WorldWideScience

Sample records for fungi potential relevance

  1. Integrated approaches for assessment of cellular performance in industrially relevant filamantous fungi

    DEFF Research Database (Denmark)

    Workman, Mhairi; Andersen, Mikael Rørdam; Thykær, Jette

    2013-01-01

    The performance of filamentous fungi in submerged cultivation determines their suitability for large-scale industrial biotechnology processes and is the result of complex interplay between the physical and chemical parameters of the process and the cellular biology of the fungi. Filamentous fungi...... of these organisms. Increased future focus on multicellular physiology and relevant assays will lead to fungal cells and processes that are customizable to a greater degree, finally allowing the full potential of these complex organisms and their product diversity to unfold....

  2. Calcium homeostasis and signaling in fungi and their relevance for pathogenicity of yeasts and filamentous fungi

    Directory of Open Access Journals (Sweden)

    Renata Tisi

    2016-09-01

    Full Text Available Though fungi show peculiarities in the purposes and specific traits of calcium signaling pathways, the general scheme and the most important players are well conserved if compared to higher eukaryotes. This provides a powerful opportunity either to investigate shared features using yeast as a model or to exploit fungal specificities as potential targets for antifungal therapies. The sequenced genomes from yeast Saccharomyces cerevisiae, Schizosaccharomyces pombe and the filamentous fungus Neurospora crassa were already published more than ten years ago. More recently the genome sequences of filamentous fungi of Aspergillus genus, some of which threatening pathogens, and dimorphic fungi Ustilago maydis were published, giving the chance to identify several proteins involved in calcium signaling based on their homology to yeast or mammalian counterparts. Nonetheless, unidentified calcium transporters are still present in these organisms which await to be molecularly characterized. Despite the relative simplicity in yeast calcium machinery and the availability of sophisticated molecular tools, in the last years, a number of new actors have been identified, albeit not yet fully characterized. This review will try to describe the state of the art in calcium channels and calcium signaling knowledge in yeast, with particular attention to the relevance of this knowledge with respect to pathological fungi.

  3. Methods to preserve potentially toxigenic fungi

    Directory of Open Access Journals (Sweden)

    Lucas Costa Guimarães

    2014-01-01

    Full Text Available Microorganisms are a source of many high-value compounds which are useful to every living being, such as humans, plants and animals. Since the process of isolating and improving a microorganism can be lengthy and expensive, preserving the obtained characteristic is of paramount importance, so the process does not need to be repeated. Fungi are eukaryotic, achlorophyllous, heterotrophic organisms, usually filamentous, absorb their food, can be either macro or microscopic, propagate themselves by means of spores and store glycogen as a source of storage. Fungi, while infesting food, may produce toxic substances such as mycotoxins. The great genetic diversity of the Kingdom Fungi renders the preservation of fungal cultures for many years relevant. Several international reference mycological culture collections are maintained in many countries. The methodologies that are most fit for preserving microorganisms for extended periods are based on lowering the metabolism until it reaches a stage of artificial dormancy . The goal of this study was to analyze three methods for potentially toxigenic fungal conservation (Castellani's, continuous subculture and lyophilization and to identify the best among them.

  4. Potential Antiviral Agents from Marine Fungi: An Overview

    Directory of Open Access Journals (Sweden)

    Soheil Zorofchian Moghadamtousi

    2015-07-01

    Full Text Available Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity.

  5. Potential biosurfactant producing endophytic and epiphytic fungi ...

    African Journals Online (AJOL)

    Potential biosurfactant producing endophytic and epiphytic fungi, isolated from macrophytes in the Negro River in Manaus, Amazonas, Brazil. ... Solms and Cyperus ligularis L., macrophytes collected from oil-contaminated waters, were studied to assess their potential for producing biosurfactants; the most promising ones ...

  6. Sea salts as a potential source of food spoilage fungi.

    Science.gov (United States)

    Biango-Daniels, Megan N; Hodge, Kathie T

    2018-02-01

    Production of sea salt begins with evaporation of sea water in shallow pools called salterns, and ends with the harvest and packing of salts. This process provides many opportunities for fungal contamination. This study aimed to determine whether finished salts contain viable fungi that have the potential to cause spoilage when sea salt is used as a food ingredient by isolating fungi on a medium that simulated salted food with a lowered water activity (0.95 a w ). The viable filamentous fungi from seven commercial salts were quantified and identified by DNA sequencing, and the fungal communities in different salts were compared. Every sea salt tested contained viable fungi, in concentrations ranging from 0.07 to 1.71 colony-forming units per gram of salt. In total, 85 fungi were isolated representing seven genera. One or more species of the most abundant genera, Aspergillus, Cladosporium, and Penicillium was found in every salt. Many species found in this study have been previously isolated from low water activity environments, including salterns and foods. We conclude that sea salts contain many fungi that have potential to cause food spoilage as well as some that may be mycotoxigenic. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Nests of Marsh harrier (Circus aeruginosus L. as refuges of potentially phytopathogenic and zoopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Teresa Kornillowicz-Kowalska

    2018-01-01

    Full Text Available Birds’ nests may be refuges for various species of fungi including that which are potentially phytopathogenic and zoopathogenic. Among the 2449 isolates of fungi obtained from nests of Marsh harriers 96.8% belonged to filamentous fungi. In total, 37 genera were identified from 63 fungi species. Within the mycobiotas of the examined nests populations of fungi which are potentially pathogenic for humans, homoiothermous animals and plants dominated. Among 63 species, 46 (72% were potentially pathogenic fungi of which 18 species were potentially phytopathogenic and 32 species were pathogenic for homoiothermous animals. Inter alia species of fungi were found in the Marsh harriers nests: Aspergillus fumigatus, Aspergillus flavus, Scopulariopsis brevicaulis, Chrysosporium keratinophilum and Fusarium poae, Fusarium sporotrichioides. In terms of numbers, dominant in Marsh harrier nests were fungi pathogenic to birds, other homoiothermous animals and humans. On that basis it was concluded that Marsh harrier nests are both a source of fungal infections for that species and one of the links in the epidemiological cycle of opportunistic fungi for humans.

  8. Nests of Marsh harrier (Circus aeruginosus L.) as refuges of potentially phytopathogenic and zoopathogenic fungi.

    Science.gov (United States)

    Kornillowicz-Kowalska, Teresa; Kitowski, Ignacy

    2018-01-01

    Birds' nests may be refuges for various species of fungi including that which are potentially phytopathogenic and zoopathogenic. Among the 2449 isolates of fungi obtained from nests of Marsh harriers 96.8% belonged to filamentous fungi. In total, 37 genera were identified from 63 fungi species. Within the mycobiotas of the examined nests populations of fungi which are potentially pathogenic for humans, homoiothermous animals and plants dominated. Among 63 species, 46 (72%) were potentially pathogenic fungi of which 18 species were potentially phytopathogenic and 32 species were pathogenic for homoiothermous animals. Inter alia species of fungi were found in the Marsh harriers nests: Aspergillus fumigatus , Aspergillus flavus , Scopulariopsis brevicaulis , Chrysosporium keratinophilum and Fusarium poae , Fusarium sporotrichioides . In terms of numbers, dominant in Marsh harrier nests were fungi pathogenic to birds, other homoiothermous animals and humans. On that basis it was concluded that Marsh harrier nests are both a source of fungal infections for that species and one of the links in the epidemiological cycle of opportunistic fungi for humans.

  9. Screening of fungi for soil remediation potential

    Science.gov (United States)

    Richard T. Lamar; Laura M. Main; Diane M. Dietrich; John A. Glaser

    1999-01-01

    The purpose of the present investigation was to determine if physiological and/or biochemical factors such as growth rate, tolerance to and ability to degrade PCP or creosote have use for predicting the potential bioremediation performance of fungi. Because we have focused the initial development of a fungal-based soil remediation technology on PCP- and/or creosote-...

  10. Sandpits as a reservoir of potentially pathogenic fungi for children

    Directory of Open Access Journals (Sweden)

    Anna Wójcik

    2016-09-01

    Potentially pathogenic fungi are present in the sand taken from sandpits in Łódź. This fact poses a significant threat to child health and therefore proper maintenance and periodic checking of sandpits are of great importance.

  11. Marine Fungi: A Source of Potential Anticancer Compounds

    Directory of Open Access Journals (Sweden)

    Sunil K. Deshmukh

    2018-01-01

    Full Text Available Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012–2016 against specific cancer cell lines.

  12. Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential.

    Science.gov (United States)

    Bezerra, Jadson D P; Nascimento, Carlos C F; Barbosa, Renan do N; da Silva, Dianny C V; Svedese, Virgínia M; Silva-Nogueira, Eliane B; Gomes, Bruno S; Paiva, Laura M; Souza-Motta, Cristina M

    2015-03-01

    Bauhinia forficata is native to South America and used with relative success in the folk medicine in Brazil. The diversity, antibacterial activity, and extracellular hydrolytic enzymes of endophytic fungi associated with this plant were studied. Plant samples, which included leaves, sepals, stems, and seeds, were used. Ninety-five endophytic fungal were isolated (18 from leaves, 22 from sepals, 46 from stems, and nine from seeds), comprising 28 species. The most frequently isolated species were Acremonium curvulum (9.5%), Aspergillus ochraceus (7.37%), Gibberella fujikuroi (10.53%), Myrothecium verrucaria (10.53%) and Trichoderma piluliferum (7.37%). Diversity and species richness were higher in stem tissues, and Sorensen's index of similarity between the tissues was low. Eleven fungi showed antibacterial activity. Aspergillus ochraceus , Gibberella baccata , Penicillium commune , and P. glabrum were those with the greatest antibacterial activity against Staphylococcus aureus and/or Streptococcus pyogenes . Thirteen species showed proteolytic activity, particularly Phoma putaminum . Fourteen species were cellulase positive, particularly the Penicillium species and Myrmecridium schulzeri . All isolates tested were xylanase positive and 10 showed lipolytic activity, especially Penicillium glabrum . It is clear that the endophytic fungi from B. forficata have potential for the production of bioactive compounds and may be a source of new therapeutic agents for the effective treatment of diseases in humans, other animals, and plants. To our knowledge, this is the first study of endophytic fungi from different tissues of B. forficata and their biotechnological potential.

  13. Phylogenetic analysis and antifouling potentials of culturable fungi in mangrove sediments from Techeng Isle, China.

    Science.gov (United States)

    Zhang, Xiao-Yong; Fu, Wen; Chen, Xiao; Yan, Mu-Ting; Huang, Xian-De; Bao, Jie

    2018-06-09

    To search for more microbial resources for screening environment-friendly antifoulants, we investigated the phylogenetic diversity and antifouling potentials of culturable fungi in mangrove sediments from Techeng Isle, China. A total of 176 isolates belonging to 57 fungal taxa were recovered and identified. The high levels of diversity and abundance of mangrove fungi from Techeng Isle were in accordance with previous studies on fungi from other mangrove ecosystems. Fifteen of the 176 isolates demonstrated high divergence (87-93%) from the known fungal taxa in GenBank. Moreover, 26 isolates recorded in mangrove ecosystems for the first time. These results suggested that mangrove sediments from Techeng Isle harbored some new fungal communities compared with other mangrove ecosystems. The antifouling activity of 57 representative isolates (belonging to 57 different fungal taxa) was tested against three marine bacteria (Loktanella hongkongensis, Micrococcus luteus and Pseudoalteromonas piscida) and two marine macrofoulers (bryozoan Bugula neritina and barnacle Balanus amphitrite). Approximately 40% of the tested isolates displayed distinct antifouling activity. Furthermore, 17 fungal isolates were found to display strong or a wide spectrum of antifouling activity in this study, suggesting that these isolates deserve further study as potential sources of novel antifouling metabolites. To our knowledge, this is the first report on the investigation of the phylogenetic diversity and antifouling potential of culturable fungi in mangrove sediments from Techeng Isle, China. These results contribute to our knowledge of mangrove fungi and further increases the pool of fungi available for natural bioactive product screening.

  14. Lignicolous fungi as potential natural sources of antioxidants

    Directory of Open Access Journals (Sweden)

    Karaman Maja A.

    2005-01-01

    Full Text Available As a result of an interest in natural derived metabolites around the world higher fungi (Basidiomycotina have taken on great importance in biochemical investigations. A large number of structurally divergent compounds - both cellular components and secondary metabolites - have been extracted and found to possess significant biological activity, such as an immunomodulative effect on the human body. Effects of fungal biomolecules as potential natural antioxidants have not been examined so far. Biochemical analysis have included in vitro testing of the influence of different extracts (water methanol, chloroform of selected fungal sporocarps on Fe2+/ascorbate-induced lipid peroxidation (LP in a lecithin liposome system by TBA assay, as well as various other procedures. Qualitative analysis by TLC revealed a distinction both between different extracts of the same fungal species and between similar extracts of different species. The results obtained on antioxidative activities (LP inhibition and "scavenging" activity indicate that MeOH extracts manifested a degree of activity higher than that of CHCl3 extracts with respect to antioxidative activity, the extracts can be ranged in the following declining order: Ganoderma lucidum, Ganoderma applanatum Meripilus giganteus, and Flammulina velutipes. The obtained results suggest that the analyzed fungi are of potential interest as sources of strong natural antioxidants in the food and cosmetics industries, whereas synthetic ones have proved to be carcinogenic.

  15. Potential wood protection strategies using physiological requirements of wood degrading fungi

    NARCIS (Netherlands)

    Sailer, M.F.; Etten, B.D. van

    2004-01-01

    Due to the increasing restrictions in the use of wood preserving biocides a number of potential biocide free wood preserving alternatives are currently assessed. Wood degrading fungi require certain conditions in the wood in order to be able to use wood as a food source. This paper discusses the

  16. Exploring the antibacterial and anticancer potential of five marine fungi. With the use of OSMAC-approach

    OpenAIRE

    Bragmo, Hanne

    2017-01-01

    The marine environment is an untapped source for biodiversity and has a great potential to provide the drugs of the future. Antibiotic resistance is an increasing threat worldwide and the need for discovering new antibacterial compounds is urgent. Marine microorganisms produce a wide range of bioactive compounds, and marine fungi have only been exploited to a small extent. This creates a great potential for finding novel antibacterial compounds in marine fungi. In this study, the antibac...

  17. Genomic Encyclopedia of Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  18. Mycorrhizal fungi of aspen forests: Natural occurrence and potential applications

    Science.gov (United States)

    Cathy L. Cripps

    2001-01-01

    Native mycorrhizal fungi associated with aspen were surveyed on three soil types in the north-central Rocky Mountains. Selected isolates were tested for the ability to enhance aspen seedling growth in vitro. Over 50 species of ectomycorrhizal fungi occur with Populus tremuloides in this region, primarily basidiomycete fungi in the Agaricales. Almost one-third (30%)...

  19. Metal tolerance potential of filamentous fungi isolated from soils irrigated with untreated municipal effluent

    Directory of Open Access Journals (Sweden)

    Shazia Akhtar, Muhammad Mahmood-ul-Hassan, Rizwan Ahmad, Vishandas Suthor and Muhammad Yasin

    2013-05-01

    Full Text Available Considering the importance of filamentous fungi for bioremediation of wastewater and contaminated soils, this study was planned to investigate the metal tolerance potential of indigenous filamentous fungi. Nineteen fungal strains were isolated from soils irrigated with untreated municipal/industrial effluent using dilution technique and 10 prominent isolates were used for metal tolerance. The isolated fungal isolates were screened for metal tolerance index (MTI at I mM cadmium (Cd, nickel (Ni and copper (Cu concentrations and for minimum inhibitory concentration (MIC and metal tolerance by growing on potato dextrose agar plates amended with varying amounts of Cd, Cu and Ni. Seven out of 10 isolated fungi belonged to the genera Aspergillus and three belonged to Curvularia, Acrimonium and Pithyum. The results revealed that the order of tolerance of isolates for metals was Cd > Cu > Ni and Aspergillus sp. were more tolerant than other fungi. Tolerance ranged from 900 – 9218 mg L-1 for Cd, followed by 381 - 1780 mg L-1 for Cu and 293-1580 mg L-1for Ni. The isolated fungi exhibiting great tolerance to metals (Cd, Cu and Ni can be used successfully for bioremediation of metals from contaminated soil and wastewaters.

  20. Thermophilic Fungi to Dominate Aflatoxigenic/Mycotoxigenic Fungi on Food under Global Warming.

    Science.gov (United States)

    Paterson, Robert Russell M; Lima, Nelson

    2017-02-17

    Certain filamentous fungi produce mycotoxins that contaminate food. Mycotoxin contamination of crops is highly influenced by environmental conditions and is already affected by global warming, where there is a succession of mycotoxigenic fungi towards those that have higher optimal growth temperatures. Aflatoxigenic fungi are at the highest limit of temperature although predicted increases in temperature are beyond that constraint. The present paper discusses what will succeed these fungi and represents the first such consideration. Aflatoxins are the most important mycotoxins and are common in tropical produce, much of which is exported to temperate regions. Hot countries may produce safer food under climate change because aflatoxigenic fungi will be inhibited. The same situation will occur in previously temperate regions where these fungi have recently appeared, although decades later. Existing thermotolerant and thermophilic fungi (TTF) will dominate, in contrast to the conventional mycotoxigenic fungi adapting or mutating, as it will be quicker. TTF produce a range of secondary metabolites, or potential mycotoxins and patulin which may become a new threat. In addition, Aspergillus fumigatus will appear more frequently, a serious human pathogen, because it is (a) thermotolerant and (b) present on crops: hence this is an even greater problem. An incubation temperature of 41 °C needs employing forthwith to detect TTF. Finally, TTF in crops requires study because of the potential for diseases in humans and animals under climate change.

  1. Biodegradation of naphthalenesulphonate polymers: the potential of a combined application of fungi and bacteria.

    Science.gov (United States)

    Gullotto, Antonella; Lubello, Claudio; Mannucci, Alberto; Gori, Riccardo; Munz, Giulio; Briganti, Fabrizio

    2015-01-01

    The potential of several fungi and their synergy with bacterial biomasses were evaluated as a solution for the removal of 2-naphthalensulphonic acid polymers (2-NSAPs) from petrochemical wastewater, characterized by a chemical oxygen demand (COD) greater than 9000 mg/L. The ability of fungi to grow on 2-NSAP mixtures was preliminarily investigated using a solid medium, and then the action of the selected strains, both in suspended and immobilized form, was evaluated in terms of degradation, depolymerization, sorption and an increase in biodegradability of 2-NSAP. Among the 25 fungi evaluated two, in particular, Bjerkandera adusta and Pleurotus ostreatus, have been found to significantly depolymerize 2-NSAP yielding to the corresponding monomer (2-naphthalenesulphonic acid, 2-NSA), which has been further degraded by a bacterial consortia selected in a wastewater treatment plant (WWTP). The fungal treatment alone was able to reduce the COD value up to 44%, while activated sludge removed only 9% of the initial COD. In addition, the combined treatment (fungi and bacteria) allowed an increase in the COD removal up to 62%.

  2. Thermophilic Fungi to Dominate Aflatoxigenic/Mycotoxigenic Fungi on Food under Global Warming

    Directory of Open Access Journals (Sweden)

    Robert Russell M. Paterson

    2017-02-01

    Full Text Available Certain filamentous fungi produce mycotoxins that contaminate food. Mycotoxin contamination of crops is highly influenced by environmental conditions and is already affected by global warming, where there is a succession of mycotoxigenic fungi towards those that have higher optimal growth temperatures. Aflatoxigenic fungi are at the highest limit of temperature although predicted increases in temperature are beyond that constraint. The present paper discusses what will succeed these fungi and represents the first such consideration. Aflatoxins are the most important mycotoxins and are common in tropical produce, much of which is exported to temperate regions. Hot countries may produce safer food under climate change because aflatoxigenic fungi will be inhibited. The same situation will occur in previously temperate regions where these fungi have recently appeared, although decades later. Existing thermotolerant and thermophilic fungi (TTF will dominate, in contrast to the conventional mycotoxigenic fungi adapting or mutating, as it will be quicker. TTF produce a range of secondary metabolites, or potential mycotoxins and patulin which may become a new threat. In addition, Aspergillus fumigatus will appear more frequently, a serious human pathogen, because it is (a thermotolerant and (b present on crops: hence this is an even greater problem. An incubation temperature of 41 °C needs employing forthwith to detect TTF. Finally, TTF in crops requires study because of the potential for diseases in humans and animals under climate change.

  3. Antifouling potentials of eight deep-sea-derived fungi from the South China Sea.

    Science.gov (United States)

    Zhang, Xiao-Yong; Xu, Xin-Ya; Peng, Jiang; Ma, Chun-Feng; Nong, Xu-Hua; Bao, Jie; Zhang, Guang-Zhao; Qi, Shu-Hua

    2014-04-01

    Marine-derived microbial secondary metabolites are promising potential sources of nontoxic antifouling agents. The search for environmentally friendly and low-toxic antifouling components guided us to investigate the antifouling potentials of eight novel fungal isolates from deep-sea sediments of the South China Sea. Sixteen crude ethyl acetate extracts of the eight fungal isolates showed distinct antibacterial activity against three marine bacteria (Loktanella hongkongensis UST950701-009, Micrococcus luteus UST950701-006 and Pseudoalteromonas piscida UST010620-005), or significant antilarval activity against larval settlement of bryozoan Bugula neritina. Furthermore, the extract of Aspergillus westerdijkiae DFFSCS013 displayed strong antifouling activity in a field trial lasting 4 months. By further bioassay-guided isolation, five antifouling alkaloids including brevianamide F, circumdatin F and L, notoamide C, and 5-chlorosclerotiamide were isolated from the extract of A. westerdijkiae DFFSCS013. This is the first report about the antifouling potentials of metabolites of the deep-sea-derived fungi from the South China Sea, and the first stage towards the development of non- or low-toxic antifouling agents from deep-sea-derived fungi.

  4. Potential for entomopathogenic fungi to control Triatoma dimidiata (Hemiptera: Reduviidae, a vector of Chagas disease in Mexico

    Directory of Open Access Journals (Sweden)

    María Guadalupe Vázquez-Martínez

    2014-12-01

    Full Text Available Introduction The use of entomopathogenic fungi to control disease vectors has become relevant because traditional chemical control methods have caused damage to the environment and led to the development of resistance among vectors. Thus, this study assessed the pathogenicity of entomopathogenic fungi in Triatoma dimidiata. Methods Preparations of 108 conidia/ml of Gliocladium virens, Talaromyces flavus, Beauveria bassiana and Metarhizium anisopliae were applied topically on T. dimidiata nymphs and adults. Controls were treated with the 0.0001% Tween-80 vehicle. Mortality was evaluated and recorded daily for 30 days. The concentration required to kill 50% of T. dimidiata (LC50 was then calculated for the most pathogenic isolate. Results Pathogenicity in adults was similar among B. bassiana, G. virens and T. flavus (p>0.05 and differed from that in triatomine nymphs (p=0.009. The most entomopathogenic strains in adult triatomines were B. bassiana and G. virens, which both caused 100% mortality. In nymphs, the most entomopathogenic strain was B. bassiana, followed by G. virens. The native strain with the highest pathogenicity was G. virens, for which the LC50 for T. dimidiata nymphs was 1.98 x108 conidia/ml at 13 days after inoculation. Conclusions Beauveria bassiana and G. virens showed entomopathogenic potential in T. dimidiata nymphs and adults. However, the native G. virens strain presents a higher probability of success in the field, and G. virens should thus be considered a potential candidate for the biological control of triatomine Chagas disease vectors.

  5. Filamentous Fungi.

    Science.gov (United States)

    Powers-Fletcher, Margaret V; Kendall, Brian A; Griffin, Allen T; Hanson, Kimberly E

    2016-06-01

    Filamentous mycoses are often associated with significant morbidity and mortality. Prompt diagnosis and aggressive treatment are essential for good clinical outcomes in immunocompromised patients. The host immune response plays an essential role in determining the course of exposure to potential fungal pathogens. Depending on the effectiveness of immune response and the burden of organism exposure, fungi can either be cleared or infection can occur and progress to a potentially fatal invasive disease. Nonspecific cellular immunity (i.e., neutrophils, natural killer [NK] cells, and macrophages) combined with T-cell responses are the main immunologic mechanisms of protection. The most common potential mold pathogens include certain hyaline hyphomycetes, endemic fungi, the Mucorales, and some dematiaceous fungi. Laboratory diagnostics aimed at detecting and differentiating these organisms are crucial to helping clinicians make informed decisions about treatment. The purpose of this chapter is to provide an overview of the medically important fungal pathogens, as well as to discuss the patient characteristics, antifungal-therapy considerations, and laboratory tests used in current clinical practice for the immunocompromised host.

  6. Dung-inhabiting fungi: a potential reservoir of novel secondary metabolites for the control of plant pathogens.

    Science.gov (United States)

    Sarrocco, Sabrina

    2016-04-01

    Coprophilous fungi are a large group of saprotrophic fungi mostly found in herbivore dung. The number of these fungi undergoing investigation is continually increasing, and new species and genera continue to be described. Dung-inhabiting fungi play an important ecological role in decomposing and recycling nutrients from animal dung. They produce a large array of bioactive secondary metabolites and have a potent enzymatic arsenal able to utilise even complex molecules. Bioactive secondary metabolites are actively involved in interaction with and defence against other organisms whose growth can be inhibited, resulting in an enhanced ecological fitness of producer strains. Currently, these antibiotics and bioactive secondary metabolites are of interest in medicine in particular, while very little information is available concerning their potential use in agriculture. This review introduces the ecology of dung-inhabiting fungi, with particular emphasis on the production of antibiotic compounds as a means to compete with other microorganisms. Owing to the fast pace of technological progress, new approaches to predicting the biosynthesis of bioactive metabolites are proposed. Coprophilous fungi should be considered as elite candidate organisms for the discovery of novel antifungal compounds, above all in view of their exploitation for crop protection. © 2015 Society of Chemical Industry.

  7. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel

    Directory of Open Access Journals (Sweden)

    Khot Mahesh

    2012-05-01

    Full Text Available Abstract Background Single cell oils (SCOs accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Though fungi from mangrove ecosystem have been reported for production of several lignocellulolytic enzymes, they remain unexplored for their SCO producing ability. Thus, these oleaginous fungi from the mangrove ecosystem could be suitable candidates for production of SCOs from lignocellulosic biomass. The accumulation of lipids being species specific, strain selection is critical and therefore, it is of importance to evaluate the fungal diversity of mangrove wetlands. The whole cells of these fungi were investigated with respect to oleaginicity, cell mass, lipid content, fatty acid methyl ester profiles and physicochemical properties of transesterified SCOs in order to explore their potential for biodiesel production. Results In the present study, 14 yeasts and filamentous fungi were isolated from the detritus based mangrove wetlands along the Indian west coast. Nile red staining revealed that lipid bodies were present in 5 of the 14 fungal isolates. Lipid extraction showed that these fungi were able to accumulate > 20% (w/w of their dry cell mass (4.14 - 6.44 g L-1 as lipids with neutral lipid as the major fraction. The profile of transesterified SCOs revealed a high content of saturated and monounsaturated fatty acids i.e., palmitic (C16:0, stearic (C18:0 and oleic (C18:1 acids similar to conventional vegetable oils used for biodiesel production. The experimentally determined and predicted biodiesel properties for 3 fungal isolates correlated well with the specified standards. Isolate IBB M1, with the highest SCO yield and containing high amounts of saturated and monounsaturated fatty acid was identified as Aspergillus terreus using morphotaxonomic study and 18 S rRNA gene sequencing. Batch flask cultures with varying initial glucose concentration revealed that maximal cell biomass

  8. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel.

    Science.gov (United States)

    Khot, Mahesh; Kamat, Srijay; Zinjarde, Smita; Pant, Aditi; Chopade, Balu; Ravikumar, Ameeta

    2012-05-30

    Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Though fungi from mangrove ecosystem have been reported for production of several lignocellulolytic enzymes, they remain unexplored for their SCO producing ability. Thus, these oleaginous fungi from the mangrove ecosystem could be suitable candidates for production of SCOs from lignocellulosic biomass. The accumulation of lipids being species specific, strain selection is critical and therefore, it is of importance to evaluate the fungal diversity of mangrove wetlands. The whole cells of these fungi were investigated with respect to oleaginicity, cell mass, lipid content, fatty acid methyl ester profiles and physicochemical properties of transesterified SCOs in order to explore their potential for biodiesel production. In the present study, 14 yeasts and filamentous fungi were isolated from the detritus based mangrove wetlands along the Indian west coast. Nile red staining revealed that lipid bodies were present in 5 of the 14 fungal isolates. Lipid extraction showed that these fungi were able to accumulate > 20% (w/w) of their dry cell mass (4.14 - 6.44 g L-1) as lipids with neutral lipid as the major fraction. The profile of transesterified SCOs revealed a high content of saturated and monounsaturated fatty acids i.e., palmitic (C16:0), stearic (C18:0) and oleic (C18:1) acids similar to conventional vegetable oils used for biodiesel production. The experimentally determined and predicted biodiesel properties for 3 fungal isolates correlated well with the specified standards. Isolate IBB M1, with the highest SCO yield and containing high amounts of saturated and monounsaturated fatty acid was identified as Aspergillus terreus using morphotaxonomic study and 18 S rRNA gene sequencing. Batch flask cultures with varying initial glucose concentration revealed that maximal cell biomass and lipid content were obtained at 30gL-1

  9. In vitro culture of arbuscular mycorrhizal fungi: advances and future ...

    African Journals Online (AJOL)

    Arbuscular mycorrhizal (AM) fungi are ecologically important for most vascular plants for their growth and survival. AM fungi are obligate symbionts. In recent years, there have been many attempts to cultivate in vitro. Some relevant results indicate efforts are not far from successful growth of AM fungi independent of a plant ...

  10. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi.

    Science.gov (United States)

    Barelli, Larissa; Moonjely, Soumya; Behie, Scott W; Bidochka, Michael J

    2016-04-01

    This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites.

  11. Potential use of cowpea (Vigna unguiculata (L.) Walp.) stover treated with white-rot fungi as rabbit feed.

    Science.gov (United States)

    Andrade, Ederson; Pinheiro, Victor; Gonçalves, Alexandre; Cone, John W; Marques, Guilhermina; Silva, Valéria; Ferreira, Luis; Rodrigues, Miguel

    2017-10-01

    Lignin inhibitory effects within the cell wall structure constitute a serious drawback in maximizing the utilization of fibrous feedstuffs in animal feeding. Therefore treatments that promote efficient delignification of these materials must be applied. This study evaluated the potential of white-rot fungi to upgrade the nutritive value of cowpea stover for rabbit feeding. There was an increase in the crude protein content of all substrates as a result of fungi treatments, reaching a net gain of 13% for Pleurotus citrinopileatus incubation. Overall, net losses of dry and organic matter occurred during fungi treatments. Although the fiber content remained identical, higher consumption of cell wall contents was measured for P. citrinopileatus incubation (between 40 and 45%). The incubation period did not influence lignin degradation for any of the fungi treatments. Differences within the fungal degradation mechanisms indicate that P. citrinopileatus treatment was most effective, enhancing in vitro organic matter digestibility by around 30% compared with the control. Treatment of cowpea stover with P. citrinopileatus led to an efficient delignification process which resulted in higher in vitro organic matter digestibility, showing its potential in the nutritional valorization of this feedstuff. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential.

    Science.gov (United States)

    Gruninger, Robert J; Puniya, Anil K; Callaghan, Tony M; Edwards, Joan E; Youssef, Noha; Dagar, Sumit S; Fliegerova, Katerina; Griffith, Gareth W; Forster, Robert; Tsang, Adrian; McAllister, Tim; Elshahed, Mostafa S

    2014-10-01

    Anaerobic fungi (phylum Neocallimastigomycota) inhabit the gastrointestinal tract of mammalian herbivores, where they play an important role in the degradation of plant material. The Neocallimastigomycota represent the earliest diverging lineage of the zoosporic fungi; however, understanding of the relationships of the different taxa (both genera and species) within this phylum is in need of revision. Issues exist with the current approaches used for their identification and classification, and recent evidence suggests the presence of several novel taxa (potential candidate genera) that remain to be characterised. The life cycle and role of anaerobic fungi has been well characterised in the rumen, but not elsewhere in the ruminant alimentary tract. Greater understanding of the 'resistant' phase(s) of their life cycle is needed, as is study of their role and significance in other herbivores. Biotechnological application of anaerobic fungi, and their highly active cellulolytic and hemi-cellulolytic enzymes, has been a rapidly increasing area of research and development in the last decade. The move towards understanding of anaerobic fungi using -omics based (genomic, transcriptomic and proteomic) approaches is starting to yield valuable insights into the unique cellular processes, evolutionary history, metabolic capabilities and adaptations that exist within the Neocallimastigomycota. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Targeting allergenic fungi in agricultural environments aids the identification of major sources and potential risks for human health.

    Science.gov (United States)

    Weikl, F; Radl, V; Munch, J C; Pritsch, K

    2015-10-01

    Fungi are, after pollen, the second most important producers of outdoor airborne allergens. To identify sources of airborne fungal allergens, a workflow for qPCR quantification from environmental samples was developed, thoroughly tested, and finally applied. We concentrated on determining the levels of allergenic fungi belonging to Alternaria, Cladosporium, Fusarium, and Trichoderma in plant and soil samples from agricultural fields in which cereals were grown. Our aims were to identify the major sources of allergenic fungi and factors potentially influencing their occurrence. Plant materials were the main source of the tested fungi at and after harvest. Amounts of A. alternata and C. cladosporioides varied significantly in fields under different management conditions, but absolute levels were very high in all cases. This finding suggests that high numbers of allergenic fungi may be an inevitable side effect of farming in several crops. Applied in large-scale studies, the concept described here may help to explain the high number of sensitization to airborne fungal allergens. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification.

    Science.gov (United States)

    de Cassia Pereira, J; Paganini Marques, N; Rodrigues, A; Brito de Oliveira, T; Boscolo, M; da Silva, R; Gomes, E; Bocchini Martins, D A

    2015-04-01

    To obtain new cellulases and xylanases from thermophilic fungi; evaluate their potential for sugarcane bagasse saccharification. Thirty-two heat-tolerant fungi were isolated from the environment, identified (morphological/molecular tools) and the production of the enzymes was evaluated by solid state fermentation using lignocellulosic materials as substrates. Myceliophthora thermophila JCP 1-4 was the best producer of endoglucanase (357·51 U g(-1) ), β-glucosidase (45·42 U g(-1) ), xylanase (931·11 U g(-1) ) and avicelase (3·58 U g(-1) ). These enzymes were most active at 55-70°C and stable at 30-60°C. Using crude enzymatic extract from M. thermophila JCP 1-4 to saccharify sugarcane bagasse pretreated with microwaves and glycerol, glucose and xylose yields obtained were 15·6 and 35·13% (2·2 and 1·95 g l(-1) ), respectively. All isolated fungi have potential to produce the enzymes; M. thermophila JCP 1-4 enzymatic extract have potential to be better explored in saccharification experiments. Pretreatment improved enzymatic saccharification, as sugar yields were much higher than those obtained from in natura bagasse. Myceliophthora thermophila JCP 1-4 produces avicelase (not commonly found among fungi; important to hydrolyse crystalline cellulose) and a β-glucosidase resistant to glucose inhibition, interesting characteristics for saccharification experiments. © 2015 The Society for Applied Microbiology.

  15. Antifungal potential of Bacillus vallismortis R2 against different phytopathogenic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, P.K.; Kaur, J.; Saini, H.S.

    2015-07-01

    The cash crops grown in an agro-climatic region are prone to infection by various fungal pathogens. The use of chemical fungicides over the years has resulted in emergence of resistant fungal strains, thereby necessitating the development of effective and environmental friendly alternatives. The natural antagonistic interactions among different microbial populations have been exploited as an eco-friendly approach for controlling fungal pathogens resistant to synthetic chemicals. Morphologically distinct bacterial cultures (150), isolated from rhizospheric soils of wheat, rice, onion and tomato plants were screened for their antifungal potential against seven phytopathogenic fungi prevalent in the State of Punjab (India). The bacterial isolate R2, identified as Bacillus vallismortis, supported more than 50% inhibition of different phytopathogenic fungi (Alternaria alternata, Rhizoctonia oryzae, Fusarium oxysporum, Fusarium moniliforme, Colletotrichum sp, Helminthosporium sp and Magnaporthe grisea) in dual culture plate assay. The thin layer chromatography based bio-autography of acid-precipitated biomolecules (APB) indicated the presence of more than one type of antifungal molecule, as evidenced from zones of inhibition against the respective fungal pathogen. The initial analytical studies indicated the presence of surfactin, iturin A and fengycin-like compounds in APB. The antifungal activity of whole cells and APB of isolate R2 was evaluated by light and scanning electron microscopy. The wheat grains treated with APB and exposed to spores of A. alternata showed resistance to the development of black point disease, thereby indicating the potential application of R2 and its biomolecules at field scale level. (Author)

  16. The Potential Role of Arbuscular Mycorrhizal Fungi in the Restoration of Degraded Lands

    Science.gov (United States)

    Asmelash, Fisseha; Bekele, Tamrat; Birhane, Emiru

    2016-01-01

    Experiences worldwide reveal that degraded lands restoration projects achieve little success or fail. Hence, understanding the underlying causes and accordingly, devising appropriate restoration mechanisms is crucial. In doing so, the ever-increasing aspiration and global commitments in degraded lands restoration could be realized. Here we explain that arbuscular mycorrhizal fungi (AMF) biotechnology is a potential mechanism to significantly improve the restoration success of degraded lands. There are abundant scientific evidences to demonstrate that AMF significantly improve soil attributes, increase above and belowground biodiversity, significantly improve tree/shrub seedlings survival, growth and establishment on moisture and nutrient stressed soils. AMF have also been shown to drive plant succession and may prevent invasion by alien species. The very few conditions where infective AMF are low in abundance and diversity is when the soil erodes, is disturbed and is devoid of vegetation cover. These are all common features of degraded lands. Meanwhile, degraded lands harbor low levels of infective AMF abundance and diversity. Therefore, the successful restoration of infective AMF can potentially improve the restoration success of degraded lands. Better AMF inoculation effects result when inocula are composed of native fungi instead of exotics, early seral instead of late seral fungi, and are consortia instead of few or single species. Future research efforts should focus on AMF effect on plant community primary productivity and plant competition. Further investigation focusing on forest ecosystems, and carried out at the field condition is highly recommended. Devising cheap and ethically widely accepted inocula production methods and better ways of AMF in situ management for effective restoration of degraded lands will also remain to be important research areas. PMID:27507960

  17. Polyextremotolerant black fungi: oligotrophism, adaptive potential and a link to lichen symbioses

    Directory of Open Access Journals (Sweden)

    Cene eGostinčar

    2012-11-01

    Full Text Available Black meristematic fungi can survive high doses of radiation and are resistant to desiccation. These adaptations help them to colonize harsh oligotrophic habitats, e.g. on the surface and subsurface of rocks. One of their most characteristic stress-resistance mechanisms is the accumulation of melanin in the cell walls. This, production of other protective molecules and a plastic morphology further contribute to ecological flexibility of black fungi. Increased growth rates of some species after exposure to ionizing radiation even suggest yet unknown mechanisms of energy production. Other unusual metabolic strategies may include harvesting UV or visible light or gaining energy by forming facultative lichen-like associations with algae or cyanobacteria. The latter is not entirely surprising, since certain black fungal lineages are phylogenetically related to clades of lichen-forming fungi. Similar to black fungi, lichen-forming fungi are adapted to growth on exposed surfaces with low availability of nutrients. They also efficiently use protective molecules to tolerate frequent periods of extreme stress. Traits shared by both groups of fungi may have been important in facilitating the evolution and radiation of lichen-symbioses.

  18. Potential of different AM fungi (native from As-contaminated and uncontaminated soils) for supporting Leucaena leucocephala growth in As-contaminated soil.

    Science.gov (United States)

    Schneider, Jerusa; Bundschuh, Jochen; Rangel, Wesley de Melo; Guilherme, Luiz Roberto Guimarães

    2017-05-01

    Arbuscular mycorrhizal (AM) fungi inoculation is considered a potential biotechnological tool for an eco-friendly remediation of hazardous contaminants. However, the mechanisms explaining how AM fungi attenuate the phytotoxicity of metal(oid)s, in particular arsenic (As), are still not fully understood. The influence of As on plant growth and the antioxidant system was studied in Leucaena leucocephala plants inoculated with different isolates of AM fungi and exposed to increasing concentrations of As (0, 35, and 75 mg dm -3 ) in a Typic Quartzipsamment soil. The study was conducted under greenhouse conditions using isolates of AM fungi selected from uncontaminated soils (Acaulospora morrowiae, Rhizophagus clarus, Gigaspora albida; and a mixed inoculum derived from combining these isolates, named AMF Mix) as well as a mix of three isolates from an As-contaminated soil (A. morrowiae, R. clarus, and Paraglomus occultum). After 21 weeks, the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were determined in the shoots in addition to measuring plant height and mineral contents. In general, AM fungi have shown multiple beneficial effects on L. leucocephala growth. Although the activity of most of the stress-related enzymes increased in plants associated with AM fungi, the percentage increase caused by adding As to the soil was even greater for non-mycorrhizal plants when compared to AM-fungi inoculated ones, which highlights the phytoprotective effect provided by the AM symbiosis. The highest P/As ratio observed in AM-fungi plants, compared to non-mycorrhizal ones, can be considered a good indicator that the AM fungi alter the pattern of As(V) uptake from As-contaminated soil. Our results underline the role of AM fungi in increasing the tolerance of L. leucocephala to As stress and emphasize the potential of the symbiosis L. leucocephala-R. clarus for As-phytostabilization at moderately As

  19. Anaerobic Fungi and Their Potential for Biogas Production

    Czech Academy of Sciences Publication Activity Database

    Dollhofer, V.; Podmirseg, S.M.; Callaghan, T. M.; Griffith, G.W.; Fliegerová, Kateřina

    2015-01-01

    Roč. 151, č. 1 (2015), s. 41-61 ISSN 0724-6145 Institutional support: RVO:67985904 Keywords : anaerobic fungi * Neocallimastigomycota * phylogeny Subject RIV: EE - Microbiology, Virology Impact factor: 1.911, year: 2015

  20. Fight Fungi with Fungi: Antifungal Properties of the Amphibian Mycobiome

    Directory of Open Access Journals (Sweden)

    Patrick J. Kearns

    2017-12-01

    Full Text Available Emerging infectious diseases caused by fungal taxa are increasing and are placing a substantial burden on economies and ecosystems worldwide. Of the emerging fungal diseases, chytridomycosis caused by the fungus Batrachochytrium dendrobatidis (hereafter Bd is linked to global amphibian declines. Amphibians have innate immunity, as well as additional resistance through cutaneous microbial communities. Despite the targeting of bacteria as potential probiotics, the role of fungi in the protection against Bd infection in unknown. We used a four-part approach, including high-throughput sequencing of bacterial and fungal communities, cultivation of fungi, Bd challenge assays, and experimental additions of probiotic to Midwife Toads (Altyes obstetricans, to examine the overlapping roles of bacterial and fungal microbiota in pathogen defense in captive bred poison arrow frogs (Dendrobates sp.. Our results revealed that cutaneous fungal taxa differed from environmental microbiota across three species and a subspecies of Dendrobates spp. frogs. Cultivation of host-associated and environmental fungi realved numerous taxa with the ability to inhibit or facilitate the growth of Bd. The abundance of cutaneous fungi contributed more to Bd defense (~45% of the fungal community, than did bacteria (~10% and frog species harbored distinct inhibitory communities that were distinct from the environment. Further, we demonstrated that a fungal probiotic therapy did not induce an endocrine-immune reaction, in contrast to bacterial probiotics that stressed amphibian hosts and suppressed antimicrobial peptide responses, limiting their long-term colonization potential. Our results suggest that probiotic strategies against amphibian fungal pathogens should, in addition to bacterial probiotics, focus on host-associated and environmental fungi such as Penicillium and members of the families Chaetomiaceae and Lasiosphaeriaceae.

  1. The potential role of Arbuscular Mycorrhizal Fungi in the restoration of degraded lands

    Directory of Open Access Journals (Sweden)

    Fisseha Asmelash Belay

    2016-07-01

    Full Text Available Experiences worldwide reveal that degraded lands restoration projects achieve little success or fail. Hence, understanding the underlining causes and accordingly, devising appropriate restoration mechanisms is crucial. In doing so, the ever-increasing aspiration and global commitments in degraded lands restoration could be realized. Here we explain that Arbuscular Mycorrhizal Fungi (AMF biotechnology is a potential mechanism to significantly improve the restoration success of degraded lands. There are abundant scientific evidences to demonstrate that AMF significantly improve soil attributes, increase above and belowground biodiversity, significantly improve tree/shrub seedlings survival, growth and establishment on moisture and nutrient stressed soils. AMF have also been shown to drive plant succession and may prevent invasion by alien species. The very few conditions where infective AMF are low in abundance and diversity is when the soil erodes, is disturbed and is devoid of vegetation cover. These are all common features of degraded lands. Meanwhile, degraded lands harbor low levels of infective AMF abundance and diversity. Therefore, the successful restoration of infective AMF can potentially improve the restoration success of degraded lands. Better AMF inoculation effects result when inocula are composed of native fungi instead of exotics, early seral instead of late seral fungi, and are consortia instead of few or single species. Future research efforts should focus on AMF effect on plant community primary productivity and plant competition. Further investigation focusing on forest ecosystems and carried out at the field condition is highly recommended. Devising cheap and ethically widely accepted inocula production methods and better ways of AMF in-situ management for effective restoration of degraded lands will also remain to be important research areas. Keywords: AMF, ecological restoration, facilitation, inoculation, land degradation

  2. Potential of volatile compounds produced by fungi to influence sensory quality of coffee beverage

    DEFF Research Database (Denmark)

    Iamanaka, B. T.; Teixeira, A. A.; Teixeira, A. R. R.

    2014-01-01

    Fungi are known producers of a large number of volatile compounds (VCs). Several VCs such as 2,4,6 trichloroanisole (TCA), geosmin and terpenes have been found in coffee beverages, and these compounds can be responsible for off-flavor development. However, few studies have related the fungal...... contamination of coffee with the sensory characteristics of the beverage. The aim of this research was to investigate the production of VCs by fungi isolated from coffee and their potential as modifiers of the sensory coffee beverage quality. Three species were isolated from coffee from the southwest of São...... Paulo state and selected for the study: Penicillium brevicompactum, Aspergillus luchuensis (belonging to section Nigri) and Penicillium sp. nov. (related to Penicillium crustosum). VCs produced by the fungal inoculated in raw coffee beans were extracted and tentatively identified by SPME...

  3. A review on the inhibitory potential of Nigella sativa against pathogenic and toxigenic fungi.

    Science.gov (United States)

    Shokri, Hojjatollah

    2016-01-01

    Nigella sativa (N. sativa) grows in various parts of the world, particularly in Iran. It has been traditionally used as a folk remedy to treat a number of diseases. The seeds of this plant contain moisture, proteins, carbohydrates, crude fiber, alkaloids, saponins, ash, fixed oils and essential oil. The major components of the essential oil are thymoquinone, p-cymene, trans-anethole, 2-methyl-5(1-methyl ethyl)-Bicyclo[3.1.0]hex-2-en and γ-terpinene. So far, several pharmacological effects such as anti-oxidant, anti-inflammatory, anti-cancer and anti-microbial have been reported for N. sativa or its active compounds. Thymoquinone, thymohydroquinone and thymol are the most active constituents which have different beneficial properties. The oil, extracts and some of N. sativa active components possessed moderate in vitro and in vivo inhibitory activity against pathogenic yeasts, dermatophytes, non-dermatophytic filamentous fungi and aflatoxin-producing fungi. The main morphological changes of pathogenic and toxigenic fungi treated with N. sativa oil were observed in the cell wall, plasma membrane and membranous organelles, particularly in the nuclei and mitochondria. Although this review represents first step in the search for a new anti-fungal drug, the full potential of N. sativa as a fungitoxic agent has not been exploited and necessitates further investigations.

  4. Evaluation of Diuron Tolerance and Biotransformation by Fungi from a Sugar Cane Plantation Sandy-Loam Soil.

    Science.gov (United States)

    Perissini-Lopes, Bruna; Egea, Tássia Chiachio; Monteiro, Diego Alves; Vici, Ana Cláudia; Da Silva, Danilo Grünig Humberto; Lisboa, Daniela Correa de Oliveira; de Almeida, Eduardo Alves; Parsons, John Robert; Da Silva, Roberto; Gomes, Eleni

    2016-12-14

    Microorganisms capable of degrading herbicides are essential to minimize the amount of chemical compounds that may leach into other environments. This work aimed to study the potential of sandy-loam soil fungi to tolerate the herbicide Herburon (50% diuron) and to degrade the active ingredient diuron. Verticillium sp. F04, Trichoderma virens F28, and Cunninghamella elegans B06 showed the highest growth in the presence of the herbicide. The evaluation of biotransformation showed that Aspergillus brasiliensis G08, Aspergillus sp. G25, and Cunninghamella elegans B06 had the greatest potential to degrade diuron. Statistical analysis demonstrated that glucose positively influences the potential of the microorganism to degrade diuron, indicating a cometabolic process. Due to metabolites founded by diuron biotransformation, it is indicated that the fungi are relevant in reducing the herbicide concentration in runoff, minimizing the environmental impact on surrounding ecosystems.

  5. Genera of phytopathogenic fungi: GOPHY 1

    Directory of Open Access Journals (Sweden)

    Y. Marin-Felix

    2017-03-01

    Full Text Available Genera of Phytopathogenic Fungi (GOPHY is introduced as a new series of publications in order to provide a stable platform for the taxonomy of phytopathogenic fungi. This first paper focuses on 21 genera of phytopathogenic fungi: Bipolaris, Boeremia, Calonectria, Ceratocystis, Cladosporium, Colletotrichum, Coniella, Curvularia, Monilinia, Neofabraea, Neofusicoccum, Pilidium, Pleiochaeta, Plenodomus, Protostegia, Pseudopyricularia, Puccinia, Saccharata, Thyrostroma, Venturia and Wilsonomyces. For each genus, a morphological description and information about its pathology, distribution, hosts and disease symptoms are provided. In addition, this information is linked to primary and secondary DNA barcodes of the presently accepted species, and relevant literature. Moreover, several novelties are introduced, i.e. new genera, species and combinations, and neo-, lecto- and epitypes designated to provide a stable taxonomy. This first paper includes one new genus, 26 new species, ten new combinations, and four typifications of older names.

  6. Lipase-producing fungi for potential wastewater treatment and ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-05-04

    May 4, 2016 ... food, chemical, and pharmaceutical industry means the current global ... be the most convenient biosystem for industrial applications ... Fungi are capable of producing several enzymes for ... strains, and the process results in losses to the isolation ..... technical and economic burdens of lipase production.

  7. Potential for biocontrol of melanized fungi by actinobacteria isolated from intertidal region of Ilha Do Mel, Paraná, Brazil.

    Science.gov (United States)

    Dalitz, Camila de Araújo; Porsani, Mariana Vieira; Figel, Izabel Cristina; Pimentel, Ida C; Dalzoto, Patrícia R

    Actinobacteria occur in many environments and have the capacity to produce secondary metabolites with antibiotic potential. Identification and taxonomy of actinobacteria that produce antimicrobial substances is essential for the screening of new compounds, and sequencing of the 16S region of ribosomal DNA (rDNA), which is conserved and present in all bacteria, is an important method of identification. Melanized fungi are free-living organisms, which can also be pathogens of clinical importance. This work aimed to evaluate growth inhibition of melanized fungi by actinobacteria and to identify the latter to the species level. In this study, antimicrobial activity of 13 actinobacterial isolates from the genus Streptomyces was evaluated against seven melanized fungi of the genera Exophiala, Cladosporium, and Rhinocladiella. In all tests, all actinobacterial isolates showed inhibitory activity against all isolates of melanized fungi, and only one actinobacterial isolate had less efficient inhibitory activity. The 16S rDNA region of five previously unidentified actinobacterial isolates from Ilha do Mel, Paraná, Brazil, was sequenced; four of the isolates were identified as Streptomyces globisporus subsp. globisporus, and one isolate was identified as Streptomyces aureus. This work highlights the potential of actinobacteria with antifungal activity and their role in the pursuit of novel antimicrobial substances. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. The potential of white-rot fungi to degrade phorbol esters of Jatropha curcas L. seed cake

    NARCIS (Netherlands)

    Barros, de C.R.M.; Ferreira, L.M.M.; Nunes, F.M.; Bezerra, R.M.F.; Dias, A.A.; Guedes, C.; Cone, J.W.; Marques, G.S.M.; Rodrigues, M.A.M.

    2011-01-01

    The potential of solid-state cultivation, with three white-rot fungi (Bjerkandera adusta, Ganoderma resinaceum and Phlebia rufa), to decrease phorbol esters concentration of Jatropha curcas L. was evaluated in this study. Incubation was conducted in 250¿mL Erlenmeyer flasks without agitation at 28°C

  9. Vertebrate Endothermy Restricts Most Fungi as Potential Pathogens

    NARCIS (Netherlands)

    Robert, V.A.R.G.; Casadevall, A.

    2009-01-01

    The paucity of fungal diseases in mammals relative to insects, amphibians, and plants is puzzling. We analyzed the thermal tolerance of 4802 fungal strains from 144 genera and found that most cannot grow at mammalian temperatures. Fungi from insects and mammals had greater thermal tolerances than

  10. Arbuscular mycorrhizal fungi (AMF on a sandbank plant formation: ecology and potential for hydrocarbon oil mycorrhizoremediation

    Directory of Open Access Journals (Sweden)

    Ocimar Ferreira de Andrade

    2016-04-01

    Full Text Available The sources of contamination related to the exploration, production, storage, transport, distribution and disposal of petroleum, and its products, carry risks that threaten fragile coastal environments, little studied and, thus, in need of attention from the scientific community. On the other hand, symbiont mechanisms essential for the very existence of many plant species, and their relation to contaminated soils, remain unknown. Despite the identification of several species of AMF halophytes soil communities in sandbanks, one can infer their bioremediation potential from studies in other types of soil, which, however, report the same genera of fungi as participants in mycorrhizoremediation processes of polluted soil. This study focuses on the application of biotechnology using Arbuscular Mycorrhizal Fungi (AMF in soils impacted by petroleum hydrocarbons.

  11. Assessing the relevance of light for fungi: Implications and insights into the network of signal transmission.

    Science.gov (United States)

    Schmoll, Monika

    2011-01-01

    Light represents an important environmental cue, which provides information enabling fungi to prepare and react to the different ambient conditions between day and night. This adaptation requires both anticipation of the changing conditions, which is accomplished by daily rhythmicity of gene expression brought about by the circadian clock, and reaction to sudden illumination. Besides perception of the light signal, also integration of this signal with other environmental cues, most importantly nutrient availability, necessitates light-dependent regulation of signal transduction pathways and metabolic pathways. An influence of light and/or the circadian clock is known for the cAMP pathway, heterotrimeric G-protein signaling, mitogen-activated protein kinases, two-component phosphorelays, and Ca(2+) signaling. Moreover, also the target of rapamycin signaling pathway and reactive oxygen species as signal transducing elements are assumed to be connected to the light-response pathway. The interplay of the light-response pathway with signaling cascades results in light-dependent regulation of primary and secondary metabolism, morphology, development, biocontrol activity, and virulence. The frequent use of fungi in biotechnology as well as analysis of fungi in the artificial environment of a laboratory therefore requires careful consideration of still operative evolutionary heritage of these organisms. This review summarizes the diverse effects of light on fungi and the mechanisms they apply to deal both with the information content and with the harmful properties of light. Additionally, the implications of the reaction of fungi to light in a laboratory environment for experimental work and industrial applications are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. The potential of endomycorrhizal fungi in controlling tomato bacterial ...

    African Journals Online (AJOL)

    user

    2012-08-21

    Aug 21, 2012 ... The impact of colonization by three mycorrhizal fungi on tomato bacterial wilt caused by Ralstonia ... Three species of arbuscular mycorrhizal fungal (AMF) were tested. (Glomus ...... management of fruits and vegetables. Vol.

  13. Fungi in carpeting and furniture dust.

    Science.gov (United States)

    Schober, G

    1991-11-01

    The qualitative and quantitative species composition of fungi in carpets and upholstered furniture dust found in the living-rooms of nine Dutch dwellings was examined in a pilot study. Numbers of spores of xerophilic fungi did not differ in dust removed from carpeting and upholstery. Spores of hydrophilic species were found to be more predominant on floors (P less than 0.05), whereas meso-hygrophilic spores, largely dominated by allergologically relevant Penicillium species, were significantly more abundant in dust taken from regularly used furniture (P less than 0.05). Our results indicate that growth conditions for fungi in the micro-habitats of furniture differ from those in carpeting. No statistically significant differences in number of viable spores have been found in samples taken from ground-floor level compared with those taken from 1st to 3rd floor level of dwellings. From this study, the need for a micro-topographic analysis of the fungal flora in the human environment has become apparent. Efficient allergological home sanitation in dwellings of allergic patients requires detailed data about the colonization of the various micro-habitats by allergenic fungi.

  14. Foliar fungi of Scots pine (Pinus sylvestris)

    OpenAIRE

    Millberg, Hanna

    2015-01-01

    Scots pine (Pinus sylvestris) is an ecologically and economically important tree species in Fennoscandia. Scots pine needles host a variety of fungi, some with the potential to profoundly influence their host. These fungi can have beneficial or detrimental effects with important implications for both forest health and primary production. In this thesis, the foliar fungi of Scots pine needles were investigated with the aim of exploring spatial and temporal patterns, and development with needle...

  15. Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii.

    Directory of Open Access Journals (Sweden)

    Preuttiporn Supaphon

    Full Text Available Endophytic fungi from three commonly found seagrasses in southern Thailand were explored for their ability to produce antimicrobial metabolites. One hundred and sixty endophytic fungi derived from Cymodoceaserrulata (Family Cymodoceaceae, Halophilaovalis and Thalassiahemprichii (Family Hydrocharitaceae were screened for production of antimicrobial compounds by a colorimetric broth microdilution test against ten human pathogenic microorganisms including Staphylococcus aureus ATCC 25923, a clinical isolate of methicillin-resistant S. aureus, Escherichia coli ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 90028 and NCPF 3153, Cryptococcus neoformans ATCC 90112 and ATCC 90113 and clinical isolates of Microsporumgypseum and Penicilliummarneffei. Sixty-nine percent of the isolates exhibited antimicrobial activity against at least one test strain. Antifungal activity was more pronounced than antibacterial activity. Among the active fungi, seven isolates including Hypocreales sp. PSU-ES26 from C. serrulata, Trichoderma spp. PSU-ES8 and PSU-ES38 from H. ovalis, and Penicillium sp. PSU-ES43, Fusarium sp. PSU-ES73, Stephanonectria sp. PSU-ES172 and an unidentified endophyte PSU-ES190 from T. hemprichii exhibited strong antimicrobial activity against human pathogens with minimum inhibitory concentrations (MIC of less than 10 µg/ml. The inhibitory extracts at concentrations of 4 times their MIC destroyed the targeted cells as observed by scanning electron microscopy. These results showed the antimicrobial potential of extracts from endophytic fungi from seagrasses.

  16. Lipase-producing fungi for potential wastewater treatment and ...

    African Journals Online (AJOL)

    The use of fungal biomass as a lipase biocatalyst represents an attractive approach for the treatments of oil wastewater as well as for the production of biodiesel from oil and residual grease, due to its greater stability, possibility of reuse, and lower cost. In this work, 20 filamentous fungi were isolated from the grease trap ...

  17. Assessing the potential effects of fungicides on nontarget gut fungi (trichomycetes) and their associated larval black fly hosts

    Science.gov (United States)

    Wilson, Emma R.; Smalling, Kelly L.; Reilly, Timothy J.; Gray, Elmer; Bond, Laura; Steele, Lance; Kandel, Prasanna; Chamberlin, Alison; Gause, Justin; Reynolds, Nicole; Robertson, Ian; Novak, Stephen; Feris, Kevin; White, Merlin M.

    2014-01-01

    Fungicides are moderately hydrophobic and have been detected in water and sediment, particularly in agricultural watersheds, but typically are not included in routine water quality monitoring efforts. This is despite their widespread use and frequent application to combat fungal pathogens. Although the efficacy of these compounds on fungal pathogens is well documented, little is known about their effects on nontarget fungi. This pilot study, a field survey in southwestern Idaho from April to December 2010 on four streams with varying pesticide inputs (two agricultural and two reference sites), was conducted to assess nontarget impact of fungicides on gut fungi, or trichomycetes. Tissues of larval black flies (Diptera: Simuliidae), hosts of gut fungi, were analyzed for pesticide accumulation. Fungicides were detected in hosts from streams within agricultural watersheds but were not detected in hosts from reference streams. Gut fungi from agricultural sites exhibited decreased percent infestation, density and sporulation within the gut, and black fly tissues had elevated pesticide concentrations. Differences observed between the sites demonstrate a potential effect on this symbiotic system. Future research is needed to parse out the details of the complex biotic and abiotic relationships; however, these preliminary results indicate that impacts to nontarget organisms could have far-reaching consequences within aquatic ecosystems.

  18. The Response of Paraburkholderia terrae Strains to Two Soil Fungi and the Potential Role of Oxalate

    Directory of Open Access Journals (Sweden)

    Irshad Ul Haq

    2018-05-01

    Full Text Available Fungal-associated Paraburkholderia terrae strains in soil have been extensively studied, but their sensing strategies to locate fungi in soil have remained largely elusive. In this study, we investigated the behavior of five mycosphere-isolated P. terrae strains [including the type-3 secretion system negative mutant BS001-ΔsctD and the type strain DSM 17804T] with respect to their fungal-sensing strategies. The putative role of oxalic acid as a signaling molecule in the chemotaxis toward soil fungi, as well as a potential carbon source, was assessed. First, all P. terrae strains, including the type strain, were found to sense, and show a chemotactic response toward, the different levels of oxalic acid (0.1, 0.5, and 0.8% applied at a distance. The chemotactic responses were faster and stronger at lower concentrations (0.1% than at higher ones. We then tested the chemotactic responses of all strains toward exudates of the soil fungi Lyophyllum sp. strain Karsten and Trichoderma asperellum 302 used in different dilutions (undiluted, 1:10, 1:100 diluted versus the control. All P. terrae strains showed significant directed chemotactic behavior toward the exudate source, with full-strength exudates inciting the strongest responses. In a separate experiment, strain BS001 was shown to be able to grow on oxalate-amended (0.1 and 0.5% mineral medium M9. Chemical analyses of the fungal secretomes using proton nuclear magnetic resonance (1H NMR, next to high-performance liquid chromatography (HPLC, indeed revealed the presence of oxalic acid (next to glycerol, acetic acid, formic acid, and fumaric acid in the supernatants of both fungi. In addition, citric acid was found in the Lyophyllum sp. strain Karsten exudates. Given the fact that, next to oxalic acid, the other compounds can also serve as C and energy sources for P. terrae, the two fungi clearly offer ecological benefits to this bacterium. The oxalic acid released by the two fungi may have

  19. Exploring the potential of fungi isolated from PAH-polluted soil as a source of xenobiotics-degrading fungi.

    Science.gov (United States)

    Godoy, Patricia; Reina, Rocío; Calderón, Andrea; Wittich, Regina-Michaela; García-Romera, Inmaculada; Aranda, Elisabet

    2016-10-01

    The aim of this study was to find polycyclic aromatic hydrocarbon (PAH)-degrading fungi adapted to polluted environments for further application in bioremediation processes. In this study, a total of 23 fungal species were isolated from a historically pyrogenic PAH-polluted soil in Spain and taxonomically identified. The dominant groups in these samples were the ones associated with fungi belonging to the Ascomycota phylum and two isolates belonging to the Mucoromycotina subphylum and Basiodiomycota phylum. We tested their ability to convert the three-ring PAH anthracene in a 42-day time course and analysed their ability to secrete extracellular oxidoreductase enzymes. Among the 23 fungal species screened, 12 were able to oxidize anthracene, leading to the formation of 9,10-anthraquinone as the main metabolite, a less toxic one than the parent compound. The complete removal of anthracene was achieved by three fungal species. In the case of Scopulariopsis brevicaulis, extracellular enzyme independent degradation of the initial 100 μM anthracene occurred, whilst in the case of the ligninolytic fungus Fomes (Basidiomycota), the same result was obtained with extracellular enzyme-dependent transformation. The yield of accumulated 9,10-anthraquinone was 80 and 91 %, respectively, and Fomes sp. could slowly deplete it from the growth medium when offered alone. These results are indicative for the effectiveness of these fungi for pollutant removal. Graphical abstract ᅟ.

  20. Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes.

    Science.gov (United States)

    Jacobs, Helen; Gray, Simon N; Crump, David H

    2003-01-01

    The efficacies of three nematophagous fungi, Paecilomyces lilacinus, Plectosphaerella cucumerina and Pochonia chlamydosporia, for controlling potato cyst nematodes (PCN) as part of an Integrated Pest Management (IPM) regime were studied. The compatibility of the nematophagous fungi with commonly used chemical pesticides and their ability to compete with the soil fungi Rhizoctonia solani, Chaetomium globosum, Fusarium oxysporum, Penicillium bilaii and Trichoderma harzianum were tested in vitro. Paecilomyces lilacinus was the most successful competitor when the ability to grow and inhibit growth of an opposing colony at both 10 and 20 degrees C was considered. P. lilacinus also showed potential for control of the soil-borne fungal pathogen R. solani, releasing a diffusable substance in vitro which inhibited its growth and caused morphological abnormalities in its hyphae. Pochonia chlamydosporia was least susceptible to growth inhibition by other fungi at 20 degrees in vitro, but the isolate tested did not grow at 10 degrees. Plectosphaerella cucumerina was a poor saprophytic competitor. Radial growth of Paecilomyces lilacinus and Plectosphaerella cucumerina was slowed, but not prevented, when grown on potato dextrose agar incorporating the fungicides fenpiclonil and tolclofos-methyl, and was not inhibited by the addition of pencycuron or the nematicide oxamyl. Radial growth of Pochonia chlamydosporia was partially inhibited by all the chemical pesticides tested. The efficacy of Paecilomyces lilacinus as a control agent for R. solani was further investigated in situ. Treatment with P. lilacinus significantly reduced the symptoms of Rhizoctonia disease on potato stems in a pot trial. The effectiveness of P. lilacinus and P. cucumerina against PCN was also tested in situ. Three application methods were compared; incorporating the fungi into alginate pellets, Terra-Green inoculated with the fungi and applying conidia directly to the tubers. Both formulations containing P

  1. The potential of endomycorrhizal fungi in controlling tomato bacterial ...

    African Journals Online (AJOL)

    The impact of colonization by three mycorrhizal fungi on tomato bacterial wilt caused by Ralstonia solanaceraum was investigated. Three species of arbuscular mycorrhizal fungal (AMF) were tested (Glomus mosseae, Scutellospora sp. and Gigaspora margarita). Siginificant differences in tomato growth based on plant ...

  2. Distribution and antimicrobial potential of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L.

    Science.gov (United States)

    Mishra, Vineet Kumar; Singh, Garima; Passari, Ajit Kumar; Yadav, Mukesh Kumar; Gupta, Vijai Kumar; Singh, Bhim Pratap

    2016-03-01

    Distributions of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L. was studied and 91 isolates belonging to 18 genera were recovered. The isolates were distributed to sordariomycetes (62.63%), dothideomycetes (19.78%), eurotiomycetes (7.69%), zygomycetes (4.19%), agaricomycetes (1.09%), and mycelia sterilia (4.39%). Based on colony morphology and examination of spores, the isolates were classified into 18 taxa, of which Colletotrichum, Phomopsis and Phoma were dominant, their relative frequencies were 23.07%, 17.58% and 12.08% respectively. The colonization rate of endophytic fungi was determined and found to be significantly higher in leaf segments (50.76%), followed by root (41.53%) and stem tissues (27.69%). All the isolates were screened for antimicrobial activity and revealed that 26.37% endophytic fungi were active against one or more pathogens. Twenty four isolates showing significant antimicrobial activity were identified by sequencing the ITS1-5.8S-ITS2 region of rRNA gene. Results indicated that endophytic fungi associated with leaf were functionally versatile as they showed antimicrobial activity against most of the tested pathogens. The endophytic fungi Diaporthe phaseolorum var. meridionalis (KF193982) inhibited all the tested bacterial pathogens, whereas, Penicillium chermesinum (KM405640) displayed most significant antifungal activity. This seems to be the first hand report to understand the distribution and antimicrobial ability of endophytic fungi from ethno-medicinal plant M. malabathricum.

  3. Curvularia, Exophiala, Scedosporium, Sporothrix, and other melanized fungi

    NARCIS (Netherlands)

    de Hoog, S.

    2015-01-01

    The taxonomy of the melanized fungi and the most relevant epidemiological and clinical aspects, and the laboratory procedures for the diagnosis of infections caused by these agents, are discussed in this chapter. This chapter covers most of the agents of phaeohyphomycosis, chromoblastomycosis, and

  4. Fungi that Infect Humans.

    Science.gov (United States)

    Köhler, Julia R; Hube, Bernhard; Puccia, Rosana; Casadevall, Arturo; Perfect, John R

    2017-06-01

    Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides ; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients- Candida , Pneumocystis , and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.

  5. Molecular identification and potential of an isolate of white rot fungi in bioremediation of petroleum contaminated soils

    Directory of Open Access Journals (Sweden)

    Maryam Mohammadi-sichani

    2017-06-01

    Full Text Available Introduction:Elimination or reduction of petroleum hydrocarbons from natural resources such as water and soil is a serious problem of countries, particularly oil-rich countries of the world. Using white rotting fungi compost for bioremediation of soils contaminated by petroleum hydrocarbons is effective. The aim of this study is molecular identification and potential of anisolate of white rot fungi in bioremediation of petroleum contaminated soils. Materials and methods: Spent compost of white rotting fungi was inoculated with petroleum contaminated soil into 3%, 5% and 10% (w/w. Treatments were incubated at 25-23 °C for 3 months. Reduction of petroleum hydrocarbons in treated soil was determined by gas chromatography. Ecotoxicity of soil was evaluated by seed germination test. Results: Based on the genome sequence of 18s rRNA, it is revealed that this isolate is Ganoderma lucidum and this isolate is deposited as accession KX525204 in the Gene Bank database. Reduction of petroleum hydrocarbons in soil treated with compost (3, 5 and 10% ranged from 42% to 71%. The germination index (% in ecotoxicity tests ranged from 20.8% to 70.8%. Gas chromatography results also showed a decrease in soil Hydrocarbons compounds. Discussion and conclusion: The compost of Ganoderma lucidum, a white rot fungus, has a potential ability to remove petroleum hydrocarbons in contaminated soil. Removal of hydrocarbons was increased with increase in compost mixed with contaminated soil. Petroleum contaminated soil amended with spent compost of G.lucidum 10% during three months is appropriate to remove this pollutant.

  6. Studies of separation and purification of fungi for uranium-leaching

    International Nuclear Information System (INIS)

    Wang Yongdong; Li Guangyue; Shi Wenge; Hu Nan; Pan Wenjun; Zhou Zhixiang; Deng Qinwen; Ding Dexin

    2010-01-01

    To obtain purified fungi for uranium-leaching, fungi in uranium ores were separated using Dox(-), SDA, PDA and Dox(+) medium, then spores were picked from the plates for fungi purification. Four strains of fungi were acquired and one of them is aspergillus niger,others are Penicillium. The results demonstrate that a large number of fungi species exist in uranium ores, and some of them have the ability of producing organic acid, in addition,they have high growing velocity with the potential of being applied to uranium leaching. (authors)

  7. Cercosporoid fungi (Mycosphaerellaceae) 2. Species on monocots (Acoraceae to Xyridaceae, excluding Poaceae)

    OpenAIRE

    Braun, Uwe; Crous, Pedro W.; Nakashima, Chiharu

    2014-01-01

    Cercosporoid fungi (formerly Cercospora s. lat.) represent one of the largest groups of hyphomycetes belonging to the Mycosphaerellaceae (Ascomycota). They include asexual morphs, asexual holomorphs, or species with mycosphaerella-like sexual morphs. Most of them are leaf-spotting plant pathogens with special phytopathological relevance. In the first part of a new monographic work, cercosporoid hyphomycetes occurring on other fungi (fungicolous species), on ferns (pteridophytes) and gymnosper...

  8. Arsenic uptake and phytoremediation potential by arbuscular mycorrhizal fungi

    Science.gov (United States)

    Xinhua He; Erik Lilleskov

    2014-01-01

    Arsenic (As) contamination of soils and water is a global problem because of its impacts on ecosystems and human health. Various approaches have been attempted for As remediation, with limited success. Arbuscular mycorrhizal (AM) fungi play vital roles in the uptake of water and essential nutrients, especially phosphorus (P), and hence enhance plant performance and...

  9. Clinically relevant potential drug-drug interactions among outpatients: A nationwide database study.

    Science.gov (United States)

    Jazbar, Janja; Locatelli, Igor; Horvat, Nejc; Kos, Mitja

    2018-06-01

    Adverse drug events due to drug-drug interactions (DDIs) represent a considerable public health burden, also in Slovenia. A better understanding of the most frequently occurring potential DDIs may enable safer pharmacotherapy and minimize drug-related problems. The aim of this study was to evaluate the prevalence and predictors of potential DDIs among outpatients in Slovenia. An analysis of potential DDIs was performed using health claims data on prescription drugs from a nationwide database. The Lexi-Interact Module was used as the reference source of interactions. The influence of patient-specific predictors on the risk of potential clinically relevant DDIs was evaluated using logistic regression model. The study population included 1,179,803 outpatients who received 15,811,979 prescriptions. The total number of potential DDI cases identified was 3,974,994, of which 15.6% were potentially clinically relevant. Altogether, 9.3% (N = 191,213) of the total population in Slovenia is exposed to clinically relevant potential DDIs, and the proportion is higher among women and the elderly. After adjustment for cofactors, higher number of medications and older age are associated with higher odds of clinically relevant potential DDIs. The burden of DDIs is highest with drug combinations that increase risk of bleeding, enhance CNS depression or anticholinergic effects or cause cardiovascular complications. The current study revealed that 1 in 10 individuals in the total Slovenian population is exposed to clinically relevant potential DDIs yearly. Taking into account the literature based conservative estimate that approximately 1% of potential DDIs result in negative health outcomes, roughly 1800 individuals in Slovenia experience an adverse health outcome each year as a result of clinically relevant potential interactions alone. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Thermophilic Fungi: Their Physiology and Enzymes†

    Science.gov (United States)

    Maheshwari, Ramesh; Bharadwaj, Girish; Bhat, Mahalingeshwara K.

    2000-01-01

    Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20°C and a maximum temperature of growth extending up to 60 to 62°C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45°C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62°C. Although widespread in terrestrial habitats, they have remained underexplored compared to thermophilic species of eubacteria and archaea. However, thermophilic fungi are potential sources of enzymes with scientific and commercial interests. This review, for the first time, compiles information on the physiology and enzymes of thermophilic fungi. Thermophilic fungi can be grown in minimal media with metabolic rates and growth yields comparable to those of mesophilic fungi. Studies of their growth kinetics, respiration, mixed-substrate utilization, nutrient uptake, and protein breakdown rate have provided some basic information not only on thermophilic fungi but also on filamentous fungi in general. Some species have the ability to grow at ambient temperatures if cultures are initiated with germinated spores or mycelial inoculum or if a nutritionally rich medium is used. Thermophilic fungi have a powerful ability to degrade polysaccharide constituents of biomass. The properties of their enzymes show differences not only among species but also among strains of the same species. Their extracellular enzymes display temperature optima for activity that are close to or above the optimum temperature for the growth of organism and, in general, are more heat stable than those of the mesophilic fungi. Some extracellular enzymes from thermophilic fungi are being produced commercially, and a few others have commercial prospects. Genes of thermophilic fungi encoding lipase, protease, xylanase, and cellulase have been cloned and

  11. Culturable fungi in potting soils and compost.

    Science.gov (United States)

    Haas, Doris; Lesch, Susanne; Buzina, Walter; Galler, Herbert; Gutschi, Anna Maria; Habib, Juliana; Pfeifer, Bettina; Luxner, Josefa; Reinthaler, Franz F

    2016-11-01

    In the present study the spectrum and the incidence of fungi in potting soils and compost was investigated. Since soil is one of the most important biotopes for fungi, relatively high concentrations of fungal propagules are to be expected. For detection of fungi, samples of commercial soils, compost and soils from potted plants (both surface and sub-surface) were suspended and plated onto several mycological media. The resulting colonies were evaluated qualitatively and quantitatively. The results from the different sampling series vary, but concentrations on the surface of potted plants and in commercial soils are increased tenfold compared to compost and sub-surface soils. Median values range from 9.5 × 10(4) colony forming units (CFU)/g to 5.5 × 10(5) CFU/g. The spectrum of fungi also varies in the soils. However, all sampling series show high proportion of Aspergillus and Penicillium species, including potentially pathogenic species such as Aspergillus fumigatus. Cladosporium, a genus dominant in the ambient air, was found preferably in samples which were in contact with the air. The results show that potentially pathogenic fungi are present in soils. Immunocompromised individuals should avoid handling soils or potted plants in their immediate vicinity. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. [Heavy metal pollution ecology of macro-fungi: research advances and expectation].

    Science.gov (United States)

    Zhou, Qi-xing; An, Xin-long; Wei, Shu-he

    2008-08-01

    Macro-fungi are the main component of biosphere and one of the ecological resources, and play very important roles in matter cycling and in maintaining ecological balances. This paper summarized and reviewed the research advances in the eco-toxicological effects of heavy metals on macro-fungi, the bioaccumulation function of macro-fungi on heavy metals, the ecological adaptation mechanisms of macro-fungi to heavy metal pollution, the role of macro-fungi as a bio-indicator of heavy metal pollution, and the potential of macro-fungi in the ecological remediation of contaminated environment. To strengthen the researches on the heavy metal pollution ecology of macro-fungi would be of practical significance in the reasonable utilization of macro-fungi resources and in the ecological remediation of contaminated environment.

  13. Proteomics of industrial fungi: trends and insights for biotechnology

    NARCIS (Netherlands)

    Oliveira, J.M.; Graaff, de L.H.

    2011-01-01

    Filamentous fungi are widely known for their industrial applications, namely, the production of food-processing enzymes and metabolites such as antibiotics and organic acids. In the past decade, the full genome sequencing of filamentous fungi increased the potential to predict encoded proteins

  14. Effect of arbuscular mycorrhizal fungi on the potential of three wild plant species for phytoextraction of mercury from small-scale gold mine tailings

    Directory of Open Access Journals (Sweden)

    A. Fiqri

    2016-04-01

    Full Text Available A study that was aimed to explore the effects of arbuscular mycorrhizal (AM fungi inoculation on the potential of wild plant species (Paspalum conjugatum, Cyperus kyllingia, and Lindernia crustacea for phytoextraction of mercury from small-scale gold mine tailings was conducted in a glasshouse. Each of the plant seedlings was planted in a plastic pot containing 10 kg of planting medium (mixture of tailings and compost; 50%: 50% by weight. Treatments tested were three plant species and doses of AM fungi inoculation, i.e. 0 and 30 spores/plant. At harvest of 63 days, plant shoot and root were analyzed for mercury concentration. The remaining planting media in the pots were used for growing maize for 84 days. The results showed that the most potential plant species for phytoextraction of mercury was Paspalum conjugatum, while the most mercury tolerant plant was Cyperus kyllingia. Without AM fungi inoculation, the highest accumulation of mercury (44.87 mg/kg was found in the root of Paspalum conjugatum. If AM fungi were inoculated, the highest accumulation of mercury (56.30 mg/kg was also found in the shoot of Paspalum conjugatum. Results of the second experiment proved that the growth and biomass production of maize after mycophytoextraction by the plant species were higher than those of maize grown on media without mycophytoextraction of mercury.

  15. Impedimetric method for physiologically characterisation of fungi

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose; Petersen, Karina

    1998-01-01

    Fungi are playing an important role in the food and pharmaceutical industry today, both as starter cultures, fermentation organisms, and as contaminants. Characterisation of fungal growth is normally time consuming as it includes measurements and study on a wide range of media at different...... temperatures, pH, water activity and atmosphere composition. Nevertheless is it important information in ecophysiological studies, where the growth potential by fungi are related to composition and storage of food. It is therefore of great interest to device a rapid method for characterisation of fungi.......The objective was to determine the growth phases of various fungi using an impedimetric method and compare this with traditional methods using agar plates, in order to determine if this rapid method can replace the traditional method.The method is based on impedimetric assessment of growth on the Bactometer 128...

  16. Screening of Phosphorus-Accumulating Fungi and Their Potential for Phosphorus Removal from Waste Streams.

    Science.gov (United States)

    Ye, Yulin; Gan, Jing; Hu, Bo

    2015-11-01

    While bacteria have been primarily studied for phosphorus (P) removal in wastewater treatment, fungi and their ability to accumulate intracellular polyphosphate are less investigated. P-accumulating fungal strains were screened from soybean plants and surrounding soil by flask cultivation with potato dextrose broth and KH2PO4 in this study. Mucor circinelloides was selected for its high efficiency in P removal efficiency and high cellular P content. Neisser staining and growth-curve analysis confirmed that M. circinelloides stored polyphosphate intracellularly by luxury phosphate uptake. The effect of culture medium compositions on P removal efficiency and cellular P content was also investigated. Monosaccharides (such as glucose and fructose) and organic nitrogen (N, such as urea, and peptone) promoted fungi growth and P accumulation. M. circinelloides also preferred organic phosphates. When glucose, urea, and phytic acid sodium salt were used as the carbon, N, and P source, respectively, the maximum utilization efficiency was 40.1% for P and 7.08% for cellular P content. In addition, the potential of M. circinelloides for P removal from waste streams was investigated. Compared with the non-inoculated control culture, inoculation with M. circinelloides improved the soluble P removal in treating wastewater centrate, screened manure, and digested manure.

  17. Airborne fungi in an intensive care unit

    Directory of Open Access Journals (Sweden)

    C. L. Gonçalves

    2017-07-01

    Full Text Available Abstract The presence of airborne fungi in Intensive Care Unit (ICUs is associated with increased nosocomial infections. The aim of this study was the isolation and identification of airborne fungi presented in an ICU from the University Hospital of Pelotas – RS, with the attempt to know the place’s environmental microbiota. 40 Petri plates with Sabouraud Dextrose Agar were exposed to an environment of an ICU, where samples were collected in strategic places during morning and afternoon periods for ten days. Seven fungi genera were identified: Penicillium spp. (15.18%, genus with the higher frequency, followed by Aspergillus spp., Cladosporium spp., Fusarium spp., Paecelomyces spp., Curvularia spp., Alternaria spp., Zygomycetes and sterile mycelium. The most predominant fungi genus were Aspergillus spp. (13.92% in the morning and Cladosporium spp. (13.92% in the afternoon. Due to their involvement in different diseases, the identified fungi genera can be classified as potential pathogens of inpatients. These results reinforce the need of monitoring the environmental microorganisms with high frequency and efficiently in health institutions.

  18. In-vitro predatory activity of nematophagous fungi from Costa Rica with potential use for controlling sheep and goat parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Natalia Soto-Barrientos

    2011-03-01

    Full Text Available In tropical and subtropical regions of the world, parasitic diseases are a main cause of losses in livestock productivity. The increased acquired resistence to anthelmintics by gastrointestinal nematodes, requires biological control be considered as a potential feasible and effective alternative. The most effective natural soil enemies of nematodes are nematophagous fungi. In order to collect and identify predator nematophagous fungi (PNF, samples were obtained from 51 farms distributed throughout the seven provinces of Costa Rica. The origin samples included: soil from different crops (potatoes, tomatoes, bananas, ornamental plants, squash and coffee; animal feces (cattle, sheep, goat and horse; soil and fallen leaves from forest; and plants with signs of nematode infection. Each sample was processed using three techniques for the extraction of fungi from soil: sprinkling technique, soil dilution and humidity chamber. Twenty four strains of nematophagous fungi were found in 19 farms; 83.3% of the fungi were isolated by sprinkling technique. The following fungi were idenified: Arthrobotrys oligospora (n=13; Candelabrella musiformis (n=9; and for the first time there was isolation of A. conoides (n=1 and A. dactyloides (n=1 in the country. Moreover, 16 strains from Trichoderma (n=13, Beauveria (n=1, Clonostachys (n=1 and Lecanicillium (n=1 were obtained. In addition, pH of each possible fungal isolation source was measured, and it varied from 5.2 to 9.9, however PNF isolates fell within the range of 5.6 to 7.5. The PNF strains were cultivated in four different media for the production of chhlamydospores: potato dextrose agar (PDA; corn meal agar (CMA; malt extract agar (MEA and potato carrot agar (PCA. Out of these cultures, 95.8% of the strains formed chlamydospores primarily in the PCA. Of these strains, the profilic spore producers were subjected to ruminant artificial gastrointestinal conditions. A total of 14 fungi were tested, out of which

  19. In-vitro predatory activity of nematophagous fungi from Costa Rica with potential use for controlling sheep and goat parasitic nematodes.

    Science.gov (United States)

    Soto-Barrientos, Natalia; de Oliveira, Jaqueline; Vega-Obando, Rommel; Montero-Caballero, Danilo; Vargas, Bernardo; Hernández-Gamboa, Jorge; Orozco-Solano, Claudio

    2011-03-01

    In tropical and subtropical regions of the world, parasitic diseases are a main cause of losses in livestock productivity. The increased acquired resistence to anthelmintics by gastrointestinal nematodes, requires biological control be considered as a potential feasible and effective alternative. The most effective natural soil enemies of nematodes are nematophagous fungi. In order to collect and identify predator nematophagous fungi (PNF), samples were obtained from 51 farms distributed throughout the seven provinces of Costa Rica. The origin samples included: soil from different crops (potatoes, tomatoes, bananas, ornamental plants, squash and coffee); animal feces (cattle, sheep, goat and horse); soil and fallen leaves from forest; and plants with signs of nematode infection. Each sample was processed using three techniques for the extraction of fungi from soil: sprinkling technique, soil dilution and humidity chamber. Twenty four strains of nematophagous fungi were found in 19 farms; 83.3% of the fungi were isolated by sprinkling technique. The following fungi were identified: Arthrobotrys oligospora (n = 13); Candelabrella musiformis (n = 9); and for the first time there was isolation of A. conoides (n = 1) and A. dactyloides (n = 1) in the country. Moreover, 16 strains from Trichoderma (n=13), Beauveria (n = 1), Clonostachys (n = 1) and Lecanicillium (n = 1) were obtained. In addition, pH of each possible fungal isolation source was measured, and it varied from 5.2 to 9.9, however PNF isolates fell within the range of 5.6 to 7.5. The PNF strains were cultivated in four different media for the production of chhlamydospores: potato dextrose agar (PDA); corn meal agar (CMA); malt extract agar (MEA) and potato carrot agar (PCA). Out of these cultures, 95.8% of the strains formed chlamydospores primarily in the PCA. Of these strains, the profilic spore producers were subjected to ruminant artificial gastrointestinal conditions. A total of 14 fungi were tested, out

  20. Rust fungi on some poaceous weeds of wheat crops in Pakistan

    OpenAIRE

    NAJAM-UL-SEHAR AFSHAN*; ABDUL REHMAN NIAZI

    2013-01-01

    The article enlists common poaceous weeds found in wheat crop sand their specific parasitic rust fungi. In this study, four (04) plant taxa of Poaceae infected with rust fungi are collected from different wheat crops grown in different areas of Pakistan. The rust fungi are isolated, characterized and identified. All these host plants are known weeds of wheat crop in Pakistan. This work would help to identify and enlist the potential rust fungi on weeds of wheat crop that could be utilized to ...

  1. Fungi and fungi-like Oomycetes isolated from affected leaves of rhododendron

    Directory of Open Access Journals (Sweden)

    Maria Kowalik

    2013-12-01

    Full Text Available The aim of the work is to identify fungi and fungi-like Oomycetes occurring on affected leaves of rhododendron Rhododendron L. Mycological analyses were carried out on 200 leaves collected from green areas of Kraków from May till September 2005. Isolated fungi-like Oomycetes belonged to 67 taxa. The most frequently found fungi included: Alternaria alternata, Aspergillus niger, Botrytis cinerea, Coelophoma empetri, Nigrospora sphaerica, Pestalotia sydowiana, Phialophora cyclaminis, Phomopsis archeri, Septoria azalea and Sordaria fimicola. Among fungi-like organisms Phytophthora cinnamomi and P. citricola were isolated.

  2. FungiDB: An Integrated Bioinformatic Resource for Fungi and Oomycetes

    Directory of Open Access Journals (Sweden)

    Evelina Y. Basenko

    2018-03-01

    Full Text Available FungiDB (fungidb.org is a free online resource for data mining and functional genomics analysis for fungal and oomycete species. FungiDB is part of the Eukaryotic Pathogen Genomics Database Resource (EuPathDB, eupathdb.org platform that integrates genomic, transcriptomic, proteomic, and phenotypic datasets, and other types of data for pathogenic and nonpathogenic, free-living and parasitic organisms. FungiDB is one of the largest EuPathDB databases containing nearly 100 genomes obtained from GenBank, Aspergillus Genome Database (AspGD, The Broad Institute, Joint Genome Institute (JGI, Ensembl, and other sources. FungiDB offers a user-friendly web interface with embedded bioinformatics tools that support custom in silico experiments that leverage FungiDB-integrated data. In addition, a Galaxy-based workspace enables users to generate custom pipelines for large-scale data analysis (e.g., RNA-Seq, variant calling, etc.. This review provides an introduction to the FungiDB resources and focuses on available features, tools, and queries and how they can be used to mine data across a diverse range of integrated FungiDB datasets and records.

  3. Thermophilic fungi in the new age of fungal taxonomy.

    Science.gov (United States)

    de Oliveira, Tássio Brito; Gomes, Eleni; Rodrigues, Andre

    2015-01-01

    Thermophilic fungi are of wide interest due to their potential to produce heat-tolerant enzymes for biotechnological processes. However, the taxonomy of such organisms remains obscure, especially given new developments in the nomenclature of fungi. Here, we examine the taxonomy of the thermophilic fungi most commonly used in industry in light of the recent taxonomic changes following the adoption of the International Code of Nomenclature for Algae, Fungi and Plants and also based on the movement One Fungus = One Name. Despite the widespread use of these fungi in applied research, several thermotolerant fungi still remain classified as thermophiles. Furthermore, we found that while some thermophilic fungi have had their genomes sequenced, many taxa still do not have barcode sequences of reference strains available in public databases. This lack of basic information is a limiting factor for the species identification of thermophilic fungi and for metagenomic studies in this field. Based on next-generation sequencing, such studies generate large amounts of data, which may reveal new species of thermophilic fungi in different substrates (composting systems, geothermal areas, piles of plant material). As discussed in this study, there are intrinsic problems associated with this method, considering the actual state of the taxonomy of thermophilic fungi. To overcome such difficulties, the taxonomic classification of this group should move towards standardizing the commonly used species names in industry and to assess the possibility of including new systems for describing species based on environmental sequences.

  4. Diversity of soil fungi in North 24 Parganas and their antagonistic potential against Leucinodes orbonalis Guen. (Shoot and fruit borer of brinjal).

    Science.gov (United States)

    Pal, Sujoy; Ghosh, Swapan Kumar

    2014-12-01

    Soil samples were collected from agricultural fields and gardens in North 24 Parganas, West Bengal, and fungi species were isolated from them. Thirty-one fungal species were isolated with 19 found in agricultural soil and 28 in garden soil. Twenty-eight out of 31 were identified using cultural and microscopic characters, and three were unidentified. The diversity of isolated fungi was calculated by Simpson's diversity index. The garden soil possessed more fungal colonies (750) than agricultural soil (477). In agricultural soil, the dominant fungi were Aspergillus niger, Rhizopus oryzae, and Penicillium expansum, and the dominant fungi of garden soil were A. niger and Fusarium moniliforme. Simpson's diversity index indicated that garden soil had more fungal diversity (0.939) than agricultural soil (0.896). The entomopathogenic capacity of the isolated fungi was tested against the brinjal shoot and fruit borer (Leucinodes orbonalis Guen) which is the major insect pest of brinjal. The isolated fungi were screened against larva of L. orbonalis for their entomopathogenic potential. Beauveria bassiana, A. niger, and P. expansum showed appreciable antagonism to L. orbonalis, and their lethal doses with 50 % mortality (LD50s) were 4.0 × 10(7), 9.06 × 10(7), and 1.50 × 10(8) spore/mL, respectively, and their times taken to reach 50 % mortality (LT50s) were 9.77, 10.56, and 10.60 days, respectively. This work suggests the restriction of chemical pesticide application in agricultural fields to increase fungal diversity. The entomopathogenic efficacy of B. bassiana could be used in agricultural fields to increase fugal diversity and protect the brinjal crop.

  5. Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi.

    Science.gov (United States)

    Karas, Panagiotis A; Perruchon, Chiara; Exarhou, Katerina; Ehaliotis, Constantinos; Karpouzas, Dimitrios G

    2011-02-01

    Wastewaters from the fruit packaging industry contain a high pesticide load and require treatment before their environmental discharge. We provide first evidence for the potential bioremediation of these wastewaters. Three white rot fungi (WRF) (Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus) and an Aspergillus niger strain were tested in straw extract medium (StEM) and soil extract medium (SEM) for degrading the pesticides thiabendazole (TBZ), imazalil (IMZ), thiophanate methyl (TM), ortho-phenylphenol (OPP), diphenylamine (DPA) and chlorpyrifos (CHL). Peroxidase (LiP, MnP) and laccase (Lac) activity was also determined to investigate their involvement in pesticide degradation. T. versicolor and P. ostreatus were the most efficient degraders and degraded all pesticides (10 mg l⁻¹) except TBZ, with maximum efficiency in StEM. The phenolic pesticides OPP and DPA were rapidly degraded by these two fungi with a concurrent increase in MnP and Lac activity. In contrast, these enzymes were not associated with the degradation of CHL, IMZ and TM implying the involvement of other enzymes. T. versicolor degraded spillage-level pesticide concentrations (50 mg l⁻¹) either fully (DPA, OPP) or partially (TBZ, IMZ). The fungus was also able to rapidly degrade a mixture of TM/DPA (50 mg l⁻¹), whereas it failed to degrade IMZ and TBZ when supplied in a mixture with OPP. Overall, T. versicolor and P. ostreatus showed great potential for the bioremediation of wastewaters from the fruit packaging industry. However, degradation of TBZ should be also achieved before further scaling up.

  6. Effects of available water on growth and competition of southern pine beetle associated fungi

    Science.gov (United States)

    Kier D. Klepzig; J. Flores-Otero; R.W. Hofstetter; M.P. Ayers

    2004-01-01

    Competitive interactions among bark beetle associated fungi are potentially influenced by abiotic factors. Water potential, in particular, undergoes marked changes over the course of beetle colonization of tree hosts. To investigate the impact of water potential on competition among three southern pine beetle associated fungi, Ophiostoma minus,

  7. Self-relevant beauty evaluation: Evidence from an event-related potentials study.

    Science.gov (United States)

    Kong, Fanchang; Zhang, Yan; Tian, Yuan; Fan, Cuiying; Zhou, Zongkui

    2015-03-01

    This study examines the electrophysiological correlates of beauty evaluation when participants performed the self-reference task. About 13 (7 men, 6 women) undergraduates participated in the experiment using event-related potentials. Results showed that the response to self-relevant information was faster compared to other-relevant information and no significant differences for self-relevant relative to mother-relevant information were observed. Both physical and interior beauty words for self-relevant information showed an enhanced late positive component as compared to other-relevant information. Physical beauty for self-relevant information yielded a larger late positive component in contrast to mother-relevant information but not for interior beauty. This study indicates that beauty is specific to the person who judges it though an individual and one's mother may hold similar views of interior beauty.

  8. Chemical ecology of fungi.

    Science.gov (United States)

    Spiteller, Peter

    2015-07-01

    Fungi are widespread in nature and have conquered nearly every ecological niche. Fungi occur not only in terrestrial but also in freshwater and marine environments. Moreover, fungi are known as a rich source of secondary metabolites. Despite these facts, the ecological role of many of these metabolites is still unknown and the chemical ecology of fungi has not been investigated systematically so far. This review intends to present examples of the various chemical interactions of fungi with other fungi, plants, bacteria and animals and to give an overview of the current knowledge of fungal chemical ecology.

  9. Potential of Basidiomycetous Fungi Isolated from Gunung Barus Forest North Sumatera in Decolorization of Wastewater of Textile Industry

    Science.gov (United States)

    Munir, E.; Priyani, N.; Suryanto, D.; Naimah, Z.

    2017-03-01

    A study of basidiomycetous fungi in decolorization of wastewater of textile industry has been started in our laboratory. The objective of this study was to obtain potential isolates and to examine their decolorization acitity. The fungi were isolated from local forest, Gunung Barus Forest, in North Sumatera and screened their ligninolytic activity qualitatively by bavendam method and the waste was obtained from local textile industry in Medan. Nineteen fungal isolates grew on plate agar medium containing 100% of waste supplemented with 2% glucose, and 6 of those exhibited good growth when glucose in the media was reduced to 1%. Surprisingly, these six potential isolates grew, although relatively at lower rate, when glucose was not included in the media. Meanwhile, there was no substantial decolorization of media could be observed on all plates cultures. Analyses of decolorization on liquid condition containing 25% of wastewater and no glucose showed that fungal grew at the bottom culture flask. All 6 isolates exhibited decolorization activity. Interestingly, mass of mycelia growth at the bottom absorbed dyes and dissolved suspended solid which was seemingly separated from very clean solution medium surrounding. These results indicated that the cultures utilized carbon source from waste and the extracellular matrixes produced by fungal isolates might involve in decolorization of textile wastewater.

  10. Changes in nutrient stoichiometry, elemental homeostasis and growth rate of aquatic litter-associated fungi in response to inorganic nutrient supply.

    Science.gov (United States)

    Gulis, Vladislav; Kuehn, Kevin A; Schoettle, Louie N; Leach, Desiree; Benstead, Jonathan P; Rosemond, Amy D

    2017-12-01

    Aquatic fungi mediate important energy and nutrient transfers in freshwater ecosystems, a role potentially altered by widespread eutrophication. We studied the effects of dissolved nitrogen (N) and phosphorus (P) concentrations and ratios on fungal stoichiometry, elemental homeostasis, nutrient uptake and growth rate in two experiments that used (1) liquid media and a relatively recalcitrant carbon (C) source and (2) fungi grown on leaf litter in microcosms. Two monospecific fungal cultures and a multi-species assemblage were assessed in each experiment. Combining a radioactive tracer to estimate fungal production (C accrual) with N and P uptake measurements provided an ecologically relevant estimate of mean fungal C:N:P of 107:9:1 in litter-associated fungi, similar to the 92:9:1 obtained from liquid cultures. Aquatic fungi were found to be relatively homeostatic with respect to their C:N ratio (~11:1), but non-homeostatic with respect to C:P and N:P. Dissolved N greatly affected fungal growth rate and production, with little effect on C:nutrient stoichiometry. Conversely, dissolved P did not affect fungal growth and production but controlled biomass C:P and N:P, probably via luxury P uptake and storage. The ability of fungi to immobilize and store excess P may alter nutrient flow through aquatic food webs and affect ecosystem functioning.

  11. Role and influence of mycorrhizal fungi on radiocesium accumulation by plants

    International Nuclear Information System (INIS)

    Dupre de Boulois, H.; Joner, E.J.; Leyval, C.; Jakobsen, I.; Chen, B.D.; Roos, P.; Thiry, Y.; Rufyikiri, G.; Delvaux, B.; Declerck, S.

    2008-01-01

    This review summarizes current knowledge on the contribution of mycorrhizal fungi to radiocesium immobilization and plant accumulation. These root symbionts develop extended hyphae in soils and readily contribute to the soil-to-plant transfer of some nutrients. Available data show that ecto-mycorrhizal (ECM) fungi can accumulate high concentration of radiocesium in their extraradical phase while radiocesium uptake and accumulation by arbuscular mycorrhizal (AM) fungi is limited. Yet, both ECM and AM fungi can transport radiocesium to their host plants, but this transport is low. In addition, mycorrhizal fungi could thus either store radiocesium in their intraradical phase or limit its root-to-shoot translocation. The review discusses the impact of soil characteristics, and fungal and plant transporters on radiocesium uptake and accumulation in plants, as well as the potential role of mycorrhizal fungi in phytoremediation strategies

  12. Role and influence of mycorrhizal fungi on radiocesium accumulation by plants

    Energy Technology Data Exchange (ETDEWEB)

    Dupre de Boulois, H. [Universite catholique de Louvain, Unite de Microbiologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Joner, E.J. [Bioforsk Soil and Environment, FredrikA Dahls vei 20, N-1432 As (Norway); Leyval, C. [LIMOS, Nancy University, CNRS, Faculte des Sciences, BP239, 54506 Vandoeuvre-les-Nancy, Cedex (France); Jakobsen, I. [Biosystems Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark); Chen, B.D. [Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Roos, P. [Radiation Research Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark); Thiry, Y.; Rufyikiri, G. [Biosphere Impact Assessment, SCK.CEN, Foundation of Public Utility, 200 Boeretang, 2400 Mol (Belgium); Delvaux, B. [Universite catholique de Louvain, Unite des Sciences du Sol, Croix du Sud 2/10, 1348 Louvain-la-Neuve (Belgium); Declerck, S. [Universite catholique de Louvain, Unite de Microbiologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)], E-mail: declerck@mbla.ucl.ac.be

    2008-05-15

    This review summarizes current knowledge on the contribution of mycorrhizal fungi to radiocesium immobilization and plant accumulation. These root symbionts develop extended hyphae in soils and readily contribute to the soil-to-plant transfer of some nutrients. Available data show that ecto-mycorrhizal (ECM) fungi can accumulate high concentration of radiocesium in their extraradical phase while radiocesium uptake and accumulation by arbuscular mycorrhizal (AM) fungi is limited. Yet, both ECM and AM fungi can transport radiocesium to their host plants, but this transport is low. In addition, mycorrhizal fungi could thus either store radiocesium in their intraradical phase or limit its root-to-shoot translocation. The review discusses the impact of soil characteristics, and fungal and plant transporters on radiocesium uptake and accumulation in plants, as well as the potential role of mycorrhizal fungi in phytoremediation strategies.

  13. Phosphate Solubilising Fungi from Mangroves of Bhitarkanika, Orissa

    Directory of Open Access Journals (Sweden)

    NIBHA GUPTA

    2008-06-01

    Full Text Available Mangroves have evolved several adaptations to swampy and saline environments. It is situated at the inter-phase between marine and terrestrial environment, which is highly productive providing nutrients to surrounding micro biota. Similar adaptive characteristics in the form and function may occur with the associated microflora in such environments. Several free living and symbiotic microorganisms occurred in such saline habitats and some of them are reported for their beneficial activity in mangrove ecosystem like biomineralization of organic matter and bio-transformation of minerals. In view of this, 106 fungi isolated from rhizosphere and phyllosphere of mangrove plants grown in Bhitarkanika, Orissa were screened on plate culture containing Pikovaskaya medium for the phosphate solubilization. Selected fungi were evaluated for their phosphate solubilization potential under different cultural conditions. A total of 36 fungi were isolated that showed variable halo zone on medium containing tricalcium phosphate when grown under different pH and temperature. The highest zone was formed by Aspergillus PF8 (63 mm and Aspergillus PF127 (46.5 mm. The observation on tricalcium phosphate solubilization activity of Paecilomyces, Cladobotrytis, Helminthosporium is rare. However, a detailed and elaborative studies are needed to confirm better mineral solubilization potential of these fungi.

  14. Soil fungi as indicators of pesticide soil pollution

    Directory of Open Access Journals (Sweden)

    Mandić Leka

    2005-01-01

    Full Text Available Soil fungi, with their pronounced enzymic activity and high osmotic potential, represent a significant indicator of negative effects of different pesticides on the agroecosystem as a whole. In that respect, a trial was set up on the alluvium soil type with the aim to investigate the effect of different herbicides (Simazine, Napropamid, Paraquat, fungicides (Captan and Mancozeb and insecticides (Fenitrothion and Dimethoate on a number of soil fungi under apple trees. The number of soil fungi was determined during four growing seasons by an indirect method of dilution addition on the Czapek agar. The study results indicate that the fungi belong to the group of microorganisms that, after an initial sensible response to the presence of pesticides in the soil, very rapidly establish normal metabolism enabling them even to increase their number. The fungicides and insecticides applied were found to be particularly effective in that respect.

  15. Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi

    Science.gov (United States)

    Toju, Hirokazu; Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S; Gilbert, Gregory S; Kadowaki, Kohmei

    2013-01-01

    In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak-dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal-root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root-associated fungal community was dominated by root-endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root-associated fungal communities of oak-dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities. PMID:23762515

  16. The importance of fungi and mycology for addressing major global challenges*.

    Science.gov (United States)

    Lange, Lene

    2014-12-01

    In the new bioeconomy, fungi play a very important role in addressing major global challenges, being instrumental for improved resource efficiency, making renewable substitutes for products from fossil resources, upgrading waste streams to valuable food and feed ingredients, counteracting life-style diseases and antibiotic resistance through strengthening the gut biota, making crop plants more robust to survive climate change conditions, and functioning as host organisms for production of new biological drugs. This range of new uses of fungi all stand on the shoulders of the efforts of mycologists over generations: the scientific discipline mycology has built comprehensive understanding within fungal biodiversity, classification, evolution, genetics, physiology, ecology, pathogenesis, and nutrition. Applied mycology could not make progress without this platform. To unfold the full potentials of what fungi can do for both environment and man we need to strengthen the field of mycology on a global scale. The current mission statement gives an overview of where we are, what needs to be done, what obstacles to overcome, and which potentials are within reach. It further provides a vision for how mycology can be strengthened: The time is right to make the world aware of the immense importance of fungi and mycology for sustainable global development, where land, water and biological materials are used in a more efficient and more sustainable manner. This is an opportunity for profiling mycology by narrating the role played by fungi in the bioeconomy. Greater awareness and appreciation of the role of fungi can be used to build support for mycology around the world. Support will attract more talent to our field of study, empower mycologists around the world to generate more funds for necessary basic research, and strengthen the global mycology network. The use of fungi for unlocking the full potentials of the bioeconomy relies on such progress. The fungal kingdom can be an

  17. A search for glomuferrin: a potential siderophore of arbuscular mycorrhizal fungi of the genus Glomus.

    Science.gov (United States)

    Winkelmann, Günther

    2017-08-01

    Most fungi are known to synthesize siderophores under iron limitation. However, arbuscular mycorrhizal fungi (AM fungi) have so far not been reported to produce siderophores, although their metabolism is iron-dependent. In an approach to isolate siderophores from AM fungi, we have grown plants of Tagetes patula nana in the presence of spores from AM fungi of the genus Glomus (G. etunicatum, G. mossae & unidentified Glomus sp.) symbiotically under iron limitation and sterile conditions. A siderophore was isolated from infected roots after 2-3 weeks of growth in pots containing low-iron sand with Hoagland solution. HPLC analysis of the root cell lysate revealed a peak at a retention time of 6.7 min which showed iron-binding properties in a chrome azurol S test. The compound was isolated by preparative HPLC and the structure was determined by high resolution electrospray FTICR-MS and GC/MS analysis of the hydrolysis products. From an observed absolute mass to charge ratio (m/z) of 401.11925 [M+H] + with a relative mass error of ∆ = 0.47 ppm an elemental composition of C 16 H 21 N 2 O 10 [M+H] + was derived, suggesting a molecular weight of 400 Da for glomuferrin. Corresponnding ion masses of m/z 423.10 and m/z 439.06 were asigned to the Na-adduct and K-adduct respectively. A mass of 455.03836 confirmed an Fe- complex with an elemental composition of C 16 H 19 N 2 O 10 Fe (∆ = 0.15 ppm). GC/MS analysis of the HCl lysate (6 N HCL, 12 h) revealed 1,4 butanediamine. Thus the proposed structure of the isolated siderophore from Glomus species consisted of 1,4 butanediamine amidically linked to two dehydrated citrate residues, similar to the previously identified bis-amidorhizoferrin. Thus, the isolated siderophore (glomuferrin) is a member of the rhizoferrin family previously isolated from fungi of the Mucorales (Zygomycetes).

  18. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity.

    Science.gov (United States)

    Astuti, Puji; Sudarsono, Sudarsono; Nisak, Khoirun; Nugroho, Giri Wisnu

    2014-12-01

    Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC) - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents.

  19. The Phytochemical and Antimicrobial Properties of Entomopathogenic Fungi in Nueva Vizcaya, Philippines

    Directory of Open Access Journals (Sweden)

    Fitzgerald L. Fabelico

    2015-12-01

    Full Text Available Entomopathogenicfungi (EPF are potential biocontrol agents against agricultural pests and insects. These fungi are also known to be a source of secondary metabolites and could be a potential source of antibiotic drugs in the future. This study aims to determine the phytochemical and antimicrobial properties of EPF isolated from different host insects and their larvae in the province of Nueva Vizcaya.The method employed in this study includes the collection of EPF from dead insects and their larvae, isolation and mass production of the fungi, identification of the different fungi, extraction of secondary metabolites from the fungi, phytochemical screening, and antimicrobial assay. The results revealed that the antimicrobial properties of the different EPF could be explained by their phytochemical properties.When compared to the positive control, the significantly high antifungal activities of the Pandora neoaphidis(EPF 1 against the Candida albicans can be due to the presence of sterols. Conversely, the significantly high antibacterial activities of Beauveria alba (EPF 5 against Bacillus subtiliscould be due to the presence ofsteroids, triterpenoids, glycosides, and fatty acids.These findings indicate that entomopathogenic fungi could be a potential source of antibiotic drugs against pathogenic microorganism in the near future. To realize this, future research is highly recommended for the isolation, elucidation, and evaluation of the safety of the bioactive compounds of entomopathogenic fungi responsible for the antimicrobial activities, prior to their use in humans.

  20. Comparison of the thermostability of cellulases from various thermophilic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Wojtczak, G; Breuil, C; Yamada, J; Saddler, J N

    1987-10-01

    The cellulase activities of six thermophilic fungi were compared. Although the thermophilic fungi grew at relatively high temperatures (> 45/sup 0/C) the optimum temperatures for assaying the various cellulase activities were only slightly higher than the optimum temperatures for the mesophilic fungi, Trichoderma harzianum. Over prolonged incubation (> 24 h) the thermophilic strains demonstrated a higher hydrolytic potential as a result of the greater thermostability of the cellulase components. Although the extracellular cellulase activities had similar pH and temperature optima, in some cases the thermostability of the extracellular components were considerably lower.

  1. Fungi and mycotoxins: Food contaminants

    Directory of Open Access Journals (Sweden)

    Kocić-Tanackov Sunčica D.

    2013-01-01

    Full Text Available The growth of fungi on food causes physical and chemical changes which, further affect negatively the sensory and nutritive quality of food. Species from genera: Aspergillus, Penicillium, Fusarium, Alternariа, Cladosporium, Mucor, Rhizopus, Eurotium and Emericella are usually found. Some of them are potentially dangerous for humans and animals, due to possible synthesis and excretion of toxic secondary metabolites - mycotoxins into the food. Their toxic syndroms in animals and humans are known as mycotoxicoses. The pathologic changes can be observed in parenhimatic organs, and in bones and central nervous system also. Specific conditions are necessary for mycotoxin producing fungi to synthetize sufficient quantities of these compounds for demonstration of biologic effects. The main biochemical paths in the formation of mycotoxins include the polyketide (aflatoxins, sterigmatocystin, zearalenone, citrinine, patulin, terpenic (trichothecenes, aminoacid (glicotoxins, ergotamines, sporidesmin, malformin C, and carbonic acids path (rubratoxins. Aflatoxins are the most toxigenic metabolites of fungi, produced mostly by Aspergillus flavus and A. parasiticus species. Aflatoxins appear more frequently in food in the tropic and subtropic regions, while the food in Europe is more exposed to also very toxic ochratoxin A producing fungi (A. ochraceus and some Penicillium species. The agricultural products can be contaminated by fungi both before and after the harvest. The primary mycotoxicoses in humans are the result of direct intake of vegetable products contaminated by mycotoxins, while the secondary mycotoxicoses are caused by products of animal origin. The risk of the presence of fungi and mycotoxin in food is increasing, having in mind that some of them are highly thermoresistent, and the temperatures of usual food sterilization is not sufficient for their termination. The paper presents the review of most important mycotoxins, their biologic effects

  2. Isolation, Identification And Screening Antibacterial Activity from Marine Sponge-Associated Fungi Against Multidrug-Resistant (MDR) Escherichia coli

    Science.gov (United States)

    Triandala Sibero, Mada; Sabdaningsih, Aninditia; Cristianawati, Olvi; Nuryadi, Handung; Karna Radjasa, Ocky; Sabdono, Agus; Trianto, Agus

    2017-02-01

    Irrational used of antibiotic in several decades ago causing resistant in bacteria and decreasing the cure rate of infectious diseases. Multidrug-resistant (MDR) Escherichia coli is known to cause various of infectious diseases such as urinary tract infection, nosocomial bloodstream infection, meningitis, bacteraemia, and gastrointestinal disease. Marine sponge-associated fungi have potential as source of new compound to combat MDR E. coli. The aims of this research were to isolate marine sponge-assosiated fungi, to screen potential fungi against MDR E. coli, to identify the potential fungi and its host sponge. There were 29 marine sponge-associated fungi successfully isolated from 9 sponges. Among 29 sponge-associated fungi screened, there were 7 isolates showed antibacterial activity against MDR E. coli. The best inhibition zone produced by MPS 14.1/MT 02 and MPS 14.3/MT 04 from sponge PP.SP.16.14. According to fungi identification result fungus MPS 14.1/MT 02 was identified as Trichoderma asperellum while MPS 14.3/MT 04 was identified as Trichoderma reesei. Sponge identification leaded the PP.SP.16.14 as Cinachyrella sp.

  3. The potentials of ICT application to increased relevance and ...

    African Journals Online (AJOL)

    The potentials of ICT application to increased relevance and sustainability of University Library Services in Nigeria. ... in Kenneth Dike library, University of Ibadan and University of Lagos Libraries and library search of recent literature on ICT application and marketing of ICT based services in Nigerian University libraries.

  4. Morphological and molecular identification of filamentous fungi isolated from cosmetic powders

    Directory of Open Access Journals (Sweden)

    Flavia Cristina Jastale Pinto

    2012-12-01

    Full Text Available Seven fungi were isolated from 50 samples of cosmetic powders. Morphological analyses and ribosomal DNA Internal Transcribed Spacers sequencing were performed which allowed the discrimination of the isolated fungi as Aspergillus fumigatus, Penicillium sp., and Cladosporium sp. which could have, among their species, potentially pathogenic microorganisms.

  5. High diversity of fungi in air particulate matter.

    Science.gov (United States)

    Fröhlich-Nowoisky, Janine; Pickersgill, Daniel A; Després, Viviane R; Pöschl, Ulrich

    2009-08-04

    Fungal spores can account for large proportions of air particulate matter, and they may potentially influence the hydrological cycle and climate as nuclei for water droplets and ice crystals in clouds, fog, and precipitation. Moreover, some fungi are major pathogens and allergens. The diversity of airborne fungi is, however, not well-known. By DNA analysis we found pronounced differences in the relative abundance and seasonal cycles of various groups of fungi in coarse and fine particulate matter, with more plant pathogens in the coarse fraction and more human pathogens and allergens in the respirable fine particle fraction (<3 microm). Moreover, the ratio of Basidiomycota to Ascomycota was found to be much higher than previously assumed, which might also apply to the biosphere.

  6. Identification of Virulence Factors in Nematode-Trapping Fungi - Insights from Genomics, Transcriptomics and Proteomics

    OpenAIRE

    Andersson, Karl-Magnus

    2013-01-01

    Nematode-trapping fungi are soil-living organisms with the unique ability to capture and infect free-living nematodes. The interest in studying these fungi arises from their potential use as biological control agents for plant- and animal-parasitic nematodes. To enter the parasitic stage, nematode-trapping fungi develop different kinds of trapping structures. In order to understand more about the evolution of parasitism in the nematode-trapping fungi and to identify virulence factors in these...

  7. Nematophagous fungi from decomposing cattle faeces in Argentina.

    Science.gov (United States)

    Saumell, Carlos Alfredo; Fernández, Alicia Silvina; Fusé, Luis Alberto; Rodríguez, Manuela; Sagüés, María Federica; Iglesias, Lucía Emilia

    2015-01-01

    Biological control of gastrointestinal nematodes of ruminants by use of nematophagous fungi would become part of any livestock parasite integral control system. Identifying autochthonous species that could then be selected for mass production is an important phase in the practical use of biological control. To search for nematophagous fungi with potential use as biological control agents against gastrointestinal nematodes in Argentina. Decomposing cattle faeces sampled in different locations were incubated in water agar 2% with Panagrellus sp. The developed nematophagous fungi were transferred to new water agar 2% plates and then to corn meal agar plates in order to carry out their identification. Fungal diversity and richness were also assessed. Seventeen species from nine genera of nematophagous fungi were found. Twelve species were nematode-trapping fungi and three species plus two fungi identified to genus level corresponded to endoparasitic fungi. Arthrobotrys conoides, Arthrobotrys oligospora, Duddingtonia flagrans, Monacrosporium doedycoides, Arthrobotrys robusta and Drechmeria coniospora were the most frequently isolated species overall in the whole study (6.6%, 5.7%, 5.7%, 5.7%, 4.7% and 4.7%, respectively) although other species were more frequently recorded at local levels such as Arthrobotrys pyriformis (18.8%). Only A. conoides has been previously isolated from ruminant faecal samples in Argentina. Five nematode-trapping fungal species are mentioned for the first time in the Americas D. flagrans and A. conoides, both identified in the present study, are among the most promising ones as biological control agents against gastrointestinal nematodes of ruminants. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  8. Molecular detection of toxigenic potential of fungi in peanut samples collected in retail shops in Maringá/PR, Brazil

    Directory of Open Access Journals (Sweden)

    Alessandra Valéria de Oliveira

    2015-02-01

    Full Text Available Many foods are susceptible to fungal contamination. Grains, such as peanuts, are commonly affected, with consequences including compromised integrity and infeasibility for human and animal consumption. Furthermore, some fungi may pose a health risk, largely due the production of mycotoxins. Among these, aflatoxins produced by Aspergillus flavus and A. parasiticus produce various carcinogenic, teratogenic, immunosuppressive, hepatotoxic and nephrotoxic effects. Molecular techniques have been used to identify and distinguish fungal species in foods. The objective of this study was molecular detection of Aspergillus species in peanut samples collected in stores in Maringá-PR, by amplification of fungal genetic material with specific primers for the intergenic spacer aflR-aflJ and later cutting with restriction enzymes. Of the 50 peanut samples analyzed, 27 were positive for the intergenic spacer aflR-aflJ, seven of which were identified as Aspergillus flavus. Our results demonstrate that peanuts sold in retail stores in this region have potential for contamination with toxigenic fungi.

  9. Safety evaluation of filamentous fungi isolated from industrial doenjang koji.

    Science.gov (United States)

    Lee, Jin Hee; Jo, Eun Hye; Hong, Eun Jin; Kim, Kyung Min; Lee, Inhyung

    2014-10-01

    A few starters have been developed and used for doenjang fermentation but often without safety evaluation. Filamentous fungi were isolated from industrial doenjang koji, and their potential for mycotoxin production was evaluated. Two fungi were isolated; one was more dominantly present (90%). Both greenish (SNU-G) and whitish (SNU-W) fungi showed 97% and 95% internal transcribed spacer sequence identities to Aspergillus oryzae/flavus, respectively. However, the SmaI digestion pattern of their genomic DNA suggested that both belong to A. oryzae. Moreover, both fungi had morphological characteristics similar to that of A. oryzae. SNU-G and SNU-W did not form sclerotia, which is a typical characteristic of A. oryzae. Therefore, both fungi were identified to be A. oryzae. In aflatoxin gene cluster analysis, both fungi had norB-cypA genes similar to that of A. oryzae. Consistent with this, aflatoxins were not detected in SNU-G and SNU-W using ammonia vapor, TLC, and HPLC analyses. Both fungi seemed to have a whole cyclopiazonic acid (CPA) gene cluster based on PCR of the maoA, dmaT, and pks-nrps genes, which are key genes for CPA biosynthesis. However, CPA was not detected in TLC and HPLC analyses. Therefore, both fungi seem to be safe to use as doenjang koji starters and may be suitable fungal candidates for further development of starters for traditional doenjang fermentation.

  10. DecoFungi: a web application for automatic characterisation of dye decolorisation in fungal strains.

    Science.gov (United States)

    Domínguez, César; Heras, Jónathan; Mata, Eloy; Pascual, Vico

    2018-02-27

    Fungi have diverse biotechnological applications in, among others, agriculture, bioenergy generation, or remediation of polluted soil and water. In this context, culture media based on color change in response to degradation of dyes are particularly relevant; but measuring dye decolorisation of fungal strains mainly relies on a visual and semiquantitative classification of color intensity changes. Such a classification is a subjective, time-consuming and difficult to reproduce process. DecoFungi is the first, at least up to the best of our knowledge, application to automatically characterise dye decolorisation level of fungal strains from images of inoculated plates. In order to deal with this task, DecoFungi employs a deep-learning model, accessible through a user-friendly web interface, with an accuracy of 96.5%. DecoFungi is an easy to use system for characterising dye decolorisation level of fungal strains from images of inoculated plates.

  11. Population performance of collembolans feeding on soil fungi from different ecological niches

    DEFF Research Database (Denmark)

    Larsen, J.; Johansen, A.; Larsen, S.E.

    2008-01-01

    The potential reproductive value of arbuscular mycorrhizal fungi (Gloinus intraradices and Glomus invermaium), root pathogenic fungi (Rhizoctonia solani and Fusarium culmorum) and saprotrophic fungi (Penicillium hordei and Trichoderma harzianum) were examined for the collembolans Folsomia candida....... Different quality indicators such as the C:N ratio of the fungal food sources as well as other biological parameters are discussed in relation to their reproductive value and Collembola preferential feeding. (c) 2007 Elsevier Ltd. All rights reserved....

  12. The antimicrobial potential of algicolous marine fungi for counteracting multidrug-resistant bacteria: phylogenetic diversity and chemical profiling.

    Science.gov (United States)

    Gnavi, Giorgio; Palma Esposito, Fortunato; Festa, Carmen; Poli, Anna; Tedesco, Pietro; Fani, Renato; Monti, Maria Chiara; de Pascale, Donatella; D'Auria, Maria Valeria; Varese, Giovanna Cristina

    2016-01-01

    Marine fungi represent an important but still largely unexplored source of novel and potentially bioactive secondary metabolites. The antimicrobial activity of nine sterile mycelia isolated from the green alga Flabellia petiolata collected from the Mediterranean Sea was tested on four antibiotic-resistant bacterial strains using extracellular and intracellular extracts obtained from each fungal strain. The isolated fungi were identified at the molecular level and assigned to one of the Dothideomycetes, Sordariomycetes or Eurotiomycetes classes. Following assessment of inhibition of bacterial growth (IC50), all crude extracts were subjected to preliminary (1)H NMR and TLC analysis. According to preliminary pharmacologic and spectroscopic/chromatographic results, extracts of fungal strains MUT 4865, classified as Beauveria bassiana, and MUT 4861, classified as Microascacea sp.2, were selected for LC-HRMS analysis. Chemical profiling of antibacterial extracts from MUT 4861 and MUT 4865 by LC HRMS allowed identification of the main components of the crude extracts. Several sphingosine bases were identified, including a compound previously unreported from natural sources, which gave a rationale to the broad spectrum of antibacterial activity exhibited. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Cellulases from Thermophilic Fungi: Recent Insights and Biotechnological Potential

    Directory of Open Access Journals (Sweden)

    Duo-Chuan Li

    2011-01-01

    Full Text Available Thermophilic fungal cellulases are promising enzymes in protein engineering efforts aimed at optimizing industrial processes, such as biomass degradation and biofuel production. The cloning and expression in recent years of new cellulase genes from thermophilic fungi have led to a better understanding of cellulose degradation in these species. Moreover, crystal structures of thermophilic fungal cellulases are now available, providing insights into their function and stability. The present paper is focused on recent progress in cloning, expression, regulation, and structure of thermophilic fungal cellulases and the current research efforts to improve their properties for better use in biotechnological applications.

  14. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Puji Astuti

    2014-12-01

    Full Text Available Purpose: Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Methods: Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Results: Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. Conclusion: These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents.

  15. Dispersal of arbuscular mycorrhizal fungi and plants during succession

    Science.gov (United States)

    García de León, David; Moora, Mari; Öpik, Maarja; Jairus, Teele; Neuenkamp, Lena; Vasar, Martti; Bueno, C. Guillermo; Gerz, Maret; Davison, John; Zobel, Martin

    2016-11-01

    Arbuscular mycorrhizal (AM) fungi are important root symbionts that enhance plant nutrient uptake and tolerance to pathogens and drought. While the role of plant dispersal in shaping successional vegetation is well studied, there is very little information about the dispersal abilities of AM fungi. We conducted a trap-box experiment in a recently abandoned quarry at 10 different distances from the quarry edge (i.e. the potential propagule source) over eleven months to assess the short term, within-year, arrival of plant and AM fungal assemblages and hence their dispersal abilities. Using DNA based techniques we identified AM fungal taxa and analyzed their phylogenetic diversity. Plant diversity was determined by transporting trap soil to a greenhouse and identifying emerging seedlings. We recorded 30 AM fungal taxa. These contained a high proportion of ruderal AM fungi (30% of taxa, 79% of sequences) but the richness and abundance of AM fungi were not related to the distance from the presumed propagule source. The number of sequences of AM fungi decreased over time. Twenty seven plant species (30% of them ruderal) were recorded from the soil seed traps. Plant diversity decreased with distance from the propagule source and increased over time. Our data show that AM fungi with ruderal traits can be fast colonizers of early successional habitats.

  16. Biosorption of hexavalent chromium in a tannery industry wastewater using fungi species

    International Nuclear Information System (INIS)

    Sivakumar, D.

    2016-01-01

    The isolated fungi species of different kinds from chromium contaminated soil sites located in Nagalkeni, Chennai were used for reducing chromium(VI) in a tannery industry wastewater of Nagalkeni, Chennai. The experiments were conducted to know biosorption potential of isolated fungi species for removing chromium(VI) in a tannery industry wastewater against the different p H, fungi biomass and chromium(VI) concentration (dilution ratio). The results of this study indicated that the order of maximum removal of chromium(VI) by an isolated fungi species at an optimum pH of 3, fungi biomass of 4g and an initial chromium(VI) concentration of 18.125 mg/L (dilution ratio 4) is A. niger > A. flavus > A. fumigatus > A. nidulans > A. heteromorphus > A. foetidus > A. viridinutans. This study found that the maximum removal of chromium(VI) was achieved by Aspergillus niger (96.3 %) than other fungi species at chromium(VI) concentration of 18.125 mg/L in a tannery industry wastewater. The chromium removal from tannery industry wastewater was validated by checking chromium removal in an aqueous solution and by checking the removal efficiency of other parameters in a tannery industry wastewater using same isolated A. niger. Biosorption model was proposed to simulate the experimental condition for removing chromium(VI) in a tannery industry wastewater by all isolated fungi species. The R2 and x2 values of the proposed model predicted that the proposed biosorption model is very much useful for predicting the trend of reduction potential of chromium(VI) in a tannery industry wastewater by all isolated fungi species. This study suggested that one could select the type of fungi species, ion concentration level, selection of treatment period, quantity of biomass to be used, and p H level of the medium, to achieve the highest reduction of any toxic metals from any contaminated water, wastewater and soil environment.

  17. HONGOS NATIVOS CON POTENCIAL DEGRADADOR DE TINTES INDUSTRIALES EN EL VALLE DE ABURRÁ, COLOMBIA NATIVE FUNGI WITH INDUSTRIAL DYE DEGRADING POTENTIAL IN THE ABURRÁ VALLEY, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Xiomara Chanagá Vera

    2012-06-01

    Full Text Available Resumen. Los colorantes industriales poseen estructuras químicas estables que dificultan su tratamiento mediante procesos fisicoquímicos convencionales. En los últimos años, como una alternativa biotecnológica para la degradación de compuestos recalcitrantes, se han utilizado hongos ligninolíticos de diferentes grupos taxonómicos, que producen enzimas oxidantes de dichas moléculas. El aislamiento e identificación de especies fúngicas nativas con potencial decolorante, resulta promisorio para biorremediar efluentes provenientes de industrias textiles. En esta investigación se identificaron, con base en análisis de secuencias de las regiones ITS1 e ITS2 y 28S del ADNr, y por sus características morfológicas, cuatro hongos nativos aislados de material lignocelulósico colectado en el Valle de Aburrá (Antioquia, Colombia. Los aislamientos fueron identificados como el ascomycete Leptosphaerulina sp., y los hongos anamórficos Trichoderma viride (dos cepas y Aspergillus niger.Abstract. Synthetic dyes have stable chemical structures that hinder their treatment by conventional physicochemical processes. In recent years, as a biotechnological alternative for degradation of these recalcitrant compounds, wood degrading fungi of different taxonomic groups have been used. These fungi produced enzymes with oxidative potential for those molecules. The isolation and identification of ligninolytic fungi with potential for discoloration is promising for bioremediation of effluents from textile industries. In this research, we identified four native fungi isolated from lignocellulosic material in the Aburra Valley (Antioquia, Colombia. Identification was made based on sequence analysis of ITS1-ITS2 regions and 28S rDNA as well as morphological characteristics. The fungi were identified as the ascomycete Leptosphaerulina sp., and the anamorphic species Trichoderma viride (two strains and Aspergillus niger.

  18. Nematode-Trapping Fungi.

    Science.gov (United States)

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  19. A SIMPLE POLYMERASE CHAIN REACTION/RESTRICTION FRAGMENT LENGTH POLYMORPHISM ASSAY CAPABLE OF IDENTIFYING MEDICALLY RELEVANT FILAMENTOUS FUNGI

    Science.gov (United States)

    The accumulating evidence that suggests that numerous unhealthy conditions in the indoor environment are the result of abnormal growth of the filamentous fungi (mold) in and on buildign surfaces. In order to accurately reflect the organisms responsible for these maladies it is of...

  20. Entomopathogenic fungi for control of arthropod pests in egg production facilities

    DEFF Research Database (Denmark)

    Steenberg, Tove; Kilpinen, Ole

    Beauveria bassiana and other species of entomopathogenic fungi are potential candidates for microbial control of major pests in egg layers, e.g. the poultry red mite (Dermanyssus gallinae), the housefly (Musca domestica) and the darkling beetle (Alphitobius diaperinus). We have selected an isolate...... of B. bassiana with high efficacy against all target pests in laboratory assays, and will review the existing information on the natural occurrence of these fungi in farms with confined animals and discuss the possibilities and constraints for exploitation of entomopathogenic fungi as control agents...

  1. Spatial Segregation and Aggregation of Ectomycorrhizal and Root-Endophytic Fungi in the Seedlings of Two Quercus Species

    Science.gov (United States)

    Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S.; Hidaka, Amane; Kadowaki, Kohmei; Toju, Hirokazu

    2014-01-01

    Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants' control of fungus–fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high-throughput investigation of fungus–fungus interactions in plant root systems. PMID:24801150

  2. Trace element concentrations in higher fungi

    International Nuclear Information System (INIS)

    Byrne, A.R.; Ravnik, V.; Kosta, L.

    1976-01-01

    The concentrations of ten trace elements, As, Br, Cd, Cu, Hg, I, Mn, Se, Zn and V, have been determined in up to 27 species of higher fungi from several sites in Slovenia, Yugoslavia. Analyses were based on destructive neutron activation techniques. Data are presented and compared with the concentrations found in soils. Previously values were non-existent or scanty for these elements, so that the data represent typical levels for basidiomycetes. In addition to confirming high levels of mercury in many species, the survey also found that cadmium is accumulated to a surprising extent by most fungi, the average value being 5 ppm. Among other accumulations found was bromine by the genus Amanita, and selenium by edible Boletus. Correlation analysis between all pairs of trace elements gave values for r of from 0.75 to 0.43 for 7 pairs (Cu and Hg, 0.75; Se and As, 0.69). As well as these features of biochemical interest, the values found and the pattern of accumulation suggest potential uses of fungi in environmental studies

  3. Maintaining heterokaryosis in pseudo-homothallic fungi.

    Science.gov (United States)

    Grognet, Pierre; Silar, Philippe

    2015-01-01

    Among all the strategies displayed by fungi to reproduce and propagate, some species have adopted a peculiar behavior called pseudo-homothallism. Pseudo-homothallic fungi are true heterothallics, i.e., they need 2 genetically-compatible partners to mate, but they produce self-fertile mycelium in which the 2 different nuclei carrying the compatible mating types are present. This lifestyle not only enables the fungus to reproduce without finding a compatible partner, but also to cross with any mate it may encounter. However, to be fully functional, pseudo-homothallism requires maintaining heterokaryosis at every stage of the life cycle. We recently showed that neither the structure of the mating-type locus nor hybrid-enhancing effect due to the presence of the 2 mating types accounts for the maintenance of heterokaryosis in the pseudo-homothallic fungus P. anserina. In this addendum, we summarize the mechanisms creating heterokaryosis in P. anserina and 2 other well-known pseudo-homothallic fungi, Neurospora tetrasperma and Agaricus bisporus. We also discuss mechanisms potentially involved in maintaining heterokaryosis in these 3 species.

  4. Fusarium and other opportunistic hyaline fungi

    Science.gov (United States)

    This chapter focuses on those fungi that grow in tissue in the form of hyaline or lightly colored septate hyphae. These fungi include Fusarium and other hyaline fungi. Disease caused by hyaline fungi is referred to as hyalohyphomycosis. Hyaline fungi described in this chapter include the anamorphic,...

  5. Uptake and transformation of arsenic during the vegetative life stage of terrestrial fungi

    International Nuclear Information System (INIS)

    Nearing, Michelle M.; Koch, Iris; Reimer, Kenneth J.

    2015-01-01

    Many species of terrestrial fungi produce fruiting bodies that contain high proportions of arsenobetaine (AB), an arsenic compound of no known toxicity. It is unknown whether fungi produce or accumulate AB from the surrounding environment. The present study targets the vegetative life stage (mycelium) of fungi, to examine the role of this stage in arsenic transformations and potential formation of AB. The mycelia of three different fungi species were cultured axenically and exposed to AB, arsenate (As(V)) and dimethylarsinoyl acetic acid for 60 days. Agaricus bisporus was additionally exposed to hypothesized precursors for AB and the exposure time to As(V) and dimethlyarsinic acid was also extended to 120 days. The mycelia of all fungi species accumulated all arsenic compounds with two species accumulating significantly more AB than other compounds. Few biotransformations were observed in these experiments indicating that it is unlikely that the mycelium of the fungus is responsible for biosynthesizing AB. - Highlights: • Mycelia of terrestrial fungi were exposed to arsenobetaine (AB) and potential precursors. • Mycelium may be selectively accumulating AB and transporting it to fruiting bodies. • Mycelium did not biosynthesize AB. - Mycelia of edible mushrooms preferentially accumulate arsenobetaine but do not biosynthesize this non-toxic arsenical

  6. Phylogenetic congruence between subtropical trees and their associated fungi.

    Science.gov (United States)

    Liu, Xubing; Liang, Minxia; Etienne, Rampal S; Gilbert, Gregory S; Yu, Shixiao

    2016-12-01

    Recent studies have detected phylogenetic signals in pathogen-host networks for both soil-borne and leaf-infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next-generation high-throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK , rbcL , atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host-fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant-fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant-fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.

  7. Responses of mycorrhizal fungi and other rootassociated fungi to climate change

    DEFF Research Database (Denmark)

    Merrild, Marie Porret

    Climate change is expected to affect many terrestrial ecosystem processes. Mycorrhizal fungi are important to soil carbon (C) and nutrient cycling thus changes in abundance of mycorrhizal fungi could alter ecosystem functioning. The aim of the present thesis was therefore to investigate responses...... of mycorrhizal fungi to climate change in a seasonal and long-term perspective. Effects of elevated CO2 (510 ppm), night-time warming and extended summer drought were investigated in the long-term field experiment CLIMAITE located in a Danish semi-natural heathland. Mycorrhizal colonization was investigated...... levels. Colonization by arbuscular mycorrhizal (AM) fungi increased under elevated CO2 and warming in spring while ericoid mycorrhiza (ErM) colonisation decreased in response to drought and warming. Increased AM colonization correlated with higher phosphorus and nitrogen root pools. Dark septate...

  8. Virulence potential of filamentous fungi isolated from poultry barns in Cascavel, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Cleison Ledesma Taira

    2011-03-01

    Full Text Available Opportunistic fungi are those that normally would not cause diseases in otherwise healthy people, but are able to cause problems under some circumstances, and for this they need to possess a certain virulence potential. The objective of this study was to identify samples of filamentous fungi isolated from poultry barns in Cascavel, Paraná, and also to evaluate their virulence potential by assessing proteinase production, hemolytic activity, urease production, and growth rate at 37 ºC. We have evaluated the following samples: Acremonium hyalinulum (1 sample, Aspergillus sp. (12, Beauveria bassiana (1, Curvularia brachyspora (1, Paecilomyces variotti (1, and Penicillium sp. (2. Out of the 18 samples analyzed, 44.4% showed proteolytic activity using albumin as the substrate versus 66.7% when using casein; 66.7% showed hemolytic activity, 83.3% were positive for urea, and 88.9% grew at a temperature of 37 ºC. The results demonstrated that the majority of the isolates expressed virulence factors. Therefore, these isolates have the potential to harm human hosts, such as those working at poultry barns, especially predisposed or susceptible individuals.Fungos oportunistas são aqueles que normalmente não causariam doenças em pessoas saudáveis, mas eles são capazes de causar problemas sob certas circunstâncias e, para isso, eles necessitam possuir algum potencial de virulência. O objetivo deste trabalho foi identificar amostras de fungos filamentosos isolados de granjas de aves em Cascavel, Paraná, e também avaliar o seu potencial de virulência, verificando a produção de proteinase, atividade hemolítica, produção de urease e crescimento a 37 ºC. Foram avaliados Acremonium hyalinulum (01, Aspergillus sp (12, Beauveria bassiana (01, Curvularia brachyspora (01, Paecylomices variotti (01 e Penicillium sp (02. Das 18 amostras, 44,4% apresentaram atividade proteolítica usando como substrato a albumina e 66,7% com caseína; 66,7% demonstraram

  9. Genomic DNA extraction and barcoding of endophytic fungi.

    Science.gov (United States)

    Diaz, Patricia L; Hennell, James R; Sucher, Nikolaus J

    2012-01-01

    Endophytes live inter- and/or intracellularly inside healthy aboveground tissues of plants without causing disease. Endophytic fungi are found in virtually every vascular plant species examined. The origins of this symbiotic relationship between endophytes go back to the emergence of vascular plants. Endophytic fungi receive nutrition and protection from their hosts while the plants benefit from the production of fungal secondary metabolites, which enhance the host plants' resistance to herbivores, pathogens, and various abiotic stresses. Endophytic fungi have attracted increased interest as potential sources of secondary metabolites with agricultural, industrial, and medicinal use. This chapter provides detailed protocols for isolation of genomic DNA from fungal endophytes and its use in polymerase chain reaction-based amplification of the internal transcribed spacer region between the conserved flanking regions of the small and large subunit of ribosomal RNA for barcoding purposes.

  10. Spatial segregation and aggregation of ectomycorrhizal and root-endophytic fungi in the seedlings of two Quercus species.

    Directory of Open Access Journals (Sweden)

    Satoshi Yamamoto

    Full Text Available Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., < 0.005 turned non-significant after the application of a multiple comparison method. However, our overall results imply that the community structures of ectomycorrhizal and endophytic fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants' control of fungus-fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high

  11. Sequestration of Carbon in Mycorrhizal Fungi Under Nitrogen Fertilization

    Science.gov (United States)

    Treseder, K. K.; Turner, K. M.

    2005-12-01

    Mycorrhizal fungi are root symbionts that facilitate plant uptake of soil nutrients in exchange for plant carbohydrates. They grow in almost every terrestrial ecosystem on earth, form relationships with about 80% of plant species, and receive 10 to 20% of the carbon fixed by their host plants. As such, they could potentially sequester a significant amount of carbon in ecosystems. We hypothesized that nitrogen fertilization would decrease carbon storage in mycorrhizal fungi, because plants should reduce investment of carbon in mycorrhizal fungi when nitrogen availability is high. We measured the abundance of two major groups of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, in control and nitrogen-fertilized plots within three boreal ecosystems of inland Alaska. The ecosystems represented different recovery stages following severe fire, and comprised a young site dominated by AM fungi, an old site dominated by ECM fungi, and an intermediate site co-dominated by both groups. Pools of mycorrhizal carbon included root-associated AM and ECM structures, soil-associated AM hyphae, and soil-associated glomalin. Glomalin is a glycoprotein produced only by AM fungi. It is present in the cell walls of AM hyphae, and then is deposited in the soil as the hyphae senesce. Nitrogen significantly altered total mycorrhizal carbon pools, but its effect varied by site (site * N interaction, P = 0.05). Under nitrogen fertilization, mycorrhizal carbon was reduced from 99 to 50 g C m2 in the youngest site, was increased from 124 to 203 g C m2 in the intermediate-aged site, and remained at 35 g C m2 in the oldest site. The changes in total mycorrhizal carbon stocks were driven mostly by changes in glomalin (site * N interaction, P = 0.05), and glomalin stocks were strongly correlated with AM hyphal abundance (P stocks within root-associated AM structures increased significantly with nitrogen fertilization across all sites (P = 0.001), as did root

  12. Fungi in cake production chain: Occurrence and evaluation of growth potential in different cake formulations during storage.

    Science.gov (United States)

    Morassi, Letícia L P; Bernardi, Angélica O; Amaral, Alexandra L P M; Chaves, Rafael D; Santos, Juliana L P; Copetti, Marina V; Sant'Ana, Anderson S

    2018-04-01

    This study aimed to determine the prevalence and populations of fungi in cake production chain. Besides, the growth potential of twelve fungal strains in different cake formulations was evaluated. Raw materials from two different batches (n=143), chocolate cakes (n=30), orange cakes (n=20), and processing environment air samples (n=147) were analyzed. Among the raw materials, wheat flour (3.2±0.3 log CFU per g) and corn meal (3.8±0.8 log CFU per g) belonging to batch #1 showed significant higher fungal counts (pcakes were Aspergillus flavus (28.15%), Penicillium citrinum (18.45%), Penicillium paxilli (14.56%), and Aspergillus niger (6.8%), which were also detected in the raw materials and processing environment air. Only Penicillium glabrum and Penicillium citrinum showed visible mycelium (>3mm) in the free of preservative cake formulation at 19th and 44th days of storage at 25°C, respectively. Revealing the biodiversity of fungi in ingredients, air and final products, as well as challenging final products with representative fungal strains may assist to implement effective controlling measures as well as to gather data for the development of more robust cake formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Potential of aqueous ozone to control aflatoxigenic fungi in Brazil nuts

    OpenAIRE

    Silva, Otniel Freitas; Morales-Valle, H.; Venâncio, Armando

    2011-01-01

    The Brazil nut (Bertholethia excelsa) is an important non timber forest product (NTFP) from the Amazonian forest. Despite their nutritious value, Brazil nuts are susceptible to contamination with Aspergillus section Flavi fungi and consequently with aflatoxins. Since aqueous ozone reduces microorganisms population and has oxidant effect on aflatoxins, the effect of ozone on. Both natural and artificially contaminated Brasil nuts were studied in the present work. The former were inoculated wit...

  14. Evolution of entomopathogenicity in fungi.

    Science.gov (United States)

    Humber, Richard A

    2008-07-01

    The recent completions of publications presenting the results of a comprehensive study on the fungal phylogeny and a new classification reflecting that phylogeny form a new basis to examine questions about the origins and evolutionary implications of such major habits among fungi as the use of living arthropods or other invertebrates as the main source of nutrients. Because entomopathogenicity appears to have arisen or, indeed, have lost multiple times in many independent lines of fungal evolution, some of the factors that might either define or enable entomopathogenicity are examined. The constant proximity of populations of potential new hosts seem to have been a factor encouraging the acquisition or loss of entomopathogenicity by a very diverse range of fungi, particularly when involving gregarious and immobile host populations of scales, aphids, and cicadas (all in Hemiptera). An underlying theme within the vast complex of pathogenic and parasitic ascomycetes in the Clavicipitaceae (Hypocreales) affecting plants and insects seems to be for interkingdom host-jumping by these fungi from plants to arthropods and then back to the plant or on to fungal hosts. Some genera of Entomophthorales suggest that the associations between fungal pathogens and their insect hosts appear to be shifting away from pathogenicity and towards nonlethal parasitism.

  15. Human exposure to airborne fungi from genera used as biocontrol agents in plant production.

    Science.gov (United States)

    Madsen, Anne Mette; Hansen, Vinni Mona; Meyling, Nicolai Vitt; Eilenberg, Jørgen

    2007-01-01

    The fungi Trichoderma harzianum, T. polysporum, T. viride, Paeciliomyces fumosoroseus, P. lilacinus, Verticillium/lecanicillium lecanii, Ulocladium oudemansii, U. atrum and Beauveria bassiana are used or considered to be used for biocontrol of pests and plant diseases. Human exposure to these fungi in environments where they may naturally occur or are used as biocontrol agents has not been directly investigated to date. This review aims to provide an overview of the current knowledge of human exposure to fungi from the relevant genera. The subject of fungal taxonomy due to the rapid development of this issue is also discussed. B. bassiana, V. lecanii, T. harzianum, T. polysporum, P. lilacinus and U. oudemansii were infrequently present in the air and thus people in general seem to be seldom exposed to these fungi. However, when V. lecanii was present, high concentrations were measured. Fungi from the genera Trichoderma, Paecilomyces and Ulocladium were rarely identified to the species level and sometimes high concentrations were reported. T. viride and U. atrum were detected frequently in different environments and sometimes with a high frequency of presence in samples. Thus, people seem to be frequently exposed to these fungi. Sequence data have led to recent revisions of fungal taxonomy, and in future studies it is important to specify the taxonomy used for identification, thus making comparisons possible.

  16. Fungi in space--literature survey on fungi used for space research.

    Science.gov (United States)

    Kern, V D; Hock, B

    1993-09-01

    A complete review of the scientific literature on experiments involving fungi in space is presented. This review begins with balloon experiments around 1935 which carried fungal spores, rocket experiments in the 1950's and 60's, satellite and moon expeditions, long-time orbit experiments and Spacelab missions in the 1980's and 90's. All these missions were aimed at examining the influence of cosmic radiation and weightlessness on genetic, physiological, and morphogenetic processes. During the 2nd German Spacelab mission (D-2, April/May 1993), the experiment FUNGI provided the facilities to cultivate higher basidiomycetes over a period of 10 d in orbit, document gravimorphogenesis and chemically fix fruiting bodies under weightlessness for subsequent ultrastructural analysis. This review shows the necessity of space travel for research on the graviperception of higher fungi and demonstrates the novelty of the experiment FUNGI performed within the framework of the D-2 mission.

  17. Yeast-like fungi possessing bio-indicator properties isolated from the Łyna river

    Directory of Open Access Journals (Sweden)

    Maria Dynowska

    2014-08-01

    Full Text Available Yeast-like fungi isolated in the Łyna river are constant components of microflora of inland waters. Every increase in their number indicates progress in the process of eutrophication and accumulation of organic and inorganic pollutans. The fungi Candida aibicans, Pichia guilliermondii, P. anomala, Rhodotorula glutinis i Trichosporon beigelii, potentially pathogenic apperred in water with high content of municipal sewage, but T. aquatile - in the clean waters only. The tested fungi can be also considered as bio-indicators.

  18. Bacteria, fungi and arthropod pests collected on modern human mummies

    Directory of Open Access Journals (Sweden)

    F. Palla

    2011-08-01

    Full Text Available A survey of opportunistic biocenosis (macro and micro organisms associated with a rest of human mummy samples was carried out to characterise the biocenosis and to detect the potential of biodeteriogens. The rests of the human modern mummies come from a hypogeic site. Since mummies are relevant from a historic-artistic-scientific point of view, an aspect of this study was the identification and characterization of the biological systems related with biodeterioration of organic matter. In a first step, different sampling methods, according to the taxa, were applied. Technological procedures were combined in order to have an interdisciplinary approach to the conservation actions for testing future restoration protocols. Specimens were collected, identified and characterized by Microscopy (light, SEM, CLSM and molecular analyses (DNA extraction, in vitro target sequence amplification, sequencing, sequence analysis. The results highlight a rather complex biocenonsis consisting of fungi, cyanobacteria, several insects and other arthropods.

  19. Philatelic Mycology: Families of Fungi

    NARCIS (Netherlands)

    Marasas, W.F.O.; Marasas, H.M.; Wingfield, M.J.; Crous, P.W.

    2014-01-01

    Philately, the study of postage stamps, and mycology, the study of fungi, are seldom connected by those that practice these very different activities. When associated, philatelic mycology would be considered as the study of fungi on stamps. The Fungi touch every aspect of our daily lives, most

  20. Application of ATR-FTIR Spectroscopy to Compare the Cell Materials of Wood Decay Fungi with Wood Mould Fungi

    Directory of Open Access Journals (Sweden)

    Barun Shankar Gupta

    2015-01-01

    Full Text Available Wood fungi create vast damage among standing trees and all types of wood materials. The objectives of this study are to (a characterize the cell materials of two major wood decay fungi (Basidiomycota, namely, Trametes versicolor and Postia placenta, and (b compare the cell materials of decay fungi with four wood mould fungi (Ascomycota, namely, Aureobasidium pullulans, Alternaria alternata, Cladosporium cladosporioides, and Ulocladium atrum. Fourier transform infrared (FTIR spectroscopy is used to characterize the microbial cellular materials. The results showed that the IR bands for the fatty acid at ∼2900 cm−1 were different for the two-decay-fungi genre. Postia placenta shows more absorbance peaks at the fatty acid region. Band ratio indices for amide I and amide II from protein amino acids were higher for the mould fungi (Ascomycota than the decay fungi (Basidiomycota. Similarly, the band ratio index calculated for the protein end methyl group was found to be higher for the mould fungi than the decay fungi. Mould fungi along with the decay fungi demonstrated a positive correlation (R2=0.75 between amide I and amide II indices. The three-component multivariate, principal component analysis showed a strong correlation of amide and protein band indices.

  1. Isolation of peat swamp forest foliar endophyte fungi as biofertilizer

    Directory of Open Access Journals (Sweden)

    Safinah Surya Hakim

    2017-01-01

    Full Text Available Peatland restoration activity is facing many obstacles, particularly in planting techniques and poor nutrient in peat soil. Naturally, endophytic fungi are abundant and have great potential as biofertilizer. This research investigates the potential endophytic fungi isolated from leaves of peat swamp tree species for biofertilizer. Research activities include: exploration, in vitro test to examine the phosphate solubilization and identification. Result showed that there were 360 leave segments collected from 4 sampling locations. The colonization percentage of 222 isolates ranged from 52.17% - 60.17%. Fifty seven morphospecies were selected from 222 isolates. Twelve isolates demonstrated ability to produce clear zones and ten isolates were selected for identification. It is concluded that twelve isolated demonstrated potential ability to produce clear zone and Penicillum citrinum isolate P3.10 was identified as an isolate that show the highest potential ability as a biofertilizer

  2. Infection Unit Density as an Index of Infection Potential of Arbuscular Mycorrhizal Fungi.

    Science.gov (United States)

    Ohtomo, Ryo; Kobae, Yoshihiro; Morimoto, Sho; Oka, Norikuni

    2018-03-29

    The effective use of arbuscular mycorrhizal (AM) fungal function to promote host plant phosphate uptake in agricultural practice requires the accurate quantitative evaluation of AM fungal infection potential in field soil or AM fungal inoculation material. The number of infection units (IUs), intraradical fungal structures derived from single root entries formed after a short cultivation period, may reflect the number of propagules in soil when pot soil is completely permeated by the host root. However, the original IU method, in which all AM propagules in a pot are counted, requires the fine tuning of plant growing conditions and is considered to be laborious. The objective of the present study was to test whether IU density, not the total count of IU, but the number of IUs per unit root length, reflects the density of AM fungal propagules in soil. IU density assessed after 12 d of host plant cultivation and 3,3'-diaminobenzidine (DAB) staining showed a stronger linear correlation with propagule density than the mean infection percentage (MIP). In addition, IU density was affected less by the host plant species than MIP. We suggest that IU density provides a more rapid and reliable quantitation of the propagule density of AM fungi than MIP or the original IU method. Thus, IU density may be a more robust index of AM fungal infection potential for research and practical applications.

  3. Direct plantlet inoculation with soil or insect-associated fungi may control cabbage root fly maggots.

    Science.gov (United States)

    Razinger, Jaka; Lutz, Matthias; Schroers, Hans-Josef; Palmisano, Marilena; Wohler, Christian; Urek, Gregor; Grunder, Jürg

    2014-07-01

    A potential Delia radicum biological control strategy involving cauliflower plantlet inoculation with various fungi was investigated in a series of laboratory and glasshouse experiments. In addition to entomopathogenic fungi, fungi with a high rhizosphere competence and fungi with the ability to survive as saprotrophs in soil were tested. The following fungal species were evaluated in the experiments: Trichoderma atroviride, T. koningiopsis, T. gamsii, Beauveria bassiana, Metharhizium anisopliae, M. brunneum and Clonostachys solani. A commercial carbosulfan-based insecticide was used as a positive control. Additionally, two commercial products, one based on B. bassiana (Naturalis) and one on Bacillus thuringiensis (Delfin) were used as reference biocontrol agents. The aims were (i) to assess the pathogenicity of the selected fungal isolates to Delia radicum, (ii) to evaluate the fungal isolates' rhizosphere competence, with the emphasis on the persistence of the original inoculum on the growing roots, (iii) to assess possible endophytic plant tissue colonization, and (iv) to evaluate potential plant growth stimulating effects of the added inoculi. Significant pathogenicity of tested fungi against Delia radicum was confirmed in in vitro and glasshouse experiments. All tested fungi persisted on cauliflower rhizoplane. More importantly, the added fungi were found on thoroughly washed roots outside the original point of inoculation. This provided us with evidence that our tested fungi could be transferred via or grow with the elongating roots. In addition to colonizing the rhizoplane, some fungi were found inside the plant root or stem tissue, thus exhibiting endophytic characteristics. The importance of fungal ecology as a criterion in appropriate biological control agent selection is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Biotechnology of marine fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.R.; Singh, P.; Raghukumar, S.

    Filamentous fungi are the most widely used eukaryotes in industrial and pharmaceutical applications. Their biotechnological uses include the production of enzymes, vitamins, polysaccharides, pigments, lipids and others. Marine fungi are a still...

  5. Natural substrata for corticioid fungi

    Directory of Open Access Journals (Sweden)

    Eugene O. Yurchenko

    2013-12-01

    Full Text Available The paper reviews the types of substrata inhabited by non-poroid resupinate Homobasidiomycetes in situ in global scale with both examples from literature sources and from observations on Belarus corticioid fungi biota. The groups of organic world colonized by corticioid basidiomata and vegetative mycelium are arboreous, semi-arboreous, and herbaceous vascular plants, Bryophyta, epiphytic coccoid algae, lichenized and non-lichenized fungi, and occasionally myxomycetes and invertebrates. The fungi occur on living, dying, and dead on all decay stages parts of organisms. Besides, the fungi are known on soil, humus, stones, artificial inorganic and synthetic materials and dung.

  6. Mycoviruses of filamentous fungi and their relevance to plant pathology.

    Science.gov (United States)

    Pearson, Michael N; Beever, Ross E; Boine, Barbara; Arthur, Kieren

    2009-01-01

    Mycoviruses (fungal viruses) are reviewed with emphasis on plant pathogenic fungi. Based on the presence of virus-like particles and unencapsidated dsRNAs, mycoviruses are common in all major fungal groups. Over 80 mycovirus species have been officially recognized from ten virus families, but a paucity of nucleic acid sequence data makes assignment of many reported mycoviruses difficult. Although most of the particle types recognized to date are isometric, a variety of morphologies have been found and, additionally, many apparently unencapsidated dsRNAs have been reported. Until recently, most characterized mycoviruses have dsRNA genomes, but ssRNA mycoviruses now constitute about one-third of the total. Two hypotheses for the origin of mycoviruses of plant pathogens are discussed: the first that they are of unknown but ancient origin and have coevolved along with their hosts, the second that they have relatively recently moved from a fungal plant host into the fungus. Although mycoviruses are typically readily transmitted through asexual spores, transmission through sexual spores varies with the host fungus. Evidence for natural horizontal transmission has been found. Typically, mycoviruses are apparently symptomless (cryptic) but beneficial effects on the host fungus have been reported. Of more practical interest to plant pathologists are those viruses that confer a hypovirulent phenotype, and the scope for using such viruses as biocontrol agents is reviewed. New tools are being developed based on host genome studies that will help to address the intellectual challenge of understanding the fungal-virus interactions and the practical challenge of manipulating this relationship to develop novel biocontrol agents for important plant pathogens.

  7. Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi.

    Science.gov (United States)

    Chmiel, James F; Aksamit, Timothy R; Chotirmall, Sanjay H; Dasenbrook, Elliott C; Elborn, J Stuart; LiPuma, John J; Ranganathan, Sarath C; Waters, Valerie J; Ratjen, Felix A

    2014-10-01

    Airway infections are a key component of cystic fibrosis (CF) lung disease. Whereas the approach to common pathogens such as Pseudomonas aeruginosa is guided by a significant body of evidence, other infections often pose a considerable challenge to treating physicians. In Part I of this series on the antibiotic management of difficult lung infections, we discussed bacterial organisms including methicillin-resistant Staphylococcus aureus, gram-negative bacterial infections, and treatment of multiple bacterial pathogens. Here, we summarize the approach to infections with nontuberculous mycobacteria, anaerobic bacteria, and fungi. Nontuberculous mycobacteria can significantly impact the course of lung disease in patients with CF, but differentiation between colonization and infection is difficult clinically as coinfection with other micro-organisms is common. Treatment consists of different classes of antibiotics, varies in intensity, and is best guided by a team of specialized clinicians and microbiologists. The ability of anaerobic bacteria to contribute to CF lung disease is less clear, even though clinical relevance has been reported in individual patients. Anaerobes detected in CF sputum are often resistant to multiple drugs, and treatment has not yet been shown to positively affect patient outcome. Fungi have gained significant interest as potential CF pathogens. Although the role of Candida is largely unclear, there is mounting evidence that Scedosporium species and Aspergillus fumigatus, beyond the classical presentation of allergic bronchopulmonary aspergillosis, can be relevant in patients with CF and treatment should be considered. At present, however there remains limited information on how best to select patients who could benefit from antifungal therapy.

  8. Influence of arbuscular mycorrhizal fungi on the growth and nutrient status of bermudagrass grown in alkaline bauxite processing residue

    International Nuclear Information System (INIS)

    Giridhar Babu, A.; Sudhakara Reddy, M.

    2011-01-01

    A nursery experiment was conducted to evaluate the potential role of arbuscular mycorrhizal (AM) fungi in encouraging the vegetation cover on bauxite residue (red mud) sites. An alkali tolerant bermudagrass (Cynodon dactylon) adapted to local conditions were grown in red mud with different amendments with and without AM fungi to assess mycorrhizal effects on plant growth, mineral nutrition, metal uptake and neutralization of bauxite residue. Inoculation of AM fungi significantly increased the plant growth, nutrient uptake and reduced Fe, Al accumulation in plant tissue and also improved the soil physico-chemical and biochemical properties. Gypsum and sludge amended treatments inoculated with AM fungi had maximum biomass, nutrient uptake and reduced accumulation of metals. The neutralization of red mud was significant in presence of AM fungi than control. The experiment provided evidence for the potential use of bermudagrass in combination with AM fungi for ecological restoration of bauxite residue sites. - Inoculation of red mud tolerant AM fungi enhanced the growth and nutrient status of bermudagrass and the physico-chemical properties of the bauxite residues amended with gypsum or sewage sludge.

  9. Influence of arbuscular mycorrhizal fungi on the growth and nutrient status of bermudagrass grown in alkaline bauxite processing residue

    Energy Technology Data Exchange (ETDEWEB)

    Giridhar Babu, A., E-mail: anamgiri@gmail.co [Department of Biotechnology, Thapar University, Patiala 147 004 (India); Sudhakara Reddy, M., E-mail: msreddy@thapar.ed [Department of Biotechnology, Thapar University, Patiala 147 004 (India)

    2011-01-15

    A nursery experiment was conducted to evaluate the potential role of arbuscular mycorrhizal (AM) fungi in encouraging the vegetation cover on bauxite residue (red mud) sites. An alkali tolerant bermudagrass (Cynodon dactylon) adapted to local conditions were grown in red mud with different amendments with and without AM fungi to assess mycorrhizal effects on plant growth, mineral nutrition, metal uptake and neutralization of bauxite residue. Inoculation of AM fungi significantly increased the plant growth, nutrient uptake and reduced Fe, Al accumulation in plant tissue and also improved the soil physico-chemical and biochemical properties. Gypsum and sludge amended treatments inoculated with AM fungi had maximum biomass, nutrient uptake and reduced accumulation of metals. The neutralization of red mud was significant in presence of AM fungi than control. The experiment provided evidence for the potential use of bermudagrass in combination with AM fungi for ecological restoration of bauxite residue sites. - Inoculation of red mud tolerant AM fungi enhanced the growth and nutrient status of bermudagrass and the physico-chemical properties of the bauxite residues amended with gypsum or sewage sludge.

  10. Community structure, population dynamics and diversity of fungi in a full-scale membrane bioreactor (MBR) for urban wastewater treatment.

    Science.gov (United States)

    Maza-Márquez, P; Vilchez-Vargas, R; Kerckhof, F M; Aranda, E; González-López, J; Rodelas, B

    2016-11-15

    Community structure, population dynamics and diversity of fungi were monitored in a full-scale membrane bioreactor (MBR) operated throughout four experimental phases (Summer 2009, Autumn 2009, Summer 2010 and Winter, 2012) under different conditions, using the 18S-rRNA gene and the intergenic transcribed spacer (ITS2-region) as molecular markers, and a combination of temperature-gradient gel electrophoresis and 454-pyrosequencing. Both total and metabolically-active fungal populations were fingerprinted, by amplification of molecular markers from community DNA and retrotranscribed RNA, respectively. Fingerprinting and 454-pyrosequencing evidenced that the MBR sheltered a dynamic fungal community composed of a low number of species, in accordance with the knowledge of fungal diversity in freshwater environments, and displaying a medium-high level of functional organization with few numerically dominant phylotypes. Population shifts were experienced in strong correlation with the changes of environmental variables and operation parameters, with pH contributing the highest level of explanation. Phylotypes assigned to nine different fungal Phyla were detected, although the community was mainly composed of Ascomycota, Basidiomycota and Chytridiomycota/Blastocladiomycota. Prevailing fungal phylotypes were affiliated to Saccharomycetes and Chytridiomycetes/Blastocladiomycetes, which displayed antagonistic trends in their relative abundance throughout the experimental period. Fungi identified in the activated sludge were closely related to genera of relevance for the degradation of organic matter and trace-organic contaminants, as well as genera of dimorphic fungi potentially able to produce plant operational issues such as foaming or biofouling. Phylotypes closely related to genera of human and plant pathogenic fungi were also detected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Selection, isolation, and identification of fungi for bioherbicide production

    Directory of Open Access Journals (Sweden)

    Angélica Rossana Castro de Souza

    Full Text Available Abstract Production of a bioherbicide for biological control of weeds requires a series of steps, from selection of a suitable microbial strain to final formulation. Thus, this study aimed to select fungi for production of secondary metabolites with herbicidal activity using biological resources of the Brazilian Pampa biome. Phytopathogenic fungi were isolated from infected tissues of weeds in the Pampa biome. A liquid synthetic culture medium was used for production of metabolites. The phytotoxicity of fungal metabolites was assessed via biological tests using the plant Cucumis sativus L., and the most promising strain was identified by molecular analysis. Thirty-nine fungi were isolated, and 28 presented some phytotoxic symptoms against the target plant. Fungus VP51 belonging to the genus Diaporthe showed the most pronounced herbicidal activity. The Brazilian Pampa biome is a potential resource for the development of new and sustainable chemical compounds for modern agriculture.

  12. Controlled rate cooling of fungi using a stirling cycle freezer.

    Science.gov (United States)

    Ryan, Matthew J; Kasulyte-Creasey, Daiva; Kermode, Anthony; San, Shwe Phue; Buddie, Alan G

    2014-01-01

    The use of a Stirling cycle freezer for cryopreservation is considered to have significant advantages over traditional methodologies including N2 free operation, application of low cooling rates, reduction of sample contamination risks and control of ice nucleation. The study assesses the suitability of an 'N2-free' Stirling Cycle controlled rate freezer for fungi cryopreservation. In total, 77 fungi representing a broad taxonomic coverage were cooled using the N2 free cooler following a cooling rate of -1 degrees C min(-1). Of these, 15 strains were also cryopreserved using a traditional 'N2 gas chamber' controlled rate cooler and a comparison of culture morphology and genomic stability against non-cryopreserved starter cultures was undertaken. In total of 75 fungi survived cryopreservation, only a recalcitrant Basidiomycete and filamentous Chromist failed to survive. No changes were detected in genomic profile after preservation, suggesting that genomic function is not adversely compromised as a result of using 'N2 free' cooling. The results demonstrate the potential of 'N2-free' cooling for the routine cryopreservation of fungi in Biological Resource Centres.

  13. Cnidarian-derived filamentous fungi from Brazil: isolation, characterisation and RBBR decolourisation screening.

    Science.gov (United States)

    Da Silva, M; Passarini, M R Z; Bonugli, R C; Sette, L D

    2008-12-01

    Marine-derived fungi represent a valuable source of structurally novel and biologically active metabolites of industrial interest. They also have drawn attention for their capacity to degrade several pollutants, including textile dyes, organochlorides and polycyclic aromatic hydrocarbons (PAHs), among others. The fungal tolerance to higher concentrations of salt might be considered an advantage for bioremediation processes in the marine environment. Therefore, filamentous fungi were isolated from cnidarians (scleractinian coral and zoanthids) collected from the north coast of São Paulo State, Brazil. A total of 144 filamentous fungi were morphologically and molecularly characterised. Among them there were several species of Penicillium and Aspergillus, in addition to Cladosporium spp., Eutypella sp., Fusarium spp., Khuskia sp., Mucor sp., Peacilomyces sp., Phoma sp. and Trichoderma spp. These fungi were tested regarding their decolourisation activity for Remazol Brilliant Blue R (RBBR), a textile dye used as an initial screening for PAH-degrading fungi. The most efficient fungi for RBBR decolourisation after 12 days were Penicillium citrinum CBMAI 853 (100%), Aspergillus sulphureus CBMAI 849 (95%), Cladosporium cladosporioides CBMAI 857 (93%) and Trichoderma sp. CBMAI 852 (89%). Besides its efficiency for dye decolourisation within liquid media, C. cladosporioides CBMAI 857 also decolourised dye on solid media, forming a decolourisation halo. Further research on the biotechnological potential, including studies on PAH metabolism, of these selected fungi are in progress.

  14. Marine fungi: A critique

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.; Raghukumar, C.

    in the sea have been ignored to a large extent. However, several instances of terrestrial species of fungi, active in marine environment have been reported. The arguments to support the view that terrestrial species of fungi by virtue of their physiological...

  15. Growth of indoor fungi on gypsum.

    Science.gov (United States)

    Segers, F J J; van Laarhoven, K A; Wösten, H A B; Dijksterhuis, J

    2017-08-01

    To have a better understanding of fungal growth on gypsum building materials to prevent indoor fungal growth. Gypsum is acquired by mining or as a by-product of flue-gas desulphurization or treatment of phosphate ore for the production of fertilizer. Natural gypsum, flue-gas gypsum and phosphogypsum therefore have different mineral compositions. Here, growth of fungi on these types of gypsum was assessed. Conidia of the indoor fungi Aspergillus niger, Cladosporium halotolerans and Penicillium rubens were inoculated and observed using microscopic techniques including low-temperature scanning electron microscopy. Elemental analysis of gypsum was done using inductively coupled plasma atomic emission spectroscopy and segmented flow analysis. Moisture content of the gypsum was determined using a dynamic vapour sorption apparatus. Aspergillus niger, C. halotolerans and P. rubens hardly germinated on natural gypsum and flue-gas gypsum. The latter two fungi did show germination, outgrowth, and conidiation on phosphogypsum, while A. niger hardly germinated on this substrate. Other experiments show that C. halotolerans and P. rubens can develop in pure water, but A. niger does not. The observations show that the lack of germination of three indoor fungi is explained by the low amount of phosphor in natural, flue-gas and laboratory-grade gypsum. Additionally, C. halotolerans and P. rubens can develop in pure water, while conidia of A. niger do not show any germination, which is explained by the need for organic molecules of this species to induce germination. Indoor fungal growth is a potential threat to human health and causes damage to building materials. This study possibly helps in the application of the right type of gypsum in buildings. © 2017 The Society for Applied Microbiology.

  16. Autophagy in plant pathogenic fungi.

    Science.gov (United States)

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Proteomics of Filamentous Fungi

    NARCIS (Netherlands)

    Passel, van M.W.J.; Schaap, P.J.; Graaff, de L.H.

    2013-01-01

    Filamentous fungi, such as Aspergillus niger and Aspergillus oryzae traditionally have had an important role in providing enzymes and enzyme cocktails that are used in food industry. In recent years the genome sequences of many filamentous fungi have become available. This combined with

  18. Can fungi compete with marine sources for chitosan production?

    Science.gov (United States)

    Ghormade, V; Pathan, E K; Deshpande, M V

    2017-11-01

    Chitosan, a β-1,4-linked glucosamine polymer is formed by deacetylation of chitin. It has a wide range of applications from agriculture to human health care products. Chitosan is commercially produced from shellfish, shrimp waste, crab and lobster processing using strong alkalis at high temperatures for long time periods. The production of chitin and chitosan from fungal sources has gained increased attention in recent years due to potential advantages in terms of homogenous polymer length, high degree of deacetylation and solubility over the current marine source. Zygomycetous fungi such as Absidia coerulea, Benjaminiella poitrasii, Cunninghamella elegans, Gongrenella butleri, Mucor rouxii, Mucor racemosus and Rhizopus oryzae have been studied extensively. Isolation of chitosan are reported from few edible basidiomycetous fungi like Agaricus bisporus, Lentinula edodes and Pleurotus sajor-caju. Other organisms from mycotech industries explored for chitosan production are Aspergillus niger, Penicillium chrysogenum, Saccharomyces cerevisiae and other wine yeasts. Number of aspects such as value addition to the existing applications of fungi, utilization of waste from agriculture sector, and issues and challenges for the production of fungal chitosan to compete with existing sources, metabolic engineering and novel applications have been discussed to adjudge the potential of fungal sources for commercial chitosan production. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Isolation and characterization of bioactive fungi from shark Carcharodon carcharias' gill with biopharmaceutical prospects

    Science.gov (United States)

    Zhang, Yi; Han, Jinyuan; Feng, Yan; Mu, Jun; Bao, Haiyan; Kulik, Andreas; Grond, Stephanie

    2016-01-01

    Until recently, little was known about the fungi found in shark gills and their biomedicinal potential. In this article, we described the isolation, bioactivity, diversity, and secondary metabolites of bioactive fungi from the gill of a shark ( Carcharodon carcharias). A total of 115 isolates were obtained and grown in 12 culture media. Fifty-eight of these isolates demonstrated significant activity in four antimicrobial, pesticidal, and cytotoxic bioassay models. Four randomly selected bioactive isolates inhibited human cancer cell proliferation during re-screening. These active isolates were segregated into 6 genera using the internal transcribed spacer-large subunit (ITS-LSU) rDNA-sequence BLAST comparison. Four genera, Penicillium, Aspergillus, Mucor, and Chaetomium were the dominant taxa. A phylogenic tree illustrated their intergenera and intragenera genetic diversity. HPLC-DAD-HRMS analysis and subsequent database searching revealed that nine representative strains produced diverse bioactive compound profiles. These results detail the broad range of bioactive fungi found in a shark's gills, revealing their biopharmaceutical potential. To the best of our knowledge, this is the first study characterizing shark gill fungi and their bioactivity.

  20. Lectins in human pathogenic fungi.

    Science.gov (United States)

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  1. Endophytic fungi from Myrcia guianensis at the Brazilian Amazon: distribution and bioactivity.

    Science.gov (United States)

    Dos Banhos, Elissandro Fonseca; de Souza, Antonia Queiroz Lima; de Andrade, Juliano Camurça; de Souza, Afonso Duarte Leão; Koolen, Hector Henrique Ferreira; Albuquerque, Patrícia Melchionna

    2014-01-01

    Beneficial interactions between plants and microorganisms have been investigated under different ecological, physiological, biochemical, and genetic aspects. However, the systematic exploration of biomolecules with potential for biotechnological products from this interaction still is relatively scarce. Therefore, this study aimed the evaluation of the diversity and antimicrobial activity of the endophytic fungi obtained from roots, stems and leafs of Myrcia guianensis (Myrtaceae) from the Brazilian Amazon. 156 endophytic fungi were isolated and above 80% were identified by morphological examination as belonging to the genera Pestalotiopsis, Phomopsis, Aspergillus, Xylaria, Nectria, Penicillium and Fusarium. Fermented broth of those fungi were assayed for antimicrobial activity and four inhibited the growth of Staphylococcus aureus, Enterococcus faecalis, Candida albicans and Penicillium avellaneum. As the strain named MgRe2.2.3B (Nectria haematococca) had shown the most promising results against those pathogenic strains, its fermented broth was fractioned and only its two low polar fractions demonstrated to be active. Both fractions exhibited a minimum bactericidal concentration of 50 μg.mL(-1) against S. aureus and a minimum fungicidal concentration of 100 μg.mL(-1) against P. avellaneum. These results demonstrate the diversity of fungal genera in M. guianensis and the potential of these endophytic fungi for the production of new antibiotics.

  2. Toxicity, analgesic and sedative potential of crude extract of soil-borne phytopathogenic fungi Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad

    2016-11-01

    Full Text Available Background: Aspergillus flavus is one of the most abundant mold present around the world. The present study was conducted to investigate the acute toxicity, analgesic and sedative effect of the crude extract obtained from soil borne fungi A. flavus. Methods: The fungi was isolated from soil samples and identified morphologically and microscopically. The growth condition i.e. media, temperature, pH, and incubation period were optimized. In these optimized growth condition, A. flavus was grown in batch culture in shaking incubator. Crude contents were extracted by using ethyl acetate solvent. Crude secondary metabolites were screened for acute toxicity, analgesic and sedative effect. Results: Upon completion of the experiment, blood was collected from the tail vein of albino mice, and different haematological tests were conducted. White blood cells counts displayed a slight increase (10.6× 109/L above their normal range (0.8–6.8 × 109/L, which may be due to the increment in the number of lymphocytes or granulocytes. However, the percentage of lymphocytes was much lower (17.7%, while the percentage of the granulocytes was higher (61.4% than its normal range (8.6–38.9%. A reduction in the mean number of writhing in the different test groups was caused by the application of the crude ethyl acetate extract through the i.p. route at different doses (50, 100, and 150 mg/kg body weight. The results of our investigation showed the EtOAc extract of A. flavus can cause a significant sedative effect in open field. Conclusion: It was concluded from the present study that the A. flavus has the potential to produce bioactive metabolites which have analgesic and sedative effect.

  3. Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin.

    Science.gov (United States)

    Vidal-Diez de Ulzurrun, Guillermo; Hsueh, Yen-Ping

    2018-05-01

    Nematode-trapping fungi develop complex trapping devices to capture and consume nematodes. The dynamics of these organisms is especially important given the pathogenicity of nematodes and, consequently, the potential application of nematode-trapping fungi as biocontrol agents. Furthermore, both the nematodes and nematode-trapping fungi can be easily grown in laboratories, making them a unique manipulatable predator-prey system to study their coevolution. Several different aspects of these fungi have been studied, such as their genetics and the different factors triggering trap formation. In this review, we use the nematode-trapping fungus Arthrobotrys oligospora (which forms adhesive nets) as a model to describe the trapping process. We divide this process into several stages; namely attraction, recognition, trap formation, adhesion, penetration, and digestion. We summarize the latest findings in the field and current knowledge on the interactions between nematodes and nematode-trapping fungi, representing both sides of the predator-prey interaction.

  4. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function.

    Science.gov (United States)

    Powell, Jeff R; Rillig, Matthias C

    2018-03-30

    Contents Summary I. pathways of influence and pervasiveness of effects II. AM fungal richness effects on ecosystem functions III. Other dimensions of biodiversity IV. Back to basics - primary axes of niche differentiation by AM fungi V. Functional diversity of AM fungi - a role for biological stoichiometry? VI. Past, novel and future ecosystems VII. Opportunities and the way forward Acknowledgements References SUMMARY: Arbuscular mycorrhizal (AM) fungi play important functional roles in ecosystems, including the uptake and transfer of nutrients, modification of the physical soil environment and alteration of plant interactions with other biota. Several studies have demonstrated the potential for variation in AM fungal diversity to also affect ecosystem functioning, mainly via effects on primary productivity. Diversity in these studies is usually characterized in terms of the number of species, unique evolutionary lineages or complementary mycorrhizal traits, as well as the ability of plants to discriminate among AM fungi in space and time. However, the emergent outcomes of these relationships are usually indirect, and thus context dependent, and difficult to predict with certainty. Here, we advocate a fungal-centric view of AM fungal biodiversity-ecosystem function relationships that focuses on the direct and specific links between AM fungal fitness and consequences for their roles in ecosystems, especially highlighting functional diversity in hyphal resource economics. We conclude by arguing that an understanding of AM fungal functional diversity is fundamental to determine whether AM fungi have a role in the exploitation of marginal/novel environments (whether past, present or future) and highlight avenues for future research. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  5. Comparative studies of antifugal potentialities for some natural plant oils against different fungi isolated from poultry

    Directory of Open Access Journals (Sweden)

    Ahmed, F. H.

    1994-08-01

    Full Text Available The inhibitory effect of eight natural oils on ten pathogenic fungi isolated from the digestive and respiratory tracts of dead chickens in Kena Governorate showed that crude peppermint oil only has a highest effect against some isolated fungi and a low response against others. While its 10% and 2% oil concentrations failed to give any effect against all the tested fungi. Crude chamomile and pelargonium oils showed moderate effect against all isolated fungi. The effect of different dilutions of chamomile, cumin and celery oils appeared that the 10% concentration showed more effective than the crude oil. Lemongrass and basil oils have almost the same behaviour towards the isolated fungi as the crude oils and the 10% concentration affected them greatly. On the other hand 2% basil oil gave no effect at all. Critical concentrations of the efficient oils against isolated fungi were calculated. The most efficient oils were lemongrass against Aspergillus flavipes, chamomile against A. fumigatus and cumin against A. nidulans, while cumin against A. glaucus, clove against A. flavus were chamomile against A. flavus and clove against A. flavipes were the lowest efficient oils.

    El efecto inhibidor de ocho aceites naturales sobre diez aislados de hongos patógenos de los tractos digestivo y respiratorio de pollos muertos en "Kena Governorate" mostró que el aceite de menta crudo tiene un mayor efecto frente a algunos aislados y una repuesta menor frente a otros. Aunque sus concentraciones en aceite al 10% y 2% consiguieron dar algún efecto frente a todos los hongos ensayados. Aceites de geranio y manzanilla crudo mostraron efecto moderado frente a todos los aislados de hongos. El efecto de disoluciones diferentes de aceites de manzanilla, comino y apio dieron como resultado que la concentración al 10% era más efectiva que el aceite crudo. Aceites de lemongras y albahaca tienen casi el mismo

  6. [Indiscriminate use of Latin name for natural Cordyceps sinensis insect-fungi complex and multiple Ophiocordyceps sinensis fungi].

    Science.gov (United States)

    Yao, Yi-Sang; Zhu, Jia-Shi

    2016-04-01

    Natural Cordyceps sinensis(Dongchongxiacao) is an insect-fungi complex containing multiple Ophiocordyceps sinensis(≡Cordyceps sinensis) fungi and dead body of larva of the family of Hepialidae. But natural C. sinensis and O. sinensis fungi use the same Latin name, resulting in uncertainty of the specific meaning, even disturbing the formulation and implementation of governmental policies and regulations, and influencing consumer psychology onthe market. This paper reviews the history and current status of the indiscriminate use of the Latin name O. sinensis for both the natural insect-fungi complex C. sinensis and O. sinensis fungi and lists the rename suggetions. Some scholars suggested using the term O. sinensis for the fungi and renaming the natural C. sinensis "Chinese cordyceps". Others suggested renaming the natural C. sinensis "Ophiocordyceps & Hepialidae". Both suggestions have not reached general consensus due to various academic concerns. This paper also reviews the exacerbation of the academic uncertainties when forcing implementing the 2011 Amsterdam Declaration "One Fungus=One Name" under the academic debate. Joint efforts of mycological, zoological and botany-TCM taxonomists and properly initiating the dispute systems offered by International Mycology Association may solve the debate on the indiscriminate use of the Latin name O.sinensis for the natural insect-fungi complex,the teleomorph and anamorph(s) of O. sinensis fungi. Copyright© by the Chinese Pharmaceutical Association.

  7. Integrated economic and environmental analysis of agricultural straw reuse in edible fungi industry

    Directory of Open Access Journals (Sweden)

    Wencong Lu

    2018-04-01

    Full Text Available Background China currently faces severe environmental pollution caused by burning agricultural straw; thus, resource utilization of these straws has become an urgent policy and practical objective for the Chinese government. Methods This study develops a bio-economic model, namely, “straw resource utilization for fungi in China (SRUFIC,” on the basis of a field survey of an edible fungi plant in Zhejiang, China, to investigate an integrated economic and environmental performance of straw reuse in fungi production. Five scenarios, which cover changes in the production scale, wage level, and price fluctuations of the main product and inputs, are simulated. Results Results reveal that (1 the pilot plant potentially provides enhanced economic benefits and disposes added agricultural residues by adjusting its production strategy; (2 the economic performance is most sensitive to fungi price fluctuations, whereas the environmental performance is more sensitive to production scale and price of fungi than other factors; (3 expanding the production scale can be the most efficient means of improving the performance of a plant economically and environmentally. Discussion Overall, agricultural straw reuse in the edible fungi industry can not only reduce the environmental risk derived from burning abandoned straws but also introduce economic benefits. Thus, the straw reuse in the fungi industry should be practiced in China, and specific economic incentive policies, such as price support or subsidies, must be implemented to promote the utilization of agricultural straws in the fungi industry.

  8. Visualization of interaction between inorganic nanoparticles and bacteria or fungi

    DEFF Research Database (Denmark)

    Chwalibog, André; Sawosz, Ewa; Hotowy, Anna Malgorzata

    2010-01-01

    Purpose: The objective of the present investigation was to evaluate the morphologic characteristics of self-assemblies of diamond (nano-D), silver (nano-Ag), gold (nano-Au), and platinum (nano-Pt) nanoparticles with Staphylococus aureus (bacteria) and Candida albicans (fungi), to determine...... interaction between the nanoparticles and microorganisms showed that nano-D, which are dielectrics and exhibit a positive zeta potential, were very different from the membrane potentials of microorganisms, and uniformly surrounded the microorganisms, without causing visible damage and destruction of cells...... and cell wall. Conclusion: Nano-Ag, nano-Au, and nano-Pt (all metal nanoparticles) are harmful to bacteria and fungi. In contrast, nano-D bind closely to the surface of microorganisms without causing visible damage to cells, and demonstrating good self-assembling ability. The results indicate that both...

  9. Richness of endophytic fungi isolated from Opuntia ficus-indica Mill. (Cactaceae) and preliminary screening for enzyme production.

    Science.gov (United States)

    Bezerra, J D P; Santos, M G S; Svedese, V M; Lima, D M M; Fernandes, M J S; Paiva, L M; Souza-Motta, C M

    2012-05-01

    Opuntia ficus-indica Mill. (forage cactus) is farmed with relative success in the semi-arid region of the Brazilian northeast for commercial purposes, particularly as forage and food. Endophytic microorganisms are those that can be isolated inside plant tissues and can be a new source to production of enzymes with different potentialities. The objective of this study was to describe the richness of endophytic fungi from O. ficus-indica and to detect the capacity of these species to produce extracellular hydrolytic enzymes. Forty-four endophytic fungi species were isolated. Among them, the most commonly found were Cladosporium cladosporioides (20.43%) and C. sphaerospermum (15.99%). Acremonium terricola, Monodictys castaneae, Penicillium glandicola, Phoma tropica and Tetraploa aristata are being reported for the first time as endophytic fungi for Brazil. The majority of isolated fungi exhibited enzymatic potential. Aspergillus japonicus and P. glandicola presented pectinolytic activity. Xylaria sp. was the most important among the other 14 species with positive cellulase activity. All 24 isolates analysed were xylanase-positive. Protease was best produced by isolate PF103. The results indicate that there is a significant richness of endophytic fungi in O. ficus-indica, and that these isolates indicate promising potential for deployment in biotechnological processes involving production of pectinases, cellulases, xylanases and proteases.

  10. Toxicity of organic and inorganic nanoparticles to four species of white-rot fungi

    International Nuclear Information System (INIS)

    Galindo, T.P.S.; Pereira, R.; Freitas, A.C.; Santos-Rocha, T.A.P.; Rasteiro, M.G.; Antunes, F.; Rodrigues, D.; Soares, A.M.V.M.; Gonçalves, F.

    2013-01-01

    The rapid development of nanoparticles (NP) for industrial applications and large-volume manufacturing, with its subsequent release into the environment, raised the need to understand and characterize the potential effects of NP to biota. Accordingly, this work aimed to assess sublethal effects of five NP to the white-rot fungi species Trametes versicolor, Lentinus sajor caju, Pleurotus ostreatus, and Phanerochaete chrysosporium. Each species was exposed to serial dilutions of the following NP: organic-vesicles of SDS/DDAB and of Mo/NaO; gold-NP, quantum dot CdSe/ZnS, and Fe/Co. Fungi growth rate was monitored every day, and at the end of assay the mycelium from each replicate was collected to evaluate possible changes in its chemical composition. For all NP-suspensions the following parameters were characterized: hydrodynamic diameter, surface charge, aggregation index, zeta potential, and conductivity. All tested NP tended to aggregate when suspended in aqueous media. The obtained results showed that gold-NP, CdSe/ZnS, Mo/NaO, and SDS/DDAB significantly inhibited the growth of fungi with effects on the mycelium chemical composition. Among the tested NP, gold-NP and CdSe/ZnS were the ones exerting a higher effect on the four fungi. Finally to our knowledge, this is the first study reporting that different types of NP induce changes in the chemical composition of fungi mycelium. - Highlights: • Nanoparticles (NP) tend to aggregate when in aqueous suspensions. • Chemical composition revealed to be very important in the ecotoxicity of NP. • Observed effects suggested diversified modes of action of different NP. • White-rot fungi species exhibit great differences in their sensitivity to NP

  11. Toxicity of organic and inorganic nanoparticles to four species of white-rot fungi

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, T.P.S., E-mail: pgalindo@ua.pt [CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Pereira, R. [CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 4169-007 Porto (Portugal); Freitas, A.C.; Santos-Rocha, T.A.P. [CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); ISEIT, Instituto Piaget Viseu, Estrada do Alto do Gaio, Lordosa, 3515-776 Viseu (Portugal); Rasteiro, M.G.; Antunes, F. [Department of Chemical Engineering, University of Coimbra, 3030-290 Coimbra (Portugal); Rodrigues, D. [CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); ISEIT, Instituto Piaget Viseu, Estrada do Alto do Gaio, Lordosa, 3515-776 Viseu (Portugal); Soares, A.M.V.M.; Gonçalves, F. [CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); and others

    2013-08-01

    The rapid development of nanoparticles (NP) for industrial applications and large-volume manufacturing, with its subsequent release into the environment, raised the need to understand and characterize the potential effects of NP to biota. Accordingly, this work aimed to assess sublethal effects of five NP to the white-rot fungi species Trametes versicolor, Lentinus sajor caju, Pleurotus ostreatus, and Phanerochaete chrysosporium. Each species was exposed to serial dilutions of the following NP: organic-vesicles of SDS/DDAB and of Mo/NaO; gold-NP, quantum dot CdSe/ZnS, and Fe/Co. Fungi growth rate was monitored every day, and at the end of assay the mycelium from each replicate was collected to evaluate possible changes in its chemical composition. For all NP-suspensions the following parameters were characterized: hydrodynamic diameter, surface charge, aggregation index, zeta potential, and conductivity. All tested NP tended to aggregate when suspended in aqueous media. The obtained results showed that gold-NP, CdSe/ZnS, Mo/NaO, and SDS/DDAB significantly inhibited the growth of fungi with effects on the mycelium chemical composition. Among the tested NP, gold-NP and CdSe/ZnS were the ones exerting a higher effect on the four fungi. Finally to our knowledge, this is the first study reporting that different types of NP induce changes in the chemical composition of fungi mycelium. - Highlights: • Nanoparticles (NP) tend to aggregate when in aqueous suspensions. • Chemical composition revealed to be very important in the ecotoxicity of NP. • Observed effects suggested diversified modes of action of different NP. • White-rot fungi species exhibit great differences in their sensitivity to NP.

  12. Quantitative inhibition of soil C and N cycling by ectomycorrhizal fungi under field condition

    Science.gov (United States)

    Averill, C.; Hawkes, C.

    2014-12-01

    Ectomycorrhizal (ECM) ecosystems store more carbon than non-ectomycorrhizal ecosystems at global scale. Recent theoretical and empirical work suggests the presence of ECM fungi allows plants to compete directly with decomposers for soil nitrogen (N) via exo-enzyme synthesis. Experimental ECM exclusion often results in a release from competition of saprotrophic decomposers, allowing for increased C-degrading enzyme production, increased microbial biomass, and eventually declines in soil C stocks. Our knowledge of this phenomenon is limited, however, to the presence or absence of ECM fungi. It remains unknown if competitive repression of saprotrophic microbes and soil C cycling by ECM fungi varies with ECM abundance. This is particularly relevant to global change experiments when manipulations alter plant C allocation to ECM symbionts. To test if variation in ECM abundance alters the competitive inhibition of saprotrophic soil microbes (quantitative inhibition) we established experimental ECM exclusion treatments along an ECM abundance gradient. We dug trenches to experimentally exclude ECM fungi, allowing us to test for competitive release of soil saprotrophs from competition. To control for disturbance we placed in-growth bags both inside and outside of trenches. Consistent with the quantitative inhibition hypothesis, sites with more ECM fungi had significantly less microbial biomass per unit soil C and lower rates of N mineralization. Consistent with a release from competition, C-degrading enzyme activities were higher and gross proteolytic rates were lower per unit microbial biomass inside compared to outside trenches. We interpret this to reflect increased microbial investment in C-acquisition and decreased investment in N-acquisition in the absence of ECM fungi. Furthermore, the increase in C-degrading enzymes per unit microbial biomass was significantly greater in sites with the most abundant ECM fungi. Based on these results, ECM-saprotroph competition does

  13. Isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings.

    Science.gov (United States)

    Soltani, Maryam; Bayat, Mansour; Hashemi, Seyed J; Zia, Mohammadali; Pestechian, Nader

    2013-01-01

    Invasive fungal infections cause considerable morbidity and mortality in immunocompromised hosts. Pigeon droppings could especially be a potential carrier in the spread of pathogenic yeasts and mold fungi into the environment. The objective of this study was to isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings. One hundred twenty samples of pigeon droppings were suspended 1:10 in saline solution and then cultured. Identification of C. neoformans was performed on bird seed agar, presence of a capsule on India ink preparation, urease production on urea agar medium and RapID yeast plus system. The identification of candida species was based on micro-morphological analysis on corn meal-Tween 80 agar, RapID yeast plus system and growth in CHROMagar candida. The identification of other fungi was based on macromorphologic, microscopic, biochemical and physiological characteristics. The highest frequency of yeasts and mold fungi were observed in Candida albicans 6.6% and Penicillium spp. 25%. The frequency rate of C. neoformans isolation was 2.5%. Several types of fungi are present in pigeon droppings that can spread in environment and transmit to children and elderly as well as immunocompromised patients who are at increased risk of contracting opportunistic diseases.

  14. Isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings

    Directory of Open Access Journals (Sweden)

    Maryam Soltani

    2013-01-01

    Full Text Available Background: Invasive fungal infections cause considerable morbidity and mortality in immunocompromised hosts. Pigeon droppings could especially be a potential carrier in the spread of pathogenic yeasts and mold fungi into the environment. The objective of this study was to isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings. Materials and Methods: One hundred twenty samples of pigeon droppings were suspended 1:10 in saline solution and then cultured. Identification of C. neoformans was performed on bird seed agar, presence of a capsule on India ink preparation, urease production on urea agar medium and RapID yeast plus system. The identification of candida species was based on micro-morphological analysis on corn meal-Tween 80 agar, RapID yeast plus system and growth in CHROMagar candida. The identification of other fungi was based on macromorphologic, microscopic, biochemical and physiological characteristics. Results: The highest frequency of yeasts and mold fungi were observed in Candida albicans 6.6% and Penicillium spp. 25%. The frequency rate of C. neoformans isolation was 2.5%. Conclusion: Several types of fungi are present in pigeon droppings that can spread in environment and transmit to children and elderly as well as immunocompromised patients who are at increased risk of contracting opportunistic diseases.

  15. Fungi as a Source of Food.

    Science.gov (United States)

    Dupont, Joëlle; Dequin, Sylvie; Giraud, Tatiana; Le Tacon, François; Marsit, Souhir; Ropars, Jeanne; Richard, Franck; Selosse, Marc-André

    2017-06-01

    In this article, we review some of the best-studied fungi used as food sources, in particular, the cheese fungi, the truffles, and the fungi used for drink fermentation such as beer, wine, and sake. We discuss their history of consumption by humans and the genomic mechanisms of adaptation during artificial selection.

  16. Fungi Contribute Critical but Spatially Varying Roles in Nitrogen and Carbon Cycling in Acid Mine Drainage

    NARCIS (Netherlands)

    Mosier, Annika C; Miller, Christopher S; Frischkorn, Kyle R; Ohm, Robin A; Li, Zhou; LaButti, Kurt; Lapidus, Alla; Lipzen, Anna; Chen, Cindy; Johnson, Jenifer; Lindquist, Erika A; Pan, Chongle; Hettich, Robert L; Grigoriev, Igor V; Singer, Steven W; Banfield, Jillian F

    2016-01-01

    The ecosystem roles of fungi have been extensively studied by targeting one organism and/or biological process at a time, but the full metabolic potential of fungi has rarely been captured in an environmental context. We hypothesized that fungal genome sequences could be assembled directly from the

  17. Skin Fungi from Colonization to Infection.

    Science.gov (United States)

    de Hoog, Sybren; Monod, Michel; Dawson, Tom; Boekhout, Teun; Mayser, Peter; Gräser, Yvonne

    2017-07-01

    Humans are exceptional among vertebrates in that their living tissue is directly exposed to the outside world. In the absence of protective scales, feathers, or fur, the skin has to be highly effective in defending the organism against the gamut of opportunistic fungi surrounding us. Most (sub)cutaneous infections enter the body by implantation through the skin barrier. On intact skin, two types of fungal expansion are noted: (A) colonization by commensals, i.e., growth enabled by conditions prevailing on the skin surface without degradation of tissue, and (B) infection by superficial pathogens that assimilate epidermal keratin and interact with the cellular immune system. In a response-damage framework, all fungi are potentially able to cause disease, as a balance between their natural predilection and the immune status of the host. For this reason, we will not attribute a fixed ecological term to each species, but rather describe them as growing in a commensal state (A) or in a pathogenic state (B).

  18. An integrated genomic and transcriptomic survey of mucormycosis-causing fungi

    Science.gov (United States)

    Chibucos, Marcus C.; Soliman, Sameh; Gebremariam, Teclegiorgis; Lee, Hongkyu; Daugherty, Sean; Orvis, Joshua; Shetty, Amol C.; Crabtree, Jonathan; Hazen, Tracy H.; Etienne, Kizee A.; Kumari, Priti; O'Connor, Timothy D.; Rasko, David A.; Filler, Scott G.; Fraser, Claire M.; Lockhart, Shawn R.; Skory, Christopher D.; Ibrahim, Ashraf S.; Bruno, Vincent M.

    2016-01-01

    Mucormycosis is a life-threatening infection caused by Mucorales fungi. Here we sequence 30 fungal genomes, and perform transcriptomics with three representative Rhizopus and Mucor strains and with human airway epithelial cells during fungal invasion, to reveal key host and fungal determinants contributing to pathogenesis. Analysis of the host transcriptional response to Mucorales reveals platelet-derived growth factor receptor B (PDGFRB) signaling as part of a core response to divergent pathogenic fungi; inhibition of PDGFRB reduces Mucorales-induced damage to host cells. The unique presence of CotH invasins in all invasive Mucorales, and the correlation between CotH gene copy number and clinical prevalence, are consistent with an important role for these proteins in mucormycosis pathogenesis. Our work provides insight into the evolution of this medically and economically important group of fungi, and identifies several molecular pathways that might be exploited as potential therapeutic targets. PMID:27447865

  19. Fungi

    DEFF Research Database (Denmark)

    Hajek, Ann E.; Meyling, Nicolai Vitt

    2018-01-01

    been the focus of most ecological research. Some taxa of invertebrate pathogenic fungi have evolved adaptations for utilizing living plants as substrates, and these lifestyles have recently received increased attention from researchers following the initial documentations of such plant associations...

  20. Fungi pathogenic on wild radish (Raphanus raphanistrum L. in northern Tunisia

    Directory of Open Access Journals (Sweden)

    N. Djebali

    2009-09-01

    Full Text Available The distribution and life cycle of wild radish (Raphanus raphanistrum L. and a survey of the pathogens of this plant are reported for the northern regions of Tunisia. Wild radish is a common weed of cereal crops and legumes. It germinates in early autumn (October, develops a rosette stage in November to December after which stem growth, fl owering and pod production occur through to May, with pod maturity completed in June. Fungus isolation from the foliar tissues exhibiting disease symptoms showed that wild radish was infected with the fungi Albugo candida, Alternaria spp. including A. brassicicola, and A. raphani, Erysiphe cruciferarum, Stemphylium herbarum, Peronospora parasitica and Phoma lingam. Ascochyta spp., Cercospora armoraciae, Cladosporium cladosporioides and Colletotrichum higginsianum are here reported from wild radish for the first time. Inoculation tests of pathogens on wild radish plants showed that the most injurious fungi were Alternaria raphani and Phoma lingam. The remaining pathogens were weakly to moderately aggressive on this weed. To access the pathogenic effect of fungi spontaneously infecting natural populations of wild radish, the weed was grown in a field experiment with and without the broad-spectrum systemic fungicide Carbendazim. Results showed a statistically significant two-fold decrease in the number and weight of seed pods in the non-treated plants, indicating that the reproductive potential of wild radish was naturally reduced by fungal infection. Foliar pathogenic fungi have a potential in the integrated weed management of wild radish, this role merits further investigations.

  1. Study of Geophilic Keratinophilic Fungi in Public Squares of Jaboticabal-SP

    Directory of Open Access Journals (Sweden)

    Adilson César Abreu Bernardi

    2015-12-01

    Full Text Available Considering the use of public parks as a source of leisure for the population, who maintain an intense and direct contact with the ground, which is a potential source of contamination by different causative agents of mycosis, the purpose of the research was to identify genera of keratinophilic geophilic fungi in the soil of squares in Jaboticabal-SP. 60 soil samples from 15 public squares, and 4 samples of each square were selected and collected. To isolate the soil fungi, we used the method of Vanbreuseghem (1952, modified by Machado (1977. Later the fungi were cultivated in Petri dishes containing Sabouraud Agar added to chloramphenicol, and were incubated at room temperature for about ten days. The grown colonies were isolated in test tubes to obtain pure culture. Macroscopic and microscopic analyses of isolated colonies were made and they were identified at a gender level with the aid of an identification guide. From 60 soil samples collected, 39 were positive for keratinophilic fungi, of which 90 fungic colonies were isolated, being identified the genera Penicillium spp. Fonsecaea spp., Rhizopus spp., Microsporum spp., Fusarium spp., Phialophora spp., Aspergillus spp., Acremonium spp., Nigrospora spp., Trichoderma spp., Bipolaris spp., Aureobasidium spp., Curvularia spp., Mucor spp. and Mycelia sterilia. The results allowed us to conclude that these soils represent a diverse microflora capable of degrading keratin substrates, allowing an assessment of the epidemiological potential represented by the soil in the squares of the city of Jaboticabal-SP.

  2. Methodologies and Perspectives of Proteomics Applied to Filamentous Fungi: From Sample Preparation to Secretome Analysis

    Science.gov (United States)

    Bianco, Linda; Perrotta, Gaetano

    2015-01-01

    Filamentous fungi possess the extraordinary ability to digest complex biomasses and mineralize numerous xenobiotics, as consequence of their aptitude to sensing the environment and regulating their intra and extra cellular proteins, producing drastic changes in proteome and secretome composition. Recent advancement in proteomic technologies offers an exciting opportunity to reveal the fluctuations of fungal proteins and enzymes, responsible for their metabolic adaptation to a large variety of environmental conditions. Here, an overview of the most commonly used proteomic strategies will be provided; this paper will range from sample preparation to gel-free and gel-based proteomics, discussing pros and cons of each mentioned state-of-the-art technique. The main focus will be kept on filamentous fungi. Due to the biotechnological relevance of lignocellulose degrading fungi, special attention will be finally given to their extracellular proteome, or secretome. Secreted proteins and enzymes will be discussed in relation to their involvement in bio-based processes, such as biomass deconstruction and mycoremediation. PMID:25775160

  3. Methodologies and perspectives of proteomics applied to filamentous fungi: from sample preparation to secretome analysis.

    Science.gov (United States)

    Bianco, Linda; Perrotta, Gaetano

    2015-03-12

    Filamentous fungi possess the extraordinary ability to digest complex biomasses and mineralize numerous xenobiotics, as consequence of their aptitude to sensing the environment and regulating their intra and extra cellular proteins, producing drastic changes in proteome and secretome composition. Recent advancement in proteomic technologies offers an exciting opportunity to reveal the fluctuations of fungal proteins and enzymes, responsible for their metabolic adaptation to a large variety of environmental conditions. Here, an overview of the most commonly used proteomic strategies will be provided; this paper will range from sample preparation to gel-free and gel-based proteomics, discussing pros and cons of each mentioned state-of-the-art technique. The main focus will be kept on filamentous fungi. Due to the biotechnological relevance of lignocellulose degrading fungi, special attention will be finally given to their extracellular proteome, or secretome. Secreted proteins and enzymes will be discussed in relation to their involvement in bio-based processes, such as biomass deconstruction and mycoremediation.

  4. Activity of Antarctic fungi extracts against phytopathogenic bacteria.

    Science.gov (United States)

    Purić, J; Vieira, G; Cavalca, L B; Sette, L D; Ferreira, H; Vieira, M L C; Sass, D C

    2018-06-01

    This study aims to obtain secondary metabolites extracts from filamentous fungi isolated from soil and marine sediments from Antarctic ecosystems and to assess its potential antibacterial activity on Xanthomonas euvesicatoria and Xanthomonas axonopodis pv. passiflorae (phytopathogenic bacteria causing diseases in pepper and tomato and passionfruit, respectively). Among the 66 crude intracellular and extracellular extracts obtained from fungi recovered from soil and 79 obtained from marine sediment samples, 25 showed the ability to prevent the growth of X. euvesicatoria in vitro and 28 showed the ability to prevent the growth of X. axonopodis pv. passiflorae in vitro. Intracellular and extracellular extracts from soil fungi inhibited around 97% of X. euvesicatoria and 98% of X. axonopodis pv. passiflorae at 2·1 mg ml -1 . The average inhibition rates against X. euvesicatoria and X. axonopodis pv. passiflorae for intracellular and extracellular extracts from marine sediments fungi were around 96 and 97%, respectively, at 3·0 mg ml -1 . Extracts containing secondary metabolites with antimicrobial activity against X. euvesicatoria and X. axonopodis pv. passiflorae were obtained, containing possible substitutes for the products currently used to control these phytopathogens. Micro-organisms from extreme ecosystems, such as the Antarctic ecosystem, need to survive in harsh conditions with low temperatures, low nutrients and high UV radiation. Micro-organisms adapt to these conditions evolving diverse biochemical and physiological adaptations essential for survival. All this makes these micro-organisms a rich source of novel natural products based on unique chemical scaffolds. Discovering novel bioactive compounds is essential because of the rise in antibiotic-resistant micro-organisms and the emergence of new infections. Fungi from Antarctic environments have been proven to produce bioactive secondary metabolites against various micro-organisms, but few studies

  5. Linking plants, fungi and soil mechanics

    Science.gov (United States)

    Yildiz, Anil; Graf, Frank

    2017-04-01

    their plant partners, the fungi themselves need to have access to water and nutrients. For this purpose, a resilient soil matrix consisting of stable micro- and macro-aggregates is an indispensable prerequisite. Luckily, the fungi are among the pioneers in assembling stable aggregates. The fungal hyphae intensively penetrate the unstructured soil body, enmeshing small organic and inorganic soil particles and form and cement them to micro- and macro-aggregates. On the one hand, growing hyphae are able to align primary particles and, on the other hand, exert pressure on surrounding particles and compounds forcing them together, such as clay and organic matter. Under physiological (or neutral) pH values, the fungal mycelia have a net negative charge. It is suggested that negatively charged fungal polysaccharides are bound to negatively charged clay minerals by bridges of polyvalent cations which have been proven to be stronger than some direct bonds between clay and organic matter. The formation of aggregates up to a size of 2 mm is associated with hyphal length of fungi. With regard to the assemblage of aggregates >2 mm both fungal mycelia and roots are involved. Indirectly, the mycorrhizal fungi affect the aggregate establishment through their host plants, particularly by accelerating the development of their root network and by serving as a distribution vector for associated micro-organisms, mainly bacteria and archaea, additionally contributing to cementation. Therefore, root-reinforcement as addressed for quantification of vegetation effects on slope stability almost ever is a combined contribution of fungal mycelia and root networks. With soil aggregates as the "bricks" for building a stable soil matrix and pore structure, root-reinforcement strongly depends on aggregate strength controlling potential, efficiency, and sustainability of growth and development of the protective vegetation. From a geotechnical point of view, aggregation of fines may be such pronounced

  6. Effects of Growth Media on the Diversity of Culturable Fungi from Lichens

    Directory of Open Access Journals (Sweden)

    Lucia Muggia

    2017-05-01

    Full Text Available Microscopic and molecular studies suggest that lichen symbioses contain a plethora of associated fungi. These are potential producers of novel bioactive compounds, but strains isolated on standard media usually represent only a minor subset of these fungi. By using various in vitro growth conditions we are able to modulate and extend the fraction of culturable lichen-associated fungi. We observed that the presence of iron, glucose, magnesium and potassium in growth media is essential for the successful isolation of members from different taxonomic groups. According to sequence data, most isolates besides the lichen mycobionts belong to the classes Dothideomycetes and Eurotiomycetes. With our approach we can further explore the hidden fungal diversity in lichens to assist in the search of novel compounds.

  7. Effects of Growth Media on the Diversity of Culturable Fungi from Lichens.

    Science.gov (United States)

    Muggia, Lucia; Kopun, Theodora; Grube, Martin

    2017-05-17

    Microscopic and molecular studies suggest that lichen symbioses contain a plethora of associated fungi. These are potential producers of novel bioactive compounds, but strains isolated on standard media usually represent only a minor subset of these fungi. By using various in vitro growth conditions we are able to modulate and extend the fraction of culturable lichen-associated fungi. We observed that the presence of iron, glucose, magnesium and potassium in growth media is essential for the successful isolation of members from different taxonomic groups. According to sequence data, most isolates besides the lichen mycobionts belong to the classes Dothideomycetes and Eurotiomycetes. With our approach we can further explore the hidden fungal diversity in lichens to assist in the search of novel compounds.

  8. Further Screening of Entomopathogenic Fungi and Nematodes as Control Agents for Drosophila suzukii.

    Science.gov (United States)

    Cuthbertson, Andrew G S; Audsley, Neil

    2016-06-09

    Drosophila suzukii populations remain low in the UK. To date, there have been no reports of widespread damage. Previous research demonstrated that various species of entomopathogenic fungi and nematodes could potentially suppress D. suzukii population development under laboratory trials. However, none of the given species was concluded to be specifically efficient in suppressing D. suzukii. Therefore, there is a need to screen further species to determine their efficacy. The following entomopathogenic agents were evaluated for their potential to act as control agents for D. suzukii: Metarhizium anisopliae; Isaria fumosorosea; a non-commercial coded fungal product (Coded B); Steinernema feltiae, S. carpocapsae, S. kraussei and Heterorhabditis bacteriophora. The fungi were screened for efficacy against the fly on fruit while the nematodes were evaluated for the potential to be applied as soil drenches targeting larvae and pupal life-stages. All three fungi species screened reduced D. suzukii populations developing from infested berries. Isaria fumosorosea significantly (p nematodes significantly reduced adult emergence from pupal cases compared to the water control. Larvae proved more susceptible to nematode infection. Heterorhabditis bacteriophora proved the best from the four nematodes investigated; readily emerging from punctured larvae and causing 95% mortality. The potential of the entomopathogens to suppress D. suzukii populations is discussed.

  9. Higher marine fungi from mangroves (Manglicolous fungi)

    Digital Repository Service at National Institute of Oceanography (India)

    ChinnaRaj, S.

    of higher marine fungi which included 23 Ascomycetes, 2 Basidiomycetes and 17 Deuteromycetes (Kohlmeyer and Kohlmeyer, 1979). Hyde (1990a) listed 120 species from 29 mangroves from all over the World this includes 87 Ascomycetes, 2 Basidiomycetes and 31...

  10. Endophytic Fungi of Various Medicinal Plants Collected From Evergreen Forest Baluran National Park and Its Potential as Laboratory Manual for Mycology Course

    OpenAIRE

    Murdiyah, Siti

    2017-01-01

    Endophytic fungi found on a variety of medicinal plants may express particular benefit. These fungi provide an alternative to overcome the progressive microbial resistance and as an effort to combat infectious diseases that became one of the leading causes of mortality. The main objective of this study was to isolate endophytic fungi from leaf samples of five medicinal plants species collected from evergreen forests Baluran National Park and its use as laboratory manual for Micology. Research...

  11. Diversity of Endophytic Fungi from Red Ginger (Zingiber officinale Rosc. Plant and Their Inhibitory Effect to Fusarium oxysporum Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    SIHEGIKO KANAYA

    2013-09-01

    Full Text Available Indonesia has been known as a country with high medicinal plant diversity. One of the most common medicinal plant from Indonesia is red ginger (Zingiber officinale Rosc.. Nevertheless, limited studies of endophytic fungi associated with these medicinal plants are hitherto available. The objectives of this research were to study the diversity of endophytic fungi on red ginger and to analyze their potential as a source of antifungal agent. All parts of plant organs such as leaf, rhizome, root, and stem were subjected for isolation. Fungal identification was carried out by using a combination of morphological characteristic and molecular analysis of DNA sequence generated from ITS rDNA region. Thirty endophytic fungi were successfully isolated from leaf, rhizome, root, and stem of red ginger plant. Antagonistic activity was tested against Fusarium oxysporum, a pathogenic fungus on plants, using an antagonistic assay. Based on this approach, the fungi were assigned as Acremonium macroclavatum, Beltraniella sp., Cochliobolus geniculatus and its anamorphic stage Curvularia affinis, Fusarium solani, Glomerella cingulata, and its anamorphic stage Colletotrichum gloeosporoides, Lecanicillium kalimantanense, Myrothecium verrucaria, Neonectria punicea, Periconia macrospinosa, Rhizopycnis vagum, and Talaromyces assiutensis. R. vagum was found specifically on root whereas C. affinis, L. kalimantanense, and M. verrucaria were found on stem of red ginger plant. A. macroclavatum was found specifically in red ginger plant’s organ which located under the ground, whereas C. affinis was found from shoot or organ which located above the ground. The antagonistic activity of isolated endophytic fungi against F. oxysporum varied with the inhibition value range from 1.4 to 68.8%. C. affinis (JMbt7, F. solani (JMd14, and G. cingulata (JMr2 had significantly high antagonistic activity with the value above 65%; and R. vagum (JMa4 and C. geniculatus (JMbt9 had

  12. Diversity of Endophytic Fungi from Red Ginger (Zingiber officinale Rosc. Plant and Their Inhibitory Effect to Fusarium oxysporum Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    ROHANI CINTA BADIA GINTING

    2013-09-01

    Full Text Available Indonesia has been known as a country with high medicinal plant diversity. One of the most common medicinal plant from Indonesia is red ginger (Zingiber officinale Rosc.. Nevertheless, limited studies of endophytic fungi associated with these medicinal plants are hitherto available. The objectives of this research were to study the diversity of endophytic fungi on red ginger and to analyze their potential as a source of antifungal agent. All parts of plant organs such as leaf, rhizome, root, and stem were subjected for isolation. Fungal identification was carried out by using a combination of morphological characteristic and molecular analysis of DNA sequence generated from ITS rDNA region. Thirty endophytic fungi were successfully isolated from leaf, rhizome, root, and stem of red ginger plant. Antagonistic activity was tested against Fusarium oxysporum, a pathogenic fungus on plants, using an antagonistic assay. Based on this approach, the fungi were assigned as Acremonium macroclavatum, Beltraniella sp., Cochliobolus geniculatus and its anamorphic stage Curvularia affinis, Fusarium solani, Glomerella cingulata and its anamorphic stage Colletotrichum gloeosporoides, Lecanicillium kalimantanense, Myrothecium verrucaria, Neonectria punicea, Periconia macrospinosa, Rhizopycnis vagum, and Talaromyces assiutensis. R. vagum was found specifically on root whereas C. affinis, L. kalimantanense, and M. verrucaria were found on stem of red ginger plant. A. macroclavatum was found specifically in red ginger plant's organ which located under the ground, whereas C. affinis was found from shoot or organ which located above the ground. The antagonistic activity of isolated endophytic fungi against F. oxysporum varied with the inhibition value range from 1.4 to 68.8%. C. affinis (JMbt7, F. solani (JMd14, and G. cingulata (JMr2 had significantly high antagonistic activity with the value above 65%; and R. vagum (JMa4 and C. geniculatus (JMbt9 had significantly

  13. Bioactive Metabolites from Pathogenic and Endophytic Fungi of Forest Trees.

    Science.gov (United States)

    Masi, Marco; Maddau, Lucia; Linaldeddu, Benedetto Teodoro; Scanu, Bruno; Evidente, Antonio; Cimmino, Alessio

    2018-01-01

    Fungi play an important role in terrestrial ecosystems interacting positively or negatively with plants. These interactions are complex and the outcomes are different depending on the fungal lifestyles, saprotrophic, mutualistic or pathogenic. Furthermore, fungi are well known for producing secondary metabolites, originating from different biosynthetic pathways, which possess biological properties of considerable biotechnological interest. Among the terrestrial ecosystems, temperate forests represent an enormous reservoir of fungal diversity. This review will highlight the goldmine of secondary metabolites produced by pathogenic and endophytic fungi of forest trees with focus on their biological activities. A structured search of bibliographic databases for peer-reviewed research literature was undertaken using a research discovery application providing access to a large and authoritative source of references. The papers selected were examined and the main results were reported and discussed. Two hundred forthy-one papers were included in the review, outlined a large number of secondary metabolites produced by pathogenic and endophiltic fungi and their biological activities, including phytotoxic, antifungal, antioomycetes, antibacterial, brine shrimp lethality, mosquito biting deterrence and larvicidal, cytotoxic, antiproliferative and many other bioactivities. The findings of this review confirm the importance of secondary metabolites produced by pathogenic and endophytic fungi from forest plants growing in temperate regions as an excellent prospects to discover compounds with new bioactivities and mode of actions. In addition, the potential of some metabolites as a source of new drugs and biopesticides is underlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi

    DEFF Research Database (Denmark)

    Um, Soohyun; Fraimout, Antoine; Sapountzis, Panagiotis

    2013-01-01

    colonies produce a single major antibiotic, bacillaene A (1), which selectively inhibits known and putatively antagonistic fungi of Termitomyces. Comparative analyses of the genomes of symbiotic Bacillus strains revealed that they are phylogenetically closely related to Bacillus subtilis, their genomes...... have high homology with more than 90% of ORFs being 100% identical, and the sequence identities across the biosynthetic gene cluster for bacillaene are higher between termite-associated strains than to the cluster previously reported in B. subtilis. Our findings suggest that this lineage of antibiotic......The ancient fungus-growing termite (Mactrotermitinae) symbiosis involves the obligate association between a lineage of higher termites and basidiomycete Termitomyces cultivar fungi. Our investigation of the fungus-growing termite Macrotermes natalensis shows that Bacillus strains from M. natalensis...

  15. The biology and potential for genetic research of transposable elements in filamentous fungi

    OpenAIRE

    Fávaro,Léia Cecilia de Lima; Araújo,Welington Luiz de; Azevedo,João Lúcio de; Paccola-Meirelles,Luzia Doretto

    2005-01-01

    Recently many transposable elements have been identified and characterized in filamentous fungi, especially in species of agricultural, biotechnological and medical interest. Similar to the elements found in other eukaryotes, fungal transposons can be classified as class I elements (retrotransposons) that use RNA and reverse transcriptase and class II elements (DNA transposons) that use DNA. The changes (transposition and recombination) caused by transposons can supply wide-ranging genetic va...

  16. Enumeration of fungi in barley

    CSIR Research Space (South Africa)

    Rabie, CJ

    1997-04-01

    Full Text Available Estimation of fungal contamination of barley grain is important as certain fungi can proliferate during the malting process. The following factors which may affect the enumeration of fungi were evaluated: dilution versus direct plating, pre...

  17. Molecular and phenotypic characterization of anamorphic fungi

    OpenAIRE

    Madrid Lorca, Hugo

    2011-01-01

    Anamorphic fungi (those reproducing asexually) are a big part of kingdom Fungi. Most of them occur as saprobes in nature, but numerous species are pathogenic to plants and animals including man. With the aim of contributing to the knowledge of the diversity and distribution of anamorphic fungi, we performed a phenotypic and molecular characterization of environmental and clinical isolates of these fungi. Based on a polyphasic taxonomy approach which included morphology, physiology and DNA seq...

  18. Some mycogenous fungi from Poland

    Directory of Open Access Journals (Sweden)

    Andrzej Chlebicki

    2014-08-01

    Full Text Available In the present paper the results of earlier studies on mycogenous fungi which were gathered occasionally are summarized. Fifieen specres. previously Pyrenomycetes s.l., have been found growing on other fungi Immothia hypoxylon and Lophiostoma polyporicola are new species to the Polish mycoflora. Sphaeronaemella Kulczyńskiana described by K. R o u p p e r t (1912 is considered to be Eleuteromyces subultus. Relatively high number of fungi inhabiting stromata of Diatrypella favacea is probably connected with its early colonization of the Polish area.

  19. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi.

    Directory of Open Access Journals (Sweden)

    Imke Schmitt

    Full Text Available Polyketides are natural products with a wide range of biological functions and pharmaceutical applications. Discovery and utilization of polyketides can be facilitated by understanding the evolutionary processes that gave rise to the biosynthetic machinery and the natural product potential of extant organisms. Gene duplication and subfunctionalization, as well as horizontal gene transfer are proposed mechanisms in the evolution of biosynthetic gene clusters. To explain the amount of homology in some polyketide synthases in unrelated organisms such as bacteria and fungi, interkingdom horizontal gene transfer has been evoked as the most likely evolutionary scenario. However, the origin of the genes and the direction of the transfer remained elusive.We used comparative phylogenetics to infer the ancestor of a group of polyketide synthase genes involved in antibiotic and mycotoxin production. We aligned keto synthase domain sequences of all available fungal 6-methylsalicylic acid (6-MSA-type PKSs and their closest bacterial relatives. To assess the role of symbiotic fungi in the evolution of this gene we generated 24 6-MSA synthase sequence tags from lichen-forming fungi. Our results support an ancient horizontal gene transfer event from an actinobacterial source into ascomycete fungi, followed by gene duplication.Given that actinobacteria are unrivaled producers of biologically active compounds, such as antibiotics, it appears particularly promising to study biosynthetic genes of actinobacterial origin in fungi. The large number of 6-MSA-type PKS sequences found in lichen-forming fungi leads us hypothesize that the evolution of typical lichen compounds, such as orsellinic acid derivatives, was facilitated by the gain of this bacterial polyketide synthase.

  20. White-rot fungi in phenols, dyes and other xenobiotics treatment – a brief review

    Directory of Open Access Journals (Sweden)

    B. Zelić

    2010-01-01

    Full Text Available Bioremediation is an attractive technology that utilizes the metabolic potential of microorganisms in order to clean up the environmental pollutants to the less hazardous or non-hazardous forms with less input of chemicals, energy and time. White-rot fungi are unique organisms that show the capacities of degrading and mineralizing lignin as well as organic, highly toxic and recalcitrant compounds. The key enzymes of their metabolism are extracellular lignolytic enzymes that enable fungi to tolerate a relatively high concentration of toxic substrates. This paper gives a brief review of many aspects concerning the application of white-rot fungi with the purpose of the industrial contaminants removal.

  1. Distribution of phosphate solubilizer fungi on soil microhabitats in two landscapes from Guaviare, Colombia

    Directory of Open Access Journals (Sweden)

    Diana Fernanda Vera

    2002-01-01

    Full Text Available The distribution of the phosphate solubilizer mycobiota in two different soil microhabitats present in Guaviare, Colombia, were studied. Twelve samples from Arazá rhizosphere (Eugenia stipitata McVaugh and from soil without roots were processed using the soil wahing method (Domsch  et al., 1980. The percentage of colonization of soil particles by fungi was 69 %, with a higher intensity of colonization coming from the rhizospheric microhabitat. The high percentage of potential solubilizer colonies may point to this type of soil as reserve pf solubilizer fungi. The rhizospheric effect has been the main factor involved in the composition of the solubilizer fungi community.

  2. Advances in Genomics of Entomopathogenic Fungi.

    Science.gov (United States)

    Wang, J B; St Leger, R J; Wang, C

    2016-01-01

    Fungi are the commonest pathogens of insects and crucial regulators of insect populations. The rapid advance of genome technologies has revolutionized our understanding of entomopathogenic fungi with multiple Metarhizium spp. sequenced, as well as Beauveria bassiana, Cordyceps militaris, and Ophiocordyceps sinensis among others. Phylogenomic analysis suggests that the ancestors of many of these fungi were plant endophytes or pathogens, with entomopathogenicity being an acquired characteristic. These fungi now occupy a wide range of habitats and hosts, and their genomes have provided a wealth of information on the evolution of virulence-related characteristics, as well as the protein families and genomic structure associated with ecological and econutritional heterogeneity, genome evolution, and host range diversification. In particular, their evolutionary transition from plant pathogens or endophytes to insect pathogens provides a novel perspective on how new functional mechanisms important for host switching and virulence are acquired. Importantly, genomic resources have helped make entomopathogenic fungi ideal model systems for answering basic questions in parasitology, entomology, and speciation. At the same time, identifying the selective forces that act upon entomopathogen fitness traits could underpin both the development of new mycoinsecticides and further our understanding of the natural roles of these fungi in nature. These roles frequently include mutualistic relationships with plants. Genomics has also facilitated the rapid identification of genes encoding biologically useful molecules, with implications for the development of pharmaceuticals and the use of these fungi as bioreactors. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens

    Directory of Open Access Journals (Sweden)

    Cui-Ping Miao

    2016-04-01

    Conclusion: Our results suggest that diverse fungi including potential pathogenic ones exist in the rhizosphere soil of 2-yr-old P. notoginseng and that antagonistic isolates may be useful for biological control of pathogens.

  4. Genetically Engineering Entomopathogenic Fungi.

    Science.gov (United States)

    Zhao, H; Lovett, B; Fang, W

    2016-01-01

    Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Fungi isolated in school buildings

    Directory of Open Access Journals (Sweden)

    Elżbieta Ejdys

    2013-12-01

    Full Text Available The aim of the study was to determine the species composition of fungi occurring on wall surfaces and in the air in school buildings. Fungi isolated from the air using the sedimentation method and from the walls using the surface swab technique constituted the study material. Types of finish materials on wall surfaces were identified and used in the analysis. Samples were collected in selected areas in two schools: classrooms, corridors, men's toilets and women's toilets, cloakrooms, sports changing rooms and shower. Examinations were conducted in May 2005 after the heating season was over. Fungi were incubated on Czapek-Dox medium at three parallel temperatures: 25, 37 and 40°C, for at least three weeks. A total of 379 isolates of fungi belonging to 32 genera of moulds, yeasts and yeast-like fungi were obtained from 321 samples in the school environment. The following genera were isolated most frequently: Aspergillus, Penicillium and Cladosporium. Of the 72 determined species, Cladosporium herbarum, Aspergillus fumigatus and Penicillium chrysogenum occurred most frequently in the school buildings. Wall surfaces were characterised by an increased prevalence of mycobiota in comparison with the air in the buildings, with a slightly greater species diversity. A certain species specificity for rough and smooth wall surfaces was demonstrated. Fungi of the genera Cladosporium and Emericella with large spores adhered better to smooth surfaces while those of the genus Aspergillus with smaller conidia adhered better to rough surfaces. The application of three incubation temperatures helped provide a fuller picture of the mycobiota in the school environment.

  6. In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections.

    Science.gov (United States)

    Ellison, Mitchell A; McMahon, Michael B; Bonde, Morris R; Palmer, Cristi L; Luster, Douglas G

    2016-01-01

    Rust fungi are obligate pathogens with multiple life stages often including different spore types and multiple plant hosts. While individual rust pathogens are often associated with specific plants, a wide range of plant species are infected with rust fungi. To study the interactions between these important pathogenic fungi and their host plants, one must be able to differentiate fungal tissue from plant tissue. This can be accomplished using the In situ hybridization (ISH) protocol described here. To validate reproducibility using the ISH protocol, samples of Chrysanthemum × morifolium infected with Puccinia horiana, Gladiolus × hortulanus infected with Uromyces transversalis and Glycine max infected with Phakopsora pachyrhizi were tested alongside uninfected leaf tissue samples. The results of these tests show that this technique clearly distinguishes between rust pathogens and their respective host plant tissues. This ISH protocol is applicable to rust fungi and potentially other plant pathogenic fungi as well. It has been shown here that this protocol can be applied to pathogens from different genera of rust fungi with no background staining of plant tissue. We encourage the use of this protocol for the study of plant pathogenic fungi in paraffin embedded sections of host plant tissue.

  7. Anaerobic gut fungi: Advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production.

    Science.gov (United States)

    Haitjema, Charles H; Solomon, Kevin V; Henske, John K; Theodorou, Michael K; O'Malley, Michelle A

    2014-08-01

    Anaerobic gut fungi are an early branching family of fungi that are commonly found in the digestive tract of ruminants and monogastric herbivores. It is becoming increasingly clear that they are the primary colonizers of ingested plant biomass, and that they significantly contribute to the decomposition of plant biomass into fermentable sugars. As such, anaerobic fungi harbor a rich reservoir of undiscovered cellulolytic enzymes and enzyme complexes that can potentially transform the conversion of lignocellulose into bioenergy products. Despite their unique evolutionary history and cellulolytic activity, few species have been isolated and studied in great detail. As a result, their life cycle, cellular physiology, genetics, and cellulolytic metabolism remain poorly understood compared to aerobic fungi. To help address this limitation, this review briefly summarizes the current body of knowledge pertaining to anaerobic fungal biology, and describes progress made in the isolation, cultivation, molecular characterization, and long-term preservation of these microbes. We also discuss recent cellulase- and cellulosome-discovery efforts from gut fungi, and how these interesting, non-model microbes could be further adapted for biotechnology applications. © 2014 Wiley Periodicals, Inc.

  8. Molecular identification of fungi trichothecens producing in seeds madder and detection of their nivalenol gene synthesis using PCR

    Directory of Open Access Journals (Sweden)

    Seyyed Alireza Esmailzadeh Hosseini

    2018-01-01

    Full Text Available Madder is one of the most important crops that used for medical and industrial applications and is widely cultivated in Yazd province. During 2012, sampling was done form seeds madder in important areas planted in Yazd province, including Bafq and Ardakan. After culturing and purification of fungal isolates in PDA and CLA media, additional identification was performed by PCR with specific primers for each species. Detection of fungi mycotoxins producing potential such as Nivalenol (NIV using Tri13 primers was done. High-performance liquid chromatography (HPLC was used to confirm the produce NIV mycotoxins potential in Fusarium species. 249 fungal strains were isolated from madder seed belonging to 6 genera of fungi including Fusarium spp., Aspergillus spp., Penicillium spp., Alternaria spp., Rhizoctonia solani and Rhizpous spp., that Fusarium isolates with 71 percent was the most frequency among fungi isolated. Among Fusarium fungi isolated, F. solani (55 isolates and F. oxysporum (41 isolates were the most frequency. F. poae, F. semitectum and F. equiseti ability to produce mycotoxins such as Nivalenol (NIV that are harmful to human health and animals as well as effect on the quantity and quality of madder color production. Tri13 gene involved in production NIV was detected in three Fusarium species that all isolates produce NIV. The results of HPLC showed that all studied Fusarium fungi, have the potential to produce NIV mycotoxins. The results of this study showed that fungi associated with seeds madder are able to produce trichothecene mycotoxins that they can be dangerous for consumers. Given that, this is the first report of fungi mycotoxins producing on seeds madder in Yazd province, thus should be measures to control and reduce fungal agents in these products.

  9. Cercosporoid fungi (Mycosphaerellaceae) 2. Species on monocots (Acoraceae to Xyridaceae, excluding Poaceae).

    Science.gov (United States)

    Braun, Uwe; Crous, Pedro W; Nakashima, Chiharu

    2014-12-01

    Cercosporoid fungi (formerly Cercospora s. lat.) represent one of the largest groups of hyphomycetes belonging to the Mycosphaerellaceae (Ascomycota). They include asexual morphs, asexual holomorphs, or species with mycosphaerella-like sexual morphs. Most of them are leaf-spotting plant pathogens with special phytopathological relevance. In the first part of a new monographic work, cercosporoid hyphomycetes occurring on other fungi (fungicolous species), on ferns (pteridophytes) and gymnosperms were treated. This second part deals with cercosporoid fungi on monocots (Liliopsida; Equisetopsida, Magnoliidae, Lilianae), which covers species occurring on host plants belonging to families arranged in alphabetical order from Acoraceae to Xyridaceae, excluding Poaceae (cereals and grasses) which requires a separate treatment. The species are described and illustrated in alphabetical order under the particular cercosporoid genera, supplemented by keys to the species concerned. A detailed introduction, a survey of currently recognised cercosporoid genera, a key to the genera concerned, and a discussion of taxonomically relevant characters were published in the first part of this series. Neopseudocercospora, an additional recently introduced cercosporoid genus, is briefly discussed. The following taxonomic novelties are introduced: Cercospora alpiniigena sp. nov., C. neomaricae sp. nov., Corynespora palmicola comb. nov., Exosporium miyakei comb. nov., E. petersii comb. nov., Neopseudocercospora zambiensis comb. nov., Passalora caladiicola comb. nov., P. streptopi comb. nov., P. togashiana comb. nov., P. tranzschelii var. chinensis var. nov., Pseudocercospora beaucarneae comb. nov., P. constrictoflexuosa comb. et stat. nov., P. curcumicola sp. nov., P. dispori comb. nov., P. smilacicola sp. nov., P. urariigena nom. nov., Zasmidium agavicola comb. nov., Z. cercestidis-afzelii comb. nov., Z. citri-griseum comb. nov., Z. cyrtopodii comb. nov., Z. gahnae comb. nov., Z. indicum

  10. Radionuclides in sporocarps of medicinaly important fungi of Fruska Gora hill

    International Nuclear Information System (INIS)

    Karaman, M.; Matavulj, M.; Čonkić, L.

    2002-01-01

    The content of radionuclides in six lignicolous saprophytic and parasitic fungal species was analyzed. Samples were collected in 1999 autumn at two sites of the Fruska Gora Hill. Since fungi absorb radionuclides mostly from the substrate, soil and tree samples were also collected and analyzed. Certain characteristics of fungal species play an important role in the process of radionuclide absorption. On the other hand, the degree of radionuclide accumulation is very important for the fungi of potential pharmaceutical significance. The results on the radioactivity concentration in the analyzed fungi could be used both for the bioindication investigations, soil and substrate contamination in particular, and for estimation of the forest ecological status. The activity concentration level of most critical radionuclide 137Cs was about ten times lower in these species then in Pholiota squarrosa, characterized by the highest activity concentration level of 55(4) Bq/kg (d.m.) [sr

  11. Further Screening of Entomopathogenic Fungi and Nematodes as Control Agents for Drosophila suzukii

    Directory of Open Access Journals (Sweden)

    Andrew G. S. Cuthbertson

    2016-06-01

    Full Text Available Drosophila suzukii populations remain low in the UK. To date, there have been no reports of widespread damage. Previous research demonstrated that various species of entomopathogenic fungi and nematodes could potentially suppress D. suzukii population development under laboratory trials. However, none of the given species was concluded to be specifically efficient in suppressing D. suzukii. Therefore, there is a need to screen further species to determine their efficacy. The following entomopathogenic agents were evaluated for their potential to act as control agents for D. suzukii: Metarhizium anisopliae; Isaria fumosorosea; a non-commercial coded fungal product (Coded B; Steinernema feltiae, S. carpocapsae, S. kraussei and Heterorhabditis bacteriophora. The fungi were screened for efficacy against the fly on fruit while the nematodes were evaluated for the potential to be applied as soil drenches targeting larvae and pupal life-stages. All three fungi species screened reduced D. suzukii populations developing from infested berries. Isaria fumosorosea significantly (p < 0.001 reduced population development of D. suzukii from infested berries. All nematodes significantly reduced adult emergence from pupal cases compared to the water control. Larvae proved more susceptible to nematode infection. Heterorhabditis bacteriophora proved the best from the four nematodes investigated; readily emerging from punctured larvae and causing 95% mortality. The potential of the entomopathogens to suppress D. suzukii populations is discussed.

  12. From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics

    Science.gov (United States)

    Silber, Johanna; Kramer, Annemarie; Labes, Antje; Tasdemir, Deniz

    2016-01-01

    Filamentous fungi are well known for their capability of producing antibiotic natural products. Recent studies have demonstrated the potential of antimicrobials with vast chemodiversity from marine fungi. Development of such natural products into lead compounds requires sustainable supply. Marine biotechnology can significantly contribute to the production of new antibiotics at various levels of the process chain including discovery, production, downstream processing, and lead development. However, the number of biotechnological processes described for large-scale production from marine fungi is far from the sum of the newly-discovered natural antibiotics. Methods and technologies applied in marine fungal biotechnology largely derive from analogous terrestrial processes and rarely reflect the specific demands of the marine fungi. The current developments in metabolic engineering and marine microbiology are not yet transferred into processes, but offer numerous options for improvement of production processes and establishment of new process chains. This review summarises the current state in biotechnological production of marine fungal antibiotics and points out the enormous potential of biotechnology in all stages of the discovery-to-development pipeline. At the same time, the literature survey reveals that more biotechnology transfer and method developments are needed for a sustainable and innovative production of marine fungal antibiotics. PMID:27455283

  13. Endophytic Fungi of Various Medicinal Plants Collected From Evergreen Forest Baluran National Park and Its Potential as Laboratory Manual for Mycology Course

    Directory of Open Access Journals (Sweden)

    Siti Murdiyah

    2017-03-01

    Full Text Available Endophytic fungi found on a variety of medicinal plants may express particular benefit. These fungi provide an alternative to overcome the progressive microbial resistance and as an effort to combat infectious diseases that became one of the leading causes of mortality. The main objective of this study was to isolate endophytic fungi from leaf samples of five medicinal plants species collected from evergreen forests Baluran National Park and its use as laboratory manual for Micology. Research findings showed there were 3 isolates of endophytic fungi isolated from 2 medicinal plants namely Kesambi (Schleicera oleosa and Ketapang (Terminalia catappa. All three isolates formed sporangiophores as asexual reproductive structures, while the structure of sexual still undiscovered therefore its classification has not been determined. The validity tests also showed that the lab manual is feasible for use with the percentage achievement 85.37% and 88.56%.

  14. Prevalence of Potential and Clinically Relevant Statin-Drug Interactions in Frail and Robust Older Inpatients.

    Science.gov (United States)

    Thai, Michele; Hilmer, Sarah; Pearson, Sallie-Anne; Reeve, Emily; Gnjidic, Danijela

    2015-10-01

    A significant proportion of older people are prescribed statins and are also exposed to polypharmacy, placing them at increased risk of statin-drug interactions. To describe the prevalence rates of potential and clinically relevant statin-drug interactions in older inpatients according to frailty status. A cross-sectional study of patients aged ≥65 years who were prescribed a statin and were admitted to a teaching hospital between 30 July and 10 October 2014 in Sydney, Australia, was conducted. Data on socio-demographics, comorbidities and medications were collected using a standardized questionnaire. Potential statin-drug interactions were defined if listed in the Australian Medicines Handbook and three international drug information sources: the British National Formulary, Drug Interaction Facts and Drug-Reax(®). Clinically relevant statin-drug interactions were defined as interactions with the highest severity rating in at least two of the three international drug information sources. Frailty was assessed using the Reported Edmonton Frail Scale. A total of 180 participants were recruited (median age 78 years, interquartile range 14), 35.0% frail and 65.0% robust. Potential statin-drug interactions were identified in 10% of participants, 12.7% of frail participants and 8.5% of robust participants. Clinically relevant statin-drug interactions were identified in 7.8% of participants, 9.5% of frail participants and 6.8% of robust participants. Depending on the drug information source used, the prevalence rates of potential and clinically relevant statin-drug interactions ranged between 14.4 and 35.6% and between 14.4 and 20.6%, respectively. In our study of frail and robust older inpatients taking statins, the overall prevalence of potential statin-drug interactions was low and varied significantly according to the drug information source used.

  15. White-rot fungi in phenols, dyes and other xenobiotics treatment – a brief review

    OpenAIRE

    Tišma, Marina; Zelić, B.; Vasić-Rački, Đurđa

    2010-01-01

    Bioremediation is an attractive technology that utilizes the metabolic potential of microorganisms in order to clean up the environmental pollutants to the less hazardous or non-hazardous forms with less input of chemicals, energy and time. White-rot fungi are unique organisms that show the capacities of degrading and mineralizing lignin as well as organic, highly toxic and recalcitrant compounds. The key enzymes of their metabolism are extracellular lignolytic enzymes that enable fungi to to...

  16. Occurrence of keratinophilic fungi on Indian birds.

    Science.gov (United States)

    Dixit, A K; Kushwaha, R K

    1991-01-01

    Keratinophilic fungi were isolated from feathers of most common Indian birds, viz. domestic chicken (Gallus domesticus), domestic pigeon (Columba livia), house sparrow (Passer domesticus), house crow (Corvus splendens), duck (Anas sp.), rose-ringed parakeet (Psittacula krameri). Out of 87 birds, 58 yielded 4 keratinophilic fungal genera representing 13 fungal species and one sterile mycelium. The isolated fungi were cultured on Sabouraud's dextrose agar at 28 +/- 2 degrees C. Chrysosporium species were isolated on most of the birds. Chrysosporium lucknowense and Chrysosporium tropicum were the most common fungal species associated with these Indian birds. Maximum occurrence of fungi (47%) was recorded on domestic chickens and the least number of keratinophilic fungi was isolated from the domestic pigeon and duck. The average number of fungi per bird was found to be the 0.44.

  17. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    Science.gov (United States)

    Karst, N.; Dralle, D.; Thompson, S. E.

    2015-12-01

    Soil fungi fill many essential ecological and biogeochemical roles, e.g. decomposing litter, redistributing nutrients, and promoting biodiversity. Fairy ring fungi offer a rare glimpse into the otherwise opaque spatiotemporal dynamics of soil fungal growth, because subsurface mycelial patterns can be inferred from observations at the soil's surface. These observations can be made directly when the fungi send up fruiting bodies (e.g., mushrooms and toadstools), or indirectly via the effect the fungi have on neighboring organisms. Grasses in particular often temporarily thrive on the nutrients liberated by the fungus, creating bands of rich, dark green turf at the edge of the fungal mat. To date, only annular (the "ring" in fairy ring) and arc patterns have been described in the literature. We report observations of novel spiral and rotor pattern formation in fairy ring fungi, as seen in publically available high-resolution aerial imagery of 22 sites across the continental United States. To explain these new behaviors, we first demonstrate that a well-known model describing fairy ring formation is equivalent to the Gray-Scott reaction-diffusion model, which is known to support a wide range of dynamical behaviors, including annular traveling waves, rotors, spirals, and stable spatial patterns including spots and stripes. Bifurcation analysis and numerical simulation are then used to define the region of parameter space that supports spiral and rotor formation. We find that this region is adjacent to one within which typical fairy rings develop. Model results suggest simple experimental procedures that could potentially induce traditional ring structures to exhibit rotor or spiral dynamics. Intriguingly, the Gray-Scott model predicts that these same procedures could be used to solicit even richer patterns, including spots and stripes, which have not yet been identified in the field.

  18. The effect of environmental contamination on the community structure and fructification of ectomycorrhizal fungi.

    Science.gov (United States)

    Sun, Qibiao; Liu, Yaping; Yuan, Huatao; Lian, Bin

    2017-02-01

    Ectomycorrhizal fungi are an essential component of forest ecosystems, most of which can form edible and medical fruiting bodies. Although many studies have focused on the fructification of ectomycorrhizal fungi in phenology, the impact of environmental contamination, especially living garbage, on the formation of fruiting body is still unknown. A field investigation, combined with a high-throughput sequencing method, was used to study the effect of living garbage pollution on the fructification and hypogeous community structure of ectomycorrhizal fungi symbiosing with cedar (Cedrus deodara (Roxb.) G. Don). The results showed that garbage significantly altered soil abiotic and biotic properties, increasing soil urease activity, decreasing the soil exchangeable metal content and phosphatase activity, and ultimately inhibiting the formation of fruiting bodies. The pollution of garbage also changed the community structure of hypogeous ectomycorrhizal fungi where ectomycorrhizal ascomycetes dominated. In unpolluted sites, the relative abundance of ectomycorrhizal ascomycetes and basidiomycetes were almost equal. Although no fruiting bodies were observed in that soil polluted by living garbage, the sequencing result showed that various ectomycorrhizal fungi were present underground, suggesting that these taxonomic fungi had the potential to cope with adverse conditions. This study not only provided a deeper understanding of the relationship between ectomycorrhizal fungal communities and prevailing environmental conditions, but provided a new pathway for the excavation and utilization of the resource of antistress ectomycorrhizal fungi. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  19. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential

    Czech Academy of Sciences Publication Activity Database

    Gruninger, R. J.; Puniya, A. K.; Callaghan, T. M.; Edwards, J.E.; Youssef, N.; Dagar, S. S.; Fliegerová, Kateřina; Griffith, G. W.; Forster, R.; Tsang, A.; McAllister, T.; Elshahed, M. S.

    2014-01-01

    Roč. 90, č. 1 (2014), s. 1-17 ISSN 0168-6496 R&D Projects: GA MŠk 7E12046 Institutional support: RVO:67985904 Keywords : gut fungi * herbivore * biotechnology Subject RIV: EE - Microbiology, Virology Impact factor: 3.568, year: 2014

  20. Fungi and mites on humid indoor walls : a laboratory study

    NARCIS (Netherlands)

    Koren, L.G.H.; Kort, H.S.M.; Siebers, Rob; Cunningham, M.; Fitzharris, P.

    2000-01-01

    The potential allergen source formed by mites and fungi developing on walls has been studied in a semi-natural model. Gypsum and wooden pieces, representing indoor walls, were artificially soiled with one of two different organic compounds, a yeast/vegetable mixture (Mannite) or a red currant juice

  1. Distribution of phosphate solubiliser fungi on soil micro habitats in two landscapes from Guaviare, Colombia

    International Nuclear Information System (INIS)

    Vera, Diana Fernanda; Perez, Hernando; Valencia Hernando

    2002-01-01

    The distribution of the phosphate solubiliser myco biota in two different soil micro habitats present in Guaviare Colombia, were studied. Twelve samples from Araza rhizosphere (Eugenia stipitata McVaugh) and from soil without roots were processed using the soil washing method (Domsch et al., 1980). The percentage of colonization of soil particles by fungi was 69 %, with a higher intensity of colonization coming from the rhizospheric micro habitat. The high percentage of potential solubiliser colonies may point to this type of soil as reserve pf solubiliser fungi. The rhizospheric effect has been the main factor involved in the composition of the solubiliser fungi community

  2. Uptake and accumulation of 137Cs by upland grassland soil fungi: a potential pool of Cs immobilization

    International Nuclear Information System (INIS)

    Dighton, J.; Clint, G.M.; Poskitt, J.

    1991-01-01

    Reports of high concentrations of fallout radiocaesium in basidiomycete fruit bodies after the Chernobyl nuclear reactor accident and speculation that fungi could be long-term 137 Cs accumulators led us to ask if fungi could be long-term 137 Cs accumulators. We used six common upland grassland species to try to estimate their importance in the immobilization of 137 Cs. Uptake of Cs by these species ranged from 44 to 235 nmol Cs g − 1d.w. h − 1. Efflux studies indicate that more than 40% of the Cs taken up is bound within the hyphae. We estimate that the fungal component of the soil could immobilize the total radiocaesium fallout received in upland grasslands following the Chernobyl accident

  3. Plant Extract Control of the Fungi Associated with Different Egyptian Wheat Cultivars Grains

    Directory of Open Access Journals (Sweden)

    Mohamed Baka Zakaria Awad

    2014-07-01

    Full Text Available Grain samples of 14 Egyptian wheat cultivars were tested for seed-borne fungi. The deep freezing method was used. Five seed-borne fungi viz., Aspergillus flavus, A. niger, Curvularia lunata, Fusarium moniliforme and Penicillium chrysogenum were isolated from the wheat cultivars viz., Bani Suef 4, Bani Suef 5, Gemmiza 7, Gemmiza 9, Gemmiza 10, Giza 168, Misr 1, Misr 2, Sakha 93, Sakha 94, Shandaweel 1, Sids 1, Sids 2 and Sids 3. A. flavus, A. niger and F. moniliforme were the most prevalent fungal species. Their incidence ranged from 21.0-53.5%, 16.0-37.5%, and 12.0-31.0%, respectively. The antifungal potential of water extracts from aerial parts of five wild medicinal plants (Asclepias sinaica, Farsetia aegyptia, Hypericum sinaicum, Phagnalon sinaicum, and Salvia aegyptiaca were collected from the Sinai Peninsula, Egypt. The antifungal potential of water extracts from the aerial parts of these five plants were tested in the laboratory against the dominant fungi isolated from the wheat cultivars. All the aqueous plant extracts significantly (p ≤ 0.05 reduced the incidence of the tested seed-borne fungi. But the extract of Asclepias sinaica exhibited the most antifungal activity on tested fungi at all concentrations used when compared with other plant extracts. Maximum infested grain germination was observed in Giza 168 and minimum in Bani Suef 5. Treating grains with plant extract of A. sinaica (10% enhanced the percentage of grain germination of all cultivars in both laboratory and pot experiments. Maximum root and shoot length of seedlings was recorded in Bani Suef 4 during fungal infestation or treatment by plant extract. For one hour before sowing or storage, the aqueous extract of A. sinaica can be used to treat wheat grains, to reduce the fungal incidence. Aqueous extracts of the aerial parts of selected medicinal plants, particularly A. sinaica, are promising for protecting Egyptian wheat grain cultivars against major seed-borne fungi

  4. How to know unknown fungi: the role of a herbarium.

    Science.gov (United States)

    Brock, Patrick M; Döring, Heidi; Bidartondo, Martin I

    2009-01-01

    The development of a universal approach to the identification of fungi from the environment is impeded by the limited number and narrow phylogenetic range of the named internal transcribed spacer DNA sequences available on GenBank. The goal here was to assess the potential impact of systematic DNA sequencing from a fungal herbarium collection. DNA sequences were generated from a diverse set of 279 specimens deposited at the fungal herbarium of the Royal Botanic Gardens at Kew (UK) and bioinformatic analyses were used to study their overlap with the public database. It is estimated that c. 70% of the herbarium taxonomic diversity is not yet represented in GenBank and that a further c. 10% of our sequences match solely to 'environmental samples' or fungi otherwise unidentified. Here it is shown that the unsampled diversity residing in fungal herbaria can substantially enlarge the coverage of GenBank's fully identified sequence pool to ameliorate the problem of environmental unknowns and to aid in the detection of truly novel fungi by molecular data.

  5. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2014-01-01

    Abstract The version of this article published in BMC Genomics 2013, 14: 274, contains 9 unpublished genomes (Botryobasidium botryosum, Gymnopus luxurians, Hypholoma sublateritium, Jaapia argillacea, Hebeloma cylindrosporum, Conidiobolus coronatus, Laccaria amethystina, Paxillus involutus, and P. rubicundulus) downloaded from JGI website. In this correction, we removed these genomes after discussion with editors and data producers whom we should have contacted before downloading these genomes. Removing these data did not alter the principle results and conclusions of our original work. The relevant Figures 1, 2, 3, 4 and 6; and Table 1 have been revised. Additional files 1, 3, 4, and 5 were also revised. We would like to apologize for any confusion or inconvenience this may have caused. Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 94 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed

  6. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy M.; Grigoriev, Igor V.; Otillar, Robert; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; John, Tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M.; Lombard, Vincent; Natvig, Donald O.; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P.; Allijn, Iris E.; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J.; Paulsen, Ian T.; Elbourne, Liam D. H.; Baker, Scott. E.; Magnuson, Jon; LaBoissiere, Sylvie; Clutterbuck, A. John; Martinez, Diego; Wogulis, Mark; Lopez de Leon, Alfredo; Rey, Michael W.; Tsang, Adrian

    2011-05-16

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

  7. Filamentous Growth in Eremothecium Fungi

    DEFF Research Database (Denmark)

    Oskarsson, Therese

    , this thesis deals with some of the aspects of hyphal growth, which is an important virulence factor for pathogenic fungi infecting both humans and plants. Hyphal establishment through continuous polar growth is a complex process, requiring the careful coordination of a large subset of proteins involved......-regulatory activity of AgGts1, the protein could have additional actin organizing properties. In the second and third part, this thesis addresses the use of A. gossypii and its relative E. cymbalariae as model organisms for filamentous growth. A series of assays analyzed the capability of Eremothecium genus fungi...... of molecular tools for E. cymbalariae to enable a faster and more efficient approach for genetic comparisons between Eremothecium genus fungi....

  8. Do genetic modifications in crops affect soil fungi? a review

    NARCIS (Netherlands)

    Hannula, S.E.; Boer, de W.; Veen, van J.A.

    2014-01-01

    The use of genetically modified (GM) plants in agriculture has been a topic in public debate for over a decade. Despite their potential to increase yields, there may be unintended negative side-effects of GM plants on soil micro-organisms that are essential for functioning of agro-ecosystems. Fungi

  9. Arbuscular mycorrhizal fungi improve the growth of olive trees and ...

    African Journals Online (AJOL)

    STORAGESEVER

    quality olive plants. To study the potential of the mycorrhizal fungi Glomus mosseae and Glomus intraradices to stimulate the growth of micropropagated olive plants and to compare their ... phosphate, 15% potassium oxide, 2% magnesium oxide, 4.5% sulphur, 0.02% ..... Our results indicate the feasibility of G. mosseae and.

  10. Tripartite symbiosis of Sophora tomentosa, rhizobia and arbuscular mycorhizal fungi.

    Science.gov (United States)

    Toma, Maíra Akemi; Soares de Carvalho, Teotonio; Azarias Guimarães, Amanda; Martins da Costa, Elaine; Savana da Silva, Jacqueline; de Souza Moreira, Fatima Maria

    Sophora tomentosa is a pantropical legume species with potential for recovery of areas degraded by salinization, and for stabilization of sand dunes. However, few studies on this species have been carried out, and none regarding its symbiotic relationship with beneficial soil microorganisms. Therefore, this study aimed to evaluate the diversity of nitrogen-fixing bacteria isolated from nodules of Sophora tomentosa, and to analyze the occurrence of colonization of arbuscular mycorrhizal fungi on the roots of this legume in seafront soil. Thus, seeds, root nodules, and soil from the rhizosphere of Sophora tomentosa were collected. From the soil samples, trap cultures with this species were established to extract spores and to evaluate arbuscular mycorhizal fungi colonization in legume roots, as well as to capture rhizobia. Rhizobia strains were isolated from nodules collected in the field or from the trap cultures. Representative isolates of the groups obtained in the similarity dendrogram, based on phenotypic characteristics, had their 16S rRNA genes sequenced. The legume species showed nodules with indeterminate growth, and reddish color, distributed throughout the root. Fifty-one strains of these nodules were isolated, of which 21 were classified in the genus Bacillus, Brevibacillus, Paenibacillus, Rhizobium and especially Sinorhizobium. Strains closely related to Sinorhizobium adhaerens were the predominant bacteria in nodules. The other genera found, with the exception of Rhizobium, are probably endophytic bacteria in the nodules. Arbuscular mycorrhizal fungi was observed colonizing the roots, but arbuscular mycorhizal fungi spores were not found in the trap cultures. Therefore Sophora tomentosa is associated with both arbuscular mycorhizal fungi and nodulating nitrogen-fixing bacteria. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Entomopathogenic fungi from 'El Eden' Ecological Reserve, Quintana Roo, Mexico.

    Science.gov (United States)

    Torres-Barragán; Anaya, Ana Luisa; Alatorre, Raquel; Toriello, Conchita

    2004-07-01

    Entomopathogenic fungi were isolated and identified from insects collected from the tropical forest and an agricultural area at El Eden Ecological Reserve, Quintana Roo, Mexico. These fungi were studied to determine their potential as biological control agents of greenhouse Trialeurodes vaporariorum (Homoptera: Aleyrodidae), and to contribute to the knowledge of biodiversity of this area. No pest insects were observed in the tropical forest. In contrast, all insects collected in the agricultural area were considered important pests by the local farmers, with the whitefly, as the most relevant, plentiful in Cucurbitaceae plants. From approximately 3400 collected insects in three different surveys, different anamorphic Ascomycetes were recovered. One isolate of Aspergillus sp., two of Penicillium sp., three of Paecilomyces marquandii, and three of Verticillium sp. out of 308 insects (2.9%) from three insect orders, Hymenoptera, Diptera and Isoptera in the tropical forest. In contrast, a higher number of fungal isolates were recovered from the agricultural area: three isolates from Aspergillus parasiticus, 100 of Fusarium moniliforme, one of Aschersonia sp., and 246 of Fusarium oxysporum out of 3100 insects (11.3%) from three insect orders, Homoptera, Coleoptera and Lepidoptera. The results of this study show Fusarium moniliforme and F oxysporum as highly virulent to infected insects in the agricultural area, with 100 and 246 isolates respectively, out of 350 infected insects of 3100 studied specimens. Laboratory whitefly nymph bioassays with isolates Ed29a of F. moniliforme, Ed322 of F. oxysporum, and Ed22 of P marquandii showed 96 to 97.5% insect mortality with no significant differences (P < 0.05) among them. F. oxysporum Ed322 produced no mortality when inoculated on tomato, bean, squash and maize seedlings (with and without injuries) compared to the 100% mortality caused by phytopathogenic strains, F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis

  12. Viable allergenic fungi in a documentary deposit of the National Archive of Cuba

    Directory of Open Access Journals (Sweden)

    Alian Molina-Veloso

    2017-02-01

    Full Text Available Background: Intense and persistent exposure to indoor-air biological agents has been associated with the appearance of allergic diseases. Archives and libraries Indoor environments in tropical countries are an important reservoir of fungal propagules. Objective: To evaluate the degree of air pollution with allergenic fungi in a repository of frequently-manipulated documents. Methods: Air sampling was performed by two methods: active (biocollector and passive (sedimentation plate. Fungi were taxonomically identified, and spores were measured to determine their penetrability in the human respiratory tract, and its impact on episodes of allergy. Results: In terms of concentration and diversity, the local environment behaved as a fungal propagule reservoir, which showed that there is significant health risk for the staff that manipulates the documents. Some spores were shown to be able to reach the lower respiratory tract when inhaled, which increases their allergenic and pathogenic potential. Aspergillus, Cladosporium, Penicillium and Alternaria, which are referred to as highly allergenic fungi, were prevalent. Conclusion: Aerobiological studies are a valuable tool for the treatment of patients with allergy to fungi and other disorders they produce.

  13. In-vitro predatory activity of nematophagous fungi from Costa Rica with potential use for controlling sheep and goat parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Natalia Soto-Barrientos

    2011-03-01

    Full Text Available In tropical and subtropical regions of the world, parasitic diseases are a main cause of losses in livestock productivity. The increased acquired resistence to anthelmintics by gastrointestinal nematodes, requires biological control be considered as a potential feasible and effective alternative. The most effective natural soil enemies of nematodes are nematophagous fungi. In order to collect and identify predator nematophagous fungi (PNF, samples were obtained from 51 farms distributed throughout the seven provinces of Costa Rica. The origin samples included: soil from different crops (potatoes, tomatoes, bananas, ornamental plants, squash and coffee; animal feces (cattle, sheep, goat and horse; soil and fallen leaves from forest; and plants with signs of nematode infection. Each sample was processed using three techniques for the extraction of fungi from soil: sprinkling technique, soil dilution and humidity chamber. Twenty four strains of nematophagous fungi were found in 19 farms; 83.3% of the fungi were isolated by sprinkling technique. The following fungi were idenified: Arthrobotrys oligospora (n=13; Candelabrella musiformis (n=9; and for the first time there was isolation of A. conoides (n=1 and A. dactyloides (n=1 in the country. Moreover, 16 strains from Trichoderma (n=13, Beauveria (n=1, Clonostachys (n=1 and Lecanicillium (n=1 were obtained. In addition, pH of each possible fungal isolation source was measured, and it varied from 5.2 to 9.9, however PNF isolates fell within the range of 5.6 to 7.5. The PNF strains were cultivated in four different media for the production of chhlamydospores: potato dextrose agar (PDA; corn meal agar (CMA; malt extract agar (MEA and potato carrot agar (PCA. Out of these cultures, 95.8% of the strains formed chlamydospores primarily in the PCA. Of these strains, the profilic spore producers were subjected to ruminant artificial gastrointestinal conditions. A total of 14 fungi were tested, out of which

  14. Antifungal activity of polycyclic aromatic hydrocarbons against Ligninolytic fungi

    Directory of Open Access Journals (Sweden)

    Memić Mustafa

    2011-01-01

    Full Text Available Environmental contamination by polycyclic aromatic hydrocarbons (PAHs has caused increasing concern because of their known, or suspected, carcinogenic and mutagenic effects. Polycyclic aromatic hydrocarbons occurring in the environment are usually the result of the incomplete combustion of carbon containing materials. The main sources of severe PAHs contamination in soil come from fossil fuels, i.e. production or use of fossil fuels or their products, such as coal tar and creosote. Creosote is used as a wood preservation for railway ties, bridge timbers, pilling and large-sized lumber. It consists mainly of PAHs, phenol and cresol compounds that cause harmful health effects. Research on biodegradation has shown that a special group of microorganisms, the white-rot fungi and brown-rot fungi, has a remarkable potential to degrade PAHs. This paper presents a study of the antifungal activity of 12 selected PAHs against two ligninolytic fungi Hypoxylon fragiforme (white rot and Coniophora puteana (brown rot. The antifungal activity of PAHs was determined by the disc-diffusion method by measuring the diameter of the zone of inhibition. The results showed that the antifungal activity of the tested PAHs (concentration of 2.5 mmol/L depends on the their properties such as molar mass, solubility in water, values of log Kow, ionization potential and Henry’s Law constant as well as number of aromatic rings, molecule topology or pattern of ring linkage. Among the 12 investigated PAHs, benzo(k fluoranthene with five rings, and pyrene with four cyclic condensed benzene rings showed the highest antifungal activity.

  15. Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi.

    Science.gov (United States)

    Souza Filho, Pedro F; Nair, Ramkumar B; Andersson, Dan; Lennartsson, Patrik R; Taherzadeh, Mohammad J

    2018-01-01

    Currently around one billion people in the world do not have access to a diet which provides enough protein and energy. However, the production of one of the main sources of protein, animal meat, causes severe impacts on the environment. The present study investigates the production of a vegan-mycoprotein concentrate from pea-industry byproduct (PpB), using edible filamentous fungi, with potential application in human nutrition. Edible fungal strains of Ascomycota ( Aspergillus oryzae , Fusarium venenatum , Monascus purpureus , Neurospora intermedia ) and Zygomycota ( Rhizopus oryzae ) phyla were screened and selected for their protein production yield. A. oryzae had the best performance among the tested fungi, with a protein yield of 0.26 g per g of pea-processing byproduct from the bench scale airlift bioreactor cultivation. It is estimated that by integrating the novel fungal process at an existing pea-processing industry, about 680 kg of fungal biomass attributing to about 38% of extra protein could be produced for each 1 metric ton of pea-processing byproduct. This study is the first of its kind to demonstrate the potential of the pea-processing byproduct to be used by filamentous fungi to produce vegan-mycoprotein for human food applications. The pea-processing byproduct (PpB) was proved to be an efficient medium for the growth of filamentous fungi to produce a vegan-protein concentrate. Moreover, an industrial scenario for the production of vegan-mycoprotein concentrate for human nutrition is proposed as an integrated process to the existing PPI production facilities.

  16. Apyrase inhibitors enhance the ability of diverse fungicides to inhibit the growth of different plant-pathogenic fungi.

    Science.gov (United States)

    Kumar Tripathy, Manas; Weeraratne, Gayani; Clark, Greg; Roux, Stanley J

    2017-09-01

    A previous study has demonstrated that the treatment of Arabidopsis plants with chemical inhibitors of apyrase enzymes increases their sensitivity to herbicides. In this study, we found that the addition of the same or related apyrase inhibitors could potentiate the ability of different fungicides to inhibit the growth of five different pathogenic fungi in plate growth assays. The growth of all five fungi was partially inhibited by three commonly used fungicides: copper octanoate, myclobutanil and propiconazole. However, when these fungicides were individually tested in combination with any one of four different apyrase inhibitors (AI.1, AI.10, AI.13 or AI.15), their potency to inhibit the growth of five fungal pathogens was increased significantly relative to their application alone. The apyrase inhibitors were most effective in potentiating the ability of copper octanoate to inhibit fungal growth, and least effective in combination with propiconazole. Among the five pathogens assayed, that most sensitive to the fungicide-potentiating effects of the inhibitors was Sclerotinia sclerotiorum. Overall, among the 60 treatment combinations tested (five pathogens, four apyrase inhibitors, three fungicides), the addition of apyrase inhibitors increased significantly the sensitivity of fungi to the fungicide treatments in 53 of the combinations. Consistent with their predicted mode of action, inhibitors AI.1, AI.10 and AI.13 each increased the level of propiconazole retained in one of the fungi, suggesting that they could partially block the ability of efflux transporters to remove propiconazole from these fungi. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  17. Phylogenetic diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff), detection of polyketide synthase gene and their antagonistic activity analysis.

    Science.gov (United States)

    Wang, Ya; Gao, Bo Liang; Li, Xi Xi; Zhang, Zhi Bin; Yan, Ri Ming; Yang, Hui Lin; Zhu, Du

    2015-11-01

    The biodiversity of plant endophytic fungi is enormous, numerous competent endophytic fungi are capable of providing different forms of fitness benefits to host plants and also could produce a wide array of bioactive natural products, which make them a largely unexplored source of novel compounds with potential bioactivity. In this study, we provided a first insights into revealing the diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff.) from China using rDNA-ITS phylogenetic analysis. Here, the potential of fungi in producing bioactive natural products was estimated based on the beta-ketosynthase detected in the polyketide synthase (PKS) gene cluster and on the bioassay of antagonistic activity against two rice phytopathogens Thanatephorus cucumeris and Xanthomonas oryzae. A total of 229 endophytic fungal strains were validated in 19 genera. Among the 24 representative strains, 13 strains displayedantagonistic activity against the phytopathogens. Furthermore, PKS genes were detected in 9 strains, indicating their potential for synthesising PKS compounds. Our study confirms the phylogenetic diversity of endophytic fungi in O. rufipogon G. and highlights that endophytic fungi are not only promising resources of biocontrol agents against phytopathogens of rice plants, but also of bioactive natural products and defensive secondary metabolites. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. Heteroresistance and fungi.

    Science.gov (United States)

    Ferreira, Gabriella F; Santos, Daniel A

    2017-09-01

    The concept of heteroresistance refers to the heterogeneous susceptibility to an antimicrobial drug in a microorganism population, meaning that some clones may be resistant and others are susceptible. This phenomenon has been widely studied in bacteria, but little attention has been given to its expression in fungi. We review the available literature on heteroresistance in fungi and invite the reader to recognise this phenomenon as a fungal mechanism to adapt to environmental stress, which may interfere both in resistance and virulence. Finally, heteroresistance may explain the treatment failures to eradicate mycosis in some patients treated with a seemingly appropriate antifungal. © 2017 Blackwell Verlag GmbH.

  19. Study of temperature-growth interactions of entomopathogenic fungi with potential for control of Varroa destructor (Acari: Mesostigmata) using a nonlinear model of poikilotherm development.

    Science.gov (United States)

    Davidson, G; Phelps, K; Sunderland, K D; Pell, J K; Ball, B V; Shaw, K E; Chandler, D

    2003-01-01

    To investigate the thermal biology of entomopathogenic fungi being examined as potential microbial control agents of Varroa destructor, an ectoparasite of the European honey bee Apis mellifera. Colony extension rates were measured at three temperatures (20, 30 and 35 degrees C) for 41 isolates of entomopathogenic fungi. All of the isolates grew at 20 and 30 degrees C but only 11 isolates grew at 35 degrees C. Twenty-two isolates were then selected on the basis of appreciable growth at 30-35 degrees C (the temperature range found within honey bee colonies) and/or infectivity to V. destructor, and their colony extension rates were measured at 10 temperatures (12.5-35 degrees C). This data were then fitted to Schoolfield et al. [J Theor Biol (1981)88:719-731] re-formulation of the Sharpe and DeMichele [J Theor Biol (1977)64:649-670] model of poikilotherm development. Overall, this model accounted for 87.6-93.9% of the data variance. Eleven isolates exhibited growth above 35 degrees C. The optimum temperatures for extension rate ranged from 22.9 to 31.2 degrees C. Only three isolates exhibited temperature optima above 30 degrees C. The super-optimum temperatures (temperature above the optimum at which the colony extension rate was 10% of the maximum rate) ranged from 31.9 to 43.2 degrees C. The thermal requirements of the isolates examined against V. destructor are well matched to the temperatures in the broodless areas of honey bee colonies, and a proportion of isolates, should also be able to function within drone brood areas. Potential exists for the control of V. destructor with entomopathogenic fungi in honey bee colonies. The methods employed in this study could be utilized in the selection of isolates for microbial control prior to screening for infectivity and could help in predicting the activity of a fungal control agent of V. destructor under fluctuating temperature conditions.

  20. A review of potential factors relevant to coping in patients with advanced cancer

    DEFF Research Database (Denmark)

    Thomsen, Thora G.; Rydahl-Hansen, Susan; Wagner, Lis

    2010-01-01

    The aim was to identify characteristics that are considered to describe coping in patients with advanced cancer, as seen from a patient perspective. Based on the identified characteristics, the second aim was to identify potential factors that are relevant to coping in patients with advanced cancer....

  1. A prophage tail-like protein is deployed by Burkholderia bacteria to feed on fungi.

    Science.gov (United States)

    Swain, Durga Madhab; Yadav, Sunil Kumar; Tyagi, Isha; Kumar, Rahul; Kumar, Rajeev; Ghosh, Srayan; Das, Joyati; Jha, Gopaljee

    2017-09-01

    Some bacteria can feed on fungi, a phenomenon known as mycophagy. Here we show that a prophage tail-like protein (Bg_9562) is essential for mycophagy in Burkholderia gladioli strain NGJ1. The purified protein causes hyphal disintegration and inhibits growth of several fungal species. Disruption of the Bg_9562 gene abolishes mycophagy. Bg_9562 is a potential effector secreted by a type III secretion system (T3SS) and is translocated into fungal mycelia during confrontation. Heterologous expression of Bg_9562 in another bacterial species, Ralstonia solanacearum, confers mycophagous ability in a T3SS-dependent manner. We propose that the ability to feed on fungi conferred by Bg_9562 may help the bacteria to survive in certain ecological niches. Furthermore, considering its broad-spectrum antifungal activity, the protein may be potentially useful in biotechnological applications to control fungal diseases.Some bacteria can feed on live fungi through unclear mechanisms. Here, the authors show that a T3SS-secreted protein, which is homologous to phage tail proteins, allows a Burkholderia gladioli strain to kill and feed on various fungal species.

  2. Studies on certain aspects of seed-borne fungi. VI. Fungi associated with different cultivars of wheat (Triticum aestivum L.)

    OpenAIRE

    K. K. Pandey

    2014-01-01

    Fungi associated with eight cultivars of wheat have been investigated. Twenty seven species were isolated from external and internal surface of all the wheat (Triticum aestivum L.) cultivars respectively. Out of five dominant and subdominant fungi anly Aspergillus terreus and Alternaria tenuis were able to colonize internally. The culture filtrates of test fungi reduced the germination of all wheat varieties up to different degrees.

  3. A reassessment of the risk of rust fungi developing resistance to fungicides.

    Science.gov (United States)

    Oliver, Richard P

    2014-11-01

    Rust fungi are major pathogens of many annual and perennial crops. Crop protection is largely based on genetic and chemical control. Fungicide resistance is a significant issue that has affected many crop pathogens. Some pathogens have rapidly developed resistance and hence are regarded as high-risk species. Rust fungi have been classified as being low risk, in spite of sharing many relevant features with high-risk pathogens. An examination of the evidence suggests that rust fungi may be wrongly classified as low risk. Of the nine classes of fungicide to which resistance has developed, six are inactive against rusts. The three remaining classes are quinone outside inhibitors (QoIs), demethylation inhibitors (DMIs) and succinate dehydrogenase inhibitors (SDHIs). QoIs have been protected by a recently discovered intron that renders resistant mutants unviable. Low levels of resistance have developed to DMIs, but with limited field significance. Older SDHI fungicides were inactive against rusts. Some of the SDHIs introduced since 2003 are active against rusts, so it may be that insufficient time has elapsed for resistance to develop, especially as SDHIs are generally sold in mixtures with other actives. It would therefore seem prudent to increase the level of vigilance for possible cases of resistance to established and new fungicides in rusts. © 2014 Society of Chemical Industry.

  4. Heterologous expression of cellobiohydrolases in filamentous fungi

    DEFF Research Database (Denmark)

    Zoglowek, Marta; Lübeck, Peter S.; Ahring, Birgitte K.

    2015-01-01

    Cellobiohydrolases are among the most important enzymes functioning in the hydrolysis of crystalline cellulose, significantly contributing to the efficient biorefining of recalcitrant lignocellulosic biomass into biofuels and bio-based products. Filamentous fungi are recognized as both well...... into valuable products. However, due to low cellobiohydrolase activities, certain fungi might be deficient with regard to enzymes of value for cellulose conversion, and improving cellobiohydrolase expression in filamentous fungi has proven to be challenging. In this review, we examine the effects of altering...... promoters, signal peptides, culture conditions and host post-translational modifications. For heterologous cellobiohydrolase production in filamentous fungi to become an industrially feasible process, the construction of site-integrating plasmids, development of protease-deficient strains and glycosylation...

  5. Distinguishing ectomycorrhizal and saprophytic fungi using carbon and nitrogen isotopic compositions

    Directory of Open Access Journals (Sweden)

    Weiguo Hou

    2012-05-01

    Full Text Available Ectomycorrhizal fungi, a group of widespread symbiotic fungi with plant, obtain carbon source from trees and improve plant mineral nutrient uptake with their widespread hyphal network. Ectomycorrhizal fungi can be used as inoculants to improve the survival rates of plantation. Saprophytic fungi use the nutrition from the debris of plant or animals, and it is difficult to distinguish the saprophytic and ectomycorrhizal fungi by morphological and anatomic methods. In this research, the differences of stable carbon and nitrogen isotopic compositions of these fungi were analyzed. The results showed that the abundances of 13C of were higher than those of ectomycorrhizal fungi and the abundances of 15N of saprophytic fungi were lower than those of ectomycorrhizal fungi. Such differences of stable carbon and nitrogen isotopic compositions between ectomycorrhizal fungi and saprophytic fungi can be ascribed to their different nutrition sources and ecological functions. These results collectively indicate that stable carbon and nitrogen isotopic compositions are an effective proxy for distinguishing between ectomycorrhizal and saprophytic fungi.

  6. Exploring the potential relationship between indoor air quality and the concentration of airborne culturable fungi: a combined experimental and neural network modeling study.

    Science.gov (United States)

    Liu, Zhijian; Cheng, Kewei; Li, Hao; Cao, Guoqing; Wu, Di; Shi, Yunjie

    2018-02-01

    Indoor airborne culturable fungi exposure has been closely linked to occupants' health. However, conventional measurement of indoor airborne fungal concentration is complicated and usually requires around one week for fungi incubation in laboratory. To provide an ultra-fast solution, here, for the first time, a knowledge-based machine learning model is developed with the inputs of indoor air quality data for estimating the concentration of indoor airborne culturable fungi. To construct a database for statistical analysis and model training, 249 data groups of air quality indicators (concentration of indoor airborne culturable fungi, indoor/outdoor PM 2.5 and PM 10 concentrations, indoor temperature, indoor relative humidity, and indoor CO 2 concentration) were measured from 85 residential buildings of Baoding (China) during the period of 2016.11.15-2017.03.15. Our results show that artificial neural network (ANN) with one hidden layer has good prediction performances, compared to a support vector machine (SVM). With the tolerance of ± 30%, the prediction accuracy of the ANN model with ten hidden nodes can at highest reach 83.33% in the testing set. Most importantly, we here provide a quick method for estimating the concentration of indoor airborne fungi that can be applied to real-time evaluation.

  7. RNA-Seq reveals the molecular mechanism of trapping and killing of root-knot nematodes by nematode-trapping fungi.

    Science.gov (United States)

    Pandit, Ramesh; Patel, Reena; Patel, Namrata; Bhatt, Vaibhav; Joshi, Chaitanya; Singh, Pawan Kumar; Kunjadia, Anju

    2017-04-01

    Nematode-trapping fungi are well known for their inherent potential to trap and kill nematodes using specialized trapping devices. However, the molecular mechanisms underlying the trapping and subsequent processes are still unclear. Therefore, in this study, we examined differential genes expression in two nematode-trapping fungi after baiting with nematode extracts. In Arthrobotrys conoides, 809 transcripts associated with diverse functions such as signal transduction, morphogenesis, stress response and peroxisomal proteins, proteases, chitinases and genes involved in the host-pathogen interaction showed differential expression with fold change (>±1.5 fold) in the presence of nematode extract with FDR (p-value nematode-trapping fungi for its host. The findings illustrate the molecular mechanism of fungal parasitism in A. conoides which may be helpful in developing a potential biocontrol agent against parasitic nematodes.

  8. INCIDENCE OF FILAMENTOUS FUNGI WITH TOXIGENIC POTENTIAL ON SAMPLES OF FEED AND RAW MATERIALS FOR THEIR MANUFACTURE

    Directory of Open Access Journals (Sweden)

    Rodrigo Vera

    2016-06-01

    Full Text Available The presence and/or accumulation of mycotoxins in foods intended for human and animal nutrition is a constant concern for the harmful health effects resulting from ingestion. The aims of this communication were to analyze samples of feed and raw materials for manufacturing and to determine the presence of strains of filamentous fungi with toxigenic capacity. The values of frequency in the total samples (N = 422, indicated 63% of contamination, where A. flavus represented the most common (29.8%, while in feed and raw materials separately, indicated A. flavus has the highest value in both categories. In the analysis of different type of raw materials, A. flavus contaminated all types of samples, with the bran and soybean meal substrates having higher values for this Aspergillus, and corn substrate more fungal contamination. These results would demonstrate that the presence of mycobiota with toxigenic potential in food for animal feed is a disturbing reality.

  9. Common wood decay fungi found in the Caribbean Basin

    Science.gov (United States)

    D. Jean. Lodge

    2016-01-01

    There are hundreds of wood-decay fungi in the Caribbean Basin, but relatively few of these are likely to grow on manmade structures built of wood or wood-composites. The wood-decay fungi of greatest concern are those that cause brown-rot, and especially brown-rot fungi that are resistant to copper-based wood preservatives. Some fungi that grow in the Caribbean and...

  10. Genome Studies on Nematophagous and Entomogenous Fungi in China

    Science.gov (United States)

    Zhang, Weiwei; Cheng, Xiaoli; Liu, Xingzhong; Xiang, Meichun

    2016-01-01

    The nematophagous and entomogenous fungi are natural enemies of nematodes and insects and have been utilized by humans to control agricultural and forestry pests. Some of these fungi have been or are being developed as biological control agents in China and worldwide. Several important nematophagous and entomogenous fungi, including nematode-trapping fungi (Arthrobotrys oligospora and Drechslerella stenobrocha), nematode endoparasite (Hirsutella minnesotensis), insect pathogens (Beauveria bassiana and Metarhizium spp.) and Chinese medicinal fungi (Ophiocordyceps sinensis and Cordyceps militaris), have been genome sequenced and extensively analyzed in China. The biology, evolution, and pharmaceutical application of these fungi and their interacting with host nematodes and insects revealed by genomes, comparing genomes coupled with transcriptomes are summarized and reviewed in this paper. PMID:29376926

  11. Fossil evidence of the zygomycetous fungi

    NARCIS (Netherlands)

    Krings, M.; Taylor, T.N.; Dotzler, N.

    2013-01-01

    Molecular clock data indicate that the first zygomycetous fungi occurred on Earth during the Precambrian, however, fossil evidence of these organisms has been slow to accumulate. In this paper, the fossil record of the zygomycetous fungi is compiled, with a focus on structurally preserved

  12. Irradiation of Liquid Fungi Isolated Media from Contaminated Sources with Heavy Metals Additive

    International Nuclear Information System (INIS)

    Tawfiq, E.; Mohamed, A.A.; El-Kabbany, H.M.

    2012-01-01

    Occupational lead exposure is an important health issue in Egyptian workers, employees of paint factories, workers of copying centres, drivers, and tile making factories are in higher risk of lead toxicity. Wastewater, particularly from electroplating, paint, leather, metal and tanning industries, contain enormous amount of heavy metals. Microorganisms including fungi have been reported to exclude heavy metals from wastewater through bioaccumulation and bio sorption at low cost and in eco-friendly way. Low level lead exposure can significantly induce motor dis functions and cognitive impairment in children. Seventy six fungal isolates tolerant to heavy metals like Pb, Cd, Cr and Ni were isolated from sewage, sludge and industrial effluents containing heavy metals. Four fungi (Phanerochaete chrysosporium, Aspergillus awamori, Aspergillus flavus, Trichoderma viride) were included in this study. The majority of the fungal isolates were able to tolerate up to 400 ppm concentration of Pb, Cd, Cr and Ni. The most heavy metal tolerant fungi were studied for removal of heavy metals from liquid media at 50 ppm concentration. Results indicated removal of substantial amount of heavy metals by some of the fungi with respect to Pb, Cd, Cr and Ni with maximum uptake of 59.67, 16.25, 0.55 and 0.55 mg/g by fungi Pb 3 (Aspergillus terreus), Trichoderma viride, C r 8 (Trichoderma longibrachiatum), and isolate Ni 27 (A. niger), respectively. This indicated the potential of these fungi as bio sorbent for removal of heavy metals from wastewater and industrial effluents containing higher concentration of heavy metals. The F-ratio was 0.55 and gives non-significant as irradiated

  13. Species diversity of culturable endophytic fungi from Brazilian mangrove forests.

    Science.gov (United States)

    de Souza Sebastianes, Fernanda Luiza; Romão-Dumaresq, Aline Silva; Lacava, Paulo Teixeira; Harakava, Ricardo; Azevedo, João Lúcio; de Melo, Itamar Soares; Pizzirani-Kleiner, Aline Aparecida

    2013-08-01

    This study aimed to perform a comparative analysis of the diversity of endophytic fungal communities isolated from the leaves and branches of Rhizophora mangle, Avicennia schaueriana and Laguncularia racemosa trees inhabiting two mangroves in the state of São Paulo, Brazil [Cananeia and Bertioga (oil spill-affected and unaffected)] in the summer and winter. Three hundred and forty-three fungi were identified by sequencing the ITS1-5.8S-ITS2 region of rDNA. Differences were observed in the frequencies of fungi isolated from the leaves and branches of these three different plant species sampled from the Bertioga oil spill-affected and the oil-unaffected mangrove sites in the summer and winter; these differences indicate a potential impact on fungal diversity in the study area due to the oil spill. The molecular identification of the fungi showed that the fungal community associated with these mangroves is composed of at least 34 different genera, the most frequent of which were Diaporthe, Colletotrichum, Fusarium, Trichoderma and Xylaria. The Shannon and the Chao1 indices [H'(95 %) = 4.00, H'(97 %) = 4.22, Chao1(95 %) = 204 and Chao1(97 %) = 603] indicated that the mangrove fungal community possesses a vast diversity and richness of endophytic fungi. The data generated in this study revealed a large reservoir of fungal genetic diversity inhabiting these Brazilian mangrove forests and highlighted substantial differences between the fungal communities associated with distinct plant tissues, plant species, impacted sites and sampling seasons.

  14. Fungi outcompete bacteria under increased uranium concentration in culture media

    International Nuclear Information System (INIS)

    Mumtaz, Saqib; Streten-Joyce, Claire; Parry, David L.; McGuinness, Keith A.; Lu, Ping; Gibb, Karen S.

    2013-01-01

    As a key part of water management at the Ranger Uranium Mine (Northern Territory, Australia), stockpile (ore and waste) runoff water was applied to natural woodland on the mine lease in accordance with regulatory requirements. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium concentrations. Soil samples were collected from LAAs with different concentrations of uranium and extracts were plated onto LB media containing no (0 ppm), low (3 ppm), medium (250 ppm), high (600 ppm) and very high (1500 ppm) uranium concentrations. These concentrations were similar to the range of measured uranium concentrations in the LAAs soils. Bacteria grew on all plates except for the very high uranium concentrations, where only fungi were recovered. Identifications based on bacterial 16S rRNA sequence analysis showed that the dominant cultivable bacteria belonged to the genus Bacillus. Members of the genera Paenibacillus, Lysinibacillus, Klebsiella, Microbacterium and Chryseobacterium were also isolated from the LAAs soil samples. Fungi were identified by sequence analysis of the intergenic spacer region, and members of the genera Aspergillus, Cryptococcus, Penicillium and Curvularia were dominant on plates with very high uranium concentrations. Members of the Paecilomyces and Alternaria were also present but in lower numbers. These findings indicate that fungi can tolerate very high concentrations of uranium and are more resistant than bacteria. Bacteria and fungi isolated at the Ranger LAAs from soils with high concentrations of uranium may have uranium binding capability and hence the potential for uranium bioremediation. -- Highlights: ► Fungi outcompete bacteria under increased uranium concentration in culture media. ► Soil microorganisms isolated from the Ranger Land Application Areas (LAAs) were resistant to uranium. ► Bacillus was the most abundant cultivable genus retrieved from the Ranger LAAs soils. ► Uranium in LAAs soils is

  15. Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi

    Science.gov (United States)

    Daniel L. Lindner; Tor Carlsen; Henrik Nilsson; Marie Davey; Trond Schumacher; Havard. Kauserud

    2013-01-01

    The rDNA internal transcribed spacer (ITS) region has been accepted as a DNA barcoding marker for fungi and is widely used in phylogenetic studies; however, intragenomic ITS variability has been observed in a broad range of taxa, including prokaryotes, plants, animals, and fungi, and this variability has the potential to inflate species richness estimates in molecular...

  16. Antibacterial activity of marine-derived fungi

    DEFF Research Database (Denmark)

    Christophersen, Carsten; Crescente, Oscar; Frisvad, Jens Christian

    1998-01-01

    A total of 227 marine isolates of ubiqituous fungi were cultivated on different media and the secondary metabolite content of the extracts (ethyl acetate/chlorofonn/methanol 3 : 2 : 1) characterized by HPLC. The fungi were secured from animals, plants and sediments of Venezuelan waters (0-10 m...

  17. Genetic variation in the response of the weed Ruellia nudiflora (Acanthaceae) to arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Ramos-Zapata, José Alberto; Campos-Navarrete, María José; Parra-Tabla, Víctor; Abdala-Roberts, Luis; Navarro-Alberto, Jorge

    2010-04-01

    The main goal of this work was to test for plant genetic variation in the phenotypic plasticity response of the weed Ruellia nudiflora to arbuscular mycorrhizal (AM) fungi inoculation. We collected plants in the field, kept them under homogeneous conditions inside a nursery, and then collected seeds from these parent plants to generate five inbred lines (i.e., genetic families). Half of the plants of each inbred line were inoculated with AM fungi while the other half were not (controls); a fully crossed experimental design was then used to test for the effects of treatment (with or without AM fungi inoculation) and inbred line (genetic family). For each plant, we recorded the number of leaves produced and the number of days it survived during a 2-month period. Results showed a strong positive treatment effect (plastic response to AM fungi inoculation) for leaf production and survival. Moreover, in terms of survival, the treatment effect differed between genetic families (significant genetic family by treatment interaction). These findings indicate that the positive effect of AM fungi on plant survival (and potentially also growth) differs across plant genotypes and that such condition may contribute to R. nudiflora's capacity to colonize new environments.

  18. Assimilation of organic and inorganic nutrients by Erica root fungi from the fynbos ecosystem.

    Science.gov (United States)

    Bizabani, Christine; Dames, Joanna Felicity

    2016-03-01

    Erica dominate the fynbos ecosystem, which is characterized by acidic soils that are rich in organic matter. The ericaceae associate with ericoid mycorrhizal (ERM) fungi for survival. In this study fungal biomass accumulation in vitro was used to determine nutrient utilisation of various inorganic and organic substrates. This is an initial step towards establishment of the ecological roles of typical ERM fungi and other root fungi associated with Erica plants, with regard to host nutrition. Meliniomyces sp., Acremonium implicatum, Leohumicola sp., Cryptosporiopsis erica, Oidiodendron maius and an unidentified Helotiales fungus were selected from fungi previously isolated and identified from Erica roots. Sole nitrogen sources ammonium, nitrate, arginine and Bovine Serum Albumin (BSA) were tested. Meliniomyces and Leohumicola species were able to utilise BSA effectively. Phosphorus nutrition was tested using orthophosphate, sodium inositol hexaphosphate and DNA. Most isolates preferred orthophosphate. Meliniomyces sp. and A. implicatum were able to accumulate significant biomass using DNA. Carbon utilisation was tested using glucose, cellobiose, carboxymethylcellulose, pectin and tannic acid substrates. All fungal isolates produced high biomass on glucose and cellobiose. The ability to utilize organic nutrient sources in culture, illustrates their potential role of these fungi in host nutrition in the fynbos ecosystem. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. Contribution of proteomics to the study of plant pathogenic fungi.

    Science.gov (United States)

    Gonzalez-Fernandez, Raquel; Jorrin-Novo, Jesus V

    2012-01-01

    Phytopathogenic fungi are one of the most damaging plant parasitic organisms, and can cause serious diseases and important yield losses in crops. The study of the biology of these microorganisms and the interaction with their hosts has experienced great advances in recent years due to the development of moderm, holistic and high-throughput -omic techniques, together with the increasing number of genome sequencing projects and the development of mutants and reverse genetics tools. We highlight among these -omic techniques the importance of proteomics, which has become a relevant tool in plant-fungus pathosystem research. Proteomics intends to identify gene products with a key role in pathogenicity and virulence. These studies would help in the search of key protein targets and in the development of agrochemicals, which may open new ways for crop disease diagnosis and protection. In this review, we made an overview on the contribution of proteomics to the knowledge of life cycle, infection mechanisms, and virulence of the plant pathogenic fungi. Data from current, innovative literature, according to both methodological and experimental systems, were summarized and discussed. Specific sections were devoted to the most studied fungal phytopathogens: Botrytis cinerea, Sclerotinia sclerotiorum, and Fusarium graminearum.

  20. Potassium, rubidium and caesium in fungi

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, K.J.; Nikolova, I. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology; Vinichuk, M. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences

    2005-09-15

    Samples of mushrooms and soil were collected in a forest ecosystem close to Nuclear Power Plant at Forsmark, Sweden. The soil were fractionated in bulk soil, rhizosphere, soil-root interface and fungal mycelium and the concentration of K, Rb and Cs were determined. The K concentration increased from 605 mg/kg in bulk soil to 2,750 mg/kg in mycelium and 39,500 in fruitbodies of fungi. The corresponding values for Rb was 2.5 mg/kg in bulk soil and 191 mg/kg in fruitbodies of fungi. For Cs the corresponding values were 0.21 mg/kg for bulk soil and 3.9 mg/kg in fruitbodies. In fruitbodies of fungi good correlation was found between the concentration of K and Rb or of Rb and Cs, but not between K and Cs. Yoshida found similar correlation and concluded that the mechanism of Cs uptake by fungi may be different from that of K.

  1. Endophytic Fungi as Novel Resources of natural Therapeutics

    Directory of Open Access Journals (Sweden)

    Maheshwari Rajamanikyam

    2017-08-01

    Full Text Available ABSTRACT Fungal endophytes constitute a major part of the unexplored fungal diversity. Endophytic fungi (EF are an important source for novel, potential and active metabolites. Plant-endophyte interaction and endophyte -endophyte interactions study provide insights into mutualism and metabolite production by fungi. Bioactive compounds produced by endophytes main function are helping the host plants to resist external biotic and abiotic stress, which benefit the host survival in return. These organisms mainly consist of members of the Ascomycota, Basidiomycota, Zygomycota and Oomycota. Recently, the genome sequencing technology has emerged as one of the most efficient tools that can provide whole information of a genome in a small period of time. Endophytes are fertile ground for drug discovery. EFare considered as the hidden members of the microbial world and represent an underutilized resource for new therapeutics and compounds. Endophytes are rich source of natural products displaying broad spectrum of biological activities like anticancer, antibacterial, antiviral, immunomodulatory, antidiabetic, antioxidant, anti-arthritis and anti-inflammatory.

  2. Muscodor albus Volatiles Control Toxigenic Fungi under Controlled Atmosphere (CA Storage Conditions

    Directory of Open Access Journals (Sweden)

    Gordon Braun

    2012-11-01

    Full Text Available Muscodor albus, a biofumigant fungus, has the potential to control post-harvest pathogens in storage. It has been shown to produce over 20 volatile compounds with fungicidal, bactericidal and insecticidal properties. However, M. albus is a warm climate endophyte, and its biofumigant activity is significantly inhibited at temperatures below 5 °C. Conidia of seven mycotoxin producing fungi, Aspergillus carbonarius, A. flavus, A. niger, A. ochraceus, Penicillium verrucosum, Fusarium culmorum and F. graminearum, were killed or prevented from germinating by exposure to volatiles from 2 g M. albus-colonized rye grain per L of headspace in sealed glass jars for 24 h at 20 °C. Two major volatiles of M. albus, isobutyric acid (IBA and 2-methyl-1-butanol (2MB at 50 µL/L and 100 µL/L, respectively, gave differential control of the seven fungi when applied individually at 20 °C. When the fungi were exposed to both IBA and 2MB together, an average of 94% of the conidia were killed or suppressed. In a factorial experiment with controlled atmosphere storage (CA at 3 °C and 72 h exposure to four concentrations of IBA and 2MB combinations, 50 µL/L IBA plus 100 µL/L 2MB killed or suppressed germination of the conidia of all seven fungi. Controlled atmosphere had no significant effect on conidial viability or volatile efficacy. Major volatiles of M. albus may have significant potential to control plant pathogens in either ambient air or CA storage at temperatures below 5 °C. However, combinations of volatiles may be required to provide a broader spectrum of control than individual volatiles.

  3. Endophytic fungi associated with Monarda citriodora, an aromatic and medicinal plant and their biocontrol potential.

    Science.gov (United States)

    Katoch, Meenu; Pull, Shipra

    2017-12-01

    The Food and Agriculture Organization has estimated that every year considerable losses of the food crops occur due to plant diseases. Although fungicides are extensively used for management of plant diseases, they are expensive and hazardous to the environment and human health. Alternatively, biological control is the safe way to overcome the effects of plant diseases and to sustain agriculture. Since Monarda citriodora Cerv. ex Lag. (Lamiaceae/Labiatae) is known for its antifungal properties, it was chosen for the study. The isolation of endophytic fungi from M. citriodora and assessing their biocontrol potential. The isolated endophytes were characterized using ITS-5.8 S rDNA sequencing. Their biocontrol potential was assessed using different antagonistic assays against major plant pathogens. Twenty-eight endophytes representing 11 genera were isolated, of which, around 82% endophytes showed biocontrol potential against plant pathogens. MC-2 L (Fusarium oxysporum), MC-14 F (F. oxysporum), MC-22 F (F. oxysporum) and MC-25 F (F. redolens) displayed significant antagonistic activity against all the tested pathogens. Interestingly, MC-10 L (Muscodor yucatanensis) completely inhibited the growth of Sclerotinia sp., Colletotrichum capsici, Aspergillus flavus and A. fumigatus in dual culture assay, whereas MC-8 L (A. oryzae) and MC-9 L (Penicillium commune) completely inhibited the growth of the Sclerotinia sp. in fumigation assay. Endophytes MC-2 L, MC-14 F, MC-22 F and MC-25 F could effectively be used to control broad range of phytopathogens, while MC-10 L, MC-8 L and MC-9 L could be used to control specific pathogens. Secondly, endophytes showing varying degrees of antagonism in different assays represented the chemo-diversity not only as promising biocontrol agents but also as a resource of defensive and bioactive metabolites.

  4. Pure culture response of ectomycorrhizal fungi to imposed water stress

    Science.gov (United States)

    Mark D. Coleman; Caroline S. Bledsoe; William Lopushinsky

    1989-01-01

    The ability of ectomycorrhizal fungal isolates to tolerate imposed water stress in pure culture was examined in 55 isolates of 18 species. Water potential treatments, adjusted with polyethylene glycol, were applied to Petri dish units. These units allowed colony diameter measurements of fungi grown on liquid media. Delayed growth initiation and inhibition of growth...

  5. BIOMODIFICATION OF KENAF USING WHITE ROT FUNGI

    OpenAIRE

    Rasmina Halis,; Hui Rus Tan,; Zaidon Ashaari,; Rozi Mohamed

    2012-01-01

    White rot fungi can be used as a pretreatment of biomass to degrade lignin. It also alters the structure of the lignocellulosic matter, thus increasing its accessibility to enzymes able to convert polysaccharides into simple sugars. This study compares the ability of two species of white rot fungi, Pycnoporous sanguineus and Oxyporus latemarginatus FRIM 31, to degrade lignin in kenaf chips. The white rot fungi were originally isolated from the tropical forest in Malaysia. Kenaf chips were fir...

  6. Impact of fertilizer, corn residue, and cover crops on mycorrhizal inoculum potential and arbuscular mycorrhizal fungi associations

    Science.gov (United States)

    Arbuscular Mycorrhizal Fungi (AMF) increase nutrient and water acquisition for mycorrhizal-susceptible plants, which may lead to higher yields. However, intensive agricultural practices such as tilling, fallow treatments, and inorganic nutrient application reduce soil AMF. The purpose of the three e...

  7. Isolation of Mercury-Resistant Fungi from Mercury-Contaminated Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Reginawanti Hindersah

    2018-02-01

    Full Text Available Illegal gold mining and the resulting gold mine tailing ponds on Buru Island in Maluku, Indonesia have increased Mercury (Hg levels in agricultural soil and caused massive environmental damage. High levels of Hg in soil lowers plant productivity and threatens the equilibrium of the food web. One possible method of handling Hg-contaminated soils is through bioremediation, which could eliminate Hg from the rhizosphere (root zone. In this study, indigenous fungi isolated from Hg-contaminated soil exhibited Hg-resistance in vitro. Soil samples were collected from the rhizosphere of pioneer plants which grew naturally in areas contaminated with gold mine tailing. The fungi’s capacity for Hg-resistance was confirmed by their better growth in chloramphenicol-boosted potato dextrose agar media which contained various HgCl2 concentrations. Four isolates exhibited resistance of up to 25 mg kg−1 of Hg, and in an experiment with young Chinese cabbage (Brassica rapa L. test plants, two fungi species (including Aspergillus were demonstrated to increase the soil’s availability of Hg. The results suggest that Hg-resistant indigenous fungi can mobilize mercury in the soil and serve as potential bioremediation agents for contaminated agricultural land.

  8. Predatory Capacity in vitro of Native Nematophagous Fungi from Cundinamarca on Gastrointestinal Nematodes of Cattle

    Directory of Open Access Journals (Sweden)

    Dildo Márquez Lara

    2015-12-01

    Full Text Available Dependence and indiscriminate use of chemical anthelmintics as the sole method for controlling gastrointestinal nematodes (GIN of cattle causes problems in the environment, public health, and the productivity of cattle. It is important to develop non-chemical control strategies. Nematophagous fungi can be a viable and promising alternative for the control of these endoparasites. This study aimed to isolate, identify and evaluate in vitro the potential of nematophagous fungi from Cundinamarca on L3 larvae of gastrointestinal nematodes of cattle. 60 soil samples from cattle ranches were sown in Petri boxes containing agar-water for trapping fungi, and three strains of the fungus Arthrobotrys oligospora (L1, XVIII, and XXI and one of Arthrobotrys musiformis (XXIV were identified by morphometric keys. 1 x 106 conidia or chlamydospores of each fungi were used, which faced 100 nematode larvae. Isolate XXIV (A. musiformis showed greater predatory capacity (96.8% than isolates (A. oligospora XVIII, L1, and XXI (69.68, 71.1, and 87.62%, respectively. There were no statistically significant differences (p > 0.05 among the strains with more predatory capacity. This is the first record of in vitro identification and evaluation of the predatory capacity of A. oligospora and A. musiformis, native fungi from Cundinamarca. The results suggest that these fungi could be used as biocontrol agents of nematodes in cattle.

  9. Identification of Contaminated Cells with Viruses, Bacteria, or Fungi by Fourier Transform Infrared Microspectroscopy

    Directory of Open Access Journals (Sweden)

    V. Erukhimovitch

    2013-01-01

    Full Text Available Fourier transform infrared microspectroscopy (FTIR-M can detect small molecular changes in cells and therefore was previously applied for the identification of different biological samples. In the present study, FTIR spectroscopy was used for the identification and discrimination of Vero cells infected with herpes viruses or contaminated with bacteria or fungi in cell culture. Vero cells in culture were infected herpes simplex virus type 1 (HSV-1 or contaminated with E. coli bacteria or Candida albicans fungi and analyzed by FTIR microscopy at 24 h postinfection/contamination. Specific different spectral changes were observed according to the infecting or contaminating agent. For instance, both pure fungi and cell culture contaminated with this fungi showed specific peaks at 1030 cm−1 and at 1373 cm−1 regions, while pure E. coli and cell culture contaminated with this bacteria showed a specific and unique peak at 1657 cm−1. These results support the potential of developing FTIR microspectroscopy as a simple, reagent free method for identification and discrimination between different tissue infection or contamination with various pathogens.

  10. Bats Increase the Number of Cultivable Airborne Fungi in the "Nietoperek" Bat Reserve in Western Poland.

    Science.gov (United States)

    Kokurewicz, Tomasz; Ogórek, Rafał; Pusz, Wojciech; Matkowski, Krzysztof

    2016-07-01

    The "Nietoperek" bat reserve located in Western Poland is one of the largest bat hibernation sites in the European Union with nearly 38,000 bats from 12 species. Nietoperek is part of a built underground fortification system from WWII. The aims of the study were (1) to determine the fungal species composition and changes during hibernation season in relation to bat number and microclimatic conditions and (2) evaluate the potential threat of fungi for bat assemblages and humans visiting the complex. Airborne fungi were collected in the beginning, middle and end of hibernation period (9 November 2013 and 17 January and 15 March 2014) in 12 study sites, one outside and 11 inside the complex. Ambient temperature (T a) and relative humidity (RH) were measured by the use of data loggers, and species composition of bats was recorded from the study sites. The collision method (Air Ideal 3P) sampler was used to detect 34 species of airborne fungi including Pseudogymnoascus destructans (Pd). The density of airborne fungi isolated from the outdoor air samples varied from 102 to 242 CFU/1 m(3) of air and from 12 to 1198 CFU in the underground air samples. There was a positive relationship between number of bats and the concentration of fungi. The concentration of airborne fungi increased with the increase of bats number. Analysis of other possible ways of spore transport to the underground indicated that the number of bats was the primary factor determining the number of fungal spores in that hibernation site. Microclimatic conditions where Pd was found (median 8.7 °C, min-max 6.1-9.9 °C and 100 %, min-max 77.5-100.0 %) were preferred by hibernating Myotis myotis and Myotis daubentonii; therefore, these species are most probably especially prone to infection by this fungi species. The spores of fungi found in the underground can be pathogenic for humans and animals, especially for immunocompromised persons, even though their concentrations did not exceed limits and

  11. Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils

    International Nuclear Information System (INIS)

    Vinichuk, M.; Mårtensson, A.; Ericsson, T.; Rosén, K.

    2013-01-01

    The potential use of mycorrhiza as a bioremediation agent for soils contaminated by radiocesium was evaluated in a greenhouse experiment. The uptake of 137 Cs by cucumber, perennial ryegrass, and sunflower after inoculation with a commercial arbuscular mycorrhizal (AM) product in soils contaminated with 137 Cs was investigated, with non-mycorrhizal quinoa included as a “reference” plant. The effect of cucumber and ryegrass inoculation with AM fungi on 137 Cs uptake was inconsistent. The effect of AM fungi was most pronounced in sunflower: both plant biomass and 137 Cs uptake increased on loamy sand and loamy soils. The total 137 Cs activity accumulated within AM host sunflower on loamy sand and loamy soils was 2.4 and 3.2-fold higher than in non-inoculated plants. Although the enhanced uptake of 137 Cs by quinoa plants on loamy soil inoculated by the AM fungi was observed, the infection of the fungi to the plants was not confirmed. - Highlights: ► Effect of soil inoculation on 137 Cs uptake by crops was studied in greenhouse. ► 137 Cs uptake by inoculated sunflower plants was most pronounced. ► The higher 137 Cs uptake by inoculated sunflower due to presence of mycorrhiza. ► Studies suggest potential for use of mycorrhiza on contaminated sites.

  12. Heterologous gene expression in filamentous fungi.

    Science.gov (United States)

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Investigating the potential of an autodissemination system for managing populations of vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) with entomopathogenic fungi.

    Science.gov (United States)

    Pope, Tom W; Hough, Gemma; Arbona, Charlotte; Roberts, Harriet; Bennison, Jude; Buxton, John; Prince, Gill; Chandler, Dave

    2018-05-01

    Vine weevil, also known as black vine weevil, (Otiorhynchus sulcatus) is an economically important pest affecting soft fruit and nursery stock in temperate regions. We used laboratory and polytunnel experiments to investigate a novel control system based on autodissemination of spores of an entomopathogenic fungus to populations of adult vine weevils. The fungus was applied as a conidial powder, used on its own or formulated with talc, to a simple plastic refuge for vine weevils. The potential for adult weevils to disseminate the fungus was investigated first in polytunnel experiments using fluorescent powders applied to the refuge in lieu of fungal conidia. In this system, 88% of adult weevils came in contact with the powder within 48 h. When the powder was applied to five adult weevils that were then placed within a population of 35 potential recipients, it was transmitted on average to 75% of the recipient population within 7 days. Three isolates of entomopathogenic fungi (Beauveria bassiana isolate codes 433.99 and 1749.11 and Metarhizium brunneum isolate code 275.86), selected from a laboratory virulence screen. These three isolates were then investigated for efficacy when applied as conidial powders in artificial refuges placed among populations of adult weevils held in experimental boxes in the laboratory at 20 °C. Under this regime, the fungal isolates caused 70-90% mortality of adult weevils over 28 days. A final polytunnel experiment tested the efficacy of conidial powders of M. brunneum 275.86 placed in artificial refuges to increase vine weevil mortality. Overall weevil mortality was relatively low (26-41%) but was significantly higher in cages in which the conidial powders were placed in refuge traps than in cages with control traps. The lower weevil mortality recorded in the polytunnel experiment compared to the laboratory test was most likely a consequence of the greater amounts of inoculum required to kill adult weevils when conditions

  14. An investigation of radiosensitivity of selected stored seed and seed borne fungi

    International Nuclear Information System (INIS)

    Maity, Jyoti Prakash; Chatterjee, S.; Mishra, D.; Chakraborty, A.; Saha, A.; Santra, S.C.; Chanda, S.

    2004-01-01

    Spoilage of nutritional value of the grains by the microbes, especially those producing mycotoxins, is a worldwide economic problem. The decontamination method, using gamma ray or fast electrons, is receiving growing attention. The present investigation was designed to determine an appropriate dose-range of gamma radiation for the stored grains to reduce levels of pathogenic fungi with minimal loss in viability, food value and/or germinating potential of the selected seeds. Further the study also aimed at assessing response of specific fungus to gamma irradiation in isolated condition and when attached to seeds to discern host-specific interaction if any, of the concerned fungi

  15. Action on the Surface: Entomopathogenic Fungi versus the Insect Cuticle.

    Science.gov (United States)

    Ortiz-Urquiza, Almudena; Keyhani, Nemat O

    2013-07-16

    Infections mediated by broad host range entomopathogenic fungi represent seminal observations that led to one of the first germ theories of disease and are a classic example of a co-evolutionary arms race between a pathogen and target hosts. These fungi are able to parasitize susceptible hosts via direct penetration of the cuticle with the initial and potentially determining interaction occurring between the fungal spore and the insect epicuticle. Entomogenous fungi have evolved mechanisms for adhesion and recognition of host surface cues that help direct an adaptive response that includes the production of: (a) hydrolytic, assimilatory, and/or detoxifying enzymes including lipase/esterases, catalases, cytochrome P450s, proteases, and chitinases; (b) specialized infectious structures, e.g., appressoria or penetrant tubes; and (c) secondary and other metabolites that facilitate infection. Aside from immune responses, insects have evolved a number of mechanisms to keep pathogens at bay that include: (a) the production of (epi) cuticular antimicrobial lipids, proteins, and metabolites; (b) shedding of the cuticle during development; and (c) behavioral-environmental adaptations such as induced fever, burrowing, and grooming, as well as potentially enlisting the help of other microbes, all intended to stop the pathogen before it can breach the cuticle. Virulence and host-defense can be considered to be under constant reciprocal selective pressure, and the action on the surface likely contributes to phenomena such as strain variation, host range, and the increased virulence often noted once a (low) virulent strain is "passaged" through an insect host. Since the cuticle represents the first point of contact and barrier between the fungus and the insect, the "action on the surface" may represent the defining interactions that ultimately can lead either to successful mycosis by the pathogen or successful defense by the host. Knowledge concerning the molecular mechanisms

  16. Black yeast-like fungi in skin and nail

    DEFF Research Database (Denmark)

    Saunte, D M; Tarazooie, B; Arendrup, M C

    2011-01-01

    Black yeast-like fungi are rarely reported from superficial infections. We noticed a consistent prevalence of these organisms as single isolations from mycological routine specimens. To investigate the prevalence of black yeast-like fungi in skin, hair and nail specimens and to discuss...... the probability of these species to be involved in disease. Slow-growing black yeast-like fungi in routine specimens were prospectively collected and identified. A questionnaire regarding patient information was sent to physicians regarding black yeast-like fungus positive patients. A total of 20 746...... dermatological specimens were examined by culture. Black yeast-like fungi accounted for 2.2% (n = 108) of the positive cultures. Only 31.0% of the samples, culture positive for black yeast-like fungi were direct microscopy positive when compared with overall 68.8% of the culture positive specimens. The most...

  17. ISOLATION OF FILAMENTOUS FUNGI ASSOCIATED WITH TWO COMMON EDIBLE AQUATIC INSECTS, HYDROPHILUS PICEUS AND DYTISCUS MARGINALIS

    Directory of Open Access Journals (Sweden)

    Ozlem Gur

    2012-08-01

    Full Text Available Insects are widely used for their potential source of protein, lipids, carbohydrates and certain vitamins in many parts of the world. As in terrestial ones, aquatic insects can also carry fungal structures. Therefore, in the present study, we evaluated microfungal flora of internal and external surface of Hydrophilus piceus and Dytiscus marginalis collected from their natural habitats in Erzurum (Turkey. We isolated total 19 different species of fungi belonging to Penicillium, Alternaria, Beauveria, Trichoderma, Fusarium, Aspergillus, Acremonium, Paecilomyces genera. The relationship between these fungi and edible insects was discussed further in the light of the existing literature. Among the isolated fungi, species that were recognized as pathogenic or toxigenic, and ones having biotechnological importance were found.

  18. Peptide-Like Nylon-3 Polymers with Activity against Phylogenetically Diverse, Intrinsically Drug-Resistant Pathogenic Fungi.

    Science.gov (United States)

    Rank, Leslie A; Walsh, Naomi M; Lim, Fang Yun; Gellman, Samuel H; Keller, Nancy P; Hull, Christina M

    2018-01-01

    Understanding the dimensions of fungal diversity has major implications for the control of diseases in humans, plants, and animals and in the overall health of ecosystems on the planet. One ancient evolutionary strategy organisms use to manage interactions with microbes, including fungi, is to produce host defense peptides (HDPs). HDPs and their synthetic analogs have been subjects of interest as potential therapeutic agents. Due to increases in fungal disease worldwide, there is great interest in developing novel antifungal agents. Here we describe activity of polymeric HDP analogs against fungi from 18 pathogenic genera composed of 41 species and 72 isolates. The synthetic polymers are members of the nylon-3 family (poly-β-amino acid materials). Three different nylon-3 polymers show high efficacy against surprisingly diverse fungi. Across the phylogenetic spectrum (with the exception of Aspergillus species), yeasts, dermatophytes, dimorphic fungi, and molds were all sensitive to the effects of these polymers. Even fungi intrinsically resistant to current antifungal drugs, such as the causative agents of mucormycosis ( Rhizopus spp.) and those with acquired resistance to azole drugs, showed nylon-3 polymer sensitivity. In addition, the emerging pathogens Pseudogymnoascus destructans (cause of white nose syndrome in bats) and Candida auris (cause of nosocomial infections of humans) were also sensitive. The three nylon-3 polymers exhibited relatively low toxicity toward mammalian cells. These findings raise the possibility that nylon-3 polymers could be useful against fungi for which there are only limited and/or no antifungal agents available at present. IMPORTANCE Fungi reside in all ecosystems on earth and impart both positive and negative effects on human, plant, and animal health. Fungal disease is on the rise worldwide, and there is a critical need for more effective and less toxic antifungal agents. Nylon-3 polymers are short, sequence random, poly

  19. Phylogenetic congruence between subtropical trees and their associated fungi

    NARCIS (Netherlands)

    Liu, Xubing; Liang, Minxia; Etienne, Rampal S.; Gilbert, Gregory S; Yu, Shixiao

    2016-01-01

    Recent studies have detected phylogenetic signals in pathogen-host networks for both soil-borne and leaf-infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi

  20. Proposals to clarify and enhance the naming of fungi under the International Code of Nomenclature for algae, fungi, and plants.

    Science.gov (United States)

    Hawksworth, David L

    2015-06-01

    Twenty-three proposals to modify the International Code of Nomenclature for algae, fungi, and plants adopted in 2011 with respect to the provisions for fungi are made, in accordance with the wishes of mycologists expressed at the 10(th) International Mycological Congress in Bangkok in 2014, and with the support of the International Commission on the Taxonomy of Fungi (ICTF), the votes of which are presented here. The proposals relate to: conditions for epitypification, registration of later typifications, protected lists of names, removal of exemptions for lichen-forming fungi, provision of a diagnosis when describing a new taxon, citation of sanctioned names, avoiding homonyms in other kingdoms, ending preference for sexually typified names, and treatment of conspecific names with the same epithet. These proposals are also being published in Taxon, will be considered by the Nomenclature Committee for Fungi and General Committee on Nomenclature, and voted on at the 19(th) International Botanical Congress in Shenzhen, China, in 2017.

  1. Bioremediation of treated wood with fungi

    Science.gov (United States)

    Barbara L. Illman; Vina W. Yang

    2006-01-01

    The authors have developed technologies for fungal bioremediation of waste wood treated with oilborne or metal-based preservatives. The technologies are based on specially formulated inoculum of wood-decay fungi, obtained through strain selection to obtain preservative-tolerant fungi. This waste management approach provides a product with reduced wood volume and the...

  2. Exposure to airborne fungi during sorting of recyclable plastics in waste treatment facilities

    Directory of Open Access Journals (Sweden)

    Kristýna Černá

    2017-02-01

    Full Text Available Background: In working environment of waste treatment facilities, employees are exposed to high concentrations of airborne microorganisms. Fungi constitute an essential part of them. This study aims at evaluating the diurnal variation in concentrations and species composition of the fungal contamination in 2 plastic waste sorting facilities in different seasons. Material and Methods: Air samples from the 2 sorting facilities were collected through the membrane filters method on 4 different types of cultivation media. Isolated fungi were classified to genera or species by using a light microscopy. Results: Overall, the highest concentrations of airborne fungi were recorded in summer (9.1×103–9.0×105 colony-forming units (CFU/m3, while the lowest ones in winter (2.7×103–2.9×105 CFU/m3. The concentration increased from the beginning of the work shift and reached a plateau after 6–7 h of the sorting. The most frequently isolated airborne fungi were those of the genera Penicillium and Aspergillus. The turnover of fungal species between seasons was relatively high as well as changes in the number of detected species, but potentially toxigenic and allergenic fungi were detected in both facilities during all seasons. Conclusions: Generally, high concentrations of airborne fungi were detected in the working environment of plastic waste sorting facilities, which raises the question of health risk taken by the employees. Based on our results, the use of protective equipment by employees is recommended and preventive measures should be introduced into the working environment of waste sorting facilities to reduce health risk for employees. Med Pr 2017;68(1:1–9

  3. Isolation and Identification of Spoilage Fungi Associated With Rice ...

    African Journals Online (AJOL)

    The spoilage fungi isolated were Aspergillus species, Rhizopus, Penicilluim, Fusarium, Eurotium, Mucor, Geotrichum, Alternaria, Cladosporium and Actinomyces species. The predominant spoilage fungi in the grains were Aspergillus species. The populations of some spoilage fungi isolated from the grains were not high ...

  4. Agrobacterium-mediated transformation as a tool for functional genomics in fungi

    NARCIS (Netherlands)

    Michielse, C.B.; Hooykaas, P.J.J.; Hondel, C.A.M.J.J. van den; Ram, A.F.J.

    2005-01-01

    In the era of functional genomics, the need for tools to perform large-scale targeted and random mutagenesis is increasing. A potential tool is Agrobacterium-mediated fungal transformation. A. tumefaciens is able to transfer a part of its DNA (transferred DNA; T-DNA) to a wide variety of fungi and

  5. Efficacy of Origanum essential oils for inhibition of potentially pathogenic fungi

    Directory of Open Access Journals (Sweden)

    Nadábia Almeida B Souza

    2010-09-01

    Full Text Available This study aimed to assess the efficacy of O. vulgare L. and O. majorana L. essential oil in inhibiting the growth and survival of potentially pathogenic fungal strains and also sought to evaluate the possible mechanisms involved in the establishment of the antifungal property of the tested essential oils through assays of osmotic stability and morphogenesis. Test strains included in this study were Candida albicans ATCC 7645, C. tropicalis LM-14, C. krusei LM-09, Cryptococcus neoformans FGF-5, Aspergillus flavus LM-02, A. fumigatus IPP-21, T. rubrum ATCC 28184, T. mentagrophytes LM-64, Microsporum gypseum ATCC 184, M. canis LM-36 and Cladosporium herbarium ATCC 26362. O. vulgare essential oil presented a MIC value of 80 µL/mL, while for O. majorana this was 160 µL/mL. C. krusei LM-09 was the only strain resistant to all assayed concentrations of both essential oils. O. vulgare and O. majorana essential oil at their MIC values provided a cidal effect against C. albicans ATCC 7645 after 4 h of exposure. O. vulgare essential oil at 80 µL/mL exhibited 100 % inhibition of the radial mycelia growth of T. rubrum ATCC 28184 and M. canis LM-36 for 14 days. Assayed fungus strain protected by sorbitol (osmo-protectant agent grew in media containing higher concentrations of O. vulgare and O. majorana essential oil in comparison to media without sorbitol, suggesting some specificity of these essential oils for targeting cell wall in the fungi cell. Main morphological changes observed under light microscopy provided by the essential oil of O. vulgare in A. flavus LM-02 were decreased conidiation, leakage of cytoplasm, loss of pigmentation and disrupted cell structure indicating fungal wall degeneration. These results suggest that essential oils from Origanum could be regarded as a potential antifungal compound for controlling the growth of pathogen fungi and the occurrence of mycoses.O objetivo deste estudo foi observar a eficácia do óleo essencial de O

  6. Screening of extremotolerant fungi for the bioremediation of hydrocarbon contaminated sites

    Science.gov (United States)

    Poyntner, Caroline; Blasi, Barbara; Prenafeta, Francesc; Sterflinger, Katja

    2015-04-01

    Bioremediation can be used to treat contaminated sites, by taking advantage of microorganisms which have the potential to degrade a wide range of contaminants. While research has been focused mainly on bacteria, the knowledge on other microorganisms, especially fungal communities, is still limited. However, the use of fungi may have advantages compared to bacteria. Extremophile fungi like the black yeasts can withstand high levels of environmental stress (e.g. range of pH, water availability and temperature, presence of toxic chemicals). Therefore they might be applicable in situations, where bacterial communities show limited performance. In order to identify fungi which are good candidates for bioremediation application, a selection of 163 fungal strains, mostly from the group of the black yeasts, was tested for their capability to degrade three different pollutants: hexadecane, toluene, and polychlorinated biphenyl 126, which were used as model compounds for aliphatic hydrocarbons, aromatic hydrocarbons and polychlorinated biphenyls. These chemicals are frequently found in sites contaminated by oil, gas and coal. The screening was based on a two-step selection approach. As a first step, a high throughput method was developed to screen the relatively large amount of fungal strains regarding their tolerance to the contaminants. A microtiter plate based method was developed for monitoring fungal growth in the presence of the selected contaminants photometrically with a Tecan reader. Twenty five strains out of 163, being species of the genera Cladophilaophora, Scedosporium and Exophiala, showed the ability to grow on at least 2 hydrocarbons, and are therefore the most promising candidates for further tests. In a second step, degradation of the contaminants was investigated in more detail for a subset of the screened fungi. This was done by closing the carbon balance in sealed liquid cultures in which the selected pollutant was introduce as the sole source of carbon

  7. The Utilization of Fungi and Their Products to Increase Livestock Production

    OpenAIRE

    Riza Zainuddin Ahmad

    2011-01-01

    Fungi as part of eukaryotic organisms play an important role for livestock. Some fungi are detrimental because they cause animal diseases, and some fungi are beneficial because they can improve animal productivity. The use of fungi that benefit from starting he has done as agents of biological control and to be as probiotics.Within the fungi, the use of simple technologies to high level degree for the benefit of cattle is developed. This paper describes some fungi that are beneficial and dire...

  8. Preliminary study on antifungal effect of commercial essential oils against white rot fungi

    Science.gov (United States)

    Khalid, Nurul Izzaty; Baharum, Azizah; Daud, Fauzi

    2015-09-01

    Protecting and preserving wood plastic composite from deterioration caused by fungal attack is a high challenge issue to cater nowadays. The objective of this study was to carry out a screening test towards antifungal effect of essential oil and to investigate the potential of raw materials that will be used as basic material for manufacturing wood plastic composite against white rot fungi. Essential oils from four types of natural products comprising cinnamon, lemongrass, lavender and geranium have been screened for their ability to inhibit five types of white rot fungi species which are Lentinus squarrosulus, Pleuorotus pulmonarius, Lentinus sp., Pleuorotus sajor-caju and Lignosus rhinocerus. The antifungal evaluation showed that no inhibitory effect against tested white rot fungi since the mycelia completely filled the plates. From the observation, mycelia of L. squarrosulus, P. pulmonarius and Lentinus sp. were found to filled the surface of falcon tubes with rubber sawdust after 15 days. Mycelia of L. squarrosulus and P. pulmonarius also were found to completely covered the surface of media that contain polypropylene and maleic anhydride grafted polypropylene on it. Therefore, this report proved that the main materials that will be applicable in manufacturing of wood plastic composite had potential to be degraded by this type of fungal attack.

  9. Maarja Unduski 'Fungi'

    Index Scriptorium Estoniae

    1999-01-01

    24. nov.-st Linnagaleriis Tallinnas Maarja Unduski kolmas isiknäitus 'Fungi'. Eksponeeritud hiigelseened ja rida värviliste lehtedega ramatuid, mille kaante valmistamisel on autor esmakordselt kasutanud ka lõuendit ja paberreljeefi.

  10. Aflatoxigenic and ochratoxigenic fungi and their mycotoxins in spices marketed in Brazil.

    Science.gov (United States)

    Garcia, Marcelo Valle; Mallmann, Carlos Augusto; Copetti, Marina Venturini

    2018-04-01

    During their processing, spices usually remain close to the ground for drying, a fact that disposes to fungal contamination, as well as moisture transferred from the tropical environment can allow their multiplication and synthesis of mycotoxins. The objective of this study was to evaluate the presence of potentially toxigenic fungi and mycotoxins in spices marketed in Brazil. The fungal contamination was evaluated by direct plating for samples of clove, black and white peppers. Spread plate was used for the samples of rosemary, cinnamon, fennel, pepperoni pepper and oregano. Analyses were performed in triplicate in DG18 media with incubation at 25°C for 7days. The isolation and identification of fungi followed specific recommendations of culture media and incubation period for each genus. The presence of mycotoxins in spices was verified by high-performance liquid chromatography (HPLC) coupled to fluorescence. The frequency of species potentially toxigenic was high in white and black peppers with presence of both aflatoxigenic and ochratoxigenic fungi. Only rosemary and fennel showed contamination with aflatoxin B1 and there was a positive correlation (ρspices covered by Brazilian regulation of mycotoxins. On the other hand, these contaminants were present in other spices consumed by population and not mentioned in the regulation, which could be considered a cause to concern. Copyright © 2017. Published by Elsevier Ltd.

  11. Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils.

    Science.gov (United States)

    Vinichuk, M; Mårtensson, A; Ericsson, T; Rosén, K

    2013-01-01

    The potential use of mycorrhiza as a bioremediation agent for soils contaminated by radiocesium was evaluated in a greenhouse experiment. The uptake of (137)Cs by cucumber, perennial ryegrass, and sunflower after inoculation with a commercial arbuscular mycorrhizal (AM) product in soils contaminated with (137)Cs was investigated, with non-mycorrhizal quinoa included as a "reference" plant. The effect of cucumber and ryegrass inoculation with AM fungi on (137)Cs uptake was inconsistent. The effect of AM fungi was most pronounced in sunflower: both plant biomass and (137)Cs uptake increased on loamy sand and loamy soils. The total (137)Cs activity accumulated within AM host sunflower on loamy sand and loamy soils was 2.4 and 3.2-fold higher than in non-inoculated plants. Although the enhanced uptake of (137)Cs by quinoa plants on loamy soil inoculated by the AM fungi was observed, the infection of the fungi to the plants was not confirmed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    NARCIS (Netherlands)

    Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Crous, P.W.; Boekhout, T.; Damm, U.; Hoog, de G.S.; Eberhardt, U.; Groenewald, J.Z.; Groenewald, M.; Hagen, F.; Houbraken, J.; Quaedvlieg, W.; Stielow, B.; Vu, T.D.; Walther, G.

    2012-01-01

    Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it

  13. Comparative potentials of native arbuscular mycorrhizal fungi to improve nutrient uptake and biomass of Sorghum bicolor Linn

    Directory of Open Access Journals (Sweden)

    Pattarawadee Sumthong Nakmee

    2016-05-01

    Full Text Available Sorghum (Sorghum bicolor Linn. seedlings were grown in pots using Pakchong soil from Nakhon Ratchasima province. Ten species of native Arbuscular mycorrhizal (AM fungi: Glomus sp. 1, Glomus sp. 2, Glomus sp. 3, Glomus aggregatum, Glomus fasciculatum, Acaulospora longula, Glomus occultum, Acaulospora scrobiculata, Acaulospora spinosa and Scutellospora sp., were used to inoculate sorghum seedlings. The sorghum growth and uptake of several major nutrients were evaluated at the harvesting stage. The results revealed that sorghum inoculated with A. scrobiculata produced the greatest biomass, grain dry weight and total nitrogen uptake in shoots. The highest phosphorus uptake in shoots was found in A. spinosa-inoculated plants, followed by Glomus sp. and A. scrobiculata, whereas Scutellospora sp.-inoculated plants showed the highest potassium uptake in shoots followed by A. scrobiculata. Overall, the most efficient AM fungi for improvement of nutrient uptake, biomass and grain dry weight in sorghum were A. scrobiculata.

  14. In vivo interactions of entomopathogenic fungi, Beauveria spp. and Metarhizium anisopliae with selected opportunistic soil fungi of sugarcane ecosystem.

    Science.gov (United States)

    Geetha, N; Preseetha, M; Hari, K; Santhalakshmi, G; Bai, K Subadra

    2012-07-01

    In the present study, the interactions of entomopathogenic fungi viz., Beauveria bassiana, Beauveria brongniartii and Metarhizium anisopliae among themselves and three other opportunistic soil fungi from the sugarcane ecosystem namely, Fusarium saachari, Aspergillus sp. and Penecillium sp. were assayed in vivo against Galleria mellonella larvae. The tested fungi were co-applied on IV instar G. mellonella @ 1 x 10(7) ml(-1), in combinations of two, at the interval of 24 hrs either preceding or succeeding each otherto assess their efficacy and sporulation rates. Results showed that often mortality rates did not correspond to the spore harvest of the mortality agent and presence of other fungus may be antagonistic. The efficacy of B. bassiana (90%) and B. brongniartii (100%) was not enhanced further but was negatively affected in most combinations with other fungi. In case of M. anisopliae compatibility was higher, resulting in higher mortality by application of B. bassiana before (100%) or after (83.3%) M. anisopliae than when it was applied alone (70%). During sporulation, B. bassiana faced the most intense competition from M. anisopliae (2.75 x 10(6) larva(-1)) and enhancement due to F sacchari irrespective of sequence of application. In case of B. brongniartii, sporulation was lowest in the combination of B. brongniartiipreceding M. anisopliae (1.83 x10(6) larva(-1)) and B. brongniartii succeeding B. bassiana (1.58 x 10(6) larva(-1)). Of all fungi tested, except F sacchari (65.33 x 10(6) larva(-1)) all the other species affected sporulation of M. ansiopliae with the least in treatment of B. bassiana application following M. anisopliae. Similar kind of interaction was observed during sporulation of soil fungi when combined with entomopathogenic fungi, though individually they could not cause mortality of larvae.

  15. Selection of cellulolytic fungi isolated from diverse substrates

    Directory of Open Access Journals (Sweden)

    Mônica Caramez Triches Damaso

    2012-08-01

    Full Text Available The aim of the present work was to select filamentous fungi isolated from diverse substrates to obtain the strains with potential to produce the hydrolytic enzymes. From a total of 215 strains, seven strains from the soils, six from the plants and one from sugarcane bagasse were selected and identified as belonging to the Trichoderma, Penicillium and Aspergillus genera. The best hydrolytic activities obtained by semi-solid fermentation using these strains were approximately: 35; 1; 160; 170 and 120 U/gdm (CMCase, FPase, β-glucosidase, xylanase and polygalacturonase, respectively, demonstrating their potential to synthesize the enzymes compared with the results reported in the literature.

  16. Comparative genome analysis of Basidiomycete fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Henrissat, Bernard; Nagy, Laszlo; Brown, Daren; Held, Benjamin; Baker, Scott; Blanchette, Robert; Boussau, Bastien; Doty, Sharon L.; Fagnan, Kirsten; Floudas, Dimitris; Levasseur, Anthony; Manning, Gerard; Martin, Francis; Morin, Emmanuelle; Otillar, Robert; Pisabarro, Antonio; Walton, Jonathan; Wolfe, Ken; Hibbett, David; Grigoriev, Igor

    2013-08-07

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprotrophs including the majority of wood decaying and ectomycorrhizal species. To better understand the genetic diversity of this phylum we compared the genomes of 35 basidiomycetes including 6 newly sequenced genomes. These genomes span extremes of genome size, gene number, and repeat content. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) found in only one organism. Correlations between lifestyle and certain gene families are evident. Phylogenetic patterns of plant biomass-degrading genes in Agaricomycotina suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. Based on phylogenetically-informed PCA analysis of wood decay genes, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has typical ligninolytic class II fungal peroxidases (PODs). This prediction is supported by growth assays in which both fungi exhibit wood decay with white rot-like characteristics. Based on this, we suggest that the white/brown rot dichotomy may be inadequate to describe the full range of wood decaying fungi. Analysis of the rate of discovery of proteins with no or few homologs suggests the value of continued sequencing of basidiomycete fungi.

  17. The biology and potential for genetic research of transposable elements in filamentous fungi

    Directory of Open Access Journals (Sweden)

    Léia Cecilia de Lima Fávaro

    2005-12-01

    Full Text Available Recently many transposable elements have been identified and characterized in filamentous fungi, especially in species of agricultural, biotechnological and medical interest. Similar to the elements found in other eukaryotes, fungal transposons can be classified as class I elements (retrotransposons that use RNA and reverse transcriptase and class II elements (DNA transposons that use DNA. The changes (transposition and recombination caused by transposons can supply wide-ranging genetic variation, especially for species that do not have a sexual phase. The application of transposable elements to gene isolation and population analysis is an important tool for molecular biology and studies of fungal evolution.

  18. Assessing the potential of fatty acids produced by filamentous fungi as feedstock for biodiesel production.

    Science.gov (United States)

    Rivaldi, Juan Daniel; Carvalho, Ana Karine F; da Conceição, Leyvison Rafael V; de Castro, Heizir F

    2017-11-26

    Increased costs and limited availability of traditional lipid sources for biodiesel production encourage researchers to find more sustainable feedstock at low prices. Microbial lipid stands out as feedstock replacement for vegetable oil to convert fatty acid esters. In this study, the potential of three isolates of filamentous fungi (Mucor circinelloides URM 4140, M. hiemalis URM 4144, and Penicillium citrinum URM 4126) has been assessed as single-cell oil (SCO) producers. M. circinelloides 4140 had the highest biomass concentration with lipid accumulation of up to 28 wt% at 120 hr of cultivation. The profile of fatty acids revealed a high content of saturated (SFA) and monounsaturated fatty acids (MUFA), including palmitic (C16:0, 33.2-44.1 wt%) and oleic (C18:1, 20.7-31.2 wt%) acids, with the absence of polyunsaturated fatty acids (PUFA) having more than four double bonds. Furthermore, the predicted properties of biodiesel generated from synthesized SCOs have been estimated by using empirical models which were in accordance with the limits imposed by the USA (ASTM D6715), European Union (EN 14214), and Brazilian (ANP 45/2014) standards. These results suggest that the assessed filamentous fungus strains can be considered as alternative feedstock sources for high-quality biofuel production.

  19. The Utilization of Fungi and Their Products to Increase Livestock Production

    Directory of Open Access Journals (Sweden)

    Riza Zainuddin Ahmad

    2011-06-01

    Full Text Available Fungi as part of eukaryotic organisms play an important role for livestock. Some fungi are detrimental because they cause animal diseases, and some fungi are beneficial because they can improve animal productivity. The use of fungi that benefit from starting he has done as agents of biological control and to be as probiotics.Within the fungi, the use of simple technologies to high level degree for the benefit of cattle is developed. This paper describes some fungi that are beneficial and direction and suggestion to develop research on veterinary micology in Indonesia.

  20. Modification of wheat straw lignin by solid state fermentation with white-rot fungi

    NARCIS (Netherlands)

    Dinis, M.J.; Bezerra, R.M.F.; Nunes, F.; Dias, A.A.; Guedes, C.; Ferreira, L.M.M.; Cone, J.W.; Marques, G.S.M.; Barros, A.R.N.; Rodrigues, M.A.M.

    2009-01-01

    The potential of crude enzyme extracts, obtained from solid state cultivation of four white-rot fungi (Trametes versicolor, Bjerkandera adusta, Ganoderma applanatum and Phlebia rufa), was exploited to modify wheat straw cell wall. At different fermentation times, manganese-dependent peroxidase

  1. The geographical distribution of tremellaceous fungi in Poland

    Directory of Open Access Journals (Sweden)

    Władysław Wojewoda

    2014-11-01

    Full Text Available The geographical distribution of the Polish tremellaceous fungi is discussed in this paper. The list of localities and the maps of the distribution of 60 Polish species (45 of Tremellales, 13 of Auriculariales and 2 of Septobasidiales are given. The author distinguishes several geographical elements, and describes the vertical distribution of these fungi. This paper is a supplement to "Fungi (Mycota", vol. 8, Polish Flora (Wojewoda 1977.

  2. Fungi associated with free-living soil nematodes in Turkey

    Directory of Open Access Journals (Sweden)

    Karabörklü Salih

    2015-01-01

    Full Text Available Free-living soil nematodes have successfully adapted world-wide to nearly all soil types from the highest to the lowest of elevations. In the current study, nematodes were isolated from soil samples and fungi associated with these free-living soil nematodes were determined. Large subunit (LSU rDNAs of nematode-associated fungi were amplified and sequenced to construct phylogenetic trees. Nematode-associated fungi were observed in six nematode strains belonging to Acrobeloides, Steinernema and Cephalobus genera in different habitats. Malassezia and Cladosporium fungal strains indicated an association with Acrobeloides and Cephalobus nematodes, while Alternaria strains demonstrated an association with the Steinernema strain. Interactions between fungi and free-living nematodes in soil are discussed. We suggest that nematodes act as vectors for fungi.

  3. Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities

    NARCIS (Netherlands)

    Jafary, H.; Szabo, L.J.; Niks, R.E.

    2006-01-01

    We developed an evolutionary relevant model system, barley-Puccini rust fungi, to study the inheritance and specificity of plant factors that determine to what extent innate nonhost immunity can be suppressed. A mapping population was developed from a cross between an experimental barley line

  4. Communities of fungi in decomposed wood of oak and pine

    Directory of Open Access Journals (Sweden)

    Kwaśna Hanna

    2016-09-01

    Full Text Available The abundance and diversity of wood decomposing fungi were investigated by isolating and cultivating filamentous fungi from wood and by detection of fruit bodies of ascomycetous and basidiomycetous fungi. The objective was to study the impact of forest management on fungi in 100-year-old oak and 87-year-old Scots pine forests in Northern Poland. Fungi were found on coarse woody debris of decayed stumps and fallen logs, boughs and branches in each of the three (managed and unmanaged examined stands. In total, 226 species of Oomycota and fungi were recorded. Oak wood was colonized by one species of Oomycota and 141 species of fungi including Zygomycota (19 species, Ascomycota (103 species and Basidiomycota (19 species. Scots pine wood was also colonized by one species of Oomycota and 138 species of fungi including Zygomycota (19 species, Ascomycota (90 species and Basidiomycota (29 species. In the first, second and third stages of decomposition, the oak wood was colonized by 101, 89 and 56 species of fungi respectively and pine wood was colonized by 82, 103 and 47 species respectively. Eighty three of the observed species (37% occurred on both types of wood, while the other species displayed nutritional preferences. A decrease in the number of species with advancing decay indicates the necessity for a continuous supply of dead wood to the forest ecosystem.

  5. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    Science.gov (United States)

    Six DNA regions were evaluated in a multi-national, multi-laboratory consortium as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it...

  6. Effect of gamma irradiation on fungi in stored rice

    International Nuclear Information System (INIS)

    Zainal Abidin Mior Ahmad.

    1987-01-01

    The objective of this study is to examine the effect of different doses of gamma irradiation on fungi infecting rice stored in various packaging materials. The agar plate test method was used. It was observed that the percentage of fungi did not appear to decrease with the increase of irradiation up to 2 kGy and also no indication of any significant reduction in percentage of fungi isolated with increasing time of storage at all levels of radiation treatment. The majority of the fungi isolated were Aspergillus and Penicillium species. (A.J.)

  7. The dynamics of ochratoxigenic fungi contents through different stages of dried grape production

    Directory of Open Access Journals (Sweden)

    Hakobyan Lusine

    2017-01-01

    Full Text Available Dried vine fruit (raisin, sultana and currant is the second (after wine most important product of viticulture. Concerning this, the contamination of dried grape by ochratoxigenic fungi and ochratoxin A (OTA has attracted much attention. Favorable climatic conditions in countries with well-developed viticulture contribute to the spreading of ochratoxigenic fungi. The aim of this work was to identify the contamination sources of dried vine fruit by ochratoxigenic filamentous fungi and OTA, as well to determine the Critical Control Points (CCP at different stages of production. Primary contamination of grapes occurred during vegetation, especially maturation period, when the risk of mechanical damages was the highest one. 48 samples of soil and 81 samples of fresh grape berries collected in 4 regions of Armenia were investigated. As a result, 22 micromycetes sp. from 7 genera were isolated. Drying process is one of the main CCP. As the most of dried products is produced by open sun drying method, secondary contamination occurs in plants. In our studies 27 species of filamentous fungi were revealed in 87 samples of dried vine fruit, collected at different stages of production. The samples had quite high contamination level by potential toxigenic A. niger and A. carbonarius species.

  8. Evaluation of pathogenic fungi occurrence in traumatogenic structures of freshwater fish

    Directory of Open Access Journals (Sweden)

    Fabio Caetano Oliveira Leme

    2011-04-01

    Full Text Available INTRODUCTION: Fungal infections in human skin, such as sporotrichosis, can occur after fish induced trauma. This work aimed to identify fungi in freshwater fish that are pathogenic to humans. METHODS: Extraction of dental arches from Serrassalmus maculatus (piranha and Hoplias malabaricus (wolf fish, stings from Pimelodus maculatus (mandis catfish, dorsal fin rays from Plagioscion spp. (corvina and Tilapia spp., for culture in Mycosel agar. Some cultures were submitted to DNA extraction for molecular identification by sequencing ITS-5.8S rDNA. RESULTS: Cultures identified most yeast as Candida spp., while sequencing also permitted the identification of Phoma spp. and Yarrowia lipolytica. CONCLUSIONS: While the search for S. schenckii was negative, the presence of fungus of the genera Phoma and Candida revealed the pathogenic potential of this infection route. The genus Phoma is involved in certain forms of phaeohyphomycosis, a subcutaneous mycosis caused by dematiaceous fungi, with reports of infections in human organs and systems. Traumatizing structures of some freshwater fish present pathogenic fungi and this may be an important infection route that must be considered in some regions of Brazil, since there are a large number of a fisherman in constant contact with traumatogenic fish.

  9. Detection of species diversity of arbuscular mycorrhizal fungi (AMF ...

    African Journals Online (AJOL)

    Arbuscular-mycorhizal fungi (AMF) from melon plants grown in Van province, were studied by nested-PCR method to establish colonization ratio of related fungi in plants and to detect the fungi at species level. From 10 different locations, a total of 100 soil samples were taken from rhizosphere area of melon plants.

  10. Effects of cadmium and mycorrhizal fungi on growth, fitness, and cadmium accumulation in flax (Linum usitatissimum; Linaceae).

    Science.gov (United States)

    Hancock, Laura M S; Ernst, Charlotte L; Charneskie, Rebecca; Ruane, Lauren G

    2012-09-01

    Agricultural soils have become contaminated with a variety of heavy metals, including cadmium. The degree to which soil contaminants affect plants may depend on symbiotic relationships between plant roots and soil microorganisms. We examined (1) whether mycorrhizal fungi counteract the potentially negative effects of cadmium on the growth and fitness of flax (Linum usitatissimum) and (2) whether mycorrhizal fungi affect the accumulation of cadmium within plant parts. Two flax cultivars (Linott and Omega) were grown in three soil cadmium environments (0, 5, and 15 ppm). Within each cadmium environment, plants were grown in either the presence or absence of mycorrhizal fungi. Upon senescence, we measured growth and fitness and quantified the concentration of cadmium within plants. Soil cadmium significantly decreased plant fitness, but did not affect plant growth. Mycorrhizal fungi, which were able to colonize roots of plants growing in all cadmium levels, significantly increased plant growth and fitness. Although mycorrhizal fungi counteracted the negative effects of cadmium on fruit and seed production, they also enhanced the concentration of cadmium within roots, fruits, and seeds. The degree to which soil cadmium affects plant fitness and the accumulation of cadmium within plants depended on the ability of plants to form symbiotic relationships with mycorrhizal fungi. The use of mycorrhizal fungi in contaminated agricultural soils may offset the negative effects of metals on the quantity of seeds produced, but exacerbate the accumulation of these metals in our food supply.

  11. Exposure to airborne fungi during sorting of recyclable plastics in waste treatment facilities.

    Science.gov (United States)

    Černá, Kristýna; Wittlingerová, Zdeňka; Zimová, Magdaléna; Janovský, Zdeněk

    2017-02-28

    In working environment of waste treatment facilities, employees are exposed to high concentrations of airborne microorganisms. Fungi constitute an essential part of them. This study aims at evaluating the diurnal variation in concentrations and species composition of the fungal contamination in 2 plastic waste sorting facilities in different seasons. Air samples from the 2 sorting facilities were collected through the membrane filters method on 4 different types of cultivation media. Isolated fungi were classified to genera or species by using a light microscopy. Overall, the highest concentrations of airborne fungi were recorded in summer (9.1×103-9.0×105 colony-forming units (CFU)/m3), while the lowest ones in winter (2.7×103-2.9×105 CFU/m3). The concentration increased from the beginning of the work shift and reached a plateau after 6-7 h of the sorting. The most frequently isolated airborne fungi were those of the genera Penicillium and Aspergillus. The turnover of fungal species between seasons was relatively high as well as changes in the number of detected species, but potentially toxigenic and allergenic fungi were detected in both facilities during all seasons. Generally, high concentrations of airborne fungi were detected in the working environment of plastic waste sorting facilities, which raises the question of health risk taken by the employees. Based on our results, the use of protective equipment by employees is recommended and preventive measures should be introduced into the working environment of waste sorting facilities to reduce health risk for employees. Med Pr 2017;68(1):1-9. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  12. Self-esteem modulates automatic attentional responses to self-relevant stimuli: evidence from event-related brain potentials

    OpenAIRE

    Chen, Jie; Shui, Qing; Zhong, Yiping

    2015-01-01

    Previous studies have widely shown that self-esteem modulates the attention bias towards social rejection or emotion-related information. However, little is known about the influences of self-esteem on attention bias towards self-relevant stimuli. We aimed to investigate neural correlates that underlie the modulation effect of self-esteem on self-relevant processing. Event-related potentials (ERP) were recorded for subjects’ own names and close others’ names (the names of their friends) while...

  13. Aquatic fungi in the Lake Sejny complex

    OpenAIRE

    Bazyli Czeczuga

    2014-01-01

    The mycoflora of the Lake Sejny complex was studied. Samples of water were collected in 1990-1991 for hydrochemical analysis and determination of fungi species. In total 69 species of fungi reported for the first time from Poland (Myzocylium vermicolum, Angulospora aquatica, Zoophthora rhizospora).

  14. Fungi colonizing dead leaves of herbs

    Directory of Open Access Journals (Sweden)

    Maria Kowalik

    2013-04-01

    Full Text Available The material was collected from the Botanical Garden and the Collegium Medicum Medicinal Plant Garden of the Jagiellonian University in Krakow. The investigated species were: lemon balm (Mellisa officinalis L., common lavender (Lavendula angustifolia Mill., horsemint (Mentha longifolia L., sage (Salvia officinalis L., sweet basil (Ocimum basilicum L., and wild marjoram (Origanum vulgare L.. The aim of the investigation was to identify fungi causing the death of leaf tissues of herbs from the mint family Lamiaceae. In mycological investigations, 180 fragments of each plant leaves (1,080 dead leaf fragments in total were placed in a 2% PDA medium. Over 970 colonies of fungi belonging to 48 species were isolated from the dead leaf tissues of the six herb species. Alternaria alternata (toxin-producing, Epicoccum nigrum and Sordaria fimicola were the most frequently isolated. The largest numbers of colonies and species of fungi were isolated from horsemint, while the lowest numbers were from wild marjoram leaves. It was shown that the death of leaves of selected herb species from the Lamiaceae family was caused by various fungi. The results of the mycological analysis confirmed the diversity of species colonizing the leaves of the herbs.

  15. The potential relevance of cognitive neuroscience for the development and use of technology-enhanced learning

    NARCIS (Netherlands)

    Howard-Jones, Paul; Ott, Michela; van Leeuwen, Theo; De Smedt, Bert

    2015-01-01

    There is increasing interest in the application of cognitive neuroscience in educational thinking and practice, and here we review findings from neuroscience that demonstrate its potential relevance to technology-enhanced learning (TEL). First, we identify some of the issues in integrating

  16. Communities, populations and individuals of arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Rosendahl, Søren

    2008-01-01

    Arbuscular mycorrhizal fungi in the phylum Glomeromycota are found globally in most vegetation types, where they form a mutualistic symbiosis with plant roots. Despite their wide distribution, only relatively few species are described. The taxonomy is based on morphological characters...... of the asexual resting spores, but molecular approaches to community ecology have revealed a considerable unknown diversity from colonized roots. Although the lack of genetic recombination is not unique in the fungal kingdom, arbuscular mycorrhizal fungi are probably ancient asexuals. The long asexual evolution...... of the fungi has resulted in considerable genetic diversity within morphologically recognizable species, and challenges our concepts of individuals and populations. This review critically examines the concepts of species, communities, populations and individuals of arbuscular mycorrhizal fungi....

  17. Aquatic fungi in the Lake Sejny complex

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-08-01

    Full Text Available The mycoflora of the Lake Sejny complex was studied. Samples of water were collected in 1990-1991 for hydrochemical analysis and determination of fungi species. In total 69 species of fungi reported for the first time from Poland (Myzocylium vermicolum, Angulospora aquatica, Zoophthora rhizospora.

  18. [Keratinophilic fungi in soils of parks of Corrientes city, Argentina].

    Science.gov (United States)

    Sarmiento, María Mercedes; Mangiaterra, Magdalena; Bojanich, María Viviana; Basualdo, Juan Ángel; Giusiano, Gustavo

    2016-01-01

    The soil is a natural reservoir of keratinophilic fungi, which are a small but important group of filamentous fungi, some of which typically develop on keratinized tissues of living animals. There are numerous species of saprophytic fungi with recognized keratinophilic abilities, and several studies have been undertaken in order to link their presence to possible human disease. To know the biota of geophilic fungi in general and of keratinophilic fungi particularly in soils from two public parks. Soil samples from two public parks of Corrientes city, Argentina, were studied during two seasons, using the hook technique and serial dilutions for fungal isolation. Using the hook technique, 170 isolates were classified into 17 genera and 21 species, among which it is worth mentioning the presence of Microsporum canis. Shannon index for keratinophilic fungi in autumn was 2.27, and 1.92 in spring. By means of the serial dilutions technique, 278 fungi isolated were identified into 33 genera and 71 species. Shannon index in autumn was 3.9, and 3.5 in spring. The soils studied have particularly favorable conditions for the survival of pathogens and opportunistic geophilic fungi for humans and animals. Copyright © 2014 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  19. The Activity of Cellulase from Thermophilic Fungi Isolated from CaneBagasses

    International Nuclear Information System (INIS)

    Aris-Toharisman; Akyunul-Jannah

    2000-01-01

    The activity of cellulase from thermophilic fungi isolated from canebagasses has been measured. This wild strain, named fungal strain PJ-2,secreted a large amount of cellulolytic enzyme components consisting of 0.46units of avicelase, 0.8 units of carboxymethyl cellulose hydrolizing enzyme(CMCase) and 0.5 units of β-glucosidase per ml of culture broth oncultivation in Mandels Reese medium for 7 days at 500 o C. These cellulasesproduction was lower than that of Trichoderma reesei NRRL 3653 producing 0.5units/ml avicelase, 1.6 units/ml CMCase and 0.4 units/ml ofβ-glucosidase cultivated in the same medium at 30 o C. However,thermophilic fungi may be potential to be exploited in lignocellulosedegradation at the tropical areas as the process usually needs temperature ofabove 50 o C. (author)

  20. Diversity of endophytic fungi in Glycine max.

    Science.gov (United States)

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  1. Deep-sea fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C; Damare, S.R.

    significant in terms of carbon sequestration (5, 8). In light of this, the diversity, abundance, and role of fungi in deep-sea sediments may form an important link in the global C biogeochemistry. This review focuses on issues related to collection...

  2. Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile.

    Science.gov (United States)

    González-Teuber, M; Vilo, C; Bascuñán-Godoy, L

    2017-03-01

    Plant roots can be highly colonized by fungal endophytes. This seems to be of particular importance for the survival of plants inhabiting stressful habitats. This study focused on the Identification of the fungal endophytic community associated with the roots of quinoa plants ( Chenopodium quinoa ) growing near the salt lakes of the Atacama Desert, Chile. One hundred endophytic fungi were isolated from healthy quinoa roots, and the internal transcribed spacer (ITS) region was sequenced for phylogenetic and taxonomic analysis. The isolates were classified into eleven genera and 21 distinct operational taxonomic units (OTUs). Despite a relatively high diversity of root endophytic fungi associated with quinoa plants, the fungal community was dominated by only the Ascomycota phyla. In addition, the most abundant genera were Penicillium , Phoma and Fusarium , which are common endophytes reported in plant roots. This study shows that roots of C . quinoa harbor a diverse group of endophytic fungi. Potential roles of these fungi in plant host tolerance to stressful conditions are discussed.

  3. Alkali metals in fungi of forest soil

    International Nuclear Information System (INIS)

    Vinichuk, M.; Taylor, A.; Rosen, K.; Nikolova, I.; Johanson, K.J.

    2009-01-01

    The high affinity of forest soil fungi for alkali metals such as potassium, rubidium, caesium as well as radiocaesium is shown and discussed. Good positive correlation was found between K: Rb concentration ratios in soil and in fungi, when correlation between K: Cs concentration ratios was less pronounced. (LN)

  4. SCREENING OF FLUORESCENT RHIZOBACTERIA FOR THE BIOCONTROL OF SOILBORNE PLANT PATHOGENIC FUNGI

    Directory of Open Access Journals (Sweden)

    ANELISE DIAS

    2014-01-01

    Full Text Available The biocontrol of soilborne plant pathogens represents a promising approach from the environ- mental and practical points of view. Fluorescent pseudomonad rhizobacteria are well known by their antagonis- tic capacity towards several plant pathogens due to a diversity of antimicrobial metabolites they produce. This study was conceived to select and characterize rhizobacteria having antagonistic potential towards the patho- genic fungi Rhizoctonia solani and Sclerotium rolfsii. A total of 94 bacterial strains isolated from the rhizospheres of four vegetable species under organic cultivation were evaluated. Twenty-two strains which predominate in lettuce and rudbeckia rhizospheres showed identical biochemical profiles to Pseudomonas fluo- rescens, while in kale and parsley rhizospheres identical profiles to Pseudomonas putida (subgroups A and B strains prevailed. Two types of antagonism were verified in vitro and defined as competition and inhibition of mycelial growth. Sixty percent of the evaluated strains showed antagonistic potential and, among those, 24 strains expressed antagonism to both target fungi, with P. fluorescens being the most representative bacterial species. This work clearly identified a number of strains with potential for use as plant growth-promoting and biocontrol of the two soilborne fungal pathogens in vegetable crops production systems.

  5. Barcoding lichen-forming fungi using 454 pyrosequencing is challenged by artifactual and biological sequence variation.

    Science.gov (United States)

    Mark, Kristiina; Cornejo, Carolina; Keller, Christine; Flück, Daniela; Scheidegger, Christoph

    2016-09-01

    Although lichens (lichen-forming fungi) play an important role in the ecological integrity of many vulnerable landscapes, only a minority of lichen-forming fungi have been barcoded out of the currently accepted ∼18 000 species. Regular Sanger sequencing can be problematic when analyzing lichens since saprophytic, endophytic, and parasitic fungi live intimately admixed, resulting in low-quality sequencing reads. Here, high-throughput, long-read 454 pyrosequencing in a GS FLX+ System was tested to barcode the fungal partner of 100 epiphytic lichen species from Switzerland using fungal-specific primers when amplifying the full internal transcribed spacer region (ITS). The present study shows the potential of DNA barcoding using pyrosequencing, in that the expected lichen fungus was successfully sequenced for all samples except one. Alignment solutions such as BLAST were found to be largely adequate for the generated long reads. In addition, the NCBI nucleotide database-currently the most complete database for lichen-forming fungi-can be used as a reference database when identifying common species, since the majority of analyzed lichens were identified correctly to the species or at least to the genus level. However, several issues were encountered, including a high sequencing error rate, multiple ITS versions in a genome (incomplete concerted evolution), and in some samples the presence of mixed lichen-forming fungi (possible lichen chimeras).

  6. Molecular diversity of fungi from marine oxygen-deficient environments (ODEs)

    Digital Repository Service at National Institute of Oceanography (India)

    Manohar, C.S.; Forster, D.; Kauff, F.; Stoeck, T.

    . Sparrow Jr F K (1936) Biological observations of the marine fungi of woods hole waters. Biol Bull 70: 236-263. States JS & Christensen M (2001) Fungi Associated with Biological Soil Crusts in Desert Grasslands of Utah and Wyoming. Mycologia 93: 432... version: Biology of marine fungi. Ed. by: Raghukumar, C. (Prog. Mol. Subcellular Biol). Springer, vol.53 (Chap 10); 2012; 189-208 Chapter # 10 Molecular diversity of fungi from marine oxygen-deficient environments (ODEs) Cathrine S. Jebaraj 1...

  7. Promising carbons for supercapacitors derived from fungi

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hui; Wang, Xiaolei; Yang, Fan; Yang, Xiurong [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China)

    2011-06-24

    Activated carbons with promising performance in capacitors are produced from fungi via a hydrothermal assistant pyrolysis approach. This study introduces a facile strategy to discover carbonaceous materials and triggers interest in exploring fungi for material science applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Freeze-drying of filamentous fungi and yeasts

    NARCIS (Netherlands)

    Tan, C.S.

    2011-01-01

    The aim of this thesis was to optimize the freeze-drying protocol for fungi in general and for those genera that do not survive this preservation method, in particular. To this end, the influence of the cooling rate, the lyoprotectant and the drying process itself was examined. Since most fungi

  9. Fun with Fungi.

    Science.gov (United States)

    McLure, John W.

    1993-01-01

    Describes hands-on activities with fungi that may provoke the curiosity of early adolescents and increase their enjoyment and understanding of a vast, important portion of botany. Some of the activities may be conducted during the winter months when most fieldwork ceases. (PR)

  10. Structural Diversity and Biological Activities of the Cyclodipeptides from Fungi

    Directory of Open Access Journals (Sweden)

    Xiaohan Wang

    2017-11-01

    Full Text Available Cyclodipeptides, called 2,5-diketopiperazines (2,5-DKPs, are obtained by the condensation of two amino acids. Fungi have been considered to be a rich source of novel and bioactive cyclodipeptides. This review highlights the occurrence, structures and biological activities of the fungal cyclodipeptides with the literature covered up to July 2017. A total of 635 fungal cyclodipeptides belonging to the groups of tryptophan-proline, tryptophan-tryptophan, tryptophan–Xaa, proline–Xaa, non-tryptophan–non-proline, and thio-analogs have been discussed and reviewed. They were mainly isolated from the genera of Aspergillus and Penicillium. More and more cyclodipeptides have been isolated from marine-derived and plant endophytic fungi. Some of them were screened to have cytotoxic, phytotoxic, antimicrobial, insecticidal, vasodilator, radical scavenging, antioxidant, brine shrimp lethal, antiviral, nematicidal, antituberculosis, and enzyme-inhibitory activities to show their potential applications in agriculture, medicinal, and food industry.

  11. Identifying and naming plant-pathogenic fungi: past, present, and future.

    Science.gov (United States)

    Crous, Pedro W; Hawksworth, David L; Wingfield, Michael J

    2015-01-01

    Scientific names are crucial in communicating knowledge about fungi. In plant pathology, they link information regarding the biology, host range, distribution, and potential risk. Our understanding of fungal biodiversity and fungal systematics has undergone an exponential leap, incorporating genomics, web-based systems, and DNA data for rapid identification to link species to metadata. The impact of our ability to recognize hitherto unknown organisms on plant pathology and trade is enormous and continues to grow. Major challenges for phytomycology are intertwined with the Genera of Fungi project, which adds DNA barcodes to known biodiversity and corrects the application of old, established names via epi- or neotypification. Implementing the one fungus-one name system and linking names to validated type specimens, cultures, and reference sequences will provide the foundation on which the future of plant pathology and the communication of names of plant pathogens will rest.

  12. Susceptibility of ectomycorrhizal fungi to soil heating.

    Science.gov (United States)

    Kipfer, Tabea; Egli, Simon; Ghazoul, Jaboury; Moser, Barbara; Wohlgemuth, Thomas

    2010-01-01

    Ectomycorrhizal (EcM) fungi are an important biotic factor for successful tree recruitment because they enhance plant growth and alleviate drought stress of their hosts. Thus, EcM propagules are expected to be a key factor for forest regeneration after major disturbance events such as stand-replacing forest fires. Yet the susceptibility of soil-borne EcM fungi to heat is unclear. In this study, we investigated the heat tolerance of EcM fungi of Scots pine (Pinus sylvestris L., Pinaceae). Soil samples of three soil depths were heated to the temperature of 45, 60 and 70 °C, respectively, and surviving EcM fungi were assessed by a bioassay using Scots pine as an experimental host plant. EcM species were identified by a combination of morphotyping and sequencing of the ITS region. We found that mean number of species per sample was reduced by the 60 and 70 °C treatment, but not by the 45 °C treatment. Species composition changed due to heat. While some EcM fungi species did not survive heating, the majority of species was also found in the heated samples. The most frequent species in the heat treatment were Rhizopogon roseolus, Cenococcum geophilum and several unidentified species. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  13. Selective effects of two systemic fungicides on soil fungi.

    Science.gov (United States)

    Abdel-Fattah, H M; Abdel-Kader, M I; Hamida, S

    1982-08-20

    BAS 317 00F was not toxic to the total count of fungi after 2 days but was regularly significantly toxic at the three doses after 5, 20 and 40 days and toxic at the low and the high doses after 80 days. In the agar medium, it was toxic to the counts of total fungi. Aspergillus, A. terreus, Rhizopus oryzae and Mucor racemosus at the high dose. Only the mycelial growth of Trichoderma viride which was significantly inhibited by the three doses when this fungicide was added to the liquid medium. Polyram-Combi induced two effects on the total population of soil fungi. One inhibitory and this was demonstrated almost regularly after 2, 10 and 40 days and the other stimulatory after 80 days of treatment with the low and the high doses. In the agar medium, this fungicide was very toxic to total fungi and to almost all fungal genera and species at the three doses. Several fungi could survive the high dose. In liquid medium, the test fungi showed variable degree of sensitivity and the most sensitive was Gliocladium roseum which was completely eradicated by the three doses.

  14. Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park

    Science.gov (United States)

    Choo, Jenny; Sabri, Nuraini Binti Mohd; Tan, Daniel; Mujahid, Aazani; Müller, Moritz

    2015-06-01

    Heavy metal pollution is an environmental issue globally and the aim of this study was to isolate endophytic fungi from mangrove wetlands of Sarawak to assess and test their ability to grow in the presence of various heavy metals (copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr)). Samples of Nypa fruticans were collected from Kuching Wetland National Park (KWNP) for subsequent endophyte isolation. Ninety-three (93) isolates were obtained and assessed and the most resistant isolates (growing at concentrations up to 1000 ppm) were identified using fungal primers ITS 1 and ITS 4. All of the endophytic fungi were identified to be closely related to Pestalotiopsis sp. and this is to our knowledge the first study reporting the ability of Pestalotiopsis sp. to grow at high concentrations of copper, lead, zinc and chromium. Our results highlight the potential of using endophytic fungi for the treatment of heavy metal pollution, for example as biosorbents.

  15. Composition of arbuscular mycorrhizal fungi associated with cassava

    African Journals Online (AJOL)

    SARAH

    2016-02-29

    Feb 29, 2016 ... Objectives: Arbuscular mycorrhizal fungi (AMF) form root symbiotic relationships with higher plants, but .... including growth habit of stem, stem colour, outer and inner root ..... of AM fungi to colonize roots, breaking down their.

  16. Aflatoxins Associated with Storage Fungi in Fish Feed

    African Journals Online (AJOL)

    Timothy Ademakinwa

    This study investigates storage fungi and aflatoxin in fish feed stored under three different ... secondary metabolites of fungi which are formed ... Department of Marine Sciences, Faculty of ... antibiotic is to inhibit the growth of any bacterial.

  17. Networks Depicting the Fine-Scale Co-Occurrences of Fungi in Soil Horizons.

    Science.gov (United States)

    Toju, Hirokazu; Kishida, Osamu; Katayama, Noboru; Takagi, Kentaro

    2016-01-01

    Fungi in soil play pivotal roles in nutrient cycling, pest controls, and plant community succession in terrestrial ecosystems. Despite the ecosystem functions provided by soil fungi, our knowledge of the assembly processes of belowground fungi has been limited. In particular, we still have limited knowledge of how diverse functional groups of fungi interact with each other in facilitative and competitive ways in soil. Based on the high-throughput sequencing data of fungi in a cool-temperate forest in northern Japan, we analyzed how taxonomically and functionally diverse fungi showed correlated fine-scale distributions in soil. By uncovering pairs of fungi that frequently co-occurred in the same soil samples, networks depicting fine-scale co-occurrences of fungi were inferred at the O (organic matter) and A (surface soil) horizons. The results then led to the working hypothesis that mycorrhizal, endophytic, saprotrophic, and pathogenic fungi could form compartmentalized (modular) networks of facilitative, antagonistic, and/or competitive interactions in belowground ecosystems. Overall, this study provides a research basis for further understanding how interspecific interactions, along with sharing of niches among fungi, drive the dynamics of poorly explored biospheres in soil.

  18. Comparative Genome Analysis of Basidiomycete Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Morin, Emmanuelle; Nagy, Laszlo; Manning, Gerard; Baker, Scott; Brown, Daren; Henrissat, Bernard; Levasseur, Anthony; Hibbett, David; Martin, Francis; Grigoriev, Igor

    2012-03-19

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, symbionts, and plant and animal pathogens. To better understand the diversity of phenotypes in basidiomycetes, we performed a comparative analysis of 35 basidiomycete fungi spanning the diversity of the phylum. Phylogenetic patterns of lignocellulose degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay. Patterns of secondary metabolic enzymes give additional insight into the broad array of phenotypes found in the basidiomycetes. We suggest that the profile of an organism in lignocellulose-targeting genes can be used to predict its nutritional mode, and predict Dacryopinax sp. as a brown rot; Botryobasidium botryosum and Jaapia argillacea as white rots.

  19. ISOLASI, SKRINING DAN IDENTIFIKASI JAMUR XILANOLITIK LOKAL YANG BERPOTENSI SEBAGAI AGENSIA PEMUTIH PULP YANG RAMAH LINGKUNGAN (Isolation, Screening and Identification Xylanolytic Local Fungi that Potentially as Pulp Bleaching Agents

    Directory of Open Access Journals (Sweden)

    Elisa Nurnawati

    2015-01-01

    Xylanase has great potential for industry application. Application of xylanase can be done in pretreatment of pulp bleaching in the pulp and paper industry. Enzyme application can reduce the use of chlorine compounds that are harmful to the environment. Therefore, xylanase that used in pulp bleaching should be free of cellulase activity. Fungi are one of the groups of microbes that are able to produce xylanase. The aims of this study was to obtain local xylanase-producing fungal isolates from soil that assumed contain of xylan. The source of fungal isolates were the soil around the pulp and paper industry; Acacia forests in the district Ogan Ilir and Muara Enim, South Sumatra; Wanagama, Yogyakarta; sawmills in Palembang and Yogyakarta; and Palembang landfill. Based on the initial screening in the agar basal medium, 111 fungal isolates were obtained. Most of them were the xylanase-producing fungi, but only 12 fungal isolates that have high xylanolytic capabilities. Further screening was performed on xylan liquid basal medium. The results showed that the fungus identified as Chaetomium globosum, Penicillium simplicissimum, Aspergillus tamarii and Monocillium have higher xylanase specific activity than the other isolates. They were also have lignolytic and cellulolytic activities. Therefore, fungal xylanase potentially developed as a pulp bleaching agent.

  20. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi.

    Science.gov (United States)

    Schoch, Conrad L; Seifert, Keith A; Huhndorf, Sabine; Robert, Vincent; Spouge, John L; Levesque, C André; Chen, Wen

    2012-04-17

    Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.

  1. Biology of flower-infecting fungi.

    Science.gov (United States)

    Ngugi, Henry K; Scherm, Harald

    2006-01-01

    The ability to infect host flowers offers important ecological benefits to plant-parasitic fungi; not surprisingly, therefore, numerous fungal species from a wide range of taxonomic groups have adopted a life style that involves flower infection. Although flower-infecting fungi are very diverse, they can be classified readily into three major groups: opportunistic, unspecialized pathogens causing necrotic symptoms such as blossom blights (group 1), and specialist flower pathogens which infect inflorescences either through the gynoecium (group 2) or systemically through the apical meristem (group 3). This three-tier system is supported by life history attributes such as host range, mode of spore transmission, degree of host sterilization as a result of infection, and whether or not the fungus undergoes an obligate sexual cycle, produces resting spores in affected inflorescences, and is r- or K-selected. Across the three groups, the flower as an infection court poses important challenges for disease management. Ecologically and evolutionarily, terms and concepts borrowed from the study of venereal (sexually transmitted) diseases of animals do not adequately capture the range of strategies employed by fungi that infect flowers.

  2. Antimicrobial and enzymatic activity of anemophilous fungi of a public university in Brazil

    Directory of Open Access Journals (Sweden)

    LAUREANA V. SOBRAL

    2017-10-01

    Full Text Available ABSTRACT To the fungal microbiota the UFPE and biotechnological potential enzymatic and antimicrobial production. Air conditioned environments were sampled using a passive sedimentation technique, the air I ratio and the presence of aflatoxigenic strains evaluated for ANVISA. Icelles were to determine the enzymatic activity of lipase, amylase and protease metabolic liquids to determine antimicrobial activity. Diversity was observed in all CAV environments, CFU/m3 ranged from 14 to 290 and I/E ratio from 0.1 to 1.5. The of the fungal genera were: Aspergillus (50%, Penicillium (21%, Talaromyces (14%, Curvularia and Paecilomyces (7% each. Aspergillus sydowii (Bainier & Sartory Thom & Church presented enzymatic activity and the Talaromyces purpureogenus Samson, Yilmaz, Houbraken, Spierenb., Seifert, Peterson, Varga & Frisvad presented antibacterial activity against all bacteria that all environments present fungal species biodiversity no toxigenic or pathogenic fungi were found, according to ANVISA legislation for conditioned environments and airborne filamentous fungi present potential for enzymatic and antimicrobial activity.

  3. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Vályi, Kriszta; Mardhiah, Ulfah; Rillig, Matthias C; Hempel, Stefan

    2016-10-01

    Arbuscular mycorrhizal fungi are asexual, obligately symbiotic fungi with unique morphology and genomic structure, which occupy a dual niche, that is, the soil and the host root. Consequently, the direct adoption of models for community assembly developed for other organism groups is not evident. In this paper we adapted modern coexistence and assembly theory to arbuscular mycorrhizal fungi. We review research on the elements of community assembly and coexistence of arbuscular mycorrhizal fungi, highlighting recent studies using molecular methods. By addressing several points from the individual to the community level where the application of modern community ecology terms runs into problems when arbuscular mycorrhizal fungi are concerned, we aim to account for these special circumstances from a mycocentric point of view. We suggest that hierarchical spatial structure of arbuscular mycorrhizal fungal communities should be explicitly taken into account in future studies. The conceptual framework we develop here for arbuscular mycorrhizal fungi is also adaptable for other host-associated microbial communities.

  4. Microbial and 'de novo' transformation of dicarboxylic acids by three airborne fungi

    International Nuclear Information System (INIS)

    Cote, Valerie; Kos, Gregor; Mortazavi, Roya; Ariya, Parisa A.

    2008-01-01

    Micro-organisms and organic compounds of biogenic or anthropogenic origins are important constituents of atmospheric aerosols, which are involved in atmospheric processes and climate change. In order to investigate the role of fungi and their metabolisation activity, we collected airborne fungi using a biosampler in an urban location of Montreal, Quebec, Canada (45 o 28' N, 73 o 45' E). After isolation on Sabouraud dextrose agar, we exposed isolated colonies to dicarboxylic acids (C 2 -C 7 ), a major group of organic aerosols and monitored their growth. Depending on the acid, total fungi numbers varied from 35 (oxalic acid) to 180 CFU/mL (glutaric acid). Transformation kinetics of malonic acid, presumably the most abundant dicarboxylic acid, at concentrations of 0.25 and 1.00 mM for isolated airborne fungi belonging to the genera Aspergillus, Penicillium, Eupenicillium, and Thysanophora with the fastest transformation rate are presented. The initial concentration was halved within 4.5 and 11.4 days. Other collected fungi did not show a significant degradation and the malonic acid concentration remained unchanged (0.25 and 1.00 mM) within 20 days. Degradation of acid with formation of metabolites was followed using high performance liquid chromatography-ultraviolet detection (HPLC/UV) and gas chromatography-mass spectrometry (GC/MS), as well as monitoring of 13 C labelled malonic acid degradation with solid-state nuclear magnetic resonance spectroscopy (NMR). Using GC/MS we identified two processes driving chemical modifications of organic aerosol solutions: (I) formation of metabolites within several days, and (II) rapid release (≤ 2 min) of organic molecules from fungal species upon the insertion of taxa in organic aerosol solutions. Metabolites included aromatic compounds and alcohols (e.g. trimethylbenzene and butanol). Potential atmospheric implications of our results are discussed

  5. Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections.

    Science.gov (United States)

    Sojinrin, Tobiloba; Conde, João; Liu, Kangze; Curtin, James; Byrne, Hugh J; Cui, Daxiang; Tian, Furong

    2017-07-01

    Fungi, which are common in the environment, can cause a multitude of diseases. Warm, humid conditions allow fungi to grow and infect humans via the respiratory, digestive and reproductive tracts, genital area and other bodily interfaces. Fungi can be detected directly by microscopy, using the potassium hydroxide test, which is the gold standard and most popular method for fungal screening. However, this test requires trained personnel operating specialist equipment, including a fluorescent microscope and culture facilities. As most acutely infected patients seek medical attention within the first few days of symptoms, the optimal diagnostic test would be rapid and self-diagnostic simplifying and improving the therapeutic outcome. In suspensions of gold nanoparticles, Aspergillus niger can cause a colour change from red to blue within 2 min, as a result of changes in nanoparticle shape. A similar colour change was observed in the supernatant of samples of human toenails dispersed in water. Scanning electron microscopy, UV/Vis and Raman spectroscopy were employed to monitor the changes in morphology and surface plasmon resonance of the nanoparticles. The correlation of colour change with the fungal infection was analysed using the absorbance ratio at 520 nm/620 nm. We found a decrease in the ratio when the fungi concentration increased from 1 to 16 CFU/mL, with a detection limit of 10 CFU/mL. The test had an 80% sensitivity and a 95% specificity value for the diagnosis of athlete's foot in human patients. This plasmonic gold nanoparticle-based system for detection of fungal infections measures the change in shape of gold nanoparticles and generates coloured solutions with distinct tonality. Our application has the potential to contribute to self-diagnosis and hygiene control in laboratories/hospitals with fewer resources, just using the naked eye. Graphical abstract Colorimetric method for fungi detection with gold nano particles.

  6. First record of entomopathogenic fungi on autumn leaf Caterpillar (Doleschallia bisaltide)

    Science.gov (United States)

    Dayanti, A. K.; Sholahuddin; Yunus, A.; Subositi, D.

    2018-03-01

    Caricature plant is one of the medicinal plants in Indonesia to cure hemorrhoids, menstruation, and others. The cultivation constraints of caricature plant is autumn leaf caterpillars (Doleschallia bisaltide). Utilization of synthetic insecticides is not allowed to avoid bioaccumulation of chemical residues. Entomopathogenic fungi is an alternative way to control D. bisaltide. The objective of the research was to obtain isolates of entomopathogenic fungi of D. bisaltide. The research conducted by two steps, which were exsploration of infecfted D. bisaltide. The second step was identification of the fungi. Exploration results of 16 pupae of D. Bisaltide were infected by fungi. Identification done by classify the mcroscopic and microscopic fungi isolate characteristic. One from five fungal isolates were entomopathogenic fungi from Verticillium genera.

  7. Some Orchid Species Fungi Isolated by Different Methods

    Directory of Open Access Journals (Sweden)

    Arzu ÇIĞ

    2014-03-01

    Full Text Available Due to their very small seeds that do not contain endosperm, many terrestrial orchid species require the presence of fungi in order to germinate and maintain their lives; and symbiotic culture studies are being carried out on this topic. For the purpose of determining the orchid species on which the fungus to be used as inoculants in the symbiotic culture will be effective, fungi isolated through several isolation methods are cultured with orchid species. In this study a total of four different isolation methods were applied as one on the tubers and rhizomes and three on the soil of eleven orchid species from the Anacamptis, Cephalanthera, Dactylorhiza and Orchis genera. Three different culture media were used in the methods. At the end of the study Alternaria, Aspergillus, Fusarium, Macrophomina, Rhizoctonia, Trichoderma and Verticillium fungi were isolated. In the study that was conducted with the aimed to isolate particularly Rhizoctania spp. fungi, the fungi was isolated from the tubers of Dactylorhiza umbrosa and Orchis palustris species and the soil of the Orchis simia species. Fusarium and Aspergillus species were isolated the most in all implemented methods and from all species.

  8. DNA extraction method for PCR in mycorrhizal fungi.

    Science.gov (United States)

    Manian, S; Sreenivasaprasad, S; Mills, P R

    2001-10-01

    To develop a simple and rapid DNA extraction protocol for PCR in mycorrhizal fungi. The protocol combines the application of rapid freezing and boiling cycles and passage of the extracts through DNA purification columns. PCR amplifiable DNA was obtained from a number of endo- and ecto-mycorrhizal fungi using minute quantities of spores and mycelium, respectively. DNA extracted following the method, was used to successfully amplify regions of interest from high as well as low copy number genes. The amplicons were suitable for further downstream applications such as sequencing and PCR-RFLPs. The protocol described is simple, short and facilitates rapid isolation of PCR amplifiable genomic DNA from a large number of fungal isolates in a single day. The method requires only minute quantities of starting material and is suitable for mycorrhizal fungi as well as a range of other fungi.

  9. Manglicolous fungi from India

    Digital Repository Service at National Institute of Oceanography (India)

    Chinnaraj, S.; Untawale, A.G.

    This paper deals with nine Ascomycetous fungi viz. Rhizophila marina Hyde et Jones, Trematosphaeria striatispora Hyde, Lineolata rhizophorae (Kohlm. et. Kohlm.) Kohlm. et. Volkm.-Kohlm., Caryosporella rhizophorae Kohlm., Passeriniella savoryellopsis...

  10. ISOLATION OF FUNGI FROM THE GASTROINTESTINAL TRACT OF INDIGENOUS CHICKEN

    OpenAIRE

    E. Kusdiyantini; T. Yudiarti; V. D.Yunianto; R. Murwani

    2012-01-01

    Gastrointestinal tract of chicken is a place in which many kinds of fungi can be found. The aim of the research was to isolate fungi from the gastrointestinal tract of the indigenous chicken (Ayam Kampung). The chicken samples were four days, one week and two months old and were sampled from chicken farm located in Yogyakarta. Potato dextrose agar (PDA) medium was used to grow the fungi. Fifty pure isolates of fungi were found from three different ages, those were four days, one week and two ...

  11. Treatment of micropollutants in municipal wastewater using white-rot fungi

    OpenAIRE

    Margot, Jonas; Vargas, Micaela; Contijoch, Andreu; Barry, David Andrew; Holliger, Christof

    2014-01-01

    Treatment of micropollutants such as pharmaceuticals and pesticides in municipal wastewater is challenging due to their very low concentrations (ng/l to µg/l), their relatively low biodegradability, and their different physico-chemical characteristics. One potential way to improve micropollutant biodegradation in wastewater treatment plant (WWTP) effluent is by using microorganisms such as white-rot fungi that produce powerful unspecific oxidative exo-enzymes (laccase, peroxidase) that are ab...

  12. Keratinophilic fungi in various types of water bodies

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-08-01

    Full Text Available The keratinophilic fungi in various types of water bodies (slough. pond. beach pool. two lakes and two rivers were studied. Samples of water were collected every other month for bydrochemical analysis and once a month (1989-1990 in order to determine the fungus content. Human hair, snippings of finger-nails, chips of hoofs, feathers and snake exuviae were used as bait. Twenty-five species of keratinophilic fungi were found in various types of water bodies. Hyphochytrium catenoides, Aphanomyces stellatus, Leptolegniella caudala and Achlya oligacantha represent new records as koratinophilic fungi.

  13. Fungi in the legislation of the Republic of Serbia

    Directory of Open Access Journals (Sweden)

    Ivančević Boris N.

    2012-01-01

    Full Text Available Conservation and protection of fungi have lately been considered as extremely important elements of the environmental conservation, and numerous environmental, scientific, medical, economic, cultural, ethical, and other reasons for such attitude exist today. This paper presents an overview of official regulations on the protection of fungi in the Republic of Serbia from the Act of Protection of 1991 until today. The paper lists and analyses the good and bad provisions of individual legal regulations. It registers the effects of the adopted regulations on the actual efficiency of protection of endangered species of fungi (macrofungi, mushrooms, and considers the impact of chronological development of legislation on the population of fungi in nature, and presents general measures to improve protection of mushrooms in the future. These measures primarily include reliable information and study of fungi as a basis for their effective protection based on scientific knowledge. [Projekat Ministarstva nauke Republike Srbije, br. OI-179079

  14. Isolation of oxalic acid tolerating fungi and decipherization of its potential to control Sclerotinia sclerotiorum through oxalate oxidase like protein.

    Science.gov (United States)

    Yadav, Shivani; Srivastava, Alok K; Singh, Dhanajay P; Arora, Dilip K

    2012-11-01

    Oxalic acid plays major role in the pathogenesis by Sclerotinia sclerotiorum; it lowers the pH of nearby environment and creates the favorable condition for the infection. In this study we examined the degradation of oxalic acid through oxalate oxidase and biocontrol of Sclerotinia sclerotiorum. A survey was conducted to collect the rhizospheric soil samples from Indo-Gangetic Plains of India to isolate the efficient fungal strains able to tolerate oxalic acid. A total of 120 fungal strains were isolated from root adhering soils of different vegetable crops. Out of 120 strains a total of 80 isolates were able to grow at 10 mM of oxalic acid whereas only 15 isolates were grow at 50 mM of oxalic acid concentration. Then we examined the antagonistic activity of the 15 isolates against Sclerotinia sclerotiorum. These strains potentially inhibit the growth of the test pathogen. A total of three potential strains and two standard cultures of fungi were tested for the oxalate oxidase activity. Strains S7 showed the maximum degradation of oxalic acid (23 %) after 60 min of incubation with fungal extract having oxalate oxidase activity. Microscopic observation and ITS (internally transcribed spacers) sequencing categorized the potential fungal strains into the Aspergillus, Fusarium and Trichoderma. Trichoderma sp. are well studied biocontrol agent and interestingly we also found the oxalate oxidase type activity in these strains which further strengthens the potentiality of these biocontrol agents.

  15. Potential antagonism of some Trichoderma strains isolated from Moroccan soil against three phytopathogenic fungi of great economic importance

    Directory of Open Access Journals (Sweden)

    Wafaa MOKHTARI

    2017-09-01

    Full Text Available In this study, 17 Trichoderma strains were isolated from different soils (crop fields and Argan forests in Morocco. Purified monospore cultures were identified using molecular methods and tested for their potential antagonism against three phytopathogenic fungi (Fusarium oxyxporum, verticillium dahlia and rhizoctonia solani. After DNA extraction, translation elongation factor (tef1 was amplified in extracts of 17 strains, sequenced and compared with their ex-types. As a result, three species were identified among the strains, which clustered in two different subclades of Trichoderma: the species T. afroharzianum, and T. guizhouense belong to the Harzianum clade, while T. longibrachiatum belongs to the Longibrachiatum clade. Investigation of potential antagonistic effects of these strains against the soil-borne phytopathogens F. oxysporum, R. solani and V. dahliae was conducted in a dual culture plate assay, using 17 promising Trichoderma strains that have been selected based on a polymerase chain reaction (PCR screening approach. In vitro, Trichoderma isolates showed effective antagonistic performance by decreasing soil borne pathogens mycelium radial growth. Trichoderma afroharzianum showed the highest Percentage of Radial Inhibition Growth (PRIG %. The highest PRIG% = 98% was for 8A2.3 isolate against R. solani and the lowest PRIG%= 67% for T9i10 against F. oxysporum. On the other hand, T9i12, which is T. reesei species, led to a high radial inhibition of pathogens’ mycelium.

  16. Diversity of leaf endophytic fungi in mangrove plants of northeast Brazil.

    Science.gov (United States)

    Wanderley Costa, Isabella P M; Maia, Leonor Costa; Cavalcanti, Maria Auxiliadora

    2012-07-01

    With the aim of increasing the knowledge about endophytic fungi, a group of microorganisms with high biotechnological potential and a valuable source of useful metabolites, a survey in leaves of mangrove plants (Avicennia schaueriana, Laguncularia racemosa, and Rhizophora mangle) was performed at the Itamaracá Island, PE, Brazil. Leaves were collected, during two seasons, dry and rainy, superficially sterilized and fragments maintained in Petri dishes with Potato dextrose agar (PDA) at 28(o) ± 2(o) C until isolation of the fungi. Fourty taxa were isolated: 25 species representing 19 genera and 15 morphotypes determined as Mycelia sterilia. Leaves of L. racemosa hosted the highest number of colony forming units (CFU) and taxa. Guignardia sp. and Colletotrichum gloeosporioides were the most frequently isolated, while Glomerella cingulata was the only species found in association with the three host plants. The proportional importance of each fungus differed among hosts. The similarity of fungi species between the two seasons reached only 4.2%, and that between the hosts was also low, with the maximum (A. schaueriana x L. racemosa) reaching 24.2%. Sphaerosporium, as well as Chloridium virescens var. virescens, Microsphaeropsis arundinis, Penicillium pinophilum, Periconia cambrensis, Phoma herbarum, P. diachenii, P. obscurans, Sordaria prolifica and Torula elisii are reported for the first time as endophytic in tropical regions.

  17. Glass bead cultivation of fungi

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, H.

    2013-01-01

    Production of bioactive compounds and enzymes from filamentous fungi is highly dependent on cultivation conditions. Here we present an easy way to cultivate filamentous fungi on glass beads that allow complete control of nutrient supply. Secondary metabolite production in Fusarium graminearum...... and Fusarium solani cultivated on agar plates, in shaking liquid culture or on glass beads was compared. Agar plate culture and glass bead cultivation yielded comparable results while liquid culture had lower production of secondary metabolites. RNA extraction from glass beads and liquid cultures was easier...... to specific nutrient factors. •Fungal growth on glass beads eases and improves fungal RNA extraction....

  18. Bioactive Secondary Metabolites from a Thai Collection of Soil and Marine-Derived Fungi of the Genera Neosartorya and Aspergillus.

    Science.gov (United States)

    Zin, War War May; Prompanya, Chadaporn; Buttachon, Suradet; Kijjoa, Anake

    2016-01-01

    Fungi are microorganisms which can produce interesting secondary metabolites with structural diversity. Although terrestrial fungi have been extensively investigated for their bioactive secondary metabolites such as antibiotics, marine-derived fungi have only recently attracted attention of Natural Products chemists. Our group has been working on the secondary metabolites produced by the cultures of the fungi of the genera Neosartorya and Aspergillus, collected from soil and marine environments from the tropical region for the purpose of finding new leads for anticancer and antibacterial drugs. This review covers only the secondary metabolites of four soil and six marine-derived species of Neosarorya as well as a new species of marine-derived Aspergillus, investigated by our group. In total, we have isolated fifty three secondary metabolites which can be categorized as polyketides (two), isocoumarins (six), terpenoids (two), meroterpenes (fourteen), alkaloids (twenty eight) and cyclic peptide (one). The anticancer and antibacterial activities of these fungal metabolites are also discussed. Among fifty three secondary metabolites isolated, only the alkaloid eurochevalierine and the cadinene sesquiterpene, isolated from the soil fungus N. pseudofisheri, showed relevant in vitro cytostatic activity against glioblastoma (U373) and non-small cell lung cancer (A549) cell lines while the meroditerpene aszonapyrone A exhibited strong antibacterial activity against multidrug-resistant Gram-positive bacteria and also strong antibiofilm activity in these isolates.

  19. The Potential Relevance of Cognitive Neuroscience for the Development and Use of Technology-Enhanced Learning

    Science.gov (United States)

    Howard-Jones, Paul; Ott, Michela; van Leeuwen, Theo; De Smedt, Bert

    2015-01-01

    There is increasing interest in the application of cognitive neuroscience in educational thinking and practice, and here we review findings from neuroscience that demonstrate its potential relevance to technology-enhanced learning (TEL). First, we identify some of the issues in integrating neuroscientific concepts into TEL research. We caution…

  20. Entomopatogenic fungi as an alternative for biological pest control

    Directory of Open Access Journals (Sweden)

    Pablo Andrés Motta Delgado

    2011-08-01

    Full Text Available The entomopatogenic fungi are a diverse group of microorganisms that provide multiple services to agroecological systems. Among those the capacity to regulate the pests to keep them in suitable levels stands out. The present paper shows a description of the entomopatogenic fungi of most extensively used for the biological control of pests, their mechanism of action on their host, and also investigations about the in vitro and in situ behavior of the mostly used fungi for the control of some insects. Also, the formulations that are used for the development of this biotechnology in the field are described. In the development of bioinsecticides the entomopatogenic fungi are a viable option to minimize environmental damage.

  1. Viability of ectomycorrhizal fungi following cryopreservation.

    Science.gov (United States)

    Crahay, Charlotte; Declerck, Stéphane; Colpaert, Jan V; Pigeon, Mathieu; Munaut, Françoise

    2013-02-01

    The use of ectomycorrhizal (ECM) fungi in biotechnological processes requires their maintenance over long periods under conditions that maintain their genetic, phenotypic, and physiological stability. Cryopreservation is considered as the most reliable method for long-term storage of most filamentous fungi. However, this technique is not widespread for ECM fungi since many do not survive or exhibit poor recovery after freezing. The aim of this study was to develop an efficient cryopreservation protocol for the long-term storage of ECM fungi. Two cryopreservation protocols were compared. The first protocol was the conventional straw protocol (SP). The mycelium of the ECM isolates was grown in Petri dishes on agar and subsequently collected by punching the mycelium into a sterile straw before cryopreservation. In the second protocol, the cryovial protocol (CP), the mycelium of the ECM isolates was grown directly in cryovials filled with agar and subsequently cryopreserved. The same cryoprotectant solution, freezing, and thawing process, and re-growth conditions were used in both protocols. The survival (positive when at least 60 % of the replicates showed re-growth) was evaluated before and immediately after freezing as well as after 1 week, 1 m, and 6 m of storage at -130 °C. Greater survival rate (80 % for the CP as compared to 25 % for the SP) and faster re-growth (within 10 d for the CP compared to the 4 weeks for the SP) were observed for most isolates with the CP suggesting that the preparation of the cultures prior to freezing had a significant impact on the isolates survival. The suitability of the CP for cryopreservation of ECM fungi was further confirmed on a set of 98 ECM isolates and displayed a survival rate of 88 % of the isolates. Only some isolates belonging to Suillus luteus, Hebeloma crustuliniforme, Paxillus involutus and Thelephora terrestris failed to survive. This suggested that the CP is an adequate method for the ultra-low cryopreservation of

  2. Marine-derived fungi as a source of proteases

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, T.; Rodrigues, C.; Naik, C.G.

    , of marine-derived fungi in order to identify the potential sources. Sponge and corals were collected by SCUBA diving, from a depth of 8 to 10 m from the coastal waters of Mandapam, Tamil Nadu (9"16' N; 79"liE). The samples comprised of a soft coral Sinularia... pieces of approximately 2x2 cm were cut out aseptically. These fourteen pieces of each organism were subjected to two different treatments 23 • In the first case seven pieces were vortexed four times, for 20 seconds each, with sterile seawater while...

  3. Biogenic antimicrobial silver nanoparticles produced by fungi.

    Science.gov (United States)

    Rodrigues, Alexandre G; Ping, Liu Yu; Marcato, Priscyla D; Alves, Oswaldo L; Silva, Maria C P; Ruiz, Rita C; Melo, Itamar S; Tasic, Ljubica; De Souza, Ana O

    2013-01-01

    Aspergillus tubingensis and Bionectria ochroleuca showed excellent extracellular ability to synthesize silver nanoparticles (Ag NP), spherical in shape and 35 ± 10 nm in size. Ag NP were characterized by transmission electron microscopy, X-ray diffraction analysis, and photon correlation spectroscopy for particle size and zeta potential. Proteins present in the fungal filtrate and in Ag NP dispersion were analyzed by electrophoresis (sodium dodecyl sulfate polyacrylamide gel electrophoresis). Ag NP showed pronounced antifungal activity against Candida sp, frequently occurring in hospital infections, with minimal inhibitory concentration in the range of 0.11-1.75 μg/mL. Regarding antibacterial activity, nanoparticles produced by A. tubingensis were more effective compared to the other fungus, inhibiting 98.0 % of Pseudomonas. aeruginosa growth at 0.28 μg/mL. A. tubingensis synthesized Ag NP with surprisingly high and positive surface potential, differing greatly from all known fungi. These data open the possibility of obtaining biogenic Ag NP with positive surface potential and new applications.

  4. MICROSCOPIC FUNGI ISOLATED FROM POLISH HONEY

    Directory of Open Access Journals (Sweden)

    Soňa Felšöciová

    2012-12-01

    Full Text Available The characterization of some honey samples from Poland was carried out on the basis of their microbiological (fungi and yeasts analysis. Most of the samples contained less than 20 % water. The amount of fungi found in the honey samples was less than 1 x 102 CFU.g-1 but 19 % of the samples had more yeasts than 1 x 102 CFU.g-1 – up to 5.7 x 102 CFU.g-1. The isolated fungi were Alternaria spp., Aspergillus spp., Cladosporium spp., Fusarium spp., Mycelia sterilia, Rhizopus spp. and Penicillium spp. The last genus was isolated very frequently. A total number of eight fungal Penicillium species were identified namely, Penicillium brevicompactum, P. commune, P. corylophilum, P. crustosum, P. expansum, P. griseofulvum, P. chrysogenum and P. polonicum. They were isolated using dilution plate method. The results showed that honeys produced in this region are of good microbiological quality.

  5. Aflatoxins associated with storage fungi in fish feed | Samuel | Ife ...

    African Journals Online (AJOL)

    Cereals and legumes are a very important part of feed used in culturing fishes. Feed, when not properly stored, enhances the growth of storage fungi which is a source of mycotoxins, secondary metabolites produced by storage fungi. This study investigates storage fungi and aflatoxin in fish feed stored under three different ...

  6. Biodegrading effects of some rot fungi on Pinus caribaea wood

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... species of white-rot fungi; Corioliopsis polyzona and Pleurotus squarrosulus, and two species of brown- rot fungi; Lentinus ... The results indicated that biodegradation by rot fungi differs in intensity according to the fungus ..... wood of coast red wood Sequoia Sempervirens (D. Don). For. Prod. J. 33(5): 15-20 ...

  7. Visual comparative omics of fungi for plant biomass deconstruction

    Directory of Open Access Journals (Sweden)

    Shingo Miyauchi

    2016-08-01

    Full Text Available Wood-decay fungi are able to decompose plant cell wall components such as cellulose, hemicelluloses and lignin. Such fungal capabilities may be exploited for the enhancement of directed enzymatic degradation of recalcitrant plant biomass. The comparative analysis of wood-decay fungi using a multi-omics approach gives not only new insights into the strategies for decomposing complex plant materials but also basic knowledge for the design of combinations of enzymes for biotechnological applications. We have developed an analytical workflow, Applied Biomass Conversion Design for Efficient Fungal Green Technology (ABCDEFGT, to simplify the analysis and interpretation of transcriptomic and secretomic data. The ABCDEFGT workflow is primarily constructed of self-organizing maps for grouping genes with similar transcription patterns and an overlay with secreted proteins. The ABCDEFGT workflow produces simple graphic outputs of genome-wide transcriptomes and secretomes. It enables visual inspection without a priori of the omics data, facilitating discoveries of co-regulated genes and proteins. Genome-wide omics landscapes were built with the newly sequenced fungal species Pycnoporus coccineus, Pycnoporus sanguineus, and Pycnoporus cinnabarinus grown on various carbon sources. Integration of the post-genomic data showed a global overlap, confirming the pertinence of the genome-wide approach to study the fungal biological responses to the carbon sources. Our method was compared to a recently-developed clustering method in order to assess the biological relevance of the method and ease of interpretation. Our approach provided a better biological representation of fungal behaviors. The genome-wide multi-omics strategy allowed us to determine the potential synergy of enzymes participating in the decomposition of cellulose, hemicellulose and lignin such as Lytic Polysaccharide Monooxygenases (LPMO, modular enzymes associated with a cellulose binding module

  8. Oomycetes and fungi: similar weaponry to attack plants

    NARCIS (Netherlands)

    Latijnhouwers, M.; Wit, de P.J.G.M.; Govers, F.

    2003-01-01

    Fungi and Oomycetes are the two most important groups of eukaryotic plant pathogens. Fungi form a separate kingdom and are evolutionarily related to animals. Oomycetes are classified in the kingdom Protoctista and are related to heterokont, biflagellate, golden-brown algae. Fundamental differences

  9. Fungi, bacteria and soil pH: the oxalate-carbonate pathway as a model for metabolic interaction.

    Science.gov (United States)

    Martin, Gaëtan; Guggiari, Matteo; Bravo, Daniel; Zopfi, Jakob; Cailleau, Guillaume; Aragno, Michel; Job, Daniel; Verrecchia, Eric; Junier, Pilar

    2012-11-01

    The oxalate-carbonate pathway involves the oxidation of calcium oxalate to low-magnesium calcite and represents a potential long-term terrestrial sink for atmospheric CO(2). In this pathway, bacterial oxalate degradation is associated with a strong local alkalinization and subsequent carbonate precipitation. In order to test whether this process occurs in soil, the role of bacteria, fungi and calcium oxalate amendments was studied using microcosms. In a model system with sterile soil amended with laboratory cultures of oxalotrophic bacteria and fungi, the addition of calcium oxalate induced a distinct pH shift and led to the final precipitation of calcite. However, the simultaneous presence of bacteria and fungi was essential to drive this pH shift. Growth of both oxalotrophic bacteria and fungi was confirmed by qPCR on the frc (oxalotrophic bacteria) and 16S rRNA genes, and the quantification of ergosterol (active fungal biomass) respectively. The experiment was replicated in microcosms with non-sterilized soil. In this case, the bacterial and fungal contribution to oxalate degradation was evaluated by treatments with specific biocides (cycloheximide and bronopol). Results showed that the autochthonous microflora oxidized calcium oxalate and induced a significant soil alkalinization. Moreover, data confirmed the results from the model soil showing that bacteria are essentially responsible for the pH shift, but require the presence of fungi for their oxalotrophic activity. The combined results highlight that the interaction between bacteria and fungi is essential to drive metabolic processes in complex environments such as soil. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi.

    Science.gov (United States)

    Hastrup, Anne Christine Steenkjær; Howell, Caitlin; Larsen, Flemming Hofmann; Sathitsuksanoh, Noppadon; Goodell, Barry; Jellison, Jody

    2012-10-01

    Wood-decaying basidiomycetes are some of the most effective bioconverters of lignocellulose in nature, however the way they alter wood crystalline cellulose on a molecular level is still not well understood. To address this, we examined and compared changes in wood undergoing decay by two species of brown rot fungi, Gloeophyllum trabeum and Meruliporia incrassata, and two species of white rot fungi, Irpex lacteus and Pycnoporus sanguineus, using X-ray diffraction (XRD) and (13)C solid-state nuclear magnetic resonance (NMR) spectroscopy. The overall percent crystallinity in wood undergoing decay by M. incrassata, G. trabeum, and I. lacteus appeared to decrease according to the stage of decay, while in wood decayed by P. sanguineus the crystallinity was found to increase during some stages of degradation. This result is suggested to be potentially due to the different decay strategies employed by these fungi. The average spacing between the 200 cellulose crystal planes was significantly decreased in wood degraded by brown rot, whereas changes observed in wood degraded by the two white rot fungi examined varied according to the selectivity for lignin. The conclusions were supported by a quantitative analysis of the structural components in the wood before and during decay confirming the distinct differences observed for brown and white rot fungi. The results from this study were consistent with differences in degradation methods previously reported among fungal species, specifically more non-enzymatic degradation in brown rot versus more enzymatic degradation in white rot. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  11. Entomopathogenic fungi on Hemiberlesia pitysophila.

    Directory of Open Access Journals (Sweden)

    Chengqun Lv

    Full Text Available Hemiberlesia pitysophila Takagi is an extremely harmful exotic insect in forest to Pinus species, including Pinus massoniana. Using both morphological taxonomy and molecular phylogenetics, we identified 15 strains of entomogenous fungi, which belong to 9 genera with high diversities. Surprisingly, we found that five strains that were classified as species of Pestalotiopsis, which has been considered plant pathogens and endophytes, were the dominant entomopathogenic fungus of H. pitysophila. Molecular phylogenetic tree established by analyzing sequences of ribosomal DNA internal transcribed spacer showed that entomopathogenic Pestalotiopsis spp. were similar to plant Pestalotiopsis, but not to other pathogens and endophytes of its host plant P. massoniana. We were the first to isolate entomopathogenic Pestalotiopsis spp. from H. pitysophila. Our findings suggest a potential and promising method of H. pitysophila bio-control.

  12. Entomopathogenic fungi on Hemiberlesia pitysophila.

    Science.gov (United States)

    Lv, Chengqun; Huang, Baoling; Qiao, Mengji; Wei, Jiguang; Ding, Bo

    2011-01-01

    Hemiberlesia pitysophila Takagi is an extremely harmful exotic insect in forest to Pinus species, including Pinus massoniana. Using both morphological taxonomy and molecular phylogenetics, we identified 15 strains of entomogenous fungi, which belong to 9 genera with high diversities. Surprisingly, we found that five strains that were classified as species of Pestalotiopsis, which has been considered plant pathogens and endophytes, were the dominant entomopathogenic fungus of H. pitysophila. Molecular phylogenetic tree established by analyzing sequences of ribosomal DNA internal transcribed spacer showed that entomopathogenic Pestalotiopsis spp. were similar to plant Pestalotiopsis, but not to other pathogens and endophytes of its host plant P. massoniana. We were the first to isolate entomopathogenic Pestalotiopsis spp. from H. pitysophila. Our findings suggest a potential and promising method of H. pitysophila bio-control.

  13. STUDY OF THE ANTIMICROBIAL PROPERTIES OF CERTAIN SAPROPHYTIC OBLIGATE MARINE FUNGI

    Directory of Open Access Journals (Sweden)

    Kalyuzhnaya O.S.

    2015-05-01

    of E. coli and S. aureus in control and after their cocultivation with fungi Halosphaeriopsis mediosetigera and Nia vibrissa on yeast broth at (37 ± 1 ° C showed that the number of test cells after culturing strains with selected species of marine fungi significantly lower than in control: when cultured with Halosphaeriopsis mediosetigera cell number of E. coli decreased by almost 100 times, and cells of S. aureus - 1000, when cultured with Nia vibrissa number of cells test strains decreased 100 times. These results prove the presence of antimicrobial properties for these species, with observed the same trend as the study of antimicrobial properties of agar diffusion method - both types of fungi inhibit gram-positive and gram-negative bacteria. Conclusions. The study of the antimicrobial properties of some species of saprophytic obligate marine fungi, which are the inhabitants of the north-western Black Sea region: Arenariomyces trifurcata, Ceriosporopsis halima, Corollospora maritima, Halosphaeriopsis mediosetigera, Nia vibrissa, was carried out. It was established that their culture supernatant have antimicrobial activity against gram-positive bacteria, and the last two species - against gram-negative bacteria, such action was not observed against C. albicans. Thus, the selected objects of study are potential producers of antimicrobial substances; it leads to the prospect of further work in this area. Keywords: saprophytic obligate marine fungi, antimicrobial properties

  14. Decomposition by ectomycorrhizal fungi alters soil carbon storage in a simulation model

    DEFF Research Database (Denmark)

    Moore, J. A. M.; Jiang, J.; Post, W. M.

    2015-01-01

    Carbon cycle models often lack explicit belowground organism activity, yet belowground organisms regulate carbon storage and release in soil. Ectomycorrhizal fungi are important players in the carbon cycle because they are a conduit into soil for carbon assimilated by the plant. It is hypothesized...... to decompose soil organic matter. Our review highlights evidence demonstrating the potential for ectomycorrhizal fungi to decompose soil organic matter. Our model output suggests that ectomycorrhizal activity accounts for a portion of carbon decomposed in soil, but this portion varied with plant productivity...... and the mycorrhizal carbon uptake strategy simulated. Lower organic matter inputs to soil were largely responsible for reduced soil carbon storage. Using mathematical theory, we demonstrated that biotic interactions affect predictions of ecosystem functions. Specifically, we developed a simple function to model...

  15. Reduced germination of Orobanche cumana seeds in the presence of Arbuscular Mycorrhizal fungi or their exudates.

    Directory of Open Access Journals (Sweden)

    Johann Louarn

    Full Text Available Broomrapes (Orobanche and Phelipanche spp are parasitic plants responsible for important crop losses, and efficient procedures to control these pests are scarce. Biological control is one of the possible strategies to tackle these pests. Arbuscular Mycorrhizal (AM fungi are widespread soil microorganisms that live symbiotically with the roots of most plant species, and they have already been tested on sorghum for their ability to reduce infestation by witchweeds, another kind of parasitic plants. In this work AM fungi were evaluated as potential biocontrol agents against Orobanche cumana, a broomrape species that specifically attacks sunflower. When inoculated simultaneously with O. cumana seeds, AM fungi could offer a moderate level of protection against the broomrape. Interestingly, this protection did not only rely on a reduced production of parasitic seed germination stimulants, as was proposed in previous studies. Rather, mycorrhizal root exudates had a negative impact on the germination of O. cumana induced by germination stimulants. A similar effect could be obtained with AM spore exudates, establishing the fungal origin of at least part of the active compounds. Together, our results demonstrate that AM fungi themselves can lead to a reduced rate of parasitic seed germination, in addition to possible effects mediated by the mycorrhizal plant. Combined with the other benefits of AM symbiosis, these effects make AM fungi an attractive option for biological control of O. cumana.

  16. Reduced germination of Orobanche cumana seeds in the presence of Arbuscular Mycorrhizal fungi or their exudates.

    Science.gov (United States)

    Louarn, Johann; Carbonne, Francis; Delavault, Philippe; Bécard, Guillaume; Rochange, Soizic

    2012-01-01

    Broomrapes (Orobanche and Phelipanche spp) are parasitic plants responsible for important crop losses, and efficient procedures to control these pests are scarce. Biological control is one of the possible strategies to tackle these pests. Arbuscular Mycorrhizal (AM) fungi are widespread soil microorganisms that live symbiotically with the roots of most plant species, and they have already been tested on sorghum for their ability to reduce infestation by witchweeds, another kind of parasitic plants. In this work AM fungi were evaluated as potential biocontrol agents against Orobanche cumana, a broomrape species that specifically attacks sunflower. When inoculated simultaneously with O. cumana seeds, AM fungi could offer a moderate level of protection against the broomrape. Interestingly, this protection did not only rely on a reduced production of parasitic seed germination stimulants, as was proposed in previous studies. Rather, mycorrhizal root exudates had a negative impact on the germination of O. cumana induced by germination stimulants. A similar effect could be obtained with AM spore exudates, establishing the fungal origin of at least part of the active compounds. Together, our results demonstrate that AM fungi themselves can lead to a reduced rate of parasitic seed germination, in addition to possible effects mediated by the mycorrhizal plant. Combined with the other benefits of AM symbiosis, these effects make AM fungi an attractive option for biological control of O. cumana.

  17. Control of grapevine wood fungi in commercial nurseries

    Directory of Open Access Journals (Sweden)

    C. Rego

    2009-05-01

    Full Text Available Previous surveys conducted in commercial nurseries found that different wood fungi, namely Cylindrocarpon spp., Botryosphaeriaceae, Phomopsis viticola and Phaeomoniella chlamydospora infect grapevine cuttings. Two field trials were carried out to evaluate the effectiveness of cyprodinil + fludioxonil, pyraclostrobin + metiram, fludioxonil and cyprodinil to prevent or reduce natural infections caused by such fungi. Rootstock and scion cuttings were soaked in fungicidal suspensions for 50 min prior to grafting. After callusing, the grafted cuttings were planted in two commercial field nurseries with and without a previous history of grapevine cultivation. After nine months in the nursery, the plants were uprooted and analysed for the incidence and severity of the wood fungi. Plants uprooted from the field without a previous history of grapevine cultivation were generally less strongly infected by wood fungi. Under this condition, only the mixture cyprodinil + fludioxonil simultaneously reduced the incidence of Cylindrocarpon and Botryosphaeriaceae fungi, as well as the severity of Cylindrocarpon infections. Treatments did not produce significant differences in the incidence and severity of P. viticola, and Pa. chlamydospora. For plants grown in the field with a grapevine history, all fungicides except cyprodinil significantly reduced the incidence and severity of Cylindrocarpon fungi. Also, the incidence and severity of Botryosphaeriaceae pathogens were significantly decreased both by cyprodinil + fludioxonil and by cyprodinil. No significant differences were noticed for P. viticola incidence and severity, and Pa. chlamydospora was not detected again. These results suggest that the practice of soaking grapevine cuttings in selected fungicides prior to grafting significantly reduces Cylindrocarpon spp. and Botryosphaeriaceae infections, thus improving the quality of planting material.

  18. ENDOPHITIC FUNGI DIVERSITY OF IN Eremanthus erythropappus (DC. MACLEISH

    Directory of Open Access Journals (Sweden)

    Wagner Carlos Santos Magalhaes

    2008-09-01

    Full Text Available The aim of this work was to verify the presence of endophitic fungi in Eremanthus erythropappus, (DC. Macleish. This tree species is an important plant of the Savannah of Brazil possessing a great economical potential, mainly, in the production of essential oils. The study was conducted in the Park of Boqueirao, with a total area of 160 ha, located in Ingaí - MG, at 210 14' 59" of latitude South and 440 59' 27" of longitude West. It was observed that this specie is colonized by endophitic fungi and that there is a significant difference in the degree of colonization in the different samples analyzed. In relation to the colonization, it was observed that Xylaria and Phomopsis were found in all organs sampled. The genera Alternaria and Fusarium demonstrated specificity in seed; Nigrospora and Aspergillus in leaf and Dothiorella in stem. The curves of accumulation of species for leaf and stem followed a similar pattern, showing a slow accumulation of species along the sampling, indicating that a larger sampling could result in a significant increment of new taxons.

  19. Developing biogeochemical tracers of apatite weathering by ectomycorrhizal fungi

    Science.gov (United States)

    Vadeboncoeur, M. A.; Bryce, J. G.; Hobbie, E. A.; Meana-Prado, M. F.; Blichert-Toft, J.

    2012-12-01

    Chronic acid deposition has depleted calcium (Ca) from many New England forest soils, and intensive harvesting may reduce phosphorus (P) available to future rotations. Thin glacial till soils contain trace amounts of apatite, a primary calcium phosphate mineral, which may be an important long-term source of both P and Ca to ecosystems. The extent to which ECM fungi enhance the weathering rate of primary minerals in soil which contain growth-limiting nutrients remains poorly quantified, in part due to biogeochemical tracers which are subsequently masked by within-plant fractionation. Rare earth elements (REEs) and Pb isotope ratios show some potential for revealing differences in soil apatite weathering rates across forest stands and silvicultural treatments. To test the utility of these tracers, we grew birch seedlings semi-hydroponically under controlled P-limited conditions, supplemented with mesh bags containing granite chips. Our experimental design included nonmycorrhizal (NM) as well as ectomycorrhizal cultures (Cortinarius or Leccinum). Resulting mycorrhizal roots and leachates of granite chips were analyzed for these tracers. REE concentrations in roots were greatly elevated in treatments with granite relative to those without granite, demonstrating uptake of apatite weathering products. Roots with different mycorrhizal fungi accumulated similar concentrations of REEs and were generally elevated compared to the NM cultures. Ammonium chloride leaches of granite chips grown in contact with mycorrhizal hyphae show elevated REE concentrations and significantly radiogenic Pb isotope signatures relative to bulk rock, also supporting enhanced apatite dissolution. Our results in culture are consistent with data from field-collected sporocarps from hardwood stands in the Bartlett Experimental Forest in New Hampshire, in which Cortinarius sporocarp Pb isotope ratios were more radiogenic than those of other ectomycorrhizal sporocarps. Taken together, the experimental

  20. Evaluating Susceptibility to Commercial Fungicide of Endophytic Fungi Isolated from Roses (Rosa hybrida

    Directory of Open Access Journals (Sweden)

    Ingrid Carolina Corredor Perilla

    2007-01-01

    Full Text Available Fungal endophytes have shown their potential as biocontrol agents; however, their application in commercial fields remains limited. Continuously applying fungicides to crops (specifically to roses may have harmful effects on endophyte growth. Endophytic fungi were isolated from R. hybrida and their susceptibility to fungicides regularly used for controlling important pathogens was analysed. This was performed in vitro, mixing several fungicide concentrations with standard medium for fungal endophytes; growth inhibition was then measured. The susceptibility of Botrytis cinerea (3015 strain, one of the most important pathogens affecting roses in Colombia, was also assessed using the same protocols. Active ingredients, such as boscalid, captan, iprodione and pyrimethanyl, showed susceptibility ranging from not sensitive (³73.75% to regularly sensitive (³48.75% - <61.25% for 45.45% of the fungal endophytes assessed. Endophytic fungi were highly susceptible to fungicides such as pyrimethanyl, carboxin plus thiram, fludioxonyl plus ciprodinyl and prochloraz. B. cinerea (3015 strain presented high susceptibility (<23.75% to fungicides such as pyrimethanyl, carboxin and thiram, fludioxonil and ciprodinyl, prochloraz. Although B. cinerea showed the greatest growth in controls, the endophytic fungi being assessed grew better in different media with fungicides. The results revealed some of these fungal endophytes’ potential for integrated pest management (IPM in roses in Colombia (3002, 3003, 3004, 3005 and 3006 strains, taking into account correct application time, application frequency and both fungal endophyte and fungicide dosage which may greatly limit fungal endophyte growth.

  1. Ant-plants and fungi: a new threeway symbiosis.

    Science.gov (United States)

    Defossez, Emmanuel; Selosse, Marc-André; Dubois, Marie-Pierre; Mondolot, Laurence; Faccio, Antonella; Djieto-Lordon, Champlain; McKey, Doyle; Blatrix, Rumsaïs

    2009-06-01

    Symbioses between plants and fungi, fungi and ants, and ants and plants all play important roles in ecosystems. Symbioses involving all three partners appear to be rare. Here, we describe a novel tripartite symbiosis in which ants and a fungus inhabit domatia of an ant-plant, and present evidence that such interactions are widespread. We investigated 139 individuals of the African ant-plant Leonardoxa africana for occurrence of fungus. Behaviour of mutualist ants toward the fungus within domatia was observed using a video camera fitted with an endoscope. Fungi were identified by sequencing a fragment of their ribosomal DNA. Fungi were always present in domatia occupied by mutualist ants but never in domatia occupied by opportunistic or parasitic ants. Ants appear to favour the propagation, removal and maintenance of the fungus. Similar fungi were associated with other ant-plants in Cameroon. All belong to the ascomycete order Chaetothyriales; those from L. africana formed a monophyletic clade. These new plant-ant-fungus associations seem to be specific, as demonstrated within Leonardoxa and as suggested by fungal phyletic identities. Such tripartite associations are widespread in African ant-plants but have long been overlooked. Taking fungal partners into account will greatly enhance our understanding of symbiotic ant-plant mutualisms.

  2. Activity of the nematophagous fungi Pochonia chlamydosporia, Duddingtonia flagrans and Monacrosporium thaumasium on egg capsules of Dipylidium caninum.

    Science.gov (United States)

    Araujo, Juliana Milani; de Araújo, Jackson Victor; Braga, Fabio Ribeiro; Carvalho, Rogério Oliva; Ferreira, Sebastião Rodrigo

    2009-12-03

    Nematophagous fungi are potential biological control agents of helminths. The in vitro ovicidal effect of four isolates of the nematophagous fungi Pochonia chlamydosporia (VC1 and VC4), Duddingtonia flagrans (AC001) and Monacrosporium thaumasium (NF34) was evaluated on egg capsules of Dipylidium caninum, a cestode parasite of dogs, cats and humans. One thousand egg capsules of D. caninum were plated on 2% water-agar with the grown isolates and control without fungus. The ovicidal activity of these fungi was evaluated 5, 10 and 15 days after incubation. Only P. chlamydosporia showed ovicidal activity (pcaninum egg capsules, of 19.6% (VC1) and 20% (VC4) on the 5th day; 44.2% (VC1) and 31.5% (VC4) on the 10th day; and 49.2% (VC1) and 41.9% (VC4) on the 15th day. D. flagrans and M. thaumasium caused no morphological damage to egg capsules. The results demonstrated that P. chlamydosporia was in vitro effective against capsules and eggs of D. caninum, and can be considered as a potential biological control agent for this helminth.

  3. Screening of different sample types associated with sheep and cattle for the presence of nematophagous fungi in China.

    Science.gov (United States)

    Cai, Kui-Zheng; Liu, Jun-Lin; Liu, Wei; Wang, Bo-Bo; Xu, Qiang; Sun, Long-Jie; Chen, Ming-Yue; Zhao, Ming-Wang; Wu, Jia-Yan; Li, Xiao-Shan; Yang, Jing; Wei, Shuan; Chen, Chun-Rong; Ma, Zhong-Ren; Xu, Chun-Lan; Wang, Feng; Hu, Qian-Lin; Fang, Wen-Xiu; Zheng, Tian-Hui; Wang, Yue-Ying; Zhu, Wen-Long; Li, Dan; Li, Qing; Zhang, Chao; Cai, Bing; Wang, Fan; Yang, Zai-Yun; Liu, Yan-Qiu

    2016-03-01

    A total of 1502 samples, including feces of sheep (793) and cattle (348), pasture soil (118), dung compost (147) and barn soil (96), were examined between October 2012 and August 2014 to discover potential strains of nematophagous fungi for the biological control of livestock-parasitic nematodes. These samples were collected from 87 sites located in 48 counties of 20 provinces (autonomous regions/municipalities) of China. Fungi were identified down to a species level. Four hundred and seventy-seven isolates, which were distributed in 8 genera and 28 taxa, were identified as nematophagous fungi. Nematode-trapping fungi included 17 species and one unidentified species of Arthrobotrys, two of Dactylella, Drechslerella dactyloides, and Duddingtonia flagrans. Five identified species and two unidentified species of endoparasitic fungi were isolated. The predominant species from all regions were Arthrobotrys oligospora, followed by Arthrobotrys musiformis, Arthrobotrys (Monacrosporium) thaumasiun, and Arthrobotrys (Monacrosporium) microscaphoides. Species with adhesive networks were the most frequently isolated. Among the endoparasitic fungi, Podocrella harposporifera (Harposporium anguillulae) was the most common species, followed by Harposporium lilliputanum and Harposporium arcuatum. Based on Shannon diversity index, the diversity levels of nematophagous fungi were relatively higher in samples associated with cattle, barn soil, and subtropical monsoon climate zone. Three species isolated from this study, namely, Duddingtonia flagrans, Arthrobotrys salina (Monacrosporium salinum), and Arthrobotrys oligospora var. sarmatica, are newly recorded in China, and 20 species (including one unidentified species) are newly recorded in sheep and cattle barn soils worldwide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Toxins of filamentous fungi.

    Science.gov (United States)

    Bhatnagar, Deepak; Yu, Jiujiang; Ehrlich, Kenneth C

    2002-01-01

    Mycotoxins are low-molecular-weight secondary metabolites of fungi. The most significant mycotoxins are contaminants of agricultural commodities, foods and feeds. Fungi that produce these toxins do so both prior to harvest and during storage. Although contamination of commodities by toxigenic fungi occurs frequently in areas with a hot and humid climate (i.e. conditions favorable for fungal growth), they can also be found in temperate conditions. Production of mycotoxins is dependent upon the type of producing fungus and environmental conditions such as the substrate, water activity (moisture and relative humidity), duration of exposure to stress conditions and microbial, insect or other animal interactions. Although outbreaks of mycotoxicoses in humans have been documented, several of these have not been well characterized, neither has a direct correlation between the mycotoxin and resulting toxic effect been well established in vivo. Even though the specific modes of action of most of the toxins are not well established, acute and chronic effects in prokaryotic and eukaryotic systems, including humans have been reported. The toxicity of the mycotoxins varies considerably with the toxin, the animal species exposed to it, and the extent of exposure, age and nutritional status. Most of the toxic effects of mycotoxins are limited to specific organs, but several mycotoxins affect many organs. Induction of cancer by some mycotoxins is a major concern as a chronic effect of these toxins. It is nearly impossible to eliminate mycotoxins from the foods and feed in spite of the regulatory efforts at the national and international levels to remove the contaminated commodities. This is because mycotoxins are highly stable compounds, the producing fungi are ubiquitous, and food contamination can occur both before and after harvest. Nevertheless, good farm management practices and adequate storage facilities minimize the toxin contamination problems. Current research is

  5. Thermophilic Fungi: Their Physiology and Enzymes†

    OpenAIRE

    Maheshwari, Ramesh; Bharadwaj, Girish; Bhat, Mahalingeshwara K.

    2000-01-01

    Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20 degrees C and a maximum temperature of growth extending Itp to 60 to 62 degrees C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45 degrees C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62 degrees C. Although wides...

  6. Direct identification of fungi using image analysis

    DEFF Research Database (Denmark)

    Dørge, Thorsten Carlheim; Carstensen, Jens Michael; Frisvad, Jens Christian

    1999-01-01

    Filamentous fungi have often been characterized, classified or identified with a major emphasis on macromorphological characters, i.e. the size, texture and color of fungal colonies grown on one or more identification media. This approach has been rejcted by several taxonomists because of the sub......Filamentous fungi have often been characterized, classified or identified with a major emphasis on macromorphological characters, i.e. the size, texture and color of fungal colonies grown on one or more identification media. This approach has been rejcted by several taxonomists because...... of the subjectivity in the visual evaluation and quantification (if any)of such characters and the apparent large variability of the features. We present an image analysis approach for objective identification and classification of fungi. The approach is exemplified by several isolates of nine different species...... of the genus Penicillium, known to be very difficult to identify correctly. The fungi were incubated on YES and CYA for one week at 25 C (3 point inoculation) in 9 cm Petri dishes. The cultures are placed under a camera where a digital image of the front of the colonies is acquired under optimal illumination...

  7. Decolorization of laundry effluent by filamentous fungi | Miranda ...

    African Journals Online (AJOL)

    After selecting, the best fungi were subjected to an experimental design and evaluation of the production of the ligninolytics enzymes. Fungi Phanerochaete chrysosporum CCT 1999, Lentinula edodes CCT 4519 and Curvularia lunata UFPEDA 885 reduced 100% the color of the effluent during growth under agitation while ...

  8. ISOLATION OF FUNGI FROM THE GASTROINTESTINAL TRACT OF INDIGENOUS CHICKEN

    Directory of Open Access Journals (Sweden)

    T. Yudiarti

    2014-10-01

    Full Text Available Gastrointestinal tract of chicken is a place in which many kinds of fungi can be found. The aim ofthe research was to isolate fungi from the gastrointestinal tract of the indigenous chicken (AyamKampung. The chicken samples were four days, one week and two months old and were sampled fromchicken farm located in Yogyakarta. Potato dextrose agar (PDA medium was used to grow the fungi.Fifty pure isolates of fungi were found from three different ages, those were four days, one week andtwo months old chicken were 5, 10 and 35 isolates respectively. The largest number of isolate was foundin ileum, then followed by caecum, jejenum and duodenum. The fifty isolate of fungi belonged to sevenspecies, those were Aspergillus fumigatus, Aspergillus niger, Chrysonilia crassa, Mucor circinelloides,Mucor sp, Rhizopus oligosporus and Rhizopus oryzae.

  9. ISOLATION OF FUNGI FROM THE GASTROINTESTINAL TRACT OF INDIGENOUS CHICKEN

    Directory of Open Access Journals (Sweden)

    E. Kusdiyantini

    2012-06-01

    Full Text Available Gastrointestinal tract of chicken is a place in which many kinds of fungi can be found. The aim of the research was to isolate fungi from the gastrointestinal tract of the indigenous chicken (Ayam Kampung. The chicken samples were four days, one week and two months old and were sampled from chicken farm located in Yogyakarta. Potato dextrose agar (PDA medium was used to grow the fungi. Fifty pure isolates of fungi were found from three different ages, those were four days, one week and two months old chicken were 5, 10 and 35 isolates respectively. The largest number of isolate was found in ileum, then followed by caecum, jejenum and duodenum. The fifty isolate of fungi belonged to seven species, those were Aspergillus fumigatus, Aspergillus niger, Chrysonilia crassa, Mucor circinelloides, Mucor sp, Rhizopus oligosporus and Rhizopus oryzae.

  10. Correlation of Soil Environmental to Diversity the Entomopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Rose Novita Sari Handoko

    2017-01-01

    Full Text Available Ecosystem rice fields that have high diversity, able to control the pest. Habitat entomopathogenic fungi in the soil have been examined on cabbage plants but has not been reported in the rice field. The study was conducted through surveys of crops and paddy fields by the application of IPM in Kasembon Malang. A total of 5 points soil samples were determined diagonally used in this study. Isolation of entomopathogenic fungi from the rhizosphere of paddy is done by plate dilution method. Entomopathogenic fungi were identified to genus level by observing the macroscopic and microscopic characteristics. Koch's postulates done on Tenebrio molitor, then observe the symptoms and mortality of Spodoptera litura time pathogenicity test. The results showed that the genus of entomopathogenic fungi in the rhizosphere of rice is Penicillium sp., Aspergillus sp. and has not been identified. Chemical analysis of soil for pH is 4.00 to 5.00. Soil organic matter is 1.89% to 3.20%.   Keywords: diversity, entomopathogenic fungi, integrated pest management, rhizosphere

  11. Fungi transporting by sowing seed material of herbs

    Directory of Open Access Journals (Sweden)

    Zofia Machowicz-Stefaniak

    2013-12-01

    Full Text Available Sowing seed material of33 species of herbs obtained in 1997-1999 from the Herb Seed-Testing Station, in Bydgoszcz were examined. Fungi were isolated using the method of artificial cultures on the mineral medium. Sixty seeds superficially disinfected and sixty undisinfected seeds were taken from each sample. Obtained single-spore cultures of the fungi grown on malt-agar or on standard medium were identified up to the species level. Fungi species belonging to the genus Fusarium were identified on the PDA and SNA, Aspergillus spp. and Penicillium spp. on the malt-agar and Czapek-Dox and Phoma spp. on the malt-agar, oat-meal-agar and cherry-agar. Mycological analyses showed that the superficial disinfection of seeds reduced by three times the number of isolates obtained. The fungi most frequently isolated from both the inside and the outside seed tissues were Botrytis cinerea, Phoma exigua var. exigua and species of Alternaria, Epicoccum, Fusarium, Penicillium, Phyllosticta, Rhizopus, Trichothecium.

  12. Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction

    Science.gov (United States)

    Zhong, Jian-Jiang; Xiao, Jian-Hui

    Medicinal higher fungi such as Cordyceps sinensis and Ganoderma lucidum have been used as an alternative medicine remedy to promote health and longevity for people in China and other regions of the world since ancient times. Nowadays there is an increasing public interest in the secondary metabolites of those higher fungi for discovering new drugs or lead compounds. Current research in drug discovery from medicinal higher fungi involves a multifaceted approach combining mycological, biochemical, pharmacological, metabolic, biosynthetic and molecular techniques. In recent years, many new secondary metabolites from higher fungi have been isolated and are more likely to provide lead compounds for new drug discovery, which may include chemopreventive agents possessing the bioactivity of immunomodulatory, anticancer, etc. However, numerous challenges of secondary metabolites from higher fungi are encountered including bioseparation, identification, biosynthetic metabolism, and screening model issues, etc. Commercial production of secondary metabolites from medicinal mushrooms is still limited mainly due to less information about secondary metabolism and its regulation. Strategies for enhancing secondary metabolite production by medicinal mushroom fermentation include two-stage cultivation combining liquid fermentation and static culture, two-stage dissolved oxygen control, etc. Purification of bioactive secondary metabolites, such as ganoderic acids from G. lucidum, is also very important to pharmacological study and future pharmaceutical application. This review outlines typical examples of the discovery, bioactivity, and bioproduction of secondary metabolites of higher fungi origin.

  13. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures.

    Science.gov (United States)

    Drake, Henrik; Ivarsson, Magnus; Bengtson, Stefan; Heim, Christine; Siljeström, Sandra; Whitehouse, Martin J; Broman, Curt; Belivanova, Veneta; Åström, Mats E

    2017-07-04

    The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.

  14. The role of fungi in the transfer and cycling of radionuclides in forest ecosystems

    International Nuclear Information System (INIS)

    Steiner, M.; Linkov, I.; Yoshida, S.

    2002-01-01

    Fungi are one of the most important components of forest ecosystems, since they determine to a large extent the fate and transport processes of radionuclides in forests. They play a key role in the mobilization, uptake and translocation of nutrients and are likely to contribute substantially to the long-term retention of radiocesium in organic horizons of forest soil. This paper gives an overview of the role of fungi regarding the transfer and cycling of nutrients and radionuclides, with special emphasis on mycorrhizal symbiosis. Common definitions of transfer factors, soil-fungus and soil-green plant, including their advantages and limitations, are reviewed. Experimental approaches to quantify the bioavailability of radionuclides in soil and potential long-term change are discussed

  15. The role of fungi in the transfer and cycling of radionuclides in forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, M. E-mail: msteiner@bfs.de; Linkov, I.; Yoshida, S

    2002-07-01

    Fungi are one of the most important components of forest ecosystems, since they determine to a large extent the fate and transport processes of radionuclides in forests. They play a key role in the mobilization, uptake and translocation of nutrients and are likely to contribute substantially to the long-term retention of radiocesium in organic horizons of forest soil. This paper gives an overview of the role of fungi regarding the transfer and cycling of nutrients and radionuclides, with special emphasis on mycorrhizal symbiosis. Common definitions of transfer factors, soil-fungus and soil-green plant, including their advantages and limitations, are reviewed. Experimental approaches to quantify the bioavailability of radionuclides in soil and potential long-term change are discussed.

  16. [Al3+ Absorption and Assimilation by Four Ectomycorrhizal Fungi].

    Science.gov (United States)

    Wang, Ming-xia; Yuan, Ling; Huang, Jian-guo; Zhou, Zhi-feng

    2015-09-01

    The present experiment was carried out in order to know the resistance mechanism of the ectomycorrhizal (ECM) fungi under Al stress, to establish the theoretical foundation to alleviate the Al toxicity of trees, to guide the selection of Al-resisted ECM fungi and preserve forest health. The absorption and assimilation of Al3+ by four ECM fungi [Pisolithus tinctorius (Pt 715), Suillus luteus (Sl 08 and Sl 14), Gyroporus cyanescens (Gc 99)], which were isolated from different forest soils, were investigated in pure culture in liquid media. The growths of Pt 715 and Sl 08 were less affected by Al3+, but growths of S114 and Gc 99 were obviously inhibited by Al3+. With the increasing of Al3+ concentration in culture, the absorption and assimilation of Al3+ by four ECM fungi increased. It indicated that the concentration of Al3+ in environments might be the primary factor determining the Al3+ content in the cell of each tested fungi. Amounts of Al3+ absorbed (in total or calculated in unit hyphae) by the Al3+ tolerant strains (Pt 715 and Sl 08) were significantly lower than those by the Al3+ sensitive strains (S1 14 and Gc 99), which illustrated that reducing the absorption of Al3+ under Al3+ stress environment might be an effective approach to alleviate the Al3+ poison for these Al3+ tolerant strains. Furthermore, Al3+ stress could stimulate the ECM fungi to assimilate more N, P, and K, which might indicate that increasing requirement of the nutrients also could be helpful for ECM fungi to fight against the harmful effects caused by Al3+ stress.

  17. Fungi isolated from phyllosphere of fodder galega (Galega orientalis

    Directory of Open Access Journals (Sweden)

    Bożena Cwalina-Ambrozik

    2013-12-01

    Full Text Available The object of the experiment was fodder galega (Galega orientalis Lam. cultivated in 2001-2003 as field crop on three plots: 1. without fertilization, 2. 40 kg P2O5 × ha-1 and 80 kg K2O × ha-1, 3. 80 kg P2O5 × ha-1 and 160 kg K2O × ha-1. During the dry and warm vegetation season of 2002 almost two times fewer isolates were obtained from the leaves than in 2003 that was the most abundant in fungi. Yeasts-like fungi (30% of the total number of isolates and saprotrophic fungi with dominated species: Acremonium strictum (8.5%, genus Epicoccum (7.8%, Humicola (9.5% and Penicillium (18.9% were the fungi most frequently populating the leaves of galega. The share of pathogens in the total number of isolates obtained from the phyllosphere was 10.6%. They were represented by fungi of Ascochyta spp., Botrytis cinerea, genus Fusarium, Phoma medicaginis and Sclerotinia sclerotiorum. Reduction by 1.9 to 4.6% in the number of fungi isolated from the phyllosphere of galega without fertilization as compared to galega cultivated in combinations with fertilization was recorded. Generally, the smallest number of pathogens was recovered from galega fertilized with 40 kg P2O5 × ha-1 and 80 kg K2O × ha-1. B. cinerea most frequently populated galega in combination without fertilization, genus Fusarium fungi in combination without fertilization and with fertilization with 80 kg P2O5 × ha-1 and 160 kg K2O × ha-1, while Ascochyta spp. were isolated from galega with fertilization only.

  18. Fungi treated with small chemicals exhibit increased antimicrobial activity against facultative bacterial and yeast pathogens.

    Science.gov (United States)

    Zutz, Christoph; Bandian, Dragana; Neumayer, Bernhard; Speringer, Franz; Gorfer, Markus; Wagner, Martin; Strauss, Joseph; Rychli, Kathrin

    2014-01-01

    For decades, fungi have been the main source for the discovery of novel antimicrobial drugs. Recent sequencing efforts revealed a still high number of so far unknown "cryptic" secondary metabolites. The production of these metabolites is presumably epigenetically silenced under standard laboratory conditions. In this study, we investigated the effect of six small mass chemicals, of which some are known to act as epigenetic modulators, on the production of antimicrobial compounds in 54 spore forming fungi. The antimicrobial effect of fungal samples was tested against clinically facultative pathogens and multiresistant clinical isolates. In total, 30 samples of treated fungi belonging to six different genera reduced significantly growth of different test organisms compared to the untreated fungal sample (growth log reduction 0.3-4.3). For instance, the pellet of Penicillium restrictum grown in the presence of butyrate revealed significant higher antimicrobial activity against Staphylococcus (S.) aureus and multiresistant S. aureus strains and displayed no cytotoxicity against human cells, thus making it an ideal candidate for antimicrobial compound discovery. Our study shows that every presumable fungus, even well described fungi, has the potential to produce novel antimicrobial compounds and that our approach is capable of rapidly filling the pipeline for yet undiscovered antimicrobial substances.

  19. Diverse deep-sea fungi from the South China Sea and their antimicrobial activity.

    Science.gov (United States)

    Zhang, Xiao-Yong; Zhang, Yun; Xu, Xin-Ya; Qi, Shu-Hua

    2013-11-01

    We investigated the diversity of fungal communities in nine different deep-sea sediment samples of the South China Sea by culture-dependent methods followed by analysis of fungal internal transcribed spacer (ITS) sequences. Although 14 out of 27 identified species were reported in a previous study, 13 species were isolated from sediments of deep-sea environments for the first report. Moreover, these ITS sequences of six isolates shared 84-92 % similarity with their closest matches in GenBank, which suggested that they might be novel phylotypes of genera Ajellomyces, Podosordaria, Torula, and Xylaria. The antimicrobial activities of these fungal isolates were explored using a double-layer technique. A relatively high proportion (56 %) of fungal isolates exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among four marine pathogenic microbes (Micrococcus luteus, Pseudoaltermonas piscida, Aspergerillus versicolor, and A. sydowii). Out of these antimicrobial fungi, the genera Arthrinium, Aspergillus, and Penicillium exhibited antibacterial and antifungal activities, while genus Aureobasidium displayed only antibacterial activity, and genera Acremonium, Cladosporium, Geomyces, and Phaeosphaeriopsis displayed only antifungal activity. To our knowledge, this is the first report to investigate the diversity and antimicrobial activity of culturable deep-sea-derived fungi in the South China Sea. These results suggest that diverse deep-sea fungi from the South China Sea are a potential source for antibiotics' discovery and further increase the pool of fungi available for natural bioactive product screening.

  20. SENSITIVITY OF THE CUMIN SEEDS ASSOCIATED FUNGI TO GAMMA RADIATION

    International Nuclear Information System (INIS)

    BOTROS, H.W.; HELAL, I.M.; EL TOBGY, K.M.K.

    2008-01-01

    The present study was carried out to investigate the sensitivity of fungi associated to cumin seeds for gamma radiation. In this regard, the isolated seed associated fungi from the cumin seeds were fifteen fungal species belonging to five genera. The fungal species concerning, Aspergillus ochraceus, Fusarium oxysporium and Aspergillus flavus were the predominant fungi in percentages of 17.8, 15.83 and 12.78 %, respectively. Aspergillus ochraceus was the most effective prevalent fungi on the seed germination causing highest percentage of seed invasion followed by Fusarium oxysporium and Aspergillus flavus. The amylolytic, proteolytic and lipolytic activity and mycotoxin production of the three predominant fungi were negatively influenced by gamma radiation when exposed to doses of 1.0 , 1.5 , 2.5 , 3.5 , 5.0 and 7.5 kGy a behaviour which was parallel to the inhibition in the amount of growth by gamma irradiation

  1. Biodegradation of PAHs by fungi in contaminated-soil containing ...

    African Journals Online (AJOL)

    PAH) benzo(a)anthracene, benzo(a) fluoranthene, benzo(a) pyrene, chrysene and phenanthrene in a soil that was sterilized and inoculated with the nonligninolytic fungi, Fusarium flocciferum and Trichoderma spp. and the ligninolytic fungi, ...

  2. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change

    OpenAIRE

    Voss, Maren; Bange, Hermann W.; Dippner, Joachim W.; Middelburg, Jack J.; Montoya, Joseph P.; Ward, Bess

    2013-01-01

    The ocean's nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox and denitrification. Dinitrogen is the most abundant form of nitrogen in sea water but only accessible by nitrogen-fixing microbes. Denitrification and nitrification are both regulated by oxygen concentrations and potentially produce nitrous oxide (N2O), a climate-relevant atmospheric trace gas. The world's oceans, including the coastal areas and upwelli...

  3. Detection of fungi colony growth on bones by dynamic speckle

    Science.gov (United States)

    Vincitorio, F. M.; Budini, N.; Mulone, C.; Spector, M.; Freyre, C.; López Díaz, A. J.; Ramil, A.

    2013-11-01

    In this work we have studied the dynamic speckle patterns of mucor fungi colonies, which were inoculated on different samples. We were interested in analyzing the development of fungi colonies in bones, since during the last two years, a series of infections by mucor fungi have been reported on patients from different hospitals in Argentina. Coincidentally, all of these infections appeared on patients that were subjected to a surgical intervention for implantation of a titanium prosthesis. Apparently, the reason of the infection was a deficient sterilization process in conjunction with an accidental contamination. We observed that fungi growth, activity and death can be distinguished by means of the dynamic speckle technique.

  4. ENDOPHITIC FUNGI DIVERSITY OF IN Eremanthus erythropappus (DC.) MACLEISH

    OpenAIRE

    Wagner Carlos Santos Magalhaes; Rogério Velloso Missagia; Fernando Antonio Frieiro-Costa; Maria Cristina Mendes-Costa

    2008-01-01

    The aim of this work was to verify the presence of endophitic fungi in Eremanthus erythropappus, (DC.) Macleish. This tree species is an important plant of the Savannah of Brazil possessing a great economical potential, mainly, in the production of essential oils. The study was conducted in the Park of Boqueirao, with a total area of 160 ha, located in Ingaí - MG, at 210 14' 59" of latitude South and 440 59' 27" of longitude West. It was observed that this specie is colonized by endophitic ...

  5. Nuclear movement in fungi.

    Science.gov (United States)

    Xiang, Xin

    2017-12-11

    Nuclear movement within a cell occurs in a variety of eukaryotic organisms including yeasts and filamentous fungi. Fungal molecular genetic studies identified the minus-end-directed microtubule motor cytoplasmic dynein as a critical protein for nuclear movement or orientation of the mitotic spindle contained in the nucleus. Studies in the budding yeast first indicated that dynein anchored at the cortex via its anchoring protein Num1 exerts pulling force on an astral microtubule to orient the anaphase spindle across the mother-daughter axis before nuclear division. Prior to anaphase, myosin V interacts with the plus end of an astral microtubule via Kar9-Bim1/EB1 and pulls the plus end along the actin cables to move the nucleus/spindle close to the bud neck. In addition, pushing or pulling forces generated from cortex-linked polymerization or depolymerization of microtubules drive nuclear movements in yeasts and possibly also in filamentous fungi. In filamentous fungi, multiple nuclei within a hyphal segment undergo dynein-dependent back-and-forth movements and their positioning is also influenced by cytoplasmic streaming toward the hyphal tip. In addition, nuclear movement occurs at various stages of fungal development and fungal infection of plant tissues. This review discusses our current understanding on the mechanisms of nuclear movement in fungal organisms, the importance of nuclear positioning and the regulatory strategies that ensure the proper positioning of nucleus/spindle. Published by Elsevier Ltd.

  6. Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria

    Science.gov (United States)

    Besserer, Arnaud; Puech-Pagès, Virginie; Kiefer, Patrick; Gomez-Roldan, Victoria; Jauneau, Alain; Roy, Sébastien; Portais, Jean-Charles; Roux, Christophe; Bécard, Guillaume

    2006-01-01

    The association of arbuscular mycorrhizal (AM) fungi with plant roots is the oldest and ecologically most important symbiotic relationship between higher plants and microorganisms, yet the mechanism by which these fungi detect the presence of a plant host is poorly understood. Previous studies have shown that roots secrete a branching factor (BF) that strongly stimulates branching of hyphae during germination of the spores of AM fungi. In the BF of Lotus, a strigolactone was found to be the active molecule. Strigolactones are known as germination stimulants of the parasitic plants Striga and Orobanche. In this paper, we show that the BF of a monocotyledonous plant, Sorghum, also contains a strigolactone. Strigolactones strongly and rapidly stimulated cell proliferation of the AM fungus Gigaspora rosea at concentrations as low as 10 −13 M. This effect was not found with other sesquiterperne lactones known as germination stimulants of parasitic weeds. Within 1 h of treatment, the density of mitochondria in the fungal cells increased, and their shape and movement changed dramatically. Strigolactones stimulated spore germination of two other phylogenetically distant AM fungi, Glomus intraradices and Gl. claroideum. This was also associated with a rapid increase of mitochondrial density and respiration as shown with Gl. intraradices. We conclude that strigolactones are important rhizospheric plant signals involved in stimulating both the pre-symbiotic growth of AM fungi and the germination of parasitic plants. PMID:16787107

  7. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria.

    Directory of Open Access Journals (Sweden)

    Arnaud Besserer

    2006-07-01

    Full Text Available The association of arbuscular mycorrhizal (AM fungi with plant roots is the oldest and ecologically most important symbiotic relationship between higher plants and microorganisms, yet the mechanism by which these fungi detect the presence of a plant host is poorly understood. Previous studies have shown that roots secrete a branching factor (BF that strongly stimulates branching of hyphae during germination of the spores of AM fungi. In the BF of Lotus, a strigolactone was found to be the active molecule. Strigolactones are known as germination stimulants of the parasitic plants Striga and Orobanche. In this paper, we show that the BF of a monocotyledonous plant, Sorghum, also contains a strigolactone. Strigolactones strongly and rapidly stimulated cell proliferation of the AM fungus Gigaspora rosea at concentrations as low as 10(-13 M. This effect was not found with other sesquiterperne lactones known as germination stimulants of parasitic weeds. Within 1 h of treatment, the density of mitochondria in the fungal cells increased, and their shape and movement changed dramatically. Strigolactones stimulated spore germination of two other phylogenetically distant AM fungi, Glomus intraradices and Gl. claroideum. This was also associated with a rapid increase of mitochondrial density and respiration as shown with Gl. intraradices. We conclude that strigolactones are important rhizospheric plant signals involved in stimulating both the pre-symbiotic growth of AM fungi and the germination of parasitic plants.

  8. Mutualistic fungi control crop diversity in fungus-growing ants

    DEFF Research Database (Denmark)

    Poulsen, Michael; Boomsma, Jacobus J

    2005-01-01

    Leaf-cutting ants rear clonal fungi for food and transmit the fungi from mother to daughter colonies so that symbiont mixing and conflict, which result from competition between genetically different clones, are avoided. Here we show that despite millions of years of predominantly vertical...... transmission, the domesticated fungi actively reject mycelial fragments from neighboring colonies, and that the strength of these reactions are in proportion to the overall genetic difference between these symbionts. Fungal incompatibility compounds remain intact during ant digestion, so that fecal droplets...

  9. Bioinformatic Analysis of Genomic and Transcriptomic Variation in Fungi

    OpenAIRE

    Gehrmann, T.

    2018-01-01

    Fungi are microorganisms whose astounding variety can be found in every conceivable ecosystem on the planet. Fungi are nutrient recyclers, playing an irreplaceable role in the carbon cycle. They grow on land and in the sea, on plants and animals and in the soil. They feed us as mushrooms, and drive our economy as bioreactors. They leaven our bread and brew our beer, nourish our crops and spoil our food. They even directly play a role in human health. Fungi are, however, far more complex organ...

  10. An efficient method for DNA extraction from Cladosporioid fungi

    OpenAIRE

    Moslem, M.A.; Bahkali, A.H.; Abd-Elsalam, K.A.; Wit, de, P.J.G.M.

    2010-01-01

    We developed an efficient method for DNA extraction from Cladosporioid fungi, which are important fungal plant pathogens. The cell wall of Cladosporioid fungi is often melanized, which makes it difficult to extract DNA from their cells. In order to overcome this we grew these fungi for three days on agar plates and extracted DNA from mycelium mats after manual or electric homogenization. High-quality DNA was isolated, with an A260/A280 ratio ranging between 1.6 and 2.0. Isolated genomic DNA w...

  11. Antagonistic potential of Gliocladium virens and Trichoderma longibrachiatum to phytopathogenic fungi.

    Science.gov (United States)

    Sreenivasaprasad, S; Manibhushanrao, K

    1990-01-01

    Three isolates of Gliocladium virens (G1, G2 and G3) and two of Trichoderma longibrachiatum (T1 and T2) were screened against isolates of three soilborne plant pathogens namely Rhizoctonia solani, Sclerotium rolfsii and Pythium aphanidermatum. G. virens exhibited stronger hyperparasitism and wider biological spectrum than T. longibrachiatum. Further, similarities as well as variation was observed in the ability of the various isolates to invade the test pathogens in dual culture. For the hyperparasites, acidic pH range (5.0 to 5.5) favoured both growth and spore germination. The hyperparasites made direct contact with the pathogens followed by varied modes of attack invariably leading to cell disruption. Antagonists, G1 and G3 revealed strong antibiosis while T2 showed moderate effect. All the isolates produced enhanced levels of lytic enzymes adaptively and there were marked differences among them. However, no correlation was observed between these attributes and the hyperparasitic potential of the various isolates in dual culture. The relevance and the role of enzymes and toxic metabolite(s) in the antagonism of G. virens and T. longibrachiatum to these pathogens are discussed.

  12. Zn pollution counteracts Cd toxicity in metal-tolerant ectomycorrhizal fungi and their host plant, Pinus sylvestris.

    Science.gov (United States)

    Krznaric, Erik; Wevers, Jan H L; Cloquet, Christophe; Vangronsveld, Jaco; Vanhaecke, Frank; Colpaert, Jan V

    2010-08-01

    Adaptive Zn and Cd tolerance have evolved in populations of the ectomycorrhizal fungus Suillus luteus. When exposed to high concentrations of both metals in vitro, a one-sided antagonism was apparent in the Zn- and Cd-tolerant isolates. Addition of high Zn concentrations restored growth of Cd-stressed isolates, but not vice versa. The antagonistic effect was not detected in a S. luteus isolate from non-contaminated land and in Paxillus involutus. The fungi were inoculated on pine seedlings and subsequently exposed to ecologically relevant Zn and Cd concentrations in single and mixed treatments. The applied doses severely reduced nutrient acquisition of non-mycorrhizal pines and pines inoculated with metal-sensitive S. luteus. Highest translocation of Zn and Cd to shoots occurred in the same plants. Seedlings inoculated with fungi collected from the polluted site reduced metal transfer to their host and maintained nutrient acquisition under high metal exposure. The isolate showing highest tolerance in vitro also offered best protection in symbiosis. The antagonistic effect of high Zn on Cd toxicity was confirmed in the plant experiment. The results indicate that a Zn- and Cd-polluted soil has selected ectomycorrhizal fungi that are able to survive and protect their phytobiont from nutrient starvation and excessive metal uptake. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  13. Diversity of leaf endophytic fungi in mangrove plants of northeast Brazil

    Science.gov (United States)

    Wanderley Costa, Isabella P. M.; Maia, Leonor Costa; Cavalcanti, Maria Auxiliadora

    2012-01-01

    With the aim of increasing the knowledge about endophytic fungi, a group of microorganisms with high biotechnological potential and a valuable source of useful metabolites, a survey in leaves of mangrove plants (Avicennia schaueriana, Laguncularia racemosa, and Rhizophora mangle) was performed at the Itamaracá Island, PE, Brazil. Leaves were collected, during two seasons, dry and rainy, superficially sterilized and fragments maintained in Petri dishes with Potato dextrose agar (PDA) at 28o ± 2o C until isolation of the fungi. Fourty taxa were isolated: 25 species representing 19 genera and 15 morphotypes determined as Mycelia sterilia. Leaves of L. racemosa hosted the highest number of colony forming units (CFU) and taxa. Guignardia sp. and Colletotrichum gloeosporioides were the most frequently isolated, while Glomerella cingulata was the only species found in association with the three host plants. The proportional importance of each fungus differed among hosts. The similarity of fungi species between the two seasons reached only 4.2%, and that between the hosts was also low, with the maximum (A. schaueriana x L. racemosa) reaching 24.2%. Sphaerosporium, as well as Chloridium virescens var. virescens, Microsphaeropsis arundinis, Penicillium pinophilum, Periconia cambrensis, Phoma herbarum, P. diachenii, P. obscurans, Sordaria prolifica and Torula elisii are reported for the first time as endophytic in tropical regions. PMID:24031941

  14. Diversity of leaf endophytic fungi in mangrove plants of Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Isabella P. M. Wanderley Costa

    2012-09-01

    Full Text Available With the aim of increasing the knowledge about endophytic fungi, a group of microorganisms with high biotechnological potential and a valuable source of useful metabolites, a survey in leaves of mangrove plants (Avicennia schaueriana, Laguncularia racemosa, and Rhizophora mangle was performed at the Itamaracá Island, PE, Brazil. Leaves were collected, during two seasons, dry and rainy, superficially sterilized and fragments maintained in Petri dishes with Potato dextrose agar (PDA at 28º ± 2º C until isolation of the fungi. Fourty taxa were isolated: 25 species representing 19 genera and 15 morphotypes determined as Mycelia sterilia. Leaves of L. racemosa hosted the highest number of colony forming units (CFU and taxa. Guignardia sp. and Colletotrichum gloeosporioides were the most frequently isolated, while Glomerella cingulata was the only species found in association with the three host plants. The proportional importance of each fungus differed among hosts. The similarity of fungi species between the two seasons reached only 4.2%, and that between the hosts was also low, with the maximum (A. schaueriana x L. racemosa reaching 24.2%. Sphaerosporium, as well as Chloridium virescens var. virescens, Microsphaeropsis arundinis, Penicillium pinophilum, Periconia cambrensis, Phoma herbarum, P. diachenii, P. obscurans, Sordaria prolifica and Torula elisii are reported for the first time as endophytic in tropical regions.

  15. OCCURRENCE OF ENTOMOPATHOGENIC FUNGI IN SOILS FROM FESTUCA PRATENSIS HUDS. CROP

    Directory of Open Access Journals (Sweden)

    Roman Kolczarek

    2014-04-01

    Full Text Available Entomopathogenic fungi are the largest group of microorganisms existing in the soil environment. Occurrence and pathogenicity of entomopathogenic fungi in soil is dependent on many factors affecting the soil environment. The aim of this study was to compare the species composition and the intensity of the occurrence of entomopathogenic fungi in soils from monoculture crops of Festuca pratensis Huds. The study material consisted of soil samples taken from the experiment conducted in two experimental stations of the Research Centre for Cultivars Study. The insecticides fungi were isolated from soil using a method of the selective substrate. Three species of entomopathogenic fungi Beauveria bassiana, Isaria fumosorosea and Metarhizium anisopliae were isolated from the study soils using the selective medium.

  16. Uptake of elements by fungi in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, Karl J.; Nikolova, Ivanka; Taylor, Andy F.S. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology; Vinichuk, Mykhaylo M. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences

    2004-10-01

    Samples were collected in a forest ecosystem close to the Nuclear Power Plant at Forsmark, Sweden. The soil was fractioned in bulk soil, rhizosphere, soil-root interface and fungal mycelium. At the same sampling sites, fruit bodies of fungi were also collected. The concentration (mg/kg dw of soil) of K, Rb, Cs, P, Ca, Cr, Mn, Co, Ni, Cu, Zn, As, Sr, Cd, I, Hg, Pb, Ra, Th and U, were analysed in the various fractions using microspectrometry. The concentration of the stable potassium, rubidium and cesium in forest soil as well as in fungal compartment is discussed first and than the other 17 elements is discussed. Compared to bulk soil, rhizosphere was enriched with K, Rb and Cs by a factor 1.3, 1.7 and 1.5, and soil-root interface by factor 5.4, 2.6 and 1.0. Concentration of K, Rb and Cs was much higher in mycelium compared to bulk soil, indicating accumulation of these elements within fungi. The concentration ratios (CR) defined as mg/kg dw in mycelium divided by mg/kg dw in soil were found to be 4.5, 5.1 and 2.4 for K, Rb and Cs respectively. For fruit bodies of fungi, these ratios were about one order of magnitude higher than that for mycelium: 65, 3. 75.8 and 18.6 for K, Rb and Cs, respectively. In mycelium, only weak correlations were found between K and Rb uptake (r=0.33) and between K and Cs uptake (r=0.48). The concentrations of the elements in fruit bodies of fungi were species-dependent. Generally, fungi seemed to take up Rb more efficiently than K. Highest Cs concentrations were found in fruit bodies of Sarcodon imbricatus (25.1 mg/kg). Sarcodon imbricatus was found to accumulate K, Cs and especially Rb to greatest extent, followed by Cortinarius sp., and Suillus variegatus. Litter decomposing fungi Hypholoma capnoides and Collybia peronata showed relatively weak ability to accumulate K, Rb as well as Cs, compared to the mycorrhizal species. No correlation was found between concentration of K, Rb and Cs in fruit bodies of fungi and soil pH as well as

  17. Uptake of elements by fungi in the Forsmark area

    International Nuclear Information System (INIS)

    Johanson, Karl J.; Nikolova, Ivanka; Taylor, Andy F.S.; Vinichuk, Mykhaylo M.

    2004-10-01

    Samples were collected in a forest ecosystem close to the Nuclear Power Plant at Forsmark, Sweden. The soil was fractioned in bulk soil, rhizosphere, soil-root interface and fungal mycelium. At the same sampling sites, fruit bodies of fungi were also collected. The concentration (mg/kg dw of soil) of K, Rb, Cs, P, Ca, Cr, Mn, Co, Ni, Cu, Zn, As, Sr, Cd, I, Hg, Pb, Ra, Th and U, were analysed in the various fractions using microspectrometry. The concentration of the stable potassium, rubidium and cesium in forest soil as well as in fungal compartment is discussed first and than the other 17 elements is discussed. Compared to bulk soil, rhizosphere was enriched with K, Rb and Cs by a factor 1.3, 1.7 and 1.5, and soil-root interface by factor 5.4, 2.6 and 1.0. Concentration of K, Rb and Cs was much higher in mycelium compared to bulk soil, indicating accumulation of these elements within fungi. The concentration ratios (CR) defined as mg/kg dw in mycelium divided by mg/kg dw in soil were found to be 4.5, 5.1 and 2.4 for K, Rb and Cs respectively. For fruit bodies of fungi, these ratios were about one order of magnitude higher than that for mycelium: 65, 3. 75.8 and 18.6 for K, Rb and Cs, respectively. In mycelium, only weak correlations were found between K and Rb uptake (r=0.33) and between K and Cs uptake (r=0.48). The concentrations of the elements in fruit bodies of fungi were species-dependent. Generally, fungi seemed to take up Rb more efficiently than K. Highest Cs concentrations were found in fruit bodies of Sarcodon imbricatus (25.1 mg/kg). Sarcodon imbricatus was found to accumulate K, Cs and especially Rb to greatest extent, followed by Cortinarius sp., and Suillus variegatus. Litter decomposing fungi Hypholoma capnoides and Collybia peronata showed relatively weak ability to accumulate K, Rb as well as Cs, compared to the mycorrhizal species. No correlation was found between concentration of K, Rb and Cs in fruit bodies of fungi and soil pH as well as

  18. [Diversity and community structure of endophytic fungi from Taxus chinensis var. mairei].

    Science.gov (United States)

    2014-07-01

    A total of 628 endophytic fungi were isolated from 480 tissue segments of needles and branches of Taxus chinensis var. mairei. According to morphological characteristics and ITS sequences, they represented 43 taxa in 28 genera, of which 10 Hyphomycetes, 20 Coelomycetes, 12 Ascomycetes and 1 unknown fungus. Phomopsis mali was confirmed as the dominant species. In accordance with relative frequency, Alternaria alternata, Aureobasidium pullulans, Colletotrichum boninense, C. gloeosporioides, Epicoccum nigrum , Fungal sp., Fusarium lateritium, Glomerella cingulata, Magnaporthales sp. , Nigrospora oryzae, Pestalotiopsis maculiformans, P. microspora, Peyronellaea glomerata and Xylaria sp. 1 were more common in T. chinensis var. mairei. T. chinensis var. mairei were severely infected by endophytic fungi. Endophytic fungi were found in 81 percent of plant tissues with a high diversity. Distribution ranges of endophytic fungi were influenced by tissue properties. The colonization rate, richness, diversity of endophytic fungi in needles were obviously lower than in branches, and kinds of endophytic fungi between branches were more similar than those in needles, thus endophytic fungi had tissue preference. In addition, tissue age influenced the community structure of endophytic fungi. The elder branch tissues were, the higher colonization rate, richness, diversity of endophytic fungi were. Systematic studying the diversity and community structure of endophytic fungi in T. chinensis var. mairei and clarifying their distribution regularity in plant tissues would offer basic data and scientific basis for their development and utilization. Discussing the presence of fungal pathogens in healthy plant tissues would be of positive significance for source protection of T. chinensis var. mairei.

  19. Dermatophytes and other pathogenic fungi from hospital staff ...

    African Journals Online (AJOL)

    hospital staff apparel from protective gown, face- shields and hand gloves were tested for the presence of fungi. Examined samples were collected using the swab culture method. Results: Of a total of 110 swab samples of hospital staff apparel, 56 (51 %) showed fungi contamination including 31 (66 %) of 47 samples from ...

  20. Potential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum trabeum via Hydroquinone-Driven Fenton Chemistry.

    Directory of Open Access Journals (Sweden)

    Martin C Krueger

    Full Text Available Synthetic polymers often pose environmental hazards due to low biodegradation rates and resulting accumulation. In this study, a selection of wood-rotting fungi representing different lignocellulose decay types was screened for oxidative biodegradation of the polymer polystyrene sulfonate (PSS. Brown-rot basidiomycetes showed PSS depolymerisation of up to 50 % reduction in number-average molecular mass (Mn within 20 days. In-depth investigations with the most efficient depolymeriser, a Gloeophyllum trabeum strain, pointed at extracellular hydroquinone-driven Fenton chemistry responsible for depolymerisation. Detection of hydroxyl radicals present in the culture supernatants showed good compliance with depolymerisation over the time course of PSS degradation. 2,5-Dimethoxy-1,4-hydroquinone (2,5-DMHQ, which was detected in supernatants of active cultures via liquid chromatography and mass spectrometry, was demonstrated to drive the Fenton processes in G. trabeum cultures. Up to 80% reduction in Mn of PSS where observed when fungal cultures were additionally supplemented with 2,5-dimethoxy benzoquinone, the oxidized from of 2,5-DMHQ. Furthermore, 2,5-DMHQ could initiate the Fenton's reagent-mediated PSS depolymerisation in cell-free systems. In contrast, white-rot fungi were unable to cause substantial depolymerising effects despite the expression of lignin-modifying exo-enzymes. Detailed investigations with laccase from Trametes versicolor revealed that only in presence of certain redox mediators limited PSS depolymerisation occurred. Our results indicate that brown-rot fungi might be suitable organisms for the biodegradation of recalcitrant synthetic polymeric pollutants.

  1. Keratinophilic fungi and other moulds associated with air-dust particles from Egypt.

    Science.gov (United States)

    Abdel-Hafez, S I; Moubasher, A H; Barakat, A

    1990-01-01

    One-hundred and eleven species and three species varieties belonging to 39 genera were collected from 50 dust samples on the five media used at 28 degrees C. Using the hair-baiting technique with horse hair, 10 species of Chrysosporium were isolated: C. asperatum, C. state of Arthroderma tuberculatum, C. indicum, C. inops, C. keratinophilum, C. merdarium, C. pannorum, C. queenslandicum, C. tropicum and C. xerophilum. True dermatophytes were isolated: Trichophyton verrucosum and Trichophyton sp. Also, numerous fungi tolerating high levels of cycloheximide were encountered, such as members of Acremonium, Aspergillus and Penicillium. On plates of glucose or cellulose Czapek-Dox agar (free from sucrose) the most frequent fungi were: Alternaria alternata, Aspergillus flavus, A. flavus var. columnaris, A. fumigatus, A. niger, A. ochraceus, A. sydowii, A. terreus, Chaetomium globosum, Cladosporium herbarum, Emericella nidulans, Fusarium oxysporum, Mucor hiemalis, Penicillium chrysogenum, P. oxalicum, Scopulariopsis brevicaulis and Ulocladium atrum. On plates of 50% sucrose or 10 and 20% NaCl-Czapek's agar, some interesting species were frequently encountered: Eurotium amstelodami, E. chevalieri, E. halophilicum, E. montevidensis, E. repens, E. rubrum and Scopulariopsis halophilica. The isolated fungi have been tested for osmophilicity and halophilicity, they showed different rates of growth on sucrose and sodium chloride-Czapek's medium of various osmotic potential.

  2. Study of the Vapor Phase Over Fusarium Fungi Cultured on Various Substrates.

    Science.gov (United States)

    Savelieva, Elena I; Gustyleva, Liudmila K; Kessenikh, Elizaveta D; Khlebnikova, Natalya S; Leffingwell, John; Gavrilova, Olga P; Gagkaeva, Tatiana Yu

    2016-07-01

    The compositions of volatile organic compounds (VOCs) emitted by Fusarium fungi (F. langsethiae, F. sibiricum, F. poae, and F. sporotrichioides) grown on two nutritive substrates: potato sucrose agar (PSA) and autoclaved wheat kernels (WK) were investigated. The culturing of fungi and study of their VOC emissions were performed in chromatographic vials at room temperature (23 - 24 °C) and the VOCs were sampled by a solid-phase microextraction on a 85 μm carboxen/polydimethylsiloxane fiber. GC/MS was performed using a 60-m HP-5 capillary column. Components of the VOC mixture were identified by electron impact mass spectra and chromatographic retention indices (RIs). The most abundant components of the VOC mixture emitted by Fusarium fungi are EtOH, AcOH, (i) BuOH, 3-methylbutan-1-ol, 2-methylbutan-1-ol, ethyl 3-methylbutanoate, terpenes with M 136, sesquiterpenes with M 204 (a total of about 25), and trichodiene. It was found that the strains grown on PSA emit a wider spectrum and larger amount of VOCs compared with those grown on wheat kernels. F. langsethiae strain is the most active VOC producer on both substrates. The use of SPME and GC/MS also offers the potential for differentiation of fungal species and strains. © 2016 Wiley-VHCA AG, Zürich.

  3. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Chavez, M.C.; Carrillo-Gonzalez, R.; Wright, S.F.; Nichols, K.A

    2004-08-01

    Naturally occurring soil organic compounds stabilize potentially toxic elements (PTEs) such as Cu, Cd, Pb, and Mn. The hypothesis of this work was that an insoluble glycoprotein, glomalin, produced in copious amounts on hyphae of arbuscular mycorrhizal fungi (AMF) sequesters PTEs. Glomalin can be extracted from laboratory cultures of AMF and from soils. Three different experiments were conducted. Experiment 1 showed that glomalin extracted from two polluted soils contained 1.6-4.3 mg Cu, 0.02-0.08 mg Cd, and 0.62-1.12 mg Pb/g glomalin. Experiment 2 showed that glomalin from hyphae of an isolate of Gigaspora rosea sequestered up to 28 mg Cu/g in vitro. Experiment 3 tested in vivo differences in Cu sequestration by Cu-tolerant and non-tolerant isolates of Glomus mosseae colonizing sorghum. Plants were fed with nutrient solution containing 0.5, 10 or 20 {mu}M of Cu. Although no differences between isolates were detected, mean values for the 20 {mu}M Cu level were 1.6, 0.4, and 0.3 mg Cu/g for glomalin extracted from hyphae, from sand after removal of hyphae and from hyphae attached to roots, respectively. Glomalin should be considered for biostabilization leading to remediation of polluted soils. - Glomalin may be useful in remediation of toxic elements in soils.

  4. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements

    International Nuclear Information System (INIS)

    Gonzalez-Chavez, M.C.; Carrillo-Gonzalez, R.; Wright, S.F.; Nichols, K.A.

    2004-01-01

    Naturally occurring soil organic compounds stabilize potentially toxic elements (PTEs) such as Cu, Cd, Pb, and Mn. The hypothesis of this work was that an insoluble glycoprotein, glomalin, produced in copious amounts on hyphae of arbuscular mycorrhizal fungi (AMF) sequesters PTEs. Glomalin can be extracted from laboratory cultures of AMF and from soils. Three different experiments were conducted. Experiment 1 showed that glomalin extracted from two polluted soils contained 1.6-4.3 mg Cu, 0.02-0.08 mg Cd, and 0.62-1.12 mg Pb/g glomalin. Experiment 2 showed that glomalin from hyphae of an isolate of Gigaspora rosea sequestered up to 28 mg Cu/g in vitro. Experiment 3 tested in vivo differences in Cu sequestration by Cu-tolerant and non-tolerant isolates of Glomus mosseae colonizing sorghum. Plants were fed with nutrient solution containing 0.5, 10 or 20 μM of Cu. Although no differences between isolates were detected, mean values for the 20 μM Cu level were 1.6, 0.4, and 0.3 mg Cu/g for glomalin extracted from hyphae, from sand after removal of hyphae and from hyphae attached to roots, respectively. Glomalin should be considered for biostabilization leading to remediation of polluted soils. - Glomalin may be useful in remediation of toxic elements in soils

  5. Development and application of two independent real-time PCR assays to detect clinically relevant Mucorales species.

    Science.gov (United States)

    Springer, Jan; Goldenberger, Daniel; Schmidt, Friderike; Weisser, Maja; Wehrle-Wieland, Elisabeth; Einsele, Hermann; Frei, Reno; Löffler, Jürgen

    2016-03-01

    PCR-based detection of Mucorales species could improve diagnosis of suspected invasive fungal infection, leading to a better patient outcome. This study describes two independent probe-based real-time PCR tests for detection of clinically relevant Mucorales, targeting specific fragments of the 18S and the 28S rRNA genes. Both assays have a short turnaround time, allow fast, specific and very sensitive detection of clinically relevant Mucorales and have the potential to be used as quantitative tests. They were validated on various clinical samples (fresh and formalin-fixed paraffin-embedded specimens, mainly biopsies, n = 17). The assays should be used as add-on tools to complement standard techniques; a combined approach of both real-time PCR assays has 100 % sensitivity. Genus identification by subsequent sequencing is possible for amplicons of the 18S PCR assay. In conclusion, combination of the two independent Mucorales assays described in this study, 18S and 28S, detected all clinical samples associated with proven Mucorales infection (n = 10). Reliable and specific identification of Mucorales is a prerequisite for successful antifungal therapy as these fungi show intrinsic resistance to voriconazole and caspofungin.

  6. Genera of phytopathogenic fungi

    NARCIS (Netherlands)

    Marin-Felix, Y.; Hernández-Restrepo, Margarita; Wingfield, M.J.; Akulov, A.; Carnegie, A.J.; Cheewangkoon, R.; Gramaje, D.; Groenewald, J.Z.; Guarnaccia, V.; Halleen, F.; Lombard, L.; Luangsa-ard, J.; Marincowitz, S.; Moslemi, A.; Mostert, L.; Quaedvlieg, W.; Schumacher, R.K.; Spies, C.F.J.; Thangavel, R.; Taylor, P.W.J.; Wilson, A.M.; Wingfield, B.D.; Wood, A.R.; Crous, P.W.

    2019-01-01

    This paper represents the second contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information regarding the pathology, distribution, hosts and disease symptoms for the treated genera. In addition, primary and secondary DNA

  7. Arbuscular mycorrhizal fungi make a complex contribution to soil aggregation

    Science.gov (United States)

    McGee, Peter; Daynes, Cathal; Damien, Field

    2013-04-01

    Soil aggregates contain solid and fluid components. Aggregates develop as a consequence of the organic materials, plants and hyphae of arbuscular mycorrhizal (AM) fungi acting on the solid phase. Various correlative studies indicate hyphae of AM fungi enmesh soil particles, but their impact on the pore space is poorly understood. Hyphae may penetrate between particles, remove water from interstitial spaces, and otherwise re-arrange the solid phase. Thus we might predict that AM fungi also change the pore architecture of aggregates. Direct observations of pore architecture of soil, such as by computer-aided tomography (CT), is difficult. The refractive natures of solid and biological material are similar. The plant-available water in various treatments allows us to infer changes in pore architecture. Our experimental studies indicate AM fungi have a complex role in the formation and development of aggregates. Soils formed from compost and coarse subsoil materials were planted with mycorrhizal or non-mycorrhizal seedlings and the resultant soils compared after 6 or 14 months in separate experiments. As well as enmeshing particles, AM fungi were associated with the development of a complex pore space and greater pore volume. Even though AM fungi add organic matter to soil, the modification of pore space is not correlated with organic carbon. In a separate study, we visualised hyphae of AM fungi in a coarse material using CT. In this study, hyphae appeared to grow close to the surfaces of particles with limited ramification across the pore spaces. Hyphae of AM fungi appear to utilise soil moisture for their growth and development of mycelium. The strong correlation between moisture and hyphae has profound implications for soil aggregation, plant utilisation of soil water, and the distribution of water as water availability declines.

  8. Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures.

    Science.gov (United States)

    Pinto, A P; Serrano, C; Pires, T; Mestrinho, E; Dias, L; Teixeira, D Martins; Caldeira, A T

    2012-10-01

    Contamination of waters by xenobiotic compounds such as pesticides presents a serious environmental problem with substantial levels of pesticides now contaminating European water resources. The aim of this work was to evaluate the ability of the fungi Fusarium oxysporum, Aspergillus oryzae, Lentinula edodes, Penicillium brevicompactum and Lecanicillium saksenae, for the biodegradation of the pesticides terbuthylazine, difenoconazole and pendimethalin in batch liquid cultures. These pesticides are common soil and water contaminants and terbuthylazine is considered the most persistent triazine herbicide in surface environments. P. brevicompactum and L. saksenae were achieved by enrichment, isolation and screening of fungi capable to metabolize the pesticides studied. The isolates were obtained from two pesticide-primed materials (soil and biomixture). Despite the relatively high persistence of terbuthylazine, the results obtained in this work showed that the fungi species studied have a high capability of biotransformation of this xenobiotic, comparatively the results obtained in other similar studies. The highest removal percentage of terbuthylazine from liquid medium was achieved with A. oryzae (~80%), although the major biodegradation has been reached with P. brevicompactum. The higher ability of P. brevicompactum to metabolize terbuthylazine was presumably acquired through chronic exposure to contamination with the herbicide. L. saksenae could remove 99.5% of the available pendimethalin in batch liquid cultures. L. edodes proved to be a fungus with a high potential for biodegradation of pesticides, especially difenoconazole and pendimethalin. Furthermore, the metabolite desethyl-terbuthylazine was detected in L. edodes liquid culture medium, indicating terbuthylazine biodegradation by this fungus. The fungi strains investigated could prove to be valuable as active pesticide-degrading microorganisms, increasing the efficiency of biopurification systems containing

  9. Identification of ochratoxin A producing fungi associated with fresh and dry liquorice.

    Directory of Open Access Journals (Sweden)

    Amanda Juan Chen

    Full Text Available The presence of fungi on liquorice could contaminate the crop and result in elevated levels of mycotoxin. In this study, the mycobiota associated with fresh and dry liquorice was investigated in 3 producing regions of China. Potential toxigenic fungi were tested for ochratoxin A (OTA and aflatoxin B1 (AFB1 production using liquid chromatography/mass spectrometry/mass spectrometry. Based on a polyphasic approach using morphological characters, β-tubulin and RNA polymerase II second largest subunit gene phylogeny, a total of 9 genera consisting of 22 fungal species were identified, including two new Penicillium species (Penicillium glycyrrhizacola sp. nov. and Penicillium xingjiangense sp. nov.. The similarity of fungal communities associated with fresh and dry liquorice was low. Nineteen species belonging to 8 genera were detected from fresh liquorice with populations affiliated with P. glycyrrhizacola, P. chrysogenum and Aspergillus insuetus comprising the majority (78.74%, 33.33% and 47.06% of total of the community from Gansu, Ningxia and Xinjiang samples, respectively. In contrast, ten species belonging to 4 genera were detected from dry liquorice with populations affiliated with P. chrysogenum, P. crustosum and Aspergillus terreus comprising the majority (64.00%, 52.38% and 90.91% of total of the community from Gansu, Ningxia and Xinjiang samples, respectively. Subsequent LC/MS/MS analysis indicated that 5 fungal species were able to synthesize OTA in vitro including P. chrysogenum, P. glycyrrhizacola, P. polonicum, Aspergillus ochraceus and A. westerdijkiae, the OTA concentration varied from 12.99 to 39.03 µg/kg. AFB1 was absent in all tested strains. These results demonstrate the presence of OTA producing fungi on fresh liquorice and suggest that these fungi could survive on dry liquorice after traditional sun drying. Penicillium chrysogenum derived from surrounding environments is likely to be a stable contributor to high OTA level in

  10. Radionuclides contamination of fungi after accident on the Chernobyl NPP

    Energy Technology Data Exchange (ETDEWEB)

    Zarubina, Nataliia E.; Zarubin, Oleg L. [Institute for Nuclear Research of National Academy of Sciense, 03680, pr-t Nauki, 47, Kiev (Ukraine)

    2014-07-01

    Accumulation of radionuclides by the higher fungi (macromycetes) after the accident on the Chernobyl atomic power plant in 1986 has been studied. Researches were spent in territory of the Chernobyl alienation zone and the Kiev region. Our research has shown that macromycetes accumulate almost all types of radionuclides originating from the accident ({sup 131}I, {sup 140}Ba /{sup 140}La, {sup 103}Ru, {sup 106}Ru, {sup 141}Ce, {sup 144}Ce, {sup 95}Nb, {sup 95}Zr, {sup 137}Cs and {sup 134}Cs). They accumulate the long-living {sup 90}Sr in much smaller (to 3 - 4 orders) quantities than {sup 137}Cs. We have established existence of two stages in accumulation of {sup 137}Cs by higher fungi after the accident on the Chernobyl NPP: the first stage resides in the growth of the concentration, the second - in gradual decrease of levels of specific activity of this radionuclide. Despite reduction of {sup 137}Cs specific activity level, the content of this radionuclide at testing areas of the 5-km zone around the Chernobyl NPP reaches 1,100,000 Bq/kg of fresh weight in 2013. We investigated dynamics of accumulation of Cs-137 in higher fungi of different ecological groups. One of the major factors that influence levels of accumulation of {sup 137}Cs by fungi is their nutritional type (ecological group). Fungi that belong to ecological groups of saprotrophes and xylotrophes accumulate this radionuclide in much smaller quantities than symbio-trophic fungi. As a result of the conducted research it has been established that symbio-trophic fungi store more {sup 137}Cs than any other biological objects in forest ecosystems. Among the symbio-trophic fungi species, species showing the highest level of {sup 137}Cs contamination vary in different periods of time after the deposition. It is connected with variability of quantities of these radio nuclides accessible for absorption at the depth of localization of the main part of mycelium of each species in a soil profile. Soil contamination

  11. Screening and assessment of laccase producing fungi isolated from ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... enzyme is found in many plant species and is widely distributed in fungi including wood-rotting fungi .... mat and weight of only filter paper represented biomass of fungal mat. ... substrate conversion/s) (Das et al., 1997).

  12. Effector proteins of rust fungi.

    Science.gov (United States)

    Petre, Benjamin; Joly, David L; Duplessis, Sébastien

    2014-01-01

    Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1, and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities) or entry into plant cells, how they work inside host tissues to promote fungal growth remains unknown. The genome sequences of four rust fungi (two Melampsoraceae and two Pucciniaceae) have been analyzed so far. Genome-wide analyses of these species, as well as transcriptomics performed on a broader range of rust fungi, revealed hundreds of small secreted proteins considered as rust candidate secreted effector proteins (CSEPs). The rust community now needs high-throughput approaches (effectoromics) to accelerate effector discovery/characterization and to better understand how they function in planta. However, this task is challenging due to the non-amenability of rust pathosystems (obligate biotrophs infecting crop plants) to traditional molecular genetic approaches mainly due to difficulties in culturing these species in vitro. The use of heterologous approaches should be promoted in the future.

  13. Massive gene swamping among cheese-making Penicillium fungi

    Directory of Open Access Journals (Sweden)

    Jeanne Ropars

    2015-03-01

    Full Text Available Horizontal gene transfers (HGT, i.e., the transmission of genetic material between species not directly attributable to meiotic gene exchange, have long been acknowledged as a major driver of prokaryotic evolution and is increasingly recognized as an important source of adaptation in eukaryotes. In fungi in particular, many convincing examples of HGT have been reported to confer selective advantages on the recipient fungal host, either promoting fungal pathogenicity on plants or increasing their toxicity by the acquisition of secondary metabolic clusters, resulting in adaptation to new niches and in some cases eventually even in speciation. These horizontal gene transfers involve single genes, complete metabolic pathways or even entire chromosomes. A recent study has uncovered multiple recent horizontal transfers of a 575 kb genomic island in cheese Penicillium fungi, representing ca. 2% of the Penicillium roqueforti’s genome, that may confer selective advantage in the competing cheese environment where bacteria and fungi occur. Novel phylogenomic methods are being developed, revealing massive HGT among fungi. Altogether, these recent studies indicate that HGT is a crucial mechanism of rapid adaptation, even among eukaryotes.

  14. Enrichment of arbuscular mycorrhizal fungi in a contaminated soil after rehabilitation.

    Science.gov (United States)

    Lopes Leal, Patrícia; Varón-López, Maryeimy; Gonçalves de Oliveira Prado, Isabelle; Valentim Dos Santos, Jessé; Fonsêca Sousa Soares, Cláudio Roberto; Siqueira, José Oswaldo; de Souza Moreira, Fatima Maria

    Spore counts, species composition and richness of arbuscular mycorrhizal fungi, and soil glomalin contents were evaluated in a soil contaminated with Zn, Cu, Cd and Pb after rehabilitation by partial replacement of the contaminated soil with non-contaminated soil, and by Eucalyptus camaldulensis planting with and without Brachiaria decumbens sowing. These rehabilitation procedures were compared with soils from contaminated non-rehabilitated area and non-contaminated adjacent soils. Arbuscular mycorrhizal fungi communities attributes were assessed by direct field sampling, trap culture technique, and by glomalin contents estimate. Arbuscular mycorrhizal fungi was markedly favored by rehabilitation, and a total of 15 arbuscular mycorrhizal fungi morphotypes were detected in the studied area. Species from the Glomus and Acaulospora genera were the most common mycorrhizal fungi. Number of spores was increased by as much as 300-fold, and species richness almost doubled in areas rehabilitated by planting Eucalyptus in rows and sowing B. decumbens in inter-rows. Contents of heavy metals in the soil were negatively correlated with both species richness and glomalin contents. Introduction of B. decumbens together with Eucalyptus causes enrichment of arbuscular mycorrhizal fungi species and a more balanced community of arbuscular mycorrhizal fungi spores in contaminated soil. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. Classification and infection mechanism of entomopathogenic fungi

    OpenAIRE

    Mora, Margy Alejandra Esparza; Castilho, Alzimiro Marcelo Conteiro; Fraga, Marcelo Elias

    2018-01-01

    ABSTRACT: Entomopathogenic fungi are important biological control agents throughout the world, have been the subject of intensive research for more than 100 years, and can occur at epizootic or enzootic levels in their host populations. Their mode of action against insects involves attaching a spore to the insect cuticle, followed by germination, penetration of the cuticle, and dissemination inside the insect. Strains of entomopathogenic fungi are concentrated in the following orders: Hypocre...

  16. Use of arbuscular mycorrhizal fungi to improve the drought tolerance of Cupressus atlantica G.

    Science.gov (United States)

    Zarik, Lamia; Meddich, Abdelilah; Hijri, Mohamed; Hafidi, Mohamed; Ouhammou, Ahmed; Ouahmane, Lahcen; Duponnois, Robin; Boumezzough, Ali

    2016-01-01

    In this study, we investigated whether indigenous arbuscular mycorrhizal (AM) fungi could improve the tolerance of Cupressus atlantica against water deficit. We tested a gradient of watering regime spanning from 90% to 25% of soil retention capacity of water on mycorhized and non-mycorhized seedlings in pot cultures with sterilized and non-sterilized soils. Our result showed a positive impact of AM fungi on shoot height, stem diameter and biomass as well as on the growth rate. We also observed that inoculation with AM fungi significantly improved uptake of minerals by C. atlantica in both sterilized and non-sterilized soils independently of water regimes. We found that mycorhized plants maintained higher relative water content (RWC) and water potential compared with non-mycorhized plants that were subjected to drought-stress regimes (50% and 25% of soil retention capacity). The contents of proline and of soluble sugars showed that their concentrations decreased in non-mycorhized plants subjected to DS. Superoxide dismutase (SOD) and catalase (CAT) activities also decreased in non-mycorhized plants submitted to DS compared to mycorhized plants. The same pattern was observed by measuring peroxidase (POD) enzyme activity. The results demonstrated that AM fungal inoculation promoted the growth and tolerance of C. atlantica against DS in pot cultures. Therefore, mycorrhizal inoculation could be a potential solution for the conservation and reestablishment of C. atlantica in its natural ecosystem. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  17. Endophytic fungi associated with roots of date palm (Phoenix dactylifera) in coastal dunes.

    Science.gov (United States)

    Mohamed Mahmoud, Fadila; Krimi, Zoulikha; Maciá-Vicente, Jose G; Brahim Errahmani, Mohamed; Lopez-Llorca, Luis V

    Symbiotic interactions with fungal endophytes are argued to be responsible for the tolerance of plants to some stresses and for their adaptation to natural conditions. In this study we aimed to examine the endophytic fungal diversity associated with roots of date palms growing in coastal dune systems, and to screen this collection of endophytes for potential use as biocontrol agents, for antagonistic activity and mycoparasitism, and as producers of antifungal compounds with potential efficacy against root diseases of date palm. Roots of nine individual date palms growing in three coastal locations in the South-East of Spain (Guardamar, El Carabassí, and San Juan) were selected to isolate endophytic fungi. Isolates were identified on the basis of morphological and/or molecular characters. Five hundred and fifty two endophytic fungi were isolated and assigned to thirty morphological taxa or molecular operational taxonomic units. Most isolates belonged to Ascomycota, and the dominant order was Hypocreales. Fusarium and Clonostachys were the most frequently isolated genera and were present at all sampling sites. Comparisons of the endophytic diversity with previous studies, and their importance in the management of the date palm crops are discussed. This is the first study on the diversity of endophytic fungi associated with roots of date palm. The isolates obtained might constitute a source of biological control agents and biofertilizers for use in crops of this plant. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Physiological response of Cucurbita pepo var. pepo mycorrhized by Sonoran desert native arbuscular fungi to drought and salinity stresses

    Directory of Open Access Journals (Sweden)

    Citlalli Harris-Valle

    Full Text Available ABSTRACT Plants response to symbiosis with arbuscular mycorrhizal fungi (AMF under water stress is important to agriculture. Under abiotic stress conditions native fungi are more effective than exotics in improving plant growth and water status. Mycorrhization efficiency is related to soil fungi development and energy cost-benefit ratio. In this study, we assessed the effect on growth, water status and energy metabolism of Cucurbita pepo var. pepo when inoculated with native AMF from the Sonoran desert Mexico (mixed isolate and field consortium, and compared with an exotic species from a temperate region, under drought, low and high salinity conditions. Dry weights, leaf water content, water and osmotic potentials, construction costs, photochemistry and mycorrhization features were quantified. Under drought and low salinity conditions, the mixed isolate increased plant growth and leaf water content. Leaf water potential was increased only by the field consortium under drought conditions (0.5-0.9 MPa. Under high salinity, the field consortium increased aerial dry weight (more than 1 g and osmotic potential (0.54 MPa, as compared to non-mycorrhized controls. Plants inoculated with native AMF, which supposedly diminish the effects of stress, exhibited low construction costs, increased photochemical capacity, and grew larger external mycelia in comparison to the exotic inoculum.

  19. Host jumps shaped the diversity of extant rust fungi (Pucciniales).

    Science.gov (United States)

    McTaggart, Alistair R; Shivas, Roger G; van der Nest, Magriet A; Roux, Jolanda; Wingfield, Brenda D; Wingfield, Michael J

    2016-02-01

    The aim of this study was to determine the evolutionary time line for rust fungi and date key speciation events using a molecular clock. Evidence is provided that supports a contemporary view for a recent origin of rust fungi, with a common ancestor on a flowering plant. Divergence times for > 20 genera of rust fungi were studied with Bayesian evolutionary analyses. A relaxed molecular clock was applied to ribosomal and mitochondrial genes, calibrated against estimated divergence times for the hosts of rust fungi, such as Acacia (Fabaceae), angiosperms and the cupressophytes. Results showed that rust fungi shared a most recent common ancestor with a mean age between 113 and 115 million yr. This dates rust fungi to the Cretaceous period, which is much younger than previous estimations. Host jumps, whether taxonomically large or between host genera in the same family, most probably shaped the diversity of rust genera. Likewise, species diversified by host shifts (through coevolution) or via subsequent host jumps. This is in contrast to strict coevolution with their hosts. Puccinia psidii was recovered in Sphaerophragmiaceae, a family distinct from Raveneliaceae, which were regarded as confamilial in previous studies. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. [Bacterium Arthrobacter agilis UMCV2 and diverse amines inhibit in vitro growth of wood-decay fungi].

    Science.gov (United States)

    Orozco-Mosqueda, M Del Carmen; Valencia-Cantero, Eduardo; López-Albarrán, Pablo; Martínez-Pacheco, Mauro; Velázquez-Becerra, Crisanto

    2015-01-01

    The kingdom Fungi is represented by a large number of organisms, including pathogens that deteriorate the main structural components of wood, such as cellulose, hemicellulose and lignin. The aim of our work was to characterize the antifungal activity in Arthrobacter agilis UMCV2 and diverse amines against wood-decaying fungi. Four fungal organisms (designated as UMTM) were isolated from decaying wood samples obtained from a forest in Cuanajo-Michoacán, México. Two of them showed a clear enzymatic activity of cellulases, xylanases and oxido-reducing enzymes and were identified as Hypocrea (UMTM3 isolate) and Fusarium (UMTM13 isolate). In vitro, the amines showed inhibitory effect against UMTM growth and one of the amines, dimethylhexadecylamine (DMA16), exhibited strong potential as wood preventive treatment, against the attack of decaying fungi. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Role of Some Isolated Fungi in The Biological Leaching of Uranium From Low Grade Cretaceous Sandstone

    International Nuclear Information System (INIS)

    Ibrahim, H.A.; Morsy, A.; El-Sheikh, E.M.

    2012-01-01

    Microbiological leaching has been used as an alternative approach to conventional hydrometallurgical methods of uranium extraction. In this investigation, the biological leaching of uranium by isolated fungi from low grade sandstone was studied. Five isolates of fungi were obtained from sandstone sample. Cladosporium oxysporum and Penicilluim stoloniferum exhibited high potential in generating a variety of organic acids effective for uranium extraction. The percentages of organic acid produced by fungi were determined. By-product such as molasses was tested. The maximum dissolution of uranium was achieved at the following conditions; incubation period 6 days, pulp density 1:3 g/L, ph 3.5 and at 30 degree C. Maximum solubilization of uranium with values of 54% and 67% were achieved by Cladosporium oxysporum and Penicilluim stoloniferum, respectively. From properly prepared pregnant bio-leach liquor, the leached uranium was recovered in the form of marketable products (3UO 3 NH 3 .5H 2 O) using classical chemical technique and the product was confirmed using XRD techniques

  2. [Antagonistic interactions between saprotrophic fungi and geohelminths. 2. Saprotrophic fungi in biocontrol of parasitic geohelminths of humans and animals].

    Science.gov (United States)

    Jaborowska-Jarmoluk, Magdalena; Mazurkiewicz-Zapałowicz, Kinga; Kołodziejczyk, Lidia

    2009-01-01

    The soils ecosystem plays an important role in the epidemiology of geohelminth diseases of humans and animals. Soil contamination with ova of the parasitic geohelminths represents a global public health-hazard issue. Biological agents have been thought to control the infective forms of parasites present in the soil. Biocontrol of geohelminths represents an alternative to pesticides (i.e., nematicides), which are not efficient in killing infective nematode forms and, additionally, result in the environment pollution and long-term disturbances in the soil ecosystem homeostasis. The degree of the inhibiting effect of soil saprotrophic fungi on geohelminth embryonic development varies and depends on the species. A number of fungi cause various morphological disorders in the embryos of developing parasitic nematodes, but also have an ovicidal effect. Although the nature of the antagonism between fungi and other living organisms has not been fully explained, it is certain that mycotoxins and fungal enzymes constitute its important components. Considering the studies carried out so far, the antagonistic effect of mold fungi against the infective stages of geohelminths can be fully recommended as a real control factor, especially as these saprotrophs represent a natural factor within the soil environment, that is of particular biochemical activity.

  3. ITS2 sequence-structure phylogeny reveals diverse endophytic Pseudocercospora fungi on poplars.

    Science.gov (United States)

    Yan, Dong-Hui; Gao, Qian; Sun, Xiaoming; Song, Xiaoyu; Li, Hongchang

    2018-04-01

    For matching the new fungal nomenclature to abolish pleomorphic names for a fungus, a genus Pseudocercospora s. str. was suggested to host holomorphic Pseudocercosproa fungi. But the Pseudocercosproa fungi need extra phylogenetic loci to clarify their taxonomy and diversity for their existing and coming species. Internal transcribed spacer 2 (ITS2) secondary structures have been promising in charactering species phylogeny in plants, animals and fungi. In present study, a conserved model of ITS2 secondary structures was confirmed on fungi in Pseudocercospora s. str. genus using RNAshape program. The model has a typical eukaryotic four-helix ITS2 secondary structure. But a single U base occurred in conserved motif of U-U mismatch in Helix 2, and a UG emerged in UGGU motif in Helix 3 to Pseudocercospora fungi. The phylogeny analyses based on the ITS2 sequence-secondary structures with compensatory base change characterizations are able to delimit more species for Pseudocercospora s. str. than phylogenic inferences of traditional multi-loci alignments do. The model was employed to explore the diversity of endophytic Pseudocercospora fungi in poplar trees. The analysis results also showed that endophytic Pseudocercospora fungi were diverse in species and evolved a specific lineage in poplar trees. This work suggested that ITS2 sequence-structures could become as additionally significant loci for species phylogenetic and taxonomic studies on Pseudocerospora fungi, and that Pseudocercospora endophytes could be important roles to Pseudocercospora fungi's evolution and function in ecology.

  4. Exotic mammals disperse exotic fungi that promote invasion by exotic trees.

    Science.gov (United States)

    Nuñez, Martin A; Hayward, Jeremy; Horton, Thomas R; Amico, Guillermo C; Dimarco, Romina D; Barrios-Garcia, M Noelia; Simberloff, Daniel

    2013-01-01

    Biological invasions are often complex phenomena because many factors influence their outcome. One key aspect is how non-natives interact with the local biota. Interaction with local species may be especially important for exotic species that require an obligatory mutualist, such as Pinaceae species that need ectomycorrhizal (EM) fungi. EM fungi and seeds of Pinaceae disperse independently, so they may use different vectors. We studied the role of exotic mammals as dispersal agents of EM fungi on Isla Victoria, Argentina, where many Pinaceae species have been introduced. Only a few of these tree species have become invasive, and they are found in high densities only near plantations, partly because these Pinaceae trees lack proper EM fungi when their seeds land far from plantations. Native mammals (a dwarf deer and rodents) are rare around plantations and do not appear to play a role in these invasions. With greenhouse experiments using animal feces as inoculum, plus observational and molecular studies, we found that wild boar and deer, both non-native, are dispersing EM fungi. Approximately 30% of the Pinaceae seedlings growing with feces of wild boar and 15% of the seedlings growing with deer feces were colonized by non-native EM fungi. Seedlings growing in control pots were not colonized by EM fungi. We found a low diversity of fungi colonizing the seedlings, with the hypogeous Rhizopogon as the most abundant genus. Wild boar, a recent introduction to the island, appear to be the main animal dispersing the fungi and may be playing a key role in facilitating the invasion of pine trees and even triggering their spread. These results show that interactions among non-natives help explain pine invasions in our study area.

  5. Interactions of Vesicular-Arbuscular Mycorrhizal Fungi, Phosphorus, and Heterodera glycines on Soybean.

    Science.gov (United States)

    Tylka, G L; Hussey, R S; Roncadori, R W

    1991-01-01

    Effects of vesicular-arbuscular mycorrhizal (VAM) fungi and soil phosphorus (P) fertility on parasitism of soybean cultivars Bragg and Wright by soybean cyst nematode (SCN) were investigated in field micropiot and greenhouse experiments. VAM fungi increased height of both cultivars and yield of Wright in microplot studies in 1986 and 1987. Conversely, yield of mycorrhizal and nonmycorrhizal plants of both cultivars was suppressed by SCN. Soil population densities of SCN were unaffected by VAM fungi in 1986 but were greater in microplots infested with VAM fungi than in control microplots in 1987. Growth of Wright soybean was stimulated by VAM fungi and suppressed by SCN in greenhouse experiments. The effect of VAM fungi on SCN varied with time. Numbers of SCN in roots and soil were decreased by VAM fungi by as much as 73% at the highest SCN inoculum level through 49 days after planting. Later, however, SCN numbers were usually comparable on mycorrhizal and nonmycorrhizal plants. Soil P fertility generally had no effect on SCN. Results of a split-root experiment indicated that VAM fungal suppression of SCN was not systemic.

  6. Fungi regulate response of N2O production to warming and grazing in a Tibetan grassland

    Science.gov (United States)

    Zhong, Lei; Wang, Shiping; Xu, Xingliang; Wang, Yanfen; Rui, Yichao; Zhou, Xiaoqi; Shen, Qinhua; Wang, Jinzhi; Jiang, Lili; Luo, Caiyun; Gu, Tianbao; Ma, Wenchao; Chen, Guanyi

    2018-03-01

    Lack of understanding of the effects of warming and winter grazing on soil fungal contribution to nitrous oxide (N2O) production has limited our ability to predict N2O fluxes under changes in climate and land use management, because soil fungi play an important role in driving terrestrial N cycling. Here, we examined the effects of 10 years' warming and winter grazing on soil N2O emissions potential in an alpine meadow. Our results showed that soil bacteria and fungi contributed 46 % and 54 % to nitrification, and 37 % and 63 % to denitrification, respectively. Neither warming nor winter grazing affected the activity of enzymes responsible for overall nitrification and denitrification. However, warming significantly increased the enzyme activity of bacterial nitrification and denitrification to 53 % and 55 %, respectively. Warming significantly decreased enzyme activity of fungal nitrification and denitrification to 47 % and 45 %, respectively, while winter grazing had no such effect. We conclude that soil fungi could be the main source for N2O production potential in the Tibetan alpine grasslands. Warming and winter grazing may not affect the potential for soil N2O production potential, but climate warming can alter biotic pathways responsible for N2O production. These findings indicate that characterizing how fungal nitrification/denitrification contributes to N2O production, as well as how it responds to environmental and land use changes, can advance our understanding of N cycling. Therefore, our results provide some new insights about ecological controls on N2O production and lead to refine greenhouse gas flux models.

  7. The identification of fungi collected from the ceca of commercial poultry.

    Science.gov (United States)

    Byrd, J A; Caldwell, D Y; Nisbet, D J

    2017-07-01

    Under normal conditions, fungi are ignored unless a disease/syndrome clinical signs are reported. The scientific communities are largely unaware of the roles fungi play in normal production parameters. Numerous preharvest interventions have demonstrated that beneficial bacteria can play a role in improving productions parameters; however, most researchers have ignored the impact that fungi may have on production. The goal of the present study was to record fungi recovered from commercial broiler and layer houses during production. Over 3,000 cecal samples were isolated using conventional culture methodology and over 890 samples were further characterized using an automated repetitive sequence-based PCR (rep-PCR) methodology. Eighty-eight different fungal and yeast species were identified, including Aspergillus spp., Penicillium spp., and Sporidiobolus spp, and 18 unknown genera were separated using rep-PCR. The results from the present study will provide a normal fungi background genera under commercial conditions and will be a stepping stone for investigating the impact of fungi on the gastrointestinal tract and on the health of poultry. Published by Oxford University Press on behalf of Poultry Science Association 2017.

  8. Litter decomposing fungi in sal (Shorea robusta forests of central India

    Directory of Open Access Journals (Sweden)

    RAM KEERTI VERMA

    2011-11-01

    Full Text Available Soni KK, Pyasi A, Verma RK. 2011. Litter decomposing fungi in sal (Shorea robusta forests of central India. Nusantara Bioscience 3: 136-144. The present study aim on isolation and identification of fungi associated with decomposition of litter of sal forest in central India. Season wise successional changes in litter mycoflora were determined for four main seasons of the year namely, March-May, June-August, September-November and December-February. Fungi like Aspergillus flavus, A. niger and Rhizopus stolonifer were associated with litter decomposition throughout the year, while Aspergillus fumigatus, Cladosporium cladosporioides, C. oxysporum, Curvularia indica, and C. lunata were recorded in three seasons. Some fungi including ectomycorrhiza forming occur only in the rainy season (June-August these are Astraeus hygrometricus, Boletus fallax, Calvatia elata, Colletotrichum dematium, Corticium rolfsii, Mycena roseus, Periconia minutissima, Russula emetica, Scleroderma bovista, S. geaster, S. verrucosum, Scopulariopsis alba and four sterile fungi. Fungi like Alternaria citri, Gleocladium virens, Helicosporium phragmitis and Pithomyces cortarum were rarely recorded only in one season.

  9. Regulation and diversity of plant polysaccharide utilisation in fungi

    NARCIS (Netherlands)

    Battaglia, E.

    2011-01-01

    Filamentous fungi obtain their nutrients by degrading dead or living plant material. Plant material consists of different cell wall and storage polysaccharides. Due to the complex structure and the variety of plant polysaccharides, filamentous fungi secrete a wide range of plant polysaccharide

  10. Contamination of cockroaches (Insecta: Blattaria) to medically fungi: A systematic review and meta-analysis.

    Science.gov (United States)

    Nasirian, H

    2017-12-01

    Fungal infections have emerged worldwide. Cockroaches have been proved vectors of medically fungi. A systematic meta-analysis review about cockroach fungal contamination was investigated. Relevant topics were collected between January 2016 and January 2017. After a preliminary review among 392 collected papers, 156 were selected to become part of the detailed systematic meta-analysis review. Cockroaches contaminated to 38 fungi species belonging to 19 families and 12 orders. About 38, 25 and 13 fungal species were recovered from the American, German and brown-banded cockroaches, respectively with a variety of medical importance. Except the fungi isolated from German and brown-banded cockroaches, 15 species have been isolated only from the American cockroaches. The global world mean and trend of cockroach fungal contamination were 84.1 and 50.6-100%, respectively in the human dwelling environments. There is a significant difference between cockroach fungal contamination in the urban and rural environments (P0.05). The external and internal cockroach fungal contamination is more dangerous than entire surfaces, while the internal is more dangerous than the external surface. The German and brown-banded cockroach fungal contamination are more dangerous than the American cockroaches in the hospital environments. The study indicates that globally cockroach fungal contamination has been increased recognizing as agents of human infections and associating with high morbidity and mortality in immune-compromised patients. These facts, along with insecticide resistance emergence and increasing globally cockroach infestation, reveal importance of cockroaches and need for their control more than ever. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Biological and structure-activity evaluation of chalcone derivatives against bacteria and fungi

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Wender A.; Andrade, Carlos Kleber Z.; Napolitano, Hamilton B., E-mail: wender@unb.br, E-mail: ckleber@unb.br [Universidade de Brasilia (LaQMOS/UnB), DF (Brazil). Inst. de Quimica; Vencato, Ivo; Castro, Miriam R.C. de; Camargo, Ademir J. [Universidade Estadual de Goias (UEG), Anapolis, GO (Brazil). Ciencias Exatas e Tecnologicas; Lariucci, Carlito [Universidade Estadual de Goias (UEG), Goiania, GO (Brazil). Inst. de Fisica

    2013-01-15

    The present work describes the antibacterial and antifungal activities of several chalcones obtained by a straight Claisen-Schmidt aldol condensation determined by the minimal inhibitory concentration against different microorganisms (Gram-positive and Gram-negative bacteria and fungi). Solid state crystal structures of seven chalcones were determined by X-ray diffraction (XRD) analysis. Chemometric studies were carried out in order to identify a potential structure activity relationship. (author)

  12. Olive mill wastewater biodegradation potential of white-rot fungi - Mode of action of fungal culture extracts and effects of ligninolytic enzymes

    Czech Academy of Sciences Publication Activity Database

    Ntougias, S.; Baldrian, Petr; Ehaliotis, C.; Nerud, František; Merhautová, Věra; Zervakis, G.

    2015-01-01

    Roč. 189, č. 1 (2015), s. 121-130 ISSN 0960-8524 Institutional support: RVO:61388971 Keywords : Wood-rot fungi * Laccase * Peroxidase Subject RIV: EE - Microbiology, Virology Impact factor: 4.917, year: 2015

  13. Adaptation to the Host Environment by Plant-Pathogenic Fungi.

    Science.gov (United States)

    van der Does, H Charlotte; Rep, Martijn

    2017-08-04

    Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.

  14. Secondary metabolites of Antarctic fungi antagonistic to aquatic pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Zhao Huibin

    2018-03-01

    Full Text Available Polar microbial derived antibiotics have potential as alternatives to traditional antibiotics in treating fish against pathogenic bacteria. In this paper, 23 strains of polar fungi were fermented to detect bacteriostatic products on three aquatic pathogenic bacteria, subsequently the active fungus was identified. It was indicated that secondary metabolites of 23 strains weredistinct; of these, the extract of strain B-7 (belonging to Bjerkandera according to molecular identification demonstrated a strong antibacterial activity to Streptococcus agalactiae, Vibrio anguillarum and Aeromonas hydrophila ATCC7966 by Kirby-Bauerpaper strip method. During one fermentation cycle, the pH curve of the fermentation liquor became lowest (4.0 on the 4th day and rose back to 7.6 finally after 5 days, The residual sugar curve was decreased before stablising on the 6th day. It is presumed that a large amount of alkaline secondary metabolites might have been produced during fermentation. This study focuses on antagonism between aquatic pathogenic bacteria and fermentation metabolites from Antarctic fungi for the first time, which may provide data on research of antibiotics against aquatic pathogenic bacteria.

  15. Soil fungi and the fate of radiocaesium in the soil ecosystem

    International Nuclear Information System (INIS)

    Olsen, R.A.; Joner, E.; Bakken, L.R.

    1990-01-01

    In this paper the authors discuss the role of fungi as a Cs sink in soil. Tentative estimates of the radiocaesium content in the fungal biomass are presented. They also discuss the various properties of the fungi which might contribute to their ability to accumulate radiocaesium. Preliminary data on Cs-uptake by pure cultures of fungi are presented. (author)

  16. Diversity and evolution of ABC proteins in mycorrhiza-forming fungi.

    Science.gov (United States)

    Kovalchuk, Andriy; Kohler, Annegret; Martin, Francis; Asiegbu, Fred O

    2015-12-28

    Transporter proteins are predicted to have an important role in the mycorrhizal symbiosis, due to the fact that this type of an interaction between plants and fungi requires a continuous nutrient and signalling exchange. ABC transporters are one of the large groups of transporter proteins found both in plants and in fungi. The crucial role of plant ABC transporters in the formation of the mycorrhizal symbiosis has been demonstrated recently. Some of the fungal ABC transporter-encoding genes are also induced during the mycorrhiza formation. However, no experimental evidences of the direct involvement of fungal ABC transporters in this process are available so far. To facilitate the identification of fungal ABC proteins with a potential role in the establishment of the mycorrhizal symbiosis, we have performed an inventory of the ABC protein-encoding genes in the genomes of 25 species of mycorrhiza-forming fungi. We have identified, manually annotated and curated more than 1300 gene models of putative ABC protein-encoding genes. Out of those, more than 1000 models are predicted to encode functional proteins, whereas about 300 models represent gene fragments or putative pseudogenes. We have also performed the phylogenetic analysis of the identified sequences. The sets of ABC proteins in the mycorrhiza-forming species were compared to the related saprotrophic or plant-pathogenic fungal species. Our results demonstrate the high diversity of ABC genes in the genomes of mycorrhiza-forming fungi. Via comparison of transcriptomics data from different species, we have identified candidate groups of ABC transporters that might have a role in the process of the mycorrhiza formation. Results of our inventory will facilitate the identification of fungal transporters with a role in the mycorrhiza formation. We also provide the first data on ABC protein-coding genes for the phylum Glomeromycota and for orders Pezizales, Atheliales, Cantharellales and Sebacinales, contributing to

  17. Biodegradation of mixtures of pesticides by bacteria and white rot fungi

    OpenAIRE

    Gouma, Sofia

    2009-01-01

    The objective of this study was to examine the potential for degradation of mixtures of pesticides (chlorpyrifos, linuron, metribuzin) by a range of bacteria and fungi and to relate this capability to enzyme production and quantify the rates of degradation of the components of the mixture of xenobiotic compounds. Overall, although bacteria (19 Bacillus and 4 Pseudomonas species) exhibited tolerance to the individual and micture of pesticides actual degradation was not eviden...

  18. Aflatoxigenic Fungi and Aflatoxins in Portuguese Almonds

    OpenAIRE

    Rodrigues, P.; Venâncio, A.; Lima, N.

    2012-01-01

    Aflatoxin contamination of nuts is an increasing concern to the consumer’s health. Portugal is a big producer of almonds, but there is no scientific knowledge on the safety of those nuts, in terms of mycotoxins. The aim of this paper was to study the incidence of aflatoxigenic fungi and aflatoxin contamination of 21 samples of Portuguese almonds, and its evolution throughout the various stages of production. All fungi belonging to Aspergillus section Flavi were identified and tested ...

  19. Endophytic fungi as models for the stereoselective biotransformation of thioridazine.

    Science.gov (United States)

    Borges, Keyller Bastos; Borges, Warley De Souza; Pupo, Mônica Tallarico; Bonato, Pierina Sueli

    2007-12-01

    The stereoselective kinetic biotransformation of thioridazine, a phenothiazine neuroleptic drug, by endophytic fungi was investigated. In general, the sulfur of lateral chain (position 2) or the sulfur of phenothiazinic ring (position 5) were oxidated yielding the major human metabolites thioridazine-2-sulfoxide and thioridazine-5-sulfoxide. The quantity of metabolites biosynthesized varied among the 12 endophytic fungi evaluated. However, mono-2-sulfoxidation occurred in higher ratio and frequency. Among the 12 fungi evaluated, 4 of them deserve prominence for presenting an evidenced stereoselective biotransformation: Phomopsis sp. (TD2), Glomerella cingulata (VA1), Diaporthe phaseolorum (VR4), and Aspergillus fumigatus (VR12). Both enantiomers of thioridazine were consumed by the fungi; however, the 2-sulfoxidation yielded preferentially the R configuration at the sulfur atom.

  20. Virulence Factors IN Fungi OF Systemic Mycoses

    Directory of Open Access Journals (Sweden)

    KUROKAWA Cilmery Suemi

    1998-01-01

    Full Text Available Pathogenic fungi that cause systemic mycoses retain several factors which allow their growth in adverse conditions provided by the host, leading to the establishment of the parasitic relationship and contributing to disease development. These factors are known as virulence factors which favor the infection process and the pathogenesis of the mycoses. The present study evaluates the virulence factors of pathogenic fungi such as Blastomyces dermatitidis, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum and Paracoccidioides brasiliensis in terms of thermotolerance, dimorphism, capsule or cell wall components as well as enzyme production. Virulence factors favor fungal adhesion, colonization, dissemination and the ability to survive in hostile environments and elude the immune response mechanisms of the host. Both the virulence factors presented by different fungi and the defense mechanisms provided by the host require action and interaction of complex processes whose knowledge allows a better understanding of the pathogenesis of systemic mycoses.

  1. Hijacked: Co-option of host behavior by entomophthoralean fungi

    Science.gov (United States)

    Over 700 species of fungi are known to infect and cause disease in insects and other arthropods. The majority of insect pathogenic fungi are classified in the phyla Entomophthoromycotina and Ascomycotina, and many are ecologically important in regulating insect populations. To summarize fungal-inse...

  2. Fungi associated with post-harvest deterioration of dried Clarias ...

    African Journals Online (AJOL)

    Fungi associated with post-harvest deterioration of dried Clarias gariepinus vended in some ... Journal of Aquatic Sciences ... Results revealed that fish samples from okpokpo market contained highest number (10) of fungal isolates while samples from Afaha ... Key Words: Mycoflora, isolation, fungi, Fusarium, C. gariepinus ...

  3. antibacterial activity of endophytic fungi isolated from conifers needles

    African Journals Online (AJOL)

    Ravnikar, Matjaž

    2015-03-11

    Mar 11, 2015 ... taxonomically place fungi producing ones to determined active metabolites. Seventy three strains of endophytic fungi were isolated ... great number of diverse bioactive compounds (Devaraju and Satish, 2010), which have been ... closed with a glass stopper. The extraction solvents utilized were methanol ...

  4. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes.

    Science.gov (United States)

    Bowles, Timothy M; Jackson, Louise E; Cavagnaro, Timothy R

    2018-01-01

    Climate change will alter both the amount and pattern of precipitation and soil water availability, which will directly affect plant growth and nutrient acquisition, and potentially, ecosystem functions like nutrient cycling and losses as well. Given their role in facilitating plant nutrient acquisition and water stress resistance, arbuscular mycorrhizal (AM) fungi may modulate the effects of changing water availability on plants and ecosystem functions. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant mycorrhiza-defective tomato genotype rmc were grown in microcosms in a glasshouse experiment manipulating both the pattern and amount of water supply in unsterilized field soil. Following 4 weeks of differing water regimes, we tested how AM fungi affected plant productivity and nutrient acquisition, short-term interception of a 15NH4+ pulse, and inorganic nitrogen (N) leaching from microcosms. AM fungi enhanced plant nutrient acquisition with both lower and more variable water availability, for instance increasing plant P uptake more with a pulsed water supply compared to a regular supply and increasing shoot N concentration more when lower water amounts were applied. Although uptake of the short-term 15NH4+ pulse was higher in rmc plants, possibly due to higher N demand, AM fungi subtly modulated NO3- leaching, decreasing losses by 54% at low and high water levels in the regular water regime, with small absolute amounts of NO3- leached (<1 kg N/ha). Since this study shows that AM fungi will likely be an important moderator of plant and ecosystem responses to adverse effects of more variable precipitation, management strategies that bolster AM fungal communities may in turn create systems that are more resilient to these changes. © 2017 John Wiley & Sons Ltd.

  5. The effect of ectomycorrhizal fungi and bacteria on pine seedlings

    Directory of Open Access Journals (Sweden)

    Hanna Dahm

    2014-08-01

    Full Text Available The effect of ecomycorrhizal fungi (Hebelon crustuliniforme(Bull.: Fr. Quél. 5392 and Pisolithus tinctorius (Pers. Coker et Couch 5335 and bacteria (Bacillus polymyxa and Azospirillum brasilense. associated with mycorrhizas on the growth of pine seedligs was investigated. In addition the influence of bacteria on fungal biomass production and the relationship between ectomycorrhizal fungi and fungi pathogenic to root of pine seedlings were determined. In general, the shoot/root ratio was higher in plants inoculated with Hebeloma crustuliniforme and bacteria than in the control seedlings (grown only under sterile conditions. In non-sterile substrate the root/shoot ratio of the mycorrhizal seedlings was lower as compared to the control. Similar phenomenon was noted in plants inoculated with the mycorrhizal fungus Pisolithus tinetorius. The bacteria used as well as the time of introduction of these organisms into the cultures of mycorrhiza fungi affected the production of fungal biomass. Hebeloma crustuliniforme and Pisolithus tinctorius inhibited the growth of Rizoctonia solani and Fusarium oxysporum fungi pathogenic to pine seedlings.

  6. Distribution of ectomycorrhizal and pathogenic fungi in soil along a vegetational change from Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia).

    Science.gov (United States)

    Taniguchi, Takeshi; Kataoka, Ryota; Tamai, Shigenobu; Yamanaka, Norikazu; Futai, Kazuyoshi

    2009-04-01

    The nitrogen-fixing tree black locust (Robinia pseudoacacia L.) seems to affect ectomycorrhizal (ECM) colonization and disease severity of Japanese black pine (Pinus thunbergii Parl.) seedlings. We examined the effect of black locust on the distribution of ECM and pathogenic fungi in soil. DNA was extracted from soil at depths of 0-5 and 5-10 cm, collected from the border between a Japanese black pine- and a black locust-dominated forest, and the distribution of these fungi was investigated by denaturing gradient gel electrophoresis. The effect of soil nutrition and pH on fungal distribution was also examined. Tomentella sp. 1 and Tomentella sp. 2 were not detected from some subplots in the Japanese black pine-dominated forest. Ectomycorrhizas formed by Tomentella spp. were dominant in black locust-dominated subplots and very little in the Japanese black pine-dominated forest. Therefore, the distribution may be influenced by the distribution of inoculum potential, although we could not detect significant relationships between the distribution of Tomentella spp. on pine seedlings and in soils. The other ECM fungi were detected in soils in subplots where the ECM fungi was not detected on pine seedlings, and there was no significant correlation between the distribution of the ECM fungi on pine seedlings and in soils. Therefore, inoculum potential seemed to not always influence the ECM community on roots. The distribution of Lactarius quieticolor and Tomentella sp. 2 in soil at a depth of 0-5 cm positively correlated with soil phosphate (soil P) and that of Tomentella sp. 2 also positively correlated with soil nitrogen (soil N). These results suggest the possibility that the distribution of inoculum potential of the ECM fungi was affected by soil N and soil P. Although the mortality of the pine seedlings was higher in the black locust-dominated area than in the Japanese black pine-dominated area, a pathogenic fungus of pine seedlings, Cylindrocladium pacificum, was

  7. Enzymatic activity of fungi isolated from crops

    Directory of Open Access Journals (Sweden)

    Wioletta A. Żukiewicz-Sobczak

    2016-12-01

    Full Text Available Aim: To detect and assess the activity of extracellular hydrolytic enzymes and to find differences in enzymograms between fungi isolated from wheat and rye samples and grown on Czapek-Dox Broth and Sabouraud Dextrose Broth enriched with cereal (wheat or rye. Isolated strains were also classified in the scale of biosafety levels (BSL. Material and methods: The study used 23 strains of fungi cultured from samples of wheat and rye (grain, grain dust obtained during threshing and soil collected in the Lublin region (eastern Poland. API ZYM test (bioMérieux was carried out according to the manufacturer’s instructions. Classification of BSL (Biosafety levels was based on the current literature. Results : High enzymatic activity was found in strains cultured in media containing 1% of wheat grain ( Bipolaris holmi, Penicillium decumbens and with an addition of 1% of rye grain ( Cladosporium herbarum, Aspergillus versicolor, Alternaria alternata . The total number of enzymes varied depending on the type of media, and in most cases it was higher in the culture where an addition of cereal grains was used. Conclusions : Isolated strains of fungi reveal differences in the profiles of the enzyme assay. It can be assumed that the substrate enriched in grains stimulate the higher activity of mold enzymes. Key words: enzymatic activity, mold fungi, zymogram, biohazards.

  8. Pyrene degradation by yeasts and filamentous fungi.

    Science.gov (United States)

    Romero, M Cristina; Salvioli, Mónica L; Cazau, M Cecilia; Arambarri, A M

    2002-01-01

    The saprotrophic soil fungi Fusarium solani (Mart.) Sacc., Cylindrocarpon didymum (Hartig) Wollenw, Penicillium variabile Sopp. and the yeasts Rhodotorula glutinis (Fresenius) Harrison and Rhodotorula minuta (Saito) Harrison were cultured in mineral medium with pyrene. The remaining pyrene concentrations were periodically determined during 20 incubation days, using HPLC. To assess the metabolism of pyrene degradation we added 0.1 microCi of [4,5,9,10] 14C-pyrene to each fungi culture and measured the radioactivity in the volatile organic substances, extractable, aqueous phase, biomass and 14CO2 fractions. The assays demonstrated that F. solani and R. glutinis metabolized pyrene as a sole source of carbon. Differences in their activities at the beginning of the cultures disappeared by the end of the experiment, when 32 and 37% of the original pyrene concentration was detected, for the soil fungi and yeasts, respectively. Among the filamentous fungi, F. solani was highly active and oxidized pyrene; moreover, small but significant degradation rates were observed in C. didymum and P. variahile cultures. An increase in the 14CO2 evolution was observed at the 17th day with cosubstrate. R. glutinis and R. minuta cultures showed similar ability to biotransform pyrene, and that 35% of the initial concentration was consumed at the end of the assay. The same results were obtained in the experiments with or without glucose as cosubstrate.

  9. Antagonism of rice phylloplane fungi against Cercospora oryzae

    Science.gov (United States)

    Mardani, A.; Hadiwiyono

    2018-03-01

    Narrow brown leaf spot (NBLS) caused by Cercospora oryzae Miyake is one of the important obstacle in rice cultivation that can decrease the productivity up to 40%. It has been known well that some phylloplane fungi are antagonistic to some leaf diseases. Phylloplane fungi of rice however haven’t been studied much and poorly understood as biological control agent of rice pathogen such C. oryzae. The research aimed to study the antagonism of some phylloplane fungi of rice against C. oryzae. At least 14 isolates of phylloplane fungi were collected which consisted of six pathogenic and eight nonpathogenic variants. All of nonpathogenic isolates were antagonistic against C. oryzae both in vitro and only one isolate could not inhibit the infection of the pathogen in vivo. Some isolates were identified as Aspergillus, Mucor, Penicillium, Fusarium, and Trichoderma. The isolate of Mucor and Fusarium could inhibit the highest growth of pathogen on potato dextrose medium that were at 36.0% and 35.5% respectively. Whereas on artificial inoculation on rice, some isolates such Penicillium and Fusarium could inhibit most effectively and were significantly different to Mencozeb application with dosage 5g L-1.

  10. Decolorization of six synthetic dyes by fungi

    OpenAIRE

    Hartikainen, E. Samuel; Miettinen, Otto; Hatakka, Annele; Kähkönen, Mika A.

    2016-01-01

    To find out ability of fourteen basidiomycetes and four ascomycetes strains to grow in the presence of synthetic colour dyes and to degrade them, fungi were cultivated on the malt agar plates containing 0.5 g kg-1 dye, either Remazol Brilliant Blue R, Remazol Brilliant Yellow GL, Remazol Brilliant Orange 3 R, Reactive Blue 4, Remazol Brilliant Red F3B or Reactive Black 5. Fungi representing basidiomycetes were Phlebia radiata (FBCC 43), Tremella encephala (FBCC 1145), Dichomitus squalens (FBC...

  11. A study on biological activity of marine fungi from different habitats in coastal regions.

    Science.gov (United States)

    Zhou, Songlin; Wang, Min; Feng, Qi; Lin, Yingying; Zhao, Huange

    2016-01-01

    In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results showed that fungi isolation from the mangrove habitats had stronger antibacterial activity than others, and the stains isolated from the estuarial habitats had the least antibacterial activity. However, the strains separated from beach habitats strongly inhibited tumor cell proliferation in vitro, and fungi of mangrove forest habitats had the weakest activity of inhibiting tumor. Meanwhile, 195 fungal strains belonged to 46 families, 84 genera, 142 species and also showed 137 different types of activity combinations by analyzing the inhibitory activity of the metabolites fungi for 4 strains of pathogenic bacteria and B-16 cells. The study investigated the biological activity of marine fungi isolated from different habitats in Haikou coastal regions. The results help us to understand bioactive metabolites of marine fungi from different habitats, and how to selected biological activity fungi from various marine habitats effectively.

  12. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell (Scrophulariaceae).

    Science.gov (United States)

    Katoch, Meenu; Singh, Gurpreet; Sharma, Sadhna; Gupta, Nidhi; Sangwan, Payare Lal; Saxena, Ajit Kumar

    2014-02-11

    Endophytes, which reside in plant tissues, have the potential to produce novel metabolites with immense benefits for health industry. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell were investigated. Endophytic fungi were isolated from the Bacopa monnieri. Extracts from liquid cultures were tested for cytotoxicity against a number of cancer cell lines using the MTT assay. Antimicrobial activity was determined using the micro dilution method. 22% of the examined extracts showed potent (IC50 of <20 μg/ml) cytotoxic activity against HCT-116 cell line. 5.5%, 11%, 11% of the extracts were found to be cytotoxic for MCF-7, PC-3, and A-549 cell lines respectively. 33% extracts displayed antimicrobial activity against at least one test organism with MIC value 10-100 μg/ml. The isolate B9_Pink showed the most potent cytotoxic activity for all the cell lines examined and maximum antimicrobial activity against the four pathogens examined which was followed by B19. Results indicated the potential for production of bioactive agents from endophytes of Bacopa monnieri.

  13. What we know about arbuscular mycorhizal fungi and associated ...

    African Journals Online (AJOL)

    Mycorrhizal fungi are common soil microorganisms and are well known for their symbiotic association with the roots of host plants. The soil is a complex environment harbouring a wide diversity of microorganisms. The interaction between soil bacteria and arbuscular mycorrhizal fungi has been shown in several studies to ...

  14. Utilization of fungi for biotreatment of raw wastewaters | Coulibaly ...

    African Journals Online (AJOL)

    However, the detoxification rates seem to be dependent on media and culture conditions. The postreatement by anaerobic bioprocesses of effluents that have been pretreated with fungi can lead to higher biogas than the original effluents. In addition to the degradation of organic pollutants, fungi produce added-value ...

  15. Aflatoxigenic Fungi and Aflatoxins in Portuguese Almonds

    Science.gov (United States)

    Rodrigues, P.; Venâncio, A.; Lima, N.

    2012-01-01

    Aflatoxin contamination of nuts is an increasing concern to the consumer's health. Portugal is a big producer of almonds, but there is no scientific knowledge on the safety of those nuts, in terms of mycotoxins. The aim of this paper was to study the incidence of aflatoxigenic fungi and aflatoxin contamination of 21 samples of Portuguese almonds, and its evolution throughout the various stages of production. All fungi belonging to Aspergillus section Flavi were identified and tested for their aflatoxigenic ability. Almond samples were tested for aflatoxin contamination by HPLC-fluorescence. In total, 352 fungi belonging to Aspergillus section Flavi were isolated from Portuguese almonds: 127 were identified as A. flavus (of which 28% produced aflatoxins B), 196 as typical or atypical A. parasiticus (all producing aflatoxins B and G), and 29 as A. tamarii (all nonaflatoxigenic). Aflatoxins were detected in only one sample at 4.97 μg/kg. PMID:22666128

  16. Aflatoxigenic Fungi and Aflatoxins in Portuguese Almonds

    Directory of Open Access Journals (Sweden)

    P. Rodrigues

    2012-01-01

    Full Text Available Aflatoxin contamination of nuts is an increasing concern to the consumer’s health. Portugal is a big producer of almonds, but there is no scientific knowledge on the safety of those nuts, in terms of mycotoxins. The aim of this paper was to study the incidence of aflatoxigenic fungi and aflatoxin contamination of 21 samples of Portuguese almonds, and its evolution throughout the various stages of production. All fungi belonging to Aspergillus section Flavi were identified and tested for their aflatoxigenic ability. Almond samples were tested for aflatoxin contamination by HPLC-fluorescence. In total, 352 fungi belonging to Aspergillus section Flavi were isolated from Portuguese almonds: 127 were identified as A. flavus (of which 28% produced aflatoxins B, 196 as typical or atypical A. parasiticus (all producing aflatoxins B and G, and 29 as A. tamarii (all nonaflatoxigenic. Aflatoxins were detected in only one sample at 4.97 μg/kg.

  17. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops.

    Science.gov (United States)

    Ansari, Mohammad Wahid; Trivedi, Dipesh Kumar; Sahoo, Ranjan Kumar; Gill, Sarvajeet Singh; Tuteja, Narendra

    2013-09-01

    The beneficial fungi are potentially useful in agriculture sector to avail several services to crop plants such as water status, nutrient enrichment, stress tolerance, protection, weed control and bio-control. Natural agro-ecosystem relies on fungi because of it takes part in soil organic matter decomposition, nutrient acquisition, organic matter recycling, nutrient recycling, antagonism against plant pests, and crop management. The crucial role of fungi in normalizing the toxic effects of phenols, HCN and ROS by β-CAS, ACC demainase and antioxidant enzymes in plants is well documented. Fungi also play a part in various physiological processes such as water uptake, stomatal movement, mineral uptake, photosynthesis and biosynthesis of lignan, auxins and ethylene to improve growth and enhance plant fitness to cope heat, cold, salinity, drought and heavy metal stress. Here, we highlighted the ethylene- and cyclophilin A (CypA)-mediated response of Piriformospora indica for sustainable crop production under adverse environmental conditions. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Accurate prediction of secondary metabolite gene clusters in filamentous fungi

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Nielsen, Jakob Blæsbjerg; Klitgaard, Andreas

    2013-01-01

    Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify...... used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom....

  19. In Silico Identification of Microbial Partners to Form Consortia with Anaerobic Fungi

    Directory of Open Access Journals (Sweden)

    St. Elmo Wilken

    2018-01-01

    Full Text Available Lignocellulose is an abundant and renewable resource that holds great promise for sustainable bioprocessing. However, unpretreated lignocellulose is recalcitrant to direct utilization by most microbes. Current methods to overcome this barrier include expensive pretreatment steps to liberate cellulose and hemicellulose from lignin. Anaerobic gut fungi possess complex cellulolytic machinery specifically evolved to decompose crude lignocellulose, but they are not yet genetically tractable and have not been employed in industrial bioprocesses. Here, we aim to exploit the biomass-degrading abilities of anaerobic fungi by pairing them with another organism that can convert the fermentable sugars generated from hydrolysis into bioproducts. By combining experiments measuring the amount of excess fermentable sugars released by the fungal enzymes acting on crude lignocellulose, and a novel dynamic flux balance analysis algorithm, we screened potential consortia partners by qualitative suitability. Microbial growth simulations reveal that the fungus Anaeromyces robustus is most suited to pair with either the bacterium Clostridia ljungdahlii or the methanogen Methanosarcina barkeri—both organisms also found in the rumen microbiome. By capitalizing on simulations to screen six alternative organisms, valuable experimental time is saved towards identifying stable consortium members. This approach is also readily generalizable to larger systems and allows one to rationally select partner microbes for formation of stable consortia with non-model microbes like anaerobic fungi.

  20. Activity of some aminoglycoside antibiotics against true fungi, Phytophthora and Pythium species.

    Science.gov (United States)

    Lee, H B; Kim, Y; Kim, J C; Choi, G J; Park, S-H; Kim, C-J; Jung, H S

    2005-01-01

    To investigate the in vitro antifungal and antioomycete activities of some aminoglycosides against true fungi and Phytophthora and Pythium species and to evaluate the potential of the antibiotics against Phytophthora late blight on plants. Antifungal and antioomycete activities of aminoglycoside antibiotics (neomycin, paromomycin, ribostamycin and streptomycin) and a paromomycin-producing strain (Streptomyces sp. AMG-P1) against Phytophthora and Pythium species and 10 common fungi were measured in potato dextrose broth (PDB) and on seedlings in pots. Paromomycin was the most active against Phytophthora and Pythium species with a minimal inhibitory concentration of 1-10 microg ml(-1) in PDB, but displayed low to moderate activities towards other common fungi at the same concentration. Paromomycin also showed potent in vivo activity against red pepper and tomato late blight diseases with 80 and 99% control value, respectively, at 100 microg ml(-1). In addition, culture broth of Streptomyces sp. AMG-P1 as a paromomycin producer exhibited high in vivo activity against late blight at 500 microg freeze-dried weight per millilitre. Among tested aminoglycoside antibiotics, paromomycin was the most active against oomycetes both in vitro and in vivo. Data from this study show that aminoglycoside antibiotics have in vitro and in vivo activities against oomycetes, suggesting that Streptomyces sp. AMG-P1 may be used as a biocontrol agent against oomycete diseases.

  1. Novel fungi from an ancient niche: lachnoid and chalara-like fungi on ferns

    NARCIS (Netherlands)

    Guatimosim, E.; Schwartsburd, P. B.; Crous, P. W.; Barreto, R. W.

    2016-01-01

    A survey was conducted in Brazil to collect fungi on ferns. Based on morphology and inferred phylogeny from DNA sequences of two loci, namely the internal transcribed spacer (ITS) regions and the large subunit nuclear ribosomal RNA gene (LSU), several species belonging to chalara-like genera and

  2. MICROMORPHOLOGICAL AND CHEMICAL ASPECTS OF SOME LICHENIZED FUNGI SPECIES

    Directory of Open Access Journals (Sweden)

    PÎNDARU DIANA-MIHAELA

    2012-12-01

    Full Text Available At present, lichenized fungi are used in biomonitoring studies of air quality, being good receptors in the climate change. This paper aims to investigate surface micromorphology of Xanthoria parietina and Phaeophyscia orbicularis species (Lecanoromycetes, Ascomycota. The study also includes the investigation of selected chemical parameters as pH and conductivity of the lichenized fungi samples collected from various locations in the Iaşi County (Romania. Measurements of the pH provide information on the degree of pollution in the location of interest. Bark trees pH was also investigated in order to see if our matrix substrate influences the pH of the interest lichenized fungi samples.

  3. Biodegrading effects of some rot fungi on Pinus caribaea wood ...

    African Journals Online (AJOL)

    morelet) in Ijaiye Forest Reserve, 38 km northwest of Ibadan, Nigeria. The wood samples were inoculated separately with two species of white-rot fungi; Corioliopsis polyzona and Pleurotus squarrosulus, and two species of brownrot fungi; ...

  4. Molecular mechanisms underlying the close association between soil Burkholderia and fungi

    Science.gov (United States)

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils. PMID:25989372

  5. Molecular mechanisms underlying the close association between soil Burkholderia and fungi.

    Science.gov (United States)

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils.

  6. Elucidating the nutritional dynamics of fungi using stable isotopes

    Science.gov (United States)

    Jordan R. Mayor; Edward A.G. Schuur; Terry W. Henkel

    2009-01-01

    Mycorrhizal and saprotrophic (SAP) fungi are essential to terrestrial element cycling due to their uptake of mineral nutrients and decomposition of detritus. Linking these ecological roles to specific fungi is necessary to improve our understanding of global nutrient cycling, fungal ecophysiology, and forest ecology. Using discriminant analyses of nitrogen and carbon...

  7. Bioinformatic Analysis of Genomic and Transcriptomic Variation in Fungi

    NARCIS (Netherlands)

    Gehrmann, T.

    2018-01-01

    Fungi are microorganisms whose astounding variety can be found in every conceivable ecosystem on the planet. Fungi are nutrient recyclers, playing an irreplaceable role in the carbon cycle. They grow on land and in the sea, on plants and animals and in the soil. They feed us as mushrooms, and drive

  8. Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds.

    Directory of Open Access Journals (Sweden)

    Xiao-Ye Shen

    Full Text Available Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0% and Basidiomycota (2.0%, including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp., B34 (Curvularia sp., B35 (undefined genus 1, B38 (Penicillium sp. and zzz816 (Shiraia sp. displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816 could produce hypocrellin A at high yield, which

  9. Mysterious Mycorrhizae? A Field Trip & Classroom Experiment to Demystify the Symbioses Formed between Plants & Fungi

    Science.gov (United States)

    Johnson, Nancy C.; Chaudhary, V. Bala; Hoeksema, Jason D.; Moore, John C.; Pringle, Anne; Umbanhowar, James A.; Wilson, Gail W. T.

    2009-01-01

    Biology curricula cover fungi in units on bacteria, protists, and primitive plants, but fungi are more closely related to animals than to bacteria or plants. Like animals, fungi are heterotrophs and cannot create their own food; but, like plants, fungi have cell walls, and are for the most part immobile. Most species of fungi have a filamentous…

  10. Opportunities for Cancer-relevant Innovative Technologies with Transformative Potential | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The National Cancer Institute (NCI) is seeking input from the community on identifying priorities with regards to supporting innovative technology development for cancer-relevant research. While the NCI provides support for technology development through a variety of mechanisms, it is important to understand whether or not these are sufficient for catalyzing and supporting the development of tools with significant potential for advancing important fields of cancer research or clinical care.

  11. Comparative analysis of programmed cell death pathways in filamentous fungi

    Directory of Open Access Journals (Sweden)

    Wortman Jennifer R

    2005-12-01

    Full Text Available Abstract Background Fungi can undergo autophagic- or apoptotic-type programmed cell death (PCD on exposure to antifungal agents, developmental signals, and stress factors. Filamentous fungi can also exhibit a form of cell death called heterokaryon incompatibility (HI triggered by fusion between two genetically incompatible individuals. With the availability of recently sequenced genomes of Aspergillus fumigatus and several related species, we were able to define putative components of fungi-specific death pathways and the ancestral core apoptotic machinery shared by all fungi and metazoa. Results Phylogenetic profiling of HI-associated proteins from four Aspergilli and seven other fungal species revealed lineage-specific protein families, orphan genes, and core genes conserved across all fungi and metazoa. The Aspergilli-specific domain architectures include NACHT family NTPases, which may function as key integrators of stress and nutrient availability signals. They are often found fused to putative effector domains such as Pfs, SesB/LipA, and a newly identified domain, HET-s/LopB. Many putative HI inducers and mediators are specific to filamentous fungi and not found in unicellular yeasts. In addition to their role in HI, several of them appear to be involved in regulation of cell cycle, development and sexual differentiation. Finally, the Aspergilli possess many putative downstream components of the mammalian apoptotic machinery including several proteins not found in the model yeast, Saccharomyces cerevisiae. Conclusion Our analysis identified more than 100 putative PCD associated genes in the Aspergilli, which may help expand the range of currently available treatments for aspergillosis and other invasive fungal diseases. The list includes species-specific protein families as well as conserved core components of the ancestral PCD machinery shared by fungi and metazoa.

  12. Caesium inhibits the colonization of Medicago truncatula by arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    Wiesel, Lea; Dubchak, Sergiy; Turnau, Katarzyna; Broadley, Martin R.; White, Philip J.

    2015-01-01

    Contamination of soils with radioisotopes of caesium (Cs) is of concern because of their emissions of harmful β and γ radiation. Radiocaesium enters the food chain through vegetation and the intake of Cs can affect the health of organisms. Arbuscular mycorrhizal (AM) fungi form mutualistic symbioses with plants through colonization of the roots and previous studies on the influence of AM on Cs concentrations in plants have given inconsistent results. These studies did not investigate the influence of Cs on AM fungi and it is therefore not known if Cs has a direct effect on AM colonization. Here, we investigated whether Cs influences AM colonization and if this effect impacts on the influence of Rhizophagus intraradices on Cs accumulation by Medicago truncatula. M. truncatula was grown with or without R. intraradices in pots containing different concentrations of Cs. Here, we present the first evidence that colonization of plants by AM fungi can be negatively affected by increasing Cs concentrations in the soil. Mycorrhizal colonization had little effect on root or shoot Cs concentrations. In conclusion, the colonization by AM fungi is impaired by high Cs concentrations and this direct effect of soil Cs on AM colonization might explain the inconsistent results reported in literature that have shown increased, decreased or unaffected Cs concentrations in AM plants. - Highlights: • Colonization of plants by arbuscular mycorrhizal fungi is negatively affected by increasing soil caesium concentrations. • Shoot caesium concentrations are not influenced by AM fungi at soil caesium concentrations above about 3 μg Cs kg −1 . • The direct effect of caesium on AM fungi might impact on the influence of AM fungi on Cs accumulation in plants. • This might explain the inconsistent results reported in literature on Cs accumulation in AM plants

  13. The Role of Fungi in the Etiology of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Julián Benito-León

    2017-10-01

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory disorder of the central nervous system. Infectious triggers of MS are being actively investigated. Substantial evidence supports the involvement of the Epstein-Barr virus (EBV, though other viruses, bacteria, protists, and fungi are also being considered. Many links between fungi and diseases involving chronic inflammation have been found recently. Evidence linking MS and fungi is reviewed here. The HLA-DRB1*15 allele group is the most important genetic risk factor of MS, and is a risk factor in several other conditions linked to fungal infections. Many biomarkers of MS are consistent with fungal infections, such as IL-17, chitotriosidase, and antibodies against fungi. Dimethyl fumarate (DMF, first used as an industrial fungicide, was recently repurposed to reduce MS symptoms. Its mechanisms of action in MS have not been firmly established. The low risk of MS during childhood and its moderate association with herpes simplex virus type 2 suggest genital exposure to microbes (including fungi should be investigated as a possible trigger. Molecular and epidemiological evidence support a role for infections such as EBV in MS. Though fungal infections have not been widely studied in MS, many lines of evidence are consistent with a fungal etiology. Future microbiome and serological studies should consider fungi as a possible risk factor for MS, and future clinical studies should consider the effect of fungicides other than DMF on MS symptoms.

  14. Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease

    Directory of Open Access Journals (Sweden)

    You-Kun Zheng

    2017-07-01

    Conclusion: Our results suggested that P. notoginseng harbors diversified endophytic fungi that would provide a basis for the identification of new bioactive compounds, and for effective biocontrol of notoginseng root rot.

  15. Comparative efficacy and pathogenicity of keratinophilic soil fungi against Culex quinquefasciatus larvae.

    Science.gov (United States)

    Mohanty, Suman Sundar; Prakash, Soam

    2010-09-01

    Out of seven fungal species belonging to four genera isolated from pond and wallow soils using feathers of Pavo cristatus as bait, four species viz., Aspergillus flavus, Aspergillus niger, Chrysosporium pseudomerdarium and Trichophyton ajelloi were most frequent. Chrysosporium and Trichophyton spp. were more pathogenic on Culex quinquefasciatus larvae than Aspergillus and Penicillium. The bioefficacy tests conducted as per the protocol of World Health Organization and the LC(50) values calculated by the Probit analysis showed that 3(rd)-instar C. quinquefasciatus were more susceptible to the conidia of above fungi. Highest mortality was observed in the larvae of C. quinquefasciatus when exposed to T. ajelloi. The density of fungal conidia was greatest on the ventral brush, palmate hair and anal region of the mosquito larvae after exposing for 72 hours. The potentiality of these fungi for use in the control of C. quinquefasciatus is discussed which can be exploited as a suitable biocontrol agent in the tropics.

  16. A Foray into Fungal Ecology: Understanding Fungi and Their Functions Across Ecosystems

    Science.gov (United States)

    Francis, N.; Dunkirk, N. C.; Peay, K.

    2015-12-01

    Despite their incredible diversity and importance to terrestrial ecosystems, fungi are not included in a standard high school science curriculum. This past summer, however, my work for the Stanford EARTH High School Internship program introduced me to fungal ecology through experiments involving culturing, genomics and root dissections. The two fungal experiments I worked on had very different foci, both searching for answers to broad ecological questions of fungal function and physiology. The first, a symbiosis experiment, sought to determine if the partners of the nutrient exchange between pine trees and their fungal symbionts could choose one another. The second experiment, a dung fungal succession project, compared the genetic sequencing results of fungal extractions from dung versus fungal cultures from dung. My part in the symbiosis experiment involved dissection, weighing and encapsulation of root tissue samples characterized based on the root thickness and presence of ectomycorrhizal fungi. The dung fungi succession project required that I not only learn how to culture various genera of dung fungi but also learn how to extract DNA and RNA for sequencing from the fungal tissue. Although I primarily worked with dung fungi cultures and thereby learned about their unique physiologies, I also learned about the different types of genetic sequencing since the project compared sequences of cultured fungi versus Next Generation sequencing of all fungi present within a dung pellet. Through working on distinct fungal projects that reassess how information about fungi is known within the field of fungal ecology, I learned not only about the two experiments I worked on but also many past related experiments and inquiries through reading scientific papers. Thanks to my foray into fungal research, I now know not only the broader significance of fungi in ecological research but also how to design and conduct ecological experiments.

  17. Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes.

    Science.gov (United States)

    Venkatesagowda, Balaji; Ponugupaty, Ebenezer; Barbosa, Aneli M; Dekker, Robert F H

    2012-01-01

    Commercial oil-yielding seeds (castor, coconut, neem, peanut, pongamia, rubber and sesame) were collected from different places in the state of Tamil Nadu (India) from which 1279 endophytic fungi were isolated. The oil-bearing seeds exhibited rich fungal diversity. High Shannon-Index H' was observed with pongamia seeds (2.847) while a low Index occurred for coconut kernel-associated mycoflora (1.018). Maximum Colonization Frequency (%) was observed for Lasiodiplodia theobromae (176). Dominance Index (expressed in terms of the Simpson's Index D) was high (0.581) for coconut kernel-associated fungi, and low for pongamia seed-borne fungi. Species Richness (Chao) of the fungal isolates was high (47.09) in the case of neem seeds, and low (16.6) for peanut seeds. All 1279 fungal isolates were screened for lipolytic activity employing a zymogram method using Tween-20 in agar. Forty isolates showed strong lipolytic activity, and were morphologically identified as belonging to 19 taxa (Alternaria, Aspergillus, Chalaropsis, Cladosporium, Colletotrichum, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor, Penicillium, Pestalotiopsis, Phoma, Phomopsis, Phyllosticta, Rhizopus, Sclerotinia, Stachybotrys and Trichoderma). These isolates also exhibited amylolytic, proteolytic and cellulolytic activities. Five fungal isolates (Aspergillus niger, Chalaropsis thielavioides, Colletotrichum gloeosporioides, Lasiodiplodia theobromae and Phoma glomerata) exhibited highest lipase activities, and the best producer was Lasiodiplodia theobromae (108 U/mL), which was characterized by genomic sequence analysis of the ITS region of 18S rDNA.

  18. Copper tolerance of brown-rot fungi : time course of oxalic acid production

    Science.gov (United States)

    Frederick Green; Carol A. Clausen

    2003-01-01

    The increase in the use of non-arsenical copper-based wood preservatives in response to environmental concerns has been accompanied by interest in copper-tolerant decay fungi. Oxalic acid production by brown-rot fungi has been proposed as one mechanism of copper tolerance. Fifteen brown-rot fungi representing the genera Postia, Wolfiporia, Meruliporia, Gloeophyllum,...

  19. Potential biosurfactant producing endophytic and epiphytic fungi ...

    African Journals Online (AJOL)

    João Marcelo Lima

    2016-06-15

    Jun 15, 2016 ... L., macrophytes collected from oil-contaminated waters, were studied to assess their potential for ... personal hygiene products and food processing, among ... Biosurfactant production was undertaken in 50 mL of culture.

  20. Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi

    Directory of Open Access Journals (Sweden)

    Akira Yoshimi

    2017-11-01

    Full Text Available Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan.