA phases, respectively. The delayed activation of the SA defense pathway in the mutant was associated with its susceptibility. After F. graminearum infection, the endogenous contents of SA and JA in Wangshuibai and the mutant changed in a manner similar to the investigated genes corresponding to the individual pathways. A few genes for resistance-related cell modification and phytoalexin production were also identified. This study provided important clues for designing strategies to curb diseases caused by Fusarium.

  9. Relationships among deoxynivalenol, ergosterol and Fusarium exoantigens in Canadian hard and soft wheat.

    Science.gov (United States)

    Abramson, D; Gan, Z; Clear, R M; Gilbert, J; Marquardt, R R

    1998-12-22

    Soluble extracellular components (exoantigens) from cultures of Fusarium graminearum and F. sporotrichioides were used to produce antisera from chickens for an indirect enzyme immunoassay. This immunoassay was used to estimate Fusarium exoantigen levels in 40 samples of fusarium head blight-infected hard red spring wheat from Manitoba, and in 50 samples of infected soft white winter wheat from Ontario. These wheat samples were also assayed for deoxynivalenol (DON), the predominant Fusarium mycotoxin, and for ergosterol, a metabolite reflecting fungal biomass. Using F. sporotrichioides antisera, the linear correlations between exoantigen level and DON content for the hard and soft wheats had coefficients of 0.80 and 0.76, respectively. With the same antisera, linear correlations between exoantigen level and total ergosterol concentration for the hard and soft wheats had coefficients of 0.66 and 0.81, respectively.

  10. Occurrence of Fusarium spp. and Fumonisins in Stored Wheat Grains Marketed in Iran

    Directory of Open Access Journals (Sweden)

    Baharuddin Salleh

    2010-12-01

    Full Text Available Wheat grains are well known to be invaded by Fusarium spp. under field and storage conditions and contaminated with fumonisins. Therefore, determining Fusarium spp. and fumonisins in wheat grains is of prime importance to develop suitable management strategies and to minimize risk. Eighty-two stored wheat samples produced in Iran were collected from various supermarkets and tested for the presence of Fusarium spp. by agar plate assay and fumonisins by HPLC. A total of 386 Fusarium strains were isolated and identified through morphological characteristics. All these strains belonged to F. culmorum, F. graminearum, F. proliferatum and F. verticillioides. Of the Fusarium species, F. graminearum was the most prevalent species, followed by F. verticillioides, F. proliferatum and then F. culmorum. Natural occurrence of fumonisin B1 (FB1 could be detected in 56 (68.2% samples ranging from 15–155 μg/kg, fumonisin B2 (FB2 in 35 (42.6% samples ranging from 12–86 μg/kg and fumonisin B3 (FB3 in 26 (31.7% samples ranging from 13–64 μg/kg. The highest FB1 levels were detected in samples from Eilam (up to 155 μg/kg and FB2 and FB3 in samples from Gilan Gharb (up to 86 μg/kg and 64 μg/kg.

  11. Fusarium and mycotoxin spectra in Swiss barley are affected by various cropping techniques.

    Science.gov (United States)

    Schöneberg, Torsten; Martin, Charlotte; Wettstein, Felix E; Bucheli, Thomas D; Mascher, Fabio; Bertossa, Mario; Musa, Tomke; Keller, Beat; Vogelgsang, Susanne

    2016-10-01

    Fusarium head blight is one of the most important cereal diseases worldwide. Cereals differ in terms of the main occurring Fusarium species and the infection is influenced by various factors, such as weather and cropping measures. Little is known about Fusarium species in barley in Switzerland, hence harvest samples from growers were collected in 2013 and 2014, along with information on respective cropping factors. The incidence of different Fusarium species was obtained by using a seed health test and mycotoxins were quantified by LC-MS/MS. With these techniques, the most dominant species, F. graminearum, and the most prominent mycotoxin, deoxynivalenol (DON), were identified. Between the three main Swiss cropping systems, Organic, Extenso and Proof of ecological performance, we observed differences with the lowest incidence and toxin accumulation in organically cultivated barley. Hence, we hypothesise that this finding was based on an array of growing techniques within a given cropping system. We observed that barley samples from fields with maize as previous crop had a substantially higher F. graminearum incidence and elevated DON accumulation compared with other previous crops. Furthermore, the use of reduced tillage led to a higher disease incidence and toxin content compared with samples from ploughed fields. Further factors increasing Fusarium infection were high nitrogen fertilisation as well as the application of fungicides and growth regulators. Results from the current study can be used to develop optimised cropping systems that reduce the risks of mycotoxin contamination.

  12. Diallel analysis of resistance to fusarium ear rot and fumonisin contamination in maize

    Science.gov (United States)

    The fungus Fusarium verticillioides infects maize ears and kernels, resulting in Fusarium ear rot disease, reduced grain yields, and contamination of grain with the mycotoxin fumonisin. Typical hybrid maize breeding programs involve selection for both favorable inbred and hybrid performance, and the...

  13. Identification of the Fusarium Isolates of rDNA ITS in Maize Seedling Blight in Northeast of China%东北玉米苗枯病病原镰孢茵rDNA ITS鉴定

    Institute of Scientific and Technical Information of China (English)

    王丽娟; 徐秀德; 姜钰; 董怀玉; 刘可杰

    2011-01-01

    The twelve Fusarium isolates with different in morphology and cultural characteristics were collected from maize seedling blight causal agent in Northeast area of China. The Fusarium isolates of rDN A ITS sequences was tested for species identification. The results showed that the seven Fusarium species was identified on among the Fusarium causal agent of maize seedling blight, such as Fusarium verticillioides, Fusarium graminearum, Fusarium semitectum, Fusarium oxysporum, Fusarium subgiutinans, Fusarium proliferatum and a unknown species Fl 1 isolate. The Fl 1 isolates of ITS sequence was confirmed 99.8% similarity with FVS3(DQ885388) downloaded from GenBank.%从东北地区采集引起玉米苗枯病的镰孢菌种群的菌株,选取12株形态及培养性状不同的菌株,采用rDNA ITS序列分析技术对供试菌株进行种类鉴定.结果表明,引起玉米苗枯病的主要致病镰孢菌有7个种,分别是拟轮生镰孢菌(Fusarium verticilliodes)、禾谷镰孢菌(Fusarium graminearum)、半裸镰孢菌(Fusarium semitectum)、尖孢镰孢菌(Fusarium oxysporum)、亚粘团镰孢菌(Fusarium subgiutinans)、层出镰孢菌(Fusariump roliferatum)及尚未确定种类的F11菌株.F11菌株与Genbank中的镰孢菌株FVS3(DQ885388)的同源性达到99.8%,该菌株与其他测试菌株ITS序列差异显著,可能是一个新的种类.

  14. Fusarium pathogenesis investigated using Galleria mellonella as a heterologous host

    Science.gov (United States)

    Coleman, Jeffrey J.; Muhammed, Maged; Kasperkovitz, Pia V.; Vyas, Jatin M.; Mylonakis, Eleftherios

    2011-01-01

    Members of the fungal genus Fusarium are capable of manifesting in a multitude of clinical infections, most commonly in immunocompromised patients. In order to better understand the interaction between the fungus and host, we have developed the larvae of the greater wax moth, Galleria mellonella, as a heterologous host for fusaria. When conidia are injected into the hemocoel of this Lepidopteran system, both clinical and environmental isolates of the fungus are able to kill the larvae at 37°C, although killing occurs more rapidly when incubated at 30°C. This killing was dependent on several other factors besides temperature, including the Fusarium strain, the number of conidia injected, and the conidia morphology, where macroconidia are more virulent than their microconidia counterpart. There was a correlation in the killing rate of Fusarium spp. when evaluated in G. mellonella and a murine model. In vivo studies indicated G. mellonella hemocytes were capable of initially phagocytosing both conidial morphologies. The G. mellonella system was also used to evaluate antifungal agents, and amphotericin B was able to confer a significant increase in survival to Fusarium infected-larvae. The G. mellonella-Fusarium pathogenicity system revealed that virulence of Fusarium spp. is similar, regardless of the origin of the isolate, and that mammalian endothermy is a major deterrent for Fusarium infection and therefore provides a suitable alternative to mammalian models to investigate the interaction between the host and this increasingly important fungal pathogen. PMID:22115447

  15. Wplyw przedplonu oraz warunków pogodowych na porazenie klosów pszenicy jarej przez grzyby z rodzaju Fusarium oraz zawartosc mikotoksyn w ziarnie

    DEFF Research Database (Denmark)

    Góral, Thomasz; Ochodzki, Piotr; Walentyn-Góral, Dorota;

    2012-01-01

    Effect of pre-crop on severity of Fusarium head blight (FHB) and content of mycotoxins in grain of spring wheat was studied. Pre-crops were grain maize and winter rapeseed. In years, when conditions were favorable for FHB development, an increased severity of wheat head infections was observed...... on stands sown after grain maize. Wheat grain samples from these stands contained more Fusarium DNA and Fusarium mycotoxins comparing with grain from stands sown after rapeseed. Dominant species causing FHB was F. graminearum. Disease development on wheat heads and mycotoxin concentration in grain strongly...

  16. First Report on Fusarium Wilt of Zucchini Caused by Fusarium oxysporum, in Korea.

    Science.gov (United States)

    Choi, In-Young; Kim, Ju-Hee; Lee, Wang-Hyu; Park, Ji-Hyun; Shin, Hyeon-Dong

    2015-06-01

    Fusarium wilt of zucchini in Jeonju, Korea, was first noticed in May 2013. Symptoms included wilting of the foliage, drying and withering of older leaves, and stunting of plants. Infected plants eventually died during growth. Based on morphological characteristics and phylogenetic analyses of the molecular markers (internal transcribed spacer rDNA and translation elongation factor 1α), the fungus was identified as Fusarium oxysporum. Pathogenicity of a representative isolate was demonstrated via artificial inoculation, and it satisfied Koch's postulates. To our knowledge, this is the first report of F. oxysporum causing wilt of zucchini in Korea.

  17. TAXONOMY OF FUSARIUM SPECIES ISOLATED FROM CULTIVATED PLANTS, WEEDS AND THEIR PATHOGENICITY FOR WHEAT

    Directory of Open Access Journals (Sweden)

    Jasenka Ćosić

    2002-06-01

    Full Text Available Fusarium species are wide-spread and known to be pathogenic agents to cultivated plants in various agroclimatic areas. During a four year investigation 10 Fusarium species and Microdochium nivale were isolated from wheat, barley, maize and soybean as well as from 10 weeds collected from 10 locations in Slavonia and Baranya. Fusarium graminearum was dominant on wheat and barley, F. moniliforme on maize and F. oxysporum on soybean. Regarding weeds, the presence of the following Fusarium species was established: F. graminearum on Amaranthus hybridus, Capsella bursa-pastoris, Lamium purpureum, Sorghum halepense and Urtica dioica, F. moniliforme on Abutilon theophrasti, F. subglutinans on Polygonum aviculare, F. avenaceum on Capsella bursa-pastoris, Rumex crispus and Matricaria sp., F. culmorum on Abutilon theophrasti, F. sporotrichioides on Polygonum aviculare, F. proliferatum and F. poae on Artemisia vulgaris. Pathogenicity test to wheat seedlings was done in our laboratory on winter wheat cultivars Slavonija and Demetra (totally 146 isolates. The most pathogenic species to wheat seedilings were F. graminearum, F. culmorum and F. sporotrichioides and the least pathogenic F. moniliforme, F. solani, F. oxysporum and F. poae. Pathogenicity test for wheat ears was done on genotypes Osk.8c9/3-94 and Osk.6.11/2 (totally 25 isolates. The results obtained by our investigation showed that there were no significant differences in pathogenicity of Fusarium species isolated from both cultivated plants and weeds. Weeds represent a constant source of inoculum of F. species for cultivated plants and they serve as epidemiologic bridges among vegetations.

  18. Jasmonate and ethylene dependent defence gene expression and suppression of fungal virulence factors: two essential mechanisms of Fusarium head blight resistance in wheat?

    Directory of Open Access Journals (Sweden)

    Gottwald Sven

    2012-08-01

    Full Text Available Abstract Background Fusarium head blight (FHB caused by Fusarium species like F. graminearum is a devastating disease of wheat (Triticum aestivum worldwide. Mycotoxins such as deoxynivalenol produced by the fungus affect plant and animal health, and cause significant reductions of grain yield and quality. Resistant varieties are the only effective way to control this disease, but the molecular events leading to FHB resistance are still poorly understood. Transcriptional profiling was conducted for the winter wheat cultivars Dream (moderately resistant and Lynx (susceptible. The gene expressions at 32 and 72 h after inoculation with Fusarium were used to trace possible defence mechanisms and associated genes. A comparative qPCR was carried out for selected genes to analyse the respective expression patterns in the resistant cultivars Dream and Sumai 3 (Chinese spring wheat. Results Among 2,169 differentially expressed genes, two putative main defence mechanisms were found in the FHB-resistant Dream cultivar. Both are defined base on their specific mode of resistance. A non-specific mechanism was based on several defence genes probably induced by jasmonate and ethylene signalling, including lipid-transfer protein, thionin, defensin and GDSL-like lipase genes. Additionally, defence-related genes encoding jasmonate-regulated proteins were up-regulated in response to FHB. Another mechanism based on the targeted suppression of essential Fusarium virulence factors comprising proteases and mycotoxins was found to be an essential, induced defence of general relevance in wheat. Moreover, similar inductions upon fungal infection were frequently observed among FHB-responsive genes of both mechanisms in the cultivars Dream and Sumai 3. Conclusions Especially ABC transporter, UDP-glucosyltransferase, protease and protease inhibitor genes associated with the defence mechanism against fungal virulence factors are apparently active in different resistant

  19. Molecular Quantification and Genetic Diversity of Toxigenic Fusarium Species in Northern Europe as Compared to Those in Southern Europe

    Directory of Open Access Journals (Sweden)

    Tapani Yli-Mattila

    2013-12-01

    Full Text Available Fusarium species produce important mycotoxins, such as deoxynivalenol (DON, nivalenol (NIV and T-2/HT-2-toxins in cereals. The highest DON and T-2/HT-2 toxin levels in northern Europe have been found in oats. About 12%–24% of Finnish oat samples in 2012 contained >1.75 mg·kg−1 of DON, which belongs to type B trichothecenes. Fusarium graminearum is the most important DON producer in northern Europe and Asia and it has been displacing the closely related F. culmorum in northern Europe. The 3ADON chemotype of F. graminearum is dominant in most northern areas, while the 15ADON chemotype of F. graminearum is predominating in Central and southern Europe. We suggest that the northern population of F. graminearum may be more specialized to oats than the southern population. Only low levels of F. culmorum DNA were found in a few oat samples and no correlation was found between F. culmorum DNA and DON levels. DNA levels of F. graminearum were in all cases in agreement with DON levels in 2011 and 2012, when DON was measured by gas chromatography-mass spectrometry (GC-MS. When the RIDA® QUICK SCAN kit results (DON were compared to DNA levels of F. graminearum, the variation was much higher. The homogenization of the oats flour by grinding oats with 1 mm sieve seems to be connected to this variation. There was a significant correlation between the combined T-2 and HT-2 and the combined DNA levels of F. langsethiae and F. sporotrichioides in Finland in 2010–2012.

  20. Impact of selected antagonistic fungi on Fusarium species – toxigenic cereal pathogens

    Directory of Open Access Journals (Sweden)

    Delfina Popiel

    2013-12-01

    Full Text Available Fusarium-ear blight is a destructive disease in various cereal-growing regions and leads to significant yield and quality losses for farmers and to contamination of cereal grains with mycotoxins, mainly deoxynivalenol and derivatives, zearalenone and moniliformin. Fusarium pathogens grow well and produce significant inoculum on crop resiudues. Reduction of mycotoxins production and pathogen sporulation may be influenced by saprophytic fungi, exhibiting antagonistic effect. Dual culture bioassays were used to examine the impact of 92 isolates (belonging to 29 fungal species against three toxigenic species, i.e. Fusarium avenaceum (Corda Saccardo, F. culmorum (W.G.Smith Saccardo and F. graminearum Schwabe. Both F.culmorum and F. graminearum isolates produce trichothecene mycotoxins and mycohormone zearalenone and are considered to be the most important cereal pathogens worldwide. Infection with those pathogens leads to accumulation of mycotoxins: deoxynivalenol (DON and zearalenone (ZEA in grains. Fusarium avenaceum isolates are producers of moniliformin (MON and enniatins. Isolates of Trichoderma sp. were found to be the most effective ones to control the growth of examined Fusarium species. The response of Fusarium isolates to antagonistic activity of Trichoderma isolates varied and also the isolates of Trichoderma differed in their antagonistic activity against Fusarium isolates. The production of MON by two isolates of F. avenaceum in dual culture on rice was reduced by 95% to 100% by T. atroviride isolate AN 35. The same antagonist reduced the amount of moniliformin from 100 μg/g to 6.5 μg/g when inoculated to rice culture contaminated with MON, which suggests the possible decomposition of this mycotoxin.

  1. Relationship between Fusarium spp. diversity and mycotoxin contents of mature grains in southern Belgium.

    Science.gov (United States)

    Hellin, Pierre; Dedeurwaerder, Géraldine; Duvivier, Maxime; Scauflaire, Jonathan; Huybrechts, Bart; Callebaut, Alfons; Munaut, Françoise; Legrève, Anne

    2016-07-01

    Over a 4-year period (2010-13), a survey aiming at determining the occurrence of Fusarium spp. and their relations to mycotoxins in mature grains took place in southern Belgium. The most prevalent species were F. graminearum, F. avenaceum, F. poae and F. culmorum, with large variations between years and locations. An even proportion of mating type found for F. avenaceum, F. culmorum, F. cerealis and F. tricinctum is usually a sign of ongoing sexual recombination. In contrast, an unbalanced proportion of mating type was found for F. poae and no MAT1-2 allele was present in the F. langsethiae population. Genetic chemotyping indicates a majority of deoxynivalenol (DON)-producing strains in F. culmorum (78%, all 3-ADON producers) and F. graminearum (95%, mostly 15-ADON producers), while all F. cerealis strains belong to the nivalenol (NIV) chemotype. Between 2011 and 2013, DON, NIV, enniatins (ENNs) and moniliformin (MON) were found in each field in various concentrations. By comparison, beauvericin (BEA) was scarcely detected and T-2 toxin, zearalenone and α- and β-zearalenols were never detected. Principal component analysis revealed correlations of DON with F. graminearum, ENNs and MON with F. avenaceum and NIV with F. culmorum, F. cerealis and F. poae. BEA was associated with the presence of F. tricinctum and, to a lesser extent, with the presence of F. poae. The use of genetic chemotype data revealed that DON concentrations were mostly influenced by DON-producing strains of F. graminearum and F. culmorum, whereas the concentrations of NIV were influenced by the number of NIV-producing strains of both species added to the number of F. cerealis and F. poae strains. This study emphasises the need to pay attention to less-studied Fusarium spp. for future Fusarium head blight management strategies, as they commonly co-occur in the field and are associated with a broad spectrum of mycotoxins.

  2. Antifungal Activity of a Synthetic Cationic Peptide against the Plant Pathogens Colletotrichum graminicola and Three Fusarium Species.

    Science.gov (United States)

    Johnson, Eric T; Evans, Kervin O; Dowd, Patrick F

    2015-09-01

    A small cationic peptide (JH8944) was tested for activity against a number of pathogens of agricultural crops. JH8944 inhibited conidium growth in most of the tested plant pathogens with a dose of 50 μg/ml, although one isolate of Fusarium oxysporum was inhibited at 5 μg/ml of JH8944. Most conidia of Fusarium graminearum were killed within 6 hours of treatment with 50 μg/ml of JH8944. Germinating F. graminearum conidia required 238 μg/ml of JH8944 for 90% growth inhibition. The peptide did not cause any damage to tissues surrounding maize leaf punctures when tested at a higher concentration of 250 μg/ml even after 3 days. Liposomes consisting of phosphatidylglycerol were susceptible to leakage after treatment with 25 and 50 μg/ml of JH8944. These experiments suggest this peptide destroys fungal membrane integrity and could be utilized for control of crop fungal pathogens.

  3. Fusarielin E, a new antifungal antibiotic from Fusarium sp.

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new antifungal antibiotic, fusarielin E, was isolated from the marine-derived fungus Fusarium sp. Its structure was established on the basis of various NMR spectroscopic analyses and HR-FAB-MS. Fusarielin E displayed significant biological activity against Pyricularia oryzae.

  4. Labelling studies on the biosynthesis of terpenes in Fusarium fujikuroi.

    Science.gov (United States)

    Citron, Christian A; Brock, Nelson L; Tudzynski, Bettina; Dickschat, Jeroen S

    2014-05-25

    Synthetic [2-(13)C]mevalonolactone was fed to the gibberellin producer Fusarium fujikuroi and its incorporation into four known terpenoids was investigated by (13)C NMR analysis of crude culture extracts. The experiments gave detailed insights into the mechanisms of terpene biosynthesis by this fungus.

  5. The depudecin cluster – a genetic curiosity in Fusarium langsethiae

    Science.gov (United States)

    Fusarium langsethiae is a consistent fungal contaminant on oat cereals in the Nordic region, the UK, as well as other parts of Europe. Leaving few symptoms of disease on the plant, the fungus is, however, the main producer of T-2 and HT-2 mycotoxins which can be found contaminating food and feed der...

  6. MORPHOLOGICAL AND MOLECULAR IDENTIFICATION OF Fusarium SPECIES AND THEIR PATHOGENICITY FOR WHEAT

    Directory of Open Access Journals (Sweden)

    Jelena Poštić

    2012-12-01

    Full Text Available From the root and lower stem parts of weeds and plant debris of maize, wheat, oat and sunflower we isolated 300 isolates of Fusarium spp. and performed morphological and molecular identification. With molecular identification using AFLP method we determined 14 Fusarium species: F. acuminatum, F. avenaceum, F. concolor, F. crookwellense, F. equiseti, F. graminearum, F. oxysporum, F. proliferatum, F. semitectum, F. solani, F. sporotrichioides, F. subglutinans, F. venenatum and F. verticillioides.By comparing results of morphological and molecular identification we found out that determination of 16,7% isolates was incorrect. Out of 300 isolates identified with molecular methods, 50 did not belong to the species determined with morphological determination.With pathogenicity tests of 30 chosen Fusarium isolates we determined that many of them were pathogenic to wheat and maize seedlings and to wheat heads. The most pathogenic were isolates of F. graminearum from A. retroflexus, A. theophrasti and C. album, F. venenatum from maize debris and and A. theophrasti, F. crookwellense from A. lappa. Antifungal influence of 11 essential oils on mycelia growth and sporulation of chosen Fusarium isolates determined that essential oils of T. vulgaris, P. anisum and E. caryophyllus had the strongest effect on mycelial growth. Influence of essential oils on sporulation was not statistically significant.

  7. Effect of preceding crop on Fusarium species and mycotoxin contamination of wheat grains.

    Science.gov (United States)

    Qiu, Jianbo; Dong, Fei; Yu, Mingzheng; Xu, Jianhong; Shi, Jianrong

    2016-10-01

    The Fusarium graminearum species complex infects several cereals and causes the reduction of grain yield and quality. Many factors influence the extent of Fusarium infection and mycotoxin levels. Such factors include crop rotation. In the present study, we explored the effect of rice or maize as former crops on mycotoxin accumulation in wheat grains. More than 97% of samples were contaminated with deoxynivalenol (DON). DON concentrations in wheat grains from rice and maize rotation fields were 884.37 and 235.78 µg kg(-1) . Zearalenone (ZEN) was detected in 45% of samples which were mainly collected from maize-wheat rotation systems. Fusarium strains were isolated and more F. graminearum sensu stricto (s. str.) isolates were cultured from wheat samples obtained from maize rotation fields. DON levels produced by Fusarium isolates from rice rotation fields were higher than those of samples from maize rotation fields. Rice-wheat rotation favours DON accumulation, while more ZEN contamination may occur in maize-wheat rotation models. Appropriate crop rotation may help to reduce toxin levels in wheat grains. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Incidence of Fusarium Species and Mycotoxins in Silage Maize

    Science.gov (United States)

    Eckard, Sonja; Wettstein, Felix E.; Forrer, Hans-Rudolf; Vogelgsang, Susanne

    2011-01-01

    Maize is frequently infected by the Fusarium species producing mycotoxins. Numerous investigations have focused on grain maize, but little is known about the Fusarium species in the entire plant used for silage. Furthermore, mycotoxins persist during the ensiling process and thus endanger feed safety. In the current study, we analyzed 20 Swiss silage maize samples from growers’ fields for the incidence of Fusarium species and mycotoxins. The species spectrum was analyzed morphologically and mycotoxins were measured by LC-MS/MS. A pre-harvest visual disease rating showed few disease symptoms. In contrast, the infection rate of two-thirds of the harvest samples ranged from 25 to 75% and twelve different Fusarium species were isolated. The prevailing species were F. sporotrichioides, F. verticillioides and F. graminearum. No infection specificity for certain plant parts was observed. The trichothecene deoxynivalenol (DON) was found in each sample (ranging from 780 to 2990 µg kg−1). Other toxins detected in descending order were zearalenone, further trichothecenes (nivalenol, HT-2 and T-2 toxin, acetylated DON) and fumonisins. A generalized linear regression model containing the three cropping factors harvest date, pre-precrop and seed treatment was established, to explain DON contamination of silage maize. Based on these findings, we suggest a European-wide survey on silage maize. PMID:22069750

  9. Incidence of Fusarium species and mycotoxins in silage maize.

    Science.gov (United States)

    Eckard, Sonja; Wettstein, Felix E; Forrer, Hans-Rudolf; Vogelgsang, Susanne

    2011-08-01

    Maize is frequently infected by the Fusarium species producing mycotoxins. Numerous investigations have focused on grain maize, but little is known about the Fusarium species in the entire plant used for silage. Furthermore, mycotoxins persist during the ensiling process and thus endanger feed safety. In the current study, we analyzed 20 Swiss silage maize samples from growers' fields for the incidence of Fusarium species and mycotoxins. The species spectrum was analyzed morphologically and mycotoxins were measured by LC-MS/MS. A pre-harvest visual disease rating showed few disease symptoms. In contrast, the infection rate of two-thirds of the harvest samples ranged from 25 to 75% and twelve different Fusarium species were isolated. The prevailing species were F. sporotrichioides, F. verticillioides and F. graminearum. No infection specificity for certain plant parts was observed. The trichothecene deoxynivalenol (DON) was found in each sample (ranging from 780 to 2990 µg kg(-1)). Other toxins detected in descending order were zearalenone, further trichothecenes (nivalenol, HT-2 and T-2 toxin, acetylated DON) and fumonisins. A generalized linear regression model containing the three cropping factors harvest date, pre-precrop and seed treatment was established, to explain DON contamination of silage maize. Based on these findings, we suggest a European-wide survey on silage maize.

  10. Phylogenomic and functional domain analysis of polyketide synthases in Fusarium

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daren W.; Butchko, Robert A.; Baker, Scott E.; Proctor, Robert H.

    2012-02-01

    Fusarium species are ubiquitous in nature, cause a range of plant diseases, and produce a variety of chemicals often referred to as secondary metabolites. Although some fungal secondary metabolites affect plant growth or protect plants from other fungi and bacteria, their presence in grain based food and feed is more often associated with a variety of diseases in plants and in animals. Many of these structurally diverse metabolites are derived from a family of related enzymes called polyketide synthases (PKSs). A search of genomic sequence of Fusarium verticillioides, F. graminearum, F. oxysporum and Nectria haematococca (anamorph F. solani) identified a total of 58 PKS genes. To gain insight into how this gene family evolved and to guide future studies, we conducted a phylogenomic and functional domain analysis. The resulting genealogy suggested that Fusarium PKSs represent 34 different groups responsible for synthesis of different core metabolites. The analyses indicate that variation in the Fusarium PKS gene family is due to gene duplication and loss events as well as enzyme gain-of-function due to the acquisition of new domains or of loss-of-function due to nucleotide mutations. Transcriptional analysis indicate that the 16 F. verticillioides PKS genes are expressed under a range of conditions, further evidence that they are functional genes that confer the ability to produce secondary metabolites.

  11. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity.

    Science.gov (United States)

    Sperschneider, Jana; Gardiner, Donald M; Thatcher, Louise F; Lyons, Rebecca; Singh, Karam B; Manners, John M; Taylor, Jennifer M

    2015-05-19

    Pathogens and hosts are in an ongoing arms race and genes involved in host-pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host-pathogen interactions for experimental verification. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Quantification of Fusarium virguliforme in soybean roots of partially resistant and susceptible genotypes using quantitative polymerase chain reaction

    Science.gov (United States)

    Soybean sudden death syndrome, caused by Fusarium virguliforme (syn. Fusarium solani f. sp. glycines), was first reported in 1971, in Arkansas. Since then, the fungus has spread to the northern United States, causing significant soybean yield losses. Soybean resistance to F. virguliforme is consider...

  13. Functional analysis of a wheat pleiotropic drug resistance gene involved in Fusarium head blight resistance

    Institute of Scientific and Technical Information of China (English)

    WANG Gui-ping; KONG Ling-rang; HOU Wen-qian; ZHANG Lei; WU Hong-yan; ZHAO Lan-fei; DU Xu-ye; MA Xin; LI An-fei; WANG Hong-wei

    2016-01-01

    The pleiotropic drug resistance (PDR) sub-family of adenosine triphosphate (ATP)-binding cassette (ABC) transporter had been reported to participate in diverse biological processes of plant. In this study, we cloned three novelPDR genes in Fusarium head blight (FHB) resistant wheat cultivar Ning 7840, which were located on wheat chromosomes 6A, 6B and 6D. In phylogeny, these genes were members of cluster I together with AePDR7 andBdPDR7. Subcelular localization analysis showed thatTaPDR7 was expressed on the plasmalemma. The quantitative real time PCR (RT-PCR) analysis showed that this gene and its probable orthologues in chromosomes 6B and 6D were both up-regulated sharply at 48 h after infected byFusarium graminearum and trichothecene deoxynivalenol (DON) in spike. When knocking down the transcripts of alTaPDR7 members by barely stripe mosaic virus-induced gene silencing (BSMV-VIGS) system, it could promote the F. graminearum hyphae growth and made larger pathogen inoculation points in Ning 7840, which suggested that TaPDR7 might play an important role in response toF. graminearum. Although salicylic acid (SA), methyl jasmonate (MeJA) and abscisic acid (ABA) had been reported to possibly regulate wheat FHB resistance, here, we found that the three members ofTaPDR7 were negatively regulated by these three hormones but positively regulated by indoleacetic acid (IAA).

  14. Real-time loop-mediated isothermal amplification (LAMP) assay for group specific detection of important trichothecene producing Fusarium species in wheat.

    Science.gov (United States)

    Denschlag, Carla; Rieder, Johann; Vogel, Rudi F; Niessen, Ludwig

    2014-05-02

    Trichothecene mycotoxins such as deoxynivaneol (DON), nivalenol (NIV) and T2-Toxin are produced by a variety of Fusarium spp. on cereals in the field and may be ingested by consumption of commodities and products made thereof. The toxins inhibit eukaryotic protein biosynthesis and may thus impair human and animal health. Aimed at rapid and sensitive detection of the most important trichothecene producing Fusarium spp. in a single analysis, a real-time duplex loop-mediated isothermal amplification (LAMP) assay was set up. Two sets of LAMP primers were designed independently to amplify a partial sequence of the tri6 gene in Fusarium (F.) graminearum and of the tri5 gene in Fusarium sporotrichioides, respectively. Each of the two sets detected a limited number of the established trichothecene producing Fusarium-species. However, combination of the two sets in one duplex assay enabled detection of F. graminearum, Fusarium culmorum, Fusarium cerealis, F. sporotrichioides, Fusarium langsethiae and Fusarium poae in a group specific manner. No cross reactions were detected with purified DNA from 127 other fungal species or with cereal DNA. To demonstrate the usefulness of the assay, 100 wheat samples collected from all over the German state of Bavaria were analyzed for the trichothecene mycotoxin DON by HPLC and for the presence of trichothecene producers by the new real-time duplex LAMP assay in parallel analyses. The LAMP assay showed positive results for all samples with a DON concentration exceeding 163ppb. The major advantage of the duplex LAMP assay is that the presence of six of the major trichothecene producing Fusarium spp. can be detected in a rapid and user-friendly manner with only one single assay. To our knowledge this is the first report of the use of a multiplex LAMP assay for fungal organisms.

  15. A novel single-stranded RNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, with similarity to hypo-like viruses

    Directory of Open Access Journals (Sweden)

    Rui eZhang

    2014-07-01

    Full Text Available Here we report a biological and molecular characterization of a novel positive-sense RNA virus isolated from a field isolate (NW10 of a filamentous phytopathogenic fungus, the white root rot fungus that is designated as Rosellinia necatrix fusarivirus 1 (RnFV1. A recently developed technology using zinc ions allowed us to transfer RnFV1 to two mycelially incompatible Rosellinia necatrix strains. A biological comparison of the virus-free and -recipient isogenic fungal strains suggested that RnFV1 infects latently and thus has no potential as a virocontrol agent. The virus has an undivided positive-sense RNA genome of 6286 nucleotides excluding a poly (A tail. The genome possesses two non-overlapping open reading frames (ORFs: a large ORF1 that encodes polypeptides with RNA replication functions and a smaller ORF2 that encodes polypeptides of unknown function. A lack of coat protein genes was suggested by the failure of virus particles from infected mycelia. No evidence was obtained by Northern analysis or classical 5'-RACE for the presence of subgenomic RNA for the downstream ORF. Sequence similarities were found in amino-acid sequence between RnFV1 putative proteins and counterparts of a previously reported mycovirus, Fusarium graminearum virus 1 (FgV1. Interestingly, several related sequences were detected by BLAST searches of independent transcriptome assembly databases one of which probably represents an entire virus genome. Phylogenetic analysis based on the conserved RNA-dependent RNA polymerase showed that RnFV1, FgV1, and these similar sequences are grouped in a cluster distinct from distantly related hypoviruses. It is proposed that a new taxonomic family termed Fusariviridae be created to include RnFV1and FgV1.

  16. Inhibition of HMG-CoA reductase by MFS, a purified extract from the fermentation of marine fungus Fusarium solani FG319, and optimization of MFS production using response surface methodology.

    Science.gov (United States)

    Zhou, Yu; Wu, Wen-Hui; Zhao, Qing-Bo; Wang, Xiao-Yu; Bao, Bin

    2015-05-01

    The present study was designed to isolate and characterize a purified extract from Fusarium solani FG319, termed MFS (Metabolite of Fusarium solani FG319) that showed anti-atherosclerosis activity by inhibiting 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Response surface methodology (RSM) was employed to achieve an improved yield from the fermentation medium. The inhibiting effect of the isolate, MFS, on HMG-CoA reductase was greater than that of the positive control, lovastatin. The average recovery of MFS and the relative standard deviation (RSD) ranged between 99.75% to 101.18%, and 0.31% to 0.74%, respectively. The RSDs intra- and inter-assay of the three samples ranged from 0.288% to 2.438%, and from 0.934% to 2.383%, respectively. From the RSM, the concentration of inducer, cultivation time, and culture temperatures had significant effects on the MFS production, with the effect of inducer concentration being more pronounced that other factors. In conclusion, the optimal conditions for the MFS production were achieved using RSM and that MFS could be explored as an anti-atherosclerosis agent based on its ability to inhibit HMG-CoA reductase. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  17. Intact Cell/Spore Mass Spectrometry of Fusarium Macro Conidia for Fast Isolate and Species Differentiation

    Science.gov (United States)

    Dong, Hongjuan; Marchetti-Deschmann, Martina; Winkler, Wolfgang; Lohninger, Hans; Allmaier, Guenter

    The focus of this paper is the development of an approach called intact cell mass spectrometry (ICMS) or intact spore mass spectrometry (ISMS) based on the technique matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the rapid differentiation and identification of Fusarium species. Several parameters, which are known to affect the quality of IC mass spectra, have been investigated in detail by varying the MALDI matrix as well as the solvent system, in which the matrix has been dissolved, the solvent system for sample purification and the type of sample/MALDI matrix deposition technique. In the end characteristic as well as highly reproducible IC or IS mass spectra or peptide/protein fingerprints of three Fusarium species (F. cerealis, F. graminearum and F. poae) including 16 Fusarium isolates derived from different hosts and geographical locations have been obtained. Unscaled hierarchical cluster analysis based on ICMS data of eight selected Fusarium isolates of two species F. graminearum and F. poae revealed significant difference among the peptide/protein pattern of them. The results of the applied cluster analysis proved that, ICMS is a powerful approach for the rapid differentiation of Fusarium species. In addition, an on-target tryptic digestion was applied to Fusarium macro conidia spores to identify proteins using MALDI post source decay (PSD) fragment ion analysis. Two kinds of trypsin, namely bead-immobilized - to favor cleavage of surface-associated proteins - and non-immobilized trypsin were applied and compared. The results showed that the latter is more suitable for generating sequence tags by PSD fragment ion analysis.

  18. An endophytic fungus isolated from finger millet (Eleucine coracona produces anti-fungal natural products

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes that contribute to the antifungal activity. Here we report the first isolation of endophyte(s from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp. was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  19. An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium.

    Science.gov (United States)

    Hansen, Frederik T; Gardiner, Donald M; Lysøe, Erik; Fuertes, Patricia Romans; Tudzynski, Bettina; Wiemann, Philipp; Sondergaard, Teis Esben; Giese, Henriette; Brodersen, Ditlev E; Sørensen, Jens Laurids

    2015-02-01

    Members of the genus Fusarium produce a plethora of bioactive secondary metabolites, which can be harmful to humans and animals or have potential in drug development. In this study we have performed comparative analyses of polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) from ten different Fusarium species including F. graminearum (two strains), F. verticillioides, F. solani, F. culmorum, F. pseudograminearum, F. fujikuroi, F. acuminatum, F. avenaceum, F. equiseti, and F. oxysporum (12 strains). This led to identification of 52 NRPS and 52 PKSs orthology groups, respectively, and although not all PKSs and NRPSs are assumed to be intact or functional, the analyses illustrate the huge secondary metabolite potential in Fusarium. In our analyses we identified a core collection of eight NRPSs (NRPS2-4, 6, 10-13) and two PKSs (PKS3 and PKS7) that are conserved in all strains analyzed in this study. The identified PKSs and NRPSs were named based on a previously developed classification system (www.FusariumNRPSPKS.dk). We suggest this system be used when PKSs and NRPSs have to be classified in future sequenced Fusarium strains. This system will facilitate identification of orthologous and non-orthologous NRPSs and PKSs from newly sequenced Fusarium genomes and will aid the scientific community by providing a common nomenclature for these two groups of genes/enzymes.

  20. Differences in Fusarium species in brown midrib sorghum and in air populations in production fields.

    Science.gov (United States)

    Funnell-Harris, Deanna Lillian; Scully, Erin D; Sattler, Scott E; French, Roy C; O'Neill, Patrick M; Pedersen, Jeffrey F

    2017-07-07

    Several Fusarium species cause sorghum [Sorghum bicolor (L.) Moench] grain mold, resulting in deterioration and mycotoxin production in the field and during storage. Fungal isolates from air (2005-2006), and from leaves and grain from wild-type and brown midrib (bmr)-6 and bmr12 plants (2002-2003), were collected from two locations. Compared with wild-type, bmr plants have reduced lignin content, altered cell wall composition and different levels of phenolic intermediates. Multilocus maximum likelihood analysis identified two Fusarium thapsinum operational taxonomic units (OTUs). One was identified at greater frequency in grain and leaves of bmr and wild-type plants, but was infrequently detected in air. Nine Fusarium graminearum OTUs were identified: one was detected at low levels in grain and leaves while the rest were only detected in air. Wright's F-statistic (FST) indicated that Fusarium air populations differentiated between locations during crop anthesis, but did not differ during vegetative growth, grain development and maturity. FST also indicated that Fusarium populations from wild-type grain were differentiated from those in bmr6 or bmr12 grain at one location but at the second location, populations from wild-type and bmr6 grain were more similar. Thus, impairing monolignol biosynthesis substantially effected Fusarium populations but environment had a strong influence.

  1. Antioxidant Secondary Metabolites in Cereals: Potential Involvement in Resistance to Fusarium and Mycotoxin Accumulation

    Directory of Open Access Journals (Sweden)

    Vessela eATANASOVA-PENICHON

    2016-04-01

    Full Text Available Gibberella and Fusarium Ear Rot and Fusarium Head Blight are major diseases affecting European cereals. These diseases are mainly caused by fungi of the Fusarium genus, primarily Fusarium graminearum and Fusarium verticillioides. These Fusarium species pose a serious threat to food safety because of their ability to produce a wide range of mycotoxins, including type B trichothecenes and fumonisins. Many factors such as environmental, agronomic or genetic ones may contribute to high levels of accumulation of mycotoxins in the grain and there is an urgent need to implement efficient and sustainable management strategies to reduce mycotoxin contamination. Actually, fungicides are not fully efficient to control the mycotoxin risk. In addition, because of harmful effects on human health and environment, their use should be seriously restricted in the near future. To durably solve the problem of mycotoxin accumulation, the breeding of tolerant genotypes is one of the most promising strategies for cereals. A deeper understanding of the molecular mechanisms of plant resistance to both Fusarium and mycotoxin contamination will shed light on plant-pathogen interactions and provide relevant information for improving breeding programs. Resistance to Fusarium depends on the plant ability in preventing initial infection and containing the development of the toxigenic fungi while resistance to mycotoxin contamination is also related to the capacity of plant tissues in reducing mycotoxin accumulation. This capacity can result from two mechanisms: metabolic transformation of the toxin into less toxic compounds and inhibition of toxin biosynthesis. This last mechanism involves host metabolites able to interfere with mycotoxin biosynthesis. This review aims at gathering the latest scientific advances that support the contribution of grain antioxidant secondary metabolites to the mechanisms of plant resistance to Fusarium and mycotoxin accumulation.

  2. Antioxidant Secondary Metabolites in Cereals: Potential Involvement in Resistance to Fusarium and Mycotoxin Accumulation

    Science.gov (United States)

    Atanasova-Penichon, Vessela; Barreau, Christian; Richard-Forget, Florence

    2016-01-01

    Gibberella and Fusarium Ear Rot and Fusarium Head Blight are major diseases affecting European cereals. These diseases are mainly caused by fungi of the Fusarium genus, primarily Fusarium graminearum and Fusarium verticillioides. These Fusarium species pose a serious threat to food safety because of their ability to produce a wide range of mycotoxins, including type B trichothecenes and fumonisins. Many factors such as environmental, agronomic or genetic ones may contribute to high levels of accumulation of mycotoxins in the grain and there is an urgent need to implement efficient and sustainable management strategies to reduce mycotoxin contamination. Actually, fungicides are not fully efficient to control the mycotoxin risk. In addition, because of harmful effects on human health and environment, their use should be seriously restricted in the near future. To durably solve the problem of mycotoxin accumulation, the breeding of tolerant genotypes is one of the most promising strategies for cereals. A deeper understanding of the molecular mechanisms of plant resistance to both Fusarium and mycotoxin contamination will shed light on plant-pathogen interactions and provide relevant information for improving breeding programs. Resistance to Fusarium depends on the plant ability in preventing initial infection and containing the development of the toxigenic fungi while resistance to mycotoxin contamination is also related to the capacity of plant tissues in reducing mycotoxin accumulation. This capacity can result from two mechanisms: metabolic transformation of the toxin into less toxic compounds and inhibition of toxin biosynthesis. This last mechanism involves host metabolites able to interfere with mycotoxin biosynthesis. This review aims at gathering the latest scientific advances that support the contribution of grain antioxidant secondary metabolites to the mechanisms of plant resistance to Fusarium and mycotoxin accumulation. PMID:27148243

  3. Using of green fluorescent reporter gene (GFP) to monitor the fate of Fusarium moniliforme mycoparasitized by Trichoderma viride

    Institute of Scientific and Technical Information of China (English)

    ZHU Ting-heng; WANG Wei-xia; WANG Chang-chun; YANG Rui-qin; CAI Xin-zhong

    2004-01-01

    @@ Fusarium moniliforme Sheld. is a rice pathogenic fungus and causes the disease called Bakanae,which has increasingly damaged rice production in the recent years. Trichoderma spp. has been one of the most widely used biological control agent of plant disease. By geneticaly labelling F. moniliforme with the GFP reporter gene, we have studied the antagonistic action of Trichoderma viride against this pathogenic fungus.

  4. Inoculum Potential of Fusarium spp. Relates to Tillage and Straw Management in Norwegian Fields of Spring Oats.

    Science.gov (United States)

    Hofgaard, Ingerd S; Seehusen, Till; Aamot, Heidi U; Riley, Hugh; Razzaghian, Jafar; Le, Vinh H; Hjelkrem, Anne-Grete R; Dill-Macky, Ruth; Brodal, Guro

    2016-01-01

    The increased occurrence of Fusarium-mycotoxins in Norwegian cereals over the last decade, is thought to be caused by increased inoculum resulting from more cereal residues at the soil surface as a result of reduced tillage practices. In addition, weather conditions have increasingly promoted inoculum development and infection by Fusarium species. The objective of this work was to elucidate the influence of different tillage regimes (autumn plowing; autumn harrowing; spring plowing; spring harrowing) on the inoculum potential (IP) and dispersal of Fusarium spp. in spring oats. Tillage trials were conducted at two different locations in southeast Norway from 2010 to 2012. Oat residues from the previous year's crop were collected within a week after sowing for evaluation. IP was calculated as the percentage of residues infested with Fusarium spp. multiplied by the proportion of the soil surface covered with residues. Fusarium avenaceum and F. graminearum were the most common Fusarium species recovered from oat residues. The IP of Fusarium spp. was significantly lower in plowed plots compared to those that were harrowed. Plowing in either the autumn or spring resulted in a low IP. Harrowing in autumn was more effective in reducing IP than the spring harrowing, and IP levels for the spring harrowed treatments were generally higher than all other tillage treatments examined. Surprisingly low levels of F. langsethiae were detected in the residues, although this species is a common pathogen of oat in Norway. The percentage of the residues infested with F. avenaceum, F. graminearum, F. culmorum, and F. langsethiae generally related to the quantity of DNA of the respective Fusarium species determined using quantitative PCR (qPCR). Fusarium dispersal, quantified by qPCR analysis of spore trap samples collected at and after heading, generally corresponded to the IP. Fusarium dispersal was also observed to increase after rainy periods. Our findings are in line with the general

  5. Inoculum Potential of Fusarium spp. Relates to Tillage and Straw Management in Norwegian Fields of Spring Oats

    Science.gov (United States)

    Hofgaard, Ingerd S.; Seehusen, Till; Aamot, Heidi U.; Riley, Hugh; Razzaghian, Jafar; Le, Vinh H.; Hjelkrem, Anne-Grete R.; Dill-Macky, Ruth; Brodal, Guro

    2016-01-01

    The increased occurrence of Fusarium-mycotoxins in Norwegian cereals over the last decade, is thought to be caused by increased inoculum resulting from more cereal residues at the soil surface as a result of reduced tillage practices. In addition, weather conditions have increasingly promoted inoculum development and infection by Fusarium species. The objective of this work was to elucidate the influence of different tillage regimes (autumn plowing; autumn harrowing; spring plowing; spring harrowing) on the inoculum potential (IP) and dispersal of Fusarium spp. in spring oats. Tillage trials were conducted at two different locations in southeast Norway from 2010 to 2012. Oat residues from the previous year’s crop were collected within a week after sowing for evaluation. IP was calculated as the percentage of residues infested with Fusarium spp. multiplied by the proportion of the soil surface covered with residues. Fusarium avenaceum and F. graminearum were the most common Fusarium species recovered from oat residues. The IP of Fusarium spp. was significantly lower in plowed plots compared to those that were harrowed. Plowing in either the autumn or spring resulted in a low IP. Harrowing in autumn was more effective in reducing IP than the spring harrowing, and IP levels for the spring harrowed treatments were generally higher than all other tillage treatments examined. Surprisingly low levels of F. langsethiae were detected in the residues, although this species is a common pathogen of oat in Norway. The percentage of the residues infested with F. avenaceum, F. graminearum, F. culmorum, and F. langsethiae generally related to the quantity of DNA of the respective Fusarium species determined using quantitative PCR (qPCR). Fusarium dispersal, quantified by qPCR analysis of spore trap samples collected at and after heading, generally corresponded to the IP. Fusarium dispersal was also observed to increase after rainy periods. Our findings are in line with the

  6. Fungus Amongus

    Science.gov (United States)

    Wakeley, Deidra

    2005-01-01

    This role-playing simulation is designed to help teach middle level students about the typical lifecycle of a fungus. In this interactive simulation, students assume the roles of fungi, spores, living and dead organisms, bacteria, and rain. As they move around a playing field collecting food and water chips, they discover how the organisms…

  7. Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides

    DEFF Research Database (Denmark)

    Thrane, Ulf; Adler, A.; Clasen, P.E.;

    2004-01-01

    The production of mycotoxins and other metabolites by 109 strains of Fusarium langsethiae, Fusarium poae, Fusarium sporotrichioides, and F. kyushuense was investigated independently in four laboratories by liquid or gas chromatography analyses of cultural extracts with UV diode array, electron...

  8. Altered Gene Expression Profiles of Wheat Genotypes against Fusarium Head Blight

    Directory of Open Access Journals (Sweden)

    Ayumi Kosaka

    2015-02-01

    Full Text Available Fusarium graminearum is responsible for Fusarium head blight (FHB, which is a destructive disease of wheat that makes its quality unsuitable for end use. To understand the temporal molecular response against this pathogen, microarray gene expression analysis was carried out at two time points on three wheat genotypes, the spikes of which were infected by Fusarium graminearum. The greatest number of genes was upregulated in Nobeokabouzu-komugi followed by Sumai 3, whereas the minimum expression in Gamenya was at three days after inoculation (dai. In Nobeokabouzu-komugi, high expression of detoxification genes, such as multidrug-resistant protein, multidrug resistance-associated protein, UDP-glycosyltransferase and ABC transporters, in addition to systemic defense-related genes, were identified at the early stage of infection. This early response of the highly-resistant genotype implies a different resistance response from the other resistant genotype, Sumai 3, primarily containing local defense-related genes, such as cell wall defense genes. In Gamenya, the expression of all three functional groups was minimal. The differences in these molecular responses with respect to the time points confirmed the variation in the genotypes. For the first time, we report the nature of gene expression in the FHB-highly resistant cv. Nobeokabouzu-komugi during the disease establishment stage and the possible underlying molecular response.

  9. Occurrence of Toxigenic Fusarium vorosii among Small Grain Cereals in Korea

    Science.gov (United States)

    Lee, Theresa; Paek, Ji-Seon; Lee, Kyung Ah; Lee, Soohyung; Choi, Jung-Hye; Ham, Hyeonheui; Hong, Sung Kee; Ryu, Jae-Gee

    2016-01-01

    Fusarium graminearum species complex (FGSC) causes Fusarium head blight in small grain cereals. To date, four species (F. graminearum, F. asiaticum, F. boothii, and F. meridionale ) belonging to FGSC frequently occur in Korean cereals. In addition, we first reported the occurrence of additional species (F. vorosii ) within FGSC, which was isolated from barley, corn, and rice in Korea. Phylogenetic analysis of the Fusarium isolates of this group using combined multi-gene sequences confirmed species identification. Moreover, the macroconidia produced by these isolates were morphologically similar to those of the F. vorosii holotype. Chemical analysis indicated that the F. vorosii isolates produced various trichothecenes such as nivalenol and deoxynivalenol with their acetyl derivatives along with zearalenone. Pathogenicity tests demonstrated that all of the F. vorosii isolates examined were pathogenic on barley, corn, and rice with variation in aggressiveness. This study is the first report of F. vorosii in Korean cereals, their pathogenicity towards barley and corn, and their ability to produce trichothecenes and zearalenone. PMID:27721690

  10. A Deoxynivalenol-Activated Methionyl-tRNA Synthetase Gene from Wheat Encodes a Nuclear Localized Protein and Protects Plants Against Fusarium Pathogens and Mycotoxins.

    Science.gov (United States)

    Zuo, Dong-Yun; Yi, Shu-Yuan; Liu, Rong-Jing; Qu, Bo; Huang, Tao; He, Wei-Jie; Li, Cheng; Li, He-Ping; Liao, Yu-Cai

    2016-06-01

    Fusarium graminearum is the fungal pathogen that causes globally important diseases of cereals and produces mycotoxins such as deoxynivalenol (DON). Owing to the dearth of available sources of resistance to Fusarium pathogens, characterization of novel genes that confer resistance to mycotoxins and mycotoxin-producing fungi is vitally important for breeding resistant crop varieties. In this study, a wheat methionyl-tRNA synthetase (TaMetRS) gene was identified from suspension cell cultures treated with DON. It shares conserved aminoacylation catalytic and tRNA anticodon binding domains with human MetRS and with the only previously characterized plant MetRS, suggesting that it functions in aminoacylation in the cytoplasm. However, the TaMetRS comprises a typical nuclear localization signal and cellular localization studies with a TaMetRS::GFP fusion protein showed that TaMetRS is localized in the nucleus. Expression of TaMetRS was activated by DON treatment and by infection with a DON-producing F. graminearum strain in wheat spikes. No such activation was observed following infection with a non-DON-producing F. graminearum strain. Expression of TaMetRS in Arabidopsis plants conferred significant resistance to DON and F. graminearum. These results indicated that this DON-activated TaMetRS gene may encode a novel type of MetRS in plants that has a role in defense and detoxification.

  11. Changes in the Fusarium Head Blight Complex of Malting Barley in a Three-Year Field Experiment in Italy

    Directory of Open Access Journals (Sweden)

    Giovanni Beccari

    2017-03-01

    Full Text Available In this study, conducted for three years on eleven malting barley varieties cultivated in central Italy, the incidence of different mycotoxigenic fungal genera, the identification of the Fusarium species associated with the Fusarium Head Blight (FHB complex, and kernels contamination with deoxynivalenol (DON and T-2 mycotoxins were determined. The influence of climatic conditions on Fusarium infections and FHB complex composition was also investigated. Fusarium species were always present in the three years and the high average and maximum temperatures during anthesis mainly favored their occurrence. The FHB complex was subject to changes during the three years and the main causal agents were F. poae, F. avenaceum, F. tricinctum and F. graminearum, which, even if constantly present, never represented the principal FHB agent. The relative incidence of Fusarium species changed because of climatic conditions occurring during the seasons. The FHB complex was composed of many different Fusarium species and some of them were associated with a specific variety and/or with specific weather parameters, indicating that the interaction between a certain plant genotype and climatic conditions may influence the presence of Fusarium spp. causing infections. With regard to mycotoxin contamination, T-2 toxin, in some cases, was found in kernels at levels that exceeded EU recommended values.

  12. Changes in the Fusarium Head Blight Complex of Malting Barley in a Three-Year Field Experiment in Italy

    Science.gov (United States)

    Beccari, Giovanni; Prodi, Antonio; Tini, Francesco; Bonciarelli, Umberto; Onofri, Andrea; Oueslati, Souheib; Limayma, Marwa; Covarelli, Lorenzo

    2017-01-01

    In this study, conducted for three years on eleven malting barley varieties cultivated in central Italy, the incidence of different mycotoxigenic fungal genera, the identification of the Fusarium species associated with the Fusarium Head Blight (FHB) complex, and kernels contamination with deoxynivalenol (DON) and T-2 mycotoxins were determined. The influence of climatic conditions on Fusarium infections and FHB complex composition was also investigated. Fusarium species were always present in the three years and the high average and maximum temperatures during anthesis mainly favored their occurrence. The FHB complex was subject to changes during the three years and the main causal agents were F. poae, F. avenaceum, F. tricinctum and F. graminearum, which, even if constantly present, never represented the principal FHB agent. The relative incidence of Fusarium species changed because of climatic conditions occurring during the seasons. The FHB complex was composed of many different Fusarium species and some of them were associated with a specific variety and/or with specific weather parameters, indicating that the interaction between a certain plant genotype and climatic conditions may influence the presence of Fusarium spp. causing infections. With regard to mycotoxin contamination, T-2 toxin, in some cases, was found in kernels at levels that exceeded EU recommended values. PMID:28353653

  13. Production of mycotoxins by galactose oxidase producing Fusarium using different culture

    Directory of Open Access Journals (Sweden)

    Pereira Angela Maria

    2000-01-01

    Full Text Available The original isolate of the galactose oxidase producing fungus Dactylium dendroides, and other five galactose oxidase producing Fusarium isolates were cultivated in different media and conditions, in order to evaluate the production of 11 mycotoxins, which are characteristic of the genus Fusarium: moniliformin, fusaric acid, deoxynivalenol, fusarenone-X, nivalenol, 3-acetyldeoxynivalenol, neosolaniol, zearalenol, zearalenone, acetyl T-2, and iso T-2. The toxicity of the culture extracts to Artemia salina larvae was tested.

  14. 互花米草根际镰刀菌的分离鉴定及致病性测定%Separation and identification of Rhizosphere fusarium spp.in smooth cord-grass and its pathogenicity examination

    Institute of Scientific and Technical Information of China (English)

    包衍; 罗江兰; 张伟琼; 聂明; 肖明

    2006-01-01

    原产北美的互花米草已经成功入侵许多河口湾和海湾的潮间带.5株镰刀菌分离于上海崇明东滩湿地互花米草根际,初步鉴定分别为异孢镰刀菌(Fusarium heterosporum)、半裸镰刀菌(Fusarium semitectum)、胶孢镰刀菌(Fusarium subglutinans)、禾谷镰刀菌(Fusarium graminearum)、串珠镰刀菌(Fusarium moniliforme).采用幼苗浸渍法研究镰刀菌培养滤液对互花米草和水稻的致萎效果.结果表明,F1菌株对互花米草有较强的致萎作用,对水稻无致萎作用.

  15. Inoculum potential of Fusarium spp. relates to tillage and straw management in Norwegian fields of spring oats

    Directory of Open Access Journals (Sweden)

    Ingerd Skow Hofgaard

    2016-04-01

    Full Text Available The increased occurrence of Fusarium-mycotoxins in Norwegian cereals over the last decade, is thought to be caused by increased inoculum resulting from more cereal residues at the soil surface as a result of reduced tillage practices. In addition, weather conditions have increasingly promoted inoculum development and infection by Fusarium species. The objective of this work was to elucidate the influence of different tillage regimes (autumn plowing; autumn harrowing; spring plowing; spring harrowing on the inoculum potential (IP and dispersal of Fusarium spp. in spring oats. Tillage trials were conducted at two different locations in southeast Norway from 2010 to 2012. Oat residues from the previous year’s crop were collected within a week after sowing for evaluation. IP was calculated as the percentage of residues infested with Fusarium spp. multiplied by the proportion of the soil surface covered with residues. F. avenaceum and F. graminearum were the most common Fusarium species recovered from oat residues. The IP of Fusarium spp. was significantly lower in plowed plots compared to those that were harrowed. Plowing in either the autumn or spring resulted in a low IP. Harrowing in autumn was more effective in reducing IP than the spring harrowing, and IP levels for the spring harrowed treatments were generally higher than all other tillage treatments examined. Surprisingly low levels of F. langsethiae were detected in the residues, although this species is a common pathogen of oat in Norway. The percentage of the residues infested with F. avenaceum, F. graminearum, F. culmorum and F. langsethiae generally related to the quantity of DNA of the respective Fusarium species determined using qPCR. Fusarium dispersal, quantified by quantitative PCR analysis of spore trap samples collected at and after heading, generally corresponded to IP. Fusarium dispersal was also observed to increase after rainy periods. Our findings are in line with the

  16. Genetic mapping and identification of quantitative trait loci associated with resistance to Fusarium oxysporum f. sp. niveum races 1 and 2 in watermelon

    Science.gov (United States)

    Fusarium wilt is a major disease of watermelon caused by the soil-borne fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). Fon race 1 is most prevalent throughout the U.S. while race 2 is more virulent. Our overall objective is to identify and utilize ...

  17. Disruption of ceramide biosynthesis and accumulation of sphingoid bases and sphingoid base 1-phosphates: A mechanism for Fusarium verticillioides effects in maize-seedling disease.

    Science.gov (United States)

    In sweet corn at the seedling and seed maturation stages, Fusarium can be a serious field problem. The fungus Fusarium verticillioides infects maize and produces fumonisins, inhibitors of ceramide synthase. To determine the role of fumonisins in maize seedling disease, seeds were inoculated with fu...

  18. Fusarium Wilt of Orchids

    Science.gov (United States)

    Fusarium wilt of orchids is highly destructive and economically limiting to the production of quality orchids that has steadily increased in many production facilities. Important crops such as phalaenopsis, cattleyas, and oncidiums appear to be especially susceptible to certain Fusarium species. Fu...

  19. Evaluation of two methods for direct detection of Fusarium spp. in water.

    Science.gov (United States)

    Graça, Mariana G; van der Heijden, Inneke M; Perdigão, Lauro; Taira, Cleison; Costa, Silvia F; Levin, Anna S

    2016-04-01

    Fusarium is a waterborne fungus that causes severe infections especially in patients with prolonged neutropenia. Traditionally, the detection of Fusarium in water is done by culturing which is difficult and time consuming. A faster method is necessary to prevent exposure of susceptible patients to contaminated water. The objective of this study was to develop a molecular technique for direct detection of Fusarium in water. A direct DNA extraction method from water was developed and coupled to a genus-specific PCR, to detect 3 species of Fusarium (verticillioides, oxysporum and solani). The detection limits were 10 cells/L and 1 cell/L for the molecular and culture methods, respectively. To our knowledge, this is the first method developed to detect Fusarium directly from water. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect of Environmental Factors on Fusarium Species and Associated Mycotoxins in Maize Grain Grown in Poland.

    Directory of Open Access Journals (Sweden)

    Elżbieta Czembor

    Full Text Available Maize is one of the most important crops and Poland is the fifth largest producing country in Europe. Diseases caused by Fusarium spp. can affect the yield and grain quality of maize because of contamination with numerous mycotoxins produced by these fungi. The present study was performed to identify the prevailing Fusarium species and the environmental factors affecting their frequencies and the contamination of grain with the main mycotoxins deoxynivalenol (DON, zearalenone (ZON and fumonisin B1 (FB1. Thirty kernel samples were collected in three locations in 2011 and in seven locations in 2012 from three hybrids. On average, 25.24% kernels were colonized by Fusarium spp. (424 strains were isolated. Fusarium verticillioides and F. temperatum were the most prevalent species, F. subglutinans, F. proliferatum and F. graminearum were in minor abundance. In total, 272 isolates of F. verticillioides and 81 isolates of F. temperatum were identified. Fusarium temperatum frequency ranged from 1.70% to 28.57% and differences between locations were significant. Fumonisin B1 was found in all tested samples. DON was found in 66.67% and ZON in 43.33% of samples. Rainfall amount positively affected F. temperatum and F. subglutinans frequency in opposite to mean temperatures in July. On the other hand, relationships between frequency of these species and historical data from 1950-2000 for annual temperature range were negative in contrast to the coldest quarter temperatures.

  1. Fusarium culmorum is a single phylogenetic species based on multilocus sequence analysis.

    Science.gov (United States)

    Obanor, Friday; Erginbas-Orakci, G; Tunali, B; Nicol, J M; Chakraborty, S

    2010-09-01

    Fusarium culmorum is a major pathogen of wheat and barley causing head blight and crown rot in cooler temperate climates of Australia, Europe, West Asia and North Africa. To better understand its evolutionary history we partially sequenced single copy nuclear genes encoding translation elongation factor 1-α (TEF), reductase (RED) and phosphate permease (PHO) in 100 F. culmorum isolates with 11 isolates of Fusarium crookwellense, Fusarium graminearum and Fusarium pseudograminearum. Phylogenetic analysis of multilocus sequence (MLS) data using Bayesian inference and maximum parsimony analysis showed that F. culmorum from wheat is a single phylogenetic species with no significant linkage disequilibrium and little or no lineage development along geographic origin. Both MLS and TEF and RED gene sequence analysis separated the four Fusarium species used and delineated three to four groups within the F. culmorum clade. But the PHO gene could not completely resolve isolates into their respective species. Fixation index and gene flow suggest significant genetic exchange between the isolates from distant geographic regions. A lack of strong lineage structure despite the geographic separation of the three collections indicates a frequently recombining species and/or widespread distribution of genotypes due to international trade, tourism and long-range dispersal of macroconidia. Moreover, the two mating type genes were present in equal proportion among the F. culmorum collection used in this study, leaving open the possibility of sexual reproduction.

  2. An antibody that confers plant disease resistance targets a membrane-bound glyoxal oxidase in Fusarium.

    Science.gov (United States)

    Song, Xiu-Shi; Xing, Shu; Li, He-Ping; Zhang, Jing-Bo; Qu, Bo; Jiang, Jin-He; Fan, Chao; Yang, Peng; Liu, Jin-Long; Hu, Zu-Quan; Xue, Sheng; Liao, Yu-Cai

    2016-05-01

    Plant germplasm resources with natural resistance against globally important toxigenic Fusarium are inadequate. CWP2, a Fusarium genus-specific antibody, confers durable resistance to different Fusarium pathogens that infect cereals and other crops, producing mycotoxins. However, the nature of the CWP2 target is not known. Thus, investigation of the gene coding for the CWP2 antibody target will likely provide critical insights into the mechanism underlying the resistance mediated by this disease-resistance antibody. Immunoblots and mass spectrometry analysis of two-dimensional electrophoresis gels containing cell wall proteins from Fusarium graminearum (Fg) revealed that a glyoxal oxidase (GLX) is the CWP2 antigen. Cellular localization studies showed that GLX is localized to the plasma membrane. This GLX efficiently catalyzes hydrogen peroxide production; this enzymatic activity was specifically inhibited by the CWP2 antibody. GLX-deletion strains of Fg, F. verticillioides (Fv) and F. oxysporum had significantly reduced virulence on plants. The GLX-deletion Fg and Fv strains had markedly reduced mycotoxin accumulation, and the expression of key genes in mycotoxin metabolism was downregulated. This study reveals a single gene-encoded and highly conserved cellular surface antigen that is specifically recognized by the disease-resistance antibody CWP2 and regulates both virulence and mycotoxin biosynthesis in Fusarium species. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Effect of Environmental Factors on Fusarium Species and Associated Mycotoxins in Maize Grain Grown in Poland

    Science.gov (United States)

    Czembor, Elżbieta; Stępień, Łukasz; Waśkiewicz, Agnieszka

    2015-01-01

    Maize is one of the most important crops and Poland is the fifth largest producing country in Europe. Diseases caused by Fusarium spp. can affect the yield and grain quality of maize because of contamination with numerous mycotoxins produced by these fungi. The present study was performed to identify the prevailing Fusarium species and the environmental factors affecting their frequencies and the contamination of grain with the main mycotoxins deoxynivalenol (DON), zearalenone (ZON) and fumonisin B1 (FB1). Thirty kernel samples were collected in three locations in 2011 and in seven locations in 2012 from three hybrids. On average, 25.24% kernels were colonized by Fusarium spp. (424 strains were isolated). Fusarium verticillioides and F. temperatum were the most prevalent species, F. subglutinans, F. proliferatum and F. graminearum were in minor abundance. In total, 272 isolates of F. verticillioides and 81 isolates of F. temperatum were identified. Fusarium temperatum frequency ranged from 1.70% to 28.57% and differences between locations were significant. Fumonisin B1 was found in all tested samples. DON was found in 66.67% and ZON in 43.33% of samples. Rainfall amount positively affected F. temperatum and F. subglutinans frequency in opposite to mean temperatures in July. On the other hand, relationships between frequency of these species and historical data from 1950–2000 for annual temperature range were negative in contrast to the coldest quarter temperatures. PMID:26225823

  4. Molecular strategies for detection and quantification of mycotoxin-producing Fusarium species: a review.

    Science.gov (United States)

    Gong, Liang; Jiang, Yueming; Chen, Feng

    2015-07-01

    Fusarium contamination is considered a major agricultural problem, which could not only significantly reduce yield and quality of agricultural products, but produce mycotoxins that are virulence factors responsible for many diseases of humans and farm animals. One strategy to identify toxigenic Fusarium species is the use of modern molecular methods, which include the analysis of DNA target regions for differentiation of the Fusarium species, particularly the mycotoxin-producing Fusarium species such as F. verticillioides and F. graminearum. Additionally, polymerase chain reaction assays are used to determine the genes involved in the biosynthesis of the toxins in order to facilitate a qualitative and quantitative detection of Fusarium-producing mycotoxins. Also, it is worth mentioning that some factors that modulate the biosynthesis of mycotoxins are not only determined by their biosynthetic gene clusters, but also by environmental conditions. Therefore, all of the aforementioned factors which may affect the molecular diagnosis of mycotoxins will be reviewed and discussed in this paper. © 2014 Society of Chemical Industry.

  5. Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium.

    Science.gov (United States)

    Brown, Daren W; Proctor, Robert H

    2016-04-01

    Species of the fungus Fusarium collectively cause disease on almost all crop plants and produce numerous natural products (NPs), including some of the mycotoxins of greatest concern to agriculture. Many Fusarium NPs are derived from polyketide synthases (PKSs), large multi-domain enzymes that catalyze sequential condensation of simple carboxylic acids to form polyketides. To gain insight into the biosynthesis of polyketide-derived NPs in Fusarium, we retrieved 488 PKS gene sequences from genome sequences of 31 species of the fungus. In addition to these apparently functional PKS genes, the genomes collectively included 81 pseudogenized PKS genes. Phylogenetic analysis resolved the PKS genes into 67 clades, and based on multiple lines of evidence, we propose that homologs in each clade are responsible for synthesis of a polyketide that is distinct from those synthesized by PKSs in other clades. The presence and absence of PKS genes among the species examined indicated marked differences in distribution of PKS homologs. Comparisons of Fusarium PKS genes and genes flanking them to those from other Ascomycetes provided evidence that Fusarium has the genetic potential to synthesize multiple NPs that are the same or similar to those reported in other fungi, but that have not yet been reported in Fusarium. The results also highlight ways in which such analyses can help guide identification of novel Fusarium NPs and differences in NP biosynthetic capabilities that exist among fungi. Published by Elsevier Inc.

  6. Fusarium solani : A causative agent of skin and nail infections

    Directory of Open Access Journals (Sweden)

    Thomas S Kuruvilla

    2012-01-01

    Full Text Available Fusarium spp are non-dermatophytic hyaline moulds found as saprophytes and plant pathogens. Human infections are probably a result of various precipitating predisposing factors of impaired immune status. Immunocompetent individuals of late are also vulnerable to various unassuming saprophytic and plant pathogens. To stress the need to identify correctly and institute appropriate antifungal therapy in newly emerging human fungal infectious agents. Repeated mycological sampling of the skin and nails of the suspected fungal infection were processed as per the standard format including direct microscopy and fungal culture on Sabouraud′s dextrose agar. The fungus was isolated as Fusarium solani. Fusarium is an important plant pathogen and soil saprophyte. Infection is acquired by direct inoculation or inhalation of spores. It is associated with a variety of diseases like keratitis, onychomycosis, eumycetoma, skin lesions and disseminated diseases.

  7. Wheat Fusarium head blight and identification of dominant species in Moghan area, Iran.

    Science.gov (United States)

    Davari, M; Didar-Taleshmkaeil, R; Hajieghrari, B

    2006-01-01

    In order to identify of head blight agents in Moghan area and determine predominant species, totally 60 samples from affected wheat heads of Atila 4, Zagros, Goadloop, Izen green and Gasquine cultivars that cultivated during 2004-2005, were collected from randomly selected commercial wheat fields in Moghan. Twenty randomly selected kernels and glumes from each sample were surface sterilized and were planted on synthesized nutrient agar medium (SNA), potato dextrose agar (PDA) and Nash-Snyder medium (NA) plates. Culture plates were incubated at 22 to 25 C with a 12-h photoperiod provided by fluorescent and ultra violet lights. For the species identification, cultures were incubated for 5 to 15 days on PDA plates to induce sporulation under light and temperature previously described. Single conidial isolates were obtained by spreading a conidial suspension across a water agar culture plate and transferring a single germinated conidium to a new PDA culture plates. Single spore cultures were grown on Carnation leaf agar (CLA) for spore morphology assessment and on PDA for color assessment. All species were identified based on descriptions given in Burgess et. al. and Nelson et al. The results indicated that in addition Fusarium graminearum and F. culmorum were identified as wheat FHB agents in Moghan area and F. graminearum was dominant species in Moghan area. Also severe infection was determined in Atila 4 cultivar by F. graminearum.

  8. Overexpression of NRPS4 leads to increased surface hydrophobicity in Fusarium graminearum

    DEFF Research Database (Denmark)

    Hansen, Frederik Teilfeldt; Droce, Aida; Sørensen, Jens Laurids;

    2012-01-01

    brassicicola and Cochloibolus heterostrophus has been shown to result in mutants unable to repel water. In a time study of surface hydrophobicity we observed that water droplets could penetrate seven day old colonies of the NRPS4 deletion mutants. Loss in ability to repel water was first observed on 13 days...... old cultures of the wild type strain, whereas the overexpression strain remained water repellant throughout the 38 day time study. The conidia of both mutants were examined and those of the overexpression mutant showed distinct morphological differences in form of collapsed cells. These observations...

  9. Antifungal and Zearalenone Inhibitory Activity of Pediococcus pentosaceus Isolated from Dairy Products on Fusarium graminearum

    National Research Council Canada - National Science Library

    Sellamani, Muthulakshmi; Kalagatur, Naveen K; Siddaiah, Chandranayaka; Mudili, Venkataramana; Krishna, Kadirvelu; Natarajan, Gopalan; Rao Putcha, Venkata L

    2016-01-01

    The present study was aimed to evaluate the bio-control efficacy of Pediococcus pentosaceus isolated from traditional fermented dairy products originated from India, against the growth and zearalenone (ZEA...

  10. Fusarium graminearum and Its Interactions with Cereal Heads: Studies in the Proteomics Era

    DEFF Research Database (Denmark)

    Yang, Fen; Jacobsen, Susanne; Jørgensen, Hans J L;

    2013-01-01

    The ascomycete fungal pathogen (teleomorph stage: ) is the causal agent of head blight in wheat and barley. This disease leads to significant losses of crop yield, and especially quality through the contamination by diverse fungal mycotoxins, which constitute a significant threat to the health of...

  11. Fusarium graminearum PKS14 is involved in orsellinic acid and orcinol synthesis

    DEFF Research Database (Denmark)

    Jørgensen, Simon Hartung; Frandsen, Rasmus John Normand; Nielsen, Kristian Fog;

    2014-01-01

    been linked to products. To help remedy this, we focused on PKS14, which has only been shown to be expressed during plant infections or when cultivated on rice or corn meal (RM) based media. To enhance the production of the resulting product we introduced a constitutive promoter in front of PKS14...... and cultivated two of the resulting mutants on RM medium. This led to the production of two compounds, which were only detected in the PKS14 overexpressing mutants and not in the wild type or PKS14 deletion mutants. The two compounds were tentatively identified as orsellinic acid and orcinol by comparing...

  12. Effect of Early Foliar Disease Control on Wheat Scab Severity (Fusarium graminearum in Argentina

    Directory of Open Access Journals (Sweden)

    Jorge David Mantecón

    2013-01-01

    Full Text Available Wheat scab is common in Argentina mainly durum wheat and some bread varieties. The epidemics occur every 5 to 7 years. During the 2007, 2008, and 2009 growing seasons, three trials were conducted at the INTA Balcarce Experimental Station. Each plot had six rows of 5 m long, spaced 0.15 m apart and was set up in a randomized complete block design with four replications. Trifloxystrobin plus cyproconazole was sprayed at Z3.1 stage. Treatments were sprayed at Z6.1 stage with tebuconazole, prochloraz, and metconazole to improve scab control. Artificial inoculations were made in Z6.1. Severity of Septoria leaf bloth and leaf rust was assessed in boot stage (Z3.9. Scab severity was rated at early dough stage (Z8.3. Yields were recorded each year. Fungicide only applied at Z3.1 stage did not reduce field scab severity but reduced the seeds infection and increased the yields. Early fungicide spray produced yield increase at about 22% and a decrease in seed infection of up to 40%. Yields increased in a 55.3% and in a 19.6% when compared with the inoculated and not inoculated check, respectively. The purpose of this study was to evaluate the effect of foliar disease control on scab, crop yield, and seed health.

  13. Carotenoid Biosynthesis in Fusarium

    Directory of Open Access Journals (Sweden)

    Javier Avalos

    2017-07-01

    Full Text Available Many fungi of the genus Fusarium stand out for the complexity of their secondary metabolism. Individual species may differ in their metabolic capacities, but they usually share the ability to synthesize carotenoids, a family of hydrophobic terpenoid pigments widely distributed in nature. Early studies on carotenoid biosynthesis in Fusarium aquaeductuum have been recently extended in Fusarium fujikuroi and Fusarium oxysporum, well-known biotechnological and phytopathogenic models, respectively. The major Fusarium carotenoid is neurosporaxanthin, a carboxylic xanthophyll synthesized from geranylgeranyl pyrophosphate through the activity of four enzymes, encoded by the genes carRA, carB, carT and carD. These fungi produce also minor amounts of β-carotene, which may be cleaved by the CarX oxygenase to produce retinal, the rhodopsin’s chromophore. The genes needed to produce retinal are organized in a gene cluster with a rhodopsin gene, while other carotenoid genes are not linked. In the investigated Fusarium species, the synthesis of carotenoids is induced by light through the transcriptional induction of the structural genes. In some species, deep-pigmented mutants with up-regulated expression of these genes are affected in the regulatory gene carS. The molecular mechanisms underlying the control by light and by the CarS protein are currently under investigation.

  14. AKTIVITAS ANTIFUNGI EKSTRAK DAUN KEMANGI (Ocimum americanum L. TERHADAP FUNGI Fusarium oxysporum Schlecht

    Directory of Open Access Journals (Sweden)

    Zainal Berlian

    2016-01-01

    Full Text Available Fusarium oxysporum Schlecht. a parasitic fungus that cause leaf wilt disease in plants. Meanwhile, basil (Ocimum americanum L. is a plant that contains of the active compound in the form of phenols which have antifungal activity. This study aimed to test whether the extract of leaves of basil have antifungal activity againts Fusarium oxysporum Schlecht. and determine the optimum concentration to inhibit the growth of the fungus Fusarium oxysporum Schlecht. Antifungal test is done by using paper disc diffusion method. The study design used was a completely randomized design with 4 treatments and 6 replications. The treatment is K0 (0% w/v, K1 (5% w/v, K2 (10% w/v, and K3 (15% w/v. The results showed that the leaf extract of basil have antifungal activity against Fusarium oxysporum Schlecht. Inhibition zone on K0, K1, K2, and K3 are each 0,0 mm, 1,49 mm, 2,46 mm, and 2,01 mm. The optimum concentration of antifungal activity of extract of basil, namely the K2 concentration (10% w/v. Based on analysis of variance (ANOVA, the concentration of basil leaf extract provides significant differences (p > 0,05 on fungus Fusarium oxysporum Schlecht., where Fcount > Ftable is 4,5 > 3,1.

  15. Suppression of Fusarium wilt of cucumber by ammonia gas fumigation via reduction of Fusarium population in the field

    Science.gov (United States)

    Zhao, Jun; Mei, Zhong; Zhang, Xu; Xue, Chao; Zhang, Chenzhi; Ma, Tengfei; Zhang, Shusheng

    2017-01-01

    Cucumber plants subjected to consecutive monoculture for 9 years were found to suffer from severe Fusarium wilt disease, caused by the soil-borne fungus Fusarium oxysporum f. sp. Cucumerinum J. H. Owen. In the present study, greenhouse experiments were performed to evaluate the influence of ammonia gas fumigation on Fusarium wilt suppression, fungal abundance and fungal community composition. Results showed that ammonia gas fumigation remarkably reduced disease incidence from 80% to 27%, resulting in a four-fold increase in yield, compared to the control. Total fungal abundance declined dramatically after fumigation and reached the lowest level at day 32, at 243 times lower than the control. Moreover, fumigation significantly increased soil fungal diversity, though it also decreased considerably coinciding with cucumber growth. Fumigation also significantly altered soil fungal community composition, relative to the control. Fusarium was strongly inhibited by fumigation in both relative abundance (3.8 times lower) and targeted quantification (a decrease of 167 fold). Collectively, the application of ammonia gas fumigation to control Fusarium wilt of cucumber resulted in a re-assembly of the fungal community to resemble that of a non-disease conducive consortium. Additional strategies, such as bioorganic fertilizer application, may still be required to develop sustainable disease suppression following fumigation. PMID:28230182

  16. Fusarium and Aspergillus mycotoxins contaminating wheat silage for dairy cattle feeding in Uruguay

    Directory of Open Access Journals (Sweden)

    Agustina del Palacio

    Full Text Available Abstract Wheat is one of the most important cultivated cereals in Uruguay for human consumption; however, when harvest yields are low, wheat is usually used in ensiling for animal feeding. Ensiling is a forage preservation method that allows for storage during extended periods of time while maintaining nutritional values comparable to fresh pastures. Silage is vulnerable to contamination by spoilage molds and mycotoxins because ensilage materials are excellent substrates for fungal growth. The aim of the study was to identify the mycobiota composition and occurrence of aflatoxins and DON from wheat silage. A total of 220 samples of wheat were collected from four farms in the southwest region of Uruguay were silage practices are developed. The main fungi isolated were Fusarium (43% and Aspergillus (36%, with Fusarium graminearum sensu lato and Aspergillus section Flavi being the most prevalent species. Aflatoxin concentrations in silo bags ranged from 6.1 to 23.3 µg/kg, whereas DON levels ranged between 3000 µg/kg and 12,400 µg/kg. When evaluating aflatoxigenic capacity, 27.5% of Aspergillus section Flavi strains produced AFB1, 5% AFB2, 10% AFG1 and 17.5% AFG2. All isolates of F. graminearum sensu lato produced DON and 15-AcDON. The results from this study contribute to the knowledge of mycobiota and mycotoxins present in wheat silage.

  17. Fusarium and Aspergillus mycotoxins contaminating wheat silage for dairy cattle feeding in Uruguay.

    Science.gov (United States)

    Del Palacio, Agustina; Bettucci, Lina; Pan, Dinorah

    Wheat is one of the most important cultivated cereals in Uruguay for human consumption; however, when harvest yields are low, wheat is usually used in ensiling for animal feeding. Ensiling is a forage preservation method that allows for storage during extended periods of time while maintaining nutritional values comparable to fresh pastures. Silage is vulnerable to contamination by spoilage molds and mycotoxins because ensilage materials are excellent substrates for fungal growth. The aim of the study was to identify the mycobiota composition and occurrence of aflatoxins and DON from wheat silage. A total of 220 samples of wheat were collected from four farms in the southwest region of Uruguay were silage practices are developed. The main fungi isolated were Fusarium (43%) and Aspergillus (36%), with Fusarium graminearum sensu lato and Aspergillus section Flavi being the most prevalent species. Aflatoxin concentrations in silo bags ranged from 6.1 to 23.3μg/kg, whereas DON levels ranged between 3000μg/kg and 12,400μg/kg. When evaluating aflatoxigenic capacity, 27.5% of Aspergillus section Flavi strains produced AFB1, 5% AFB2, 10% AFG1 and 17.5% AFG2. All isolates of F. graminearum sensu lato produced DON and 15-AcDON. The results from this study contribute to the knowledge of mycobiota and mycotoxins present in wheat silage. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. 四川省小麦赤霉病菌的种群组成%The population structure of Fusarium spp.from wheat in Sichuan

    Institute of Scientific and Technical Information of China (English)

    黄小红; 叶华智

    2005-01-01

    2002~2004年在四川省的12个地区26个市县采集小麦赤霉病病穗标样经组织分离和单孢分离共获得345个镰刀菌属的菌株,按照Booth分类标准鉴定出7个镰刀菌种,它们是禾谷镰刀菌(Fusarium graminearum)出现频率为94.5 %,燕麦镰刀菌(Fusarium avenaceum)出现频率为2.61 %,串珠镰刀菌(Fusarium moniliforme)出现频率为0.87 %,三线镰刀菌(Fusarium tricinctum)出现频率为0.58 %,木贼镰刀菌(Fusarium equiseti)、黄色镰刀菌(Fusarium culmorum)和雪腐镰刀菌(Fusarium nivale)出现频率为0.29 %.

  19. Molecular diversity within global populations of Fusarium oxysporum f.sp. cubense.

    OpenAIRE

    Ordoñez, María Eugenia

    1998-01-01

    Bananas constitute one of the most important crops in the world, being amongst the principal staple food crops of the developing countries in the tropics. One of the major economically significant and widespread diseases of the banana is Fusarium wilt, also known as Panamá disease, caused by the soilborne fungus.

  20. Comparative genomics and transcriptomics of sexual development in a nematode-associated strain of Fusarium neocosmosporiellum

    Science.gov (United States)

    Fusarium neocosmosporiellum (formerly Neocosmospora vasinfecta) is a ubiquitous saprobic fungus that has been isolated from plants, fungi, nematodes, dung and soil. This homothallic species is nested in a clade within the F. solani species complex near a lineage of fusaria farmed by ambrosia beetles...

  1. DNA barcoding, MALDI-TOF, and AFLP data support Fusarium ficicrescens as a distinct species within the Fusarium fujikuroi species complex.

    Science.gov (United States)

    Al-Hatmi, Abdullah M S; Mirabolfathy, Mansoureh; Hagen, Ferry; Normand, Anne-Cécile; Stielow, J Benjamin; Karami-Osbo, Rouhollah; van Diepeningen, Anne D; Meis, Jacques F; de Hoog, G Sybren

    2016-02-01

    The Fusarium fujikuroi species complex (FFSC) is one of the most common groups of fusaria associated with plant diseases, mycotoxin production and traumatic and disseminated human infections. Here we present the description and taxonomy of a new taxon, Fusarium ficicrescens sp. nov., collected from contaminated fig fruits in Iran. Initially this species was identified as Fusarium andiyazi by morphology. In the present study the species was studied by multilocus sequence analysis, amplified fragment length polymorphism (AFLP), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and phenotypic characters. Multilocus analyses were based on translation elongation factor 1α (TEF1), RNA polymerase subunit (RPB2) and beta-tubulin (BT2) and proved F. ficicrescens as a member of the FFSC. Phylogenetic analysis showed that the fungus is closely related to Fusarium lactis, Fusarium ramigenum, and Fusarium napiforme; known plant pathogens, mycotoxin producers, and occasionally occurring multidrug resistant opportunists. The new species differed by being able to grow at 37 °C and by the absence of mycotoxin production. TEF1 was confirmed as an essential barcode for identifying Fusarium species. In addition to TEF1, we evaluated BT2 and RPB2 in order to provide sufficient genetic and species boundaries information for recognition of the novel species. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. Identification of Fusarium solani species complex from infected zebrafish (Danio rerio).

    Science.gov (United States)

    Ke, Xiaoli; Lu, Maixin; Wang, Jianguo

    2016-11-01

    Although Fusarium sp. infections have been reported in aquatic invertebrates, studies of Fusarium spp. as fish pathogens remain very limited. In our study, a fungus was isolated from diseased zebrafish (Danio rerio). DNA sequence analysis of the fungus, based on a partial region of the translation elongation factor 1α gene (EF-1α), the internal transcribed spacer region and domains D1 and D2 of the large subunit of the ribosomal RNA gene (ITS plus LSU), and the RNA polymerase II subunit gene (RPB2), showed 99.9-100% homology to Fusarium solani species complex sequences. Multilocus sequence typing analysis based on 3-locus haplotypes (EF-1α, ITS plus LSU, and RPB2) suggests that the isolated strain was type 3+4-P. Challenge experiments showed that this organism could be pathogenic to zebrafish, but usually does not infect healthy subjects under normal circumstances. © 2016 The Author(s).

  3. Taxol producing mangrove endophytic fungi Fusarium oxysporum from Rhizophora annamalayana

    Institute of Scientific and Technical Information of China (English)

    Alaganadham Elavarasi; Gnanaprakash Sathiya Rathna; Murugaiyan Kalaiselvam

    2012-01-01

    Objective: To find out the anticancer properties of Taxol (paclitaxel) isolated from mangrove endophytic fungi. Methods: An endophytic fungus Fusarium oxysporum was isolated fromRhizophora annamalayana, a mangrove plant and analysis for Taxol production. The fungus was identified based on morphology and spore characteristics. The secondary metabolites Taxol were extracted with ethyl acetate. Taxol extracted was characterized by chromatographic and spectrometric analysis. Results: Thin layer chromatography plate shows violet red and IR spectrum values were conformed as group of terpenoid functional groups. The HPLC analysis showed the higher yield of Taxol 172.3 μg/L from potato dextrose liquid medium. Conclusion:The bioprospecting of entophytic fungus F. oxysporum isolated from mangrove is discussed and may serve as a potential material for the production of Taxol for anticancer treatment.

  4. Influence of environmental factors on the biosynthesis of type B trichothecenes by isolates of Fusarium spp. from Spanish crops.

    Science.gov (United States)

    Llorens, A; Mateo, R; Hinojo, M J; Valle-Algarra, F M; Jiménez, M

    2004-07-01

    Various species of Fusarium can produce trichothecene mycotoxins that contaminate food commodities and can represent a risk for human and animal health. In this paper, a full factorial design was applied to study the influence of incubation temperature, water activity (a(w)) and type of isolate on the production of deoxynivalenol (DON), nivalenol (NIV) and 3-acetyldeoxynivalenol (3-AcDON) in corn kernel cultures by three isolates of Fusarium graminearum and three isolates of Fusarium culmorum from crops grown in Spain. The tested temperatures were 15, 20, 28 and 32 degrees C. The a(w)-values were 0.960, 0.970 and 0.980. Moisture of cultures (within the studied range) did not affect significantly production of trichothecenes; however, the temperature affected significantly mycotoxin production and the optimal values were 28, 20 and 15 degrees C for DON, NIV and 3-AcDON, respectively. Four additional isolates of F. graminearum and two additional isolates of F. culmorum were examined for production of these mycotoxins at the optimal temperatures. Of the seven isolates of F. graminearum, four produced DON (0.88-3.97 microg/g), seven produced NIV (1.53-124 microg/g), and three produced 3-AcDON (0.65-10.6 microg/g). Of the five isolates of F. culmorum, four produced DON (1.20-4.93 microg/g), four produced NIV (6.94-701 microg/g), and four produced 3-AcDON (0.83-7.70 microg/g). Practically all isolates seem to belong to the NIV-chemotype. This is the first study done with regard to interaction between strain and ecological variables on type B trichothecene production by isolates of these two species from crops grown in Spain.

  5. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li Jun; van der Does, H. C.; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Jose; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Wolochuk, Charles; Xie, Xiaohui; Xu, Jin Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald; Goff, Steven; Hammond-Kossack, Kim; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. C.; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, Barbara G.; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2010-03-18

    Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, members of the F. oxysporum species complex exhibit wide host range but discontinuously distributed host specificity, reflecting remarkable genetic adaptability. To understand the molecular underpinnings of diverse phenotypic traits and their evolution in Fusarium, we compared the genomes of three economically important and phylogenetically related, yet phenotypically diverse plant-pathogenic species, F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici. Our analysis revealed greatly expanded lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes, accounting for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity. Experimentally, we demonstrate for the first time the transfer of two LS chromosomes between strains of F. oxysporum, resulting in the conversion of a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in the F. oxysporum species complex, putting the evolution of fungal pathogenicity into a new perspective.

  6. The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium.

    Science.gov (United States)

    Alexander, Nancy J; McCormick, Susan P; Waalwijk, Cees; van der Lee, Theo; Proctor, Robert H

    2011-05-01

    Certain Fusarium species cause head blight of wheat and other small grains worldwide and produce trichothecene mycotoxins. These mycotoxins can induce toxicoses in animals and humans and can contribute to the ability of some fusaria to cause plant disease. Production of the trichothecene 3-acetyldeoxynivalenol (3-ADON) versus 15-acetyldeoxynivalenol (15-ADON) is an important phenotypic difference within and among some Fusarium species. However, until now, the genetic basis for this difference in chemotype has not been identified. Here, we identified consistent DNA sequence differences in the coding region of the trichothecene biosynthetic gene TRI8 in 3-ADON and 15-ADON strains. Functional analyses of the TRI8 enzyme (Tri8) in F. graminearum, the predominant cause of wheat head blight in North America and Europe, revealed that Tri8 from 3-ADON strains catalyzes deacetylation of the trichothecene biosynthetic intermediate 3,15-diacetyldeoxynivalenol at carbon 15 to yield 3-ADON, whereas Tri8 from 15-ADON strains catalyzes deacetylation of 3,15-diacetyldeoxynivalenol at carbon 3 to yield 15-ADON. Fusarium strains that produce the trichothecene nivalenol have a Tri8 that functions like that in 15-ADON strains. TRI3, which encodes a trichothecene carbon 15 acetyltransferase, was found to be functional in all three chemotypes. Together, our data indicate that differential activity of Tri8 determines the 3-ADON and 15-ADON chemotypes in Fusarium.

  7. Relationship between mycoparasites lifestyles and biocontrol behaviors against Fusarium spp. and mycotoxins production.

    Science.gov (United States)

    Kim, Seon Hwa; Vujanovic, Vladimir

    2016-06-01

    Global food security research is seeking eco-friendly solutions to control mycotoxins in grain infected by fungi (molds). In particular, mycotoxigenic Fusarium spp. outbreak is a chronic threat for cereal grain production, human, and animal health. In this review paper, we discuss up-to-date biological control strategies in applying mycoparasites as biological control agents (BCA) to prevent plant diseases in crops and mycotoxins in grain, food, and feed. The aim is to increase food safety and to minimize economic losses due to the reduced grain yield and quality. However, recent papers indicate that the study of the BCA specialists with biotrophic lifestyle lags behind our understanding of the BCA generalists with necrotrophic lifestyle. We examine critical behavioral traits of the two BCA groups of mycoparasites. The goal is to highlight their major characteristics in the context of future research towards an efficient biocontrol strategy against mycotoxin-producing Fusarium species. The emphasis is put on biocontrol of Fusarium graminearum, F. avenaceum, and F. culmorum causing Fusarium head blight (FHB) in cereals and their mycotoxins.

  8. A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery

    Science.gov (United States)

    Fusarium wilt is a major soil-borne disease of watermelon caused by the fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). In this study, a genetic population of 186 F3 families (24 plants in each family) exhibited continuous distribution for Fon race ...

  9. Cutinase of Fusarium solani F. sp. pisi: mechanism of induction and relatedness to other Fusarium species

    Energy Technology Data Exchange (ETDEWEB)

    Woloshuk, C.P.

    1986-01-01

    Three studies were made on the extracellular cutinase of the phytopathogenic fungus Fusarium solani f. sp. pisi. I. The production of cutinase was found to be induced in spores of F. solani f. sp. pisi, strain T-8, by cutin and cutin hydrolysate. Fractionation and analysis of the cutin hydrolysate indicated that dihydroxy-C/sub 16/ acid and trihydroxy-C/sub 18/ acid were the cutin monomers most active for inducing cutinase. Measurement of cutinase-specific RNA levels by dot-blot hybridization with a (/sup 32/P)-labeled cutinase cDNA showed that the cutinase gene transcripts could be detected within 15 min after addition of the inducers. The results indicated that the fungal spores have the capacity to recognize the unique monomer components of the plant cuticle and rapidly respond by the synthesis of cutinase. II. Analysis of the genomic DNA's of seven strains of F. solani f. sp. pisi indicated that both high and low cutinase-producing strains contain at least one copy of the cutinase structural gene and a homologous promoter region. The data suggest a different promoter sequence exists in these additional copies. III. Relatedness of five phytopathogenic Fusarium species to F. solani f. sp. pisi was determined by their cutinase antigenic properties and gene homologies of cutinase cDNA from F. solani f. sp. pisi. The results suggest that formae specialis of F. solani are phylogenetically identical and that F. solani is quite distinct from the other Fusarium species tested.

  10. Depicting the Discrepancy between Tri Genotype and Chemotype on the Basis of Strain CBS 139514 from a Field Population of F. graminearum Sensu Stricto from Argentina

    Directory of Open Access Journals (Sweden)

    Tomasz Kulik

    2016-11-01

    Full Text Available Recent studies on a field population of F. graminearum sensu stricto from Argentina revealed an atypical panel of strains identified through PCR genotyping as 15ADON genotypes, but producing high levels of 3ADON. Based on representative strain CBS 139514, we asked if the discrepancy between the trichothecene genotype and chemotype might result from an inter-chemotype recombination of the chemotype-determining genes. To answer this, we sequenced the complete core Tri gene cluster (around 30,200 bp from this strain and compared its sequence to sequence data of typical type B trichothecene genotypes/chemotypes. Sequence alignment showed that CBS 139514 has an identical sequence within the entire core Tri cluster to the 15ADON genotype. The revealed discrepancy underlines the need for using both molecular and chemical methods for reliable characterization of toxigenic strains of Fusarium.

  11. Depicting the Discrepancy between Tri Genotype and Chemotype on the Basis of Strain CBS 139514 from a Field Population of F. graminearum Sensu Stricto from Argentina

    Science.gov (United States)

    Kulik, Tomasz; Buśko, Maciej; Bilska, Katarzyna; Ostrowska-Kołodziejczak, Anna; van Diepeningen, Anne D.; Perkowski, Juliusz; Stenglein, Sebastian

    2016-01-01

    Recent studies on a field population of F. graminearum sensu stricto from Argentina revealed an atypical panel of strains identified through PCR genotyping as 15ADON genotypes, but producing high levels of 3ADON. Based on representative strain CBS 139514, we asked if the discrepancy between the trichothecene genotype and chemotype might result from an inter-chemotype recombination of the chemotype-determining genes. To answer this, we sequenced the complete core Tri gene cluster (around 30,200 bp) from this strain and compared its sequence to sequence data of typical type B trichothecene genotypes/chemotypes. Sequence alignment showed that CBS 139514 has an identical sequence within the entire core Tri cluster to the 15ADON genotype. The revealed discrepancy underlines the need for using both molecular and chemical methods for reliable characterization of toxigenic strains of Fusarium. PMID:27845742

  12. Depicting the Discrepancy between Tri Genotype and Chemotype on the Basis of Strain CBS 139514 from a Field Population of F. graminearum Sensu Stricto from Argentina.

    Science.gov (United States)

    Kulik, Tomasz; Buśko, Maciej; Bilska, Katarzyna; Ostrowska-Kołodziejczak, Anna; van Diepeningen, Anne D; Perkowski, Juliusz; Stenglein, Sebastian

    2016-11-12

    Recent studies on a field population of F. graminearum sensu stricto from Argentina revealed an atypical panel of strains identified through PCR genotyping as 15ADON genotypes, but producing high levels of 3ADON. Based on representative strain CBS 139514, we asked if the discrepancy between the trichothecene genotype and chemotype might result from an inter-chemotype recombination of the chemotype-determining genes. To answer this, we sequenced the complete core Tri gene cluster (around 30,200 bp) from this strain and compared its sequence to sequence data of typical type B trichothecene genotypes/chemotypes. Sequence alignment showed that CBS 139514 has an identical sequence within the entire core Tri cluster to the 15ADON genotype. The revealed discrepancy underlines the need for using both molecular and chemical methods for reliable characterization of toxigenic strains of Fusarium.

  13. Detection of trichothecene producing Fusarium spp. by PCR: adaptation, validation and application to fast food

    Directory of Open Access Journals (Sweden)

    Antonella Agodi

    2005-03-01

    Full Text Available

    Background. Food contamination by trichothecene mycotoxins is considered to be an emerging public health problem. The aim of this study was to validate a rapid sonification protocol, previously set up for cereal Fusarium DNA extraction from fast food samples, produced by a centre for research and development in the food industry in Catania, Sicily, and to validate it for a diagnostic PCR assay targeted at tri5, the key gene of trichothecene biosynthesis.

    Methods. DNA from reference Fusarium spp. strains and from fast food samples was prepared, setting up an extraction protocol adapted using some modifications based on a method recently described. Validation experiments were performed: serial dilution of DNA extracted from fungal cultures were added to food samples and then DNA was extracted. Specific primer pairs were used to detect F. graminearum and F. culmorum DNA in species-specific assays as well as trichothecene-producing Fusarium spp. in a groupspecific system.

    Results. All genomic DNA extracted from trichothecene-producing Fusarium spp. as well as from DNA-spiked fast food samples and from food still in it’s original condition resulted in the correct amplification. The detection limit was 1 x 10-4 μg of DNA. All fungal and food samples tested gave highly consistent results in repeatability assays, thus demonstrating the within-lab and within/between-day precision of the method.

    Conclusions. Information on the epidemiology of trichothecene producing Fusarium through the food chain and the identification of the most frequently contaminated components of fast food are essential in order to develop effective public health strategies for minimising consumer exposure to trichothecenes. Key words: Fusarium, fast food, trichothecenes, PCR

  14. The cereal pathogen Fusarium pseudograminearum produces a new class of active cytokinins during infection

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Benfield, Aurelie H.; Wollenberg, Rasmus Dam

    2017-01-01

    -senescence activities and the production of a cytokinin mimic by what was once considered a necrotrophic pathogen that promotes cell death and senescence challenges the simple view that this pathogen invades its hosts by employing a barrage of lytic enzymes and toxins. Through genome mining, a gene cluster in the F......The fungal pathogen Fusarium pseudograminearum causes important diseases of wheat and barley. During a survey of secondary metabolites produced by this fungus, a novel class of cytokinins, herein termed Fusarium cytokinins, was discovered. Cytokinins are known for their growth promoting and anti....... pseudograminearum genome for the production of Fusarium cytokinins was identified and the biosynthetic pathway established using gene knockouts. The Fusarium cytokinins could activate plant cytokinin signalling, demonstrating their genuine hormone mimicry. In planta analysis of the transcriptional response to one...

  15. Evidence for a reversible drought induced shift in the species composition of mycotoxin producing Fusarium head blight pathogens isolated from symptomatic wheat heads.

    Science.gov (United States)

    Beyer, Marco; Pogoda, Friederike; Pallez, Marine; Lazic, Joëlle; Hoffmann, Lucien; Pasquali, Matias

    2014-07-16

    Fusarium species are fungal plant pathogens producing toxic secondary metabolites such as deoxynivalenol (DON), 15-acetyl-deoxynivalenol (15AcDON) and nivalenol (NIV). In Luxembourg, the Fusarium species composition isolated from symptomatic winter wheat heads was dominated by Fusarium graminearum sensu stricto strains (genetic 15AcDON chemotype) between the years 2009 and 2012, except for 2011, when Fusarium culmorum strains (genetic NIV chemotype) dominated the pathogen complex. Previous reports indicated that F. graminearum sensu stricto (genetic 15AcDON chemotype) was also most frequently isolated from randomly sampled winter wheat kernels including symptomatic as well as asymptomatic kernels in 2007 and 2008. The annual precipitation (average of 10 weather stations scattered across the country) decreased continuously from 924.31mm in 2007 over 917.15mm in 2008, to 843.38mm in 2009, 736.24mm in 2010, and 575.09mm in 2011. In 2012, the annual precipitation increased again to 854.70mm. Hardly any precipitation was recorded around the time of wheat anthesis in the years 2010 and 2011, whereas precipitation levels >50mm within the week preceding anthesis plus the week post anthesis were observed in the other years. The shift to genetic NIV chemotype F. culmorum strains in 2011 was accompanied by a very minor elevation of average NIV contents (2.9ngg(-1)) in the grain. Our data suggest that high NIV levels in Luxembourgish winter wheat are at present rather unlikely, because the indigenous F. culmorum strains with the genetic NIV chemotype seem to be outcompeted under humid in vivo conditions by F. graminearum DON producing strains on the one hand and seem to be inhibited - even though to a lower extent than DON producing strains - under dry in vivo conditions on the other hand.

  16. Preparation on the basis of Trichoderma asperellum in the system of biological protection of wheat from Fusarium ear scab

    Institute of Scientific and Technical Information of China (English)

    Kolombet L V; Sokolov M S; Chuprina V P; Schisler D A; Samuels G J

    2004-01-01

    @@ During the last century, as the area of wheat grown under advanced grain husbandry has increased worldwide, so too has the importance of Fusarium ear scab (FES) (synonym, Fusarium head blight)caused by several species of the fungus Fusarium. Yield losses due to FES can total 20%-40% and more depending on climatic conditions. During the last twenty years epidemics of FES in cereals have become chronic all over the world, including the United States and Russia. The most destructive of these were observed in 1982, 1986, 1990-1996 in USA and in the south of Russia in 1982, 1984,1988, 1992.

  17. A reference-gene-based quantitative PCR method as a tool to determine Fusarium resistance in wheat.

    Science.gov (United States)

    Brunner, Kurt; Kovalsky Paris, Maria P; Paolino, Guadalupe; Bürstmayr, Hermann; Lemmens, Marc; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Mach, Robert L

    2009-11-01

    In recent years, plant breeders made great progress in breeding Fusarium-tolerant wheat lines. However, total resistance to this genus of plant pathogenic fungi has not yet been achieved as the resistance genes are located on several distinct genetic regions. Visual scoring of disease symptoms in combination with the analysis of mycotoxins is commonly applied to assess the tolerance of new lines. Both approaches are indirect methods and do not mandatorily determine the accumulated fungal biomass. Quantitative PCR is a useful tool to assess fungal biomass based on the abundance of organism-specific DNA. The aim of this study was the development of a quantitative PCR assay for trichothecene-producing Fusarium species and to adapt this method for resistance assessment of wheat lines artificially infected with Fusarium graminearum and Fusarium culmorum. Several DNA-extraction methods for wheat samples were evaluated and optimized for downstream real-time PCR analysis and furthermore, a new reference-gene-based approach for more accurate quantification of Fusarium biomass in cereals is presented. The co-determination of a plant gene was used to compensate for unequal DNA-extraction efficiencies.

  18. Fusarium head blight resistance QTL in the spring wheat cross Kenyon/86ISMN 2137

    Directory of Open Access Journals (Sweden)

    Curt A McCartney

    2016-10-01

    Full Text Available Fusarium head blight (FHB, caused by Fusarium graminearum, is a very important disease of wheat globally. Damage caused by F. graminearum includes reduced grain yield, reduced grain functional quality, and results in the presence of the trichothecene mycotoxin deoxynivalenol in Fusarium-damaged kernels. The development of FHB resistant wheat cultivars is an important component of integrated management. The objective of this study was to identify QTL for FHB resistance in a recombinant inbred line (RIL population of the spring wheat cross Kenyon/86ISMN 2137. Kenyon is a Canadian spring wheat, while 86ISMN 2137 is an unrelated spring wheat. The RIL population was evaluated for FHB resistance in six FHB nurseries. Nine additive effect QTL for FHB resistance were identified, six from Kenyon and three from 86ISMN 2137. Rht8 and Ppd-D1a co-located with two FHB resistance QTL on chromosome arm 2DS. A major QTL for FHB resistance from Kenyon (QFhb.crc-7D was identified on chromosome 7D. The QTL QFhb.crc-2D.4 from Kenyon mapped to the same region as a FHB resistance QTL from Wuhan-1 on chromosome arm 2DL. This result was unexpected since Kenyon does not share common ancestry with Wuhan-1. Other FHB resistance QTL on chromosomes 4A, 4D, and 5B also mapped to known locations of FHB resistance. Four digenic epistatic interactions were detected for FHB resistance, which involved eight QTL. None of these QTL were significant based upon additive effect QTL analysis. This study provides insight into the genetic basis of native FHB resistance in Canadian spring wheat.

  19. Fumonisins--mycotoxins produced by Fusarium moniliforme.

    Science.gov (United States)

    Norred, W P

    1993-03-01

    Fumonisins are toxic metabolites of the fungus Fusarium moniliforme, which is a common contaminant of corn everywhere in the world. The fumonisins are carcinogenic in laboratory rats, and cause acute toxicity of domestic animals that mimics field cases of disease attributed to contamination of feed by F. moniliforme. These include both equine leukoencephalomalacia and porcine pulmonary edema. Fusarium moniliforme contamination of corn consumed by humans in certain areas of the world is associated with higher than average incidence of esophageal cancer, and fumonisins may be responsible. Analytical methods have been developed for fumonisins, but improvements are needed so that more accurate, less expensive, and more rapid assays of food and feedstuffs can be done. Fumonisins are structurally similar to sphingosine, and may exert their biological activity through their ability to block key enzymes (sphinganine- and sphingosine-N-acyltransferases) involved in sphingolipid biosynthesis. Much more research is needed to define the extent to which this mycotoxin adversely affects the food supply, and its involvement in animal and human diseases.

  20. Screening and monitoring zearalenone-producing Fusarium species by PCR and zearalenone by monoclonal antibodies in feed from China.

    Science.gov (United States)

    Pei, Shi-Chun; Zhen, Yu-Ping; Gao, Jian-Wei; Lee, Won-Jong; Zhang, Hong-Fu; Ji, Cheng; Zhang, Xuan-Zhe; Chen, Cong

    2014-01-01

    Screening of zearalenone (ZEN)-producing species and monitoring of ZEN in feed were performed by using anti-zearalenone monoclonal antibodies. ELISA recoveries of ZEN from corn distillers dried grains with solubles (DDGS) feed, corn feed, rice bran, soybean meal, wheat bran and rapeseed dregs were between 78.6% and 88.6%. ZEN recovery from culture media was 96.3% at the spiked level of 500 µg/kg. Eighty-three samples of DDGS feed, corn feed and other fee ingredients were collected from 11 provinces of China and analysed for ZEN. Average ZEN levels were 563.4 µg/kg for DDGS feed, 393.1 µg/kg for corn feed and 65.7 µg/kg for other feed ingredients. Eighteen Fusarium species such as Fusarium graminearum which could produce ZEN were isolated from corn feed and other feed ingredients.

  1. PATHOGENICITY OF FUSARIUM SPP. ISOLATED FROM WEEDS AND PLANT DEBRIS IN EASTERN CROATIA TO WHEAT AND MAIZE

    Directory of Open Access Journals (Sweden)

    Jelena Ilić

    2012-12-01

    Full Text Available Pathogenicity of thirty isolates representing 14 Fusarium species isolated from weeds and plant debris in eastern Croatia was investigated in the laboratory. Pathogenicity tests were performed on wheat and maize seedlings. The most pathogenic Fusarium spp. was F. graminearum isolated from Amaranthus retroflexus, Abutilon theophrasti and Chenopodium album. There was a noticeable inter- and intraspecies variability in pathogenicity towards wheat and maize. Isolates of F. solani from Sonchus arvensis and F. verticillioides from C. album were highly pathogenic to wheat seedlings and apathogenic to maize seedlings. Isolates of F. venenatum were very pathogenic to wheat and maize being the first report about pathogenicity of this species. This experiment proves that weeds and plant debris can serve as alternate hosts and source of inoculum of plant pathogens.

  2. Natural incidence of Fusarium species and fumonisins B1 and B2 associated with maize kernels from nine provinces in China in 2012.

    Science.gov (United States)

    Fu, Meng; Li, Renjie; Guo, Congcong; Pang, Minhao; Liu, Yingchao; Dong, Jingao

    2015-01-01

    Fusarium species, which can produce mycotoxins, are the predominant pathogens causing maize ear rot, a disease that results in severe economic losses and serves as a potential health risk for humans and animals. A survey was conducted in 2012 to investigate the contamination of maize by Fusarium species and fumonisins B1 and B2. A total of 250 maize samples were randomly collected from nine provinces (Hebei, Shanxi, Inner Mongolia, Yunnan, Sichuan, Guizhou, Heilongjiang, Liaoning and Ningxia) in China. Fusarium species were isolated and identified using morphological (electron microscope) and molecular methods (polymerase chain reaction (PCR) and sequencing). Fumonisins B1 and B2 were analysed using high-performance liquid chromatography with fluorescence detection (HPLC-FLD) with OPA (2-Mercaptoethanol, o-phthaldialdehyde) post-column derivatisation. A total of 2321 Fusarium isolates (20.7%) were obtained from all the samples. These isolates included nine Fusarium species, namely, F. graminearum, F. verticillioides, F. subglutinans, F. proliferatum, F. temperatum, F. oxysporum, F. equiseti, F. meridionale and F. chlamydosporum. The incidence of occurrence of Fusarium species in Guizhou was the highest, while in Inner Mongolia it was the lowest. F. verticillioides was the dominant species of maize ear rot in Liaoning, Sichuan, Hebei and Ningxia. F. graminearum was the dominant species in Yunnan, Guizhou and Shanxi. F. subglutinans was the dominant species in Heilongjiang. F. verticillioides and F. graminearum percentages were the same in Inner Mongolia. The incidence of fumonisins in Liaoning was high (up to 81.0%) and in Heilongjiang low (up to 10.3%). Except Shanxi, more than 50% of maize samples from other provinces were contaminated with fumonisins, with concentrations less than 500 ng g(-1). About 33% of maize samples from Yunnan were contaminated with high levels of fumonisins, and average of fumonisin levels were 5191 ng g(-1). Fusarium species causing maize

  3. Fusarium Wilt of Banana.

    Science.gov (United States)

    Ploetz, Randy C

    2015-12-01

    Banana (Musa spp.) is one of the world's most important fruits. In 2011, 145 million metric tons, worth an estimated $44 billion, were produced in over 130 countries. Fusarium wilt (also known as Panama disease) is one of the most destructive diseases of this crop. It devastated the 'Gros Michel'-based export trades before the mid-1900s, and threatens the Cavendish cultivars that were used to replace it; in total, the latter cultivars are now responsible for approximately 45% of all production. An overview of the disease and its causal agent, Fusarium oxysporum f. sp. cubense, is presented below. Despite a substantial positive literature on biological, chemical, or cultural measures, management is largely restricted to excluding F. oxysporum f. sp. cubense from noninfested areas and using resistant cultivars where the pathogen has established. Resistance to Fusarium wilt is poor in several breeding targets, including important dessert and cooking cultivars. Better resistance to this and other diseases is needed. The history and impact of Fusarium wilt is summarized with an emphasis on tropical race 4 (TR4), a 'Cavendish'-killing variant of the pathogen that has spread dramatically in the Eastern Hemisphere.

  4. Fusarium solani bij paprika

    NARCIS (Netherlands)

    Paternotte, S.J.; Bloemhard, C.M.J.

    2003-01-01

    Fusarium solani aantasting op stengels en vruchten is al jaren een jaarlijks terugkerend probleem in de teelt van paprika. Aangetaste stengels sterven af en aangetaste vruchten gaan rotten hetgeen leidt tot productieverlies. Op groene vruchten is aantasting door deze schimmel geen probleem. Op dit

  5. Diagnosis of Fusarium Infections

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Brankovics, Balázs; Iltes, Jearidienne; Lee, van der T.A.J.; Waalwijk, Cees

    2015-01-01

    Infections caused by the genus Fusarium have emerged over the past decades and range from onychomycosis and keratitis in healthy individuals to deep and disseminated infections with high mortality rates in immune-compromised patients. As antifungal susceptibility can differ between the different

  6. Population and Pathogenicity of Fusarium spp.Causing Wheat Head Blight in Northeast of China%东北地区小麦赤霉病镰孢菌种群及其致病性测定

    Institute of Scientific and Technical Information of China (English)

    潘晓静; 陈楠; 姚远; 刘限; 高增贵

    2015-01-01

    为了明确东北地区小麦赤霉病镰孢菌的种群组成及分布,分别从辽宁省沈阳市、黑龙江省哈尔滨市和密山市、内蒙古自治区扎兰屯市、呼伦贝尔市和通辽市等地区采集小麦赤霉病病样,经单孢分离纯化共得到118株镰孢菌,传统形态学鉴定的基础上,采用基因组DNA的 EF-1α序列分析技术进行了镰孢菌种类的辅助鉴定,确定属于7个种:禾谷镰孢菌为优势种,分离频率为64.41%,藤仓镰孢菌为次优势种,分离频率为18.64%;燕麦镰孢菌、尖孢镰孢菌、木贼镰孢菌、锐顶镰孢菌和轮枝镰孢菌的分离频率分别为5.08%,3.39%,3.39%,3.39%,1.70%。同时,在玉米成株期进行了致病性测定,结果表明,小麦赤霉病镰孢菌可以侵染玉米,较玉米茎腐镰孢菌的致病力低。%To determine population structure and distribution of Fusarium species causing head blight of wheat , 60 wheat samples showing symptoms of Fusarium head blight from 15 areas 8 cities and counties were collectted in Northeast of China .A total of 118 Fusarium isolates were identified based on morphological characters and modern molecular systematics method .The results showed that 118 Fusarium isolates belong to 7 species , Fusarium gra-minearum was the most prevalent species ,representing 64.41%of the total isolates,followed by Fusarium fujikuroi, representing 18.64%,Fusarium avenaceum,Fusarium oxysporum,Fusarium equiseti,Fusarium acuminatum and Fu-sarium verticillioides representing 5.08%,3.39%,3.39%,3.39%and 1.70%.At the same time,their pathogenic-ity were determined in stem of adult-stage maize ,the results showed that Fusarium graminearum isolated from wheat can infect maize ,but the pathogenicity of Fusarium graminearum causing maize stalk rot were significantly greater than the Fusarium graminearum causing wheat head scab .

  7. Biotransformation of the monoterpene, limonene, by Fusarium verticilloides

    Directory of Open Access Journals (Sweden)

    Brás Heleno de Oliveira

    2000-01-01

    Full Text Available Limonene, the main constituent of the orange peel oil, was used as substrate for the biotransformation by the fungus Fusarium verticilloides. A hydroxylated derivative of limonene was isolated from the culture broth and characterized by spectroscopic methods. It was identified as perillyl alcohol, an important anti-cancer compound.Limoneno, o principal componente do óleo da casca da laranja, foi usado como substrato para a biotransformação pelo fungo Fusarium verticilloides. Um derivado hidroxilado do limoneno foi isolado do caldo de cultura e caracterizado através de métodos espectroscópicos. Ele foi identificado como álcool perílico.

  8. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains

    Directory of Open Access Journals (Sweden)

    De Souza Gabriel IH

    2005-07-01

    Full Text Available Abstract Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver nanoparticles were in the range of 20–50 nm in dimensions. The reduction of the metal ions occurs by a nitrate-dependent reductase and a shuttle quinone extracellular process. The potentialities of this nanotechnological design based in fugal biosynthesis of nanoparticles for several technical applications are important, including their high potential as antibacterial material.

  9. Fusarium species: The occurrence and the importance in agriculture of Serbia

    Directory of Open Access Journals (Sweden)

    Lević Jelena T.

    2009-01-01

    Full Text Available Fusarium species have been isolated from over 100 plant species in Serbia. From the economic aspect, they have been and still are the most important for the production and storage of small grains and maize, and are exceptionally important for some other species. Total of 63 species, 35 varieties (var. and 19 specialised forms (f. sp. of basic species, particularly of F. oxysporum (4 var. and 12 f. sp. and F. solani (7 var. and 3 f. sp. were identified. Species F. langsethiae and F. thapsinum, recently identified, have been isolated from wheat and s o r g h u m seeds, respectively. F. graminearum is the most important pathogen for wheat, barely and maize, while F. poae is also important for wheat and barely. Furthermore, species of the section Liseola (F. verticillioides, F. subglutinans and F. proliferatum are important for maize and sorghum. In recent years, species of the section Liseola have been increasingly occurring in wheat and barley. The June-October period in Serbia is the most critical period for quality maintenance of stored maize, as the abundance and frequency of fungi, particularly of toxigenic species of the genus Fusarium, are the greatest during that period. In general, there is a lack of data about fusarioses of industrial crops in Serbia. There are mere descriptions of specific cases in which the development of Fusarium species was mostly emphasised by agroecological conditions. The presence of recently determined Fusarium species in kernels of these plant species indicates their importance from the aspect of the yield reduction and grain quality debasement and the mycotoxin contamination. Root rot and plant wilt are characteristic symptoms of fusarioses for forage and vegetable crops, while pathological changes in fruits provoked by Fusarium species are less frequent. F. oxysporum and its specialised forms prevail in these plant species.

  10. Constitutive expression of the xylanase inhibitor TAXI-III delays Fusarium head blight symptoms in durum wheat transgenic plants.

    Science.gov (United States)

    Moscetti, Ilaria; Tundo, Silvio; Janni, Michela; Sella, Luca; Gazzetti, Katia; Tauzin, Alexandra; Giardina, Thierry; Masci, Stefania; Favaron, Francesco; D'Ovidio, Renato

    2013-12-01

    Cereals contain xylanase inhibitor (XI) proteins which inhibit microbial xylanases and are considered part of the defense mechanisms to counteract microbial pathogens. Nevertheless, in planta evidence for this role has not been reported yet. Therefore, we produced a number of transgenic plants constitutively overexpressing TAXI-III, a member of the TAXI type XI that is induced by pathogen infection. Results showed that TAXI-III endows the transgenic wheat with new inhibition capacities. We also showed that TAXI-III is correctly secreted into the apoplast and possesses the expected inhibition parameters against microbial xylanases. The new inhibition properties of the transgenic plants correlate with a significant delay of Fusarium head blight disease symptoms caused by Fusarium graminearum but do not significantly influence leaf spot symptoms caused by Bipolaris sorokiniana. We showed that this contrasting result can be due to the different capacity of TAXI-III to inhibit the xylanase activity of these two fungal pathogens. These results provide, for the first time, clear evidence in planta that XI are involved in plant defense against fungal pathogens and show the potential to manipulate TAXI-III accumulation to improve wheat resistance against F. graminearum.

  11. Occurrence of mycotoxins in wheat grains exposed to fungicides on fusarium head blight control in southern Brazil.

    Science.gov (United States)

    Marques, Leandro N; Pizzutti, Ionara R; Balardin, Ricardo S; Dos Santos, Ingrid D; Dias, Jonatan V; Stefanello, Marlon T; Serafini, Pablo T

    2017-01-12

    Mycotoxins occurrence in wheat grains impose risks to human and animal health. The southern Brazil has favorable weather conditions for Fusarium graminearum infections and consequently for mycotoxins accumulation on grains. The goal of this study was to evaluate the behavior of new wheat commercial genotypes to Fusarium Head Blight (FHB), to control performance of new fungicide formulations and their relationship with mycotoxins concentration in grains. The manly mycotoxin occurrence on wheat grains in southern Brazil was deoxynivalenol (DON). Two cultivars showed high DON concentration above the tolerance limits (>3000 μg kg(-1)). Many other mycotoxins monitored presented concentrations below method detection limit. Satisfactory levels of fungicide effectiveness were achieved against F. graminearum. Some fungicides promoted a satisfactory decrease on DON accumulation in grains. The best results were obtained when prothioconazole was present. SDHI (Succinate dehydrogenase inhibitors) + QoI (Quinone outside inhibitors) fungicides showed benefic effects at FHB control at field, but it did not promote satisfactory reduction on DON contamination. Fungicides can be used satisfactory for FHB control and reduce DON contamination in grains in southern Brazil. The presence of prothioconazole should be recommended. Some genotypes showed high DON concentration and it was not directly related with FHB severity at field.

  12. Antifungal Activity of a Synthetic Cationic Peptide against the Plant Pathogens Colletotrichum graminicola and Three Fusarium Species

    Directory of Open Access Journals (Sweden)

    Eric T. Johnson

    2015-09-01

    Full Text Available A small cationic peptide (JH8944 was tested for activity against a number of pathogens of agricultural crops. JH8944 inhibited conidium growth in most of the tested plant pathogens with a dose of 50 μg/ml, although one isolate of Fusarium oxysporum was inhibited at 5 μg/ml of JH8944. Most conidia of Fusarium graminearum were killed within 6 hours of treatment with 50 μg/ml of JH8944. Germinating F. graminearum conidia required 238 μg/ml of JH8944 for 90% growth inhibition. The peptide did not cause any damage to tissues surrounding maize leaf punctures when tested at a higher concentration of 250 μg/ml even after 3 days. Liposomes consisting of phosphatidylglycerol were susceptible to leakage after treatment with 25 and 50 μg/ml of JH8944. These experiments suggest this peptide destroys fungal membrane integrity and could be utilized for control of crop fungal pathogens.

  13. Regional and field-specific factors affect the composition of fusarium head blight pathogens in subtropical no-till wheat agroecosystem of Brazil.

    Science.gov (United States)

    Del Ponte, Emerson M; Spolti, Piérri; Ward, Todd J; Gomes, Larissa B; Nicolli, Camila P; Kuhnem, Paulo R; Silva, Cleiltan N; Tessmann, Dauri J

    2015-02-01